Science.gov

Sample records for adenosine a2 receptor

  1. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  2. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  3. Role of adenosine A2B receptors in inflammation

    PubMed Central

    Feoktistov, Igor; Biaggioni, Italo

    2013-01-01

    Recent progress in our understanding of the unique role of A2B receptors in the regulation of inflammation, immunity and tissue repair was considerably facilitated with the introduction of new pharmacological and genetic tools. However, it also led to seemingly conflicting conclusions on the role of A2B adenosine receptors in inflammation with some publications indicating pro-inflammatory effects and others suggesting the opposite. This chapter reviews the functions of A2B receptors in various cell types related to inflammation and integrated effects of A2B receptor modulation in several animal models of inflammation. It is argued that translation of current findings into novel therapies would require a better understanding of A2B receptors functions in diverse types of inflammatory responses in various tissues and at different points of their progression. PMID:21586358

  4. Adenosine A2A receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC

    PubMed Central

    Brand, Frank; Klutz, Athena; Jacobson, Kenneth A.; Fredholm, Bertil B.; Schulte, Gunnar

    2009-01-01

    G protein-coupled receptors, such as the adenosine A2A receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A2A receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A2A (Ki = 149 ± 27 nM) as well as A3 receptors (Ki= 240 ± 160 nM) but not to adenosine A1 receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand’s functionality at adenosine A2A but not A2B receptors. In live cell imaging studies, Alexa488-APEC induced adenosine A2A receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A2A receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A2A receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC provided here showed that it provides a usefultool for tracing adenosine A2A receptors in vitro. PMID:18603240

  5. ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors.

    PubMed

    Nishizaki, Tomoyuki

    2004-02-01

    Adenosine enhanced intracellular Ca(2+) concentrations in astrocytes via A(2a) adenosine receptors involving protein kinase A (PKA) activation. The Ca(2+) rise is inhibited by brefeldin A, an inhibitor of vesicular transport; but not by neomycin and U73122, phospholipase C inhibitors; xestospongin, an IP(3)-receptor inhibitor; ryanodine, a ryanodine-receptor inhibitor; TMB-8, an endoplasmic reticulum calcium-release blocker; octanol, a gap-junction inhibitor; or cadmium, a non-selective, calcium-channel blocker. Adenosine stimulates astrocytic glutamate release via an A(2a) adenosine receptors/PKA pathway, and the release is inhibited by the vesicular transport inhibitors brefeldin A and bafilomycin A1. A(2a) adenosine receptors and the ensuing PKA events, thus, are endowed with vesicular Ca(2+) release from an unknown intracellular calcium store and vesicular glutamate release from astrocytes. PMID:14978344

  6. Adenosine protected against pulmonary edema through transporter- and receptor A2-mediated endothelial barrier enhancement

    PubMed Central

    Lu, Qing; Harrington, Elizabeth O.; Newton, Julie; Casserly, Brian; Radin, Gregory; Warburton, Rod; Zhou, Yang; Blackburn, Michael R.

    2010-01-01

    We have previously demonstrated that adenosine plus homocysteine enhanced endothelial basal barrier function and protected against agonist-induced barrier dysfunction in vitro through attenuation of RhoA activation by inhibition of isoprenylcysteine-O-carboxyl methyltransferase. In the current study, we tested the effect of elevated adenosine on pulmonary endothelial barrier function in vitro and in vivo. We noted that adenosine alone dose dependently enhanced endothelial barrier function. While adenosine receptor A1 or A3 antagonists were ineffective, an adenosine transporter inhibitor, NBTI, or a combination of DPMX and MRS1754, antagonists for adenosine receptors A2A and A2B, respectively, partially attenuated the barrier-enhancing effect of adenosine. Similarly, inhibition of both A2A and A2B receptors with siRNA also blunted the effect of adenosine on barrier function. Interestingly, inhibition of both transporters and A2A/A2B receptors completely abolished adenosine-induced endothelial barrier enhancement. The adenosine receptor A2A and A2B agonist, NECA, also significantly enhanced endothelial barrier function. These data suggest that both adenosine transporters and A2A and A2B receptors are necessary for exerting maximal effect of adenosine on barrier enhancement. We also found that adenosine enhanced Rac1 GTPase activity and overexpression of dominant negative Rac1 attenuated adenosine-induced increases in focal adhesion complexes. We further demonstrated that elevation of cellular adenosine by inhibition of adenosine deaminase with Pentostatin significantly enhanced endothelial basal barrier function, an effect that was also associated with enhanced Rac1 GTPase activity and with increased focal adhesion complexes and adherens junctions. Finally, using a non-inflammatory acute lung injury (ALI) model induced by α-naphthylthiourea, we found that administration of Pentostatin, which elevated lung adenosine level by 10-fold, not only attenuated the

  7. Adenosine augments interleukin-10 production by microglial cells through an A2B adenosine receptor-mediated process

    PubMed Central

    Koscsó, Balázs; Csóka, Balázs; Selmeczy, Zsolt; Himer, Leonóra; Pacher, Pál; Virág, László; Haskó, György

    2011-01-01

    Microglia are activated by pathogen-associated molecular patterns and produce pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-12, and the anti-inflammatory cytokine IL-10. Adenosine is an endogenous purine nucleoside and is a ligand of four G protein-coupled adenosine receptors (ARs), which are the A1AR, A2AAR, A2BAR and A3AR. ARs have been shown to suppress TNF-α production by microglia, but their role in regulating IL-10 production has not been studied. Here, we demonstrate that adenosine augments IL-10 production by activated murine microglia while suppressing the production of pro-inflammatory cytokines. Since the order of potency of selective AR agonists in inducing IL-10 production was 5′-N-ethylcarboxamidoadenosine (NECA) > N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) > 2-chloro-N6-cyclopentyladenosine (CCPA) ≥ 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethyl-carboxamidoadenosine (CGS21680), and the A2BAR antagonist MRS-1754 prevented the effect of NECA, we conclude that the stimulatory effect of adenosine on IL-10 production is mediated by the A2BAR. Mechanistically, adenosine augmented IL-10 mRNA accumulation by a transcriptional process. Using mutant IL-10 promoter constructs we showed that a CREB-binding region in the promoter mediated the augmenting effect of adenosine on IL-10 transcription. Chromatin immunoprecipitation analysis demonstrated that adenosine induced CREB phosphorylation at the IL-10 promoter. Silencing CREB using lentivirally delivered shRNA blocked the enhancing effect of adenosine on IL-10 production confirming a role for CREB in mediating the stimulatory effect of adenosine on IL-10 production. In addition, adenosine augmented IL-10 production by stimulating p38 MAPK. Collectively, our results establish that A2BARs augment IL-10 production by activated murine microglia. PMID:22116830

  8. Recent developments in A2B adenosine receptor ligands.

    PubMed

    Kalla, Rao V; Zablocki, Jeff; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni

    2009-01-01

    A selective, high-affinity A(2B) adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A(2B)AR in inflammatory diseases and angiogenic diseases. Based on early A(2B)AR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: K(i)(hA(2B)) = 2 nM; K(i)(hA(1)) = 403 nM; K(i)(hA(2A)) = 503 NM, and K(i)(hA(3)) = 570 nM), several groups have discovered second-generation A(2B)AR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A(2B)AR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (T(1/2) = 4 h and F > 35% rat), and it is a functional antagonist at the A(2B)AR(K (B) = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A(2B)AR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A(2B)AR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine (K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) = 200 nM; K(i)(hA(2A), A(3)) > 1,000, that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A(2B)AR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A(2B)AR affinity and selectivity (K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A(2B)AR antagonist, 54 (OSIP339391 K(i))(hA(2B)) = 0.5 nM; K(i))(hA(1

  9. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Phatarpekar, Prasad V.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Priapism is a condition of persistent penile erection in the absence of sexual excitation. Of men with sickle cell disease (SCD), 40% display priapism. The disorder is a dangerous and urgent condition, given its association with penile fibrosis and eventual erectile dysfunction. Current strategies to prevent its progression are poor because of a lack of fundamental understanding of the molecular mechanisms for penile fibrosis in priapism. Here we demonstrate that increased adenosine is a novel causative factor contributing to penile fibrosis in two independent animal models of priapism, adenosine deaminase (ADA)-deficient mice and SCD transgenic mice. An important finding is that chronic reduction of adenosine by ADA enzyme therapy successfully attenuated penile fibrosis in both mouse models, indicating an essential role of increased adenosine in penile fibrosis and a novel therapeutic possibility for this serious complication. Subsequently, we identified that both mice models share a similar fibrotic gene expression profile in penile tissue (including procollagen I, TGF-β1, and plasminogen activator inhibitor-1 mRNA), suggesting that they share similar signaling pathways for progression to penile fibrosis. Thus, in an effort to decipher specific cell types and underlying mechanism responsible for adenosine-mediated penile fibrosis, we purified corpus cavernosal fibroblast cells (CCFCs), the major cell type involved in this process, from wild-type mice. Quantitative RT-PCR showed that the major receptor expressed in these cells is the adenosine receptor A2BR. Based on this fact, we further purified CCFCs from A2BR-deficient mice and demonstrated that A2BR is essential for excess adenosine-mediated penile fibrosis. Finally, we revealed that TGF-β functions downstream of the A2BR to increase CCFC collagen secretion and proliferation. Overall, our studies identify an essential role of increased adenosine in the pathogenesis of penile fibrosis via A2BR signaling and

  10. Expression of adenosine A2b receptor in rat type II and III taste cells.

    PubMed

    Nishida, Kentaro; Dohi, Yukari; Yamanaka, Yuri; Miyata, Ai; Tsukamoto, Katsunobu; Yabu, Miharu; Ohishi, Akihiro; Nagasawa, Kazuki

    2014-05-01

    We previously demonstrated that equilibrative nucleoside transporter 1 was expressed in taste cells, suggesting the existence of an adenosine signaling system, but whether or not the expression of an adenosine receptor occurs in rat taste buds remains unknown. Therefore, we examined the expression profiles of adenosine receptors and evaluated their functionality in rat circumvallate papillae. Among adenosine receptors, the mRNA for an adenosine A2b receptor (A2bR) was expressed by the rat circumvallate papillae, and its expression level was significantly greater in the circumvallate papillae than in the non-taste lingual epithelium. A2bR-immunoreactivity was detected primarily in type II taste cells, and partial, but significant expression was also observed in type III ones, but there was no immunoreactivity in type I ones. The cAMP generation in isolated epithelium containing taste buds treated with 500 μM adenosine or 10 μM BAY60-6583 was significantly increased compared to in the controls. These findings suggest that adenosine plays a role in signaling transmission via A2bR between taste cells in rats. PMID:24327108

  11. Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus.

    PubMed

    Rombo, Diogo M; Newton, Kathryn; Nissen, Wiebke; Badurek, Sylvia; Horn, Jacqueline M; Minichiello, Liliana; Jefferys, John G R; Sebastiao, Ana M; Lamsa, Karri P

    2015-05-01

    Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity. PMID:25402014

  12. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias.

    PubMed

    Welihinda, Ajith A; Kaur, Manmeet; Greene, Kelly; Zhai, Yongjiao; Amento, Edward P

    2016-06-01

    Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo. PMID:26903141

  13. Nucleus tractus solitarii A(2a) adenosine receptors inhibit cardiopulmonary chemoreflex control of sympathetic outputs.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2014-02-01

    Previously we have shown that stimulation of inhibitory A1 adenosine receptors located in the nucleus tractus solitarii (NTS) attenuates cardiopulmonary chemoreflex (CCR) evoked inhibition of renal, adrenal and lumbar sympathetic nerve activity and reflex decreases in arterial pressure and heart rate. Activation of facilitatory A2a adenosine receptors, which dominate over A1 receptors in the NTS, contrastingly alters baseline activity of regional sympathetic outputs: it decreases renal, increases adrenal and does not change lumbar nerve activity. Considering that NTS A2a receptors may facilitate release of inhibitory transmitters we hypothesized that A2a receptors will act in concert with A1 receptors differentially inhibiting regional sympathetic CCR responses (adrenal>lumbar>renal). In urethane/chloralose anesthetized rats (n=38) we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of serotonin 5HT3 receptor agonist, phenylbiguanide, (1-8μg/kg) before and after selective stimulation, blockade or combined blockade and stimulation of NTS A2a adenosine receptors (microinjections into the NTS of CGS-21680 0.2-20pmol/50nl, ZM-241385 40pmol/100nl or ZM-241385+CGS-21680, respectively). We found that stimulation of A2a adenosine receptors uniformly inhibited the regional sympathetic and hemodynamic reflex responses and this effect was abolished by the selective blockade of NTS A2a receptors. This indicates that A2a receptor triggered inhibition of CCR responses and the contrasting shifts in baseline sympathetic activity are mediated via different mechanisms. These data implicate that stimulation of NTS A2a receptors triggers unknown inhibitory mechanism(s) which in turn inhibit transmission in the CCR pathway when adenosine is released into the NTS during severe hypotension. PMID:24216055

  14. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome.

    PubMed

    Kaplan, G B; Bharmal, N H; Leite-Morris, K A; Adams, W R

    1999-10-01

    The role of adenosine receptor-mediated signaling was examined in the alcohol withdrawal syndrome. CD-1 mice received a liquid diet containing ethanol (6.7%, v/v) or a control liquid diet that were abruptly discontinued after 14 days of treatment. Mice consuming ethanol showed a progressive increase in signs of intoxication throughout the drinking period. Following abrupt discontinuation of ethanol diet, mice demonstrated reversible signs of handling-induced hyperexcitability that were maximal between 5-8 h. Withdrawing mice received treatment with adenosine receptor agonists at the onset of peak withdrawal (5.5 h) and withdrawal signs were blindly rated (during withdrawal hours 6 and 7). Adenosine A1-receptor agonist R-N6(phenylisopropyl)adenosine (0.15 and 0.3 mg/ kg) reduced withdrawal signs 0.5 and 1.5 h after drug administration in a dose-dependent fashion. Adenosine A2A-selective agonist 2-p-(2-carboxyethyl)phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (0.3 mg/kg) reduced withdrawal signs at both time points. In ethanol-withdrawing mice, there were significant decreases in adenosine transporter sites in striatum without changes in cortex or cerebellum. In ethanol-withdrawing mice, there were no changes in adenosine A1 and A2A receptor concentrations in cortex, striatum, or cerebellum. There appears to be a role for adenosine A1 and A2A receptors in the treatment of the ethanol withdrawal syndrome. Published by Elsevier Science Inc. PMID:10548160

  15. Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking

    SciTech Connect

    Barrington, W.W.; Jacobson, K.A.; Hutchison, A.J.; Williams, M.; Stiles, G.L. )

    1989-09-01

    A high-affinity iodinated agonist radioligand for the A2 adenosine receptor has been synthesized to facilitate studies of the A2 adenosine receptor binding subunit. The radioligand 125I-labeled PAPA-APEC (125I-labeled 2-(4-(2-(2-((4- aminophenyl)methylcarbonylamino)ethylaminocarbonyl)- ethyl)phenyl)ethylamino-5'-N-ethylcarboxamidoadenosine) was synthesized and found to bind to the A2 adenosine receptor in bovine striatal membranes with high affinity (Kd = 1.5 nM) and A2 receptor selectivity. Competitive binding studies reveal the appropriate A2 receptor pharmacologic potency order with 5'-N-ethylcarboxamidoadenosine (NECA) greater than (-)-N6-((R)-1-methyl- 2-phenylethyl)adenosine (R-PIA) greater than (+)-N6-((S)-1-methyl-2- phenylethyl)adenosine (S-PIA). Adenylate cyclase assays, in human platelet membranes, demonstrate a dose-dependent stimulation of cAMP production. PAPA-APEC (1 microM) produces a 43% increase in cAMP production, which is essentially the same degree of increase produced by 5'-N- ethylcarboxamidoadenosine (the prototypic A2 receptor agonist). These findings combined with the observed guanine nucleotide-mediated decrease in binding suggest that PAPA-APEC is a full A2 agonist. The A2 receptor binding subunit was identified by photoaffinity-crosslinking studies using 125I-labeled PAPA-APEC and the heterobifunctional crosslinking agent N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH). After covalent incorporation, a single specifically radiolabeled protein with an apparent molecular mass of 45 kDa was observed on NaDodSO4/PAGE/autoradiography. Incorporation of 125I-labeled PAPA-APEC into this polypeptide is blocked by agonists and antagonists with the expected potency for A2 receptors and is decreased in the presence of 10(-4) M guanosine 5'-(beta, gamma-imido)triphosphate.

  16. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  17. Adenosine A2B Receptor: From Cell Biology to Human Diseases.

    PubMed

    Sun, Ying; Huang, Pingbo

    2016-01-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR's functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases, and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases. PMID:27606311

  18. Adenosine A2B Receptor: From Cell Biology to Human Diseases

    PubMed Central

    Sun, Ying; Huang, Pingbo

    2016-01-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR's functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases, and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases. PMID:27606311

  19. Role of extracellular cysteine residues in the adenosine A2A receptor.

    PubMed

    De Filippo, Elisabetta; Namasivayam, Vigneshwaran; Zappe, Lukas; El-Tayeb, Ali; Schiedel, Anke C; Müller, Christa E

    2016-06-01

    The G protein-coupled A2A adenosine receptor represents an important drug target. Crystal structures and modeling studies indicated that three disulfide bonds are formed between ECL1 and ECL2 (I, Cys71(2.69)-Cys159(45.43); II, Cys74(3.22)-Cys146(45.30), and III, Cys77(3.25)-Cys166(45.50)). However, the A2BAR subtype appears to require only disulfide bond III for proper function. In this study, each of the three disulfide bonds in the A2AAR was disrupted by mutation of one of the cysteine residues to serine. The mutant receptors were stably expressed in Chinese hamster ovary cells and analyzed in cyclic adenosine monophosphate (cAMP) accumulation and radioligand binding studies using structurally diverse agonists: adenosine, NECA, CGS21680, and PSB-15826. Results were rationalized by molecular modeling. The observed effects were dependent on the investigated agonist. Loss of disulfide bond I led to a widening of the orthosteric binding pocket resulting in a strong reduction in the potency of adenosine, but not of NECA or 2-substituted nucleosides. Disruption of disulfide bond II led to a significant reduction in the agonists' efficacy indicating its importance for receptor activation. Disulfide bond III disruption reduced potency and affinity of the small adenosine agonists and NECA, but not of the larger 2-substituted agonists. While all the three disulfide bonds were essential for high potency or efficacy of adenosine, structural modification of the nucleoside could rescue affinity or efficacy at the mutant receptors. At present, it cannot be excluded that formation of the extracellular disulfide bonds in the A2AAR is dynamic. This might add another level of G protein-coupled receptor (GPCR) modulation, in particular for the cysteine-rich A2A and A2BARs. PMID:26969588

  20. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  1. Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation.

    PubMed

    Golder, Francis J; Ranganathan, Lavanya; Satriotomo, Irawan; Hoffman, Michael; Lovett-Barr, Mary Rachael; Watters, Jyoti J; Baker-Herman, Tracy L; Mitchell, Gordon S

    2008-02-27

    Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine kinases, the Trk receptors. Thus, we hypothesized that A2a receptor agonists would elicit phrenic long-term facilitation by mimicking the effects of BDNF on TrkB receptors. Here we demonstrate that spinal A2a receptor agonists transactivate TrkB receptors in the rat cervical spinal cord near phrenic motoneurons, thus inducing long-lasting (hours) phrenic motor facilitation. A2a receptor activation increased phosphorylation and new synthesis of an immature TrkB protein, induced TrkB signaling through Akt, and strengthened synaptic pathways to phrenic motoneurons. RNA interference targeting TrkB mRNA demonstrated that new TrkB protein synthesis is necessary for A2a-induced phrenic motor facilitation. A2a receptor activation also increased breathing in unanesthetized rats, and improved breathing in rats with cervical spinal injuries. Thus, small, highly permeable drugs (such as adenosine receptor agonists) that transactivate TrkB receptors may provide an effective therapeutic strategy in the treatment of patients with ventilatory control disorders, such as obstructive sleep apnea, or respiratory insufficiency after spinal injury or during neurodegenerative diseases. PMID:18305238

  2. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  3. Genetic removal of the A2A adenosine receptor enhances pulmonary inflammation, mucin production, and angiogenesis in adenosine deaminase-deficient mice.

    PubMed

    Mohsenin, Amir; Mi, Tiejuan; Xia, Yang; Kellems, Rodney E; Chen, Jiang-Fan; Blackburn, Michael R

    2007-09-01

    Adenosine is generated at sites of tissue injury where it serves to regulate inflammation and damage. Adenosine signaling has been implicated in the regulation of pulmonary inflammation and damage in diseases such as asthma and chronic obstructive pulmonary disease; however, the contribution of specific adenosine receptors to key immunoregulatory processes in these diseases is still unclear. Mice deficient in the purine catabolic enzyme adenosine deaminase (ADA) develop pulmonary inflammation and mucous metaplasia in association with adenosine elevations making them a useful model for assessing the contribution of specific adenosine receptors to adenosine-mediated pulmonary disease. Studies suggest that the A(2A) adenosine receptor (A(2A)R) functions to limit inflammation and promote tissue protection; however, the contribution of A(2A)R signaling has not been examined in the ADA-deficient model of adenosine-mediated lung inflammation. The purpose of the current study was to examine the contribution of A(2A)R signaling to the pulmonary phenotype seen in ADA-deficient mice. This was accomplished by generating ADA/A(2A)R double knockout mice. Genetic removal of the A(2A)R from ADA-deficient mice resulted in enhanced inflammation comprised largely of macrophages and neutrophils, mucin production in the bronchial airways, and angiogenesis, relative to that seen in the lungs of ADA-deficient mice with the A(2A)R. In addition, levels of the chemokines monocyte chemoattractant protein-1 and CXCL1 were elevated, whereas levels of cytokines such as TNF-alpha and IL-6 were not. There were no compensatory changes in the other adenosine receptors in the lungs of ADA/A(2A)R double knockout mice. These findings suggest that the A(2A)R plays a protective role in the ADA-deficient model of pulmonary inflammation. PMID:17601796

  4. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism.

    PubMed

    Ledent, C; Dumont, J E; Vassart, G; Parmentier, M

    1992-02-01

    Cyclic AMP (cAMP) is the major intracellular second messenger of thyrotropin (TSH) action on thyroid cells. It stimulates growth as well as the function and differentiation of cultured thyrocytes. The adenosine A2 receptor, which activates adenylyl cyclase via coupling to the stimulating G protein (Gs), has been shown to promote constitutive activation of the cAMP cascade when transfected into various cell types. In order to test whether the A2 receptor was able to function similarly in vivo and to investigate the possible consequences of permanent adenylyl cyclase activation in thyroid cells, lines of transgenic mice were generated expressing the canine A2 adenosine receptor under control of the bovine thyroglobulin gene promoter. Thyroid-specific expression of the A2 adenosine receptor transgene promoted gland hyperplasia and severe hyperthyroidism causing premature death of the animals. The resulting goitre represents a model of hyperfunctioning adenomas: it demonstrates that constitutive activation of the cAMP cascade in such differentiated epithelial cells is sufficient to stimulate autonomous and uncontrolled function and growth. PMID:1371462

  5. Thermostabilisation of an agonist-bound conformation of the human adenosine A(2A) receptor.

    PubMed

    Lebon, Guillaume; Bennett, Kirstie; Jazayeri, Ali; Tate, Christopher G

    2011-06-10

    The adenosine A(2A) receptor (A(2A)R) is a G-protein-coupled receptor that plays a key role in transmembrane signalling mediated by the agonist adenosine. The structure of A(2A)R was determined recently in an antagonist-bound conformation, which was facilitated by the T4 lysozyme fusion in cytoplasmic loop 3 and the considerable stabilisation conferred on the receptor by the bound inverse agonist ZM241385. Unfortunately, the natural agonist adenosine does not sufficiently stabilise the receptor for the formation of diffraction-quality crystals. As a first step towards determining the structure of A(2A)R bound to an agonist, the receptor was thermostabilised by systematic mutagenesis in the presence of the bound agonist [(3)H]5'-N-ethylcarboxamidoadenosine (NECA). Four thermostabilising mutations were identified that when combined to give mutant A(2A)R-GL26, conferred a greater than 200-fold decrease in its rate of unfolding compared to the wild-type receptor. Pharmacological analysis suggested that A(2A)R-GL26 is stabilised in an agonist-bound conformation because antagonists bind with up to 320-fold decreased affinity. None of the thermostabilising mutations are in the ZM241385 binding pocket, suggesting that the mutations affect ligand binding by altering the conformation of the receptor rather than through direct interactions with ligands. A(2A)R-GL26 shows considerable stability in short-chain detergents, which has allowed its purification and crystallisation. PMID:21501622

  6. Adenosine A2a receptors and O2 sensing in development

    PubMed Central

    2011-01-01

    Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265

  7. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    PubMed

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  8. Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice

    SciTech Connect

    Jarvis, M.F.; Williams, M.

    1988-07-01

    Two strains of inbred mice, CBA/J and SWR/J, have been identified which are, respectively, sensitive and insensitive to the behavioral and toxic effects of methylxanthines. Autoradiographic analyses of brain adenosine receptors were conducted with (/sup 3/H)CHA to label adenosine A-1 receptors and (/sup 3/H)NECA, in the presence of 50 nM CPA, to label adenosine A-2 receptors. For both mouse strains, adenosine A-1 receptors were most highly concentrated in the hippocampus and cerebellum whereas adenosine A-2 receptors were selectively localized in the striatum. CBA/J mice displayed a 30% greater density of adenosine A-1 receptors in the hippocampal CA-1 and CA-3 regions and in the cerebellum as compared to the SWR/J mice. The number of A-2 receptors (Bmax) was 40% greater in the striatum and olfactory tubercle of CBA/J as compared to SWR/J mice. No significant regional differences in A-1 or A-2 receptor affinities were observed between these inbred strains of mice. These results indicate that the differential sensitivity to methylxanthines between these mouse strains may reflect a genetically mediated difference in regional adenosine receptor densities.

  9. Gene expression and function of adenosine A(2A) receptor in the rat carotid body.

    PubMed

    Kobayashi, S; Conforti, L; Millhorn, D E

    2000-08-01

    The present study was undertaken to determine whether rat carotid bodies express adenosine (Ado) A(2A) receptors and whether this receptor is involved in the cellular response to hypoxia. Our results demonstrate that rat carotid bodies express the A(2A) and A(2B) Ado receptor mRNAs but not the A(1) or A(3) receptor mRNAs as determined by reverse transcriptase-polymerase chain reaction. In situ hybridization confirmed the expression of the A(2A) receptor mRNA. Immunohistochemical studies further showed that the A(2A) receptor is expressed in the carotid body and that it is colocalized with tyrosine hydroxylase in type I cells. Whole cell voltage-clamp studies using isolated type I cells showed that Ado inhibited the voltage-dependent Ca(2+) currents and that this inhibition was abolished by the selective A(2A) receptor antagonist ZM-241385. Ca(2+) imaging studies using fura 2 revealed that exposure to severe hypoxia induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in type I cells and that extracellularly applied Ado significantly attenuated the hypoxia-induced elevation of [Ca(2+)](i). Taken together, our findings indicate that A(2A) receptors are present in type I cells and that activation of A(2A) receptors modulates Ca(2+) accumulation during hypoxia. This mechanism may play a role in regulating intracellular Ca(2+) homeostasis and cellular excitability during hypoxia. PMID:10926550

  10. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    PubMed

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production. PMID:16023100

  11. Effects of adenosine and adenosine A2A receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy.

    PubMed

    Kumar, Sokindra; Arun, K H S; Kaul, Chaman L; Sharma, Shyam S

    2005-01-01

    This study examined the effects of chronic administration of adenosine and CGS 21680 hydrochloride (adenosine A(2A) receptor agonist) on motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and histology of sciatic nerve in animal model of diabetic neuropathy. Adenosinergic agents were administered for 2 weeks after 6 weeks of streptozotocin-induced (50 mg/kg i.p.) diabetes in male Sprague-Dawley rats. Significant reduction in sciatic MNCV and NBF were observed after 8 weeks in diabetic animals in comparison with control (non diabetic) rats. Adenosine (10 mg/kg, i.p.) significantly improved sciatic MNCV and NBF in diabetic rats. The protective effect of adenosine on MNCV and NBF was completely reversed by theophylline (50 mg/kg, i.p.), a non-selective adenosine receptor antagonist, suggesting that the adenosine effect was mediated via adenosinergic receptors. CGS 21680 (0.1 mg/kg, i.p.) significantly improved NBF; however, MNCV was not significantly improved in diabetic rats. At a dose of 1 mg/kg, neither MNCV nor NBF was improved by CGS 21680 in diabetic rats. ZM 241385 (adenosine A(2A) receptor antagonist) prevented the effect of CGS 21680 (0.1 mg/kg, i.p.). Histological changes observed in sciatic nerve were partially improved by the adenosinergic agents in diabetic rats. Results of the present study, suggest the potential of adenosinergic agents in the therapy of diabetic neuropathy. PMID:15829161

  12. Molecular Basis of Ligand Dissociation from the Adenosine A2A Receptor.

    PubMed

    Guo, Dong; Pan, Albert C; Dror, Ron O; Mocking, Tamara; Liu, Rongfang; Heitman, Laura H; Shaw, David E; IJzerman, Adriaan P

    2016-05-01

    How drugs dissociate from their targets is largely unknown. We investigated the molecular basis of this process in the adenosine A2Areceptor (A2AR), a prototypical G protein-coupled receptor (GPCR). Through kinetic radioligand binding experiments, we characterized mutant receptors selected based on molecular dynamic simulations of the antagonist ZM241385 dissociating from the A2AR. We discovered mutations that dramatically altered the ligand's dissociation rate despite only marginally influencing its binding affinity, demonstrating that even receptor features with little contribution to affinity may prove critical to the dissociation process. Our results also suggest that ZM241385 follows a multistep dissociation pathway, consecutively interacting with distinct receptor regions, a mechanism that may also be common to many other GPCRs. PMID:26873858

  13. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  14. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents.

    PubMed

    Preti, Delia; Baraldi, Pier Giovanni; Moorman, Allan R; Borea, Pier Andrea; Varani, Katia

    2015-07-01

    Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD. PMID:25821194

  15. Recruitment of a Cytoplasmic Chaperone Relay by the A2A Adenosine Receptor*

    PubMed Central

    Bergmayr, Christian; Thurner, Patrick; Keuerleber, Simon; Kudlacek, Oliver; Nanoff, Christian; Freissmuth, Michael; Gruber, Christian W.

    2013-01-01

    The adenosine A2A receptor is a prototypical rhodopsin-like G protein-coupled receptor but has several unique structural features, in particular a long C terminus (of >120 residues) devoid of a palmitoylation site. It is known to interact with several accessory proteins other than those canonically involved in signaling. However, it is evident that many more proteins must interact with the A2A receptor, if the trafficking trajectory of the receptor is taken into account from its site of synthesis in the endoplasmic reticulum (ER) to its disposal by the lysosome. Affinity-tagged versions of the A2A receptor were expressed in HEK293 cells to identify interacting partners residing in the ER by a proteomics approach based on tandem affinity purification. The receptor-protein complexes were purified in quantities sufficient for analysis by mass spectrometry. We identified molecular chaperones (heat-shock proteins HSP90α and HSP70-1A) that interact with and retain partially folded A2A receptor prior to ER exit. Complex formation between the A2A receptor and HSP90α (but not HSP90β) and HSP70-1A was confirmed by co-affinity precipitation. HSP90 inhibitors also enhanced surface expression of the receptor in PC12 cells, which endogenously express the A2A receptor. Finally, proteins of the HSP relay machinery (e.g. HOP/HSC70-HSP90 organizing protein and P23/HSP90 co-chaperone) were recovered in complexes with the A2A receptor. These observations are consistent with the proposed chaperone/coat protein complex II exchange model. This posits that cytosolic HSP proteins are sequentially recruited to folding intermediates of the A2A receptor. Release of HSP90 is required prior to recruitment of coat protein complex II components. This prevents premature ER export of partially folded receptors. PMID:23965991

  16. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion

    PubMed Central

    Yang, Dan; Zhang, Ying; Nguyen, Hao G.; Koupenova, Milka; Chauhan, Anil K.; Makitalo, Maria; Jones, Matthew R.; Hilaire, Cynthia St.; Seldin, David C.; Toselli, Paul; Lamperti, Edward; Schreiber, Barbara M.; Gavras, Haralambos; Wagner, Denisa D.; Ravid, Katya

    2006-01-01

    Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor–knockout/reporter gene–knock-in (A2BAR-knockout/reporter gene–knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-α, and a consequent downregulation of IκB-α are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target. PMID:16823489

  17. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2009-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  18. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2008-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  19. [Adenosine A2A receptor as a drug target for treatment of sepsis].

    PubMed

    Sivak, K V; Vasin, A V; Egorov, V V; Tsevtkov, V B; Kuzmich, N N; Savina, V A; Kiselev, O I

    2016-01-01

    Sepsis is a generalized infection accompanied by response of the body that manifests in a clinical and laboratory syndrome, namely, in the systemic inflammatory response syndrome (SIRS) from the organism to the infection. Although sepsis is a widespread and life-threatening disease, the assortment of drugs for its treatment is mostly limited by antibiotics. Therefore, the search for new cellular targets for drug therapy of sepsis is an urgent task of modern medicine and pharmacology. One of the most promising targets is the adenosine A(2A) receptor (A(2A)AR). The activation of this receptor, which is mediated by extracellular adenosine, manifests in almost all types of immune cells (lymphocytes, monocytes, macrophages, and dendritic cells) and results in reducing the severity of inflammation and reperfusion injury in various tissues. The activation of adenosine A(2A) receptor inhibits the proliferation of T cells and production of proinflammatory cytokines, which contributes to the activation of the synthesis of anti-inflammatory cytokines, thereby suppressing the systemic response. For this reason, various selective A(2A)AR agonists and antagonists may be considered to be drug candidates for sepsis pharmacotherapy. Nevertheless, they remain only efficient ligands and objects of pre-clinical and clinical trials. This review examines the molecular mechanisms of inflammatory response in sepsis and the structure and functions of A(2A)AR and its role in the pathogenesis of sepsis, as well as examples of using agonists and antagonists of this receptor for the treatment of SIRS and sepsis. PMID:27239843

  20. Adenosine A1, but not A2, receptor blockade increases anxiety and arousal in Zebrafish.

    PubMed

    Maximino, Caio; Lima, Monica G; Olivera, Karen R M; Picanço-Diniz, Domingos L W; Herculano, Anderson M

    2011-09-01

    Adenosinergic systems have been implicated in anxiety-like states, as caffeine can induce a state of anxiety in human beings. Caffeine is an antagonist at A(1) and A(2) adenosine receptors but it remains unclear whether anxiety is mediated by one or both of these. As the adenosinergic system is rather conserved, we opted to pursue these questions using zebrafish, a widely used model organism in genetics and developmental biology. Zebrafish adenosine 1. 2A.1 and 2A.2 receptors conserve histidine residues in TM6 and TM7 that are responsible for affinity in bovine A1 receptor. We investigated the effects of caffeine, PACPX (an A(1) receptor antagonist) and 1,3-dimethyl-1-propargylxanthine (DMPX) (an A(2) receptor antagonist) on anxiety-like behaviour and locomotor activity of zebrafish in the scototaxis test as well as evaluated the effects of these drugs on pigment aggregation. Caffeine increased anxiety at the dose of 100 mg/kg, while locomotion at the dose of 10 mg/kg was increased. Both doses of 10 and 100 mg/kg induced pigment aggregation. PACPX, on the other hand, increased anxiety at a dose of 6 mg/kg and induced pigment aggregation at the doses of 0.6 and 6 mg/kg, but did not produce a locomotor effect. DMPX, in turn, increased locomotion at the dose of 6 mg/kg but did not produce any effect on pigment aggregation or anxiety-like behaviour. These results indicate that blockade of A(1)-R, but not A(2)-R, induces anxiety and autonomic arousal, while the blockade of A(2)-R induces hyperlocomotion. Thus, as in rodents, caffeine's anxiogenic and arousing effects are probably mediated by A(1) receptors in zebrafish and its locomotor activating effect is probably mediated by A(2) receptors. PMID:21496211

  1. Reengineering the Collision Coupling and Diffusion Mode of the A2A-adenosine Receptor

    PubMed Central

    Keuerleber, Simon; Thurner, Patrick; Gruber, Christian W.; Zezula, Jürgen; Freissmuth, Michael

    2012-01-01

    The A2A-adenosine receptor undergoes restricted collision coupling with its cognate G protein Gs and lacks a palmitoylation site at the end of helix 8 in its intracellular C terminus. We explored the hypothesis that there was a causal link between the absence of a palmitoyl moiety and restricted collision coupling by introducing a palmitoylation site. The resulting mutant A2A-R309C receptor underwent palmitoylation as verified by both mass spectrometry and metabolic labeling. In contrast to the wild type A2A receptor, the concentration-response curve for agonist-induced cAMP accumulation was shifted to the left with increasing expression levels of A2A-R309C receptor, an observation consistent with collision coupling. Single particle tracking of quantum dot-labeled receptors confirmed that wild type and mutant A2A receptor differed in diffusivity and diffusion mode; agonist activation resulted in a decline in mean square displacement of both receptors, but the drop was substantially more pronounced for the wild type receptor. In addition, in the agonist-bound state, the wild type receptor was frequently subject to confinement events (estimated radius 110 nm). These were rarely seen with the palmitoylated A2A-R309C receptor, the preferred diffusion mode of which was a random walk in both the basal and the agonist-activated state. Taken together, the observations link restricted collision coupling to diffusion limits imposed by the absence of a palmitoyl moiety in the C terminus of the A2A receptor. The experiments allowed for visualizing local confinement of an agonist-activated G protein-coupled receptor in an area consistent with the dimensions of a lipid raft. PMID:23071116

  2. Presynaptic adenosine A2A receptors dampen cannabinoid CB1 receptor-mediated inhibition of corticostriatal glutamatergic transmission

    PubMed Central

    Ferreira, S G; Gonçalves, F Q; Marques, J M; Tomé, Â R; Rodrigues, R J; Nunes-Correia, I; Ledent, C; Harkany, T; Venance, L; Cunha, R A; Köfalvi, A

    2015-01-01

    Background and Purpose Both cannabinoid CB1 and adenosine A2A receptors (CB1 receptors and A2A receptors) control synaptic transmission at corticostriatal synapses, with great therapeutic importance for neurological and psychiatric disorders. A postsynaptic CB1−A2A receptor interaction has already been elucidated, but the presynaptic A2A receptor-mediated control of presynaptic neuromodulation by CB1 receptors remains to be defined. Because the corticostriatal terminals provide the major input to the basal ganglia, understanding the interactive nature of converging neuromodulation on them will provide us with novel powerful tools to understand the physiology of corticostriatal synaptic transmission and interpret changes associated with pathological conditions. Experimental Approach Pharmacological manipulation of CB1 and A2A receptors was carried out in brain nerve terminals isolated from rats and mice, using flow synaptometry, immunoprecipitation, radioligand binding, ATP and glutamate release measurement. Whole-cell patch-clamp recordings were made in horizontal corticostriatal slices. Key Results Flow synaptometry showed that A2A receptors were extensively co-localized with CB1 receptor-immunopositive corticostriatal terminals and A2A receptors co-immunoprecipitated CB1 receptors in these purified terminals. A2A receptor activation decreased CB1 receptor radioligand binding and decreased the CB1 receptor-mediated inhibition of high-K+-evoked glutamate release in corticostriatal terminals. Accordingly, A2A receptor activation prevented CB1 receptor-mediated paired-pulse facilitation and attenuated the CB1 receptor-mediated inhibition of synaptic transmission in glutamatergic synapses of corticostriatal slices. Conclusions and Implications Activation of presynaptic A2A receptors dampened CB1 receptor-mediated inhibition of corticostriatal terminals. This constitutes a thus far unrecognized mechanism to modulate the potent CB1 receptor-mediated presynaptic

  3. Clinical/pharmacological aspect of adenosine A2A receptor antagonist for dyskinesia.

    PubMed

    Kanda, Tomoyuki; Uchida, Shin-ichi

    2014-01-01

    Dopamine replacement therapy using the dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), with a peripheral dopa decarboxylase inhibitor is the most effective treatment currently available for the symptoms of Parkinson's disease (PD). However, the long-term use of dopaminergic therapies for PD is often limited by the development of motor response complications, such as dyskinesia. Adenosine A2A receptors are a promising nondopaminergic target for the treatment of PD. The treatment of motor response complications involves combinations of regular and controlled release L-DOPA, perhaps with the addition of a COMT inhibitor or the use of a longer-acting dopamine agonist. However, when dyskinesia is already established, the increase in dopaminergic load produced by the addition of a dopamine agonist can result in an increase in the severity and duration of dyskinesia. Currently, there are no well-tolerated antidyskinesia agents available. Amantadine, which may exert its effects through the inhibition of N-methyl-D-aspartate (NMDA) receptors, shows some effects on established dyskinesia. Dyskinesia has a negative impact on the quality of life of patients, sometimes being more disabling than PD itself. Although some patients prefer experiencing dyskinesia than being in the OFF state and unable to move, alternative, more effective therapies are still required for severe disabling dyskinesia to afford patients an improved quality of life while in the ON state. The mechanisms causing and maintaining the dyskinesia have not been clarified. The application of a nondopaminergic approach to modify the basal ganglial activity would be helpful to better understand and treat dyskinesia. The use of an adenosine A2A receptor may provide one such approach. In this literature review, we will summarize the current knowledge from both clinical and nonclinical studies on the effects of adenosine A2A receptor blockade on dyskinesia. PMID:25175964

  4. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D.; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K.; Blackwell, Timothy S.; Xia, Yang; Johnston, Richard A.; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R.

    2012-01-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A2BR) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A2BR or treatment with the A2BR antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A2BR attenuated vascular remodeling and hypertension in our model. Furthermore, direct A2BR activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A2BR antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.—Karmouty-Quintana, H., Zhong, H., Acero, L., Weng, T., Melicoff, E., West, J. D., Hemnes, A., Grenz, A., Eltzschig, H. K., Blackwell, T. S., Xia, Y., Johnston, R. A., Zeng, D., Belardinelli, L., Blackburn, M. R. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. PMID:22415303

  5. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory

    PubMed Central

    Orr, Anna G.; Hsiao, Edward C.; Wang, Max M.; Ho, Kaitlyn; Kim, Daniel H.; Wang, Xin; Guo, Weikun; Kang, Jing; Yu, Gui-Qiu; Adame, Anthony; Devidze, Nino; Dubal, Dena B.; Masliah, Eliezer; Conklin, Bruce R.; Mucke, Lennart

    2014-01-01

    Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer’s disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice, and increased the levels of Arc/Arg3.1, an immediate-early gene required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Similar to humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss. PMID:25622143

  6. Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Ng, Seng Kah; Higashimori, Haruki; Tolman, Michaela; Yang, Yongjie

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR(+/-)) significantly protect ESMN from SOD1G93A(+) astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS. PMID:25779930

  7. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor.

    PubMed

    Kobayashi, S; Conforti, L; Pun, R Y; Millhorn, D E

    1998-04-01

    1. The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. 2. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. 3. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. 4. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. 5. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6-22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. 6. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in

  8. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Pun, Raymund Y K; Millhorn, David E

    1998-01-01

    The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6–22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in PC12 cells and

  9. Physical origins of remarkable thermostabilization by an octuple mutation for the adenosine A2a receptor

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yuta; Ogino, Takahiro; Yasuda, Satoshi; Takamuku, Yuuki; Murata, Takeshi; Kinoshita, Masahiro

    2016-07-01

    It was experimentally showed that the thermal stability of a membrane protein, the adenosine A2a receptor, was remarkably enhanced by an octuple mutation. Here we theoretically prove that the energy decrease arising from the formation of protein intramolecular hydrogen bonds and the solvent-entropy gain upon protein folding are made substantially larger by the mutation, leading to the remarkable enhancement. The solvent is formed by hydrocarbon groups constituting nonpolar chains of the lipid bilayer within a membrane. The mutation modifies geometric characteristics of the structure so that the solvent crowding can be reduced to a larger extent when the protein folds.

  10. Ischaemic skeletal muscle hyperaemia in the anaesthetized cat: no contribution of A2A adenosine receptors.

    PubMed Central

    Poucher, S M

    1997-01-01

    1. The present study investigated the contribution of the A2A adenosine receptor subtype to the functional hyperaemia response evoked by muscle contraction in anaesthetized cats when muscle blood flow was limited. 2. Application of a stenosis reduced the hindlimb blood flow at rest from 9.67 +/- 1.80 to 5.53 +/- 0.91 ml min(-1) (kg body mass)(-1) and during muscle contraction from 36.80 +/- 2.55 to 11.11 +/- 1.19 ml min(-1) (kg body mass)(-1) (P < 0.001). The force produced by the extensor digitorum longus and tibialis anterior (EDL-TA) muscle groups was also reduced, from 9.66 +/- 0.56 to 4.10 +/- 0.4 N (kg muscle mass)(-1) (P < 0.01). 3. The selective A2A adenosine receptor antagonist ZM241385 (3 mg kg(-1), I.V.) had no effect upon the hindlimb vascular conductance or muscle contraction responses in the presence of the flow-limiting stenosis. 4. In contrast, in the absence of the flow restriction the vascular conductance response was reduced by 27.5 +/- 5.0% (P < 0.05), whilst the isometric force produced by the EDL-TA muscle group was unaffected (pre- vs. post-contraction, 5.8 +/- 0.8 vs. 4.6 +/- 1.0 N (kg muscle mass)(-1) contraction). Oxygen consumption by the contracting hindlimb muscles was maintained (1.71 +/- 0.25 vs. 1.69 +/- 0.26 ml min(-1) (kg body mass)(-1)) by an increase in the oxygen extraction (51.9 +/- 4.9 vs. 66.2 +/- 6.1%; P< 0.01). 5. These results confirm previous data showing that adenosine, acting at the A2A receptor subtype, can contribute up to 30% of the functional hyperaemia response in the hindlimb of anaesthetized cats under free flow conditions. However, when blood flow is limited by a stenosis, antagonism of the A2A adenosine receptor does not affect functional hyperaemia. Images Figure 1 PMID:9097944

  11. Involvement of adenosine A2A receptors in depression and anxiety.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Kanda, Tomoyuki

    2014-01-01

    When administered to normal healthy patients, a nonselective adenosine A1/A2A antagonist, caffeine, tended to improve anxiety and depression at low doses and to exacerbate anxiety at high doses. Caffeine also appears to enhance anxiety-related symptoms in patients with panic disorder, and A2A receptor-deficient mice have been reported to exhibit higher anxiety-like behaviors, as well as a lower incidence of depression-like behaviors. Some selective A2A antagonists were reported to ameliorate anxiety-like behaviors in rodents, while others did not affect these behaviors. In addition, most A2A antagonists showed inhibitory effects on depression-like behaviors. The mechanisms underlying the relationship between A2A receptor antagonists and anxiety and depression remain unclear at the present time, although many studies have produced hypotheses. Given that a selective A2A receptor antagonist has recently become available for use in humans, research on the role of A2A receptors in the treatment of mental illness should progress in the near future. PMID:25175973

  12. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    PubMed

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  13. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia.

    PubMed

    Villar-Menéndez, Izaskun; Díaz-Sánchez, Sara; Blanch, Marta; Albasanz, José Luis; Pereira-Veiga, Thais; Monje, Alfonso; Planchat, Luis Maria; Ferrer, Isidre; Martín, Mairena; Barrachina, Marta

    2014-04-01

    Schizophrenia (SZ) is a mental disorder of unknown origin. Some scientific evidence seems to indicate that SZ is not a single disease entity, since there are patient groups with clear symptomatic, course and biomarker differences. SZ is characterized by a hyperdopaminergic state related to high dopamine D2 receptor activity. It has also been proposed that there is a hypoadenosynergic state. Adenosine is a nucleoside widely distributed in the organism with neuromodulative and neuroprotective activity in the central nervous system. In the brain, the most abundant adenosine receptors are A1R and A2AR. In the present report, we characterize the presence of both receptors in human postmortem putamens of patients suffering SZ with real time TaqMan PCR, western blotting and radioligand binding assay. We show that A1R levels remain unchanged with respect to age-matched controls, whereas nearly fifty percent of patients have reduced A2AR, at the transcriptional and translational levels. Moreover, we describe how DNA methylation plays a role in the pathological A2AR levels with the bisulfite-sequencing technique. In fact, an increase in 5-methylcytosine percentage in the 5' UTR region of ADORA2A was found in those SZ patients with reduced A2AR levels. Interestingly, there was a relationship between the A2A/β-actin ratio and motor disturbances as assessed with some items of the PANSS, AIMS and SAS scales. Therefore, there may be a subgroup of SZ patients with reduced striatal A2AR levels accompanied by an altered motor phenotype. PMID:24433848

  14. Adenosine A2A Receptor Activation Prevents Wear Particle-Induced Osteolysis

    PubMed Central

    Mediero, Aránzazu; Frenkel, Sally R.; Wilder, Tuere; He, Wenjie; Mazumder, Amitabha; Cronstein, Bruce N.

    2012-01-01

    Prosthesis loosening, associated with wear-particle–induced inflammation and osteoclast-mediated bone destruction, is a common cause for joint implant failure, leading to revision surgery. Adenosine A2A receptors (A2AR) mediate potent anti-inflammatory effects in many tissues and prevent osteoclast differentiation. We tested the hypothesis that an A2AR agonist could reduce osteoclast-mediated bone resorption in a murine calvaria model of wear-particle–induced bone resorption. C57Bl/6 and A2A knockout (A2ARKO) mice received ultrahigh-molecular weight polyethylene particles (UHMWPE) and were treated daily with either saline or the A2AR agonist CGS21680. After 2 weeks, micro-computed tomography of calvaria demonstrated that CGS21680 reduced particle-induced bone pitting and porosity in a dose-dependent manner, increasing cortical bone and bone volume compared to control mice. Histological examination demonstrated diminished inflammation after treatment with CGS21680. In A2AKO mice, CGS21680 did not affect osteoclast-mediated bone resorption or inflammation. Levels of bone-resorption markers receptor activator of nuclear factor-kB (RANK), RANK ligand (RANKL), cathepsin K, CD163, and osteopontin were reduced following CGS21680 treatment, together with a reduction in osteoclasts. Secretion of interleukin 1β (IL-1β) and TNFα was significantly decreased, whereas IL-10 was markedly increased in bone by CGS21680. These results in mice suggest that site-specific delivery of an adenosine A2AR agonist could enhance implant survival, delaying or eliminating the need for revision arthroplastic surgery. PMID:22623741

  15. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  16. Expression of calcitonin gene-related peptide, adenosine A2a receptor and adenosine A1 receptor in experiment rat migraine models

    PubMed Central

    LU, WENXIAN; LI, BIN; CHEN, JINBO; SU, YIPENG; DONG, XIAOMENG; SU, XINYANG; GAO, LIXIANG

    2016-01-01

    A migraine is a disabling neurovascular disorder characterized by a unilateral throbbing headache that lasts from 4 to 72 h. The headache is often accompanied by nausea, vomiting, phonophobia and photophobia, and may be worsened by physical exercise. The trigeminovascular system (TVS) is speculated to have an important role in migraines, although the pathophysiology of this disorder remains to be elucidated. Trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (TNC) are important components of the TVS. Several clinical cases have provided evidence for the involvement of the brainstem in migraine initiation. Electrical stimulation of the trigeminal ganglion (ESTG) in rats can activate TVS during a migraine attack. Calcitonin gene-related peptide (CGRP) is an important vasoactive compound produced following TVS activation. Numerous studies have revealed that adenosine and its receptors have an important role in pain transmission and regulation process. However, only a few studies have examined whether adenosine A2a receptor (A2aR) and adenosine A1 receptor (A1R) are involved in migraine and nociceptive pathways. In the present study, CGRP, A2aR and A1R expression levels were detected in the TG and TNC of ESTG models through reverse transcription-quantitative polymerase chain reaction and western blot analysis. Tianshu capsule (TSC), a type of Chinese medicine, was also used in the ESTG rat models to examine its influence on the three proteins. Results demonstrated that CGRP, A2aR and A1R mediated pain transmission and the regulation process during migraine and the expression of the three proteins was regulated by TSC. PMID:26998280

  17. A2B adenosine receptor dampens hypoxia-induced vascular leak

    PubMed Central

    Eckle, Tobias; Faigle, Marion; Grenz, Almut; Laucher, Stefanie; Thompson, Linda F.

    2008-01-01

    Extracellular adenosine has been implicated in adaptation to hypoxia and previous studies demonstrated a central role in vascular responses. Here, we examined the contribution of individual adenosine receptors (ARs: A1AR/A2AAR/A2BAR/A3AR) to vascular leak induced by hypoxia. Initial profiling studies revealed that siRNA-mediated repression of the A2BAR selectively increased endothelial leak in response to hypoxia in vitro. In parallel, vascular permeability was significantly increased in vascular organs of A2BAR−/−-mice subjected to ambient hypoxia (8% oxygen, 4 hours; eg, lung: 2.1 ± 0.12-fold increase). By contrast, hypoxia-induced vascular leak was not accentuated in A1AR−/−-, A2AAR−/−-, or A3AR−/−-deficient mice, suggesting a degree of specificity for the A2BAR. Further studies in wild type mice revealed that the selective A2BAR antagonist PSB1115 resulted in profound increases in hypoxia-associated vascular leakage while A2BAR agonist (BAY60-6583 [2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)-. phenyl]pyridin-2-ylsulfanyl]acetamide]) treatment was associated with almost complete reversal of hypoxia-induced vascular leakage (eg, lung: 2.0 ± 0.21-fold reduction). Studies in bone marrow chimeric A2BAR mice suggested a predominant role of vascular A2BARs in this response, while hypoxia-associated increases in tissue neutrophils were, at least in part, mediated by A2BAR expressing hematopoietic cells. Taken together, these studies provide pharmacologic and genetic evidence for vascular A2BAR signaling as central control point of hypoxia-associated vascular leak. PMID:18056839

  18. Signaling through the A2B Adenosine Receptor Dampens Endotoxin-Induced Acute Lung Injury

    PubMed Central

    Schingnitz, Ulrich; Hartman, Katherine; MacManus, Christopher F.; Eckle, Tobias; Zug, Stephanie; Colgan, Sean P.; Eltzschig, Holger K.

    2010-01-01

    Sepsis and septic acute lung injury are among the leading causes for morbidity and mortality of critical illness. Extracellular adenosine is a signaling molecule implicated in the cellular adaptation to hypoxia, ischemia or inflammation. Therefore, we pursued the role of the A2B adenosine receptor (A2BAR) as potential therapeutic target in endotoxin-induced acute lung injury. We gained initial insight from in vitro studies of cultured endothelia or epithelia exposed to inflammatory mediators showing time-dependent induction of the A2BAR (up to 12.9±3.4-fold, p<0.05). Similarly, murine studies of endotoxin-induced lung injury identified an almost 4.6-fold induction of A2BAR transcript and corresponding protein induction with LPS-exposure. Studies utilizing A2BAR promoter constructs and RNA-protection assays indicated that A2BAR induction involved mRNA stability. Functional studies of LPS-induced lung injury revealed that pharmacological inhibition or genetic deletion of the A2BAR was associated with dramatic increases in lung inflammation and histologic tissue injury. Studies of A2BAR-bone marrow chimeric mice suggested pulmonary A2BAR signaling in lung protection. Finally, studies with a specific A2BAR agonist (BAY 60-6583) demonstrated attenuation of lung inflammation and pulmonary edema in wild-type but not in gene-targeted mice for the A2BAR. These studies suggest the A2BAR as potential therapeutic target in the treatment of endotoxin-induced forms of acute lung injury. PMID:20348420

  19. A2B Adenosine Receptor Agonist Improves Erectile Function in Diabetic Rats.

    PubMed

    Wen, Jiaming; Wang, Bohan; Du, Chuanjun; Xu, Gang; Zhang, Zhewei; Li, Yi; Zhang, Nan

    2015-01-01

    Diabetes is an important risk factor for erectile dysfunction (ED). Recent studies have indicated that A2B adenosine receptor (ADORA2B) signaling is essential for penile erection. Thus, we hypothesize that diabetic ED may be attributed to impaired A2B adenosine signaling. To test this hypothesis, we generated diabetic rats by injecting streptozocin as animal model. After 12 weeks, immunohistochemistry staining was used to localize the expression of ADORA2B. Western Blot and quantitative PCR were employed to determine ADORA2B expression level. Intracavernosal pressure (ICP) measurement was used to evaluate erectile function. Diabetic rats received a single intravenous injection of BAY 60-6583, an ADORA2B agonist, or vehicle solution, at 60 min before the ICP measurement. The results showed that ADORA2B expressed in the nerve bundle, smooth muscle, and endothelium in penile tissue of control mice. Western Blot and quantitative PCR results indicated that the expression levels of ADORA2B protein and mRNA were significantly reduced in penile tissues of diabetic rats. Functional studies showed that the erectile response induced by electrical stimulation was remarkably decreased in diabetic rats, compared with age-matched control rats. However, at 60 min after BAY 60-6583 treatment, the erectile function was improved in diabetic rats, suggesting that enhancement of ADORA2B signaling may improve erectile function in diabetic ED. This preclinical study has revealed a previously unrecognized therapeutic possibility of BAY 60-6583 as an effective and mechanism-based drug to treat diabetic ED. In conclusion, we propose that impaired A2B adenosine signaling is one of the pathological mechanisms of diabetic ED. PMID:26447087

  20. 3D-pharmacophore models for selective A2A and A2B adenosine receptor antagonists.

    PubMed

    Wei, Jing; Wang, Songqing; Gao, Shaofen; Dai, Xuedong; Gao, Qingzhi

    2007-01-01

    Three-dimensional pharmacophore models were generated for A2A and A2B adenosine receptors (ARs) based on highly selective A2A and A2B antagonists using the Catalyst program. The best pharmacophore model for selective A2A antagonists (Hypo-A2A) was obtained through a careful validation process. Four features contained in Hypo-A2A (one ring aromatic feature (R), one positively ionizable feature (P), one hydrogen bond acceptor lipid feature (L), and one hydrophobic feature (H)) seem to be essential for antagonists in terms of binding activity and A2A AR selectivity. The best pharmacophore model for selective A2B antagonists (Hypo-A2B) was elaborated by modifying the Catalyst common features (HipHop) hypotheses generated from the selective A2B antagonists training set. Hypo-A2B also consists of four features: one ring aromatic feature (R), one hydrophobic aliphatic feature (Z), and two hydrogen bond acceptor lipid features (L). All features play an important role in A2B AR binding affinity and are essential for A2B selectivity. Both A2A and A2B pharmacophore models have been validated toward a wide set of test molecules containing structurally diverse selective antagonists of all AR subtypes. They are capable of identifying correspondingly high potent antagonists and differentiating antagonists between subtypes. The results of our study will act as a valuable tool for retrieving structurally diverse compounds with desired biological activities and designing novel selective adenosine receptor ligands. PMID:17330954

  1. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy.

    PubMed

    Laurent, C; Burnouf, S; Ferry, B; Batalha, V L; Coelho, J E; Baqi, Y; Malik, E; Mariciniak, E; Parrot, S; Van der Jeugd, A; Faivre, E; Flaten, V; Ledent, C; D'Hooge, R; Sergeant, N; Hamdane, M; Humez, S; Müller, C E; Lopes, L V; Buée, L; Blum, D

    2016-01-01

    Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) in humans and mitigates both amyloid and Tau burden in transgenic mouse models. However, the impact of selective A2AR blockade on the progressive development of AD-related lesions and associated memory impairments has not been investigated. In the present study, we removed the gene encoding A2AR from THY-Tau22 mice and analysed the subsequent effects on both pathological (Tau phosphorylation and aggregation, neuro-inflammation) and functional impairments (spatial learning and memory, hippocampal plasticity, neurotransmitter profile). We found that deleting A2ARs protect from Tau pathology-induced deficits in terms of spatial memory and hippocampal long-term depression. These effects were concomitant with a normalization of the hippocampal glutamate/gamma-amino butyric acid ratio, together with a global reduction in neuro-inflammatory markers and a decrease in Tau hyperphosphorylation. Additionally, oral therapy using a specific A2AR antagonist (MSX-3) significantly improved memory and reduced Tau hyperphosphorylation in THY-Tau22 mice. By showing that A2AR genetic or pharmacological blockade improves the pathological phenotype in a Tau transgenic mouse model, the present data highlight A2A receptors as important molecular targets to consider against AD and Tauopathies. PMID:25450226

  2. Adenosine A(1), A(2a), A(2b), and A(3) receptors in hematopoiesis. 1. Expression of receptor mRNA in four mouse hematopoietic precursor cells.

    PubMed

    Streitová, D; Sefc, L; Savvulidi, F; Pospísil, M; Holá, J; Hofer, M

    2010-01-01

    Four mouse bone marrow or thymus cell populations, namely granulopoietic/monocytopoietic, erythropoietic, B-lymphopoietic, and T-lymphopoietic precursor cells have been assayed by RT-PCR technique for the presence and relative amounts of adenosine A(1), A(2a), A(2b), and A(3) receptor mRNA. It has been found that (i) all four populations studied express all four adenosine receptor subtypes, (ii) the A(1), receptor is the least expressed in all populations studied, (iii) the A(3) receptor is markedly expressed in the populations of granulopoietic/monocytopoietic and erythropoietic cells, (iv) the A(2a) receptor is markedly expressed in the populations of B-lymphopoietic and T-lymphopoietic cells, and v) the A(2b) receptor does not predominate in any of the precursor cells studied. Our data offer a new possibility for the assessment of the readiness of these cells to respond, by receptor-mediated mechanisms, to adenosine or its analogs present in the tissues as a result of endogenous processes and/or following their administration. PMID:19249907

  3. A2B adenosine receptor activity is reduced in neutrophils from patients with systemic sclerosis

    PubMed Central

    Bazzichi, Laura; Trincavelli, Letizia; Rossi, Alessandra; De Feo, Francesca; Lucacchini, Antonio; Bombardieri, Stefano; Martini, Claudia

    2005-01-01

    We conducted the present study to investigate protein expression and functioning of A2A and A2B adenosine receptors (ARs) in neutrophils of patients affected by systemic sclerosis (SSc). The presence of A2A and A2B ARs was assessed by immunoblotting using specific antibodies. Equilibrium A2A and A2B ARs binding parameters were evaluated by radioligand binding assay. Functional studies were conducted to investigate coupling of the A2B AR to the adenylyl cyclase pathway. This is the first report of the use of Western blot analysis to confirm the presence of A2A and A2B ARs in human neutrophils. No significant changes in A2A AR binding parameters or expression levels were detected between SSc patients and healthy control individuals. A significant decrease (65%) in the maximum density of A2B AR binding sites occurred in SSc neutrophils, whereas no changes in the affinity constant values were found. Moreover, a decrease in A2B AR mediated adenylyl cyclase activity was observed in patients with SSc. Our findings demonstrate the occurrence of selective alterations in A2B AR density and signalling in SSc. PMID:15743465

  4. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer

    PubMed Central

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I.; Lluís, Carme; Cortés, Antoni; Volkow, Nora D.; Schiffmann, Serge N.; Ferré, Sergi; Casadó, Vicent

    2015-01-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  5. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  6. A2B adenosine receptors mediate relaxation of the pig intravesical ureter: adenosine modulation of non adrenergic non cholinergic excitatory neurotransmission

    PubMed Central

    Hernández, Medardo; Barahona, María Victoria; Bustamante, Salvador; García-Sacristán, Albino; Orensanz, Luis M

    1999-01-01

    The present study was designed to characterize the adenosine receptors involved in the relaxation of the pig intravesical ureter, and to investigate the action of adenosine on the non adrenergic non cholinergic (NANC) excitatory ureteral neurotransmission. In U46619 (10−7  M)-contracted strips treated with the adenosine uptake inhibitor, nitrobenzylthioinosine (NBTI, 10−6  M), adenosine and related analogues induced relaxations with the following potency order: 5′-N-ethylcarboxamidoadenosine (NECA)=5′-(N-cyclopropyl)-carboxamidoadenosine (CPCA)=2-chloroadenosine (2-CA)>adenosine>cyclopentyladenosine (CPA)=N6-(3-iodobenzyl)-adenosine-5′-N-methylcarboxamide (IB-MECA)=2-[p-(carboxyethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680). Epithelium removal or incubation with indomethacin (3×10−6  M) and L-NG-nitroarginine (L-NOARG, 3×10−5  M), inhibitors of prostanoids and nitric oxide (NO) synthase, respectively, failed to modify the relaxations to adenosine. 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10−8 M) and 4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 3×10−8  M and 10−7  M), A1 and A2A receptor selective antagonists, respectively, did not modify the relaxations to adenosine or NECA. 8-phenyltheophylline (8-PT, 10−5  M) and DPCPX (10−6  M), which block A1/A2-receptors, reduced such relaxations. In strips treated with guanethidine (10−5  M), atropine (10−7  M), L-NOARG (3×10−5  M) and indomethacin (3×10−6  M), both electrical field stimulation (EFS, 5 Hz) and exogenous ATP (10−4  M) induced contractions of preparations. 8-PT (10−5  M) increased both contractions. DPCPX (10−8  M), NECA (10−4  M), CPCA, (10−4  M) and 2-CA (10−4  M) did not alter the contractions to EFS. The present results suggest that adenosine relaxes the pig intravesical ureter, independently of prostanoids

  7. Striatal Pre- and Postsynaptic Profile of Adenosine A2A Receptor Antagonists

    PubMed Central

    Quiroz, César; Beaumont, Vahri; Goldberg, Steven R.; Lluís, Carme; Cortés, Antoni; Franco, Rafael; Casadó, Vicent; Canela, Enric I.; Ferré, Sergi

    2011-01-01

    Striatal adenosine A2A receptors (A2ARs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D2 receptors (D2Rs). A2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A1 receptors (A1Rs). It has been hypothesized that postsynaptic A2AR antagonists should be useful in Parkinson's disease, while presynaptic A2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A2AR-D2R and A1R-A2AR heteromers to determine possible differences in the affinity of these compounds for different A2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A2AR when co-expressed with D2R than with A1R. KW-6002 showed the best relative affinity for A2AR co-expressed with D2R than co-expressed with A1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential

  8. Involvement of Peripheral Adenosine A2 Receptors in Adenosine A1 Receptor–Mediated Recovery of Respiratory Motor Function After Upper Cervical Spinal Cord Hemisection

    PubMed Central

    James, Elysia; Nantwi, Kwaku D

    2006-01-01

    Background/Objective: In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated through central adenosine A1 receptor antagonism to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although respiration is modulated by central and peripheral mechanisms, putative involvement of peripheral adenosine A2 receptors in functional recovery in our model is untested. The objective of this study was to assess the effects of peripherally located adenosine A2 receptors on recovery of respiratory function after cervical (C2) spinal cord hemisection. Methods: Respiratory activity was electrophysiologically assessed (under standardized recording conditions) in C2-hemisected adult rats with the carotid bodies intact (H-CBI; n =12) or excised (H-CBE; n =12). Animals were administered the adenosine A2 receptor agonist, CGS-21680, followed by the A1 receptor antagonist, 1, 3-dipropyl-8-cyclopentylxanthine (DPCPX), or administered DPCPX alone. Recovered respiratory activity, characterized as drug-induced activity in the previously quiescent left phrenic nerve of C2-hemisected animals in H-CBI and H-CBE rats, was compared. Recovered respiratory activity was calculated by dividing drug-induced activity in the left phrenic nerve by activity in the right phrenic nerve. Results: Administration of CGS-21680 before DPCPX (n = 6) in H-CBI rats induced a significantly greater recovery (58.5 ± 3.6%) than when DPCPX (42.6 ± 4.6%) was administered (n = 6) alone. In H-CBE rats, prior administration of CGS-21680 (n = 6) did not enhance recovery over that induced by DPCPX (n = 6) alone. Recovery in H-CBE rats amounted to 39.7 ± 3.7% and 38.4 + 4.2%, respectively. Conclusions: Our results suggest that adenosine A2 receptors located in the carotid bodies can enhance the magnitude of adenosine A1 receptor–mediated recovery of respiratory function after C2 hemisection

  9. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer.

    PubMed

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D

    2016-05-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson's disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other's effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26051403

  10. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    PubMed

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma. PMID:15821340

  11. Adenosine A2A receptor deficiency alleviates blast-induced cognitive dysfunction

    PubMed Central

    Ning, Ya-Lei; Yang, Nan; Chen, Xing; Xiong, Ren-Ping; Zhang, Xiu-Zhu; Li, Ping; Zhao, Yan; Chen, Xing-Yun; Liu, Ping; Peng, Yan; Wang, Zheng-Guo; Chen, Jiang-Fan; Zhou, Yuan-Guo

    2013-01-01

    Traumatic brain injury (TBI), particularly explosive blast-induced TBI (bTBI), has become the most prevalent injury among military personnel. The disruption of cognitive function is one of the most serious consequences of bTBI because its long-lasting effects prevent survivors fulfilling their active duty and resuming normal civilian life. However, the mechanisms are poorly understood and there is no treatment available. This study investigated the effects of adenosine A2A receptor (A2AR) on bTBI-induced cognitive deficit, and explored the underlying mechanisms. After being subjected to moderate whole-body blast injury, mice lacking the A2AR (A2AR knockout (KO)) showed less severity and shorter duration of impaired spatial reference memory and working memory than wild-type mice did. In addition, bTBI-induced cortical and hippocampal lesions, as well as proinflammatory cytokine expression, glutamate release, edema, cell loss, and gliosis in both early and prolonged phases of the injury, were significantly attenuated in A2AR KO mice. The results suggest that early injury and chronic neuropathological damages are important mechanisms of bTBI-induced cognitive impairment, and that the impairment can be attenuated by preventing A2AR activation. These findings suggest that A2AR antagonism is a potential therapeutic strategy for mild-to-moderate bTBI and consequent cognitive impairment. PMID:23921902

  12. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease.

    PubMed

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R

    2012-06-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease. PMID:22415303

  13. Inflammatory Lung Injury After Cardiopulmonary Bypass is Attenuated by Adenosine A2A Receptor Activation

    PubMed Central

    Lisle, Turner C; Gazoni, Leo M; Fernandez, Lucas G; Sharma, Ashish K; Bellizzi, Andrew M; Schifflett, Grant D; Laubach, Victor E; Kron, Irving L

    2008-01-01

    Objectives Cardiopulmonary bypass has been shown to exert an inflammatory response within the lung, often resulting in postoperative pulmonary dysfunction. Several studies have shown that adenosine A2A receptor (A2AR) activation attenuates lung ischemia-reperfusion injury, however the effect of A2AR activation on cardiopulmonary bypass-induced lung injury has not been studied. We hypothesized that specific A2AR activation by ATL313 would attenuate inflammatory lung injury following cardiopulmonary bypass. Methods Adult male Sprague-Dawley rats were randomly divided into three groups: 1) SHAM group (underwent cannulation+heparinization only); 2) CONTROL group (underwent 90-minutes of normothermic cardiopulmonary bypass with normal whole-blood priming solution; 3) ATL group (underwent 90-minutes of normothermic cardiopulmonary bypass with ATL313 added to the normal priming solution). Results There was significantly less pulmonary edema and lung injury in the ATL group compared to the CONTROL group. The ATL group had significant reductions in bronchoalveolar lavage interleukin-1, interleukin-6, interferon-γ and myeloperoxidase levels compared to the CONTROL group. Similarly, lung tissue interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly decreased in the ATL group compared to the CONTROL group. There was no significant difference between the SHAM and ATL groups in the amount of pulmonary edema, lung injury, or levels of pro-inflammatory cytokines. Conclusions The addition of a potent A2AR agonist to the normal priming solution prior to the initiation of CPB significantly protects the lung from the inflammatory effects of CPB and reduces the amount of lung injury. A2AR agonists could represent a new therapeutic strategy for reducing the potentially devastating consequences of the inflammatory response associated with CPB. Ultra-mini Abstract Pharmacologic activation of the adenosine A2A receptor during cardiopulmonary bypass resulted in

  14. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinshou; Ghani, Ayaz; Malik, Ahsan; Wilder, Tuere; Colegio, Oscar Rene; Flavell, Richard Anthony; Cronstein, Bruce Neil; Mehal, Wajahat Zafar

    2013-12-01

    Inflammasome pathways are important in chronic diseases; however, it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as lipopolysaccharide (LPS) and ATP that provide two distinct signals resulting in rapid production of interleukin (IL)-1β, with the lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of the lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.

  15. Computational study of the binding modes of caffeine to the adenosine A2A receptor.

    PubMed

    Liu, Yuli; Burger, Steven K; Ayers, Paul W; Vöhringer-Martinez, Esteban

    2011-12-01

    Using the recently solved crystal structure of the human adenosine A(2A) receptor, we applied MM/PBSA to compare the binding modes of caffeine with those of the high-affinity selective antagonist ZM241385. MD simulations were performed in the environment of the lipid membrane bilayer. Four low-energy binding modes of caffeine-A(2A) were found, all of which had similar energies. Assuming an equal contribution of each binding mode of caffeine, the computed binding free energy difference between caffeine and ZM241385 is -2.4 kcal/mol, which compares favorably with the experimental value, -3.6 kcal/mol. The configurational entropy contribution of -0.9 kcal/mol from multiple binding modes of caffeine helps explain how a small molecule like caffeine can compete with a significantly larger molecule, ZM241385, which can form many more interactions with the receptor. We also performed residue-wise energy decomposition and found that Phe168, Leu249, and Ile274 contribute most significantly to the binding modes of caffeine and ZM241385. PMID:21970461

  16. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. PMID:26851736

  17. The role of the A(2A) adenosine receptor subtype in functional hyperaemia in the hindlimb of anaesthetized cats.

    PubMed Central

    Poucher, S M

    1996-01-01

    1. The present study was designed to investigate the contribution of the A(2A) adenosine receptor subtype in the functional hyperaemia response during muscle contraction. 2. In cats anaesthetized with sodium pentobarbitone and breathing spontaneously following tracheotomy, the left sciatic and femoral nerves were electrically stimulated at 3 Hz for 20 min to induce muscle contraction, and hindlimb blood flow was measured with a flow probe. The contribution of the A(2A) adenosine receptor subtype was assessed using ZM 241385, a potent and selective A(2A) adenosine receptor antagonist. 3. In a control group, the muscle isometric tension measured in the extensor digitorum longus-tibialis anterior muscle group was 6.64 +/- 0.66 kg (100 g muscle mass)(-1) and hindlimb vascular conductance was 0.22 +/- 0.03 ml mmHg(-1)(kg body mass)(-1) at 20 min of contraction. Administration of vehicle did not affect these parameters upon a second contraction period: 6.31 +/- 0.61 kg (100 g muscle mass)(-1) and 0.23 +/- 0.03 ml mmHg(-1) (kg body mass)(-1), respectively. Total hindlimb conductance during contraction was unaffected (5.5 +/- 3.7% decrease). 4. ZM 241385 (1.0 mg kg(-1)) did not alter the amount of force produced by the muscle at 20 min of contraction. Hindlimb conductance response was reduced by 27.1 +/- 4.8% following the A(2A) selective adenosine receptor antagonist, similar to that observed with the non-selective antagonist 8-phenyltheophylline. 5. These results show that adenosine acting at the A(2A) subtype receptor can contribute up to 30% of the functional hyperaemia response in the hindlimb of anaesthetized cats. PMID:9019545

  18. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions

    PubMed Central

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Background: Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. Methods: C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). Results and conclusions: The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions. PMID:24966910

  19. Multi-Inhibitory Effects of A2A Adenosine Receptor Signaling on Neutrophil Adhesion Under Flow.

    PubMed

    Yago, Tadayuki; Tsukamoto, Hiroki; Liu, Zhenghui; Wang, Ying; Thompson, Linda F; McEver, Rodger P

    2015-10-15

    A2A adenosine receptor (A2AAR) signaling negatively regulates inflammatory responses in many disease models, but the detailed mechanisms remain unclear. We used the selective A2AAR agonist, ATL313, to examine how A2AAR signaling affects human and murine neutrophil adhesion under flow. Treating neutrophils with ATL313 inhibited selectin-induced, β2 integrin-dependent slow rolling and chemokine-induced, β2 integrin-dependent arrest on ICAM-1. ATL313 inhibited selectin-induced β2 integrin extension, which supports slow rolling, and chemokine-induced hybrid domain "swing-out," which supports arrest. Furthermore, ATL313 inhibited integrin outside-in signaling as revealed by reduced neutrophil superoxide production and spreading on immobilized anti-β2 integrin Ab. ATL313 suppressed selectin-triggered activation of Src family kinases (SFKs) and p38 MAPK, chemokine-triggered activation of Ras-related protein 1, and β2 integrin-triggered activation of SFKs and Vav cytoskeletal regulatory proteins. ATL313 activated protein kinase A and its substrate C-terminal Src kinase, an inhibitor of SFKs. Treating neutrophils with a protein kinase A inhibitor blocked the actions of ATL313. In vivo, ATL313-treated neutrophils rolled faster and arrested much less frequently in postcapillary venules of the murine cremaster muscle after TNF-α challenge. Furthermore, ATL313 markedly suppressed neutrophil migration into the peritoneum challenged with thioglycollate. ATL313 did not affect A2AAR-deficient neutrophils, confirming its specificity. Our findings provide new insights into the anti-inflammatory mechanisms of A2AAR signaling and the potential utility of A2AAR agonists in inflammatory diseases. PMID:26355151

  20. A2A adenosine receptor regulates the human blood brain barrier permeability

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2015-01-01

    The blood brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents, to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human brain endothelial barrier (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent down-regulation of Claudin-5 and VE-Cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human. PMID:25262373

  1. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs. PMID

  2. Elevated Ecto-5’-nucleotidase-Mediated Increased Renal Adenosine Signaling Via A2B Adenosine Receptor Contributes to Chronic Hypertension

    PubMed Central

    Zhang, Weiru; Zhang, Yujin; Wang, Wei; Dai, Yingbo; Ning, Chen; Luo, Renna; Sun, Kaiqi; Glover, Louise; Grenz, Almut; Sun, Hong; Tao, Lijian; Zhang, Wenzheng; Colgan, Sean P.; Blackburn, Michael R.; Eltzschig, Holger K.; Kellems, Rodney E.; Xia, Yang

    2013-01-01

    Rationale Hypertension is the most prevalent life-threatening disease worldwide and is frequently associated with chronic kidney disease (CKD). However, the molecular basis underlying hypertensive CKD is not fully understood. Objective We sought to identify specific factors and signaling pathways that contribute to hypertensive CKD and thereby exacerbate disease progression. Methods and Results Using high-throughput quantitative reverse-transcription polymerase chain reaction profiling, we discovered that the expression level of 5′-ectonucleotidase (CD73), a key enzyme that produces extracellular adenosine, was significantly increased in the kidneys of angiotensin II–infused mice, an animal model of hypertensive nephropathy. Genetic and pharmacological studies in mice revealed that elevated CD73-mediated excess renal adenosine preferentially induced A2B adenosine receptor (ADORA2B) production and that enhanced kidney ADORA2B signaling contributes to angiotensin II–induced hypertension. Similarly, in humans, we found that CD73 and ADORA2B levels were significantly elevated in the kidneys of CKD patients compared with normal individuals and were further elevated in hypertensive CKD patients. These findings led us to further discover that elevated renal CD73 contributes to excess adenosine signaling via ADORA2B activation that directly stimulates endothelin-1 production in a hypoxia-inducible factor-α–dependent manner and underlies the pathogenesis of the disease. Finally, we revealed that hypoxia-inducible factor-α is an important factor responsible for angiotensin II–induced CD73 and ADORA2B expression at the transcriptional level. Conclusions Overall, our studies reveal that angiotensin II–induced renal CD73 promotes the production of renal adenosine that is a prominent driver of hypertensive CKD by enhanced ADORA2B signaling–mediated endothelin-1 induction in a hypoxia-inducible factor-α–dependent manner. The inhibition of excess adenosine

  3. A1-, A2A- and A3-subtype adenosine receptors modulate intraocular pressure in the mouse

    PubMed Central

    Avila, Marcel Y; Stone, Richard A; Civan, Mortimer M

    2001-01-01

    Despite the potential importance of the mouse in studying the pharmacology of aqueous dynamics, measurement of intraocular pressure (IOP) in its very small eye has been problematic. Utilizing a novel servo-null electrophysiologic approach recently applied to the mouse, we have identified a diversity of adenosine-receptor mechanisms in modulating IOP in this species. We report the first evidence that A3 receptors increase IOP in any species, and verify in the mouse reports with larger mammals that A1 receptors lower and A2A receptors increase IOP. PMID:11564641

  4. Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway

    PubMed Central

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N.; Borycz, Janusz; Kachroo, Anil; Canas, Paula M.; Orru, Marco; Schwarzschild, Michael A.; Rosin, Diane L.; Kreitzer, Anatol C.; Cunha, Rodrigo A.; Watanabe, Masahiko; Ferré, Sergi

    2010-01-01

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel anti-parkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional functionally significant segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of cortico-striatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders. PMID:19936569

  5. Adenosine Receptors and Membrane Microdomains

    PubMed Central

    Lasley, Robert D.

    2010-01-01

    Adenosine receptors are a member of the large family of seven transmembrane spanning G protein coupled receptors (GPCR). The four adenosine receptor subtypes – A1, A2a, A2b, A3 – exert their effects via the activation of one or more heterotrimeric G proteins resulting in the modulation of intracellular signaling. Numerous studies over the past decade have documented the complexity of GPCR signaling at the level of protein-protein interactions as well as through signaling crosstalk. With respect to adenosine receptors the activation of one receptor subtype can have profound direct effects in one cell type, but little or no effect in other cells. There is significant evidence that the compartmentation of subcellular signaling plays a physiological role in the fidelity of GPCR signaling. This compartmentation is evident at the level of the plasma membrane in the form of membrane microdomains such as caveolae and lipid rafts. This review will summarize and critically assess our current understanding of the role of membrane microdomains in regulating adenosine receptor signaling. PMID:20888790

  6. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response.

    PubMed

    Cohen, Heather B; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M

    2015-10-15

    The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  7. Adenosine A(1), A(2a), A(2b), and A(3) receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages.

    PubMed

    Streitová, D; Hofer, M; Holá, J; Vacek, A; Pospísil, M

    2010-01-01

    Expression of mRNA for adenosine receptor subtypes A(1), A(2a), A(2b), and A(3) in normal and lipopolysaccharide (LPS)-activated murine RAW 264.7 macrophages has been investigated using the method of quantitative real-time polymerase chain reaction. The results have shown a very low, unquantifiable expression of adenosine A(1) receptor mRNA in both normal and LPS-activated macrophages. The other three adenosine receptor mRNAs have been found to be expressed at various but always quantifiable levels. Activation of the macrophages by LPS induced upregulation of the expression of adenosine receptor A(2a) and A(2b) mRNA, whereas the expression of adenosine receptor A(3) mRNA was downregulated. Unstimulated macrophages exhibited a high expression of the A(2b) adenosine receptor mRNA. The findings are discussed from the point of view of the antiinflammatory and hematopoiesis-stimulating roles of the adenosine receptor signaling. PMID:19249906

  8. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2

    PubMed Central

    Mediero, Aránzazu; Wilder, Tuere; Perez-Aso, Miguel; Cronstein, Bruce N.

    2015-01-01

    Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 μM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 μM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 μM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration.—Mediero, A., Wilder, T., Perez-Aso, M., Cronstein, B. N. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. PMID:25573752

  9. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    PubMed

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia. PMID:27133030

  10. The Quintiles Prize Lecture 2004. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma.

    PubMed

    Holgate, Stephen T

    2005-08-01

    Adenosine is a powerful bronchoconstrictor of asthmatic, but not normal, airways. In vitro studies on isolated human mast cells and basophils revealed that adenosine and selective analogues augmented inflammatory mediator release from mast cells by stimulating A(2) receptors. Pharmacological blockade of mast cell mediator release in vivo also attenuated adenosine-induced bronchoconstriction, as did theophylline, by adenosine A(2) receptor antagonism. Further in vitro studies revealed that the asthmatic response to adenosine is likely to be mediated via the A(2B) subtype which is selectively antagonised by enprofylline. Studies in animal models, especially mice, have shown a close synergistic interaction between adenosine, Th2 and airway remodelling responses. The recent description of A(2B) receptors on human airway smooth muscle cells that mediate cytokine and chemokine release and induce differentiation of fibroblasts into myofibroblasts strengthens the view that adenosine maybe more than an inflammatory mediator in asthma but also participates in airway wall remodelling in this disease. These data have provided a firm basis for developing adenosine A(2B) receptor antagonists as a new therapeutic approach to this disease. PMID:15980878

  11. The Quintiles Prize Lecture 2004: The identification of the adenosine A2B receptor as a novel therapeutic target in asthma

    PubMed Central

    Holgate, Stephen T

    2005-01-01

    Adenosine is a powerful bronchoconstrictor of asthmatic, but not normal, airways. In vitro studies on isolated human mast cells and basophils revealed that adenosine and selective analogues augmented inflammatory mediator release from mast cells by stimulating A2 receptors. Pharmacological blockade of mast cell mediator release in vivo also attenuated adenosine-induced bronchoconstriction, as did theophylline, by adenosine A2 receptor antagonism. Further in vitro studies revealed that the asthmatic response to adenosine is likely to be mediated via the A2B subtype which is selectively antagonised by enprofylline. Studies in animal models, especially mice, have shown a close synergistic interaction between adenosine, Th2 and airway remodelling responses. The recent description of A2B receptors on human airway smooth muscle cells that mediate cytokine and chemokine release and induce differentiation of fibroblasts into myofibroblasts strengthens the view that adenosine maybe more than an inflammatory mediator in asthma but also participates in airway wall remodelling in this disease. These data have provided a firm basis for developing adenosine A2B receptor antagonists as a new therapeutic approach to this disease. PMID:15980878

  12. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling

    PubMed Central

    Mundell, SJ; Matharu, A-L; Nisar, S; Palmer, TM; Benovic, JL; Kelly, E

    2010-01-01

    Background and purpose: We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A2B adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5′-(N-ethylcarboxamido)-adenosine. Experimental approach: The trafficking of the wild type A2B adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. Key results: The wild type A2B adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln325-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu330-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln325-stop, Ser326-stop and Phe328-stop receptors. Following internalization, the wild type A2B adenosine receptor recycled rapidly to the cell surface, whereas the Gln325-stop receptor did not recycle. Conclusions and implications: Deletion of the COOH-terminus of the A2B adenosine receptor beyond Leu330 switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A2B adenosine receptor following prolonged agonist addition. PMID:20128803

  13. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    PubMed

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  14. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    PubMed

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. PMID:26905951

  15. A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice.

    PubMed

    Eckle, Tobias; Grenz, Almut; Laucher, Stefanie; Eltzschig, Holger K

    2008-10-01

    Although acute lung injury contributes significantly to critical illness, resolution often occurs spontaneously via activation of incompletely understood pathways. We recently found that mechanical ventilation of mice increases the level of pulmonary adenosine, and that mice deficient for extracellular adenosine generation show increased pulmonary edema and inflammation after ventilator-induced lung injury (VILI). Here, we profiled the response to VILI in mice with genetic deletions of each of the 4 adenosine receptors (ARs) and found that deletion of the A2BAR gene was specifically associated with reduced survival time and increased pulmonary albumin leakage after injury. In WT mice, treatment with an A2BAR-selective antagonist resulted in enhanced pulmonary inflammation, edema, and attenuated gas exchange, while an A2BAR agonist attenuated VILI. In bone marrow-chimeric A2BAR mice, although the pulmonary inflammatory response involved A2BAR signaling from bone marrow-derived cells, A2BARs located on the lung tissue attenuated VILI-induced albumin leakage and pulmonary edema. Furthermore, measurement of alveolar fluid clearance (AFC) demonstrated that A2BAR signaling enhanced amiloride-sensitive fluid transport and elevation of pulmonary cAMP levels following VILI, suggesting that A2BAR agonist treatment protects by drying out the lungs. Similar enhancement of pulmonary cAMP and AFC were also observed after beta-adrenergic stimulation, a pathway known to promote AFC. Taken together, these studies reveal a role for A2BAR signaling in attenuating VILI and implicate this receptor as a potential therapeutic target during acute lung injury. PMID:18787641

  16. Adenosine receptor interactions and anxiolytics.

    PubMed

    Bruns, R F; Katims, J J; Annau, Z; Snyder, S H; Daly, J W

    1983-12-01

    [3H]-N6-cyclohexyladenosine and [3H]-1,3-diethyl-8-phenylxanthine label the A1 subtype of adenosine receptor in brain membranes. The affinities of methylxanthines in competing for A1 adenosine receptors parallel their potencies as locomotor stimulants. The adenosine agonist N6-(phenylisopropyl) adenosine is a potent locomotor depressant. Both diazepam and N6-(L-phenylisopropyl)adenosine cause locomotor stimulation in a narrow range of subdepressant doses. Combined stimulant doses of the two agents depress motor activity, as do larger doses of either one, given separately. Evidence supporting and against the hypothesis that some of the actions of benzodiazepines are mediated via the adenosine system is reviewed. A number of compounds interact with both systems, probably because of physico-chemical similarities between adenosine and diazepam. It is concluded that of the four classic actions of benzodiazepines, the sedative and muscle relaxant (but not anxiolytic or anticonvulsant) actions could possibly be mediated by adenosine. PMID:6199685

  17. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. PMID:20550943

  18. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells.

    PubMed

    Kudlacek, Oliver; Just, Herwig; Korkhov, Vladimir M; Vartian, Nina; Klinger, Markus; Pankevych, Halyna; Yang, Qiong; Nanoff, Christian; Freissmuth, Michael; Boehm, Stefan

    2003-07-01

    The adenosine A(2A) receptor and the dopamine D(2) receptor are prototypically coupled to G(s) and G(i)/G(o), respectively. In striatal intermediate spiny neurons, these receptors are colocalized in dendritic spines and act as mutual antagonists. This antagonism has been proposed to occur at the level of the receptors or of receptor-G protein coupling. We tested this model in PC12 cells which endogenously express A(2A) receptors. The human D(2) receptor was introduced into PC12 cells by stable transfection. A(2A)-agonist-mediated inhibition of D(2) agonist binding was absent in PC12 cell membranes but present in HEK293 cells transfected as a control. However, in the resulting PC12 cell lines, the action of the D(2) agonist quinpirole depended on the expression level of the D(2) receptor: at low and high receptor levels, the A(2A)-agonist-induced elevation of cAMP was enhanced and inhibited, respectively. Forskolin-stimulated cAMP formation was invariably inhibited by quinpirole. The effects of quinpirole were abolished by pretreatment with pertussis toxin. A(2A)-receptor-mediated cAMP formation was inhibited by other G(i)/G(o)-coupled receptors that were either endogenously present (P(2y12)-like receptor for ADP) or stably expressed after transfection (A(1) adenosine, metabotropic glutamate receptor-7A). Similarly, voltage activated Ca(2+) channels were inhibited by the endogenous P(2Y) receptor and by the heterologously expressed A(1) receptor but not by the D(2) receptor. These data indicate functional segregation of signaling components. Our observations are thus compatible with the proposed model that D(2) and A(2A) receptors are closely associated, but they highlight the fact that this interaction can also support synergism. PMID:12784121

  19. Actinin-1 binds to the C-terminus of A2B adenosine receptor (A2BAR) and enhances A2BAR cell-surface expression.

    PubMed

    Sun, Ying; Hu, Wenbao; Yu, Xiaojie; Liu, Zhengzhao; Tarran, Robert; Ravid, Katya; Huang, Pingbo

    2016-07-15

    A2BAR (A2B adenosine receptor) has been implicated in several physiological conditions, such as allergic or inflammatory disorders, vasodilation, cell growth and epithelial electrolyte secretion. For mediating the protein-protein interactions of A2BAR, the receptor's C-terminus is recognized to be crucial. In the present study, we unexpectedly found that two point mutations in the A2BAR C-terminus (F297A and R298A) drastically impaired the expression of A2BAR protein by accelerating its degradation. Thus we tested the hypothesis that these two point mutations disrupt A2BAR's interaction with a protein essential for A2BAR stability. Our results show that both mutations disrupted the interaction of A2BAR with actinin-1, an actin-associated protein. Furthermore, actinin-1 binding stabilized the global and cell-surface expression of A2BAR. By contrast, actinin-4, another non-muscle actinin isoform, did not bind to A2BAR. Thus our findings reveal a previously unidentified regulatory mechanism of A2BAR abundance. PMID:27208173

  20. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength.

    PubMed

    Segala, Elena; Guo, Dong; Cheng, Robert K Y; Bortolato, Andrea; Deflorian, Francesca; Doré, Andrew S; Errey, James C; Heitman, Laura H; IJzerman, Adriaan P; Marshall, Fiona H; Cooke, Robert M

    2016-07-14

    The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized. PMID:27312113

  1. Potential Role of A2B Adenosine Receptors on Proliferation/Migration of Fetal Endothelium Derived from Preeclamptic Pregnancies

    PubMed Central

    Acurio, Jesenia; Troncoso, Felipe; Salomon, Carlos; Aguayo, Claudio; Sobrevia, Luis

    2014-01-01

    To investigate the functionality of A2B adenosine receptor (A2BAR) and the nitric oxide (NO) and vascular endothelial growth factor (VEGF) signaling pathway in the endothelial cell proliferation/migration during preeclampsia, we used human umbilical vein endothelial cells (HUVECs) isolated from normal pregnancies (n = 15) or pregnancies with preeclampsia (n = 15). Experiments were performed in presence or absence of the nonselective adenosine receptor agonist NECA, the A2BAR selective antagonist MRS-1754, and the nitric oxide synthase (NOS) inhibitor L-NAME. Results indicated that cells from preeclampsia exhibited a significant higher protein level of A2BAR and logEC50 for NECA-mediated proliferation than normotensive pregnancies. The stimulatory effect of NECA (10 μM, 24 h) on cell proliferation was prevented by MRS-1754 (5 nM) coincubation only in cells from normotensive pregnancies. Nevertheless, L-NAME (100 μM, 24 h) reduced the NECA-induced cell proliferation/migration in HUVEC from normal pregnancy; however in preeclampsia only NECA-induced cell proliferation was reduced by L-NAME. Moreover, NECA increased protein nitration and abundance of VEGF in cells from normal pregnancy and effect prevented by MRS-1754 coincubation. Nevertheless, in preeclampsia NECA did not affect the protein level of VEGF. In conclusion HUVECs from preeclampsia exhibit elevated protein level of A2BAR and impairment of A2BAR-mediated NO/VEGF signaling pathway. PMID:24877077

  2. Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson's disease-associated GPR37 receptor-dependent.

    PubMed

    Gandía, Jorge; Morató, Xavier; Stagljar, Igor; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2015-07-15

    GPR37, also known as parkin associated endothelin-like receptor (Pael-R), is an orphan GPCR that aggregates intracellularly in a juvenile form of Parkinson's disease. However, little is known about the function of this orphan receptor. Here, using a model for parkisonian tremor, the pilocarpine-induced tremulous jaw movements (TJMs), we show that the deletion of GPR37 attenuated the TJMs in response to this cholinomimetic. Interestingly, the control that adenosine A2A receptor exerted over TJMs was lost in the absence of GPR37, thus pointing to a pivotal role of this orphan receptor in the adenosinergic control of parkinsonian tremor. PMID:25862943

  3. Adenosine A2A Receptor Up-Regulates Retinal Wave Frequency via Starburst Amacrine Cells in the Developing Rat Retina

    PubMed Central

    Huang, Pin-Chien; Hsiao, Yu-Tien; Kao, Shao-Yen; Chen, Ching-Feng; Chen, Yu-Chieh; Chiang, Chung-Wei; Lee, Chien-fei; Lu, Juu-Chin; Chern, Yijuang; Wang, Chih-Tien

    2014-01-01

    Background Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A2A receptor (A2AR) regulates retinal waves and whether A2AR regulation of retinal waves acts via presynaptic SACs. Methodology/Principal Findings We showed that A2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A2AR decreased the frequency of spontaneous Ca2+ transients, suggesting that endogenous A2AR may up-regulate wave frequency. To investigate whether A2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca2+ transient frequency was increased by expressing wild-type A2AR (A2AR-WT) in SACs, suggesting that A2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A2AR mutant (A2AR-ΔC) in SACs, the wave frequency was reduced compared to the A2AR-WT, but was similar to the control, suggesting that the full-length A2AR in SACs is required for A2AR up-regulation of retinal waves. Conclusions/Significance A2AR up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full

  4. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    PubMed

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-01-01

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs. PMID:27278076

  5. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor

    PubMed Central

    Watson, Michael J.; Lee, Shernita L.; Marklew, Abigail J.; Gilmore, Rodney C.; Gentzsch, Martina; Sassano, Maria F.; Gray, Michael A.; Tarran, Robert

    2016-01-01

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR’s function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR’s PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs. PMID:27278076

  6. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice.

    PubMed

    Bao, Rui; Shui, Xianqi; Hou, Jiong; Li, Jinbao; Deng, Xiaoming; Zhu, Xiaoyan; Yang, Tao

    2016-09-01

    The number of regulatory T cells (Treg cells) and the expression of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1; also known as CD39) and 5'-ectonucleotidase (NT5E; also known as CD73) on the Treg cell surface are increased during sepsis. In this study, to determine the factors leading to the high expression of CD39 and CD73, and the regulation of the CD39/CD73/adenosine pathway in Treg cells under septic conditions, we constructed a mouse model of sepsis and separated the Treg cells using a flow cytometer. The Treg cells isolated from the peritoneal lavage and splenocytes of the mice were treated with adenosine or the specific adenosine A2A receptor agonist, CGS21680, and were transfected with specific siRNA targeting E2F transcription factor 1 (E2F-1) or cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), which are predicted transcription regulatory factors of CD39 or CD73. The regulatory relationships among these factors were then determined by western blot analysis and dual-luciferase reporter assay. In addition, changes in adenosine metabolism were measured in the treated cells. The results revealed that adenosine and CGS21680 significantly upregulated CD39 and CD73 expression (P<0.01). E2F-1 and CREB induced CD39 and CD73 expression, and were upregulated by adenosine and CGS21680. Adenosine triphosphate (ATP) hydrolysis and adenosine generation were inhibited by the knockdown of E2F-1 or CREB, and were accelerated in the presence of CGS21680. Based on these results, it can be inferred that adenosine, the adenosine A2receptor agonist, E2F-1 and CREB are the possible factors contributing to the high expression of CD39 and CD73 on the Treg cell surface during sepsis. Adenosine and its A2receptor agonist served as the signal transducer factors of the CD39/CD73/adenosine pathway, accelerating adenosine generation. Our study may benefit further research on adenosine metabolism for the treatment of sepsis

  7. Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GABAA receptors microtransplanted to Xenopus oocytes

    PubMed Central

    Roseti, Cristina; Palma, Eleonora; Martinello, Katiuscia; Fucile, Sergio; Morace, Roberta; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonietta; Giangaspero, Felice; Aronica, Eleonora; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Cristalli, Gloria; Lambertucci, Catia; Marucci, Gabriella; Volpini, Rosaria; Limatola, Cristina; Eusebi, Fabrizio

    2009-01-01

    We previously found that the endogenous anticonvulsant adenosine, acting through A2A and A3 adenosine receptors (ARs), alters the stability of currents (IGABA) generated by GABAA receptors expressed in the epileptic human mesial temporal lobe (MTLE). Here we examined whether ARs alter the stability (desensitization) of IGABA expressed in focal cortical dysplasia (FCD) and in periglioma epileptic tissues. The experiments were performed with tissues from 23 patients, using voltage-clamp recordings in Xenopus oocytes microinjected with membranes isolated from human MTLE and FCD tissues or using patch-clamp recordings of pyramidal neurons in epileptic tissue slices. On repetitive activation, the epileptic GABAA receptors revealed instability, manifested by a large IGABA rundown, which in most of the oocytes (≈70%) was obviously impaired by the new A2A antagonists ANR82, ANR94, and ANR152. In most MTLE tissue-microtransplanted oocytes, a new A3 receptor antagonist (ANR235) significantly improved IGABA stability. Moreover, patch-clamped pyramidal neurons from human neocortical slices of periglioma epileptic tissues exhibited altered IGABA rundown on ANR94 treatment. Our findings indicate that antagonizing A2A and A3 receptors increases the IGABA stability in different epileptic tissues and suggest that adenosine derivatives may offer therapeutic opportunities in various forms of human epilepsy. PMID:19721003

  8. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  9. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  10. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    PubMed

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  11. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress

    PubMed Central

    Kaster, Manuella P.; Machado, Nuno J.; Silva, Henrique B.; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E.; Rodrigues, Ana Lúcia S.; Porciúncula, Lisiane O.; Chen, Jiang Fan; Tomé, Ângelo R.; Agostinho, Paula; Canas, Paula M.; Cunha, Rodrigo A.

    2015-01-01

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  12. Up regulation of A2B adenosine receptor on monocytes are crucially required for immune pathogenicity in Indian patients exposed to Leishmania donovani.

    PubMed

    Vijayamahantesh; Amit, Ajay; Kumar, Santosh; Dikhit, Manas R; Jha, Pravin K; Singh, Ashish K; Sinha, Kislay K; Pandey, Krishna; Das, V N R; Das, Pradeep; Bimal, Sanjiva

    2016-03-01

    Adenosine, an endogenous purine nucleoside is one such extracellular signalling molecule whose role in regulation of anti-inflammatory cytokines and immune pathogenicity in visceral leishmaniasis is not fully understood. Here, we investigated the relationship between Leishmania donovani infection and expression of A2B receptor on monocytes in VL patients in their pre and post treatment stage. We also investigated the molecular mechanisms influencing the interaction between immunopathogenicity and infection by exposing Leishmania donovani pulsed macrophages to Adenosine. A direct correlation of up-regulated A2B expression on monocytes with increased parasite load was also observed. Our results also suggested that A2B receptor activation is critically required for the stimulatory effect of adenosine on IL-10 production and suppression of nitric oxide release. The stimulatory effect of adenosine on Leishmania donovani induced IL-10 production required ERK1/2 activation and is p-38 MAPK independent. PMID:26748211

  13. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    PubMed

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation. PMID:26611209

  14. 5'-Substituted Amiloride Derivatives as Allosteric Modulators Binding in the Sodium Ion Pocket of the Adenosine A2A Receptor.

    PubMed

    Massink, Arnault; Louvel, Julien; Adlere, Ilze; van Veen, Corine; Huisman, Berend J H; Dijksteel, Gabrielle S; Guo, Dong; Lenselink, Eelke B; Buckley, Benjamin J; Matthews, Hayden; Ranson, Marie; Kelso, Michael; IJzerman, Adriaan P

    2016-05-26

    The sodium ion site is an allosteric site conserved among many G protein-coupled receptors (GPCRs). Amiloride 1 and 5-(N,N-hexamethylene)amiloride 2 (HMA) supposedly bind in this sodium ion site and can influence orthosteric ligand binding. The availability of a high-resolution X-ray crystal structure of the human adenosine A2A receptor (hA2AAR), in which the allosteric sodium ion site was elucidated, makes it an appropriate model receptor for investigating the allosteric site. In this study, we report the synthesis and evaluation of novel 5'-substituted amiloride derivatives as hA2AAR allosteric antagonists. The potency of the amiloride derivatives was assessed by their ability to displace orthosteric radioligand [(3)H]4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol ([(3)H]ZM-241,385) from both the wild-type and sodium ion site W246A mutant hA2AAR. 4-Ethoxyphenethyl-substituted amiloride 12l was found to be more potent than both amiloride and HMA, and the shift in potency between the wild-type and mutated receptor confirmed its likely binding to the sodium ion site. PMID:27124340

  15. Effects of cardiac-restricted overexpression of the A2A adenosine receptor on adriamycin-induced cardiotoxicity

    PubMed Central

    Hamad, Eman A.; Li, Xue; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie; Funakoshi, Hajime; Zhang, Jin; Wang, JuFang; Li, Jifen; Swope, David; Madonick, Ashley; Farber, John; Radice, Glenn L.; Cheung, Joseph Y.; Chan, Tung O.

    2010-01-01

    Activation of the A2A adenosine receptor (A2AR) has been shown to be cardioprotective. We hypothesized that A2AR overexpression could protect the heart from adriamycin-induced cardiomyopathy. Transgenic (TG) mice overexpressing the A2AR and wild-type mice (WT) were injected with adriamycin (5 mg·kg−1·wk−1 ip, 4 wk). All WT mice survived adriamycin treatment while A2AR TG mice suffered 100% mortality at 4 wk. Telemetry showed progressive prolongation of the QT interval, bradyarrhythmias, heart block, and sudden death in adriamycin-treated A2AR TG but not WT mice. Both WT and A2AR TG demonstrated similar decreases in heart function at 3 wk after treatment. Adriamycin significantly increased end-diastolic intracellular Ca2+ concentration in A2AR TG but not in WT myocytes (P < 0.05). Compared with WT myocytes, action potential duration increased dramatically in A2AR TG myoctyes (P < 0.05) after adriamycin treatment. Expression of connexin 43 was decreased in adriamycin treated A2AR TG but not WT mice. In sharp contrast, A2AR overexpression induced after the completion of adriamycin treatment resulted in no deaths and enhanced cardiac performance compared with WT adriamycin-treated mice. Our results indicate that the timing of A2AR activation is critical in terms of exacerbating or protecting adriamycin-induced cardiotoxicity. Our data have direct relevance on the clinical use of adenosine agonists or antagonists in the treatment of patients undergoing adriamycin therapy. PMID:20363887

  16. A2B Adenosine Receptor Blockade Enhances Macrophage-Mediated Bacterial Phagocytosis and Improves Polymicrobial Sepsis Survival in Mice

    PubMed Central

    Belikoff, Bryan G.; Hatfield, Stephen; Georgiev, Peter; Ohta, Akio; Lukashev, Dmitriy; Buras, Jon A.; Remick, Daniel G.; Sitkovsky, Michail

    2013-01-01

    Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival. PMID:21242513

  17. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  18. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors.

    PubMed

    Elnozahi, Neveen A; AlQot, Hadir E; Mohy El-Din, Mahmoud M; Bistawroos, Azza E; Abou Zeit-Har, Mohamed S

    2016-06-21

    This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction. PMID:27060487

  19. Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons.

    PubMed

    Ribeiro, Filipa F; Neves-Tomé, Raquel; Assaife-Lopes, Natália; Santos, Telma E; Silva, Rui F M; Brites, Dora; Ribeiro, Joaquim A; Sousa, Mónica M; Sebastião, Ana M

    2016-06-01

    Axon growth and dendrite development are key processes for the establishment of a functional neuronal network. Adenosine, which is released by neurons and glia, is a known modulator of synaptic transmission but its influence over neuronal growth has been much less investigated. We now explored the action of adenosine A2A receptors (A2AR) upon neurite outgrowth, discriminating actions over the axon or dendrites, and the mechanisms involved. Morphometric analysis of primary cultures of cortical neurons from E18 Sprague-Dawley rats demonstrated that an A2AR agonist, CGS 21680, enhances axonal elongation and dendritic branching, being the former prevented by inhibitors of phosphoinositide 3-kinase, mitogen-activated protein kinase and phospholipase C, but not of protein kinase A. By testing the influence of a scavenger of BDNF (brain-derived neurotrophic factor) over the action of the A2AR agonist and the action of a selective A2AR antagonist over the action of BDNF, we could conclude that while the action of A2ARs upon dendritic branching is dependent on the presence of endogenous BDNF, the influence of A2ARs upon axonal elongation is independent of endogenous BDNF. In consonance with the action over axonal elongation, A2AR activation promoted a decrease in microtubule stability and an increase in microtubule growth speed in axonal growth cones. In conclusion, we disclose a facilitatory action of A2ARs upon axonal elongation and microtubule dynamics, providing new insights for A2ARs regulation of neuronal differentiation and axonal regeneration. PMID:26068054

  20. Induction of murine adenosine A(2A) receptor expression by LPS: analysis of the 5' upstream promoter.

    PubMed

    Elson, G; Eisenberg, M; Garg, C; Outram, S; Ferrante, C J; Hasko, G; Leibovich, S J

    2013-04-01

    Non-activated macrophages express low levels of A(2A)Rs and lipopolysaccharides (LPS) upregulates A(2A)R expression in an NF-κB-dependent manner. The murine A(2A)R gene is encoded by three exons, m1, m2 and m3. Exons m2 and m3 are conserved, while m1 encodes the 5' untranslated UTR. Three m1 variants have been defined, m1A, m1B and m1C, with m1C being farthest from the transcriptional start site. LPS upregulates A(2A)Rs in primary murine peritoneal and bone-marrow-derived macrophages and RAW264.7 cells by selectively splicing m1C to m2, through a promoter located upstream of m1C. We have cloned ∼1.6 kb upstream of m1C into pGL4.16(luc2CP/Hygro) promoterless vector. This construct in RAW 264.7 cells responds to LPS, and adenosine receptor agonists augmented LPS responsiveness. The NF-κB inhibitors BAY-11 and triptolide inhibited LPS-dependent induction. Deletion of a key proximal NF-κB site (402-417) abrogated LPS responsiveness, while deletion of distal NF-κB and C/EBPβ sites did not. Site-directed mutagenesis of CREB (309-320), STAT1 (526-531) and AP2 (566-569) sites had little effect on LPS and adenosine receptor agonist responsiveness; however, mutation of a second STAT1 site (582-588) abrogated this responsiveness. Further analysis of this promoter should provide valuable insights into regulation of A(2A)R expression in macrophages in response to inflammatory stimuli. PMID:23328845

  1. Human Adenosine A2A Receptor Binds Calmodulin with High Affinity in a Calcium-Dependent Manner

    PubMed Central

    Piirainen, Henni; Hellman, Maarit; Tossavainen, Helena; Permi, Perttu; Kursula, Petri; Jaakola, Veli-Pekka

    2015-01-01

    Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors. PMID:25692595

  2. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids

    DOE PAGESBeta

    Naranjo, Andrea N.; McNeely, Patrick M.; Katsaras, John; Skaja Robinson, Anne

    2016-05-27

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, ormore » DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. Furthermore, the studies presented in this paper also underline the importance of the protein’s purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.« less

  3. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids.

    PubMed

    Naranjo, Andrea N; McNeely, Patrick M; Katsaras, John; Robinson, Anne Skaja

    2016-08-01

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the protein's purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner. PMID:27241126

  4. Adenosine (A)(2A)receptor modulation of nicotine-induced locomotor sensitization. A pharmacological and transgenic approach.

    PubMed

    Jastrzębska, Joanna; Nowak, Ewa; Smaga, Irena; Bystrowska, Beata; Frankowska, Małgorzata; Bader, Michael; Filip, Małgorzata; Fuxe, Kjell

    2014-06-01

    Preclinical evidence indicates an important role of adenosine (A)(2A) receptors in drug addiction while their therapeutic relevance is still a matter of debate. We examined the influence of the A(2A) receptor agonist CGS 21680 and the antagonist KW 6002 on nicotine sensitization and conditioned locomotor activity in adult (8-week old) male Sprague-Dawley rats (WT). Moreover, behavioral responses to nicotine were studied in rats overexpressing A(2A) receptors under the control of the neuronal specific enolase (NSE) promotor. Changes in the levels of dopamine, glutamate and γ-aminobutyric acid in wild type (WT) and NSEA(2A) rats were determined with using LC-MS. KW 6002 significantly enhanced expression of nicotine sensitization and conditioned locomotion, while CGS 21680 reduced all these effects in WT rats. A reduction of the expression of nicotine-evoked conditioned locomotor activity was also observed in the NSEA(2A) animals. The transgenic rats displayed a reduced basal tissue level of glutamate in the prefrontal cortex and hippocampus while dopamine basal levels in the nucleus accumbens were raised. Chronic nicotine treatment caused a significant reduction in the glutamate tissue level in the dorsal and ventral striatum, prefrontal cortex and cerebellum in wild type rats. In NSEA(2A) animals the same drug treatment instead produced a rise of glutamate levels in the hippocampus and dorsal striatum. Taken together, A(2A) receptor signaling in the rat brain can counteract locomotor sensitization and conditioned locomotion to nicotine which are related to nicotine reward-learning. It is suggested that treatment with A(2A) receptor agonists can help counteract the abuse actions of nicotine. PMID:24632528

  5. Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning.

    PubMed

    Singer, Philipp; Wei, Catherine J; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K

    2013-04-01

    Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia. PMID:23276608

  6. Chronic hypoxia reduces adenosine A2A receptor-mediated inhibition of calcium current in rat PC12 cells via downregulation of protein kinase A

    PubMed Central

    Kobayashi, Shuichi; Beitner-Johnson, Dana; Conforti, Laura; Millhorn, David E

    1998-01-01

    Adenosine has been shown to decrease Ca2+ current (ICa) and attenuate the hypoxia-induced enhancement of intracellular free Ca2+ ([Ca2+]i) in oxygen-sensitive rat phaeochromocytoma (PC12) cells. These effects are mediated via the adenosine A2A receptor and protein kinase A (PKA). The current study was undertaken to determine the effects of adenosine on Ca2+ current and hypoxia-induced change in [Ca2+]i during chronic hypoxia.Whole cell patch-clamp studies revealed that the effect of adenosine on ICa was significantly reduced when PC12 cells were exposed to hypoxia (10 % O2) for 24 and 48 h.Ca2+ imaging studies using fura-2 revealed that the anoxia-induced increase in [Ca2+]i was significantly enhanced when PC12 cells were exposed to 10 % O2 for up to 48 h. In contrast, the inhibitory effects of adenosine on anoxia-induced elevation of [Ca2+]i was significantly blunted in PC12 cells exposed to hypoxia for 48 h.Northern blot analysis revealed that mRNA for the A2A receptor, which is the only adenosine receptor subtype expressed in PC12 cells, was significantly upregulated by hypoxia. Radioligand binding analysis with [3H]CGS21680, a selective A2A receptor ligand, showed that the number of adenosine A2A receptor binding sites was similarly increased during exposure to 10 % O2 for 48 h.PKA enzyme activity was significantly inhibited when PC12 cells were exposed to 10 % O2 for 24 and 48 h. However, we found that hypoxia failed to induce change in adenosine- and forskolin-stimulated adenylate cyclase enzyme activity. Chronic hypoxia also did not alter the immunoreactivity level of the G protein Gsα, an effector of the A2 signalling pathway.Whole cell patch-clamp analysis showed that the effect of 8-bromo-cAMP, an activator of PKA, on ICa was significantly attenuated during 48 h exposure to 10 % O2.We conclude therefore that the reduced effect of adenosine on ICa and [Ca2+]i in PC12 cells exposed to chronic hypoxia is due to hypoxia-induced downregulation of PKA. This

  7. Chronic hypoxia reduces adenosine A2A receptor-mediated inhibition of calcium current in rat PC12 cells via downregulation of protein kinase A.

    PubMed

    Kobayashi, S; Beitner-Johnson, D; Conforti, L; Millhorn, D E

    1998-10-15

    1. Adenosine has been shown to decrease Ca2+ current (ICa) and attenuate the hypoxia-induced enhancement of intracellular free Ca2+ ([Ca2+]i) in oxygen-sensitive rat phaeochromocytoma (PC12) cells. These effects are mediated via the adenosine A2A receptor and protein kinase A (PKA). The current study was undertaken to determine the effects of adenosine on Ca2+ current and hypoxia-induced change in [Ca2+]i during chronic hypoxia. 2. Whole cell patch-clamp studies revealed that the effect of adenosine on ICa was significantly reduced when PC12 cells were exposed to hypoxia (10 % O2) for 24 and 48 h. 3. Ca2+ imaging studies using fura-2 revealed that the anoxia-induced increase in [Ca2+]i was significantly enhanced when PC12 cells were exposed to 10 % O2 for up to 48 h. In contrast, the inhibitory effects of adenosine on anoxia-induced elevation of [Ca2+]i was significantly blunted in PC12 cells exposed to hypoxia for 48 h. 4. Northern blot analysis revealed that mRNA for the A2A receptor, which is the only adenosine receptor subtype expressed in PC12 cells, was significantly upregulated by hypoxia. Radioligand binding analysis with [3H]CGS21680, a selective A2A receptor ligand, showed that the number of adenosine A2A receptor binding sites was similarly increased during exposure to 10% O2 for 48 h. 5. PKA enzyme activity was significantly inhibited when PC12 cells were exposed to 10% O2 for 24 and 48 h. However, we found that hypoxia failed to induce change in adenosine- and forskolin-stimulated adenylate cyclase enzyme activity. Chronic hypoxia also did not alter the immunoreactivity level of the G protein Gsalpha, an effector of the A2 signalling pathway. 6. Whole cell patch-clamp analysis showed that the effect of 8-bromo-cAMP, an activator of PKA, on ICa was significantly attenuated during 48 h exposure to 10% O2.7. We conclude therefore that the reduced effect of adenosine on ICa and [Ca2+]i in PC12 cells exposed to chronic hypoxia is due to hypoxia

  8. Adenosine A2A receptor plays an important role in radiation-induced dermal injury.

    PubMed

    Perez-Aso, Miguel; Mediero, Aránzazu; Low, Yee Cheng; Levine, Jamie; Cronstein, Bruce N

    2016-01-01

    Ionizing radiation is a common therapeutic modality and following irradiation dermal changes, including fibrosis and atrophy, may lead to permanent changes. We have previously demonstrated that occupancy of A2A receptor (A2AR) stimulates collagen production, so we determined whether blockade or deletion of A2AR could prevent radiation-induced fibrosis. After targeted irradiation (40 Gy) of the skin of wild-type (WT) or A2AR knockout (A2ARKO) mice, the A2AR antagonist ZM241385 was applied daily for 28 d. In irradiated WT mice treated with the A2AR antagonist, there was a marked reduction in collagen content and skin thickness, and ZM241385 treatment reduced the number of myofibroblasts and angiogenesis. After irradiation, there is an increase in loosely packed collagen fibrils, which is significantly diminished by ZM241385. Irradiation also induced an increase in epidermal thickness, prevented by ZM241385, by increasing the number of proliferating keratinocytes. Similarly, in A2ARKO mice, the changes in collagen alignment, skin thickness, myofibroblast content, angiogenesis, and epidermal hyperplasia were markedly reduced following irradiation. Radiation-induced changes in the dermis and epidermis were accompanied by an infiltrate of T cells, which was prevented in both ZM241385-treated and A2ARKO mice. Radiation therapy is administered to a significant number of patients with cancer, and radiation reactions may limit this therapeutic modality. Our findings suggest that topical application of an A2AR antagonist prevents radiation dermatitis and may be useful in the prevention or amelioration of radiation changes in the skin. PMID:26415936

  9. A novel mechanism of control of NFκB activation and inflammation involving A2B adenosine receptors

    PubMed Central

    Sun, Ying; Duan, Yuanyuan; Eisenstein, Anna S.; Hu, Wenbao; Quintana, Adrien; Lam, Wai Kwan; Wang, Yan; Wu, Zhenguo; Ravid, Katya; Huang, Pingbo

    2012-01-01

    Summary The nuclear factor kappa B (NFκB) pathway controls a variety of processes, including inflammation, and thus, the regulation of NFκB has been a continued focus of study. Here, we report a newly identified regulation of this pathway, involving direct binding of the transcription factor NFκB1 (the p105 subunit of NFκB) to the C-terminus of the A2B adenosine receptor (A2BAR), independent of ligand activation. Intriguingly, binding of A2BAR to specific sites on p105 prevents polyubiquitylation and degradation of p105 protein. Ectopic expression of the A2BAR increases p105 levels and inhibits NFκB activation, whereas p105 protein levels are reduced in cells from A2BAR-knockout mice. In accordance with the known regulation of expression of anti- and pro-inflammatory cytokines by p105, A2BAR-null mice generate less interleukin (IL)-10, and more IL-12 and tumor necrosis factor (TNF-α). Taken together, our results show that the A2BAR inhibits NFκB activation by physically interacting with p105, thereby blocking its polyubiquitylation and degradation. Our findings unveil a surprising function for the A2BAR, and provide a novel mechanistic insight into the control of the NFκB pathway and inflammation. PMID:22767505

  10. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis.

    PubMed

    Flögel, Ulrich; Burghoff, Sandra; van Lent, Peter L E M; Temme, Sebastian; Galbarz, Lisa; Ding, Zhaoping; El-Tayeb, Ali; Huels, Sandra; Bönner, Florian; Borg, Nadine; Jacoby, Christoph; Müller, Christa E; van den Berg, Wim B; Schrader, Jürgen

    2012-08-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation. PMID:22875828

  11. Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy.

    PubMed

    Hu, Qidi; Ren, Xiangpeng; Liu, Ya; Li, Zhihui; Zhang, Liping; Chen, Xingjun; He, Chaoxiang; Chen, Jiang-Fan

    2016-09-01

    Synucleinopathy is characterized by abnormal accumulation of misfolded α-synuclein (α-Syn)-positive cytoplasmic inclusions and by neurodegeneration and cognitive impairments, but the pathogenesis mechanism of synucleinopathy remains to be defined. Using a transmission model of synucleinopathy by intracerebral injection of preformed A53T α-Syn fibrils, we investigated whether aberrant adenosine A2A receptor (A2AR) signaling contributed to pathogenesis of synucleinopathy. We demonstrated that intra-hippocampal injection of preformed mutant α-Syn fibrils triggered a striking and selective induction of A2AR expression which was closely co-localized with pSer129 α-Syn-rich inclusions in neurons and glial cells of hippocampus. Importantly, by abolishing aberrant A2AR signaling triggered by mutant α-Syn, genetic deletion of A2ARs blunted a cascade of pathological events leading to synucleinopathy, including pSer129 α-Syn-rich and p62-positive aggregates, NF-κB activation and astrogliosis, apoptotic neuronal cell death and working memory deficits without affecting motor activity. These findings define α-Syn-triggered aberrant A2AR signaling as a critical pathogenesis mechanism of synucleinopathy with dual controls of cognition and neurodegeneration by modulating α-Syn aggregates. Thus, aberrant A2AR signaling represents a useful biomarker as well as a therapeutic target of synucleinopathy. PMID:27342081

  12. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels.

    PubMed

    Liu, Yumei; Zou, Haifeng; Zhao, Ping; Sun, Bo; Wang, Jinghua; Kong, Qingfei; Mu, Lili; Zhao, Sihan; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Zhao, Jiaying; Yin, Pengqi; Liu, Lei; Zhao, Xiuli; Li, Hulun

    2016-08-25

    Multiple sclerosis (MS) is a common autoimmune disease that inevitably causes inflammatory nerve demyelination. However, an effective approach to prevent its course is still lacking and urgently needed. Recently, the adenosine A2A receptor (A2AR) has emerged as a novel inflammation regulator. Manipulation of A2AR activity may suppress the MS process and protect against nerve damage. To test this hypothesis, we treated murine experimental autoimmune encephalomyelitis (EAE), a model for MS, with the selective A2AR agonist, CGS21680 (CGS). We evaluated the effects of CGS on the pathological features of EAE progression, including CNS cellular infiltration, inflammatory cytokine expression, lymphocyte proliferation, and cell surface markers. Treatment with CGS significantly suppressed specific lymphocyte proliferation, reduced infiltration of CD4(+) T lymphocytes, and attenuated the expression of inflammatory cytokines, which in turn inhibited the EAE progression. For the first time, we demonstrate that CGS can increase the intracellular calcium concentration ([Ca(2+)]i) in murine lymphocytes, which may be the mechanism underlying the suppressive effects of CGS-induced A2AR activation on EAE progression. Our findings strongly suggest that A2AR is a potential therapeutic target for MS and provide insight into the mechanism of action of A2AR agonists, which may offer a therapeutic option for this disease. PMID:27217214

  13. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression

    PubMed Central

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K.; Blackburn, Michael R.; Kellems, Rodney E.; Xia, Yang

    2014-01-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A2B adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA−/− and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.—Ning, C., Wen, J., Zhang, Y., Dai, Y., Wang, W., Zhang, W., Qi, L., Grenz, A., Eltzschig, H. K., Blackburn, M. R., Kellems, R. E., Xia, Y. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression. PMID:24614760

  14. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    PubMed Central

    Fathalla, Ahmed M.; Soliman, Amira M.; Ali, Mohamed H.; Moustafa, Ahmed A.

    2016-01-01

    Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson’s disease (PD) symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1, 3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h), rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1, 3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral (stride length and grid walking) and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography, HPLC). In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 improved motor function and movement coordination (partial increase of stride length and partial decrease in the number of foot slips) and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2A receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients. PMID:26973484

  15. Optogenetic Activation of Adenosine A2A Receptor Signaling in the Dorsomedial Striatopallidal Neurons Suppresses Goal-Directed Behavior.

    PubMed

    Li, Yan; He, Yan; Chen, Mozi; Pu, Zhilan; Chen, Li; Li, Ping; Li, Bo; Li, Haiyan; Huang, Zhi-Li; Li, Zhihui; Chen, Jiang-Fan

    2016-03-01

    The striatum has an essential role in neural control of instrumental behaviors by reinforcement learning. Adenosine A(2A) receptors (A(2A)Rs) are highly enriched in the striatopallidal neurons and are implicated in instrumental behavior control. However, the temporal importance of the A(2A)R signaling in relation to the reward and specific contributions of the striatopallidal A(2A)Rs in the dorsolateral striatum (DLS) and the dorsomedial striatum (DMS) to the control of instrumental learning are not defined. Here, we addressed temporal relationship and sufficiency of transient activation of optoA(2A)R signaling precisely at the time of the reward to the control of instrumental learning, using our newly developed rhodopsin-A2AR chimeras (optoA(2A)R). We demonstrated that transient light activation of optoA(2A)R signaling in the striatopallidal neurons in 'time-locked' manner with the reward delivery (but not random optoA(2A)R activation) was sufficient to change the animal's sensitivity to outcome devaluation without affecting the acquisition or extinction phases of instrumental learning. We further demonstrated that optogenetic activation of striatopallidal A(2A)R signaling in the DMS suppressed goal-directed behaviors, as focally genetic knockdown of striatopallidal A(2A)Rs in the DMS enhanced goal-directed behavior by the devaluation test. By contrast, optogenetic activation or focal AAV-Cre-mediated knockdown of striatopallidal A(2A)R in the DLS had relatively limited effects on instrumental learning. Thus, the striatopallidal A(2A)R signaling in the DMS exerts inhibitory and predominant control of goal-directed behavior by acting precisely at the time of reward, and may represent a therapeutic target to reverse abnormal habit formation that is associated with compulsive obsessive disorder and drug addiction. PMID:26216520

  16. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs.

    PubMed

    Kaplan, G B; Sears, M T

    1996-01-01

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. Adenosine receptors and their functions have been shown to be regulated by chronic opiate treatment. This study examines the role of adenosine receptors in the expression of opiate withdrawal behaviors. The effects of single doses of parenterally administered adenosine receptor subtype-selective agonists and antagonists on opiate withdrawal signs in morphine-dependent mice were measured. Mice received subcutaneous morphine pellet treatment for 72 h and then underwent naloxone-precipitated withdrawal after pretreatment with adenosinergic agents. Adenosine agonists attenuated different opiate withdrawal signs. The A1 agonist R-N6(phenylisopropyl)adenosine (0, 0.01, 0.02 mg/kg, IP) significantly reduced wet dog shakes and withdrawal diarrhea, while the A2a-selective agonist 2-p-(2-carboxethyl)phenylethylamino-5'-N-ethylcarboxamido adenosine or CGS 21680 (0, 0.01, 0.05 mg/kg, IP) significantly inhibited teeth chattering and forepaw treads. Adenosine receptor antagonists enhanced different opiate withdrawal signs. The adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (0, 1, 10 mg/kg, IP) significantly increased weight loss and the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (0, 1 and 10 mg/kg, IP) enhanced wet dog shakes and withdrawal diarrhea. Treatment effects of adenosinergic agents were not due to nonspecific motor effects, as demonstrated by activity monitoring studies. These results support a role for adenosine receptors in the expression of opiate withdrawal and suggest the potential utility of adenosine agonists in its treatment. PMID:8741956

  17. Novel adenosine receptors in rat hippocampus identification and characterization

    SciTech Connect

    Chin, J.H.; Mashman, W.E.; DeLorenzo, R.J.

    1985-05-06

    2-chloro(/sup 3/H)adenosine, a stable analog of adenosine, was used to investigate the presence of adenosine receptors in rat hippocampal membranes that may mediate the depressant effects of adenosine on synaptic transmission in this tissue. Equilibrium binding studies reveal the presence of a previously undescribed class of receptors with a K/sub D/ of 4.7 ..mu..M and a Bmax of 130 pmol/mg of protein. Binding is sensitive to alkylxanthines and to a number of adenosine-related compounds. The pharmacological properties of this binding site are distinct from those of the A1 and A2 adenosine receptors associated with adenylate cyclase. The results suggest that this adenosine binding site is a novel central purinergic receptor through which adenosine may regulate hippocampal excitability. 50 references, 2 figures, 1 table.

  18. Adenosine A2A receptor activation reduces recurrence and mortality from Clostridium difficile infection in mice following vancomycin treatment

    PubMed Central

    2012-01-01

    Background Activation of the A2A adenosine receptor (A2AAR) decreases production of inflammatory cytokines, prevents C. difficile toxin A-induced enteritis and, in combination with antibiotics, increases survival from sepsis in mice. We investigated whether A2AAR activation improves and A2AAR deletion worsens outcomes in a murine model of C. difficile (strain VPI10463) infection (CDI). Methods C57BL/6 mice were pretreated with an antibiotic cocktail prior to infection and then treated with vancomycin with or without an A2AAR agonist. A2AAR-/- and littermate wild-type (WT) mice were similarly infected, and IFNγ and TNFα were measured at peak of and recovery from infection. Results Infected, untreated mice rapidly lost weight, developed diarrhea, and had mortality rates of 50-60%. Infected mice treated with vancomycin had less weight loss and diarrhea during antibiotic treatment but mortality increased to near 100% after discontinuation of antibiotics. Infected mice treated with both vancomycin and an A2AAR agonist, either ATL370 or ATL1222, had minimal weight loss and better long-term survival than mice treated with vancomycin alone. A2AAR KO mice were more susceptible than WT mice to death from CDI. Increases in cecal IFNγ and blood TNFα were pronounced in the absence of A2AARs. Conclusion In a murine model of CDI, vancomycin treatment resulted in reduced weight loss and diarrhea during acute infection, but high recurrence and late-onset death, with overall mortality being worse than untreated infected controls. The administration of vancomycin plus an A2AAR agonist reduced inflammation and improved survival rates, suggesting a possible benefit of A2AAR agonists in the management of CDI to prevent recurrent disease. PMID:23217055

  19. Internalization and desensitization of adenosine receptors

    PubMed Central

    Klaasse, Elisabeth C.; de Grip, Willem J.; Beukers, Margot W.

    2007-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A1Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A2AR and A2BR undergo much faster downregulation, usually shorter than 1 h. The A3R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A3R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed. PMID:18368531

  20. High-level expression in Saccharomyces cerevisiae enables isolation and spectroscopic characterization of functional human adenosine A2a receptor.

    PubMed

    O'Malley, Michelle A; Lazarova, Tzvetana; Britton, Zachary T; Robinson, Anne S

    2007-08-01

    The G-protein coupled receptors (GPCRs) are a class of membrane proteins that trigger cellular responses to external stimuli, and are believed to be targets for nearly half of all pharmaceutical drugs on the market. However, little is known regarding their folding and cellular interactions, as well as what factors are crucial for their activity. Further structural characterization of GPCRs has largely been complicated by problems with expression, purification, and preservation of activity in vitro. Previously, we have demonstrated high-level expression (approximately 4mg/L of culture) of functional human adenosine A(2)a receptor fused to a green fluorescent protein (A(2)aR-GFP) from Saccharomyces cerevisiae. In this work, we re-engineered A(2)aR with a purification tag, developed an adequate purification scheme, and performed biophysical characterization on purified receptors. Milligram amounts per liter of culture of A(2)aR and A(2)aR-GFP were functionally expressed in S. cerevisiae, with a C-terminal deca-histidine tag. Lysis procedures were developed for optimal membrane protein solubilization and recovery through monitoring fluorescence of A(2)aR-GFP-His(10). One-step purification of the protein was achieved through immobilized metal affinity chromatography. After initial solubilization in n-dodecyl-beta-d-maltoside (DDM), a combination of added cholesterol hemisuccinate (CHS) in 3-(3-cholamidopropyl)-dimethylammoniopropane sulfonate (CHAPS) was required to stabilize the functional state of the protein. Isolated A(2)aR under these conditions was found to be largely alpha-helical, and properly incorporated into a mixed-micelle environment. The A(2)a-His(10) receptor was purified in quantities of 6+/-2mg/L of culture, with ligand-binding yields of 1mg/L, although all protein bound to xanthine affinity resin. This represents the highest purified total and functional yields for A(2)aR yet achieved from any heterologous expression system. PMID:17591446

  1. Guanosine may increase absence epileptic activity by means of A2A adenosine receptors in Wistar Albino Glaxo Rijswijk rats.

    PubMed

    Lakatos, Renáta Krisztina; Dobolyi, Árpád; Todorov, Mihail Ivilinov; Kékesi, Katalin A; Juhász, Gábor; Aleksza, Magdolna; Kovács, Zsolt

    2016-06-01

    The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system. PMID:27154620

  2. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation

    PubMed Central

    Wen, Jiaming; Grenz, Almut; Zhang, Yujin; Dai, Yingbo; Kellems, Rodney E.; Blackburn, Michael R.; Eltzschig, Holger K.; Xia, Yang

    2011-01-01

    Normal penile erection is under the control of multiple factors and signaling pathways. Although adenosine signaling is implicated in normal and abnormal penile erection, the exact role and the underlying mechanism for adenosine signaling in penile physiology remain elusive. Here we report that shear stress leads to increased adenosine release from endothelial cells. Subsequently, we determined that ecto-5′-nucleotidase (CD73) is a key enzyme required for the production of elevated adenosine from ATP released by shear-stressed endothelial cells. Mechanistically, we demonstrate that shear stress-mediated elevated adenosine functions through the adenosine A2B receptor (A2BR) to activate the PI3K/AKT signaling cascade and subsequent increased endothelial nitric oxide synthase (eNOS) phosphorylation. These in vitro studies led us to discover further that adenosine was induced during sustained penile erection and contributes to PI3K/AKT activation and subsequent eNOS phosphorylation via A2BR signaling in intact animal. Finally, we demonstrate that lowering adenosine in wild-type mice or genetic deletion of A2BR in mutant mice significantly attenuated PI3K/AKT activation, eNOS phosphorylation, and subsequent impaired penile erection featured with the reduction of ratio of maximal intracavernosal pressure to systemic arterial pressure from 0.49 ± 0.03 to 0.41 ± 0.05 and 0.38 ± 0.04, respectively (both P<0.05). Overall, using biochemical, cellular, genetic, and physiological approaches, our findings reveal that adenosine is a novel molecule signaling via A2BR activation, contributing to penile erection via PI3K/AKT-dependent eNOS activation. These studies suggest that this signaling pathway may be a novel therapeutic target for erectile disorders.—Wen, J., Grenz, A., Zhang, Y., Dai, Y., Kellems, R. E., Blackburn, M. R., Eltzschig, H. K., Xia, Y. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation. PMID

  3. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2016-01-01

    The blood-brain barrier (BBB) protects the brain from toxic substances within the peripheral circulation. It maintains brain homeostasis and is a hurdle for drug delivery to the CNS to treat neurodegenerative diseases, including Alzheimer’s disease and brain tumors. The drug efflux transporter P-glycoprotein (P-gp) is highly expressed on brain endothelial cells and blocks the entry of most drugs delivered to the brain. Here, we show that activation of the A2A adenosine receptor (AR) with an FDA-approved A2A AR agonist (Lexiscan) rapidly and potently decreased P-gp expression and function in a time-dependent and reversible manner. We demonstrate that downmodulation of P-gp expression and function coincided with chemotherapeutic drug accumulation in brains of WT mice and in primary mouse and human brain endothelial cells, which serve as in vitro BBB models. Lexiscan also potently downregulated the expression of BCRP1, an efflux transporter that is highly expressed in the CNS vasculature and other tissues. Finally, we determined that multiple pathways, including MMP9 cleavage and ubiquitinylation, mediated P-gp downmodulation. Based on these data, we propose that A2A AR activation on BBB endothelial cells offers a therapeutic window that can be fine-tuned for drug delivery to the brain and has potential as a CNS drug-delivery technology. PMID:27043281

  4. Beneficial effects of a novel agonist of the adenosine A2A receptor on monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    Alencar, Allan K N; Pereira, Sharlene L; Montagnoli, Tadeu L; Maia, Rodolfo C; Kümmerle, Arthur E; Landgraf, Sharon S; Caruso-Neves, Celso; Ferraz, Emanuelle B; Tesch, Roberta; Nascimento, José H M; de Sant'Anna, Carlos M R; Fraga, Carlos A M; Barreiro, Eliezer J; Sudo, Roberto T; Zapata-Sudo, Gisele

    2013-01-01

    Background and Purpose Pulmonary arterial hypertension (PAH) is characterized by enhanced pulmonary vascular resistance, right ventricular hypertrophy and increased right ventricular systolic pressure. Here, we investigated the effects of a N-acylhydrazone derivative, 3,4-dimethoxyphenyl-N-methyl-benzoylhydrazide (LASSBio-1359), on monocrotaline (MCT)-induced pulmonary hypertension in rats. Experimental Approach PAH was induced in male Wistar rats by a single i.p. injection of MCT (60 mg·kg−1) and 2 weeks later, oral LASSBio-1359 (50 mg·kg−1) or vehicle was given once daily for 14 days. Echocardiography was used to measure cardiac function and pulmonary artery dimensions, with histological assay of vascular collagen. Studies of binding to human recombinant adenosine receptors (A1, A2A, A3) and of docking with A2A receptors were also performed. Key Results MCT administration induced changes in vascular and ventricular structure and function, characteristic of PAH. These changes were reversed by treatment with LASSBio-1359. MCT also induced endothelial dysfunction in pulmonary artery, as measured by diminished relaxation of pre-contracted arterial rings, and this dysfunction was reversed by LASSBio-1359. In pulmonary artery rings from normal Wistar rats, LASSBio-1359 induced relaxation, which was decreased by the adenosine A2A receptor antagonist, ZM 241385. In adenosine receptor binding studies, LASSBio-1359 showed most affinity for the A2A receptor and in the docking analyses, binding modes of LASSBio-1359 and the A2A receptor agonist, CGS21680, were very similar. Conclusion and Implications In rats with MCT-induced PAH, structural and functional changes in heart and pulmonary artery were reversed by treatment with oral LASSBio-1359, most probably through the activation of adenosine A2A receptors. PMID:23530610

  5. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively.

    PubMed Central

    Cronstein, B N; Daguma, L; Nichols, D; Hutchison, A J; Williams, M

    1990-01-01

    Occupancy of specific receptors on neutrophils by adenosine or its analogues diminishes the stimulated release of toxic oxygen metabolites from neutrophils, while paradoxically promoting chemotaxis. We now report evidence that two distinct adenosine receptors are found on neutrophils (presumably the A1 and A2 receptors of other cell types). These adenosine receptors modulate chemotaxis and O2- generation, respectively. N6-Cyclopentyladenosine (CPA), a selective A1 agonist, promoted neutrophil chemotaxis to the chemoattractant FMLP as well as or better than 5'N-ethylcarboxamidoadenosine (NECA). In contrast, CPA did not inhibit O2- generation stimulated by FMLP. Pertussis toxin completely abolished promotion of chemotaxis by CPA but enhanced inhibition by NECA of O2- generation. Disruption of microtubules by colchicine or vinblastine also abrogated the enhancement by NECA of chemotaxis whereas these agents did not markedly interfere with inhibition by NECA of O2- generation. FMLP receptors, once they have bound ligand, shift to a high affinity state and become associated with the cytoskeleton. NECA significantly increased association of [3H]FMLP with cytoskeletal preparations as it inhibited O2-. Disruption of microtubules did not prevent NECA from increasing association of [3H]FMLP with cytoskeletal preparations. Additionally, CPA (A1 agonist) did not increase binding of [3H]FMLP to the cytoskeleton as well as NECA (A2 agonist). These studies indicate that occupancy of one class of adenosine receptors (A1) promotes chemotaxis by a mechanism requiring intact microtubules and G proteins whereas engagement of a second class of receptors (A2) inhibits O2- generation. Signalling via A2 receptors is independent of microtubules, insensitive to pertussis toxin and is associated with binding of [3H]FMLP to cytoskeletal preparations. PMID:2156895

  6. Inhibition by adenosine A2A receptors of NMDA but not AMPA currents in rat neostriatal neurons

    PubMed Central

    Wirkner, Kerstin; Assmann, Heike; Köles, Laszlo; Gerevich, Zoltan; Franke, Heike; Nörenberg, Wolfgang; Boehm, Rudolf; Illes, Peter

    2000-01-01

    Whole-cell patch clamp experiments were used to investigate the transduction mechanism of adenosine A2A receptors in modulating N-methyl-D-aspartate (NMDA)-induced currents in rat striatal brain slices. The A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine (CGS 21680) inhibited the NMDA, but not the (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) current in a subset of striatal neurons. Lucifer yellow-filled pipettes in combination with immunostaining of A2A receptors were used to identify CGS 21680-sensitive cells as typical medium spiny striatal neurons. Dibutyryl cyclic AMP and the protein kinase A activator Sp-cyclic AMPs, but not the protein kinase A inhibitors Rp-cyclic AMPS or PKI(14–24)amide abolished the inhibitory effect of CGS 21680. The phospholipase C inhibitor U-73122, but not the inactive structural analogue U-73343 also interfered with CGS 21680. The activation of protein kinase C by phorbol 12-myristate 13-acetate or the blockade of this enzyme by staurosporine did not alter the effect of CGS 21680. Heparin, an antagonist of inositol 1,4,5-trisphosphate (InsP3) and a more efficient buffering of intracellular Ca2+ by BAPTA instead of EGTA in the pipette solution, abolished the CGS 21680-induced inhibition. The calmodulin antagonist W-7 and cytochalasin B which enhances actin depolymerization also prevented the effect of CGS 21680; the calmodulin kinase II inhibitors CaM kinase II(281–309) and KN-93 but not the inactive structural analogue KN-92 were also effective. The calcineurin inhibitor deltamethrin did not interfere with CGS 21680. It is suggested that the transduction mechanism of A2A receptors to inhibit NMDA receptor channels is the phospholipase C/InsP3/calmodulin and calmodulin kinase II pathway. The adenylate cyclase/protein kinase A and phospholipase C/protein kinase C pathways do not appear to be involved. PMID:10807662

  7. Application of the functionalized congener approach to dendrimer-based signaling agents acting through A(2A) adenosine receptors.

    PubMed

    Kim, Yoonkyung; Klutz, Athena M; Hechler, Béatrice; Gao, Zhan-Guo; Gachet, Christian; Jacobson, Kenneth A

    2009-03-01

    As a continued effort to develop multivalent ligands to enhance the pharmacological effects of monomeric drugs, DITC-APEC, a chemically reactive nucleoside A(2A) adenosine receptor (AR) agonist, was employed to derivatize the surface of third-generation (G3) polyamidoamine (PAMAM) dendrimers. The resulting conjugates carried multiple copies of the agonist attached through a thiourea linkage and differed in the number of attachments and in the presence of a fluorophore or additional surface modification. Computer modeling studies suggested that these DITC-APEC-loaded dendrimers extended the overall diameter of the previously reported PAMAM-CGS21680 dendrimer derivatives (Kim et al., Bioconjugate Chem 2008 19:406-411) by ca. 20 A, potentially increasing the conformational flexibility of the appended ligands to achieve optimal geometry for efficient binding at A(2A) ARs. Increased affinity and selectivity in binding in comparison to the CGS21680 conjugate were envisioned, due to the presence of an extended linker, i.e., a dithioureylenephenyl functionality. In vitro radioligand competition experiments showed effective binding of these PAMAM-DITC-APEC dendrimer conjugates at the human A(2A) and A(3) ARs with submicromolar K (i) values and selectivity in comparison to the human A(1) AR. Furthermore, these nucleoside-loaded dendrimers exhibited an A(2A) AR-mediated inhibitory effect on ADP-induced aggregation of human platelets. The present study demonstrates the potential of applying the functionalized congener concept to engineer dendrimer-based multivalent ligands for G protein-coupled receptors. PMID:18600474

  8. Pentoxifylline inhibits pulmonary inflammation induced by infrarenal aorticcross-clamping dependent of adenosine receptor A2A

    PubMed Central

    Li, Hali; Tan, Gang; Tong, Liquan; Han, Peng; Zhang, Feng; Liu, Bing; Sun, Xueying

    2016-01-01

    Infrarenal aortic cross-clamping (IAC) is commonly used during infrarenal vascular operations. Prolonged IAC causes ischemia-reperfusion injury to local tissues, resulting in the release of inflammatory cytokines and acute lung injury (ALI). Pentoxifylline (PTX) is a clinically used drug for chronic occlusive arterial diseases and exerts protective effects against ALI induced by various factors in experimental models. In this study, we evaluated the protective effects of PTX in a rat model of IAC. Wistar rats underwent IAC for 2 h, followed by 4 h reperfusion. PTX alone, or in combination with ZM-241385 (an adenosine receptor A2A antagonist) or CGS-21680 (an A2A agonist), was pre-administered to rats 1 h prior to IAC, and the severity of lung injury and inflammation were examined. Administration of PTX significantly attenuated ALI induced by IAC, evidenced by reduced histological scores and wet lung contents, improved blood gas parameters, decreased cell counts and protein amounts in bronchoalveolar lavage fluids, and inhibition of MPO activity and ICAM-1 expression in lung tissues, and lower plasma levels of TNF-α, IL-6, IL-1β and soluble ICAM-1. ZM-241385 significantly abrogated, while CGS-21680 slightly enhanced, the effects of PTX in ameliorating ALI and inhibiting pulmonary inflammation. In exploration of the mechanisms, we found that PTX stimulated IL-10 production through the phosphorylation of STAT3, and A2A receptor participated in this regulation. The study indicates PTX plays a protective role in IAC-induced ALI in rats by inhibiting pulmonary inflammation through A2A signaling pathways. PMID:27347328

  9. Binding of the Antagonist Caffeine to the Human Adenosine Receptor hA2AR in Nearly Physiological Conditions.

    PubMed

    Cao, Ruyin; Rossetti, Giulia; Bauer, Andreas; CarIoni, Paolo

    2015-01-01

    Lipid composition may significantly affect membrane proteins function, yet its impact on the protein structural determinants is not well understood. Here we present a comparative molecular dynamics (MD) study of the human adenosine receptor type 2A (hA(2A)R) in complex with caffeine--a system of high neuro-pharmacological relevance--within different membrane types. These are POPC, mixed POPC/POPE and cholesterol-rich membranes. 0.8-μs MD simulations unambiguously show that the helical folding of the amphipathic helix 8 depends on membrane contents. Most importantly, the distinct cholesterol binding into the cleft between helix 1 and 2 stabilizes a specific caffeine-binding pose against others visited during the simulation. Hence, cholesterol presence (~33%-50% in synaptic membrane in central nervous system), often neglected in X-ray determination of membrane proteins, affects the population of the ligand binding poses. We conclude that including a correct description of neuronal membranes may be very important for computer-aided design of ligands targeting hA(2A)R and possibly other GPCRs. PMID:25992797

  10. Use of molecular modeling aided design to dial out hERG liability in adenosine A(2A) receptor antagonists.

    PubMed

    Deng, Qiaolin; Lim, Yeon-Hee; Anand, Rajan; Yu, Younong; Kim, Jae-hun; Zhou, Wei; Zheng, Junying; Tempest, Paul; Levorse, Dorothy; Zhang, Xiaoping; Greene, Scott; Mullins, Deborra; Culberson, Chris; Sherborne, Brad; Parker, Eric M; Stamford, Andrew; Ali, Amjad

    2015-08-01

    Molecular modeling was performed on a triazolo quinazoline lead compound to help develop a series of adenosine A2A receptor antagonists with improved hERG profile. Superposition of the lead compound onto MK-499, a benchmark hERG inhibitor, combined with pKa calculations and measurement, identified terminal fluorobenzene to be responsible for hERG activity. Docking of the lead compound into an A2A crystal structure suggested that this group is located at a flexible, spacious, and solvent-exposed opening of the binding pocket, making it possible to tolerate various functional groups. Transformation analysis (MMP, matched molecular pair) of in-house available experimental data on hERG provided suggestions for modifications in order to mitigate this liability. This led to the synthesis of a series of compounds with significantly reduced hERG activity. The strategy used in the modeling work can be applied to other medicinal chemistry programs to help improve hERG profile. PMID:26048804

  11. Progress in the discovery of selective, high affinity A(2B) adenosine receptor antagonists as clinical candidates.

    PubMed

    Kalla, Rao V; Zablocki, Jeff

    2009-03-01

    The selective, high affinity A(2B) adenosine receptor (AdoR) antagonists that were synthesized by several research groups should aid in determining the role of the A(2B) AdoR in inflammatory diseases like asthma or rheumatoid arthritis (RA) and angiogenic diseases like diabetic retinopathy or cancer. CV Therapeutics scientists discovered the selective, high affinity A(2B) AdoR antagonist 10, a 8-(4-pyrazolyl)-xanthine derivative [CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM] that has favorable pharmacokinetic (PK) properties (t (1/2) = 4 h and F > 35% rat). Compound 10 demonstrated functional antagonism at the A(2B) AdoR (K(B) = 6 nM) and efficacy in a mouse model of asthma. In two phase 1 clinical trials, CVT-6883 was found to be safe, well tolerated, and suitable for once daily dosing. A second compound 20, 8-(5-pyrazolyl)-xanthine, has been nominated for development from Baraldi's group in conjunction with King Pharmaceuticals that has favorable A(2B) AdoR affinity and selectivity [K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 1,000; and K(i)(hA(3)) > 1,000 nM], and it has been demonstrated to be a functional antagonist. A third compound 32, a 2-aminopyrimidine, from the Almirall group has high A(2B) AdoR affinity and selectivity [K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM], and 32 has been moved into preclinical safety testing. Since three highly selective, high affinity A(2B) AdoR antagonists have been nominated for development with 10 (CVT-6883) being the furthest along in the development process, the role of the A(2B) AdoR in various disease states will soon be established. PMID:18568423

  12. Effects of a Proprietary Standardized Orthosiphon stamineus Ethanolic Leaf Extract on Enhancing Memory in Sprague Dawley Rats Possibly via Blockade of Adenosine A 2A Receptors.

    PubMed

    George, Annie; Chinnappan, Sasikala; Choudhary, Yogendra; Choudhary, Vandana Kotak; Bommu, Praveen; Wong, Hoi Jin

    2015-01-01

    The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory. PMID:26649059

  13. Effects of a Proprietary Standardized Orthosiphon stamineus Ethanolic Leaf Extract on Enhancing Memory in Sprague Dawley Rats Possibly via Blockade of Adenosine A2A Receptors

    PubMed Central

    Choudhary, Yogendra; Choudhary, Vandana Kotak; Bommu, Praveen; Wong, Hoi Jin

    2015-01-01

    The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory. PMID:26649059

  14. A novel fused 1,2,4-triazine aryl derivative as antioxidant and nonselective antagonist of adenosine A(2A) receptors in ethanol-activated liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Sztanke, Krzysztof; Kandefer-Szerszeń, Martyna

    2012-01-01

    It has been detected that hepatic adenosine A(2A) receptors play an active role in the pathogenesis of hepatic fibrosis and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. In this paper we examined if our new triazine derivative (IMT) can inhibit ethanol-induced activation of HSCs measured as increased α-SMA, collagen synthesis and enhanced oxidative stress in rat liver stellate cells. We also investigated its influence on cytokines (TGF-β, TNF-α) synthesis, MMP-2 and TIMP-1 production and ethanol-induced intracellular signal transduction. Moreover, with using of known adenosine A(2A) receptor agonist (CGS 21680), and antagonist (SCH 58261) we examined if this triazine derivative acts on adenosine receptors. We detected a strong antagonistic action of new triazine derivative (IMT) on ethanol-induced rat liver stellate cells activation, observed as a significant decrease in α-SMA, collagen synthesis, reactive oxygen species production, TGF-β, TNF-α, MMP-2 and TIMP-1 production as well as JNK, p38MAPK, NFκB, IκB, Smad3 phosphorylation. Moreover, IMT strongly inhibited activation of stellate cells by known selective agonist of adenosine A(2A) receptor (CGS 21680). When known A(2A) receptor antagonist (SCH 58261) was used together with IMT this effect was not spectacular. Additionally, only slight enhancement of inhibition was observed when cells were pretreated both IMT with SCH 58261, hence we suppose that IMT acts as nonselective antagonist of A(2A) receptors, and, besides its antioxidant activity, also by this way inhibited ethanol-induced stellate cell activation. PMID:22063920

  15. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles.

    PubMed

    Oliveira, L; Costa, A C; Noronha-Matos, J B; Silva, I; Cavalcante, W L G; Timóteo, M A; Corrado, A P; Dal Belo, C A; Ambiel, C R; Alves-do-Prado, W; Correia-de-Sá, P

    2015-02-01

    The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A2A receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [(3)H]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A2A receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (0.3 mM)-induced transmitter release facilitation, because its effect was prevented by the A2A receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M2 and A1 receptors blocked by methoctramine (0.1 μM) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A2A receptors by endogenous adenosine leading to synaptic

  16. ( sup 3 H)CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain

    SciTech Connect

    Jarvis, M.F.; Schulz, R.; Hutchison, A.J.; Do, U.H.; Sills, M.A.; Williams, M. )

    1989-12-01

    In the present study, the binding of a highly A2-selective agonist radioligand, (3H)CGS 21680 (2-(p-(2-carboxyethyl)-phenethylamino)-5'-N-ethylcarboxamido adenosine) is described. (3H)CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that (3H)CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. (3H)CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM (3H)CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of (3H)CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine.

  17. Xanthines as Adenosine Receptor Antagonists

    PubMed Central

    Jacobson, Kenneth A.

    2013-01-01

    The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogs have subsequently been synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes. PMID:20859796

  18. The novel adenosine A2A antagonist Lu AA47070 reverses the motor and motivational effects produced by dopamine D2 receptor blockade.

    PubMed

    Collins, Lyndsey E; Sager, Thomas N; Sams, Anette G; Pennarola, Adam; Port, Russell G; Shahriari, Mona; Salamone, John D

    2012-01-01

    Dopamine D2 and adenosine A(2A) receptors interact to regulate aspects of motor and motivational function, and it has been suggested that adenosine A(2A) antagonists could be useful for the treatment of parkinsonism and depression. The present experiments were performed to characterize the effects of Lu AA47070, which is a phosphonooxymethylene prodrug of a potent and selective adenosine A(2A) receptor antagonist, for its ability to reverse the motor and motivational effects of D2 antagonism. In the first group of studies, Lu AA47070 (3.75-30 mg/kg IP) was assessed for its ability to reverse the effects of the D2 receptor antagonist pimozide (1.0 mg/kg IP) using several measures of motor impairment, including catalepsy, locomotion, and tremulous jaw movements, which is a rodent model of parkinsonian tremor. Lu AA47070 produced a significant reversal of the effects of pimozide on all three measures of parkinsonian motor impairment. In addition, Lu AA47070 was able to reverse the effects of a low dose of the D2 antagonist haloperidol on a concurrent lever pressing/chow feeding task that is used as a measure of effort-related choice behavior. The ability of Lu AA47070 to reverse the effects of D2 receptor blockade suggests that this compound could have potential utility as a treatment for parkinsonism, and for some of the motivational symptoms of depression. PMID:22037410

  19. A(3) adenosine receptor ligands: history and perspectives.

    PubMed

    Baraldi, P G; Cacciari, B; Romagnoli, R; Merighi, S; Varani, K; Borea, P A; Spalluto, G

    2000-03-01

    Adenosine regulates many physiological functions through specific cell membrane receptors. On the basis of pharmacological studies and molecular cloning, four different adenosine receptors have been identified and classified as A(1), A(2A), A(2B), and A(3). These adenosine receptors are members of the G-protein-coupled receptor family. While adenosine A(1) and A(2A) receptor subtypes have been pharmacologically characterized through the use of selective ligands, the A(3) adenosine receptor subtype is presently under study in order to better understand its physio-pathological functions. Activation of adenosine A(3) receptors has been shown to stimulate phospholipase C and D and to inhibit adenylate cyclase. Activation of A(3) adenosine receptors also causes the release of inflammatory mediators such as histamine from mast cells. These mediators are responsible for processes such as inflammation and hypotension. It has also been suggested that the A(3) receptor plays an important role in brain ischemia, immunosuppression, and bronchospasm in several animal models. Based on these results, highly selective A(3) adenosine receptor agonists and/or antagonists have been indicated as potential drugs for the treatment of asthma and inflammation, while highly selective agonists have been shown to possess cardioprotective effects. The updated material related to this field of research has been rationalized and arranged in order to offer an overview of the topic. PMID:10723024

  20. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation.

    PubMed

    Kaplan, G B; Coyle, T S

    1998-11-27

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes. PMID:9865523

  1. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function.

    PubMed

    Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Valadas, Jorge S; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E; Hamdane, Malika; Outeiro, Tiago F; Bader, Michael; Meijsing, Sebastiaan H; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V

    2016-01-01

    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer's disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer's and age-related cognitive impairments may rely on its ability to modulate GR actions. PMID:27510168

  2. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function

    PubMed Central

    Batalha, Vânia L.; Ferreira, Diana G.; Coelho, Joana E.; Valadas, Jorge S.; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E.; Hamdane, Malika; Outeiro, Tiago F.; Bader, Michael; Meijsing, Sebastiaan H.; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V.

    2016-01-01

    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer’s disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer’s and age-related cognitive impairments may rely on its ability to modulate GR actions. PMID:27510168

  3. BDNF-induced presynaptic facilitation of GABAergic transmission in the hippocampus of young adults is dependent of TrkB and adenosine A2A receptors.

    PubMed

    Colino-Oliveira, Mariana; Rombo, Diogo M; Dias, Raquel B; Ribeiro, Joaquim A; Sebastião, Ana M

    2016-06-01

    Brain-derived neurotrophic factor (BDNF) and adenosine are widely recognized as neuromodulators of glutamatergic transmission in the adult brain. Most BDNF actions upon excitatory plasticity phenomena are under control of adenosine A2A receptors (A2ARs). Concerning gamma-aminobutyric acid (GABA)-mediated transmission, the available information refers to the control of GABA transporters. We now focused on the influence of BDNF and the interplay with adenosine on phasic GABAergic transmission. To assess this, we evaluated evoked and spontaneous synaptic currents recorded from CA1 pyramidal cells in acute hippocampal slices from adult rat brains (6 to 10 weeks old). BDNF (10-100 ng/mL) increased miniature inhibitory postsynaptic current (mIPSC) frequency, but not amplitude, as well as increased the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by afferent stimulation. The facilitatory action of BDNF upon GABAergic transmission was lost in the presence of a Trk inhibitor (K252a, 200 nM), but not upon p75(NTR) blockade (anti-p75(NTR) IgG, 50 μg/mL). Moreover, the facilitatory action of BDNF onto GABAergic transmission was also prevented upon A2AR antagonism (SCH 58261, 50 nM). We conclude that BDNF facilitates GABAergic signaling at the adult hippocampus via a presynaptic mechanism that depends on TrkB and adenosine A2AR activation. PMID:26897393

  4. Adenosine A(2A) receptor gene: evidence for association of risk variants with panic disorder and anxious personality.

    PubMed

    Hohoff, Christa; Mullings, Emma L; Heatherley, Sue V; Freitag, Christine M; Neumann, Lisa C; Domschke, Katharina; Krakowitzky, Petra; Rothermundt, Matthias; Keck, Martin E; Erhardt, Angelika; Unschuld, Paul G; Jacob, Christian; Fritze, Jürgen; Bandelow, Borwin; Maier, Wolfgang; Holsboer, Florian; Rogers, Peter J; Deckert, Jürgen

    2010-10-01

    Adenosine A(2A) receptors are suggested to play an important role in different brain circuits and pathways involved in anxiety reactions. A variant within the corresponding ADORA2A gene (rs5751876) increased the risk for panic disorder (PD), for elevated anxiety during challenge tests in healthy probands and for anxiety-related arousal in blood-injury phobia. These multiple effects may mirror a more general effect of the SNP on basic personality traits. In the present study we therefore aimed to replicate the original finding in a large PD sample and extend it by investigating an additional proband sample characterized for different anxiety-related personality scores. In addition, as rs5751876 is assumed not to be the disease variant itself but to be in linkage disequilibrium (LD) with the true functional polymorphism other SNPs of potentially functional relevance were identified by re-sequencing the whole gene including several newly identified regions of putative regulatory potential and analysed for their impact on PD and anxious personality. We were indeed able to replicate rs5751876 as risk factor for PD, particularly PD with agoraphobia. Rs5751876 and several other variants in high LD (rs5751862, rs2298383 and rs3761422) as well as the corresponding haplotypes were also associated with different anxiety-related personality scores (Bonferroni corrected P(all) < 0.05). Of these variants, rs2298383 shows functional potential based on in silico analyses and might therefore represent the true underlying causal variant. Our data provide further support for an important role of ADORA2A variants in the pathogenesis of anxiety disorders and anxious personality reflecting their potential as basic susceptibility factors. PMID:20334879

  5. Activation of adenosine A2A receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation

    PubMed Central

    Mediero, Aránzazu; Perez-Aso, Miguel; Cronstein, Bruce N

    2013-01-01

    Background and Purpose We previously reported that adenosine, acting at adenosine A2A receptors (A2AR), inhibits osteoclast (OC) differentiation in vitro (A2AR activation OC formation reduces by half) and in vivo. For a better understanding how adenosine A2AR stimulation regulates OC differentiation, we dissected the signalling pathways involved in A2AR signalling. Experimental Approach OC differentiation was studied as TRAP+ multinucleated cells following M-CSF/RANKL stimulation of either primary murine bone marrow cells or the murine macrophage line, RAW264.7, in presence/absence of the A2AR agonist CGS21680, the A2AR antagonist ZM241385, PKA activators (8-Cl-cAMP 100 nM, 6-Bnz-cAMP) and the PKA inhibitor (PKI). cAMP was quantitated by EIA and PKA activity assays were carried out. Signalling events were studied in PKA knockdown (lentiviral shRNA for PKA) RAW264.7 cells (scrambled shRNA as control). OC marker expression was studied by RT-PCR. Key Results A2AR stimulation increased cAMP and PKA activity which and were reversed by addition of ZM241385. The direct PKA stimuli 8-Cl-cAMP and 6-Bnz-cAMP inhibited OC maturation whereas PKI increased OC differentiation. A2AR stimulation inhibited p50/p105 NFκB nuclear translocation in control but not in PKA KO cells. A2AR stimulation activated ERK1/2 by a PKA-dependent mechanism, an effect reversed by ZM241385, but not p38 and JNK activation. A2AR stimulation inhibited OC expression of differentiation markers by a PKA-mechanism. Conclusions and Implications A2AR activation inhibits OC differentiation and regulates bone turnover via PKA-dependent inhibition of NFκB nuclear translocation, suggesting a mechanism by which adenosine could target bone destruction in inflammatory diseases like Rheumatoid Arthritis. PMID:23647065

  6. METABOTROPIC GLUTAMATE TYPE 5, DOPAMINE D2 AND ADENOSINE A2A RECEPTORS FORM HIGHER-ORDER OLIGOMERS IN LIVING CELLS

    PubMed Central

    Cabello, Nuria; Gandía, Jorge; Bertarelli, Daniela C. G.; Watanabe, Masahiko; Lluís, Carme; Franco, Rafael; Ferré, Sergi; Luján, Rafael; Ciruela, Francisco

    2009-01-01

    G protein-coupled receptors are known to form homo- and heteromers at the plasma membrane, but the stoichiometry of these receptor oligomers are relatively unknown. Here, by using bimolecular fluorescence complementation, we visualized for the first time the occurrence of heterodimers of metabotropic glutamate mGlu5 receptors (mGlu5R) and dopamine D2 receptors (D2R) in living cells. Furthermore, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques, as well as the sequential resonance energy transfer (SRET) technique, allowed us to detect the occurrence receptor oligomers containing more than two protomers, mGlu5R, D2R and adenosine A2A receptor (A2AR). Interestingly, by using high-resolution immunoelectron microscopy we could confirm that the three receptors co-distribute within the extrasynaptic plasma membrane of the same dendritic spines of asymmetrical, putative glutamatergic, striatal synapses. Also, co-immunoprecipitation experiments in native tissue demonstrated the existence of an association of mGlu5R, D2R and A2AR in rat striatum homogenates. Overall, these results provide new insights into the molecular composition of G protein-coupled receptor oligomers in general and the mGlu5R/D2R/A2AR oligomer in particular, a receptor oligomer that might constitute an important target for the treatment of some neuropsychiatric disorders. PMID:19344374

  7. Fluorescent Ligands for Adenosine Receptors

    PubMed Central

    Kozma, Eszter; Jayasekara, P Suresh; Squarcialupi, Lucia; Paoletta, Silvia; Moro, Stefano; Federico, Stephanie; Spalluto, Giampiero; Jacobson, Kenneth A.

    2012-01-01

    Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field. PMID:23200243

  8. Actions of adenosine A1 and A2 receptor antagonists on CFTR antibody-inhibited β-adrenergic mucin secretion response

    PubMed Central

    Pereira, M M C; Lloyd Mills, C; Dormer, R L; McPherson, M A

    1998-01-01

    The cystic fibrosis gene protein, the cystic fibrosis transmembrane conductance regulator (CFTR) acts as a chloride channel and is a key regulator of mucin secretion. The mechanism by which 3-isobutyl-1-methylxanthine (IBMX) corrects the defect in CFTR mediated β-adrenergic stimulation of mucin secretion has not been determined. The present study has investigated the actions of adenosine A1 and A2 receptor antagonists to determine whether ability to stimulate mucin secretion correlates with correction of CFTR antibody inhibited β-adrenergic response and whether excessive cyclic AMP rise is required.CFTR antibodies were introduced into living rat submandibular acini by hypotonic swelling. Following recovery, mucin secretion in response to isoproterenol was measured.The adenosine A1 receptor antagonist, 8 cyclopentyltheophylline (CPT) was a less potent stimulator of mucin secretion than was the A2 receptor antagonist dimethylpropargylxanthine (DMPX). A concentration of CPT close to the Ki for A1 receptor antagonism (10 nM) did not stimulate mucin secretion.DMPX, although a potent stimulator of mucin secretion, did not correct CFTR antibody inhibited mucin secretion.CPT corrected defective CFTR antibody inhibited mucin secretion at a high (1 mM) concentration, suggesting a mechanism other than adenosine receptor antagonism.DMPX potentiated the isoproterenol induced cyclic AMP rise, whereas CPT did not.Correction of the defective CFTR mucin secretion response did not correlate with ability to stimulate mucin secretion and did not require potentiation of β-adrenergic induced increases in cyclic AMP. This affords real promise for the development of a selective drug treatment for cystic fibrosis. PMID:9831904

  9. Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists.

    PubMed

    Zhang, Lihui; Liu, Tianjun; Wang, Xia; Wang, Jinan; Li, Guohui; Li, Yan; Yang, Ling; Wang, Yonghua

    2014-01-01

    The interaction of 278 monocyclic and bicyclic pyrimidine derivatives with human A2A adenosine receptor (AR) was investigated by employing molecular dynamics, thermodynamic analysis and three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches. The binding analysis reveals that the pyrimidine derivatives are anchored in TM2, 3, 5, 6 and 7 of A2A AR by the aromatic stacking and hydrogen bonding interactions. The key residues involving Phe168, Glu169, and Asn253 stabilize the monocyclic and bicyclic cores of inhibitors. The thermodynamic analysis by molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) approach also confirms the reasonableness of the binding modes. In addition, the ligand-/receptor-based comparative molecular similarity indices analysis (CoMSIA) models of high statistical significance were generated and the resulting contour maps correlate well with the structural features of the antagonists essential for high A2A AR affinity. A minor/bulky group with negative charge at C2/C6 of pyrimidine ring respectively enhances the activity for all these pyrimidine derivatives. Particularly, the higher electron density of the ring in the bicyclic derivatives, the more potent the antagonists. The obatined results might be helpful in rational design of novel candidate of A2A adenosine receptor antagonist for treatment of Parkinson's disease. PMID:23665268

  10. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway. PMID:27066978

  11. The Length and Flexibility of the 2-Substituent of 9-Ethyladenine Derivatives Modulate Affinity and Selectivity for the Human A2A Adenosine Receptor.

    PubMed

    Thomas, Ajiroghene; Buccioni, Michela; Dal Ben, Diego; Lambertucci, Catia; Marucci, Gabriella; Santinelli, Claudia; Spinaci, Andrea; Kachler, Sonja; Klotz, Karl-Norbert; Volpini, Rosaria

    2016-08-19

    The A2A adenosine receptor (A2A AR) is a key target for the development of pharmacological tools for the treatment of central nervous system disorders. Previous works have demonstrated that the insertion of substituents at various positions on adenine leads to A2A AR antagonists with affinity in the micromolar to nanomolar range. In this work, a series of 9-ethyladenine derivatives bearing phenylalkylamino, phenylakyloxy or phenylakylthio groups of different lengths at the 2-position were synthesised and tested against the human adenosine receptors. The derivatives showed sub-micromolar affinity for these membrane proteins. The further introduction of a bromine atom at the 8-position has the effect of improving the affinity and selectivity for all ARs and led to compounds that are able bind to the A2A AR subtype at low nanomolar levels. Functional studies confirmed that the new adenine derivatives behave as A2A AR antagonists with half-maximal inhibitory concentration values in the nanomolar range. Molecular modelling studies provide a description of the possible binding mode of these compounds at the A2A AR and an interpretation of the affinity data at this AR subtype. PMID:27037522

  12. Homology modeling of adenosine A2A receptor and molecular docking for exploration of appropriate potent antagonists for treatment of Parkinson's disease.

    PubMed

    Singh, Vijai; Somvanshi, Pallavi

    2009-07-01

    Parkinson's disease (PD) is a neurodegenerative disorder of central nervous system (CNS) that impaired the patient motor skills, speech and other functions. Adenosine A2A receptors have a unique cellular distribution in the neuron, which is used as a potential target for PD. Homology modeling was used to construct the 3-D structure of A2A using the known template (PDB: 2VT4), and the stereochemical quality was validated. Several effective antagonist drugs were selected and active amino acid residues in A2A were targeted on the basis of robust binding affinity between protein-drug interactions in molecular docking. Six antagonists, Bromocriptine, Cabergoline, Etilevodopa, Lysuride, Melevodopa and Pramipexole, were found more potent for binding and the active amino acids residues were identified (http://www.rcsb.org/pdb/) in A2A receptor. It could be used as the basis for rationale designing of novel antagonist drugs against Parkinson's disease. PMID:20021407

  13. SCH58261 the selective adenosine A(2A) receptor blocker modulates ischemia reperfusion injury following bilateral carotid occlusion: role of inflammatory mediators.

    PubMed

    Mohamed, R A; Agha, A M; Nassar, N N

    2012-03-01

    In the present study, the effects of SCH58261, a selective adenosine A(2A) receptor antagonist that crosses the blood brain barrier (BBB) and 8-(4-sulfophenyl) theophylline (8-SPT), a non-selective adenosine receptor antagonist that acts peripherally, were investigated on cerebral ischemia reperfusion injury (IR). Male Wistar rats (200-250 g) were divided into four groups: (1) sham-operated (SO), IR pretreated with either (2) vehicle (DMSO); (3) SCH58261 (0.01 mg/kg); (4) 8-SPT (2.5 mg/kg). Animals were anesthetized and submitted to occlusion of both carotid arteries for 45 min. All treatments were administered intraperitoneally (i.p.) post carotid occlusion prior to exposure to a 24 h reperfusion period. Ischemic rats showed increased infarct size compared to their control counterparts that corroborated with histopathological changes as well as increased lactate dehydrogenase (LDH) activity in the hippocampus. Moreover, ischemic animals showed habituation deficit, increased anxiety and locomotor activity. IR increased hippocampal glutamate (Glu), GABA, glycine (Gly) and aspartate (ASP). SCH58261 significantly reversed these effects while 8-SPT elicited minimal change. IR raised myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), prostaglandin E₂ (PGE₂) accompanied by a decrease in interleukin-10 (IL-10), effects that were again reversed by SCH58261, but 8-SPT elicited less changes. Results from the present study point towards the importance of central blockade of adenosine A(2A) receptor in ameliorating hippocampal damage following IR injury by halting inflammatory cascades as well as modulating excitotoxicity. PMID:22071908

  14. Activation of the adenosine A2A receptor exacerbates experimental autoimmune neuritis in Lewis rats in association with enhanced humoral immunity.

    PubMed

    Zhang, Min; Li, Xiao-Li; Li, Heng; Wang, Shan; Wang, Cong-Cong; Yue, Long-Tao; Xu, Hua; Zhang, Peng; Chen, Hui; Yang, Bing; Duan, Rui-Sheng

    2016-04-15

    Accumulated evidence demonstrated that Adenosine A2A receptor (A2AR) is involved in the inflammatory diseases. In the present study, we showed that a selective A2AR agonist, CGS21680, exacerbated experimental autoimmune neuritis in Lewis rats induced with bovine peripheral myelin. The exacerbation was accompanied with reduced CD4(+)Foxp3(+) T cells, increased CD4(+)CXCR5(+) T cells, B cells, dendritic cells and antigen-specific autoantibodies, which is possibly due to the inhibition of IL-2 induced by CGS21680. Combined with previous studies, our data indicate that the effects of A2AR stimulation in vivo are variable in different diseases. Caution should be taken in the use of A2AR agonists. PMID:27049573

  15. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors.

    PubMed

    Viana da Silva, Silvia; Haberl, Matthias Georg; Zhang, Pei; Bethge, Philipp; Lemos, Cristina; Gonçalves, Nélio; Gorlewicz, Adam; Malezieux, Meryl; Gonçalves, Francisco Q; Grosjean, Noëlle; Blanchet, Christophe; Frick, Andreas; Nägerl, U Valentin; Cunha, Rodrigo A; Mulle, Christophe

    2016-01-01

    Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients. PMID:27312972

  16. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors

    PubMed Central

    Viana da Silva, Silvia; Haberl, Matthias Georg; Zhang, Pei; Bethge, Philipp; Lemos, Cristina; Gonçalves, Nélio; Gorlewicz, Adam; Malezieux, Meryl; Gonçalves, Francisco Q.; Grosjean, Noëlle; Blanchet, Christophe; Frick, Andreas; Nägerl, U Valentin; Cunha, Rodrigo A.; Mulle, Christophe

    2016-01-01

    Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients. PMID:27312972

  17. Adenosine A2A receptor antagonists in Parkinson's disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued.

    PubMed

    Pinna, Annalisa

    2014-05-01

    Neurotransmitters other than dopamine, such as norepinephrine, 5-hydroxytryptamine, glutamate, adenosine and acetylcholine, are involved in Parkinson's disease (PD) and contribute to its symptomatology. Thus, the progress of non-dopaminergic therapies for PD has attracted much interest in recent years. Among new classes of drugs, adenosine A2A antagonists have emerged as promising candidates. The development of new highly selective adenosine A2A receptor antagonists, and their encouraging anti-parkinsonian responses in animal models of PD, has provided a rationale for clinical trials to evaluate the therapeutic potential and the safety of these agents in patients with PD. To date, the clinical research regarding A2A antagonists and their potential utilization in PD therapy continues to evolve between drugs just or previously discontinued (preladenant and vipadenant), new derivatives in development (tozadenant, PBF-509, ST1535, ST4206 and V81444) and the relatively old drug istradefylline, which has finally been licensed as an anti-parkinsonian drug in Japan. All these compounds have been shown to have a good safety profile and be well tolerated. Moreover, results from phase II and III trials also demonstrate that A2A antagonists are effective in reducing off-time, without worsening troublesome dyskinesia, and in increasing on-time with a mild increase of non-troublesome dyskinesia, in patients at an advanced stage of PD treated with L-DOPA. In addition, early findings suggest that A2A antagonists might also be efficacious as monotherapy in patients at an early stage of PD. This review summarizes pharmacological and clinical data available on istradefylline, tozadenant, PBF-509, ST1535, ST4206, V81444, preladenant and vipadenant. PMID:24687255

  18. The Adenosine A2A Receptor Agonist, CGS-21680, Blocks Excessive Rearing, Acquisition of Wheel Running, and Increases Nucleus Accumbens CREB Phosphorylation in Chronically Food-Restricted Rats

    PubMed Central

    de Vaca, Soledad Cabeza; Kannan, Pavitra; Pan, Yan; Jiang, Nancy; Sun, Yanjie; Carr, Kenneth D.

    2007-01-01

    Adenosine A2A receptors are preferentially expressed in rat striatum, where they are concentrated in dendritic spines of striatopallidal medium spiny neurons and exist in a heteromeric complex with D2 dopamine (DA) receptors. Behavioral and biochemical studies indicate an antagonistic relationship between A2A and D2 receptors. Previous studies have demonstrated that food-restricted (FR) rats display behavioral and striatal cellular hypersensitivity to D1 and D2 DA receptor stimulation. These alterations may underlie adaptive, as well as maladaptive, behaviors characteristic of the FR rat. The present study examined whether FR rats are hypersensitive to the A2A receptor agonist, CGS-21680. In Experiment 1, spontaneous horizontal motor activity did not differ between FR and ad libitum fed (AL) rats, while vertical activity was greater in the former. Intracerebroventricular (i.c.v.) administration of CGS-21680 (0.25 and 1.0 nmol) decreased both types of motor activity in FR rats, and returned vertical activity levels to those observed in AL rats. In Experiment 2, FR rats given access to a running wheel for a brief period outside of the home cage rapidly acquired wheel running while AL rats did not. Pretreatment with CGS-21680 (1.0 nmol) blocked the acquisition of wheel running. When administered to FR subjects that had previously acquired wheel running, CGS-21680 suppressed the behavior. In Experiment 3, CGS-21680 (1.0 nmol) activated both ERK 1/2 and CREB in caudate-putamen with no difference between feeding groups. However, in nucleus accumbens (NAc), CGS-21680 failed to activate ERK 1/2 and selectively activated CREB in FR rats. These results indicate that FR subjects are hypersensitive to several effects of an adenosine A2A agonist, and suggest the involvement of an upregulated A2A receptor-linked signaling pathway in NAc. Medications targeting the A2A receptor may have utility in the treatment of maladaptive behaviors associated with FR, including substance abuse

  19. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  20. Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. A potential role in cell protection.

    PubMed

    Kobayashi, S; Millhorn, D E

    1999-07-16

    The purpose of this study was to examine the regulation of adenosine A2A receptor (A2AR) gene expression during hypoxia in pheochromocytoma (PC12) cells. Northern blot analysis revealed that the A2AR mRNA level was substantially increased after a 3-h exposure to hypoxia (5% O2), which reached a peak at 12 h. Immunoblot analysis showed that the A2AR protein level was also increased during hypoxia. Inhibition of de novo protein synthesis blocked A2AR induction by hypoxia. In addition, removal of extracellular free Ca2+, chelation of intracellular free Ca2+, and pretreatment with protein kinase C inhibitors prevented A2AR induction by hypoxia. Moreover, depletion of protein kinase C activity by prolonged treatment with phorbol 12-myristate 13-acetate significantly inhibited the hypoxic induction of A2AR. A2AR antagonists led to a significant enhancement of A2AR mRNA levels during hypoxia, whereas A2AR agonists caused down-regulation of A2AR expression during hypoxia. This suggests that A2AR regulates its own expression during hypoxia by feedback mechanisms. We further found that activation of A2AR enhances cell viability during hypoxia and also inhibits vascular endothelial growth factor expression in PC12 cells. Thus, increased expression of A2AR during hypoxia might protect cells against hypoxia and may act to inhibit hypoxia-induced angiogenic activity mediated by vascular endothelial growth factor. PMID:10400659

  1. Alterations of adenosine A1 receptors in morphine dependence.

    PubMed

    Kaplan, G B; Leite-Morris, K A; Sears, M T

    1994-09-19

    The possibility that central adenosine A1 and A2a receptors mediate opiate dependence was examined in morphine-treated mice using radioligand binding methods. Mice treated with morphine for 72 h demonstrated significant increases in naloxone precipitated abstinence behaviors of jumping, wet-dog shakes, teeth chattering, forepaw trends, forepaw tremors and diarrhea compared to vehicle-treated mice. Increased concentrations of cortical adenosine A1 receptor sites, but not striatal adenosine A2a sites, were found in saturation binding studies from morphine-dependent mice. Decreases in cortical A1 agonist binding affinity values along with increases in agonist binding sites were demonstrated in competition binding studies. These results suggest that adaptive changes of upregulation and sensitization of adenosine A1 receptors play a role in mediating the opiate abstinence syndrome. PMID:7820640

  2. Neuroprotective and anti-inflammatory effects of the adenosine A(2A) receptor antagonist ST1535 in a MPTP mouse model of Parkinson's disease.

    PubMed

    Frau, Lucia; Borsini, Franco; Wardas, Jadwiga; Khairnar, Amit S; Schintu, Nicoletta; Morelli, Micaela

    2011-03-01

    Adenosine A(2A) receptor antagonists are one of the most attractive classes of drug for the treatment of Parkinson's disease (PD) as they are effective in counteracting motor dysfunctions and display neuroprotective and anti-inflammatory effects in animal models of PD. In this study, we evaluated the neuroprotective and anti-inflammatory properties of the adenosine A(2A) receptor antagonist ST1535 in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. C57BL/6J mice were repeatedly administered with vehicle, MPTP (20 mg/kg), or MPTP + ST1535 (2 mg/kg). Mice were sacrificed three days after the last administration of MPTP. Immunohistochemistry for tyrosine hydroxylase (TH) and cresyl violet staining were employed to evaluate dopaminergic neuron degeneration in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu). CD11b and glial fibrillary acidic protein (GFAP) immunoreactivity were, respectively, evaluated as markers of microglial and astroglial response in the SNc and CPu. Stereological analysis for TH revealed a 32% loss of dopaminergic neurons in the SNc after repeated MPTP administration, which was completely prevented by ST1535 coadministration. Similarly, CPu decrease in TH (25%) was prevented by ST1535. MPTP treatment induced an intense gliosis in both the SNc and CPu. ST1535 totally prevented CD11b immunoreactivity in both analyzed areas, but only partially blocked GFAP increase in the SNc and CPu. A(2A) receptor antagonism is a new opportunity for improving symptomatic PD treatment. With its neuroprotective effect on dopaminergic neuron toxicity induced by MPTP and its antagonism on glial activation, ST1535 represents a new prospect for a disease-modifying drug. PMID:20665698

  3. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration

    PubMed Central

    Koszałka, Patrycja; Gołuńska, Monika; Urban, Aleksandra; Stasiłojć, Grzegorz; Stanisławowski, Marcin; Majewski, Marceli; Składanowski, Andrzej C.; Bigda, Jacek

    2016-01-01

    CD73 (ecto-5'-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in

  4. Amino-substituted 1,8-naphthyridines and pyrido[2,3-d]pyrimidines: new compounds with affinity for A1- and A2-adenosine receptors.

    PubMed

    Müller, C E; Grahner, B; Heber, D

    1994-12-01

    Two novel classes of adenosine receptor (AR) antagonists, 4-amino-1,8-naphthyridines and 5-aminopyrido[2,3-d]pyrimidines, have been identified and investigated in radioligand binding assays. The compounds exhibit affinities for A1 and A2a AR of rat brain in the micromolar range. 1,8-Naphthyridines are non-selective, or somewhat selective for either A1- or A2 AR. Pyrido[2,3-d]pyrimidines are several-fold selective for A1 AR, the most potent and selective compound being 5-n-butylamino-1,3-dimethyl-1,2,3,4-tetrahydropyrido-[2,3-d]pyr imi dine-2,4-dione (12) with a Ki value of 1.8 microM at A1 AR and greater than 10-fold A1-selectivity. PMID:7838877

  5. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    PubMed

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors. PMID:23583933

  6. A2A Adenosine Receptors Are Differentially Modulated by Pharmacological Treatments in Rheumatoid Arthritis Patients and Their Stimulation Ameliorates Adjuvant-Induced Arthritis in Rats

    PubMed Central

    Vincenzi, Fabrizio; Padovan, Melissa; Targa, Martina; Corciulo, Carmen; Giacuzzo, Sarah; Merighi, Stefania; Gessi, Stefania; Govoni, Marcello; Borea, Pier Andrea; Varani, Katia

    2013-01-01

    A2A adenosine receptors (ARs) play a key role in the inhibition of the inflammatory process. The purpose of this study was to evaluate the modulation of A2AARs in rheumatoid arthritis (RA) patients after different pharmacological treatments and to investigate the effect of A2AAR stimulation in a rat model of arthritis. We investigated A2AAR density and functionality in RA progression by using a longitudinal study in RA patients before and after methotrexate (MTX), anti-TNFα agents or rituximab treatments. A2AARs were analyzed by saturation binding assays in lymphocytes from RA patients throughout the 24-month study timeframe. In an adjuvant-induced arthritis model in rats we showed the efficacy of the A2AAR agonist, CGS 21680 in comparison with standard therapies by means of paw volume assessment, radiographic and ultrasonographic imaging. Arthritic-associated pain was investigated in mechanical allodynia and thermal hyperalgesia tests. IL-10 release following A2AAR stimulation in lymphocytes from RA patients and in serum from arthritic rats was measured. In lymphocytes obtained from RA patients, the A2AAR up-regulation was gradually reduced in function of the treatment time and the stimulation of these receptors mediated a significant increase of IL-10 production. In the same cells, CGS 21680 did not affected cell viability and did not produced cytotoxic effects. The A2AAR agonist CGS 21680 was highly effective, as suggested by the marked reduction of clinical signs, in rat adjuvant-induced arthritis and associated pain. This study highlighted that A2AAR agonists represent a physiological-like therapeutic alternative for RA treatment as suggested by the anti-inflammatory role of A2AARs in lymphocytes from RA patients. The effectiveness of A2AAR stimulation in a rat model of arthritis supported the role of A2AAR agonists as potential pharmacological treatment for RA. PMID:23326596

  7. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    PubMed

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors. PMID:25687775

  8. Photoaffinity labeling of A1-adenosine receptors

    SciTech Connect

    Klotz, K.N.; Cristalli, G.; Grifantini, M.; Vittori, S.; Lohse, M.J.

    1985-11-25

    The ligand-binding subunit of the A1-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R-N6-phenylisopropyladenosine, R-2-azido-N6-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific ligand for A1-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R-AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A1-subtype. It competes for (TH)N6-phenylisopropyladenosine binding to A1-receptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of (TH)N6-phenylisopropyladenosine binding after extensive washing; the Ki value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity label of high specific radioactivity ( SVI-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for SVI-AHPIA binding to rat brain membranes with an order of potency characteristic for A1-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of Mr = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A1-subtype. The results indicate that SVI-AHPIA identifies the ligand-binding subunit of the A1-adenosine receptor, which is a peptide with Mr = 35,000.

  9. Effects of adenosine A2a receptor agonist and antagonist on cerebellar nuclear factor-kB expression preceded by MDMA toxicity

    PubMed Central

    Kermanian, Fatemeh; Soleimani, Mansoureh; Pourheydar, Bagher; Samzadeh-Kermani, Alireza; Mohammadzadeh, Farzaneh; Mehdizadeh, Mehdi

    2014-01-01

    Background: Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliated emotional response. MDMA is a potent monoaminergic neurotoxin with the potential of damage to brain neurons. The NF-kB family of proteins are ubiquitously expressed and are inducible transcription factors that regulate the expression of genes involved in disparate processes such as immunity and ingrowth, development and cell-death regulation. In this study we investigated the effects of the A2a adenosine receptor (A2a-R) agonist (CGS) and antagonist (SCH) on NF-kB expression after MDMA administration. Methods: Sixty three male Sprague–Dawley rats were injected to MDMA (10 and 20mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03mg/kg) injection. The cerebellum were then removed forcresylviolet staining, western blot and RT- PCR analyses. MDMA significantly elevated NF-kB expression. Our results showed that MDMA increased the number of cerebellar dark neurons. Results: We observed that administration of CGS following MDMA, significantly elevated the NF-kB expression both at mRNA and protein levels. By contrast, administration of the A2a-R antagonist SCH resulted in a decrease in the NF-kB levels. Conclusion: These results indicated that, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-kB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users. PMID:25678999

  10. Cardioprotection of Controlled and Cardiac-Specific Over-Expression of A2A-Adenosine Receptor in the Pressure Overload

    PubMed Central

    Hamad, Eman A.; Zhu, Weizhong; Chan, Tung O.; Myers, Valerie; Gao, Erhe; Li, Xue; Zhang, Jin; Song, Jianliang; Zhang, Xue-Qian; Cheung, Joseph Y.; Koch, Walter; Feldman, Arthur M.

    2012-01-01

    Adenosine binds to three G protein-coupled receptors (R) located on the cardiomyocyte (A1-R, A2A-R and A3-R) and provides cardiac protection during both ischemic and load-induced stress. While the role of adenosine receptor-subtypes has been well defined in the setting of ischemia-reperfusion, far less is known regarding their roles in protecting the heart during other forms of cardiac stress. Because of its ability to increase cardiac contractility and heart rate, we hypothesized that enhanced signaling through A2A-R would protect the heart during the stress of transverse aortic constriction (TAC). Using a cardiac-specific and inducible promoter, we selectively over-expressed A2A-R in FVB mice. Echocardiograms were obtained at baseline, 2, 4, 8, 12, 14 weeks and hearts were harvested at 14 weeks, when WT mice developed a significant decrease in cardiac function, an increase in end systolic and diastolic dimensions, a higher heart weight to body weight ratio (HW/BW), and marked fibrosis when compared with sham-operated WT. More importantly, these changes were significantly attenuated by over expression of the A2A-R. Furthermore, WT mice also demonstrated marked increases in the hypertrophic genes β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF) – changes that are mediated by activation of the transcription factor GATA-4. Levels of the mRNAs encoding β-MHC, ANP, and GATA-4 were significantly lower in myocardium from A2A-R TG mice after TAC when compared with WT and sham-operated controls. In addition, three inflammatory factors genes encoding cysteine dioxygenase, complement component 3, and serine peptidase inhibitor, member 3N, were enhanced in WT TAC mice, but their expression was suppressed in A2A-R TG mice. A2A-R over-expression is protective against pressure-induced heart failure secondary to TAC. These cardioprotective effects are associated with attenuation of GATA-4 expression and inflammatory factors. The A2A-R may provide a novel new

  11. Role of ω-hydroxylase in adenosine-mediated aortic response through MAP kinase using A2A-receptor knockout mice.

    PubMed

    Ponnoth, Dovenia S; Nayeem, Mohammed A; Kunduri, Swati S; Tilley, Stephen L; Zeldin, Darryl C; Ledent, Catherine; Mustafa, S Jamal

    2012-02-15

    Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) knockout mice (KO) have increased contraction to adenosine. The signaling mechanism(s) for A(2A)AR is still not fully understood. In this study, we hypothesize that, in the absence of A(2A)AR, ω-hydroxylase (Cyp4a) induces vasoconstriction through mitogen-activated protein kinase (MAPK) via upregulation of adenosine A(1) receptor (A(1)AR) and protein kinase C (PKC). Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Isolated aortic rings from WT and A(2A)KO mice were precontracted with submaximal dose of phenylephrine (10(-6) M), and concentration responses for selective A(1)AR, A(2A)AR agonists, angiotensin II and cytochrome P-450-epoxygenase, 20-hydroxyeicosatrienoic acid (20-HETE) PKC, PKC-α, and ERK1/2 inhibitors were obtained. 2-p-(2-Carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, A(2A)AR agonist) induced concentration-dependent relaxation in WT, which was blocked by methylsulfonyl-propargyloxyphenylhexanamide (cytochrome P-450-epoxygenase inhibitor; 10(-5) M) and also with removal of endothelium. A(1) agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) produced higher contraction in A(2A)KO aorta than WT (49.2 ± 8.5 vs. 27 ± 5.9% at 10(-6) M, P < 0.05). 20-HETE produced higher contraction in A(2A)KO than WT (50.6 ± 8.8 vs. 21.1 ± 3.3% at 10(-7) M, P < 0.05). Contraction to CCPA in WT and A(2A)KO aorta was inhibited by PD-98059 (p42/p44 MAPK inhibitor; 10(-6) M), chelerythrine chloride (nonselective PKC blocker; 10(-6) M), Gö-6976 (selective PKC-α inhibitor; 10(-7) M), and HET0016 (20-HETE inhibitor; 10(-5) M). Also, contraction to 20-HETE in WT and A(2A)KO aorta was inhibited by PD-98059 and Gö-6976. Western blot analysis indicated the upregulation of A(1)AR, Cyp4a, PKC-α, and phosphorylated-ERK1/2 in A(2A)KO compared with WT (P < 0.05), while expression of Cyp2c29 was

  12. The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway

    PubMed Central

    Ohta, Akio; Kini, Radhika; Ohta, Akiko; Subramanian, Meenakshi; Madasu, Manasa; Sitkovsky, Michail

    2012-01-01

    The A2A adenosine receptor (A2AR)-mediated immunosuppression is firmly implicated in the life-saving down-regulation of collateral tissue damage during the anti-pathogen immune response and in highly undesirable protection of cancerous tissues during anti-tumor immune response. Therefore, depending on specific clinical situation there is a need to either weaken or strengthen the intensity of A2AR signal. While the A2AR-mediated immunosuppression was shown to be T cell autonomous in studies of effector T cells, it was not clear how A2AR stimulation affects regulatory T cells (Treg). Here we show in parallel assays that while A2AR stimulation on T cells directly inhibits their activation, there is also indirect and longer-lasting T cell inhibitory effect through modulation of Treg. A2AR stimulation expanded CD4+ CD25hi FoxP3+ cells, which also express CD39, CD73, and CTLA-4. Treg cultured with A2AR agonist showed increased expression of CTLA-4 and stronger immunosuppressive activity. There was a significant increase of Treg cell number after A2AR stimulation. The CD4+ FoxP3+ population contained those induced from CD4+ CD25− cells, but CD4+ FoxP3+ cells predominantly derived from CD4+ CD25+ natural Treg. Thus, A2AR stimulation numerically and functionally enhanced Treg-mediated immunosuppressive mechanism. These data suggest that the A2AR-mediated stimulation of lymphocytes using A2AR agonists should be considered in protocols for ex vivo expansion of Treg before the transfer to patients in different medical applications. PMID:22783261

  13. Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A(2A) receptor with novel biological activity.

    PubMed

    Chen, Dan; Errey, James C; Heitman, Laura H; Marshall, Fiona H; Ijzerman, Adriaan P; Siegal, Gregg

    2012-12-21

    Fragment-based drug discovery (FBDD) has proven a powerful method to develop novel drugs with excellent oral bioavailability against challenging pharmaceutical targets such as protein-protein interaction targets. Very recently the underlying biophysical techniques have begun to be successfully applied to membrane proteins. Here we show that novel, ligand efficient small molecules with a variety of biological activities can be found by screening a small fragment library using thermostabilized (StaR) G protein-coupled receptors (GPCRs) and target immobilized NMR screening (TINS). Detergent-solubilized StaR adenosine A(2A) receptor was immobilized with retention of functionality, and a screen of 531 fragments was performed. Hits from the screen were thoroughly characterized for biochemical activity using the wild-type receptor. Both orthosteric and allosteric modulatory activity has been demonstrated in biochemical validation assays. Allosteric activity was confirmed in cell-based functional assays. The validated fragment hits make excellent starting points for a subsequent hit-to-lead elaboration program. PMID:23013674

  14. The A2A adenosine receptor rescues neuritogenesis impaired by p53 blockage via KIF2A, a kinesin family member.

    PubMed

    Sun, Chung-Nan; Chuang, Hsiu-Chun; Wang, Jiz-Yuh; Chen, Si-Ying; Cheng, Ya-Yun; Lee, Chien-Fei; Chern, Yijuang

    2010-07-01

    The A2A adenosine receptor (A2AR) is a G-protein-coupled receptor. We previously reported that the C terminus of the A2AR binds to translin-associated protein X (TRAX) and modulates nerve growth factor (NGF)-evoked neurite outgrowth in PC12 cells. Herein, we show that neuritogenesis of primary hippocampal neurons requires p53 because blockage of p53 suppressed neurite outgrowth. The impaired neuritogenesis caused by p53 blockage was rescued by activation of the A2AR (designated the A2A rescue effect) in a TRAX-dependent manner. Importantly, suppression of a TRAX-interacting protein (kinesin heavy chain member 2A, KIF2A) inhibited the A2A rescue effect, whereas overexpression of KIF2A caused a rescue effect. Expression of a KIF2A fragment (KIF2A514), which disturbed the interaction between KIF2A and TRAX, blocked the rescue effect. Transient colocalization of TRAX and KIF2A was detected in the nucleus of PC12 cells upon NGF treatment. These data suggest that functional interaction between KIF2A and TRAX is critical for the A2A rescue effect. Moreover, p53 blockage during NGF treatment prevented the redistribution of KIF2A from the nucleus to the cytoplasmic region. Expression of a nuclear-retained KIF2A variant (NLS-KIF2A) did not rescue the impaired neurite outgrowth as did the wild-type KIF2A. Therefore, redistribution of KIF2A to the cytoplasmic fraction is a prerequisite for neurite outgrowth. Collectively, we demonstrate that KIF2A functions downstream of p53 to mediate neuritogenesis of primary hippocampal neurons and PC12 cells. Stimulation of the A2AR rescued neuritogenesis impaired by p53 blockage via an interaction between TRAX and KIF2A. PMID:20506231

  15. The A3 adenosine receptor: history and perspectives.

    PubMed

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health. PMID:25387804

  16. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc. PMID:27319979

  17. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-08-01

    It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage

  18. Current status of A1 adenosine receptor allosteric enhancers.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Moorman, Allan R; Borea, Pier Andrea; Varani, Katia

    2015-01-01

    Adenosine is an ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1, A2A, A2B and A3 adenosine receptors (ARs). Allosteric enhancers to A1ARs may represent novel therapeutic agents because they increase the activity of these receptors by mediating a shift to their active form in the A1AR-G protein ternary complex. In this manner, they are able to amplify the action of endogenous adenosine, which is produced in high concentrations under conditions of metabolic stress. A1AR allosteric enhancers could be used as a justifiable alternative to the exogenous agonists that are characterized by receptor desensitization and downregulation. In this review, an analysis of some of the most interesting allosteric modulators of A1ARs has been reported. PMID:26144263

  19. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors.

    PubMed

    Gao, Zhan-Guo; Mamedova, Liaman K; Chen, Peiran; Jacobson, Kenneth A

    2004-11-15

    The affinity and efficacy at four subtypes (A(1), A(2A), A(2B) and A(3)) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N(6)-position, several 2-substituents were found to be critical structural determinants for the A(3)AR activation. The following adenosine 2-ethers were moderately potent partial agonists (K(i), nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A(3)AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)adenosine as an A(3)AR antagonist right-shifted the concentration-response curve for the inhibition by NECA of cyclic AMP accumulation with a K(B) value of 212 nM, which is similar to its binding affinity (K(i) = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A(1)AR in comparison to the A(3)AR, but fully efficacious, with binding K(i) values over 100 nM. The 2-phenylethyl moiety resulted in higher A(3)AR affinity (K(i) in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (K(i) = 3.8 nM) was found to be the most potent and selective (>50-fold) A(2A) agonist in this series. Mixed A(2A)/A(3)AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A(2B)AR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC(50) = 1.4 microM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC(50) = 1.8 microM) were found to be relatively potent A(2B) agonists, although less potent than NECA (EC(50) = 140 nM). PMID:15476669

  20. Antagonism of the adenosine A2A receptor attenuates akathisia-like behavior induced with MP-10 or aripiprazole in a novel non-human primate model.

    PubMed

    Bleickardt, Carina J; Kazdoba, Tatiana M; Jones, Nicholas T; Hunter, John C; Hodgson, Robert A

    2014-03-01

    Akathisia is a subset of the larger antipsychotic side effect profile known as extrapyramidal syndrome (EPS). It is associated with antipsychotic treatment and is characterized as a feeling of inner restlessness that results in a compulsion to move. There are currently no primate models available to assess drug-induced akathisia; the present research was designed to address this shortcoming. We developed a novel rating scale based on both the Barnes Akathisia Rating Scale (BARS) and the Hillside Akathisia Scale (HAS) to measure the objective, observable incidence of antipsychotic-induced akathisia-like behavior in Cebus apella non-human primates (NHPs). To induce akathisia, we administered the atypical antipsychotic aripiprazole (1 mg/kg) or the selective phosphodiesterase 10A (PDE10A) inhibitor MP-10 (1-3 mg/kg). Treatment with both compounds produced significantly greater akathisia scores on the rating scale than vehicle treatment. Characteristic behaviors observed included vocalizations, stereotypies, teeth grinding, restless limb movements, and hyperlocomotion. Adenosine A2A receptor antagonists have previously been shown to be effective in blocking antipsychotic-induced EPS in primates. The selective A2A receptor antagonist, SCH 412348 (10-30 mg/kg), effectively reduced or reversed akathisia-like behavior induced by both aripiprazole and MP-10. This work represents the first NHP measurement scale of akathisia and demonstrates that NHPs are responsive to akathisia-inducing agents. As such, it provides a useful tool for the preclinical assessment of putative antipsychotics. In addition, these results provide further evidence of the utility of A2A receptor antagonists for the treatment of antipsychotic-induced movement disorders. PMID:24211858

  1. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride.

    PubMed

    Giunta, Salvatore; Andriolo, Violetta; Castorina, Alessandro

    2014-09-01

    In a previous work we have shown that exposure to aluminum (Al) chloride (AlCl3) enhanced the neurotoxicity of the amyloid beta(25-35) fragment (Abeta(25-35)) in neuroblastoma cells and affected the expression of Alzheimer's disease (AD)-related genes. Caffein, a compound endowed with beneficial effects against AD, exerts neuroprotection primarily through its antagonist activity on A2A adenosine receptors (A2AR), although it also inhibits A1Rs with similar potency. Still, studies on the specific involvement of these receptors in neuroprotection in a model of combined neurotoxicity (Abeta(25-35)+AlCl3) are missing. To address this issue, cultured SH-SY5Y cells exposed to Abeta(25-35)+AlCl3 were assessed for cell viability, morphology, intracellular ROS activity and expression of apoptosis-, stress- and AD-related proteins. To define the role of A1R and A2ARs, pretreatment with caffein, specific receptor antagonists (DPCPX or SCH58261) or siRNA-mediated gene knockdown were delivered. Results indicate that AlCl3 treatment exacerbated Abeta(25-35) toxicity, increased ROS production, lipid peroxidation, β-secretase-1 (BACE1) and amyloid precursor protein (APP). Interestingly, SCH58261 successfully prevented toxicity associated to Abeta(25-35) only, whereas pretreatment with both DPCPX and SCH58261 was required to fully avert Abeta(25-35)+AlCl3-induced damage, suggesting that A1Rs might also be critically involved in protection during combined toxicity. The effects of caffein were mimicked by both N-acetyl cysteine, an antioxidant, and desferrioxamine, likely acting through distinct mechanisms. Altogether, our data establish a novel protective function associated with A1R inhibition in the setting of combined Abeta(25-35)+AlCl3 neurotoxicity, and expand our current knowledge on the potential beneficial role of caffein to prevent AD progression in subjects environmentally exposed to aluminum. PMID:25058312

  2. Topical application of the adenosine A2A receptor agonist CGS-21680 prevents phorbol-induced epidermal hyperplasia and inflammation in mice.

    PubMed

    Arasa, Jorge; Martos, Patricio; Terencio, María Carmen; Valcuende-Cavero, Francisca; Montesinos, María Carmen

    2014-08-01

    The nucleoside adenosine is a known regulator of immunity and inflammation that mediates, at least in part, the anti-inflammatory effect of methotrexate, an immunosuppressive agent widely used to treat autoimmune inflammatory diseases. Adenosine A2A receptors play a key role in the inhibition of the inflammatory process besides promoting wound healing. Therefore, we aimed to determine the topical effect of a selective agonist, CGS-21680, on a murine model of skin hyperplasia with a marked inflammatory component. Pretreatment with either CGS-21680 (5 μg per site) or the reference agent dexamethasone (200 μg/site) prevented the epidermal hyperplasia and inflammatory response induced by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA, 2 nmol/site) for three consecutive days. The histological analysis showed that both CGS-21680 and dexamethasone produced a marked reduction of inflammatory cell infiltrate, which correlated with diminished myeloperoxidase (MPO) activity in skin homogenates. Both treatments reduced the levels of the chemotactic mediators LTB4 and CXCL-1, and the inflammatory cytokine TNF-α, through the suppression of NFκB phosphorylation. The immunohistochemical analysis of the hyperproliferative markers cytokeratin 6 (CK6) and Ki67 revealed that while both agents inhibit the number of proliferating cells in the epidermis, CGS-21680 treatment promoted dermal fibroblasts proliferation. Consistently, increased collagen deposition in dermis was observed in tissue sections from agonist-treated mice. Our results showed that CGS 21680 efficiently prevents phorbol-induced epidermal hyperplasia and inflammation in mice without the deleterious atrophic effect of topical corticosteroids. PMID:24889129

  3. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-02-01

    A(2A) adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. L-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, L-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of L-DOPA and CSC or ZM 241385 did not change the effect of L-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of L-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical. PMID:21830163

  4. Stimulation of adenosine A2A receptors reduces intracellular cholesterol accumulation and rescues mitochondrial abnormalities in human neural cell models of Niemann-Pick C1.

    PubMed

    Ferrante, A; De Nuccio, C; Pepponi, R; Visentin, S; Martire, A; Bernardo, A; Minghetti, L; Popoli, P

    2016-04-01

    Niemann Pick C 1 (NPC1) disease is an incurable, devastating lysosomal-lipid storage disorder characterized by hepatosplenomegaly, progressive neurological impairment and early death. Current treatments are very limited and the research of new therapeutic targets is thus mandatory. We recently showed that the stimulation of adenosine A2A receptors (A2ARs) rescues the abnormal phenotype of fibroblasts from NPC1 patients suggesting that A2AR agonists could represent a therapeutic option for this disease. However, since all NPC1 patients develop severe neurological symptoms which can be ascribed to the complex pathology occurring in both neurons and oligodendrocytes, in the present paper we tested the effects of the A2AR agonist CGS21680 in human neuronal and oligodendroglial NPC1 cell lines (i.e. neuroblastoma SH-SY5Y and oligodendroglial MO3.13 transiently transfected with NPC1 small interfering RNA). The down-regulation of the NPC1 protein effectively resulted in intracellular cholesterol accumulation and altered mitochondrial membrane potential. Both effects were significantly attenuated by CGS21680 (500 nM). The protective effects of CGS were prevented by the selective A2AR antagonist ZM241385 (500 nM). The involvement of calcium modulation was demonstrated by the ability of Bapta-AM (5-7 μM) in reverting the effect of CGS. The A2A-dependent activity was prevented by the PKA-inhibitor KT5720, thus showing the involvement of the cAMP/PKA signaling. These findings provide a clear in vitro proof of concept that A2AR agonists are promising potential drugs for NPC disease. PMID:26631535

  5. Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington's disease iPSCs.

    PubMed

    Chiu, Feng-Lan; Lin, Jun-Tasi; Chuang, Ching-Yu; Chien, Ting; Chen, Chiung-Mei; Chen, Kai-Hsiang; Hsiao, Han-Yun; Lin, Yow-Sien; Chern, Yijuang; Kuo, Hung-Chih

    2015-11-01

    Huntington's disease (HD) is an autosomal-dominant degenerative disease caused by a cytosine-adenine-guanine trinucleotide expansion in the Huntingtin (htt) gene. The most vulnerable brain areas to mutant HTT-evoked toxicity are the striatum and cortex. In spite of the extensive efforts that have been devoted to the characterization of HD pathogenesis, no disease-modifying therapy for HD is currently available. The A2A adenosine receptor (A2AR) is widely distributed in the brain, with the highest level observed in the striatum. We previously reported that stimulation of the A2AR triggers an anti-apoptotic effect in a rat neuron-like cell line (PC12). Using a transgenic mouse model (R6/2) of HD, we demonstrated that A2AR-selective agonists effectively ameliorate several major symptoms of HD. In the present study, we show that human iPSCs can be successfully induced to differentiate into DARPP32-positive, GABAergic neurons which express the A2AR in a similar manner to striatal medium spiny neurons. When compared with those derived from control subjects (CON-iPSCs), these HD-iPSC-derived neurons exhibited a higher DNA damage response, based on the observed expression of γH2AX and elevated oxidative stress. This is a critical observation, because oxidative damage and abnormal DNA damage/repair have been reported in HD patients. Most importantly, stimulation of the A2AR using selective agonists reduced DNA damage and oxidative stress-induced apoptosis in HD-iPSC-derived neurons through a cAMP/PKA-dependent pathway. These findings support our hypothesis that human neurons derived from diseased iPSCs might serve as an important platform to investigate the beneficial effects and underlying mechanisms of A2AR drugs. PMID:26264576

  6. Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3.

    PubMed

    Hajiahmadi, Sima; Panjehpour, Mojtaba; Aghaei, Mahmoud; Shabani, Mahdi

    2015-08-01

    A2b adenosine receptor (A2bAR) acts as a potent regulator of cell growth in various cell lines. The present study was designed to understand the controlling mechanism of A2bAR agonist (NECA)-induced apoptosis in ovarian cancer cells. Real-time PCR and western blotting assays were used to evaluate the gene and protein expression profiles of A2bAR, respectively. MTT assay was used to study the cell proliferation effect of A2bAR agonist (NECA). Detection of apoptosis was conducted using annexin V-FITC/PI staining, caspase-3 activation assay, and the expression of Bax and Bcl-2 proteins analysis. The mitochondrial membrane potential (ΔΨM) was analyzed by employing JC-1 prob. The mRNA and protein expression levels of A2bAR in ovarian cancer cells were detected. NECA significantly reduced cell viability in a dose-dependent manner in OVCAR-3 and Caov-4 cell lines. The growth inhibition effect of NECA was related to the induction of cell apoptosis, which was manifested by annexin V-FITC staining, activation of caspase-3, and loss of mitochondrial membrane potentials (ΔΨm). In addition, downregulation of the regulatory protein Bcl-2 and upregulation of Bax protein by NECA were also observed. These findings demonstrated that NECA induces apoptosis via the mitochondrial signaling pathway. Thus, A2bAR agonists may be a potential agent for induction of apoptosis in ovarian cancer cells. PMID:25877700

  7. Methyl 3,4-dihydroxybenzoate promote rat cortical neurons survival and neurite outgrowth through the adenosine A2a receptor/PI3K/Akt signaling pathway.

    PubMed

    Zhang, Zheng; Cai, Liang; Zhou, Xiaowen; Su, Chaofen; Xiao, Fei; Gao, Qin; Luo, Huanmin

    2015-04-15

    Methyl 3,4-dihydroxybenzoate (MDHB), a kind of phenolic acid compounds, has been reported to have antioxidant effects. Moreover, our previous study found that it could promote neurite outgrowth and brain-derived neurotrophic factor expression in cortical neurons of neonatal rats. In the present study, we focused on the mechanism of its neurotrophic effect; the results showed that MDHB-induced upregulation of neuronal survival and neurite outgrowth in cultured primary cortical neurons could be blocked by the adenosine A2a receptor inhibitor (ZM241385) and the phosphoinositide 3-kinase (PI3K) inhibitor (LY294002). Subsequently, we found that the upregulation of Akt phosphorylation by MDHB could be suppressed by A2a-R and PI3K-specific inhibitor, but not the Trk-R inhibitor. Furthermore, MDHB could activate Akt in a concentration-dependent manner. These results suggested that activation of the PI3K/Akt signaling pathway may be involved in the MDHB-induced neurotrophic effects and MDHB could be a candidate compound to develop drugs for neurodegenerative disease. PMID:25807175

  8. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart

    PubMed Central

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP), velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax, and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk. PMID:26773185

  9. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart.

    PubMed

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP),velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax,and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk. PMID:26773185

  10. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors

    PubMed Central

    Gao, Zhan-Guo; Mamedova, Liaman K.; Chen, Peiran; Jacobson, Kenneth A.

    2012-01-01

    The affinity and efficacy at four subtypes (A1, A2A, A2B and A3) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N6-position, several 2-substituents were found to be critical structural determinants for the A3AR activation. The following adenosine 2-ethers were moderately potent partial agonists (Ki, nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A3AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)a-denosine as an A3AR antagonist right-shifted the concentration–response curve for the inhibition by NECA of cyclic AMP accumulation with a KB value of 212 nM, which is similar to its binding affinity (Ki = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A1AR in comparison to the A3AR, but fully efficacious, with binding Ki values over 100 nM. The 2-phenylethyl moiety resulted in higher A3AR affinity (Ki in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (Ki = 3.8 nM) was found to be the most potent and selective (>50-fold) A2A agonist in this series. Mixed A2A/A3AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A2BAR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC50 = 1.4 µM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC50 = 1.8 (M) were found to be relatively potent A2B agonists, although less potent than NECA (EC50 = 140 nM). PMID:15476669

  11. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease

    PubMed Central

    Wallace, Kori L.

    2010-01-01

    We showed previously that pulmonary function and arterial oxygen saturation in NY1DD mice with sickle cell disease (SCD) are improved by depletion of invariant natural killer T (iNKT) cells or blockade of their activation. Here we demonstrate that SCD causes a 9- and 6-fold induction of adenosine A2A receptor (A2AR) mRNA in mouse pulmonary iNKT and natural killer (NK) cells, respectively. Treating SCD mice with the A2AR agonist ATL146e produced a dose-dependent reversal of pulmonary dysfunction with maximal efficacy at 10 ng/kg/minute that peaked within 3 days and persisted throughout 7 days of continuous infusion. Crossing NY1DD mice with Rag1−/− mice reduced pulmonary injury that was restored by adoptive transfer of 106 purified iNKT cells. Reconstituted injury was reversed by ATL146e unless the adoptively transferred iNKT cells were pretreated with the A2AR alkylating antagonist, FSPTP (5-amino-7-[2-(4-fluorosulfonyl)phenylethyl]-2-(2-furyl)-pryazolo[4,3-ϵ]-1,2,4-triazolo[1,5-c]pyrimidine), which completely prevented pro-tection. In NY1DD mice exposed to hypoxia-reoxygenation, treatment with ATL146e at the start of reoxygenation prevented further lung injury. Together, these data indicate that activation of induced A2ARs on iNKT and NK cells in SCD mice is sufficient to improve baseline pulmonary function and prevent hypoxia-reoxygenation–induced exacerbation of pulmonary injury. A2A agonists have promise for treating diseases associated with iNKT or NK cell activation. PMID:20798237

  12. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson

    PubMed Central

    Lin, Gene; Okam, Maureen M.; Majerus, Elaine; Keefer, Jeffrey; Onyekwere, Onyinye; Ross, Ainsley; Campigotto, Federico; Neuberg, Donna; Linden, Joel; Nathan, David G.

    2013-01-01

    Adenosine A2A receptor (A2AR) agonists reduce invariant natural killer T (iNKT) cell activation and decrease inflammation in sickle cell disease (SCD) mice. We conducted a phase 1 trial of the A2AR agonist regadenoson in adults with SCD. The target dose was 1.44 μg/kg/h. iNKT cell activation was evaluated using antibodies targeting the p65 subunit of nuclear factor-κB (phospho-NF-κB p65), interferon-γ (IFN-γ), and A2AR. Regadenoson was administered to 27 adults with SCD. We examined 21 patients at steady state and 6 during painful vaso-occlusive crises (pVOC). iNKT cell activation was also measured in 14 African-American controls. During pVOC, the fraction of iNKT cells demonstrating increased phospho-NF-κB p65 and A2AR expression was significantly higher compared with controls (P < .01) and steady-state patients (P < .05). IFN-γ expression was also significantly higher compared with controls (P = .02). After a 24-hour infusion of regadenoson during pVOC, phospho-NF-κB p65 activation in iNKT cells decreased compared to baseline by a median of 48% (P = .03) to levels similar to controls and steady-state SCD. No toxicities were identified. Infusional regadenoson administered to adults with SCD at 1.44 μg/kg/h during pVOC decreases activation of iNKT cells without toxicity. This trial was registered at www.clinicaltrials.gov as #NCT01085201. PMID:23377438

  13. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  14. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  15. Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity

    PubMed Central

    2013-01-01

    Background N-Methyl-d-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions. Methods We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated d-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis. Results We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist d-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and d-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of d-serine by d-amino acid oxidase (DAAO) and the saturation of the coagonist site by d-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases d-serine release in the extracellular medium. Conclusions CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of d-serine. PMID:23981568

  16. NF-κB Is Activated in CD4+ iNKT Cells by Sickle Cell Disease and Mediates Rapid Induction of Adenosine A2A Receptors

    PubMed Central

    Yu, Jennifer C.; Ken, Ruey; Neuberg, Donna; Nathan, David G.; Linden, Joel

    2013-01-01

    Reperfusion injury following tissue ischemia occurs as a consequence of vaso-occlusion that is initiated by activation of invariant natural killer T (iNKT) cells. Sickle cell disease (SDC) results in widely disseminated microvascular ischemia and reperfusion injury as a result of vaso-occlusion by rigid and adhesive sickle red blood cells. In mice, iNKT cell activation requires NF-κB signaling and can be inhibited by the activation of anti-inflammatory adenosine A2A receptors (A2ARs). Human iNKT cells are divided into subsets of CD4+ and CD4- cells. In this study we found that human CD4+ iNKT cells, but not CD4- cells undergo rapid NF-κB activation (phosphorylation of NF-κB on p65) and induction of A2ARs (detected with a monoclonal antibody 7F6-G5-A2) during SCD painful vaso-occlusive crises. These findings indicate that SCD primarily activates the CD4+ subset of iNKT cells. Activation of NF-κB and induction of A2ARs is concordant, i.e. only CD4+ iNKT cells with activated NF-κB expressed high levels of A2ARs. iNKT cells that are not activated during pVOC express low levels of A2AR immunoreactivity. These finding suggest that A2AR transcription may be induced in CD4+ iNKT cells as a result of NF-κB activation in SCD. In order to test this hypothesis further we examined cultured human iNKT cells. In cultured cells, blockade of NF-κB with Bay 11–7082 or IKK inhibitor VII prevented rapid induction of A2AR mRNA and protein upon iNKT activation. In conclusion, NF-κB-mediated induction of A2ARs in iNKT cells may serve as a counter-regulatory mechanism to limit the extent and duration of inflammatory immune responses. As activated iNKT cells express high levels of A2ARs following their activation, they may become highly sensitive to inhibition by A2AR agonists. PMID:24124453

  17. MicroRNA-16 is putatively involved in the NF-κB pathway regulation in ulcerative colitis through adenosine A2a receptor (A2aAR) mRNA targeting

    PubMed Central

    Tian, Ting; Zhou, Yu; Feng, Xiao; Ye, Shicai; Wang, Hao; Wu, Weiyun; Tan, Wenkai; Yu, Caiyuan; Hu, Juxiang; Zheng, Rong; Chen, Zonghao; Pei, Xinyu; Luo, Hesheng

    2016-01-01

    MicroRNAs (miRNAs) act as important post-transcriptional regulators of gene expression by targeting the 3′-untranslated region of their target genes. Altered expression of miR-16 is reported in human ulcerative colitis (UC), but its role in the development of the disease remains unclear. Adenosine through adenosine A2a receptor (A2aAR) could inhibit nuclear factor-kappaB (NF-κB) signaling pathway in inflammation. Here we identified overexpression of miR-16 and down-regulation of A2aAR in the colonic mucosa of active UC patients. We demonstrated that miR-16 negatively regulated the expression of the A2aAR at the post-transcriptional level. Furthermore, transfection of miR-16 mimics promoted nuclear translocation of NF-κB p65 protein and expression of pro-inflammatory cytokines, IFN-γ and IL-8 in colonic epithelial cells. Treatment with miR-16 inhibitor could reverse these effects in cells. The A2aAR-mediated effects of miR-16 on the activation of the NF-κB signaling pathway were confirmed by the A2aAR knockdown assay. Our results suggest that miR-16 regulated the immune and inflammatory responses, at least in part, by suppressing the expression of the A2aAR to control the activation of the NF-κB signaling pathway. PMID:27476546

  18. Anxiolytic activity of adenosine receptor activation in mice.

    PubMed

    Jain, N; Kemp, N; Adeyemo, O; Buchanan, P; Stone, T W

    1995-10-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  19. Anxiolytic activity of adenosine receptor activation in mice.

    PubMed Central

    Jain, N.; Kemp, N.; Adeyemo, O.; Buchanan, P.; Stone, T. W.

    1995-01-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  20. Characteristic molecular vibrations of adenosine receptor ligands.

    PubMed

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. PMID:25622891

  1. The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets.

    PubMed

    Uchida, Shin-ichi; Soshiroda, Kazuhiro; Okita, Eri; Kawai-Uchida, Mika; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2015-01-15

    The adenosine A2A receptor antagonist, istradefylline, enhances anti-parkinsonian activity in patients with advanced Parkinson׳s disease (PD) already treated with combinations of L-DOPA and dopamine agonist drugs but who are still exhibiting prolonged 'OFF' periods. In contrast, the effects of istradefylline on motor function when administered in combination with low dose dopamine agonist therapy in early PD are unknown. We now investigate whether istradefylline administered with a threshold dose of either the non-ergot dopamine agonist, ropinirole or the ergot dopamine agonist, pergolide enhances anti-parkinsonian activity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset. Both ropinirole (0.01-0.1mg/kg p.o.) and pergolide (0.003-0.1mg/kg p.o.) administered alone produced dose dependent increases in locomotor activity, a reduction in motor disability. Threshold doses of ropinirole (0.025-0.075mg/kg p.o.) and pergolide (0.01-0.075mg/kg p.o.) were then selected that in individual animals caused a small but non-significant anti-parkinsonian effect. Administration of istradefylline (10mg/kg p.o.) alone resulted in a decrease in motor disability and increase in 'ON' time but dyskinesia was not observed. Combined administration of pergolide or ropinirole with istradefylline resulted in an increase in the reversal of motor disability and increase in 'ON' time compared to that produced by either treatment alone but dyskinesia was still not observed. These results show that istradefylline is effective in improving motor function when combined with low dose dopamine agonist treatment. In early PD, this may avoid dose escalation or allow a reduction in dopamine agonist dosage without a loss of efficacy and prevent dopaminergic side-effects from becoming treatment limiting. PMID:25499739

  2. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    PubMed Central

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A1 receptors with 2-chloro-N6-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A1 receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis. PMID:22552934

  3. Improvement of Cold Tolerance by Selective A1 Adenosine Receptor Antagonists in Rats

    PubMed Central

    Lee, T. F.; Li, D. J.; Jacobson, K. A.; Wang, L. C. H.

    2015-01-01

    Previously we have shown that the improvement of cold tolerance by theophylline is due to antagonism at adenosine receptors rather than inhibition of phosphodiesterase. Since theophylline is a nonselective adenosine receptor antagonist for both A1 and A2 receptors, the present study investigated the adenosine receptor subtype involved in theophylline’s action. Acute systemic injection of selective A1 receptor antagonists (1,3-dialkyl-8-aryl or 1,3-dialkyl-8-cyclopentyl xanthine derivatives) significantly increased both the total and maximal heat production as well as cold tolerance. In contrast, injection of a relatively selective A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (compound No. 19), failed to significantly alter the thermogenic response of the rat under cold exposure. Further, the relative effectiveness of these compounds in increasing total thermogenesis was positively correlated with their potency in blocking the A1 adenosine receptor (r= .52, p<0.01), but not in A2 adenosine receptor (r= .20, p<0.2). It is likely that the thermally beneficial effects of adenosine A1 antagonists are due to their attenuation of the inhibitory effects of endogenously released adenosine on lipolysis and glucose utilization, resulting in increased substrate mobilization and utilization for enhanced thermogenesis. PMID:2263650

  4. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells

    PubMed Central

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001 PMID:24668173

  5. Identification and function of adenosine A3 receptor in afferent arterioles.

    PubMed

    Lu, Yan; Zhang, Rui; Ge, Ying; Carlstrom, Mattias; Wang, Shaohui; Fu, Yiling; Cheng, Liang; Wei, Jin; Roman, Richard J; Wang, Lei; Gao, Xichun; Liu, Ruisheng

    2015-05-01

    Adenosine plays an important role in regulation of renal microcirculation. All receptors of adenosine, A1, A2A, A2B, and A3, have been found in the kidney. However, little is known about the location and function of the A3 receptor in the kidney. The present study determined the expression and role of A3 receptors in mediating the afferent arteriole (Af-Art) response and studied the interaction of A3 receptors with angiotensin II (ANG II), A1 and A2 receptors on the Af-Art. We found that the A3 receptor expressed in microdissected isolated Af-Art and the mRNA levels of A3 receptor were 59% of A1. In the isolated microperfused Af-Art, A3 receptor agonist IB-MECA did not have a constrictive effect. Activation of A3 receptor dilated the preconstricted Af-Art by norepinephrine and blunted the vasoconstrictive effect of both adenosine A1 receptor activation and ANG II on the Af-Art, respectively. Selective A2 receptor antagonist (both A2A and A2B) had no effect on A3 receptor agonist-induced vasodilation, indicating that the dilatory effect of A3 receptor activation is not mediated by activation of A2 receptor. We conclude that the A3 receptor is expressed in the Af-Art, and activation of the A3 receptor dilates the Af-Art. PMID:25608966

  6. Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines

    PubMed Central

    Hajiahmadi, S.; Panjehpour, M.; Aghaei, M.; Mousavi, S.

    2015-01-01

    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer. PMID:26430456

  7. Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines.

    PubMed

    Hajiahmadi, S; Panjehpour, M; Aghaei, M; Mousavi, S

    2015-01-01

    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer. PMID:26430456

  8. Targeting of Adenosine Receptors in Ischemia-Reperfusion Injury

    PubMed Central

    Laubach, Victor E.; French, Brent A.; Okusa, Mark D.

    2010-01-01

    Importance of the field Ischemia-reperfusion (IR) injury is a common clinical problem after transplantation as well as myocardial infarction and stroke. IR initiates an inflammatory response leading to rapid tissue damage. Adenosine, produced in response to IR, is generally considered as a protective signaling molecule and elicits its physiological responses through four distinct adenosine receptors. The short half-life, lack of specificity, and rapid metabolism limits the use of adenosine as a therapeutic agent. Thus intense research efforts have focused on the synthesis and implementation of specific adenosine receptor agonists and antagonists as potential therapeutic agents for a variety of inflammatory conditions including IR injury. Areas covered by this review This review summarizes current knowledge on IR injury with a focus on lung, heart, and kidney, and examines studies that have advanced our understanding of the role of adenosine receptors and the therapeutic potential of adenosine receptor agonists and antagonists for the prevention of IR injury. What the reader will gain The reader will gain insight into the role of adenosine receptor signaling in IR injury. Take home message No clinical therapies are currently available that specifically target IR injury; however, targeting of specific adenosine receptors may offer therapeutic strategies in this regard. PMID:21110787

  9. Pulsed Electromagnetic Fields Increased the Anti-Inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts

    PubMed Central

    Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Gessi, Stefania; Merighi, Stefania; Setti, Stefania; Cadossi, Ruggero; Goldring, Mary B.; Borea, Pier Andrea; Varani, Katia

    2013-01-01

    Adenosine receptors (ARs) have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs) on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL)-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2), an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF) secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG) production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint disorders

  10. Design, synthesis, and biological evaluation of novel 2-((2-(4-(substituted)phenylpiperazin-1-yl)ethyl)amino)-5'-N-ethylcarboxamidoadenosines as potent and selective agonists of the A2A adenosine receptor.

    PubMed

    Preti, Delia; Baraldi, Pier Giovanni; Saponaro, Giulia; Romagnoli, Romeo; Aghazadeh Tabrizi, Mojgan; Baraldi, Stefania; Cosconati, Sandro; Bruno, Agostino; Novellino, Ettore; Vincenzi, Fabrizio; Ravani, Annalisa; Borea, Pier Andrea; Varani, Katia

    2015-04-01

    Stimulation of A2A adenosine receptors (AR) promotes anti-inflammatory responses in animal models of allergic rhinitis, asthma, chronic obstructive pulmonary disease, and rheumatic diseases. Herein we describe the results of a research program aimed at identifying potent and selective agonists of the A2AAR as potential anti-inflammatory agents. The recent crystallographic analysis of A2AAR agonists and antagonists in complex with the receptor provided key information on the structural determinants leading to receptor activation or blocking. In light of this, we designed a new series of 2-((4-aryl(alkyl)piperazin-1-yl)alkylamino)-5'-N-ethylcarboxamidoadenosines with high A2AAR affinity, activation potency and selectivity obtained by merging distinctive structural elements of known agonists and antagonists of the investigated target. Docking-based SAR optimization allowed us to identify compound 42 as one of the most potent and selective A2A agonist discovered so far (Ki hA2AAR = 4.8 nM, EC50 hA2AAR = 4.9 nM, Ki hA1AR > 10 000 nM, Ki hA3AR = 1487 nM, EC50 hA2BAR > 10 000 nM). PMID:25780876

  11. Adenosine receptors and asthma in humans.

    PubMed

    Wilson, C N

    2008-10-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine is an important signalling molecule in human asthma. By acting on extracellular G-protein-coupled ARs on a number of different cell types important in the pathophysiology of human asthma, adenosine affects bronchial reactivity, inflammation and airway remodelling. Four AR subtypes (A(1), A(2a), A(2b) and A(3)) have been cloned in humans, are expressed in the lung, and are all targets for drug development for human asthma. This review summarizes what is known about these AR subtypes and their function in human asthma as well as the pros and cons of therapeutic approaches to these AR targets. A number of molecules with high affinity and high selectivity for the human AR subtypes have entered clinical trials or are poised to enter clinical trials as anti-asthma treatments. With the availability of these molecules for testing in humans, the function of ARs in human asthma, as well as the safety and efficacy of approaches to the different AR targets, can now be determined. PMID:18852693

  12. Contractile effects and receptor analysis of adenosine-receptors in human detrusor muscle from stable and neuropathic bladders.

    PubMed

    Pakzad, Mahreen; Ikeda, Youko; McCarthy, Carly; Kitney, Darryl G; Jabr, Rita I; Fry, Christopher H

    2016-08-01

    To measure the relative transcription of adenosine receptor subtypes and the contractile effects of adenosine and selective receptor-subtype ligands on detrusor smooth muscle from patients with neuropathic overactive (NDO) and stable bladders and also from guinea-pigs. Contractile function was measured at 37°C in vitro from detrusor smooth muscle strips. Contractions were elicited by superfusate agonists or by electrical field stimulation. Adenosine-receptor (A1, A2A, A2B, A3) transcription was measured by RT-PCR. Adenosine attenuated nerve-mediated responses with equivalent efficacy in human and guinea-pig tissue (pIC50 3.65-3.86); the action was more effective at low (1-8 Hz) compared to high (20-40 Hz) stimulation frequencies in human NDO and guinea-pig tissue. With guinea-pig detrusor the action of adenosine was mirrored by the A1/A2-agonist N-ethylcarboxamidoadenosine (NECA), partly abolished in turn by the A2B-selectve antagonist alloxazine, as well as the A1-selective agonist N6- cyclopentyladenosine (CPA). With detrusor from stable human bladders the effects of NECA and CPA were much smaller than that of adenosine. Adenosine also attenuated carbachol contractures, but mirrored by NECA (in turn blocked by alloxazine) only in guinea-pig tissue. Adenosine receptor subtype transcription was measured in human detrusor and was similar in both groups, except reduced A2A levels in overactive bladder. Suppression of the carbachol contracture in human detrusor is independent of A-receptor activation, in contrast to an A2B-dependent action with guinea-pig tissue. Adenosine also reduced nerve-mediated contractions, by an A1- dependent action suppressing ATP neurotransmitter action. PMID:27185496

  13. Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex

    PubMed Central

    Shi, Yanrong; Liu, Xiaoguang; Gebremedhin, Debebe; Falck, John R; Harder, David R; Koehler, Raymond C

    2008-01-01

    Adenosine, astrocyte metabotropic glutamate receptors (mGluRs), and epoxyeicosatrienoic acids (EETs) have been implicated in neurovascular coupling. Although A2A and A2B receptors mediate cerebral vasodilation to adenosine, the role of each receptor in the cerebral blood flow (CBF) response to neural activation remains to be fully elucidated. In addition, adenosine can amplify astrocyte calcium, which may increase arachidonic acid metabolites such as EETs. The interaction of these pathways was investigated by determining if combined treatment with antagonists exerted an additive inhibitory effect on the CBF response. During whisker stimulation of anesthetized rats, the increase in cortical CBF was reduced by approximately half after individual administration of A2B, mGluR and EET antagonists and EET synthesis inhibitors. Combining treatment of either a mGluR antagonist, an EET antagonist, or an EET synthesis inhibitor with an A2B receptor antagonist did not produce an additional decrement in the CBF response. Likewise, the CBF response also remained reduced by ~50% when an EET antagonist was combined with an mGluR antagonist or an mGluR antagonist plus an A2B receptor antagonist. In contrast, A2A and A3 receptor antagonists had no effect on the CBF response to whisker stimulation. We conclude that (1) adenosine A2B receptors, rather than A2A or A3 receptors, play a significant role in coupling cortical CBF to neuronal activity, and (2) the adenosine A2B receptor, mGluR, and EETs signaling pathways are not functionally additive, consistent with the possibility of astrocytic mGluR and adenosine A2B receptor linkage to the synthesis and release of vasodilatory EETs. PMID:17519974

  14. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    PubMed

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists. PMID:25063794

  15. Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: Signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2).

    PubMed

    Mohamed, R A; Agha, A M; Abdel-Rahman, A A; Nassar, N N

    2016-02-01

    Following brain ischemia reperfusion (IR), the dramatic increase in adenosine activates A2AR to induce further neuronal damage. Noteworthy, A2A antagonists have proven efficacious in halting IR injury, however, the detailed downstream signaling remains elusive. To this end, the present study aimed to investigate the possible involvement of phospho-extracellular signal-regulated kinase (pERK1/2) pathway in mediating protection afforded by the central A2A blockade. Male Wistar rats (250-270 g) subjected to bilateral carotid occlusion for 45 min followed by a 24-h reperfusion period showed increased infarct size corroborating histopathological damage, memory impairment and motor incoordination as well as increased locomotor activity. Those events were mitigated by the unilateral intrahippocampal administration of the selective A2A antagonist SCH58261 via a decrease in pERK1/2 downstream from diacyl glycerol (DAG) signaling. Consequent to pERK1/2 inhibition, reduced hippocampal microglial activation, glial tumor necrosis factor-alpha (TNF-α) and brain-derived neurotropic factor (BDNF) expression, glutamate (Glu), inducible nitric oxide synthase (iNOS) and thiobarbituric acid reactive substances (TBARS) were evident in animals receiving SCH58261. Additionally, the anti-inflammatory cytokine interleukin-10 (IL-10) increased following nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Taken all together, these events suppressed apoptotic pathways via a reduction in cytochrome c (Cyt. c) as well as caspase-3 supporting a crucial role for pERK1/2 inhibition in consequent reduction of inflammatory and excitotoxic cascades as well as correction of the redox imbalance. PMID:26642806

  16. Role of the A2B receptor–adenosine deaminase complex in colonic dysmotility associated with bowel inflammation in rats

    PubMed Central

    Antonioli, L; Fornai, M; Awwad, O; Giustarini, G; Pellegrini, C; Tuccori, M; Caputi, V; Qesari, M; Castagliuolo, I; Brun, P; Giron, M C; Scarpignato, C; Blandizzi, C; Colucci, R

    2014-01-01

    BACKGROUND AND PURPOSE Adenosine A2B receptors regulate several physiological enteric functions. However, their role in the pathophysiology of intestinal dysmotility associated with inflammation has not been elucidated. Hence, we investigated the expression of A2B receptors in rat colon and their role in the control of cholinergic motility in the presence of bowel inflammation. EXPERIMENTAL APPROACH Colitis was induced by 2,4-dinitrobenzenesulfonic acid (DNBS). Colonic A2B receptor expression and localization were examined by RT-PCR and immunofluorescence. The interaction between A2B receptors and adenosine deaminase was assayed by immunoprecipitation. The role of A2B receptors in the control of colonic motility was examined in functional experiments on longitudinal muscle preparations (LMPs). KEY RESULTS A2B receptor mRNA was present in colon from both normal and DNBS-treated rats but levels were increased in the latter. A2B receptors were predominantly located in the neuromuscular layer, but, in the presence of colitis, were increased mainly in longitudinal muscle. Functionally, the A2B receptor antagonist MRS 1754 enhanced both electrically-evoked and carbachol-induced cholinergic contractions in normal LMPs, but was less effective in inflamed tissues. The A2B receptor agonist NECA decreased colonic cholinergic motility, with increased efficacy in inflamed LMP. Immunoprecipitation and functional tests revealed a link between A2B receptors and adenosine deaminase, which colocalize in the neuromuscular compartment. CONCLUSIONS AND IMPLICATIONS Under normal conditions, endogenous adenosine modulates colonic motility via A2B receptors located in the neuromuscular compartment. In the presence of colitis, this inhibitory control is impaired due to a link between A2B receptors and adenosine deaminase, which catabolizes adenosine, thus preventing A2B receptor activation. PMID:24286264

  17. A2B Adenosine Receptor–Mediated Induction of IL-6 Promotes CKD

    PubMed Central

    Dai, Yingbo; Zhang, Weiru; Wen, Jiaming; Zhang, Yujin; Kellems, Rodney E.

    2011-01-01

    Chronic elevation of adenosine, which occurs in the setting of repeated or prolonged tissue injury, can exacerbate cellular dysfunction, suggesting that it may contribute to the pathogenesis of CKD. Here, mice with chronically elevated levels of adenosine, resulting from a deficiency in adenosine deaminase (ADA), developed renal dysfunction and fibrosis. Both the administration of polyethylene glycol–modified ADA to reduce adenosine levels and the inhibition of the A2B adenosine receptor (A2BR) attenuated renal fibrosis and dysfunction. Furthermore, activation of A2BR promoted renal fibrosis in both mice infused with angiotensin II (Ang II) and mice subjected to unilateral ureteral obstruction (UUO). These three mouse models shared a similar profile of profibrotic gene expression in kidney tissue, suggesting that they share similar signaling pathways that lead to renal fibrosis. Finally, both genetic and pharmacologic approaches showed that the inflammatory cytokine IL-6 mediates adenosine-induced renal fibrosis downstream of A2BR. Taken together, these data suggest that A2BR-mediated induction of IL-6 contributes to renal fibrogenesis and shows potential therapeutic targets for CKD. PMID:21511827

  18. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics.

    PubMed

    Janes, K; Symons-Liguori, A M; Jacobson, K A; Salvemini, D

    2016-04-01

    Chronic pain negatively impacts the quality of life in a variety of patient populations. The current therapeutic repertoire is inadequate in managing patient pain and warrants the development of new therapeutics. Adenosine and its four cognate receptors (A1 , A2A , A2B and A3 ) have important roles in physiological and pathophysiological states, including chronic pain. Preclinical and clinical studies have revealed that while adenosine and agonists of the A1 and A2A receptors have antinociceptive properties, their therapeutic utility is limited by adverse cardiovascular side effects. In contrast, our understanding of the A3 receptor is only in its infancy, but exciting preclinical observations of A3 receptor antinociception, which have been bolstered by clinical trials of A3 receptor agonists in other disease states, suggest pain relief without cardiovascular side effects and with sufficient tolerability. Our goal herein is to briefly discuss adenosine and its receptors in the context of pathological pain and to consider the current data regarding A3 receptor-mediated antinociception. We will highlight recent findings regarding the impact of the A3 receptor on pain pathways and examine the current state of selective A3 receptor agonists used for these studies. The adenosine-to-A3 receptor pathway represents an important endogenous system that can be targeted to provide safe, effective pain relief from chronic pain. PMID:26804983

  19. Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease.

    PubMed

    D'Alimonte, Iolanda; D'Auro, Mariagrazia; Citraro, Rita; Biagioni, Francesca; Jiang, Shucui; Nargi, Eleonora; Buccella, Silvana; Di Iorio, Patrizia; Giuliani, Patricia; Ballerini, Patrizia; Caciagli, Francesco; Russo, Emilio; De Sarro, Giovambattista; Ciccarelli, Renata

    2009-09-01

    The involvement of excitatory adenosine A(2A) receptors (A(2A)Rs), which probably contribute to the pathophysiology of convulsive seizures, has never been investigated in absence epilepsy. Here, we examined the distribution and function of A(2A)Rs in the brain of Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, a model of human absence epilepsy in which disease onset occurs 2-3 months after birth. In the cerebral areas that are mostly involved in the generation of absence seizures (somatosensory cortex, reticular and ventrobasal thalamic nuclei), A(2A)R density was lower in presymptomatic WAG/Rij rats than in control rats, as evaluated by immunohistochemistry and western blotting. Accordingly, in cortical/thalamic slices prepared from the brain of these rats, A(2A)R stimulation with the agonist 2-[4-(-2-carboxyethyl)-phenylamino]-5'-N-ethylcarboxamido-adenosine failed to modulate either cAMP formation, mitogen-activated protein kinase system, or K(+)-evoked glutamate release. In contrast, A(2A)R expression, signalling and function were significantly enhanced in brain slices from epileptic WAG/Rij rats as compared with matched control animals. Additionally, the in vivo injection of the A(2A)R agonist CGS21680, or the antagonist 5-amino-7-(2-phenylethyl)-2-(2-fuyl)-pyrazolo-(4,3-c)1,2,4-triazolo(1,5-c)-pyrimidine, in the examined brain areas of epileptic rats, increased and decreased, respectively, the number/duration of recorded spontaneous spike-wave discharges in a dose-dependent manner during a 1-5 h post-treatment period. Our results support the hypothesis that alteration of excitatory A(2A)R is involved in the pathogenesis of absence seizures and might represent a new interesting target for the therapeutic management of this disease. PMID:19723291

  20. Characterization of adenosine receptors involved in adenosine-induced bronchoconstriction in allergic rabbits.

    PubMed Central

    el-Hashim, A.; D'Agostino, B.; Matera, M. G.; Page, C.

    1996-01-01

    1. Recent work has suggested that adenosine may be involved in asthma via the activation of A1 receptors. However, the role of the recently cloned A3 receptor in airways is largely unknown. In the present study, we have investigated the role of the A3 receptor in adenosine-induced bronchoconstriction in allergic rabbits. 2. Aerosol challenge of antigen (Ag) immunized rabbits with the adenosine precursor, adenosine 5'-monophosphate (AMP), resulted in a dose-dependent fall in dynamic compliance (Cdyn). The maximum fall in Cdyn in these rabbits was significantly greater than that in litter matched, sham immunized animals (P < 0.05). However, there was no significant difference in the maximum increase in airways resistance (Rt) between Ag and sham immunized rabbits (P > 0.05). 3. Aerosol challenge of Ag immunized rabbits with cyclopentyl-adenosine (CPA) (A1-receptor agonist) elicited a dose-dependent fall in Cdyn in Ag immunized rabbits and the maximum fall in Cdyn in these rabbits was significantly greater than that observed in sham immunized rabbits (P < 0.05). Similarly, CPA induced dose-dependent increases in R1 in Ag immunized rabbits whereas sham immunized rabbits failed to respond to CPA within the same dose range. The maximum increase in RL in Ag immunized rabbits was significantly greater than that of sham immunized rabbits (P < 0.05). 4. Aerosol challenge of either Ag or sham immunized rabbits with the A3 agonist aminophenylethyladenosine (APNEA) did not elicit dose-dependent changes in either RL or Cdyn. Moreover, there was no significant difference in the maximum response, measured by either parameter, between the two animal groups (P > 0.05). 5. These data provide further evidence for a role of the A1 receptor in the airways, but do not support a role for the A3 receptor in adenosine-induced bronchoconstriction in the allergic rabbit. PMID:8937732

  1. Getting personal: Endogenous adenosine receptor signaling in lymphoblastoid cell lines.

    PubMed

    Hillger, J M; Diehl, C; van Spronsen, E; Boomsma, D I; Slagboom, P E; Heitman, L H; IJzerman, A P

    2016-09-01

    Genetic differences between individuals that affect drug action form a challenge in drug therapy. Many drugs target G protein-coupled receptors (GPCRs), and a number of receptor variants have been noted to impact drug efficacy. This, however, has never been addressed in a systematic way, and, hence, we studied real-life genetic variation of receptor function in personalized cell lines. As a showcase we studied adenosine A2A receptor (A2AR) signaling in lymphoblastoid cell lines (LCLs) derived from a family of four from the Netherlands Twin Register (NTR), using a non-invasive label-free cellular assay. The potency of a partial agonist differed significantly for one individual. Genotype comparison revealed differences in two intron SNPs including rs2236624, which has been associated with caffeine-induced sleep disorders. While further validation is needed to confirm genotype-specific effects, this set-up clearly demonstrated that LCLs are a suitable model system to study genetic influences on A2AR response in particular and GPCR responses in general. PMID:27297283

  2. Adenosine 2A receptors modulate reward behaviours for methamphetamine.

    PubMed

    Chesworth, Rose; Brown, Robyn M; Kim, Jee Hyun; Ledent, Catherine; Lawrence, Andrew J

    2016-03-01

    Addiction to methamphetamine (METH) is a global health problem for which there are no approved pharmacotherapies. The adenosine 2A (A2 A ) receptor presents a potential therapeutic target for METH abuse due to its modulatory effects on striatal dopamine and glutamate transmission. Notably, A2 A receptor signalling has been implicated in the rewarding effects of alcohol, cocaine and opiates; yet, the role of this receptor in METH consumption and seeking is essentially unknown. Therefore, the current study used A2 A knockout (KO) mice to assess the role of A2 A in behaviours relevant to METH addiction. METH conditioned place preference was absent in A2 A KO mice compared with wild-type (WT) littermates. Repeated METH treatment produced locomotor sensitization in both genotypes; however, sensitization was attenuated in A2 A KO mice in a dose-related manner. METH intravenous self-administration was intact in A2 A KO mice over a range of doses and schedules of reinforcement. However, the motivation to self-administer was reduced in A2 A KO mice. Regression analysis further supported the observation that the motivation to self-administer METH was reduced in A2 A KO mice even when self-administration was similar to WT mice. Sucrose self-administration was also reduced in A2 A KO mice but only at higher schedules of reinforcement. Collectively, these data suggest that A2 A signalling is critically required to integrate rewarding and motivational properties of both METH and natural rewards. PMID:25612195

  3. Exploring the 2- and 5-positions of the pyrazolo[4,3-d]pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors.

    PubMed

    Squarcialupi, Lucia; Falsini, Matteo; Catarzi, Daniela; Varano, Flavia; Betti, Marco; Varani, Katia; Vincenzi, Fabrizio; Dal Ben, Diego; Lambertucci, Catia; Volpini, Rosaria; Colotta, Vittoria

    2016-06-15

    A new series of 7-aminopyrazolo[4,3-d]pyrimidine derivatives (1-31) were synthesized to evaluate some structural modifications at the 2- and 5-positions aimed at shifting affinity towards the human (h) A2A adenosine receptor (AR) or both hA2A and hA1 ARs. The most active compounds were those featured by a 2-furyl or 5-methylfuran-2-yl moiety at position 5, combined with a benzyl or a substituted-benzyl group at position 2. Several of these derivatives (22-31) displayed nanomolar affinity for the hA2A AR (Ki=3.62-57nM) and slightly lower for the hA1 ARs, thus showing different degrees (3-22 fold) of hA2A versus hA1 selectivity. In particular, the 2-(2-methoxybenzyl)-5-(5-methylfuran-2-yl) derivative 25 possessed the highest hA2A and hA1 AR affinities (Ki=3.62nM and 18nM, respectively) and behaved as potent antagonist at both these receptors (cAMP assays). Its 2-(2-hydroxybenzyl) analog 26 also showed a high affinity for the hA2A AR (Ki=5.26nM) and was 22-fold selective versus the hA1 subtype. Molecular docking investigations performed at the hA2A AR crystal structure and at a homology model of the hA1 AR allowed us to represent the hypothetical binding mode of our derivatives and to rationalize the observed SARs. PMID:27161878

  4. 2-Aminopyrimidines as dual adenosine A1/A2A antagonists.

    PubMed

    Robinson, Sarel J; Petzer, Jacobus P; Terre'Blanche, Gisella; Petzer, Anél; van der Walt, Mietha M; Bergh, Jacobus J; Lourens, Anna C U

    2015-11-01

    In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A1 and A2A receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m) was identified as a compound with high affinities for both receptors, with an A2AKi value of 6.34 nM and an A1Ki value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A2A receptors was illustrated for compounds 8k and 8m since these compounds attenuated haloperidol-induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A2A binding site most likely involve Phe168 and Asn253, interactions which are similar for structurally related adenosine A2A receptor antagonists. PMID:26462195

  5. Identification of possible adenosine receptors in vascular smooth muscle

    SciTech Connect

    Doctrow, S.R.

    1985-01-01

    Adenosine is a vasodilator and has been implicated in increased blood flow in tissues that undergo energy deficiency. During conditions such as hypoxia and ischemia, adenosine is produced and is said to increase blood flow by relaxing the vascular smooth muscle (VSM) lining the resistance vessels. The goal of this research was to identify receptors that might be responsible for adenosine-mediated VSM relaxation. When an insoluble fraction from calf aortic VSM was incubated with /sup 32/P-ATP, two components were phosphorylated. One was identified as myosin light chain by MW, pl, and immunoprecipitation. The other product was identified as phosphatidylinositol-4-phosphate (DPI) by tic. Both phosphorylations were inhibited by adenosine and by 5'-chloro-5'-deoxyadenosine (Cl-Ado). DPI production was much more sensitive to the nucleosides than was myosin phosphorylation. Neither inhibition involved change in cAMP production. Phosphatidylinositol (Pl) kinase in the VSM membranes required magnesium, was activated and solubilized by Triton X-100, and phosphorylated both endogenous and exogenous Pl. Cl-Ado inhibited Pl kinase in a manner competitive with respect to ATP and noncompetitive with respect to Pl. Adenosine and adenosine analogs modified in the ribose ring were inhibitors with potencies comparable to that of Cl-Ado. Adenine nucleotides and purine-modified adenosine analogs were weaker inhibitors than Cl-Ado.

  6. Cloning and expression of an A1 adenosine receptor from rat brain

    SciTech Connect

    Mahan, L.C.; McVittie, L.D.; Smyk-Randall, E.M.; Nakata, H.; Monsma, F.J. Jr.; Gerfen, C.R.; Sibley, D.R. )

    1991-07-01

    The authors have used the polymerase chain reaction technique to selectively amplify guanine nucleotide-binding regulatory protein (G protein)-coupled receptor cDNA sequences from rat striatal mRNA, using sets of highly degenerate primers derived from transmembrane sequences of previously cloned G protein-coupled receptors. A novel cDNA fragment was identified, which exhibits considerable homology to various members of the G protein-coupled receptor family. This fragment was used to isolate a full-length cDNA from a rat striatal library. A 2.2-kilobase clone was obtained that encodes a protein of 326 amino acids with seven transmembrane domains, as predicted by hydropathy analysis. Stably transfected mouse A9-L cells and Chinese hamster ovary cells that expressed mRNA for this clone were screened with putative receptor ligands. Saturable and specific binding sites for the A1 adenosine antagonist (3H)-1,3-dipropyl-8-cyclopentylxanthine were identified on membranes from transfected cells. The rank order of potency and affinities of various adenosine agonist and antagonist ligands confirmed the identity of this cDNA clone as an A1 adenosine receptor. The high affinity binding of A1 adenosine agonists was shown to be sensitive to the nonhydrolyzable GTP analog guanylyl-5{prime}-imidodiphosphate. In adenylyl cyclase assays, adenosine agonists inhibited forskolin-stimulated cAMP production by greater than 50%, in a pharmacologically specific fashion. Northern blot and in situ hybridization analyses of receptor mRNA in brain tissues revealed two transcripts of 5.6 and 3.1 kilobases, both of which were abundant in cortex, cerebellum, hippocampus, and thalamus, with lower levels in olfactory bulb, striatum, mesencephalon, and retina. These regional distribution data are in good agreement with previous receptor autoradiographic studies involving the A1 adenosine receptor.

  7. Chaperoning of the A1-adenosine receptor by endogenous adenosine - an extension of the retaliatory metabolite concept.

    PubMed

    Kusek, Justyna; Yang, Qiong; Witek, Martin; Gruber, Christian W; Nanoff, Christian; Freissmuth, Michael

    2015-01-01

    Cell-permeable orthosteric ligands can assist folding of G protein-coupled receptors in the endoplasmic reticulum (ER); this pharmacochaperoning translates into increased cell surface levels of receptors. Here we used a folding-defective mutant of human A1-adenosine receptor as a sensor to explore whether endogenously produced adenosine can exert a chaperoning effect. This A1-receptor-Y(288)A was retained in the ER of stably transfected human embryonic kidney 293 cells but rapidly reached the plasma membrane in cells incubated with an A1 antagonist. This was phenocopied by raising intracellular adenosine levels with a combination of inhibitors of adenosine kinase, adenosine deaminase, and the equilibrative nucleoside transporter: mature receptors with complex glycosylation accumulated at the cell surface and bound to an A1-selective antagonist with an affinity indistinguishable from the wild-type A1 receptor. The effect of the inhibitor combination was specific, because it did not result in enhanced surface levels of two folding-defective human V2-vasopressin receptor mutants, which were susceptible to pharmacochaperoning by their cognate antagonist. Raising cellular adenosine levels by subjecting cells to hypoxia (5% O2) reproduced chaperoning by the inhibitor combination and enhanced surface expression of A1-receptor-Y(288)A within 1 hour. These findings were recapitulated for the wild-type A1 receptor. Taken together, our observations document that endogenously formed adenosine can chaperone its cognate A1 receptor. This results in a positive feedback loop that has implications for the retaliatory metabolite concept of adenosine action: if chaperoning by intracellular adenosine results in elevated cell surface levels of A1 receptors, these cells will be more susceptible to extracellular adenosine and thus more likely to cope with metabolic distress. PMID:25354767

  8. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  9. Association of adenosine receptor gene polymorphisms and in vivo adenosine A1 receptor binding in the human brain.

    PubMed

    Hohoff, Christa; Garibotto, Valentina; Elmenhorst, David; Baffa, Anna; Kroll, Tina; Hoffmann, Alana; Schwarte, Kathrin; Zhang, Weiqi; Arolt, Volker; Deckert, Jürgen; Bauer, Andreas

    2014-12-01

    Adenosine A1 receptors (A1ARs) and the interacting adenosine A2A receptors are implicated in neurological and psychiatric disorders. Variants within the corresponding genes ADORA1 and ADORA2A were shown associated with pathophysiologic alterations, particularly increased anxiety. It is unknown so far, if these variants might modulate the A1AR distribution and availability in different brain regions. In this pilot study, the influence of ADORA1 and ADORA2A variants on in vivo A1AR binding was assessed with the A1AR-selective positron emission tomography (PET) radioligand [(18)F]CPFPX in brains of healthy humans. Twenty-eight normal control subjects underwent PET procedures to calculate the binding potential BPND of [(18)F]CPFPX in cerebral regions and to assess ADORA1 and ADORA2A single nucleotide polymorphism (SNP) effects on regional BPND data. Our results revealed SNPs of both genes associated with [(18)F]CPFPX binding to the A1AR. The strongest effects that withstood even Bonferroni correction of multiple SNP testing were found in non-smoking subjects (N=22) for ADORA2A SNPs rs2236624 and rs5751876 (corr. Pall<0.05). SNP alleles previously identified at risk for increased anxiety like the rs5751876 T-allele corresponded to consistently higher A1AR availability in all brain regions. Our data indicate for the first time that variation of A1AR availability was associated with ADORA SNPs. The finding of increased A1AR availability in regions of the fear network, particularly in ADORA2A risk allele carriers, strongly warrants evaluation and replication in further studies including individuals with increased anxiety. PMID:24943643

  10. 2-Triazole-Substituted Adenosines: A New Class of Selective A3 Adenosine Receptor Agonists, Partial Agonists, and Antagonists

    PubMed Central

    Cosyn, Liesbet; Palaniappan, Krishnan K.; Kim, Soo-Kyung; Duong, Heng T.; Gao, Zhan-Guo; Jacobson, Kenneth A.; Van Calenbergh, Serge

    2016-01-01

    “Click chemistry” was explored to synthesize two series of 2-(1,2,3-triazolyl)adenosine derivatives (1–14). Binding affinity at the human A1, A2A, and A3ARs (adenosine receptors) and relative efficacy at the A3AR were determined. Some triazol-1-yl analogues showed A3AR affinity in the low nanomolar range, a high ratio of A3/A2A selectivity, and a moderate-to-high A3/A1 ratio. The 1,2,3-triazol-4-yl regiomers typically showed decreased A3AR affinity. Sterically demanding groups at the adenine C2 position tended to reduce relative A3AR efficacy. Thus, several 5′-OH derivatives appeared to be selective A3AR antagonists, i.e., 10, with 260-fold binding selectivity in comparison to the A1AR and displaying a characteristic docking mode in an A3AR model. The corresponding 5′-ethyluronamide analogues generally showed increased A3AR affinity and behaved as full agonists, i.e., 17, with 910-fold A3/A1 selectivity. Thus, N6-substituted 2-(1,2,3-triazolyl)-adenosine analogues constitute a novel class of highly potent and selective nucleoside-based A3AR antagonists, partial agonists, and agonists. PMID:17149867

  11. Evidence for deactivation of both ectosolic and cytosolic 5'-nucleotidase by adenosine A1 receptor activation in the rat cardiomyocytes.

    PubMed Central

    Kitakaze, M; Hori, M; Minamino, T; Takashima, S; Komamura, K; Node, K; Kurihara, T; Morioka, T; Sato, H; Inoue, M

    1994-01-01

    Adenosine, an important regulator of many cardiac functions, is produced by ectosolic and cytosolic 5'-nucleotidase. The activity of these enzymes is influenced by several ischemia-sensitive metabolic factors, e.g., ATP, ADP, H+, and inorganic phosphate. However, there is no clear evidence that adenosine itself affects 5'-nucleotidase activity. This study tested whether adenosine decreases the activity of ectosolic and cytosolic 5'-nucleotidase. Cardiomyocytes were isolated from adult male Wistar rats and suspended in the modified Hepes-Tyrode buffer solution. After stabilization, isolated cardiomyocytes were incubated with and without adenosine (10(-9) - 10(-4) M). Ectosolic and cytosolic 5'-nucleotidase activity was decreased by exogenous adenosine (ectosolic 5'-nucleotidase activity, 20.6 +/- 2.3 vs. 8.6 +/- 1.6 mumol/min per 10(6) cells [P < 0.05]; cytosolic 5'-nucleotidase activity, 2.47 +/- 0.58 vs. 1.61 +/- 0.54 mumol/min per 10(6) cells [P < 0.05] at 10(-6) M adenosine) after 30 min. The decrease in ectosolic and cytosolic 5'-nucleotidase activity was inhibited by 8-phenyltheophylline and pertussis toxin, and was mimicked by N6-cyclohexyladenosine, an adenosine A1 receptor agonist. Neither CGS21680C, and A2 receptor agonist, nor cycloheximide deactivated ectosolic and cytosolic 5'-nucleotidase. Thus, we conclude that activation of adenosine A1 receptors is coupled to Gi proteins and attenuates ectosolic and cytosolic 5'-nucleotidase activity in rat cardiomyocytes. Images PMID:7989602

  12. Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses.

    PubMed

    Young, Arabella; Ngiow, Shin Foong; Barkauskas, Deborah S; Sult, Erin; Hay, Carl; Blake, Stephen J; Huang, Qihui; Liu, Jing; Takeda, Kazuyoshi; Teng, Michele W L; Sachsenmeier, Kris; Smyth, Mark J

    2016-09-12

    Preclinical studies targeting the adenosinergic pathway have gained much attention for their clinical potential in overcoming tumor-induced immunosuppression. Here, we have identified that co-blockade of the ectonucleotidase that generates adenosine CD73 and the A2A adenosine receptor (A2AR) that mediates adenosine signaling in leuokocytes, by using compound gene-targeted mice or therapeutics that target these molecules, limits tumor initiation, growth, and metastasis. This tumor control requires effector lymphocytes and interferon-γ, while antibodies targeting CD73 promote an optimal therapeutic response in vivo when engaging activating Fc receptors. In a two-way mixed leukocyte reaction using a fully human anti-CD73, we demonstrated that Fc receptor binding augmented the production of proinflammatory cytokines. PMID:27622332

  13. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    PubMed Central

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  14. The adenosine A2A receptor antagonist, istradefylline enhances anti-parkinsonian activity induced by combined treatment with low doses of L-DOPA and dopamine agonists in MPTP-treated common marmosets.

    PubMed

    Uchida, Shin-ichi; Soshiroda, Kazuhiro; Okita, Eri; Kawai-Uchida, Mika; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2015-11-01

    The adenosine A2A receptor antagonist, istradefylline improves motor function in patients with advanced Parkinson's disease (PD) optimally treated with a combination of L-DOPA and a dopamine agonist without increasing the risk of troublesome dyskinesia. However, the effects of istradefylline on motor function when administered in combination with low dose of L-DOPA and dopamine agonists as occurs in early PD are unknown. We investigated whether istradefylline enhances the combined anti-parkinsonian effects of a suboptimal dose of L-DOPA and a threshold dose of either the non-ergot dopamine agonist, ropinirole or the ergot dopamine agonist, pergolide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset. Threshold doses of ropinirole (0.025-0.075 mg/kg p.o.) and pergolide (0.01 mg/kg p.o.) produced a weak anti-parkinsonian effect. Co-administration of a suboptimal dose of L-DOPA (2.5mg/kg p.o.) with threshold doses of the dopamine agonists enhanced their anti-parkinsonian effect that led to increased 'ON' time without dyskinesia appearing. Administering istradefylline (10mg/kg p.o.) with the threshold doses of dopamine agonists and the suboptimal dose of L-DOPA in a triple combination caused a further enhancement of the anti-parkinsonian response but dyskinesia was still absent. In early PD, dopamine agonists are often used as first-line monotherapy, but efficacy is usually lost within a few years, at which time L-DOPA is added but with the risk of dyskinesia appearance. These results show that istradefylline is effective in improving motor function in combination with low dose dopaminergic drug treatment without provoking dyskinesia. PMID:26415982

  15. Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation

    PubMed Central

    Sassi, Yassine; Ahles, Andrea; Truong, Dong-Jiunn Jeffery; Baqi, Younis; Lee, Sang-Yong; Husse, Britta; Hulot, Jean-Sébastien; Foinquinos, Ariana; Thum, Thomas; Müller, Christa E.; Dendorfer, Andreas; Laggerbauer, Bernhard; Engelhardt, Stefan

    2014-01-01

    Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues. PMID:25401477

  16. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    PubMed

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  17. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  18. Bench-to-bedside review: Adenosine receptors – promising targets in acute lung injury?

    PubMed Central

    Schepp, Carsten P; Reutershan, Jörg

    2008-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening disorders that have substantial adverse effects on outcomes in critically ill patients. ALI/ARDS develops in response to pulmonary or extrapulmonary injury and is characterized by increased leakage from the pulmonary microvasculature and excessive infiltration of polymorphonuclear cells into the lung. Currently, no therapeutic strategies are available to control these fundamental pathophysiological processes in human ALI/ARDS. In a variety of animal models and experimental settings, the purine nucleoside adenosine has been demonstrated to regulate both endothelial barrier integrity and polymorphonuclear cell trafficking in the lung. Adenosine exerts its effects through four G-protein-coupled receptors (A1, A2A, A2B, and A3) that are expressed on leukocytes and nonhematopoietic cells, including endothelial and epithelial cells. Each type of adenosine receptor (AR) is characterized by a unique pharmacological and physiological profile. The development of selective AR agonists and antagonists, as well as the generation of gene-deficient mice, has contributed to a growing understanding of the cellular and molecular processes that are critically involved in the development of ALI/ARDS. Adenosine-dependent pathways are involved in both protective and proinflammatory effects, highlighting the need for a detailed characterization of the distinct pathways. This review summarizes current experimental observations on the role of adenosine signaling in the development of acute lung injury and illustrates that adenosine and ARs are promising targets that may be exploited in the development of innovative therapeutic strategies. PMID:18828873

  19. Adenosine A2A Agonist Improves Lung Function During Ex-vivo Lung Perfusion

    PubMed Central

    Emaminia, Abbas; LaPar, Damien J.; Zhao, Yunge; Steidle, John F.; Harris, David A.; Linden, Joel; Kron, Irving L.; Lau, Christine L.

    2012-01-01

    Background Ex-vivo lung perfusion (EVLP) is a novel technique to assess, and potentially repair marginal lungs that may otherwise be rejected for transplantation. Adenosine has been shown to protect against lung ischemia-reperfusion injury through its A2A receptor. We hypothesized that combining EVLP with adenosine A2A receptor agonist treatment would enhance lung functional quality and increase donor lung usage. Methods Eight bilateral pig lungs were harvested and flushed with cold Perfadex. After 14 hours storage at 4°C, EVLP was performed for 5 hours on two explanted lung groups: 1) Control group lungs (n=4), were perfused with Steen Solution and Dimethyl sulfoxide (DMSO), and 2) treated group lungs (n=4) received 10μM CGS21680, a selective A2A receptor agonist, in a Steen Solution-primed circuit. Lung histology, tissue cytokines, gas analysis and pulmonary function were compared between groups. Results Treated lungs demonstrated significantly less edema as reflected by wet-dry weight ratio (6.6 vs. 5.2, p<0.03) and confirmed by histology. In addition, treated lung demonstrated significantly lower levels of interferon gamma (45.1 vs. 88.5, p<0.05). Other measured tissue cytokines (interleukin (IL) 1 beta, IL-6, and IL-8) were lower in treatment group, but values failed to reach statistical significance. Oxygenation index was improved in the treated group (1.5 vs. 2.3, p<0.01) as well as mean airway pressure (10.3 vs. 13 p<0.009). Conclusions EVLP is a novel and efficient way to assess and optimize lung function and oxygen exchange within donor lungs, and the use of adenosine A2A agonist potentiates its potential. EVLP with the concomitant administration of A2A agonist may enhance donor lung quality and could increase the donor lung pool for transplantation. PMID:22051279

  20. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    PubMed

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications. PMID:26930564

  1. Total and partial sleep deprivation: Effects on plasma TNF-αRI, TNF-αRII, and IL-6, and reversal by caffeine operating through adenosine A2 receptor

    NASA Astrophysics Data System (ADS)

    Shearer, William T.; Reuben, James M.; Lee, Bang-Ning; Mullington, Janet; Price, Nicholas; Dinges, David F.

    2000-01-01

    Plasma levels of IL-6 and TNF-α are elevated in individuals who are deprived of sleep. TNF-α regulates expression of its soluble receptors, sTNF-αRI and sTNF-αRII. Sleep deprivation (SD) also increases extracellular adenosine that induces sedation and sleep. An antagonist of adenosine, caffeine, raises exogenous adenosine levels, stimulates the expression of IL-6 and inhibits the release of TNF-α. Our objective was to determine the effect of total SD (TSD) or partial SD (PSD) on the levels of these sleep regulatory molecules in volunteers who experienced SD with or without the consumption of caffeine. Plasma levels of IL-6, sTNF-αRI and sTNF-αRII were assayed by ELISA in samples collected at 90-min intervals from each subject over an 88-hour period. The results were analyzed by the repeated measures ANOVA. Whereas only TSD significantly increased sTNF-αRI over time, caffeine suppressed both sTNF-α receptors in TSD and PSD subjects. The selective increase in the expression of sTNF-αRI and not sTNF-αRII in subjects experiencing TSD with caffeine compared with others experiencing PSD with caffeine has not been previously reported. Moreover, caffeine significantly increased IL-6 in TSD subjects compared with those who did not receive caffeine. However, subjects who were permitted intermittent naps (PSD) ablated the effects of caffeine and reduced their level of IL-6 to that of the TSD group. These data further lend support to the hypothesis that the sTNF-αRI and not the sTNF-αRII plays a significant role in sleep regulation by TNF-α. .

  2. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor.

    PubMed

    Johansson, B; Halldner, L; Dunwiddie, T V; Masino, S A; Poelchen, W; Giménez-Llort, L; Escorihuela, R M; Fernández-Teruel, A; Wiesenfeld-Hallin, Z; Xu, X J; Hårdemark, A; Betsholtz, C; Herlenius, E; Fredholm, B B

    2001-07-31

    Caffeine is believed to act by blocking adenosine A(1) and A(2A) receptors (A(1)R, A(2A)R), indicating that some A(1) receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A(1)R (A(1)R(-/-)). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body temperature. In most behavioral tests they were similar to A(1)R(+/+) mice, but A(1)R(-/-) mice showed signs of increased anxiety. Electrophysiological recordings from hippocampal slices revealed that both adenosine-mediated inhibition and theophylline-mediated augmentation of excitatory glutamatergic neurotransmission were abolished in A(1)R(-/-) mice. In A(1)R(+/-) mice the potency of adenosine was halved, as was the number of A(1)R. In A(1)R(-/-) mice, the analgesic effect of intrathecal adenosine was lost, and thermal hyperalgesia was observed, but the analgesic effect of morphine was intact. The decrease in neuronal activity upon hypoxia was reduced both in hippocampal slices and in brainstem, and functional recovery after hypoxia was attenuated. Thus A(1)Rs do not play an essential role during development, and although they significantly influence synaptic activity, they play a nonessential role in normal physiology. However, under pathophysiological conditions, including noxious stimulation and oxygen deficiency, they are important. PMID:11470917

  3. Adenosine deaminase inhibition enhances the inotropic response mediated by A1 adenosine receptor in hyperthyroid guinea pig atrium.

    PubMed

    Kemeny-Beke, Adam; Jakab, Anita; Zsuga, Judit; Vecsernyes, Miklos; Karsai, Denes; Pasztor, Fanni; Grenczer, Maria; Szentmiklosi, Andras Jozsef; Berta, Andras; Gesztelyi, Rudolf

    2007-08-01

    The aim of the present study was to test the hypothesis that inhibition of adenosine deaminase (ADA) enhances the efficiency of signal-transduction of myocardial A1 adenosine receptors in hyperthyroidism. The inotropic response to N6-cyclopentyladenosine (CPA), a selective A1 adenosine receptor agonist resistant to ADA, was investigated in the absence or presence of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an ADA and cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2) inhibitor, or of pentostatin (2'-deoxycoformycin; DCF), an exclusive ADA inhibitor, in left atria isolated from eu- or hyperthyroid guinea pigs. Both ADA inhibitors enhanced the effect of CPA only in hyperthyroid atria. EHNA significantly increased the Emax (mean+/-S.E.M.) from 83.8+/-1.2% to 93.4+/-1.2%, while DCF significantly decreased the logEC50 from -7.5+/-0.07 to -7.83+/-0.07 in hyperthyroid samples. Conversely, EHNA also diminished the logEC50 (from -7.5+/-0.07 to -7.65+/-0.07) and DCF also raised the Emax (from 83.8+/-1.2% to 85.7+/-2%) in hyperthyroidism, but these changes were not significant. In conclusion, ADA inhibition moderately but significantly enhanced the efficiency of A(1) adenosine receptor signaling pathway in the hyperthyroid guinea pig atrium. This suggests that elevated intracellular adenosine level caused by ADA inhibition may improve the suppressed responsiveness to A1 adenosine receptor agonists associated with the hyperthyroid state. Alternatively or in addition, the role of decreased concentration of adenosine degradation products cannot be excluded. Furthermore, in the case of EHNA, inhibition of PDE2 also appears to contribute to the enhanced A1 adenosine receptor signaling in the hyperthyroid guinea pig atrium. PMID:17574432

  4. Adenosine transporters and receptors: key elements for retinal function and neuroprotection.

    PubMed

    Dos Santos-Rodrigues, Alexandre; Pereira, Mariana R; Brito, Rafael; de Oliveira, Nádia A; Paes-de-Carvalho, Roberto

    2015-01-01

    Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. PMID:25817878

  5. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans. PMID:19661449

  6. Design and evaluation of xanthine based adenosine receptor antagonists: Potential hypoxia targeted immunotherapies

    PubMed Central

    Thomas, Rhiannon; Lee, Joslynn; Chevalier, Vincent; Sadler, Sara; Selesniemi, Kaisa; Hatfield, Stephen; Sitkovsky, Michail; Ondrechen, Mary Jo; Jones, Graham B.

    2015-01-01

    Molecular modeling techniques were applied to the design, synthesis and optimization of a new series of xanthine based adenosine A2A receptor antagonists. The optimized lead compound was converted to a PEG derivative and a functional in vitro bioassay used to confirm efficacy. Additionally, the PEGylated version showed enhanced aqueous solubility and was inert to photoisomerization, a known limitation of existing antagonists of this class. PMID:24126093

  7. The adenosine system modulates Toll-like receptor function: basic mechanisms, clinical correlates and translational opportunities

    PubMed Central

    Coombs, Melanie R. Power; Belderbos, Mirjam E.; Gallington, Leighanne C.; Bont, Louis; Levy, Ofer

    2014-01-01

    Adenosine is an endogenous purine metabolite whose concentration in human blood plasma rises from nanomolar to micromolar during stress or hypoxia. Leukocytes express seven-transmembrane adenosine receptors whose engagement modulates Toll-like receptor-mediated cytokine responses, in part via modulation of intracellular cyclic adenosine monophosphate (cAMP). Adenosine congeners are used clinically to treat arrhythmias and apnea of prematurity. Herein we consider the potential of adenosine congeners as innate immune response modifiers to prevent and/or treat infection. PMID:21342073

  8. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning.

    PubMed Central

    Heurteaux, C; Lauritzen, I; Widmann, C; Lazdunski, M

    1995-01-01

    Preconditioning with sublethal ischemia protects against neuronal damage after subsequent lethal ischemic insults in hippocampal neurons. A pharmacological approach using agonists and antagonists at the adenosine A1 receptor as well as openers and blockers of ATP-sensitive K+ channels has been combined with an analysis of neuronal death and gene expression of subunits of glutamate and gamma-aminobutyric acid receptors, HSP70, c-fos, c-jun, and growth factors. It indicates that the mechanism of ischemic tolerance involves a cascade of events including liberation of adenosine, stimulation of adenosine A1 receptors, and, via these receptors, opening of sulfonylurea-sensitive ATP-sensitive K+ channels. Images Fig. 2 Fig. 3 PMID:7753861

  9. Functionalized Congeners of 1,4-Dihydropyridines as Antagonist Molecular Probes for A3 Adenosine Receptors

    PubMed Central

    Li, An-Hu; Chang, Louis; Ji, Xiao-duo; Melman, Neli; Jacobson, Kenneth A.

    2012-01-01

    4-Phenylethynyl-6-phenyl-1,4-dihydropyridine derivatives are selective antagonists at human A3 adenosine receptors, with Ki values in a radioligand binding assay vs [125I]AB-MECA [N6-(4-amino-3-iodobenzyl)-5′-N-methylcarbamoyl-adenosine] in the submicromolar range. In this study, functionalized congeners of 1,4-dihydropyridines were designed as chemically reactive adenosine A3 antagonists, for the purpose of synthesizing molecular probes for this receptor subtype. Selectivity of the new analogues for cloned human A3 adenosine receptors was determined in radioligand binding in comparison to binding at rat brain A1 and A2A receptors. Benzyl ester groups at the 3- and/or 5-positions and phenyl groups at the 2- and/or 6-positions were introduced as potential sites for chain attachment. Structure–activity analysis at A3 adenosine receptors indicated that 3,5-dibenzyl esters, but not 2,6-diphenyl groups, are tolerated in binding. Ring substitution of the 5-benzyl ester with a 4-fluorosulfonyl group provided enhanced A3 receptor affinity resulting in a Ki value of 2.42 nM; however, a long-chain derivative containing terminal amine functionalization at the 4-position of the 5-benzyl ester showed only moderate affinity. This sulfonyl fluoride derivative appeared to bind irreversibly to the human A3 receptor (1 h incubation at 100 nM resulting in the loss of 56% of the specific radioligand binding sites), while the binding of other potent dihydropyridines and other antagonists was generally reversible. At the 3-position of the dihydropyridine ring, an amine-functionalized chain attached at the 4-position of a benzyl ester provided higher A3 receptor affinity than the corresponding 5-position isomer. This amine congener was also used as an intermediate in the synthesis of a biotin conjugate, which bound to A3 receptors with a Ki value of 0.60 μM. PMID:10411465

  10. Cerebral adenosine A₁ receptors are upregulated in rodent encephalitis.

    PubMed

    Paul, Soumen; Khanapur, Shivashankar; Boersma, Wytske; Sijbesma, Jurgen W; Ishiwata, Kiichi; Elsinga, Philip H; Meerlo, Peter; Doorduin, Janine; Dierckx, Rudi A; van Waarde, Aren

    2014-05-15

    Adenosine A1 receptors (A1Rs) are implied in the modulation of neuroinflammation. Activation of cerebral A1Rs acts as a brake on the microglial response after traumatic brain injury and has neuroprotective properties in animal models of Parkinson's disease and multiple sclerosis. Neuroinflammatory processes in turn may affect the expression of A1Rs, but the available data is limited and inconsistent. Here, we applied an animal model of encephalitis to assess how neuroinflammation affects the expression of A1Rs. Two groups of animals were studied: Infected rats (n=7) were intranasally inoculated with herpes simplex virus-1 (HSV-1, 1 × 10(7) plaque forming units), sham-infected rats (n=6) received only phosphate-buffered saline. Six or seven days later, microPET scans (60 min with arterial blood sampling) were made using the tracer 8-dicyclopropyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX). Tracer clearance from plasma and partition coefficient (K₁/k₂ estimated from a 2-tissue compartment model fit) were not significantly altered after virus infection. PET tracer distribution volume calculated from a Logan plot was significantly increased in the hippocampus (+37%) and medulla (+27%) of virus infected rats. Tracer binding potential (k₃/k₄ estimated from the model fit) was significantly increased in the cerebellum (+87%) and the medulla (+148%) which may indicate increased A1R expression. This was confirmed by immunohistochemical analysis showing a strong increase of A1R immunoreactivity in the cerebellum of HSV-1-infected rats. Both the quantitative PET data and immunohistochemical analysis indicate that A1Rs are upregulated in brain areas where active virus is present. PMID:24513151

  11. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS) 2, 3 and 4 in Astrocyte-Like Cells

    PubMed Central

    Eusemann, Till Nicolas; Willmroth, Frank; Fiebich, Bernd; Biber, Knut; van Calker, Dietrich

    2015-01-01

    The “regulators of g-protein signalling” (RGS) comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells) and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists. PMID:26263491

  12. A Binding Site Model and Structure-Activity Relationships for the Rat A3 Adenosine Receptor

    PubMed Central

    VAN GALEN, PHILIP J. M.; VAN BERGEN, ANDREW H.; GALLO-RODRIGUEZ, CAROLA; MELMAN, NELI; OLAH, MARK E.; IJZERMAN, AD P.; STILES, GARY L.; JACOBSON, KENNETH A.

    2012-01-01

    SUMMARY A novel adenosine receptor, the A3 receptor, has recently been cloned. We have systematically investigated the hitherto largely unexplored structure-activity relationships (SARs) for binding at A3 receptors, using 125I-N6-2-(4-aminophenyl)ethyladenosine as a radioligand and membranes from Chinese hamster ovary cells stably transfected with the rat A3-cDNA. As is the case for A1 and A2a, receptors, substitutions at the N6 and 5′ positions of adenosine, the prototypic agonist ligand, may yield fairly potent compounds. However, the highest affinity and A3 selectivity is found for N6,5′-disubstituted compounds, in contrast to A1 and A2a receptors. Thus, N6-benzyladenosine-5′-N-ethylcarboxamide is highly potent (Ki, 6.8 nM) and moderately selective (13- and 14-fold versus A1 and A2a). The N6 region of the A3 receptor also appears to tolerate hydrophilic substitutions, in sharp contrast to the other subtypes. Potencies of N6,5′-disubstituted compounds in inhibition of adenylate cyclase via A3 receptors parallel their high affinity in the binding assay. None of the typical xanthine or nonxanthine (A1/A2) antagonists tested show any appreciable affinity for rat A3 receptors. 1,3-Dialkylxanthines did not antagonize the A3 agonist-induced inhibition of adenylate cyclase. A His residue in helix 6 that is absent in A3 receptors but present in A1/A2 receptors may be causal in this respect. In a molecular model for the rat A3 receptor, this mutation, together with an increased bulkiness of residues surrounding the ligand, make antagonist binding unfavorable when compared with a previously developed A1 receptor model. Second, this A3 receptor model predicted similarities with A1 and A2 receptors in the binding requirements for the ribose moiety and that xanthine-7-ribosides would bind to rat A3 receptors. This hypothesis was supported experimentally by the moderate affinity (Ki 6 μM) of 7-riboside of 1,3-dibutylxanthine, which appears to be a partial agonist at

  13. Allosteric interactions at adenosine A1 and A3 receptors: new insights into the role of small molecules and receptor dimerization

    PubMed Central

    Hill, Stephen J; May, Lauren T; Kellam, Barrie; Woolard, Jeanette

    2014-01-01

    The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs-protein-coupled adenosine receptors (A2A and A2B), or inhibit AC activity, in the case of Gi/o-coupled adenosine receptors (A1 and A3). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1- and A3-receptor allosteric modulators on in vivo pharmacology. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24024783

  14. Impact on monoclonal antibody production in murine hybridoma cell cultures of adenosine receptor antagonists and phosphodiesterase inhibitors.

    PubMed

    Kelso, Geoffrey F; Kazi, Shahid A; Harris, Simon J; Boysen, Reinhard I; Chowdhury, Jamil; Hearn, Milton T W

    2016-01-15

    The effects of different adenosine receptor antagonists and cyclic nucleotide phosphodiesterase (PDE) inhibitors on monoclonal antibody (mAb) titer and cell viability of murine hybridoma cells in culture were measured as part of our investigations to discover additives that enhance mAb production. Specific adenosine receptor antagonists and PDE inhibitors were found to enhance or decrease the titer of immunoglobulin G1 (IgG1) mAbs relative to negative controls, depending on the specific compound and cell line employed. The observed enhancements or decreases in IgG1 mAb titer appeared to be mainly due to an increase or decrease in specific productivity rates (ngmAb/cell), respectively. The different effects of the selective adenosine antagonists suggest that antagonism at the level of the adenosine A2A and A1 or the adenosine A3 receptors result in either enhancement or suppression of IgG1 mAb production by hybridoma cells. Overall, these studies have identified hitherto unknown activities of specific adenosine antagonists and PDE inhibitors which indicate they may have valuable roles as cell culture additives in industrial biomanufacturing processes designed to enhance the yields of mAbs or other recombinant proteins produced by mammalian cell culture procedures. PMID:26646217

  15. Localization of the adenosine A1 receptor subtype gene (ADORA1) to chromosome 1q32.1

    SciTech Connect

    Townsend-Nicholson, A.; Schofield, P.R.; Baker, E.

    1995-03-20

    Adenosine, acting through its receptors, exerts effects on almost all organ systems, influencing a diversity of physiological responses, including the inhibition of neurotransmitter release, the modulation of cardiac rhythmicity and contractility, and the potentiation of IgE-dependent mediator release. Adenosine receptors belong to the G protein-coupled receptor superfamily, a class of cell-surface receptors that, when activated, couple to a heterotrimeric G protein complex to effect signal transduction. Molecular cloning and subsequent pharmacological and biochemical analyses have led to the identification of four different subtypes of adenosine receptor. The A3 receptor has been localized to chromosome 3 in the mouse by interspecific backcross analysis, suggesting a human chromosomal localization of 1p13 from known mouse-human linkage homologies. We have previously mapped the A2b adenosine receptor subtype to chromosome 17p11.2-p12 using fluorescence in situ hybridization (FISH) and PCR-based screening of somatic cell hybrid DNAs. A previous report has concluded that the Al and A2a receptor subtypes are localized on chromosome 22q11.2-q13.1 and 11q11-q13, respectively, but conflicts with that of MacCollin et al., who have mapped the A2a gene to chromosome 22. In this report, we show that the human A1 adenosine receptor subtype does not map to chromosome 22q11.2-q13.1, but is instead localized on chromosome 1q32. 13 refs., 1 fig.

  16. Distribution of adenosine receptors in human sclera fibroblasts

    PubMed Central

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines and in the frozen human scleral sections. ADOR protein expression in HSF and human sclera was confirmed by western blot analysis of cell lysates. Results ADORs were expressed in both HSF and human sclera. This was confirmed by western blot. ADORA1 expression was concentrated in the nucleus. ADORA2A was concentrated mainly in one side of the cytoplasm, and ADORA2B was found both in the nucleus and the cytoplasm. ADORA3 was expressed weakly in the cytoplasm. Conclusions All four subtypes of ADOR were found in HSF and may play a role in scleral remodeling. PMID:18385786

  17. Blockade of adenosine receptors unmasks a stimulatory effect of ATP on cardiac contractility.

    PubMed Central

    Mantelli, L.; Amerini, S.; Filippi, S.; Ledda, F.

    1993-01-01

    1. The effects of ATP, alpha,beta-methylene ATP and beta,gamma-methylene ATP on the contractile tension of guinea-pig isolated left atria were evaluated. 2. ATP (1-100 microM) produced a concentration-dependent negative inotropic effect; this response was converted to a positive inotropic effect in the presence of the antagonist of adenosine A1 receptors, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 0.1 microM), and in the presence of 8-phenyltheophylline (10 microM), an antagonist of A1 and A2 receptors. 3. The positive inotropic effect of ATP was antagonized by the P2 receptor antagonist, suramin (500 microM). Reactive blue 2 (30-500 microM), a putative P2y receptor antagonist, concentration-dependently reduced and finally abolished the effect of ATP. 4. In the presence of 8-phenyltheophylline, the stable analogues of ATP, alpha,beta-methylene ATP and beta,gamma-methylene ATP (1-30 microM), produced a concentration-dependent increase in atrial contractility of a lesser degree than that induced by ATP. 5. The results suggest that when inhibitory adenosine receptors are blocked, ATP produces a positive inotropic effect, probably mediated by P2y receptor stimulation. PMID:8401938

  18. Cloning, expression and pharmacological characterization of rabbit adenosine A1 and A3 receptors.

    PubMed

    Hill, R J; Oleynek, J J; Hoth, C F; Kiron, M A; Weng, W; Wester, R T; Tracey, W R; Knight, D R; Buchholz, R A; Kennedy, S P

    1997-01-01

    The role of adenosine A1 and A3 receptors in mediating cardioprotection has been studied predominantly in rabbits, yet the pharmacological characteristics of rabbit adenosine A1 and A3 receptor subtypes are unknown. Thus, the rabbit adenosine A3 receptor was cloned and expressed, and its pharmacology was compared with that of cloned adenosine A1 receptors. Stable transfection of rabbit A1 or A3 cDNAs in Chinese hamster ovary-K1 cells resulted in high levels of expression of each of the receptors, as demonstrated by high-affinity binding of the A1/A3 adenosine receptor agonist N6-(4-amino-3-[125I]iodobenzyl)adenosine (125I-ABA). For both receptors, binding of 125I-ABA was inhibited by the GTP analog 5'-guanylimidodiphosphate, and forskolin-stimulated cyclic AMP accumulation was inhibited by the adenosine receptor agonist (R)-phenylisopropyladenosine. The rank orders of potency of adenosine receptor agonists for inhibition of 125I-ABA binding were as follows: rabbit A1, N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N-ethylcarboxamidoadenosine > or = I-ABA > or = N6-2-(4-aminophenyl) ethyladenosine > > N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > N6-(4-amino-3-benzyl)adenosine; rabbit A3, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > or = I-ABA > > N-ethylcarboxamidoadenosine > N6-2-(4-aminophenyl) ethyladenosine = N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N6-(4-amino-3-benzyl)adenosine. The adenosine receptor antagonist rank orders were as follow: rabbit A1, 8-cyclopentyl-1,3-dipropylxanthine > 1,3- dipropyl-8-(4-acrylate)phenylxanthine > or = xanthine amine congener > > 8-(p-sulfophenyl)theophylline; rabbit A3, xanthine amine congener > 1,3-dipropyl-8-(4-acrylate)phenylxanthine > or = 8-cyclopentyl-1,3-dipropylxanthine > > 8-(p-sulfophenyl)theophylline. These observations confirm the identity of the expressed proteins as A1 and A3 receptors. The results will facilitate further in-depth studies of the roles of A1 and A3 receptors in

  19. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  20. Pyran Template Approach to the Design of Novel A3 Adenosine Receptor Antagonists

    PubMed Central

    Li, An-Hu; Ji, Xiao-duo; Kim, Hak Sung; Melman, Neli; Jacobson, Kenneth A.

    2016-01-01

    Strategy, Management and Health PolicyVenture Capital Enabling TechnologyPreclinical ResearchPreclinical Development Toxicology, Formulation Drug Delivery, PharmacokineticsClinical Development Phases I–III Regulatory, Quality, ManufacturingPostmarketing Phase IV A3 adenosine receptor antagonists have potential as anti-inflammatory, anti-asthmatic, and anti-ischemic agents. We previously reported the preparation of chemical libraries of 1,4-dihydropyridine (DHP) and pyridine derivatives and identification of members having high affinity at A3 adenosine receptors. These derivatives were synthesized through standard three-component condensation/oxidation reactions, which permitted versatile ring substitution at five positions, i.e., the central ring served as a molecular scaffold for structurally diverse substituents. We extended this template approach from the DHP series to chemically stable pyran derivatives, in which the ring NH is replaced by O and which is similarly derived from a stepwise reaction of three components. Since the orientation of substituent groups may be conformationally similar to the 1,4-DHPs, a direct comparison between the structure activity relationships of key derivatives in binding to adenosine receptors was carried out. Affinity at human A3 receptors expressed in CHO cells was determined vs. binding of [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)-5′-N-methyl-carbamoyladenosine). There was no potency-enhancing effect, as was observed for DHPs, of 4-styryl, 4-phenylethynyl, or 6-phenyl substitutions. The most potent ligands in this group in binding to human A3 receptors were 6-methyl and 6-phenyl analogs, 3a (MRS 1704) and 4a (MRS 1705), respectively, of 3,5-diethyl 2-methyl-4-phenyl-4H-pyran-3,5-dicarboxylate, which had Ki values of 381 and 583 nM, respectively. These two derivatives were selective for human A3 receptors vs. rat brain A1 receptors by 57-fold and 24-fold, respectively. These derivatives were inactive in binding at rat brain A

  1. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  2. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain

    PubMed Central

    WEISSHAUPT, ANGELA; WEDEKIND, FRANZISKA; KROLL, TINA; MCCARLEY, ROBERT W.

    2015-01-01

    SUMMARY Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day–1 for 5 consecutive days (SR1–SR5), followed by 3 unrestricted recovery sleep days (R1–R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26–31% from SR1 to R1). A decrease in b-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. PMID:25900125

  3. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption.

    PubMed

    Welch, W J

    2015-01-01

    Adenosine type 1 receptor (A1 -AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1 -ARs in the proximal tubule, which is responsible for 60-70% of the reabsorption of filtered Na(+) and fluid. Intratubular application of receptor antagonists indicates that A1 -AR mediates a portion of Na(+) uptake in PT and PT cells, via multiple transport systems, including Na(+) /H(+) exchanger-3 (NHE3), Na(+) /PO4(-) co-transporter and Na(+) -dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1 -AR antagonists and is lower in A1 -AR KO mice, compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1 -AR KO mice, compared to WT mice. Inhibition of A1 -ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  4. Role of Adenosine Receptor(s) in the Control of Vascular Tone in the Mouse Pudendal Artery.

    PubMed

    Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Mustafa, S Jamal

    2016-03-01

    Activation of adenosine receptors (ARs) has been implicated in the modulation of renal and cardiovascular systems, as well as erectile functions. Recent studies suggest that adenosine-mediated regulation of erectile function is mainly mediated through A2BAR activation. However, no studies have been conducted to determine the contribution of AR subtype in the regulation of the vascular tone of the pudendal artery (PA), the major artery supplying and controlling blood flow to the penis. Our aim was to characterize the contribution of AR subtypes and identify signaling mechanisms involved in adenosine-mediated vascular tone regulation in the PA. We used a DMT wire myograph for muscle tension measurements in isolated PAs from wild-type, A2AAR knockout, A2BAR knockout, and A2A/A2BAR double-knockout mice. Real-time reverse transcription-polymerase chain reaction was used to determine the expression of the AR subtypes. Data from our pharmacologic and genetic approaches suggest that AR activation-mediated vasodilation in the PA is mediated by both the A2AAR and A2BAR, whereas neither the A1AR nor A3AR play a role in vascular tone regulation of the PA. In addition, we showed that A2AAR- and A2BAR-mediated vasorelaxation requires activation of nitric oxide and potassium channels; however, only the A2AAR-mediated response requires protein kinase A activation. Our data are complemented by mRNA expression showing the expression of all AR subtypes with the exception of the A3AR. AR signaling in the PA may play an important role in mediating erection and represent a promising therapeutic option for the treatment of erectile dysfunction. PMID:26718241

  5. ATP-Sensitive K+ Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A1 Adenosine Receptors

    PubMed Central

    Duflot, Sylvie; Riera, Bárbara; Fernández-Veledo, Sonia; Casadó, Vicent; Norman, Robert I.; Casado, F. Javier; Lluís, Carme; Franco, Rafael; Pastor-Anglada, Marçal

    2004-01-01

    This study describes a novel mechanism of regulation of the high-affinity Na+-dependent adenosine transporter (CNT2) via the activation of A1 adenosine receptors (A1R). This regulation is mediated by the activation of ATP-sensitive K+ (KATP) channels. The high-affinity Na+-dependent adenosine transporter CNT2 and A1R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (−)-N6-(2-phenylisopropyl)adenosine is fully inhibited by KATP channel blockers and mimicked by a KATP channel opener. A1R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A1R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A1R, CNT2, and KATP channels. These results also suggest that the activation of KATP channels under metabolic stress can be mediated by the activation of A1R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for KATP channels. PMID:15024061

  6. Recent developments in adenosine receptor ligands and their potential as novel drugs☆

    PubMed Central

    Müller, Christa E.; Jacobson, Kenneth A.

    2012-01-01

    Medicinal chemical approaches have been applied to all four of the adenosine receptor (AR) subtypes (A1, A2A, A2B, and A3) to create selective agonists and antagonists for each. The most recent class of selective AR ligands to be reported is the class of A2BAR agonists. The availability of these selective ligands has facilitated research on therapeutic applications of modulating the ARs and in some cases has provided clinical candidates. Prodrug approaches have been developed which improve the bioavailability of the drugs, reduce side-effects, and/or may lead to site-selective effects. The A2A agonist regadenoson (Lexiscan®), a diagnostic drug for myocardial perfusion imaging, is the first selective AR agonist to be approved. Other selective agonists and antagonists are or were undergoing clinical trials for a broad range of indications, including capadenoson and tecadenoson (A1 agonists) for atrial fibrillation, or paroxysmal supraventricular tachycardia, respectively, apadenoson and binodenoson (A2A agonists) for myocardial perfusion imaging, preladenant (A2A antagonist) for the treatment of Parkinson’s disease, and CF101 and CF102 (A3 agonists) for inflammatory diseases and cancer, respectively. This article is part of a Special Issue entitled: “Adenosine Receptors”. PMID:21185259

  7. Sesamin protects against renal ischemia reperfusion injury by promoting CD39-adenosine-A2AR signal pathway in mice

    PubMed Central

    Li, Ke; Gong, Xia; Kuang, Ge; Jiang, Rong; Wan, Jingyuan; Wang, Bin

    2016-01-01

    Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury with high morbidity and mortality due to limited therapy. Here, we examine whether sesamin attenuates renal IRI in an animal model and explore the underlying mechanisms. Male mice were subjected to right renal ischemia for 30 min followed by reperfusion for 24 h with sesamin (100 mg/kg) during which the left kidney was removed. Renal damage and function were assessed subsequently. The results showed that sesamin reduced kidney ischemia reperfusion injury, as assessed by decreased serum creatinine (Scr) and Blood urea nitrogen (BUN), alleviated tubular damage and apoptosis. In addition, sesamin inhibited neutrophils infiltration and pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in IR-preformed kidney. Notably, sesamin promoted the expression of CD39, A2A adenosine receptor (A2AAR), and A2BAR mRNA and protein as well as adenosine production. Furthermore, CD39 inhibitor or A2AR antagonist abolished partly the protection of sesamin in kidney IRI. In conclusion, sesamin could effectively protect kidney from IRI by inhibiting inflammatory responses, which might be associated with promoting the adenosine-CD39-A2AR signaling pathway. PMID:27347331

  8. Characterization of agonist radioligand interactions with porcine atrial A1 adenosine receptors

    SciTech Connect

    Leid, M.; Schimerlik, M.I.; Murray, T.F.

    1988-09-01

    The agonist radioligand (-)-N6-(125I)-p-hydroxyphenylisopropyl-adenosine (( 125I)HPIA) was used to characterize adenosine recognition sites in porcine atrial membranes. (125I)HPIA showed saturable binding to an apparently homogeneous population of sites with a maximum binding capacity of 35 +/- 3 fmol/mg of protein and an equilibrium dissociation constant of 2.5 +/- 0.4 nM. Kinetic experiments were performed to address the molecular mechanism of (125I)HPIA binding in porcine atrial membranes. (125I)HPIA apparently interacts with the cardiac adenosine receptor in a simple bimolecular reaction. A kinetically derived (125I) HPIA dissociation constant (2.4 nM) was in good agreement with that parameter measured at equilibrium. Guanyl nucleotides negatively modulated (125I)HPIA binding by increasing its rate of dissociation. This finding is consonant with the formation of a ternary complex in porcine atrial membranes, consisting of ligand, receptor, and guanyl nucleotide-binding protein. Prototypic adenosine receptor agonists and antagonists inhibited specific binding in a manner consistent with the labeling of an A1 adenosine receptor. The results of these experiments suggest that the adenosine receptor present in porcine atrial membranes, as labeled by (125I)HPIA, is of the A1 subtype.

  9. Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists.

    PubMed

    Robinson, Sarel J; Petzer, Jacobus P; Rousseau, Amanda L; Terre'Blanche, Gisella; Petzer, Anél; Lourens, Anna C U

    2016-02-01

    A novel series of carbamate substituted 2-amino-4,6-diphenylpyrimidines was evaluated as potential dual adenosine A1 and A2A receptor antagonists. The majority of the synthesised compounds exhibited promising dual affinities, with A1Ki values ranging from 0.175 to 10.7 nM and A2AKi values ranging from 1.58 to 451 nM. The in vivo activity illustrated for 3-(2-amino-6-phenylpyrimidin-4-yl)phenyl morpholine-4-carboxylate (4c) is indicative of the potential of these compounds as therapeutic agents in the treatment of Parkinson's disease, although physicochemical properties may require optimisation. PMID:26776359

  10. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    SciTech Connect

    Goodman, R.R.; Synder, S.H.

    1982-09-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  11. Orally Active Adenosine A1 Receptor Agonists with Antinociceptive Effects in Mice

    PubMed Central

    Korboukh, Ilia; Hull-Ryde, Emily A.; Rittiner, Joseph E.; Randhawa, Amarjit S.; Coleman, Jennifer; Fitzpatrick, Brendan J.; Setola, Vincent; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.; Jin, Jian

    2012-01-01

    Adenosine A1 receptor (A1AR) agonists have antinociceptive effects in multiple preclinical models of acute and chronic pain. Although numerous A1AR agonists have been developed, clinical applications of these agents have been hampered by their cardiovascular side effects. Herein we report a series of novel A1AR agonists, some of which are structurally related to adenosine 5′-monophosphate (5′-AMP), a naturally occurring nucleotide that itself activates A1AR. These novel compounds potently activate A1AR in several orthogonal in vitro assays and are subtype selective for A1AR over A2AAR, A2BAR, and A3AR. Among them, UNC32A (3a) is orally active and has dose-dependent antinociceptive effects in wild-type mice. The antinociceptive effects of 3a were completely abolished in A1AR knockout mice, revealing a strict dependence on A1AR for activity. The apparent lack of cardiovascular side effects when administered orally and high affinity (Ki of 36 nM for the human A1AR) make this compound potentially suitable as a therapeutic. PMID:22738238

  12. Anti-nociceptive properties of the xanthine oxidase inhibitor allopurinol in mice: role of A1 adenosine receptors

    PubMed Central

    Schmidt, AP; Böhmer, AE; Antunes, C; Schallenberger, C; Porciúncula, LO; Elisabetsky, E; Lara, DR; Souza, DO

    2009-01-01

    Background and purpose Allopurinol is a potent inhibitor of the enzyme xanthine oxidase, used primarily in the treatment of hyperuricemia and gout. It is well known that purines exert multiple effects on pain transmission. We hypothesized that the inhibition of xanthine oxidase by allopurinol, thereby reducing purine degradation, could be a valid strategy to enhance purinergic activity. The aim of this study was to investigate the anti-nociceptive profile of allopurinol on chemical and thermal pain models in mice. Experimental approach Mice received an intraperitoneal (i.p.) injection of vehicle (Tween 10%) or allopurinol (10–400 mg kg−1). Anti-nociceptive effects were measured with intraplantar capsaicin, intraplantar glutamate, tail-flick or hot-plate tests. Key results Allopurinol presented dose-dependent anti-nociceptive effects in all models. The opioid antagonist naloxone did not affect these anti-nociceptive effects. The non-selective adenosine-receptor antagonist caffeine and the selective A1 adenosine-receptor antagonist, DPCPX, but not the selective A2A adenosine-receptor antagonist, SCH58261, completely prevented allopurinol-induced anti-nociception. No obvious motor deficits were produced by allopurinol, at doses up to 200 mg kg−1. Allopurinol also caused an increase in cerebrospinal fluid levels of purines, including the nucleosides adenosine and guanosine, and decreased cerebrospinal fluid concentration of uric acid. Conclusions and implications Allopurinol-induced anti-nociception may be related to adenosine accumulation. Allopurinol is an old and extensively used compound and seems to be well tolerated with no obvious central nervous system toxic effects at high doses. This drug may be useful to treat pain syndromes in humans. PMID:19133997

  13. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  14. Effects of xanthine derivatives in a light/dark test in mice and the contribution of adenosine receptors.

    PubMed

    Imaizumi, M; Miyazaki, S; Onodera, K

    1994-11-01

    We investigated the effects of adenosine receptor antagonists, caffeine, theophylline, 8-phenyltheophylline, and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), in a light/dark test in mice. All antagonists decreased the time spent in the light zone in this test, which suggested that these compounds have anxiogenic effects. The anxiogenic effects of theophylline were reduced by pretreatment with CGS 21680, an A2-selective agonist, but not by N6-cyclopentyladenosine (CPA), an A1-selective agonist. However, the antagonism of the theophylline-induced anxiogenic effects by CGS21680 was only observed in the time spent in the light zone, and DPCPX-induced anxiogenic effects were neither reversed by CGS 21680 nor by CPA. Finally, it is notable that xanthine-derived adenosine antagonists tested here commonly showed anxiogenic effects in the light/dark test in mice. It is suggested that there is a minor contribution of adenosine receptors to these effects, although theophylline-induced anxiogenic effects were antagonized by an A2 receptor agonist. PMID:7746025

  15. Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. Non-linear QSAR analyses integrated with pharmacophore modeling.

    PubMed

    Khanfar, Mohammad A; Al-Qtaishat, Saja; Habash, Maha; Taha, Mutasem O

    2016-07-25

    Adenosine A2A receptor antagonists are of great interest in the treatment for Parkinson's disease. In this study, we combined extensive pharmacophore modeling and quantitative structure-activity relationship (QSAR) analysis to explore the structural requirements for potent Adenosine A2A antagonists. Genetic function algorithm (GFA) joined with k nearest neighbor (kNN) analyses were applied to build predictive QSAR models. Successful pharmacophores were complemented with exclusion spheres to improve their receiver operating characteristic curve (ROC) profiles. Best QSAR models and their associated pharmacophore hypotheses were validated by identification of several novel Adenosine A2A antagonist leads retrieved from the National Cancer Institute (NCI) structural database. The most potent hit illustrated IC50 value of 545.7 nM. PMID:27216633

  16. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    PubMed

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases. PMID:26297614

  17. Adenosine A1 Receptor-Mediated Endocytosis of AMPA Receptors Contributes to Impairments in Long-Term Potentiation (LTP) in the Middle-Aged Rat Hippocampus.

    PubMed

    Chen, Zhicheng; Stockwell, Jocelyn; Cayabyab, Francisco S

    2016-05-01

    Aging causes multiple changes in the mammalian brain, including changes in synaptic signaling. Previous reports have shown increased extracellular adenosine in the aging brain, and we recently reported that activation of adenosine A1 receptors (A1Rs) induces AMPA receptor (AMPAR) internalization in rat hippocampus. This study investigated whether aging-related changes in the rat hippocampus include altered surface expression of adenosine A1 and A2A receptors, and whether these changes correspond to changes in AMPAR surface expression and altered synaptic plasticity. We found reduced A1R surface expression in middle-aged rat hippocampus, and also reduced GluA1 and GluA2 AMPAR subunit surface expression. Using a chemically-induced LTP (cLTP) experimental protocol, we recorded fEPSPs in young (1 month old) and middle-aged (7-12 month old) rat hippocampal slices. There were significant impairments in cLTP in middle-aged slices, suggesting impaired synaptic plasticity. Since we previously showed that the A1R agonist N(6)-cyclopentyladenosine (CPA) reduced both A1Rs and GluA2/GluA1 AMPARs, we hypothesized that the observed impaired synaptic plasticity in middle-aged brains is regulated by A1R-mediated AMPAR internalization by clathrin-mediated endocytosis. Following cLTP, we found a significant increase in GluA1 and GluA2 surface expression in young rats, which was blunted in middle-aged brains or in young brains pretreated with CPA. Blocking A1Rs with 8-cyclopentyl-1,3-dipropylxanthine or AMPAR endocytosis with either Tat-GluA2-3Y peptide or dynasore (dynamin inhibitor) similarly enhanced AMPAR surface expression following cLTP. These data suggest that age-dependent alteration in adenosine receptor expression contributes to increased AMPAR endocytosis and impaired synaptic plasticity in aged brains. PMID:26700433

  18. Adenosine-induced activation of esophageal nociceptors.

    PubMed

    Ru, F; Surdenikova, L; Brozmanova, M; Kollarik, M

    2011-03-01

    Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes

  19. Adenosine receptor signaling: a key to opening the blood-brain door.

    PubMed

    Bynoe, Margaret S; Viret, Christophe; Yan, Angela; Kim, Do-Geun

    2015-01-01

    The aim of this review is to outline evidence that adenosine receptor (AR) activation can modulate blood-brain barrier (BBB) permeability and the implications for disease states and drug delivery. Barriers of the central nervous system (CNS) constitute a protective and regulatory interface between the CNS and the rest of the organism. Such barriers allow for the maintenance of the homeostasis of the CNS milieu. Among them, the BBB is a highly efficient permeability barrier that separates the brain micro-environment from the circulating blood. It is made up of tight junction-connected endothelial cells with specialized transporters to selectively control the passage of nutrients required for neural homeostasis and function, while preventing the entry of neurotoxic factors. The identification of cellular and molecular mechanisms involved in the development and function of CNS barriers is required for a better understanding of CNS homeostasis in both physiological and pathological settings. It has long been recognized that the endogenous purine nucleoside adenosine is a potent modulator of a large number of neurological functions. More recently, experimental studies conducted with human/mouse brain primary endothelial cells as well as with mouse models, indicate that adenosine markedly regulates BBB permeability. Extracellular adenosine, which is efficiently generated through the catabolism of ATP via the CD39/CD73 ecto-nucleotidase axis, promotes BBB permeability by signaling through A1 and A2A ARs expressed on BBB cells. In line with this hypothesis, induction of AR signaling by selective agonists efficiently augments BBB permeability in a transient manner and promotes the entry of macromolecules into the CNS. Conversely, antagonism of AR signaling blocks the entry of inflammatory cells and soluble factors into the brain. Thus, AR modulation of the BBB appears as a system susceptible to tighten as well as to permeabilize the BBB. Collectively, these findings point

  20. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    SciTech Connect

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R. )

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-({sup 3}H)adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system.

  1. JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson's disease.

    PubMed

    Atack, John R; Shook, Brian C; Rassnick, Stefanie; Jackson, Paul F; Rhodes, Kenneth; Drinkenburg, Wilhelmus H; Ahnaou, Abdallah; Te Riele, Paula; Langlois, Xavier; Hrupka, Brian; De Haes, Patrick; Hendrickx, Herman; Aerts, Nancy; Hens, Koen; Wellens, Annemie; Vermeire, Jef; Megens, Anton A H P

    2014-10-15

    Adenosine A2A antagonists are believed to have therapeutic potential in the treatment of Parkinson's disease (PD). We have characterized the dual adenosine A2A/A1 receptor antagonist JNJ-40255293 (2-amino-8-[2-(4-morpholinyl)ethoxy]-4-phenyl-5H-indeno[1,2-d]pyrimidin-5-one). JNJ-40255293 was a high-affinity (7.5 nM) antagonist at the human A2A receptor with 7-fold in vitro selectivity versus the human A1 receptor. A similar A2A:A1 selectivity was seen in vivo (ED50's of 0.21 and 2.1 mg/kg p.o. for occupancy of rat brain A2A and A1 receptors, respectively). The plasma EC50 for occupancy of rat brain A2A receptors was 13 ng/mL. In sleep-wake encephalographic (EEG) studies, JNJ-40255293 dose-dependently enhanced a consolidated waking associated with a subsequent delayed compensatory sleep (minimum effective dose: 0.63 mg/kg p.o.). As measured by microdialysis, JNJ-40255293 did not affect dopamine and noradrenaline release in the prefrontal cortex and the striatum. However, it was able to reverse effects (catalepsy, hypolocomotion, and conditioned avoidance impairment in rats; hypolocomotion in mice) produced by the dopamine D2 antagonist haloperidol. The compound also potentiated the agitation induced by the dopamine agonist apomorphine. JNJ-40255293 also reversed hypolocomotion produced by the dopamine-depleting agent reserpine and potentiated the effects of l-dihydroxyphenylalanine (L-DOPA) in rats with unilateral 6-hydroxydopamine-induced lesions of the nigro-striatal pathway, an animal model of Parkinson's disease. Extrapolating from the rat receptor occupancy dose-response curve, the occupancy required to produce these various effects in rats was generally in the range of 60-90%. The findings support the continued research and development of A2A antagonists as potential treatments for PD. PMID:25203719

  2. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists

    PubMed Central

    Worden, Lila T.; Shahriari, Mona; Farrar, Andrew M.; Sink, Kelly S.; Hockemeyer, Jörg; Müller, Christa E.

    2010-01-01

    Rationale Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A2A receptors. Objective Adenosine A2A receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. Materials and methods The adenosine A2A receptor antagonist MSX-3 (0.5–2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. Results MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. Conclusions The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A2A receptors on the same population of striatal neurons. PMID:19048234

  3. Adenosine A1 receptor inhibits postnatal neurogenesis and sustains astrogliogenesis from the subventricular zone.

    PubMed

    Benito-Muñoz, Monica; Matute, Carlos; Cavaliere, Fabio

    2016-09-01

    We previously demonstrated that activation of ATP P2X receptors during oxygen and glucose deprivation inhibits neuroblast migration and in vitro neurogenesis from the subventricular zone (SVZ). Here, we have studied the effects of adenosine, the natural end-product of ATP hydrolysis, in modulating neurogenesis and gliogenesis from the SVZ. We provide immunochemical, molecular and pharmacological evidence that adenosine via A1 receptors reduces neuronal differentiation of neurosphere cultures generated from postnatal SVZ. Furthermore, activation of A1 receptors induces downregulation of genes related to neurogenesis as demonstrated by gene expression analysis. Specifically, we found that A1 receptors trigger a signaling cascade that, through the release of IL10, turns on the Bmp2/SMAD pathway. Furthermore, activating A1 receptors in SVZ-neural progenitor cells inhibits neurogenesis and stimulates astrogliogenesis as assayed in vitro in neurosphere cultures and in vivo in the olfactory bulb. Together, these data indicate that adenosine acting at A1 receptors negatively regulates adult neurogenesis while promoting astrogliogenesis, and that this feature may be relevant to pathological conditions whereby purines are profusely released. GLIA 2016;64:1465-1478. PMID:27301342

  4. Differential Expression of Adenosine P1 Receptor ADORA1 and ADORA2A Associated with Glioma Development and Tumor-Associated Epilepsy.

    PubMed

    Huang, Jun; Chen, Ming-Na; Du, Juan; Liu, Hao; He, Yu-Jiao; Li, Guo-Liang; Li, Shu-Yu; Liu, Wei-Ping; Long, Xiao-Yan

    2016-07-01

    Level of adenosine, an endogenous astrocyte-based neuromodulator, is primarily regulated by adenosine P1 receptors. This study assessed expression of adenosine P1 receptors, ADORA1 (adenosine A1 receptor) and ADORA2A (adenosine A2a receptor) and their association with glioma development and epilepsy in glioma patients. Expression of ADORA1/ADORA2A was assessed immunohistochemically in 65 surgically removed glioma tissue and 21 peri-tumor tissues and 8 cases of normal brain tissues obtained from hematoma patients with cerebral trauma. Immunofluorescence, Western blot, and qRT-PCR were also used to verify immunohistochemical data. Adenosine P1 receptor ADORA1 and ADORA2A proteins were localized in the cell membrane and cytoplasm and ADORA1/ADORA2A immunoreactivity was significantly stronger in glioma and peri-tumor tissues that contained infiltrating tumor cells than in normal brain tissues (p < 0.05). The World Health Organization (WHO) grade III gliomas expressed even higher level of ADORA1 and ADORA2A. Western blot and qRT-PCR confirmed immunohistochemical data. Moreover, higher levels of ADORA1 and ADORA2A expression occurred in high-grade gliomas, in which incidence of epilepsy were lower (p < 0.05). In contrast, a lower level of ADORA1/ADORA2A expression was found in peri-tumor tissues with tumor cell presence from patients with epilepsy compared to patients without epilepsy (p < 0.05). The data from the current study indicates that dysregulation in ADORA1/ADORA2A expression was associated with glioma development, whereas low level of ADORA1/ADORA2A expression could increase susceptibility of tumor-associated epilepsy. PMID:27038930

  5. Interaction of progesterone receptor with immobilized adenosine triphosphate.

    PubMed

    Moudgil, V K; Toft, D O

    1977-02-22

    Affinity chromatography has been used to study the binding of ATP to cyto-plasmic progesterone receptors of hen oviduct. A resin which selectively binds the receptor protein was prepared by linking ATP covalently to Sepharose 4B through a 6-carbon bridge of adipic acid dihydrazide. Receptor bound to the affinity resin was recovered in a single peak upon gradient elution with KCl (0.2-1 M) or ATP (0-0.1 M). While affinity chromatography was normally accomplished using the [3H]progesterone receptor complex, the hormone was not necessary for ATP binding under the conditions employed. The chromatography of crude receptor preparations allowed up to 100-fold purification with greater than 80% recovery of the receptor. The semipurified receptor appeared intact when analysed by sucrose gradient centrifugation, polyacrylamide gel electrophoresis, and DEAE-cellulose chromatography. The latter procedure separated the receptor into two components, A and B, both of which were capable of binding ATP. Although a specific biochemical role of ATP in hormone receptor action has not been demonstrated, the present studies support this possibility and, in addition, offer a convenient and reliable step for the purification of progesterone receptors. PMID:836885

  6. Adenosine receptor antagonists inhibit the development of morphine sensitization in the C57BL/6 mouse.

    PubMed

    Weisberg, S P; Kaplan, G B

    1999-04-01

    We examined the effects of adenosine antagonists on the development of morphine sensitization in C57BL/6 mice. Adenosine antagonists or vehicle were repeatedly co-administered intraperitoneally with morphine (10 mg/kg, s.c.) to mice once every other day for 9 days. Two days later, a 10 mg/kg morphine-only challenge was administered to each group. Consistent with sensitization, mice receiving morphine alone developed enhanced ambulatory activity responses to subsequent morphine administrations and, upon morphine-only challenge, had a significantly greater response to morphine than vehicle pretreated animals. The nonselective adenosine antagonist, caffeine, at 10 and 20 mg/kg but not at 5 mg/kg, attenuated the development of sensitization during co-administration with morphine and also following morphine-only challenge. The adenosine A1 selective antagonist 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX), at 0.001 and 0.002 mg/kg but not at 0.2 mg/kg, similarly attenuated the development of morphine sensitization. We propose a mechanism which involves an adenosine receptor role in the mesolimbic dopamine system. PMID:10320021

  7. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  8. Adenosine A1 Receptor Suppresses Tonic GABAA Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons.

    PubMed

    Rombo, Diogo M; Dias, Raquel B; Duarte, Sofia T; Ribeiro, Joaquim A; Lamsa, Karri P; Sebastião, Ana M

    2016-03-01

    Adenosine is an endogenous neuromodulator that decreases excitability of hippocampal circuits activating membrane-bound metabotropic A1 receptor (A1R). The presynaptic inhibitory action of adenosine A1R in glutamatergic synapses is well documented, but its influence on inhibitory GABAergic transmission is poorly known. We report that GABAA receptor (GABAAR)-mediated tonic, but not phasic, transmission is suppressed by A1R in hippocampal neurons. Adenosine A1R activation strongly inhibits GABAAR agonist (muscimol)-evoked currents in Cornu Ammonis 1 (CA1) pyramidal neurons and in a specific subpopulation of interneurons expressing axonal cannabinoid receptor type 1. In addition, A1R suppresses tonic GABAAR currents measured in the presence of elevated ambient GABA as well as in naïve slices. The inhibition of GABAergic currents involves both protein kinase A (PKA) and protein kinase C (PKC) signaling pathways and decreases GABAAR δ-subunit expression. On the contrary, no A1R-mediated modulation was detected in phasic inhibitory postsynaptic currents evoked either by afferent electrical stimulation or by spontaneous quantal release. The results show that A1R modulates extrasynaptic rather than synaptic GABAAR-mediated signaling, and that this modulation selectively occurs in hippocampal pyramidal neurons and in a specific subpopulation of inhibitory interneurons. We conclude that modulation of tonic GABAAR signaling by adenosine A1R in specific neuron types may regulate neuronal gain and excitability in the hippocampus. PMID:25452570

  9. Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats.

    PubMed

    Loram, Lisa C; Strand, Keith A; Taylor, Frederick R; Sloane, Evan; Van Dam, Anne-Marie; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2015-05-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in two different models of neuropathic pain in addition to downregulating glial activation markers in the spinal cord. We aimed to determine whether a single intrathecal administration of an A2AR agonist was able to attenuate motor symptoms induced by experimental autoimmune encephalopathy. Two A2AR agonists (CGS21680 and ATL313) significantly attenuated progression of motor symptoms following a single intrathecal administration at the onset of motor symptoms. OX-42, a marker of microglial activation, was significantly attenuated in the lumbar spinal cord following A2AR administration compared to vehicle. Therefore, A2AR agonists attenuate motor symptoms of EAE by acting on A2AR in the spinal cord. PMID:25653191

  10. Adenosine Receptor Stimulation by Polydeoxyribonucleotide Improves Tissue Repair and Symptomology in Experimental Colitis.

    PubMed

    Pallio, Giovanni; Bitto, Alessandra; Pizzino, Gabriele; Galfo, Federica; Irrera, Natasha; Squadrito, Francesco; Squadrito, Giovanni; Pallio, Socrate; Anastasi, Giuseppe P; Cutroneo, Giuseppina; Macrì, Antonio; Altavilla, Domenica

    2016-01-01

    Activation of the adenosine receptor pathway has been demonstrated to be effective in improving tissue remodeling and blunting the inflammatory response. Active colitis is characterized by an intense inflammatory reaction resulting in extensive tissue damage. Symptomatic improvement requires both control of the inflammatory process and repair and remodeling of damaged tissues. We investigated the ability of an A2A receptor agonist, polydeoxyribonucleotide (PDRN), to restore tissue structural integrity in two experimental colitis models using male Sprague-Dawley rats. In the first model, colitis was induced with a single intra-colonic instillation of dinitrobenzenesulfonic acid (DNBS), 25 mg diluted in 0.8 ml 50% ethanol. After 6 h, animals were randomized to receive either PDRN (8 mg/kg/i.p.), or PDRN + the A2A antagonist [3,7-dimethyl-1-propargylxanthine (DMPX); 10 mg/kg/i.p.], or vehicle (0.8 ml saline solution) daily. In the second model, dextran sulfate sodium (DSS) was dissolved in drinking water at a concentration of 8%. Control animals received standard drinking water. After 24 h animals were randomized to receive PDRN or PDRN+DMPX as described above. Rats were sacrificed 7 days after receiving DNBS or 5 days after DSS. In both experimental models of colitis, PDRN ameliorated the clinical symptoms and weight loss associated with disease as well as promoted the histological repair of damaged tissues. Moreover, PDRN reduced expression of inflammatory cytokines, myeloperoxidase activity, and malondialdehyde. All these effects were abolished by the concomitant administration of the A2A antagonist DMPX. Our study suggests that PDRN may represent a promising treatment for improving tissue repair during inflammatory bowel diseases. PMID:27601997

  11. Adenosine Receptor Stimulation by Polydeoxyribonucleotide Improves Tissue Repair and Symptomology in Experimental Colitis

    PubMed Central

    Pallio, Giovanni; Bitto, Alessandra; Pizzino, Gabriele; Galfo, Federica; Irrera, Natasha; Squadrito, Francesco; Squadrito, Giovanni; Pallio, Socrate; Anastasi, Giuseppe P.; Cutroneo, Giuseppina; Macrì, Antonio; Altavilla, Domenica

    2016-01-01

    Activation of the adenosine receptor pathway has been demonstrated to be effective in improving tissue remodeling and blunting the inflammatory response. Active colitis is characterized by an intense inflammatory reaction resulting in extensive tissue damage. Symptomatic improvement requires both control of the inflammatory process and repair and remodeling of damaged tissues. We investigated the ability of an A2A receptor agonist, polydeoxyribonucleotide (PDRN), to restore tissue structural integrity in two experimental colitis models using male Sprague-Dawley rats. In the first model, colitis was induced with a single intra-colonic instillation of dinitrobenzenesulfonic acid (DNBS), 25 mg diluted in 0.8 ml 50% ethanol. After 6 h, animals were randomized to receive either PDRN (8 mg/kg/i.p.), or PDRN + the A2A antagonist [3,7-dimethyl-1-propargylxanthine (DMPX); 10 mg/kg/i.p.], or vehicle (0.8 ml saline solution) daily. In the second model, dextran sulfate sodium (DSS) was dissolved in drinking water at a concentration of 8%. Control animals received standard drinking water. After 24 h animals were randomized to receive PDRN or PDRN+DMPX as described above. Rats were sacrificed 7 days after receiving DNBS or 5 days after DSS. In both experimental models of colitis, PDRN ameliorated the clinical symptoms and weight loss associated with disease as well as promoted the histological repair of damaged tissues. Moreover, PDRN reduced expression of inflammatory cytokines, myeloperoxidase activity, and malondialdehyde. All these effects were abolished by the concomitant administration of the A2A antagonist DMPX. Our study suggests that PDRN may represent a promising treatment for improving tissue repair during inflammatory bowel diseases. PMID:27601997

  12. Rat fat-cells have three types of adenosine receptors (Ra, Ri and P). Differential effects of pertussis toxin.

    PubMed Central

    García-Sáinz, J A; Torner, M L

    1985-01-01

    Activation of rat adipocyte R1 adenosine receptors by phenylisopropyladenosine (PIA) decreased cyclic AMP and lipolysis; this effect was blocked in cells from pertussis-toxin-treated rats. In contrast, the ability of 2',5'-dideoxyadenosine to decrease cyclic AMP was not affected by pertussis-toxin treatment. Addition of adenosine deaminase to the medium in which adipocytes from control animals were incubated resulted in activation of lipolysis. Interestingly, adipocytes from toxin-treated rats (which had an already increased basal lipolysis) responded in an opposite fashion to the addition of adenosine deaminase, i.e. the enzyme decreased lipolysis, which suggested that adenosine might be increasing lipolysis in these cells. Studies with the selective agonists N-ethylcarboxamidoadenosine (NECA) and PIA indicated that adenosine increases lipolysis and cyclic AMP accumulation in these cells and that these actions are mediated through Ra adenosine receptors. Adenosine-mediated accumulation of cyclic AMP was also observed in cells preincubated with pertussis toxin (2 micrograms/ml) for 3 h. In these studies NECA was also more effective than PIA. Our results indicate that there are three types of adenosine receptors in fat-cells, whose actions are affected differently by pertussis toxin, i.e. Ri-mediated actions are abolished, Ra-mediated actions are revealed and P-mediated actions are not affected. PMID:3004405

  13. Action of adenosine receptor antagonists on the cardiovascular response to defence area stimulation in the rat.

    PubMed Central

    St Lambert, J H; Dawid-Milner, M S; Silva-Carvalho, L; Spyer, K M

    1994-01-01

    1. The action of adenosine in the mediation of the cardiovascular changes associated with the defence reaction has been investigated in the rat using two A1 receptor antagonists. 2. Cumulative doses of 1,3 dipropyl-cyclopentylxanthine (DPCPX) (0.3-3 mg kg-1) and ethanol (0.03-0.25 ml) and bolus doses of DPCPX (3 mg kg-1) and 8-sulphophenyltheophylline (8-SPT) (20 mg kg-1) were given into alpha-chloralose, paralysed and artificially ventilated rats. Recordings were made of arterial blood pressure and heart rate. 3. Ethanol, the vehicle for DPCPX, failed to modify the magnitude of the defence response; however, cumulative doses of DPCPX produced a dose-dependent decrease in the HDA (hypothalamic defence area)-evoked increase in arterial blood pressure, accompanied by a similar fall in the magnitude of the evoked heart rate response. 4. The evoked rise in arterial blood pressure was reduced significantly by intravenous injection of DPCPX (3 mg kg-1) but not 8-SPT (20 mg kg-1), a purely peripherally acting adenosine antagonist. 5. These results suggest that adenosine acting at A1 receptors located in the central nervous system, is involved in the HDA-evoked pressor response. Whilst the site of action of the A1 receptors is not known, possible locations are discussed. PMID:7812606

  14. Structure–Activity Relationships and Molecular Modeling of 3,5-Diacyl-2,4-dialkylpyridine Derivatives as Selective A3 Adenosine Receptor Antagonists

    PubMed Central

    Li, An-Hu; Moro, Stefano; Melman, Neli; Ji, Xiao-duo; Jacobson, Kenneth A.

    2012-01-01

    The structure-activity relationships of 6-phenyl-1,4-dihydropyridine derivatives as selective antagonists at human A3 adenosine receptors have been explored (Jiang et al. J. Med. Chem. 1997, 39, 4667-4675). In the present study, related pyridine derivatives have been synthesized and tested for affinity at adenosine receptors in radioligand binding assays. Ki values in the nanomolar range were observed for certain 3,5-diacyl-2,4-dialkyl-6-phenylpyridine derivatives in displacement of [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)-5′-N-methylcarbamoyladenosine) at recombinant human A3 adenosine receptors. Selectivity for A3 adenosine receptors was determined vs radioligand binding at rat brain A1 and A2A receptors. Structure–activity relationships at various positions of the pyridine ring (the 3- and 5-acyl substituents and the 2- and 4-alkyl substituents) were probed. A 4-phenylethynyl group did not enhance A3 selectivity of pyridine derivatives, as it did for the 4-substituted dihydropyridines. At the 2-and 4-positions ethyl was favored over methyl. Also, unlike the dihydropyridines, a thioester group at the 3-position was favored over an ester for affinity at A3 adenosine receptors, and a 5-position benzyl ester decreased affinity. Small cycloalkyl groups at the 6-position of 4-phenylethynyl-1,4-dihydropyridines were favorable for high affinity at human A3 adenosine receptors, while in the pyridine series a 6-cyclopentyl group decreased affinity. 5-Ethyl 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate, 38, was highly potent at human A3 receptors, with a Ki value of 20 nM. A 4-propyl derivative, 39b, was selective and highly potent at both human and rat A3 receptors, with Ki values of 18.9 and 113 nM, respectively. A 6-(3-chlorophenyl) derivative, 44, displayed a Ki value of 7.94 nM at human A3 receptors and selectivity of 5200-fold. Molecular modeling, based on the steric and electrostatic alignment (SEAL) method, defined common pharmacophore

  15. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states

    PubMed Central

    Little, Joshua W.; Ford, Amanda; Symons-Liguori, Ashley M.; Chen, Zhoumou; Janes, Kali; Doyle, Timothy; Xie, Jennifer; Luongo, Livio; Tosh, Dillip K.; Maione, Sabatino; Bannister, Kirsty; Dickenson, Anthony H.; Vanderah, Todd W.; Porreca, Frank; Jacobson, Kenneth A.

    2015-01-01

    Chronic pain is a global burden that promotes disability and unnecessary suffering. To date, efficacious treatment of chronic pain has not been achieved. Thus, new therapeutic targets are needed. Here, we demonstrate that increasing endogenous adenosine levels through selective adenosine kinase inhibition produces powerful analgesic effects in rodent models of experimental neuropathic pain through the A3 adenosine receptor (A3AR, now known as ADORA3) signalling pathway. Similar results were obtained by the administration of a novel and highly selective A3AR agonist. These effects were prevented by blockade of spinal and supraspinal A3AR, lost in A3AR knock-out mice, and independent of opioid and endocannabinoid mechanisms. A3AR activation also relieved non-evoked spontaneous pain behaviours without promoting analgesic tolerance or inherent reward. Further examination revealed that A3AR activation reduced spinal cord pain processing by decreasing the excitability of spinal wide dynamic range neurons and producing supraspinal inhibition of spinal nociception through activation of serotonergic and noradrenergic bulbospinal circuits. Critically, engaging the A3AR mechanism did not alter nociceptive thresholds in non-neuropathy animals and therefore produced selective alleviation of persistent neuropathic pain states. These studies reveal A3AR activation by adenosine as an endogenous anti-nociceptive pathway and support the development of A3AR agonists as novel therapeutics to treat chronic pain. PMID:25414036

  16. Differential inhibition of noradrenaline release mediated by inhibitory A₁-adenosine receptors in the mesenteric vein and artery from normotensive and hypertensive rats.

    PubMed

    Rocha-Pereira, C; Sousa, J B; Vieira-Rocha, M S; Fresco, P; Gonçalves, J; Diniz, C

    2013-03-01

    Mesenteric arteries and veins are densely innervated by sympathetic nerves and are crucial in the regulation of peripheral resistance and capacitance, respectively, thus, in the control of blood pressure. Presynaptic adenosine receptors are involved in vascular tonus regulation, by modulating noradrenaline release from vascular postganglionic sympathetic nerve endings. Some studies also suggest that adenosine receptors (AR) may have a role in hypertension. We aim at investigating the role of presynaptic adenosine receptors in mesenteric vessels and establish a relationship between their effects (in mesenteric vessels) and hypertension, using the spontaneously hypertensive rats (SHR) as a model of hypertension. Adenosine receptor-mediated modulation of noradrenaline release was investigated through the effects of selective agonists and antagonists on electrically-evoked [(3)H]-noradrenaline overflow. CPA (A1AR selective agonist: 1-100 nM) inhibited tritium overflow, but the inhibition was lower in SHR mesenteric vessels. IB-MECA (A3AR selective agonist: 1-100 nM) also inhibited tritium overflow but only in WKY mesenteric veins. CGS 21680 (A2AAR selective agonist: up to 100 nM) failed to facilitate noradrenaline release in mesenteric veins, from both strains, but induced a similar facilitation in the mesenteric arteries. NECA (non-selective AR agonist: 1, 3 and 10μM), in the presence of A1 (DPCPX, 20 nM) and A3 (MRS 1523, 1 μM) AR selective antagonists, failed to change tritium overflow. In summary, the modulatory effects mediated by presynaptic adenosine receptors were characterized, for the first time, in mesenteric vessels: a major inhibition exerted by the A1 subtype in both vessels; a slight inhibition mediated by A3 receptors in mesenteric vein; a facilitation mediated by A2A receptors only in mesenteric artery (from both strains). The less efficient prejunctional adenosine receptor mediated inhibitory effects can contribute to an increase of noradrenaline in

  17. The in vivo respiratory phenotype of the adenosine A1 receptor knockout mouse.

    PubMed

    Heitzmann, Dirk; Buehler, Philipp; Schweda, Frank; Georgieff, Michael; Warth, Richard; Thomas, Joerg

    2016-02-01

    The nucleoside adenosine has been implicated in the regulation of respiration, especially during hypoxia in the newborn. In this study the role of adenosine A1 receptors for the control of respiration was investigated in vivo. To this end, respiration of unrestrained adult and neonatal adenosine A1 receptor knockout mice (A1R(-/-)) was measured in a plethysmographic device. Under control conditions (21% O2) and mild hypoxia (12-15% O2) no difference of respiratory parameters was observed between adult wildtype (A1R(+/+)) and A1R(-/-) mice. Under more severe hypoxia (6-10% O2) A1R(+/+) mice showed, after a transient increase of respiration, a decrease of respiration frequency (fR) and tidal volume (VT) leading to a decrease of minute volume (MV). This depression of respiration during severe hypoxia was absent in A1R(-/-) mice which displayed a stimulated respiration as indicated by the enhancement of MV by some 50-60%. During hypercapnia-hyperoxia (3-10% CO2/97-90 % O2), no obvious differences in respiration of A1R(-/-) and A1R(+/+) was observed. In neonatal mice, the respiratory response to hypoxia was surprisingly similar in both genotypes. However, neonatal A1R(-/-) mice appeared to have more frequently periods of apnea during hypoxia and in the post-hypoxic control period. In conclusion, these data indicate that the adenosine A1 receptor is an important molecular component mediating hypoxic depression in adult mice and it appears to stabilize respiration of neonatal mice. PMID:26593641

  18. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease

    PubMed Central

    Black, Kevin J.; Koller, Jonathan M.; Campbell, Meghan C.; Gusnard, Debra A.; Bandak, Stephen I.

    2010-01-01

    Adenosine A2a receptor antagonists reduce symptom severity in Parkinson disease (PD) and animal models. Rodent studies support the hypothesis that A2a antagonists produce this benefit by reducing the inhibitory output of the basal ganglia indirect pathway. One way to test this hypothesis in humans is to quantify regional pharmacodynamic responses with cerebral blood flow (CBF) imaging. That approach has also been proposed as a tool to accelerate pharmaceutical dose-finding, but has not yet been applied in humans to drugs in development. We successfully addressed both these aims with a perfusion MRI study of the novel adenosine A2a antagonist SYN115. During a randomized, double-blind, placebo-controlled, crossover study in 21 PD patients on levodopa but no agonists, we acquired pulsed arterial spin labeling MRI at the end of each treatment period. SYN115 produced a highly significant decrease in thalamic CBF, consistent with reduced pallidothalamic inhibition via the indirect pathway. Similar decreases occurred in cortical regions whose activity decreases with increased alertness and externally-focused attention, consistent with decreased self-reported sleepiness on SYN115. Remarkably, we also derived quantitative pharmacodynamic parameters from the CBF responses to SYN115. These results suggested that the doses tested were on the low end of the effective dose range, consistent with clinical data reported separately. We conclude that (1) SYN115 enters the brain and exerts dose-dependent regional effects, (2) the most prominent of these effects is consistent with deactivation of the indirect pathway as predicted by preclinical studies; and (3) perfusion MRI can provide rapid, quantitative, clinically relevant dose-finding information for pharmaceutical development. PMID:21123574

  19. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  20. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions. PMID:17383145

  1. Treatment with Adenosine Receptor Agonist Ameliorates Pain Induced by Acute and Chronic Inflammation.

    PubMed

    Montes, Guilherme Carneiro; Hammes, Nathalia; da Rocha, Miguel Divino; Montagnoli, Tadeu Lima; Fraga, Carlos Alberto Manssour; Barreiro, Eliezer J; Sudo, Roberto Takashi; Zapata-Sudo, Gisele

    2016-08-01

    Rheumatoid arthritis is an inflammatory autoimmune condition, and tumor necrosis factor-α (TNF-α) plays an important role in its pathophysiology. In vitro, (E)-N'-(3,4-dimethoxybenzylidene)-N-methylbenzohydrazide (LASSBio-1359) has exhibited anti-TNF-α properties, and in vivo these effects are mediated via activation of adenosine receptor. This work investigates the antinociceptive action of LASSBio-1359 in murine models of acute and chronic inflammatory pain. Male mice received an intraperitoneal injection of LASSBio-1359 and then were evaluated in formalin- and carrageenan-induced paw edema assays. Complete Freund's adjuvant (CFA) was used to induce a mouse model of monoarthritis. These mice were treated with LASSBio-1359 by oral gavage to evaluate thermal and mechanical hyperalgesia. TNF-α and inducible nitric oxide synthase (iNOS) expression as well as histologic features were analyzed. The time of reactivity to formalin in the neurogenic phase was reduced from 56.3 ± 6.0 seconds to 32.7 ± 2.2 seconds and 23.8 ± 2.6 seconds after treatment with LASSBio-1359 at doses of 10 mg/kg and 20 mg/kg, respectively. A reversal of the antinociceptive action of LASSBio-1359 was observed in the inflammatory phase after treatment with ZM 241385 [4-(2-[7-amino-2-(2-furly)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol], an adenosine A2A antagonist. Carrageenan-induced thermal and mechanical hyperalgesia were reduced after treatment with LASSBio-1359. Similarly, CFA-induced thermal and mechanical hyperalgesia were reduced after treatment with LASSBio-1359 (25 and 50 mg/kg). Levels of TNF-α and iNOS expression increased in the monoarthritis model and were normalized in animals treated with LASSBio-1359, which was also associated with beneficial effects in the histologic analysis. These results suggest that LASSBio-1359 represents an alternative treatment of monoarthritis. PMID:27194479

  2. The efficacy of oral adenosine A(2A) antagonist istradefylline for the treatment of moderate to severe Parkinson's disease.

    PubMed

    Vorovenci, Ruxandra Julia; Antonini, Angelo

    2015-01-01

    The moderate and severe stages of Parkinson's disease (PD) are marked by motor and non-motor complications that still remain difficult to control with the currently available therapy. Adenosine A(2A) receptor antagonists target non-dopaminergic systems, and have emerged as promising add-on therapy in the management of PD, a little more than a decade ago. While the development of this new drug class was slower than initially expected, istradefylline was recently registered in Japan, because it provides reduction of the off-time, when given in association with levodopa. Effects on some non-motor features have also been suggested, and preliminary studies further suggest a potential neuroprotective effect. Associations of A(2A) receptor antagonists with dopaminergic agents, as well as enzyme blockers like catechol-O-methyltransferase (COMT) and monoamine oxidase-B (MAO-B) inhibitors, should provide even greater benefit in advanced PD patients, and, thus, a more individualized treatment approach would be at hand. PMID:26630457

  3. (/sup 125/I)Aminobenzyladenosine, a new radioligand with improved specific binding to adenosine receptors in heart

    SciTech Connect

    Linden, J.; Patel, A.; Sadek, S.

    1985-02-01

    The density of adenosine receptors in membranes derived from rat hearts in 25 times lower than the density of receptors in rat brain membranes. Consequently, adenosine radioligands which are useful in brain such as l-(/sup 3/H)phenylisopropyladenosine, (/sup 3/H)cyclohexyladenosine, (/sup 3/H)-2-chloroadenosine and l-(/sup 125/I)hydroxyphenylisopropyladenosine are of limited usefulness in heart, due to a high ratio of nonspecific to specific binding. We have synthesized a new radioligand, (/sup 125/I)-N6-4-aminobenzyladenosine, which binds to rat heart membranes with one-sixth the nonspecific binding of the other radioligands. (/sup 125/I)-N6-4-aminobenzyladenosine bound to rat ventricle membranes with a K/sub D/ equivalent to that of l-(/sup 125/I)hydroxyphenylisopropyladenosine and a B/sub max/ of 15.2 fmol/mg protein. (/sup 125/I)-N6-4-aminobenzyladenosine bound with a higher affinity to brain (K/sub D/ . 1.93 nM) than to heart membranes (K/sub D/ . 11.6 nM). At the radioligand K/sub D/, 60% of the total (/sup 125/I)-N6-4-aminobenzyladenosine bound to heart membranes was specifically bound. Iodination of aminobenzyladenosine increased its affinity for the adenosine receptor by 22-fold, possibly due to a steric or hydrophobic effect of iodine. The new ligand was found to be a full adenosine agonist based on its ability to inhibit cyclic adenosinemonophosphate accumulation in isolated embryonic chick heart cells and rat adipocytes. (/sup 125/I)-N6-4-Aminobenzyladenosine bound to a single affinity site and was displaced from cardiac and brain adenosine receptors by other adenosine analogues with a potency order of l-phenylisopropyladenosine greater than 5'-N-ethylcarboxamide adenosine. These characteristics suggest that the radioligand binds to an Ri adenosine receptor.

  4. Caffeine-induced behavioral stimulation is dose-dependent and associated with A1 adenosine receptor occupancy.

    PubMed

    Kaplan, G B; Greenblatt, D J; Kent, M A; Cotreau, M M; Arcelin, G; Shader, R I

    1992-05-01

    Caffeine's psychomotor stimulant effects may relate to its blockade of central adenosine receptors. We examined acute caffeine effects on motor activity, adenosine receptor occupancy in vivo, and receptor affinity and density ex vivo. Acute doses of caffeine-sodium benzoate (0, 20, 40, and 60 mg/kg, intraperitoneally [0, 0.10, 0.21, 0.31 mu mol/kg]) were given to CD-1 mice and their activity was measured in an animal activity monitor over a 1-hour period. Adenosine receptor occupancy in vivo was quantified in mice 1 hour postdosage, using the high-affinity, A1 receptor selective adenosine antagonist [3H]-8-cyclopentyl-1,3-dipropylxanthine. Adenosine receptor binding affinities and densities were determined from analyses of binding studies in cortical, hippocampal, and brainstem membranes from treated mice (0 and 40 mg/kg caffeine). Caffeine doses of 20 and 40 mg/kg, corresponding to mean brain concentrations of 5 and 17 micrograms/g, increased all horizontal and vertical motor activity measures and stereotypy counts, as compared to doses of 0 and 60 mg/kg. Additionally, all acute caffeine doses significantly altered specific A1 binding in vivo (decreasing binding between 55% and 73% versus vehicle), presumably as it occupied A1 receptors. Therefore, at doses of 20 and 40 mg/kg, caffeine stimulated motor activity as it occupied A1 receptors; at a dose of 60 mg/kg (mean brain concentration of 26 micrograms/g) caffeine had no stimulant effect even though it appeared to occupy A1 receptors. Acute caffeine dosage did not alter ex vivo adenosine receptor binding affinity or density in any brain regions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1599605

  5. (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes

    SciTech Connect

    Martens, D.; Lohse, M.J.; Schwabe, U.

    1988-09-01

    The purpose of the present study was the identification of A1 adenosine receptors in intact rat ventricular myocytes, which are thought to mediate the negative inotropic effects of adenosine. The adenosine receptor antagonist (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine was used as radioligand. Binding of the radioligand to intact myocytes was rapid, reversible, and saturable with a binding capacity of 40,000 binding sites per cell. The dissociation constant of the radioligand was 0.48 nM. The adenosine receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine, xanthine amine congener, and theophylline were competitive inhibitors with affinities in agreement with results obtained for A1 receptors in other tissues. Competition experiments using the adenosine receptor agonists R-N(6)-phenylisopropyladenosine, 5'-N-ethylcarboxamidoadenosine, and S-N(6)-phenylisopropyladenosine gave monophasic displacement curves with Ki values of 50 nM, 440 nM, and 4,300 nM, which agreed well with the GTP-inducible low affinity state in cardiac membranes. The low affinity for agonists was not due to agonist-induced desensitization, and correlated well with the corresponding IC50 values for the inhibition of cyclic AMP accumulation by isoprenaline. It is suggested that only a low affinity state of A1 receptors can be detected in intact rat myocytes due to the presence of high concentrations of guanine nucleotides in intact cells.

  6. 2-Phenylpyrazolo[4,3-d]pyrimidin-7-one as a new scaffold to obtain potent and selective human A3 adenosine receptor antagonists: new insights into the receptor-antagonist recognition.

    PubMed

    Lenzi, Ombretta; Colotta, Vittoria; Catarzi, Daniela; Varano, Flavia; Poli, Daniela; Filacchioni, Guido; Varani, Katia; Vincenzi, Fabrizio; Borea, Pier Andrea; Paoletta, Silvia; Morizzo, Erika; Moro, Stefano

    2009-12-10

    A molecular simplification approach of previously reported 2-arylpyrazolo[3,4-c]quinolin-4-ones was applied to design 2-arylpyrazolo[4,3-d]pyrimidin-7-one derivatives as new human A(3) adenosine receptor antagonists. Substituents with different lipophilicity and steric hindrance were introduced at the 5-position of the bicyclic scaffold (R(5) = H, Me, Et, Ph, CH(2)Ph) and on the 2-phenyl ring (OMe, Me). Most of the synthesized derivatives were highly potent hA(3) adenosine receptor antagonists, the best being the 2-(4-methoxyphenyl)pyrazolo[4,3-d]pyrimidin-7-one (K(i) = 1.2 nM). The new compounds were also highly selective, being completely devoid of affinity toward hA(1), hA(2A), and hA(2B) adenosine receptors. On the basis of the recently published human A(2A) receptor crystallographic information, we propose a novel receptor-driven hypothesis to explain both A(3) AR affinity and A(3) versus A(2A) selectivity profiles of these new antagonists. PMID:19743865

  7. Influence of Thromboxane A2 on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes

    PubMed Central

    Jeong, In Seok; Cho, Hwa Jin; Cho, Jeong Gwan; Kim, Sang Hyung; Na, Kook Joo

    2016-01-01

    Background and Objectives Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play an important role in myocardial protection. We examined the effects of thromboxane A2 on the regulation of KATP channel activity in single ventricular myocytes. Subjects and Methods Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at −60 mV holding potential during the perfusion of an ATP-free K-5 solution. Results In the excised inside-out patches, the thromboxane A2 analog, U46619, decreased the KATP channel activity in a dose-dependent manner; however, the thromboxane A2 receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced KATP channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced KATP channel activity. Conclusion Thromboxane A2 may inhibit KATP channel activity, and may have a harmful effect on ischemic myocardium. PMID:27482267

  8. Adenosine A1 Receptors in Mouse Pontine Reticular Formation Depress Breathing, Increase Anesthesia Recovery Time, and Decrease Acetylcholine Release

    PubMed Central

    Gettys, George C.; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A.; Lydic, Ralph

    2012-01-01

    Background Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Methods Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N6-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and time to recovery of righting response (RoRR) was quantified after PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), or SPA and DPCPX. Results First, SPA significantly decreased respiratory rate (−18%), tidal volume (−12%) and minute ventilation (−16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). DPCPX alone caused a concentration-dependent increase in acetylcholine, decrease in RoRR, and decrease in breathing rate. Coadministration of SPA and DPCPX blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Conclusions Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing. PMID:23263018

  9. Metabolic mapping of A3 adenosine receptor agonist MRS5980.

    PubMed

    Fang, Zhong-Ze; Tosh, Dilip K; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W; O'Connor, Robert; Jacobson, Kenneth A; Gonzalez, Frank J

    2015-09-15

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  10. Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder.

    PubMed

    Pires, Vanessa A; Pamplona, Fabrício A; Pandolfo, Pablo; Fernandes, Daniel; Prediger, Rui D S; Takahashi, Reinaldo N

    2009-03-01

    The strain of spontaneously hypertensive rats (SHR) is considered a genetic model for the study of attention-deficit hyperactivity disorder (ADHD), as it displays hyperactivity, impulsivity and poorly sustained attention. Recently, we have shown the involvement of adenosinergic neuromodulation in the SHR's short-term and long-term memory impairments. In this study, we investigated the performance of male and female SHR in a modified version of the object-recognition task (using objects with different structural complexity) and compared them with Wistar rats, a widely used outbred rat strain for the investigation of learning processes. The suitability of the SHR strain to represent an animal model of ADHD, as far as mnemonic deficits are concerned, was pharmacologically validated by the administration of methylphenidate, the first-choice drug for the treatment of ADHD patients. The role of adenosine A1 and A2A receptors in object discrimination was investigated by the administration of caffeine (nonselective antagonist) or selective adenosine receptor antagonists. Wistar rats discriminated all the objects used (cube vs. pyramid; cube vs. T-shaped object), whereas SHR only discriminated the most structurally distinct pairs of objects (cube vs. pyramid). Pretraining administration of methylphenidate [2 mg/kg, intraperitoneal (i.p.)], caffeine (1-10 mg/kg, i.p.), the selective adenosine receptor antagonists DPCPX (8-cyclopenthyl-1,3-dipropylxanthine; A1 antagonist, 5 mg/kg, i.p.) and ZM241385 (A2A antagonist, 1.0 mg/kg, i.p.), or the association of ineffective doses of DPCPX (3 mg/kg) and ZM241385 (0.5 mg/kg), improved the performance of SHR in the object-recognition task. These findings show that the discriminative learning impairments of SHR can be attenuated by the blockade of either A1 or A2A adenosine receptors, suggesting that adenosinergic antagonists might represent potentially interesting drugs for the treatment of ADHD. PMID:19307960

  11. The adenosine 2A receptor agonist GW328267C improves lung function after acute lung injury in rats.

    PubMed

    Folkesson, Hans G; Kuzenko, Stephanie R; Lipson, David A; Matthay, Michael A; Simmons, Mark A

    2012-08-01

    There is a significant unmet need for treatments of patients with acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). The primary mechanism that leads to resolution of alveolar and pulmonary edema is active vectorial Na(+) and Cl(-) transport across the alveolar epithelium. Several studies have suggested a role for adenosine receptors in regulating this fluid transport in the lung. Furthermore, these studies point to the A(2A) subtype of adenosine receptor (A(2A)R) as playing a role to enhance fluid transport, suggesting that activation of the A(2A)R may enhance alveolar fluid clearance (AFC). The current studies test the potential therapeutic value of the A(2A)R agonist GW328267C to accelerate resolution of alveolar edema and ALI/ARDS in rats. GW328267C, at concentrations of 10(-5) M to 10(-3) M, instilled into the airspaces, increased AFC in control animals. GW328267C did not increase AFC beyond that produced by maximal β-adrenergic stimulation. The effect of GW328267C was inhibited by amiloride but was not affected by cystic fibrosis transmembrane conductance regulator inhibition. The drug was tested in three models of ALI, HCl instillation 1 h, LPS instillation 16 h, and live Escherichia coli instillation 2 h before GW328267C instillation. After either type of injury, GW328267C (10(-4) M) decreased pulmonary edema formation and restored AFC, measured 1 h after GW328267C instillation. These findings show that GW328267C has beneficial effects in experimental models of ALI and may be a useful agent for treating patients with ALI or prophylactically to prevent ALI. PMID:22659881

  12. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    SciTech Connect

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-03-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects.

  13. Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure.

    PubMed

    Greene, Stephen J; Sabbah, Hani N; Butler, Javed; Voors, Adriaan A; Albrecht-Küpper, Barbara E; Düngen, Hans-Dirk; Dinh, Wilfried; Gheorghiade, Mihai

    2016-01-01

    Heart failure (HF) represents a global public health and economic problem associated with unacceptable rates of death, hospitalization, and healthcare expenditure. Despite available therapy, HF carries a prognosis comparable to many forms of cancer with a 5-year survival rate of ~50%. The current treatment paradigm for HF with reduced ejection fraction (EF) centers on blocking maladaptive neurohormonal activation and decreasing cardiac workload with therapies that concurrently lower blood pressure and heart rate. Continued development of hemodynamically active medications for stepwise addition to existing therapies carries the risk of limited tolerability and safety. Moreover, this treatment paradigm has thus far failed for HF with preserved EF. Accordingly, development of hemodynamically neutral HF therapies targeting primary cardiac pathologies must be considered. In this context, a partial adenosine A1 receptor (A1R) agonist holds promise as a potentially hemodynamically neutral therapy for HF that could simultaneous improve cardiomyocyte energetics, calcium homeostasis, cardiac structure and function, and long-term clinical outcomes when added to background therapies. In this review, we describe the physiology and pathophysiology of HF as it relates to adenosine agonism, examine the existing body of evidence and biologic rationale for modulation of adenosine A1R activity, and review the current state of drug development of a partial A1R agonist for the treatment of HF. PMID:26701329

  14. Analysis of the atypical characteristics of adenosine receptors mediating negative inotropic and chronotropic responses of guinea-pig isolated atria and papillary muscles

    PubMed Central

    Gardner, Neil M; Broadley, Kenneth J

    1999-01-01

    Adenosine receptor(s) mediating negative inotropy of paced left atria, isoprenaline-stimulated paced left atria and papillary muscles, and negative chronotropy of spontaneously beating right atria were characterized.Isometric tension of guinea-pig isolated paced left atria and left ventricular papillary muscles and rate of contraction of spontaneously beating right atria were recorded. Papillary muscles were pre-stimulated with isoprenaline (1×10−8 M). Concentration-response curves (CRCs) for tension or rate reduction by N6-cyclopentyladenosine (CPA), the stereoisomers of N6-(2-phenylisopropyl)adenosine ((+)-PIA and (−)-PIA), 5′-(N-carboxamido)adenosine (NECA), N6-2-(4-aminophenyl)ethyladenosine (APNEA) and N6-(3-iodobenzyl)adenosine-5′-N-methyuromide (IB-MECA) revealed a potency order of CPA=(−)-PIA>NECA in right atria and papillary muscles, which is consistent with involvement of A1-receptors. The potency order in left atria was CPA=NECA>(−)-PIA>(+)-PIA>APNEA, which is not typical of A1 adenosine receptors. Weak activity of APNEA and IB-MECA discounts involvement of A3 receptors.pA2 values for the antagonism of CPA by 8(p-sulfophenyl)theophylline (8-SPT) were calculated from Schild plots (log concentration-ratio against log 8-SPT concentration), the unity slopes of which indicated competitive antagonism. The pA2 value in the papillary muscles was significantly higher than for atrial preparations, indicating a possible difference in receptor characteristics between atrial and papillary muscle responses.In left and right atria there was a limit to the displacement of the CPA CRCs at higher concentrations of 8-SPT. The 8-SPT-resistant component of the response is suggested to arise from duality of coupling of a common A1 receptor through either different G proteins or G protein subunits to independent transduction pathways. The results with papillary muscles can be explained by a typical A1 receptor coupled to a single transduction pathway. PMID

  15. No effect of nutritional adenosine receptor antagonists on exercise performance in the heat.

    PubMed

    Cheuvront, Samuel N; Ely, Brett R; Kenefick, Robert W; Michniak-Kohn, Bozena B; Rood, Jennifer C; Sawka, Michael N

    2009-02-01

    Nutritional adenosine receptor antagonists can enhance endurance exercise performance in temperate environments, but their efficacy during heat stress is not well understood. This double-blinded, placebo-controlled study compared the effects of an acute dose of caffeine or quercetin on endurance exercise performance during compensable heat stress (40 degrees C, 20-30% rh). On each of three occasions, 10 healthy men each performed 30-min of cycle ergometry at 50% Vo2peak followed by a 15-min performance time trial after receiving either placebo (Group P), caffeine (Group C; 9 mg/kg), or quercetin (Group Q; 2,000 mg). Serial blood samples, physiological (heart rate, rectal, and mean skin body temperatures), perceptual (ratings of perceived exertion, pain, thermal comfort, motivation), and exercise performance measures (total work and pacing strategy) were made. Supplementation with caffeine and quercetin increased preexercise blood concentrations of caffeine (55.62 +/- 4.77 microM) and quercetin (4.76 +/- 2.56 microM) above their in vitro inhibition constants for adenosine receptors. No treatment effects were observed for any physiological or perceptual measures, with the exception of elevated rectal body temperatures (0.20-0.30 degrees C; P < 0.05) for Group C vs. Groups Q and P. Supplementation did not affect total work performed (Groups P: 153.5 +/- 28.3, C: 157.3 +/- 28.9, and Q: 151.1 +/- 31.6 kJ; P > 0.05) or the self-selected pacing strategy employed. These findings indicate that the nutritional adenosine receptor antagonists caffeine and quercetin do not enhance endurance exercise performance during compensable heat stress. PMID:19020291

  16. Adenosine A1 Receptor Antagonist Versus Montelukast on Airway Reactivity and Inflammation

    PubMed Central

    Nadeem, Ahmed; Obiefuna, Peter C.M.; Wilson, Constance N.; Mustafa, S. Jamal

    2006-01-01

    Adenosine produces bronchoconstriction in allergic rabbits, primates, and humans by activating adenosine A1 receptors. Previously, it is reported that a high dose of L-97-1, a water-soluble, small molecule adenosine A1 receptor antagonist, blocks early and late allergic responses, and bronchial hyper-responsiveness to histamine in a hyper-responsive rabbit model of allergic asthma. Effects of a lower dose of L-97-1 are compared to montelukast, a cysteinyl leukotriene-1 receptor antagonist on early allergic response, late allergic response, bronchial hyper-responsiveness, and inflammatory cells in bronchoalveolar lavage (BAL) fluid following house dust mite administration. Rabbits received intraperitoneal injections of house dust mite extract within 24 h of birth followed by booster house dust mite injections. Hyper-responsive rabbits received aerosolized house dust mite (2500 allergen units), 1 h after intragastric administration of L-97-1 (1 mg/kg) or montelukast (0.15 mg/kg) and lung dynamic compliance was measured for 6 h. Lung dynamic compliance was significantly higher following L-97-1 at all time points and with montelukast at 60-300 min following house dust mite (P < 0.05). L-97-1 blocks both early and late allergic responses. Montelukast blocks only the late allergic response. Both L-97-1 and montelukast significantly blocked bronchial hyper-responsiveness at 24 h (P < 0.05). Both L-97-1 and montelukast significantly reduced BAL eosinophils at 6 h and neutrophils at 6 and 24 h (P < 0.05). L-97-1 significantly reduced BAL lymphocytes at 6 and 24 h (P < 0.05). Montelukast significantly reduced BAL macrophages at 6 and 24 h (P < 0.05). By blocking both bronchoconstriction and airway inflammation, L-97-1 may be an effective oral anti-asthma treatment. PMID:17027749

  17. Paeoniflorin Promotes Non-rapid Eye Movement Sleep via Adenosine A1 Receptors.

    PubMed

    Chen, Chang-Rui; Sun, Yu; Luo, Yan-Jia; Zhao, Xin; Chen, Jiang-Fan; Yanagawa, Yuchio; Qu, Wei-Min; Huang, Zhi-Li

    2016-01-01

    Paeoniflorin (PF, C23H28O11), one of the principal active ingredients of Paeonia Radix, exerts depressant effects on the central nervous system. We determined whether PF could modulate sleep behaviors and the mechanisms involved. Electroencephalogram and electromyogram recordings in mice showed that intraperitoneal PF administered at a dose of 25 or 50 mg/kg significantly shortened the sleep latency and increased the amount of non-rapid eye movement (NREM). Immunohistochemical study revealed that PF decreased c-fos expression in the histaminergic tuberomammillary nucleus (TMN). The sleep-promoting effects and changes in c-fos induced by PF were reversed by 8-cyclopentyl-1,3-dimethylxanthine (CPT), an adenosine A1 receptor antagonist, and PF-induced sleep was not observed in adenosine A1 receptor knockout mice. Whole-cell patch clamping in mouse brain slices showed that PF significantly decreased the firing frequency of histaminergic neurons in TMN, which could be completely blocked by CPT. These results indicate that PF increased NREM sleep by inhibiting the histaminergic system via A1 receptors. PMID:26491061

  18. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  19. Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation.

    PubMed

    D'Alimonte, Iolanda; Ballerini, Patrizia; Nargi, Eleonora; Buccella, Silvana; Giuliani, Patricia; Di Iorio, Patrizia; Caciagli, Francesco; Ciccarelli, Renata

    2007-05-11

    Astrocyte apoptosis occurs in acute and chronic pathological processes at the central nervous system and the prevention of astrocyte death may represent an efficacious intervention in protecting neurons against degeneration. Our research shows that rat astrocyte exposure to 100 nM staurosporine for 3h caused apoptotic death accompanied by caspase-3, p38 mitogen-ed protein kinase (MAPK) and glycogen synthase kinase-3beta (GSK3beta) activation. N(6)-chlorocyclopentyladenosine (CCPA, 2.5-75 nM), a selective agonist of A(1) adenosine receptors, added to the cultures 1h prior to staurosporine, induced a dose-dependent anti-apoptotic effect, which was inhibited by the A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. CCPA also caused a dose- and time-dependent phosphorylation/activation of Akt, a downstream effector of cell survival promoting phosphatidylinositol 3-kinase (PI3K) pathway, which in turn led to inhibition of staurosporine-induced GSK3beta and p38 MAPK activity. Accordingly, the anti-apoptotic effect of CCPA was abolished by culture pre-treatment with LY294002, a selective PI3K inhibitor, pointing out the prevailing role played by PI3K pathway in the protective effect exerted by A(1) receptor activation. Since an abnormal p38 and GSK3beta activity is implicated in acute (stroke) and chronic (Alzheimer's disease) neurodegenerative diseases, the results of the present study provide a hint to better understand adenosine relevance in these disorders. PMID:17400382

  20. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  1. Medicinal chemistry of adenosine, P2Y and P2X receptors.

    PubMed

    Jacobson, Kenneth A; Müller, Christa E

    2016-05-01

    Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain

  2. Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia–reperfusion injury

    PubMed Central

    Kim, Minjae; Chen, Sean W.C.; Park, Sang Won; Kim, Mihwa; D’Agati, Vivette D.; Yang, Jay; Lee, H. Thomas

    2009-01-01

    Genetic deletion of the adenosine A1 receptor (A1AR) increased renal injury following ischemia-reperfusion injury suggesting that receptor activation is protective in vivo. Here we tested this hypothesis by expressing the human-A1AR in A1AR knockout mice. Renal ischemia-reperfusion was induced in knockout mice 2 days after intrarenal injection of saline or a lentivirus encoding enhanced green fluorescent protein (EGFP) or EGFP-human-A1AR. We found that the latter procedure induced a robust expression of the reporter protein in the kidneys of knockout mice. Mice with kidney-specific human-A1AR reconstitution had significantly lower plasma creatinine, tubular necrosis, apoptosis, and tubular inflammation as evidenced by decreased leukocyte infiltration, pro-inflammatory cytokine, and intercellular adhesion molecule-1 expression in the kidney following injury compared to mice injected with saline or the control lentivirus. Additionally, there were marked disruptions of the proximal tubule epithelial filamentous (F)-actin cytoskeleton in both sets of control mice upon renal injury, whereas the reconstituted mice had better preservation of the renal tubule actin cytoskeleton, which co-localized with the human-A1ARs. Consistent with reduced renal injury, there was a significant increase in heat shock protein-27 expression, also co-localizing with the preserved F-actin cytoskeleton. Our findings suggest that selective expression of cytoprotective A1ARs in the kidney can attenuate renal injury. PMID:19190680

  3. Similarities and differences in affinity and binding modes of tricyclic pyrimido- and pyrazinoxanthines at human and rat adenosine receptors.

    PubMed

    Szymańska, Ewa; Drabczyńska, Anna; Karcz, Tadeusz; Müller, Christa E; Köse, Meryem; Karolak-Wojciechowska, Janina; Fruziński, Andrzej; Schabikowski, Jakub; Doroz-Płonka, Agata; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna

    2016-09-15

    A new series of 32 pyrimido- and 5 tetrahydropyrazino[2,1-f]purinediones was obtained and evaluated for their adenosine receptors (ARs) affinities. The 1,3-dibutyl derivative of 9-(4-(2-(dimethylamino)ethoxy)phenyl)-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione was found to be the most potent A1 AR antagonist of the present series, showing selectivity over the other AR subtypes. The structure-activity for the obtained purinediones was established. Docking experiments of the investigated library to homology models of the human and rat A1 and A2A ARs allowed to compare the expected binding modes for selected compounds. The detailed analysis of binding cavities within individual AR subtypes indicated small but significant structural variations that may underlie the observed differences in binding affinities of purinediones at particular subtypes and species. PMID:27485602

  4. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors.

    PubMed

    Carlin, Jesse Lea; Tosh, Dilip K; Xiao, Cuiying; Piñol, Ramón A; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A; Reitman, Marc L

    2016-02-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist-induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non-brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia. PMID:26606937

  5. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors

    PubMed Central

    Carlin, Jesse Lea; Tosh, Dilip K.; Xiao, Cuiying; Piñol, Ramón A.; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A.

    2016-01-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist–induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non–brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia. PMID:26606937

  6. An emerging role for adenosine and its receptors in bone homeostasis

    PubMed Central

    Ham, Jack; Evans, Bronwen A. J.

    2012-01-01

    Bone is continually being remodeled and defects in the processes involved lead to bone diseases. Many regulatory factors are known to influence remodeling but other mechanisms, hitherto unknown, may also be involved. Importantly, our understanding of these currently unknown mechanisms may lead to important new therapies for bone disease. It is accepted that purinergic signaling is involved in bone, and our knowledge of this area has increased significantly over the last 15 years, although most of the published work has studied the role of ATP and other signaling molecules via the P2 family of purinergic receptors. During the last few years, however, there has been increased interest within the bone field in the role of P1 receptors where adenosine is the primary signaling molecule. This review will bring together the current information available in relation to this expanding area of research. PMID:23024635

  7. Pharmacological and Therapeutic Effects of A3 Adenosine Receptor (A3AR) Agonists

    PubMed Central

    Fishman, Pnina; Bar-Yehuda, Sara; Liang, Bruce T.; Jacobson, Kenneth A.

    2011-01-01

    The Gi-coupled A3 adenosine receptor (A3AR) mediates anti-inflammatory, anticancer and anti-ischemic protective effects. The receptor is overexpressed in inflammatory and cancer cells, while low expression is found in normal cells, rendering the A3AR as a potential therapeutic target. Highly selective A3AR agonists have been synthesized and molecular recognition in the binding site has been characterized. The present review summarizes preclinical and clinical human studies demonstrating that A3AR agonists induce specific anti-inflammatory and anticancer effects via a molecular mechanism that entails modulation of the Wnt and the NF-κB signal transduction pathways. Currently, A3AR agonists are being developed for the treatment of inflammatory diseases including rheumatoid arthritis and psoriasis; ophthalmic diseases such as dry eye syndrome and glaucoma; liver diseases such as hepatocellular carcinoma and hepatitis. PMID:22033198

  8. The Role of Adenosine Signaling in Sickle Cell Therapeutics

    PubMed Central

    Field, Joshua J.; Nathan, David G.; Linden, Joel

    2014-01-01

    Recent data suggest a role for adenosine signaling in the pathogenesis of sickle cell disease (SCD). Signaling through the adenosine A2A receptor (A2AR) has demonstrated beneficial effects in SCD. Activation of A2ARs decreases inflammation in mice and patients with SCD largely by blocking activation of invariant NKT cells. Decreased inflammation may reduce the severity of vaso-occlusive crises. In contrast, adenosine signaling through the A2B receptor (A2BR) may be detrimental for patients with SCD. Priapism and the formation of sickle erythrocytes may be a consequence of A2BR activation on corpus cavernosal cells and erythrocytes, respectively. Whether adenosine signaling predominantly occurs through A2ARs or A2BRs may depend on differing levels of adenosine and disease state (steady state versus crisis). There may be opportunities to develop novel therapeutic approaches targeting A2ARs and/or A2BRs for patients with SCD. PMID:24589267

  9. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors

    PubMed Central

    Jinka, Tulasi R.; Tøien, Øivind; Drew, Kelly L.

    2011-01-01

    Torpor in hibernating mammals defines the nadir in mammalian metabolic demand and body temperature that accommodates seasonal periods of reduced energy availability. The mechanism of metabolic suppression during torpor onset is unknown although the central nervous system (CNS) is a key regulator of torpor. Seasonal hibernators such as the arctic ground squirrel (AGS) display torpor only during the winter, hibernation season. The seasonal character of hibernation thus provides a clue to its regulation. In the present study we delivered adenosine receptor agonists and antagonists into the lateral ventricle of AGS at different times of the year while monitoring the rate of O2 consumption and core body temperature as indicators of torpor. The A1 antagonist, cyclopentyltheophylline (CPT) reversed spontaneous entrance into torpor. The adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA) induced torpor in 6 out of 6 AGS tested during the mid-hibernation season, 2 out of 6 AGS tested early in the hibernation season and none of the 6 AGS tested during the summer, off-season. CHA-induced torpor within the hibernation season was specific to A1AR activation; the A3AR agonist 2-Cl-IB MECA failed to induce torpor and the A2aR antagonist MSX-3, failed to reverse spontaneous onset of torpor. CHA-induced torpor was similar to spontaneous entrance into torpor. These results show that metabolic suppression during torpor onset is regulated within the CNS via A1AR activation and requires a seasonal switch in the sensitivity of purinergic signaling. PMID:21795527

  10. Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats

    PubMed Central

    Jinka, Tulasi R.; Carlson, Zachary A.; Moore, Jeanette T.

    2010-01-01

    Rationale Evidence links longevity to dietary restriction (DR). A decrease in body temperature (Tb) is thought to contribute to enhanced longevity because lower Tb reduces oxidative metabolism and oxidative stress. It is as yet unclear how DR decreases Tb. Objective Here, we test the hypothesis that prolonged DR decreases Tb by sensitizing adenosine A1 receptors (A1AR) and adenosine-induced cooling. Methods and results Sprague–Dawley rats were dietary restricted using an every-other-day feeding protocol. Rats were fed every other day for 27 days and then administered the A1AR agonist, N6-cyclohexyladenosine (CHA; 0.5 mg/kg, i.p.). Respiratory rate (RR) and subcutaneous Tb measured using IPTT-300 transponders were monitored every day and after drug administration. DR animals displayed lower RR on day 20 and lower Tb on day 22 compared to animals fed ad libitum and displayed a larger response to CHA. In all cases, RR declined before Tb. Contrary to previous reports, a higher dose of CHA (5 mg/kg, i.p.) was lethal in both dietary groups. We next tested the hypothesis that sensitization to the effects of CHA was due to increased surface expression of A1AR within the hypothalamus. We report that the abundance of A1AR in the membrane fraction increases in hypothalamus, but not cortex of DR rats. Conclusion These results suggest that every-other-day feeding lowers Tb via sensitization of thermoregulatory effects of endogenous adenosine by increasing surface expression of A1AR. Discussion Evidence that diet can modulate purinergic signaling has implications for the treatment of stroke, brain injury, epilepsy, and aging. PMID:20186398

  11. Sleep fragmentation impairs ventilatory long-term facilitation via adenosine A1 receptors

    PubMed Central

    McGuire, Michelle; Tartar, Jaime L; Cao, Ying; McCarley, Robert W; White, David P; Strecker, Robert E; Ling, Liming

    2008-01-01

    Sleep fragmentation (SF), a primary feature of obstructive sleep apnoea (OSA), impairs hippocampal long-term potentiation and causes cognitive/attention deficits. However, its influence upon respiratory control has hardly been studied. This study examined the effect of SF on ventilatory long-term facilitation (LTF, a persistent augmentation of respiratory activity after episodic hypoxia) and the hypoxic ventilatory response (HVR), and investigated the role of adenosine A1 receptors in these SF effects in conscious adult male Sprague–Dawley rats. SF, confirmed by sleep architecture recordings, was achieved by periodic, forced locomotion in a rotating drum (30 s rotation/90 s stop for 24 h). LTF, elicited by five episodes of 5 min poikilocapnic hypoxia (10% O2) with 5 min intervals, was measured by plethysmography. Resting ventilation and metabolic rate were unchanged, HVR was reduced (150.6 ± 3.5%versus 110.4 ± 12.3%) and LTF was eliminated (22.6 ± 0.5%versus−0.1 ± 1.3%) shortly after 24 h SF. The SF-induced impairments were SF duration dependent, and completely reversible as HVR (< 24 h) and LTF (< 48 h) returned spontaneously to their pre-SF values. The SF-impaired HVR was improved (130.3 ± 4.2%) and SF-eliminated LTF was restored (19.6 ± 0.9%) by systemic injection of the adenosine A1 receptor antagonist 8-CPT (2.5 mg kg−1) ∼30 min before LTF elicitation. Both HVR and LTF were also similarly impaired by 24 h total sleep deprivation or 24 h repeated cage tapping-induced SF, but not by a 24 h locomotion control protocol for SF. Collectively, these data suggest that: (1) 24 h SF impairs LTF and poikilocapnic HVR; (2) these impairments require A1 receptors; and (3) SF of OSA may exacerbate OSA via impaired ventilatory control mechanisms. PMID:18787037

  12. Role of brainstem adenosine A1 receptors in the cardiovascular response to hypothalamic defence area stimulation in the anaesthetized rat.

    PubMed Central

    St Lambert, J. H.; Dashwood, M. R.; Spyer, K. M.

    1996-01-01

    1. The role of centrally located adenosine A1 receptors in the cardiovascular changes associated with the hypothalamic defence response has been investigated by in vitro autoradiography and the intraventricular application of an A1 receptor antagonist. 2. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), a highly selective adenosine A1 antagonist and its vehicle, ethanol, were administered directly into the posterior portion of the fourth ventricle of alpha-chloralose anaesthetized, paralysed and artificially ventilated rats. 3. DPCPX (0.01 to 0.3 mg kg-1) caused a dose-dependent decrease in the magnitude of the evoked pressor response (from -13 to -23 mmHg) elicited on hypothalamic defence area stimulation at a dose 10 fold lower than that required to produce an equivalent effect following systemic administration whilst ethanol, the vehicle, had no effect. 4. In vitro autoradiography revealed a heterogeneous distribution of adenosine A1 binding sites in the lower brainstem of rats. Image analysis showed the ventrolateral medulla to have the highest density of A1 receptors. Intermediate levels of binding were seen in caudal regions of the nucleus tractus solitarii and the hypoglossal nucleus. 5. These data imply that a proportion of the cardiovascular response to hypothalamic defence area stimulation are produced by the activation of adenosine A1 receptors localized close to the surface of, or adjacent to, the fourth ventricle in the immediate vicinity of the injection site. PMID:8789379

  13. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J.

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  14. A/sub 1/ and A/sub 2/ adenosine receptor regulation of erythropoietin production

    SciTech Connect

    Ueno, M.; Brookins, J.; Beckman, B.; Fisher, J.W.

    1988-01-01

    The effects of adenosine (ADE) and ADE agonists on erythropoietin (Ep) production were determined using percent (%) /sup 59/Fe incorporation in red cells of exhypoxic polycythemic mice. The hemisulfate salt of ADE produced a significant increase in % /sup 59/Fe incorporation in response to hypoxia in concentrations of 400 to 1600 nmol/kg/day. 5'-N-ethyl-carboxamideadenosine (NECA), a selective A/sub 2/ receptor agonist, increased radioiron incorporation in a dose-dependent manner. In contrast, N/sup 6/-cyclohexyladenosine (CHA), a selective A/sub 1/ receptor agonist, did not affect radioiron incorporation in concentrations up to 1600 nmol/kg/day. Albuterol, a beta 2-adrenergic agonist, enhanced % /sup 59/Fe incorporation in polycythemic mice and low doses of CHA, which were not effective alone on % /sup 59/Fe incorporation in polycythemic mice exposed to hypoxia, inhibited the enhancement in radioiron induced by albuterol plus hypoxia. Theophylline, a well-known antagonist of ADE receptors, blocked the ADE and NECA enhancement in radioiron incorporation at a dose of theophylline alone which produced only a slight enhancement of % /sup 59/Fe incorporation.

  15. Ethanol-induced increase in portal blood flow: Role of acetate and A sub 1 - and A sub 2 -adenosine receptors

    SciTech Connect

    Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H. Univ. of Toronto, Ontario )

    1988-10-01

    The increase in portal blood flow induced by ethanol appears to be adenosine mediated. Acetate, which is released by the liver during ethanol metabolism, is known to increase adenosine levels in tissues and in blood. The effects of acetate on portal blood flow were investigated in rats using the microsphere technique. The intravenous infusion of acetate resulted in vasodilation of the preportal vasculature and in a dose-dependent increase in portal blood flow. This acetate-induced increase in portal blood flow was suppressed by the adenosine receptor blocker, 8-phenyltheophylline. Using the A{sub 1}-adenosine receptor agonist N-6-cyclohexyl adenosine and the A{sub 2}-agonist 5{prime}-N-ethylcarboxamido adenosine, we demonstrate that the effect of adenosine on the preportal vasculature is mediated by the A{sub 2}-subtype of adenosine receptors. In conclusion, these data support the hypothesis that the increase in portal blood flow after ethanol administration results from a preportal vasodilatory effect of adenosine formed from acetate metabolism in extrahepatic tissues.

  16. Prenatal diazepam exposure alters respiratory control system and GABAA and adenosine receptor gene expression in newborn rats.

    PubMed

    Picard, Nathalie; Guénin, Stéphanie; Perrin, Yolande; Hilaire, Gérard; Larnicol, Nicole

    2008-07-01

    In experimental animals, prenatal diazepam exposure has clearly been associated with behavioral disturbances. Its impact on newborn breathing has not been documented despite potential deleterious consequences for later brain development. We addressed this issue in neonatal rats (0-2 d) born from dams, which consumed 2 mg/kg/d diazepam via drinking fluid throughout gestation. In vivo, prenatal diazepam exposure significantly altered the normoxic-breathing pattern, lowering breathing frequency (105 vs. 125 breaths/min) and increasing tidal volume (16.2 vs. 12.7 mL/kg), and the ventilatory response to hypoxia, inducing an immediate and marked decrease in tidal volume (-30%) absent in controls. In vitro, prenatal diazepam exposure significantly increased the respiratory-like frequency produced by pontomedullary and medullary preparations (+38% and +19%, respectively) and altered the respiratory-like response to application of nonoxygenated superfusate. Both in vivo and in vitro, the recovery from oxygen deprivation challenges was delayed by prenatal diazepam exposure. Finally, real-time PCR showed that prenatal diazepam exposure affected mRNA levels of alpha1 and alpha2 GABAA receptor subunits and of A1 and A2A adenosine receptors in the brainstem. These mRNA changes, which are region-specific, suggest that prenatal diazepam exposure interferes with developmental events whose impact on the respiratory system maturation deserves further studies. PMID:18360306

  17. Homeostatic action of adenosine A3 and A1 receptor agonists on proliferation of hematopoietic precursor cells.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Streitová, Denisa; Vacek, Antonín

    2008-07-01

    Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression. PMID:18445770

  18. Polyamidoamine (PAMAM) Dendrimer Conjugates of Clickable Agonists of the A3 Adenosine Receptor and Coactivation of the P2Y14 Receptor by a Tethered Nucleotide

    SciTech Connect

    Tosh, Dilip, K.; Yoo, Lena S.; Chinn, Moshe; Hong, Kunlun; Kilbey, II, S Michael; Barrett, Matthew O.; Fricks, Ingrid P.; Harden, T. Kendall; Jacobson, Kenneth A.

    2010-01-01

    We previously synthesized a series of potent and selective A{sub 3} adenosine receptor (AR) agonists (North-methanocarba nucleoside 5{prime}-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed 'click' chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A{sub 3}AR activation was preserved in these multivalent conjugates, which bound with apparent Ki of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A{sub 3}AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A{sub 3} and P2Y{sub 14} receptors (via amide-linked uridine-5{prime}-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.

  19. GPCR Ligand Dendrimer (GLiDe) Conjugates: Adenosine Receptor Interactions of a Series of Multivalent Xanthine Antagonists

    PubMed Central

    Kecskés, Angela; Tosh, Dilip K.; Wei, Qiang; Gao, Zhan-Guo; Jacobson, Kenneth A.

    2011-01-01

    Previously, G protein–coupled receptor (GPCR) agonists were tethered from polyamidoamine (PAMAM) dendrimers to provide high receptor affinity and selectivity. Here we prepared GPCR Ligand Dendrimer (GLiDe) conjugates from a potent adenosine receptor (AR) antagonist; such agents are of interest for treating Parkinson’s disease, asthma, and other conditions. Xanthine amine congener (XAC) was appended with an alkyne group on an extended C8 substituent for coupling by Cu(I)-catalyzed click chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. These conjugates also contained triazole-linked PEG groups (8 or 22 moieties per 64 terminal positions) for increasing water-solubility and optionally prosthetic groups for spectroscopic characterization and affinity labeling. Human AR binding affinity increased progressively with the degree of xanthine substitution to reach Ki values in the nM range. The order of affinity of each conjugate was hA2AAR > hA3AR > hA1AR, while the corresponding monomer was ranked hA2AAR > hA1AR ≥ hA3AR. The antagonist activity of the most potent conjugate 14 (34 xanthines per dendrimer) was examined at the Gi-coupled A1AR. Conjugate 14 at 100 nM right-shifted the AR agonist concentration-response curve in a cyclic AMP functional assay in a parallel manner, but at 10 nM (lower than its Ki value) it significantly suppressed the maximal agonist effect in calcium mobilization. This is the first systematic probing of a potent AR antagonist tethered on a dendrimer and its activity as a function of variable loading. PMID:21539392

  20. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    PubMed Central

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  1. Adenosine A1 receptors heterodimerize with β1- and β2-adrenergic receptors creating novel receptor complexes with altered G protein coupling and signaling.

    PubMed

    Chandrasekera, P Charukeshi; Wan, Tina C; Gizewski, Elizabeth T; Auchampach, John A; Lasley, Robert D

    2013-04-01

    G protein coupled receptors play crucial roles in mediating cellular responses to external stimuli, and increasing evidence suggests that they function as multiple units comprising homo/heterodimers and hetero-oligomers. Adenosine and β-adrenergic receptors are co-expressed in numerous tissues and mediate important cellular responses to the autocoid adenosine and sympathetic stimulation, respectively. The present study was undertaken to examine whether adenosine A1ARs heterodimerize with β1- and/or β2-adrenergic receptors (β1R and β2R), and whether such interactions lead to functional consequences. Co-immunoprecipitation and co-localization studies with differentially epitope-tagged A1, β1, and β2 receptors transiently co-expressed in HEK-293 cells indicate that A1AR forms constitutive heterodimers with both β1R and β2R. This heterodimerization significantly influenced orthosteric ligand binding affinity of both β1R and β2R without altering ligand binding properties of A1AR. Receptor-mediated ERK1/2 phosphorylation significantly increased in cells expressing A1AR/β1R and A1AR/β2R heteromers. β-Receptor-mediated cAMP production was not altered in A1AR/β1R expressing cells, but was significantly reduced in the A1AR/β2R cells. The inhibitory effect of the A1AR on cAMP production was abrogated in both A1AR/β1R and A1AR/β2R expressing cells in response to the A1AR agonist CCPA. Co-immunoprecipitation studies conducted with human heart tissue lysates indicate that endogenous A1AR, β1R, and β2R also form heterodimers. Taken together, our data suggest that heterodimerization between A1 and β receptors leads to altered receptor pharmacology, functional coupling, and intracellular signaling pathways. Unique and differential receptor cross-talk between these two important receptor families may offer the opportunity to fine-tune crucial signaling responses and development of more specific therapeutic interventions. PMID:23291003

  2. Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice.

    PubMed

    Lang, Undine E; Lang, Florian; Richter, Kerstin; Vallon, Volker; Lipp, Hans-Peter; Schnermann, Jürgen; Wolfer, David P

    2003-10-17

    Several lines of evidence point to the involvement of adenosine in the regulation of important central mechanisms such as cognition, arousal, aggression and anxiety. In order to elucidate the involvement of the adenosine A1 receptor (A1AR) in spatial learning and the control of exploratory behaviour, we assessed A1AR knockout mice (A1AR-/-) and their wild-type littermates (A1AR+/+) in a place navigation task in the water maze and in a battery of forced and free exploration tests. In the water maze, A1AR-/- mice showed normal escape latencies and were indistinguishable from controls with respect to measures of spatial performance during both training and probe trial. But despite normal performance they showed increased wall hugging, most prominently after the relocation of the goal platform for reversal training. Quantitative analysis of strategy choices indicated that wall hugging was increased mainly at the expense of chaining and passive floating, whereas the frequency of trials characterised as direct swims or focal searching was normal in A1AR-/- mice. These results indicate intact spatial cognition, but mildly altered emotional reactions to the water maze environment. In line with this interpretation, A1AR-/- mice showed normal levels and patterns of activity, but a mild increase of some measures of anxiety in our battery of forced and free exploration paradigms. These results are in line with findings published using a genetically similar line, but demonstrate that the magnitude of the changes and the range of affected behavioural measures may vary considerably depending on the environmental conditions during testing. PMID:14529816

  3. Adenosine A1 receptors mediate the intracisternal injection of orexin-induced antinociceptive action against colonic distension in conscious rats.

    PubMed

    Okumura, Toshikatsu; Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Miyagishi, Saori; Ohhira, Masumi

    2016-03-15

    We have recently demonstrated that orexin acts centrally through the brain orexin 1 receptors to induce an antinociceptive action against colonic distension in conscious rats. Adenosine signaling is capable of inducing an antinociceptive action against somatic pain; however, the association between changes in the adenosinergic system and visceral pain perception has not been investigated. In the present study, we hypothesized that the adenosinergic system may be involved in visceral nociception, and thus, adenosine signaling may mediate orexin-induced visceral antinociception. Visceral sensation was evaluated based on the colonic distension-induced abdominal withdrawal reflex (AWR) in conscious rats. Subcutaneous (0.04-0.2mg/rat) or intracisternal (0.8-4μg/rat) injection of N(6)-cyclopentyladenosine (CPA), an adenosine A1 receptor (A1R) agonist, increased the threshold volume of colonic distension-induced AWR in a dose-dependent manner, thereby suggesting that CPA acts centrally in the brain to induce an antinociceptive action against colonic distension. Pretreatment with theophylline, an adenosine antagonist, or 1,3-dipropyl-8-cyclopentylxanthine, an A1R antagonist, subcutaneously injected potently blocked the centrally injected CPA- or orexin-A-induced antinociceptive action against colonic distension. These results suggest that adenosinergic signaling via A1Rs in the brain induces visceral antinociception and that adenosinergic signaling is involved in the central orexin-induced antinociceptive action against colonic distension. PMID:26944127

  4. Adenosine 2A Receptor Inhibition Enhances Intermittent Hypoxia-Induced Diaphragm but Not Intercostal Long-Term Facilitation

    PubMed Central

    Navarrete-Opazo, Angela A.; Vinit, Stéphane

    2014-01-01

    Abstract Acute intermittent hypoxia (AIH) elicits diaphragm (Dia) and second external intercostal (T2 EIC) long-term facilitation (LTF) in normal unanesthetized rats. Although AIH-induced phrenic LTF is serotonin dependent, adenosine constrained in anesthetized rats, this has not been tested in unanesthetized animals. Cervical (C2) spinal hemisection (C2HS) abolishes phrenic LTF because of loss of serotonergic inputs 2 weeks post-injury, but LTF returns 8 weeks post-injury. We tested three hypotheses in unanesthetized rats: (1) systemic adenosine 2aA (A2A) receptor inhibition with intraperitoneal (IP) KW6002 enhances Dia and T2 EIC LTF in normal rats; (2) Dia and T2 EIC LTF are expressed after chronic (8 weeks), but not acute (1 week) C2HS; and (3) KW6002 enhances Dia and T2 EIC LTF after chronic (not acute) C2HS. Electromyography radiotelemetry was used to record Dia and T2 EIC activity during normoxia (21% O2), before and after AIH (10, 5-min 10.5% O2, 5-min intervals). In normal rats, KW6002 enhanced DiaLTF versus AIH alone (33.1±4.6% vs. 22.1±6.4% baseline, respectively; p<0.001), but had no effect on T2 EIC LTF (p>0.05). Although Dia and T2 EIC LTF were not observed 2 weeks post-C2HS, LTF was observed in contralateral (uninjured) Dia and T2 EIC 8 weeks post-C2HS (18.7±2.7% and 34.9±4.9% baseline, respectively; p<0.05), with variable ipsilateral expression. KW6002 had no significant effects on contralateral Dia (p=0.447) or T2 EIC LTF (p=0.796). We conclude that moderate AIH induces Dia and T2 EIC LTF after chronic, but not acute cervical spinal injuries. A single A2A receptor antagonist dose enhances AIH-induced Dia LTF in normal rats, but this effect is not significant in chronic (8 weeks) C2HS unanesthetized rats. PMID:25003645

  5. The Cross-Species A3 Adenosine-Receptor Antagonist MRS 1292 Inhibits Adenosine-Triggered Human Nonpigmented Ciliary Epithelial Cell Fluid Release and Reduces Mouse Intraocular Pressure

    PubMed Central

    Yang, Hui; Avila, Marcel Y.; Peterson-Yantorno, Kim; Coca-Prados, Miguel; Stone, Richard A.; Jacobson, Kenneth A.; Civan, Mortimer M.

    2012-01-01

    Purpose Antagonists to A3 adenosine receptors (ARs) lower mouse intraocular pressure (IOP), but extension to humans is limited by species variability. We tested whether the specific A3AR antagonist MRS 1292, designed to cross species, mimicks the effects of other A3AR antagonists on cultured human nonpigmented ciliary epithelial (NPE) cells and mouse IOP. Methods NPE cell volume was monitored by electronic cell sorting. Mouse IOP was measured with the Servo-Null Micropipette System. Results Adenosine triggered A3AR-mediated shrinkage of human NPE cells. Shrinkage was blocked by MRS 1292 (IC50 = 42 ± 11 nM, p < 0.01) and by another A3AR antagonist effective in this system, MRS 1191. Topical application of the A3AR agonist IB-MECA increased mouse IOP. MRS 1292 reduced IOP by 4.0 ± 0.8 mmHg at 25-μM droplet concentration (n = 10, p < 0.005). Conclusions MRS 1292 inhibits A3AR-mediated shrinkage of human NPE cells and reduces mouse IOP, consistent with its putative action as a cross-species A3 antagonist. PMID:16146920

  6. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus.

    PubMed

    de Mendonça, A; Ribeiro, J A

    1997-08-01

    1. Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12-14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe. p.s.p.) recorded extracellularly from the stratum radiatum in the CAI area. 2. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2-50 nM), on the fe.p.s.p. slope (EC50 = 12.5 (9.2-17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 microM) (EC50 = 27.2 (21.4-34.5) nM, n = 4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 microM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG; 500 microM). DHPG (10 microM) itself had an inhibitory effect of 20.1 +/- 1.9% (n = 4) on the fe.p.s.p. slope. 3. The concentration-response curves for the inhibitory effects of CPA (2-20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine (L-CCG-I; 1 microM), or in the presence of

  7. Characterization of the binding of a novel nonxanthine adenosine antagonist radioligand, ( sup 3 H)CGS 15943, to multiple affinity states of the adenosine A1 receptor in the rat cortex

    SciTech Connect

    Jarvis, M.F.; Williams, M.; Do, U.H.; Sills, M.A. )

    1991-01-01

    The triazoloquinazoline CGS 15943 is the first reported nonxanthine adenosine antagonist that has high affinity for brain adenosine receptors. In the present study, the binding of (3H) CGS 15943 to recognition sites in rat cortical membranes was characterized. Saturation experiments revealed that (3H)CGS 15943 labeled a single class of recognition sites with high affinity and limited capacity. Competition studies revealed that the binding of (3H)CGS 15943 was consistent with the labeling of brain adenosine A1 receptors. Adenosine agonists inhibited 1 nM (3H)CGS 15943 binding with the following order of activity N6-cyclopentyladenosine (IC50 = 15 nM) greater than 2-chloroadenosine greater than (R)-N6-phenylisopropyladenosine greater than 5'-N6-ethylcarboxamidoadenosine greater than (S)N6-phenylisopropyladenosine greater than CGS 21680 greater than CV 1808 (IC50 greater than 10,000 nM). The potency order for adenosine antagonists was CGS 15943 (IC50 = 5 nM) greater than 8-phenyltheophylline greater than 1,3-dipropyl-8-(4-amino-2-chloro)phenylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than theophylline = caffeine (IC50 greater than 10,000 nM). Antagonist inhibition curves were steep and best described by a one-site binding model. In contrast, adenosine A1 agonist competition curves were shallow, as indicated by Hill coefficients less than unity. Computer analysis revealed that these inhibition curves were best described by a two-site binding model. Agonist competition curves generated in the presence of 1 mM GTP resulted in a rightward shift and steepening of the inhibition-concentration curves, whereas antagonist binding was not altered in the presence of GTP. The complex binding interactions found with adenosine agonists indicate that (3H)CGS 15943 labels both high and low affinity components of the adenosine A1 receptor in the rat cortex.

  8. Regulation of Lymphocyte Function by Adenosine

    PubMed Central

    Linden, Joel; Cekic, Caglar

    2014-01-01

    Adenosine regulates the interaction between lymphocytes and the vasculature and is important for controlling lymphocyte trafficking in response to tissue injury or infection. Adenosine can blunt the effects of T cell receptor (TCR) activation primarily by activating adenosine A2A receptors (A2AR) and signaling via cyclic AMP and protein kinase A (PKA). PKA reduces proximal TCR signaling by phosphorylation of C-terminal Src kinase (Csk), nuclear factor of activated T cells (NF-AT) and cyclic AMP response element binding protein (CREB). PKA activation can either enhance or inhibit the survival of T cells depending on the strength and duration of signaling. Inducible enzymes such as CD73 and CD39 regulate adenosine formation and degradation in vivo. The extravasation of lymphocytes through blood vessels is influenced by A2AR-mediated suppression of Intercellular Adhesion Molecule 1 (ICAM) expression on lymphocytes and diminished production of IFNγ and IFNγ-inducible chemokines that are chemotactic to activated lymphocytes. Adenosine also decreases the barrier function of vascular endothelium by activating A2BRs. In sum, adenosine signaling is influenced by tissue inflammation and injury through induction of receptors and enzymes and has generally inhibitory effects on lymphocyte migration into inflamed tissues due to PKA-mediated effects on adhesion molecules, IFNγ production and endothelial barrier function. PMID:22772752

  9. Synthesis, ligand-receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists.

    PubMed

    Colotta, Vittoria; Catarzi, Daniela; Varano, Flavia; Lenzi, Ombretta; Filacchioni, Guido; Martini, Claudia; Trincavelli, Letizia; Ciampi, Osele; Traini, Chiara; Pugliese, Anna Maria; Pedata, Felicita; Morizzo, Erika; Moro, Stefano

    2008-06-01

    The study of some 4-substituted-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, designed as hA(3) adenosine receptor antagonists, is reported. The new compounds bear on the four-position different acylamino, sulfonylamino, benzylureido and benzyloxy moieties, which have also been combined with a para-methoxy group on the 2-phenyl ring or with a nitro residue at the six-position. Many derivatives show high hA(3) adenosine receptor affinities and selectivities both versus hA(1) and hA(2A) receptors. The observed structure-affinity relationships of this class of antagonists have been exhaustively rationalized using the recently published ligand-based homology modeling (LBHM) approach. The selected 4-bismethanesulfonylamino-2-phenyl-1,2,4-triazolo[4,3-a]quinoxalin-1-one (13), which shows high hA(3) affinity (K(i)=5.5nM) and selectivity versus hA(1), hA(2A) (both selectivity ratios>1800) and hA(2B) (cAMP assay, IC(50)>10,000nM) receptors, was tested in an in vitro rat model of cerebral ischemia, proving to be effective in preventing the failure of synaptic activity, induced by oxygen and glucose deprivation in the hippocampus, and in delaying the occurrence of anoxic depolarization. PMID:18468446

  10. Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices.

    PubMed

    Lindquist, B E; Shuttleworth, C W

    2012-10-25

    Spreading depolarization (SD) is a slowly propagating, coordinated depolarization of brain tissue, which is followed by a transient (5-10min) depression of synaptic activity. The mechanisms for synaptic depression after SD are incompletely understood. We examined the relative contributions of action potential failure and adenosine receptor activation to the suppression of evoked synaptic activity in murine brain slices. Focal micro-injection of potassium chloride (KCl) was used to induce SD and synaptic potentials were evoked by electrical stimulation of Schaffer collateral inputs to hippocampal area Cornu Ammonis area 1 (CA1). SD was accompanied by loss of both presynaptic action potentials (as assessed from fiber volleys) and field excitatory postsynaptic potentials (fEPSPs). Fiber volleys recovered rapidly upon neutralization of the extracellular direct current (DC) potential, whereas fEPSPs underwent a secondary suppression phase lasting several minutes. Paired-pulse ratio was elevated during the secondary suppression period, consistent with a presynaptic mechanism of synaptic depression. A transient increase in extracellular adenosine concentration was detected during the period of secondary suppression. Antagonists of adenosine A1 receptors (8-cyclopentyl-1,3-dipropylxanthine [DPCPX] or 8-cyclopentyl-1,3-dimethylxanthine [8-CPT]) greatly accelerated fEPSP recovery and abolished increases in paired-pulse ratio normally observed after SD. The duration of fEPSP suppression was correlated with both the duration of the DC shift and the area of tissue depolarized, consistent with the model that adenosine accumulates in proportion to the metabolic burden of SD. These results suggest that in brain slices, the duration of the DC shift approximately defined the period of action potential failure, but the secondary depression of evoked responses was in large part due to endogenous adenosine accumulation after SD. PMID:22864185

  11. Study of an adenosine A1 receptor agonist on trigeminally evoked dural blood vessel dilation in the anaesthetized rat.

    PubMed

    Honey, A C; Bland-Ward, P A; Connor, H E; Feniuk, W; Humphrey, P P A

    2002-05-01

    The purpose of this study was to use intravital microscopy to determine the effect of a selective adenosine A1 receptor agonist, GR79236 (1, 3 and 10 microg/kg i.v.), on neurogenic dural blood vessel dilation in anaesthetized rats. Vasodilation was evoked either by electrical stimulation of perivascular trigeminal nerves or by intravenous CGRP. GR79236 (1-10 microg/kg i.v.) caused a dose-dependent inhibition of neurogenic vasodilation, but had no significant effect on dural vasodilation caused by CGRP. GR79236 (1-3 microg/kg i.v.) had no effect on basal dural vessel diameter, but caused transient dose-dependant bradycardia and hypotension. Bradycardia was more prolonged following 10 microg/kg i.v. GR79236. Pre-treatment with the adenosine A1 receptor antagonist DPCPX (1 mg/kg i.v.) prevented the inhibitory effect of GR79236 (10 microg/kg i.v.) on neurogenic vasodilation as well as GR79236-induced bradycardia and hypotension. These data suggest that the inhibition of neurogenic vasodilation by GR79236 is mediated via the activation of prejunctional adenosine A1 receptors. Provided the systemic cardiovascular effects could be limited, such a mechanism may offer a novel approach to migraine therapy. PMID:12100087

  12. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors.

    PubMed

    Yan, Xiao-Feng; Zhang, Zhong-Miao; Yao, Hong-Yi; Guan, Yan; Zhu, Jian-Ping; Zhang, Lin-Hui; Jia, Yong-Liang; Wang, Ru-Wei

    2013-11-01

    Mycelia of cultured Cordyceps sinensis (CS) is one of the most common substitutes for natural CS and was approved for arrhythmia in China. However, the role of CS in ameliorating injury during ischemia-reperfusion (I/R) is still unclear. We examined effects of extracts from CS on I/R and investigated the possible mechanisms. Post-ischemic coronary perfusion pressure, ventricular function, and coronary flow were measured using the Langendorff mouse heart model. Oxidative stress of cardiac homogenates was performed using an ELISA. Our results indicate that CS affords cardioprotection possibly through enhanced adenosine receptor activation. Cardioprotection was demonstrated by reduced post-ischemic diastolic dysfunction and improved recovery of pressure development and coronary flow. Treatment with CS largely abrogates oxidative stress and damage in glucose- or pyruvate-perfused hearts. Importantly, observed reductions in oxidative stress [glutathione disulfide (GSSG)]/[GSSG + glutathione] and [malondialdehyde (MDA)]/[superoxide dismutase + MDA] ratios as well as the resultant damage upon CS treatment correlate with functional markers of post-ischemic myocardial outcome. These effects of CS were partially blocked by 8-ρ-sulfophenyltheophylline, an adenosine receptor antagonist. Our results demonstrate a suppressive role of CS in ischemic contracture. Meanwhile, the results also suggest pre-ischemic adenosine receptor activation may be involved in reducing contracture in hearts pretreated with CS. PMID:23192916

  13. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus

    PubMed Central

    de Mendonça, Alexandre; Ribeiro, J A

    1997-01-01

    Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12–14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe.p.s.p.) recorded extracellularly from the stratum radiatum in the CA1 area. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2–50 nM), on the fe.p.s.p. slope (EC50=12.5 (9.2–17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 μM) (EC50=27.2 (21.4–34.5) nM, n=4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 μM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-α-methyl-4-carboxyphenylglycine (MCPG; 500 μM). DHPG (10 μM) itself had an inhibitory effect of 20.1±1.9% (n=4) on the fe.p.s.p. slope. The concentration-response curves for the inhibitory effects of CPA (2–20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-α-(carboxycyclopropyl)glycine (L-CCG-I; 1 μM), or in the presence of the non

  14. Adenosine-Activated Nanochannels Inspired by G-Protein-Coupled Receptors.

    PubMed

    Li, Pei; Kong, Xiang-Yu; Xie, Ganhua; Xiao, Kai; Zhang, Zhen; Wen, Liping; Jiang, Lei

    2016-04-01

    A bioinspired adenosine activated nanodevice is demonstrated in which the conformations of the designed aptamer change and cause signal transmission according to the emergence of adenosine. This bioinspired system exhibits very high response ratios (activated/nonactivated ratio up to 614) and excellent stability and reversibility, and shows promising applications in the fields of biosensors, pharmaceutica, and healthcare systems. PMID:26915491

  15. A1 adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice

    PubMed Central

    Teng, Bunyen; Smith, Jonathan D.; Rosenfeld, Michael E.; Robinet, Peggy; Davis, Mary E.; Morrison, R. Ray; Mustafa, S. Jamal

    2014-01-01

    Aims The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. Methods and results Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. Conclusion The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties. PMID:24525840

  16. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor

    PubMed Central

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T. N.; Gregory, Karen J.; Tosh, Dilip K.; Christopoulos, Arthur; Jacobson, Kenneth A.

    2016-01-01

    Biased agonism at G protein–coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias “fingerprints” for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with significant N6 or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5′-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  17. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor.

    PubMed

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T N; Gregory, Karen J; Tosh, Dilip K; Christopoulos, Arthur; Jacobson, Kenneth A; May, Lauren T

    2016-07-01

    Biased agonism at G protein-coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias "fingerprints" for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with significant N(6) or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5'-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  18. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  19. Synthesis, structure-affinity relationships, and molecular modeling studies of novel pyrazolo[3,4-c]quinoline derivatives as adenosine receptor antagonists.

    PubMed

    Lenzi, Ombretta; Colotta, Vittoria; Catarzi, Daniela; Varano, Flavia; Squarcialupi, Lucia; Filacchioni, Guido; Varani, Katia; Vincenzi, Fabrizio; Borea, Pier Andrea; Dal Ben, Diego; Lambertucci, Catia; Cristalli, Gloria

    2011-06-15

    This paper reports the study of new 2-phenyl- and 2-methylpyrazolo[3,4-c]quinolin-4-ones (series A) and 4-amines (series B), designed as adenosine receptor (AR) antagonists. The synthesized compounds bear at the 6-position various groups, with different lipophilicity and steric hindrance, that were thought to increase human A(1) and A(2A) AR affinities and selectivities, with respect to those of the parent 6-unsubstituted compounds. In series A, this modification was not tolerated since it reduced AR affinity, while in series B it shifted the binding towards the hA(1) subtype. To rationalize the observed structure-affinity relationships, molecular docking studies at A(2A)AR-based homology models of the A(1) and A(3) ARs and at the A(2A)AR crystal structure were carried out. PMID:21616671

  20. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment. PMID:25490060

  1. Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy.

    PubMed

    Katz, N K; Ryals, J M; Wright, D E

    2015-01-29

    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8 weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N(6)-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of

  2. Adenosine A1 receptor antagonist prolongs survival in the hypoxic rat.

    PubMed

    Gao, E; Kaplan, J L; Shi, Y; Victain, M; Dalsey, W C; de Garavilla, L

    2001-09-01

    The hypothesis that adenosine A1 receptor (A1AdoR) selective antagonism limits cardiac depression and prolongs survival during acute global hypoxia was tested in a postinsult treatment model using KW-3902 ([8-(noradamantan-3-yl)-1,3-dipropylxanthine]), an A1AdoR selective antagonist. Rats were anesthetized, paralyzed, then ventilated with 8% O2 (hypoxia). In protocol I, 5 min after hypoxia, rats were treated with saline, drug vehicle, or KW-3902 (0.1 mg/kg i.v.). In protocol II, KW-3902 treatment occurred 2.5, 5, or 7.5 min after hypoxia. In protocol I, after hypoxia, left ventricular contractility, heart rate, and systemic mean arterial blood pressure decreased rapidly in saline-and vehicle-treated groups. In contrast, KW-3902 significantly attenuated the decline in these variables. Survival time (the time from the commencement of hypoxia until death) was more prolonged with KW-3902 (109.5 +/- 9.1 min) than with saline (37.6 +/- 5.0 min) or vehicle (35.0 +/- 4.2 min) (p < 0.001). In protocol II, survival time increased from 29.2 +/- 5.5 min in the 7.5-min treatment group to 109.5 +/- 9.5 min (5-min group) and 245.9 +/- 26.1 min (2.5-min group; p < 0.001). KW-3902 prolongs survival in this model, presumably by antagonizing A1AdoR-mediated inhibition of cardiac function. Also, treatment efficacy is highly time dependent. PMID:11486243

  3. Molecular mechanism of allosteric modulation at GPCRs: insight from a binding kinetics study at the human A1 adenosine receptor

    PubMed Central

    Guo, Dong; Venhorst, Suzanne N; Massink, Arnault; van Veldhoven, Jacobus P D; Vauquelin, Georges; IJzerman, Adriaan P; Heitman, Laura H

    2014-01-01

    Background and Purpose Many GPCRs can be allosterically modulated by small-molecule ligands. This modulation is best understood in terms of the kinetics of the ligand–receptor interaction. However, many current kinetic assays require at least the (radio)labelling of the orthosteric ligand, which is impractical for studying a range of ligands. Here, we describe the application of a so-called competition association assay at the adenosine A1 receptor for this purpose. Experimental Approach We used a competition association assay to examine the binding kinetics of several unlabelled orthosteric agonists of the A1 receptor in the absence or presence of two allosteric modulators. We also tested three bitopic ligands, in which an orthosteric and an allosteric pharmacophore were covalently linked with different spacer lengths. The relevance of the competition association assay for the binding kinetics of the bitopic ligands was also explored by analysing simulated data. Key Results The binding kinetics of an unlabelled orthosteric ligand were affected by the addition of an allosteric modulator and such effects were probe- and concentration-dependent. Covalently linking the orthosteric and allosteric pharmacophores into one bitopic molecule had a substantial effect on the overall on- or off-rate. Conclusion and Implications The competition association assay is a useful tool for exploring the allosteric modulation of the human adenosine A1 receptor. This assay may have general applicability to study allosteric modulation at other GPCRs as well. PMID:25040887

  4. [The role of adenosine Al receptors and mitochondrial K+ATP channels in the mechanism of increasing the resistance to acute hypoxia in the combined effects of hypoxia and hypercapnia].