Sample records for adenosine amp adp

  1. AMP is an adenosine A1 receptor agonist.

    PubMed

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  2. AMP Is an Adenosine A1 Receptor Agonist*

    PubMed Central

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  3. Potentiation of adenosine triphosphate-induced contractile responses of the guinea-pig isolated vas deferens by adenosine monophosphate and adenosine 5'-monophosphorothioate.

    PubMed Central

    Fedan, J. S.

    1987-01-01

    The effects of incubating the guinea-pig isolated vas deferens in the presence of adenine nucleotides (adenosine triphosphate, ATP; adenosine diphosphate, ADP; and adenosine monophosphate, AMP), or in the presence of their phosphorothioate analogues (adenosine 5'-O-(3-thiotriphosphate), ATP gamma S; adenosine 5'-O-(2-thiodiphosphate), ADP beta S; and adenosine 5'-monophosphorothioate, AMP alpha S), on contractile responses to ATP were compared. After challenge with a low (1 microM) or high (300 microM) concentration of ATP to obtain control responses, one vas deferens of a pair was incubated for 5 min with one of the adenine nucleotides, while the contralateral preparation was incubated with the corresponding phosphorothioate analogue. At the conclusion of the incubation the preparations were challenged again with ATP. Incubation with AMP or AMP alpha S resulted in a transient potentiation of responses to 1 microM and 300 microM ATP. The potentiation following incubation with AMP alpha S was larger than that produced by AMP. After incubation with ADP, ADP beta S, ATP and ATP gamma S, responses to 1 microM ATP were decreased, while those to 300 microM ATP were unaffected. Thus, incubation with AMP and AMP alpha S results in potentiation, rather than inhibition, of ATP-induced responses. On the other hand, 5'-diphosphate, 5'-triphosphate, 5'-O-(2-thiodiphosphate) and 5'-O-(3-thiotriphosphate) moieties on adenosine have no effect or cause autoinhibition. These results indicate that AMP exerts a potentiating effect on reactivity to exogenous ATP. AMP arising from the enzymatic degradation of ATP might modulate the level of response to ATP released endogenously as a cotransmitter. PMID:3038248

  4. Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices.

    PubMed

    Bruno, Alessandra Nejar; Diniz, Gabriela Placoná; Ricachenevsky, Felipe Klein; Pochmann, Daniela; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas

    2005-05-01

    The presence of severe neurological symptoms in thyroid diseases has highlighted the importance of thyroid hormones in the normal functioning of the mature brain. Since, ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system (CNS), the ectonucleotidase cascade that hydrolyzes ATP to adenosine, is also involved in the control of brain functions. Thus, we investigated the influence of hyper-and hypothyroidism on the ATP, ADP and AMP hydrolysis in hippocampal and cortical slices from adult rats. Hyperthyroidism was induced by daily injections of l-thyroxine (T4) 25 microg/100 g body weight, for 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water for 14 days. Hypothyroid rats were hormonally replaced by daily injections of T4 (5 microg/100 g body weight, i.p.) for 5 days. Hyperthyroidism significantly inhibited the ATP, ADP and AMP hydrolysis in hippocampal slices. In brain cortical slices, hyperthyroidism inhibited the AMP hydrolysis. In contrast, hypothyroidism increased the ATP, ADP and AMP hydrolysis in both hippocampal and cortical slices and these effects were reverted by T4 replacement. Furthermore, hypothyroidism increased the expression of NTPDase1 and 5'-nucleotidase, whereas hyperthyroidism decreased the expression of 5'-nucleotidase in hippocampus of adult rats. These findings demonstrate that thyroid disorders may influence the enzymes involved in the complete degradation of ATP to adenosine and possibly affects the responses mediated by adenine nucleotides in the CNS of adult rats.

  5. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA)

    PubMed Central

    2011-01-01

    Background Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity. Results NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5'-nucleotidase signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates. Conclusion Collectively, these results provide insight into the unique ability of AdsA to produce adenosine through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing S. aureus with the ability to modulate host immune responses. PMID:22035583

  6. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

    PubMed Central

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  7. AMP and adenosine are both ligands for adenosine 2B receptor signaling.

    PubMed

    Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M

    2018-01-15

    Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The 2′,3′-cAMP-adenosine pathway

    PubMed Central

    2011-01-01

    Our recent studies employing HPLC-tandem mass spectrometry to analyze venous perfusate from isolated, perfused kidneys demonstrate that intact kidneys produce and release into the extracellular compartment 2′,3′-cAMP, a positional isomer of the second messenger 3′,5′-cAMP. To our knowledge, this represents the first detection of 2′,3′-cAMP in any cell/tissue/organ/organism. Nuclear magnetic resonance experiments with isolated RNases and experiments in isolated, perfused kidneys suggest that 2′,3′-cAMP likely arises from RNase-mediated transphosphorylation of mRNA. Both in vitro and in vivo kidney experiments demonstrate that extracellular 2′,3′-cAMP is efficiently metabolized to 2′-AMP and 3′-AMP, both of which can be further metabolized to adenosine. This sequence of reactions is called the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMPadenosine). Experiments in rat and mouse kidneys show that metabolic poisons increase extracellular levels of 2′,3′-cAMP, 2′-AMP, 3′-AMP, and adenosine; however, little is known regarding the pharmacology of 2′,3′-cAMP, 2′-AMP, and 3′-AMP. What is known is that 2′,3′-cAMP facilitates activation of mitochondrial permeability transition pores, a process that can lead to apoptosis and necrosis, and inhibits proliferation of vascular smooth muscle cells and glomerular mesangial cells. In summary, there is mounting evidence that at least some types of cellular injury, by triggering mRNA degradation, engage the 2′,3′-cAMP-adenosine pathway, and therefore this pathway should be added to the list of biochemical pathways that produce adenosine. Although speculative, it is possible that the 2′,3′-cAMP-adenosine pathway may protect against some forms of acute organ injury, for example acute kidney injury, by both removing an intracellular toxin (2′,3′-cAMP) and increasing an extracellular renoprotectant (adenosine). PMID:21937608

  9. Extracellular cyclic AMP-adenosine pathway in isolated adipocytes and adipose tissue.

    PubMed

    Strouch, Marci B; Jackson, Edwin K; Mi, Zaichuan; Metes, Nicole A; Carey, Gale B

    2005-06-01

    Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)-adenosine pathway in adipose tissue. Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 microL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 microM isoproterenol, or 10 microM isoproterenol plus 1 mM alpha,beta-methylene adenosine 5'-diphosphate (AMPCP), a 5'-nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 microM isoproterenol, or 1 microM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP-provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. These data suggest the existence of a cyclic AMP-adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.

  10. The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.

    2012-01-01

    Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMPadenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621

  11. 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine inhibit TNF-α and CXCL10 production from activated primary murine microglia via A2A receptors.

    PubMed

    Newell, Elizabeth A; Exo, Jennifer L; Verrier, Jonathan D; Jackson, Travis C; Gillespie, Delbert G; Janesko-Feldman, Keri; Kochanek, Patrick M; Jackson, Edwin K

    2015-01-12

    Some cells, tissues and organs release 2',3'-cAMP (a positional isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'-AMP plus 3'-AMP and convert these AMPs to adenosine (called the extracellular 2',3'-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2',3'-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2',3'-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 μM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N(6)-cyclopentyladenosine (CCPA) (10 μM; selective A1 agonist), 5'-N-ethylcarboxamide adenosine (NECA) (10 μM; agonist for all adenosine receptor subtypes) and CGS21680 (10 μM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. (1) 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; (2) DPSPX nearly eliminated the inhibitory effects of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; (3) CCPA did not affect LPS-induced TNF-α and CXCL10; (4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. 2',3'-cAMP and its metabolites (3'-AMP, 2'-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Reaction kinetics and inhibition of adenosine kinase from Leishmania donovani.

    PubMed

    Bhaumik, D; Datta, A K

    1988-04-01

    The reaction kinetics and the inhibitor specificity of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) from Leishmania donovani, have been analysed using homogeneous preparation of the enzyme. The reaction proceeds with equimolar stoichiometry of each reactant. Double reciprocal plots of initial velocity studies in the absence of products yielded intersecting lines for both adenosine and Mg2+-ATP. AMP is a competitive inhibitor of the enzyme with respect to adenosine and noncompetitive inhibitor with respect to ATP. In contrast, ADP was a noncompetitive inhibitor with respect to both adenosine and ATP, with inhibition by ADP becoming uncompetitive at very high concentration of ATP. Parallel equilibrium dialysis experiments against [3H]adenosine and [gamma-32P]ATP resulted in binding of adenosine to fre enzyme. Tubercidin (7-deazaadenosine) and 6-methyl-mercaptopurine riboside acted as substrates for the enzyme and were found to inhibit adenosine phosphorylation competitively in vitro. 'Substrate efficiency (Vmax/Km)' and 'turnover numbers (Kcat)' of the enzyme with respect to specific analogs were determined. Taken together the results suggest that (a) the kinetic mechanism of adenosine kinase is sequential Bi-Bi, (b) AMP and ADP may regulate enzyme activity in vivo and (c) tubercidin and 6-methylmercaptopurine riboside are monophosphorylated by the parasite enzyme.

  13. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    PubMed

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  14. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds

    PubMed Central

    Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.

    2017-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060

  15. Role of CNPase in the Oligodendrocytic Extracellular 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M.; Jackson, Edwin K.

    2014-01-01

    Extracellular adenosine 3′,5′-cyclic monophosphate (3′,5′-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2′,3′-cAMP to adenosine. Here we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2′,3′-cAMP and their respective adenosine monophosphates (2′-AMP and 3′-AMP). Cells were also isolated from mice deficient in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2′,3′-cAMP to 2′-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3′-AMP was minimal in both oligodendrocytes and neurons. The production of 2′-AMP from 2′,3′-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2′-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3′,5′-cAMP-3′-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2′,3′-cAMP to 2′-AMP and inhibition of classic ecto-5′-nucleotidase (CD73) with α,β-methylene-adenosine-5′-diphosphate did not attenuate the conversion of 2′-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMPadenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2′,3′-cAMP to 2-AMP in CNS cells. By reducing levels of 2′,3′-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant

  16. 2’,3’-cAMP, 3’-AMP, 2’-AMP and Adenosine Inhibit TNF-α and CXCL10 Production From Activated Primary Murine Microglia via A2A Receptors

    PubMed Central

    Newell, Elizabeth A.; Exo, Jennifer L.; Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Kochanek, Patrick M.

    2014-01-01

    Background Some cells, tissues and organs release 2’,3’-cAMP (a positional isomer of 3’,5’-cAMP) and convert extracellular 2’,3’-cAMP to 2’-AMP plus 3’-AMP and convert these AMPs to adenosine (called the extracellular 2’,3’-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2’,3’-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2’,3’-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. Methods Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 µM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N6-cyclopentyladenosine (CCPA) (10 µM; selective A1 agonist), 5’-N-ethylcarboxamide adenosine (NECA) (10 µM; agonist for all adenosine receptor subtypes) and CGS21680 (10 µM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. Results 1) 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; 2) DPSPX nearly eliminated the inhibitory effects of 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; 3) CCPA did not affect LPS-induced TNF-α and CXCL10; 4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. Conclusions 2’,3’-cAMP and its metabolites (3’-AMP, 2’-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases. PMID:25451117

  17. Dual activity of certain HIT-proteins: A. thaliana Hint4 and C. elegans DcpS act on adenosine 5'-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP).

    PubMed

    Guranowski, Andrzej; Wojdyła, Anna Maria; Zimny, Jarosław; Wypijewska, Anna; Kowalska, Joanna; Jemielity, Jacek; Davis, Richard E; Bieganowski, Paweł

    2010-01-04

    Histidine triad (HIT)-family proteins interact with different mono- and dinucleotides and catalyze their hydrolysis. During a study of the substrate specificity of seven HIT-family proteins, we have shown that each can act as a sulfohydrolase, catalyzing the liberation of AMP from adenosine 5'-phosphosulfate (APS or SO(4)-pA). However, in the presence of orthophosphate, Arabidopsis thaliana Hint4 and Caenorhabditis elegans DcpS also behaved as APS phosphorylases, forming ADP. Low pH promoted the phosphorolytic and high pH the hydrolytic activities. These proteins, and in particular Hint4, also catalyzed hydrolysis or phosphorolysis of some other adenylyl-derivatives but at lower rates than those for APS cleavage. A mechanism for these activities is proposed and the possible role of some HIT-proteins in APS metabolism is discussed.

  18. Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors

    PubMed Central

    Ross, Fiona M; Brodie, Martin J; Stone, Trevor W

    1998-01-01

    When perfused with a medium containing no added magnesium and 4-aminopyridine (4AP) (50 μM) hippocampal slices generated epileptiform bursts of an interictal nature. We have shown in a previous study that adenosine 5′-triphosphate (ATP) depressed epileptiform activity and that this effect was blocked by the adenosine A1 receptor antagonist cyclopentyltheophylline but was not affected by adenosine deaminase. This implied that ATP might act indirectly at P1 receptors or at a xanthine-sensitive P2 receptor. The aim of the present study was to investigate further the action of ATP on epileptiform activity.ATP can be metabolized by ecto-nucleotidases to adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP) and adenosine, respectively. Each of these metabolites can activate receptors in its own right: P2 receptors for ADP and P1 receptors for AMP and adenosine.We now show that both AMP and ATP (50 μM) significantly decrease epileptiform discharge rate in a rapid and reversible manner. 5′Adenylic acid deaminase (AMP deaminase, AMPase) (0.2 u ml−1), when perfused alone did not significantly alter the discharge rate over the 10 min superfusion period used for drug application. When perfused concurrently with AMP (50 μM), AMP deaminase prevented the depressant effect of AMP on discharge rate.AMP deaminase, at a concentration of 0.2 u ml−1 which annulled the effect of AMP (50 μM), prevented the inhibitory activity of ATP (50 μM). A higher concentration of ATP (200 μM) depressed the frequency of spontaneous bursts to approximately 30% control and this response was also prevented by AMP deaminase.Superfusion of the slices with 5′-nucleotidase also prevented the inhibitory activity of ATP on epileptiform discharges.The results suggest that AMP mediates the inhibitory effects of ATP on epileptiform activity, a conclusion which can explain the earlier finding that cyclopentyltheophylline but not adenosine deaminase inhibited the

  19. ADP Regulates SNF1, the Saccharomyces cerevisiae Homolog of AMP-Activated Protein Kinase

    PubMed Central

    Mayer, Faith V.; Heath, Richard; Underwood, Elizabeth; Sanders, Matthew J.; Carmena, David; McCartney, Rhonda R.; Leiper, Fiona C.; Xiao, Bing; Jing, Chun; Walker, Philip A.; Haire, Lesley F.; Ogrodowicz, Roksana; Martin, Stephen R.; Schmidt, Martin C.; Gamblin, Steven J.; Carling, David

    2011-01-01

    Summary The SNF1 protein kinase complex plays an essential role in regulating gene expression in response to the level of extracellular glucose in budding yeast. SNF1 shares structural and functional similarities with mammalian AMP-activated protein kinase. Both kinases are activated by phosphorylation on a threonine residue within the activation loop segment of the catalytic subunit. Here we show that ADP is the long-sought metabolite that activates SNF1 in response to glucose limitation by protecting the enzyme against dephosphorylation by Glc7, its physiologically relevant protein phosphatase. We also show that the regulatory subunit of SNF1 has two ADP binding sites. The tighter site binds AMP, ADP, and ATP competitively with NADH, whereas the weaker site does not bind NADH, but is responsible for mediating the protective effect of ADP on dephosphorylation. Mutagenesis experiments suggest that the general mechanism by which ADP protects against dephosphorylation is strongly conserved between SNF1 and AMPK. PMID:22019086

  20. Protective mechanisms of adenosine 5'-monophosphate in platelet activation and thrombus formation.

    PubMed

    Fuentes, E; Badimon, L; Caballero, J; Padró, T; Vilahur, G; Alarcón, M; Pérez, P; Palomo, I

    2014-03-03

    Platelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5'-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent.

  1. Determination of adenosine phosphates in rat gastrocnemius at various postmortem intervals using high performance liquid chromatography.

    PubMed

    Huang, Hong; Yan, Youyi; Zuo, Zhong; Yang, Lin; Li, Bin; Song, Yu; Liao, Linchuan

    2010-09-01

    Although the change in adenosine phosphate levels in muscles may contribute to the development of rigor mortis, the relationship between their levels and the onset and development of rigor mortis has not been well elucidated. In the current study, levels of the adenosine phosphates including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in gastrocnemius at various postmortem intervals of 180 rats from different death modes were detected by high performance liquid chromatography. The results showed that the levels of ATP and ADP significantly decreased along with the postmortem period of rats from different death mode whereas the AMP level remained the same. In addition, it was found that changes in the ATP levels in muscles after death correlated well with the development of rigor mortis. Therefore, the ATP level could serve as a reference parameter for the deduction of rigor mortis in forensic science.

  2. The rate of the AMP/adenosine substrate cycle in concanavalin-A-stimulated rat lymphocytes.

    PubMed Central

    Szondy, Z; Newsholme, E A

    1989-01-01

    The effect of adenosine on the metabolism of prelabelled adenine nucleotides was investigated in concanavalin-A-stimulated rat lymphocytes. Adenosine in the presence of the adenosine deaminase inhibitor, deoxycoformycin, caused a 2-fold increase in the ATP concentration. This effect was, in part, countereacted by an increased rate of adenine nucleotide catabolism, which could be explained by a stimulation of AMP deaminase (EC 3.5.4.6). At the same time a continuous rate of labelled adenosine production was found, which was not affected by the increased ATP concentration and which could only be detected by the trapping effect of a high concentration of added unlabelled adenosine. It is concluded that the rate of the substrate cycle between AMP and adenosine is low (1.9 +/- 0.2 nmol/h per 10(7) cells) in comparison to the rate of AMP deamination. PMID:2552990

  3. Extracellular 2′,3′-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells

    PubMed Central

    Gillespie, Delbert G.

    2013-01-01

    In a previous study, we demonstrated that human proximal tubular epithelial cells obtained from a commercial source metabolized extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and extracellular 2′-AMP and 3′-AMP to adenosine (the extracellular 2′,3′-cAMP-adenosine pathway; extracellular 2′,3′-cAMP → 2′-AMP + 3′-AMPadenosine). The purpose of this study was to investigate the metabolism of extracellular 2′,3′-cAMP in proximal tubular vs. thick ascending limb vs. collecting duct epithelial cells freshly isolated from their corresponding nephron segments obtained from rat kidneys. In epithelial cells from all three nephron segments, 1) extracellular 2′,3′-cAMP was metabolized to 2′-AMP and 3′-AMP, with 2′-AMP > 3′-AMP, 2) the metabolism of extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP was not inhibited by either 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor) or 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), 3) extracellular 2′,3′-cAMP increased extracellular adenosine levels, 4) 3′-AMP and 2′-AMP were metabolized to adenosine with an efficiency similar to that of 5′-AMP, and 5) the metabolism of 5′-AMP, 3′-AMP, and 2′-AMP was not inhibited by α,β-methylene-adenosine-5′-diphosphate (CD73 inhibitor). These results support the conclusion that renal epithelial cells all along the nephron can metabolize extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and can efficiently metabolize extracellular 2′-AMP and 3′-AMP to adenosine and that the metabolic enzymes involved are not the classical phosphodiesterases nor ecto-5′-nucleotidase (CD73). Because 2′,3′-cAMP is released by injury and because previous studies demonstrate that the extracellular 2′,3′-cAMP-adenosine pathway stimulates epithelial cell proliferation via adenosine A2B receptors, the present results suggest that the extracellular 2′,3′-cAMP-adenosine pathway may help restore epithelial

  4. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  5. Keeping the home fires burning†: AMP-activated protein kinase

    PubMed Central

    2018-01-01

    Living cells obtain energy either by oxidizing reduced compounds of organic or mineral origin or by absorbing light. Whichever energy source is used, some of the energy released is conserved by converting adenosine diphosphate (ADP) to adenosine triphosphate (ATP), which are analogous to the chemicals in a rechargeable battery. The energy released by the conversion of ATP back to ADP is used to drive most energy-requiring processes, including cell growth, cell division, communication and movement. It is clearly essential to life that the production and consumption of ATP are always maintained in balance, and the AMP-activated protein kinase (AMPK) is one of the key cellular regulatory systems that ensures this. In eukaryotic cells (cells with nuclei and other internal membrane-bound structures, including human cells), most ATP is produced in mitochondria, which are thought to have been derived by the engulfment of oxidative bacteria by a host cell not previously able to use molecular oxygen. AMPK is activated by increasing AMP or ADP (AMP being generated from ADP whenever ADP rises) coupled with falling ATP. Relatives of AMPK are found in essentially all eukaryotes, and it may have evolved to allow the host cell to monitor the output of the newly acquired mitochondria and step their ATP production up or down according to the demand. Structural studies have illuminated how AMPK achieves the task of detecting small changes in AMP and ADP, despite the presence of much higher concentrations of ATP. Recently, it has been shown that AMPK can also sense the availability of glucose, the primary carbon source for most eukaryotic cells, via a mechanism independent of changes in AMP or ADP. Once activated by energy imbalance or glucose lack, AMPK modifies many target proteins by transferring phosphate groups to them from ATP. By this means, numerous ATP-producing processes are switched on (including the production of new mitochondria) and ATP-consuming processes are switched

  6. Reconsideration of the sequence of rigor mortis through postmortem changes in adenosine nucleotides and lactic acid in different rat muscles.

    PubMed

    Kobayashi, M; Takatori, T; Iwadate, K; Nakajima, M

    1996-10-25

    We examined the changes in adenosine triphosphate (ATP), lactic acid, adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in five different rat muscles after death. Rigor mortis has been thought to occur simultaneously in dead muscles and hence to start in small muscles sooner than in large muscles. In this study we found that the rate of decrease in ATP was significantly different in each muscle. The greatest drop in ATP was observed in the masseter muscle. These findings contradict the conventional theory of rigor mortis. Similarly, the rates of change in ADP and lactic acid, which are thought to be related to the consumption or production of ATP, were different in each muscle. However, the rate of change of AMP was the same in each muscle.

  7. Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway.

    PubMed

    Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M

    2014-07-01

    Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway. Copyright © 2014 the American Physiological Society.

  8. AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor.

    PubMed

    Dai, Tongcheng; Li, Na; Han, Fajun; Zhang, Hua; Zhang, Yuanxing; Liu, Qin

    2016-03-01

    Active targeting-ligands have been increasingly used to functionalize nanoparticles for tumour-specific clinical applications. Here we utilize nucleotide adenosine 5'-monophosphate (AMP) as a novel ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for tumour-targeted imaging. We demonstrate that AMP-conjugated NPs (NPs-AMP) efficiently bind to and are following internalized into colon cancer cell CW-2 and breast cancer cell MDA-MB-468 in vitro. RNA interference and inhibitor assays reveal that the targeting effects mainly rely on the specific binding of AMP to adenosine A1 receptor (A1R), which is greatly up-regulated in cancer cells than in matched normal cells. More importantly, NPs-AMP specifically accumulate in the tumour site of colon and breast tumour xenografts and are further internalized into the tumour cells in vivo via tail vein injection, confirming that the high in vitro specificity of AMP can be successfully translated into the in vivo efficacy. Furthermore, NPs-AMP exhibit an active tumour-targeting behaviour in various colon and breast cancer cells, which is positively related to the up-regulation level of A1R in cancer cells, suggesting that AMP potentially suits for more extensive A1R-overexpressing cancer models. This work establishes AMP to be a novel tumour-targeting ligand and provides a promising strategy for future diagnostic or therapeutic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  10. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    PubMed

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  11. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase

    NASA Astrophysics Data System (ADS)

    Jana, Biman; Adkar, Bharat V.; Biswas, Rajib; Bagchi, Biman

    2011-01-01

    The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.

  12. Crystal structures of RIalpha subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)-adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP.

    PubMed

    Wu, Jian; Jones, John M; Nguyen-Huu, Xuong; Ten Eyck, Lynn F; Taylor, Susan S

    2004-06-01

    Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced

  13. Amp Synthesis in Aqueous Solution of Adenosine and Phosphorus Pentoxide

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Kojima, H.; Ejiri, K.; Inomata, K.

    1982-12-01

    Possible formation of a P4O10 molecule in magma, the stability of the molecule in hydrous volcanic gas at high temperatures and a possible prebiotic phosphate cycle were discussed in relation to chemical evolution. To demonstrate the utility of phosphorus pentoxide as a phosphorylating agent, aqueous solutions of adenosine (0.02M) and phosphorus pentoxide (0.2M) were incubated at 37°C for 5 months. The pH of the solutions was adjusted every day or every few days to each fixed value (9.0, 10.5, 11.5, 12.5) with 10 N NaOH. The HPLC analysis showed the formation of 2'-AMP, 3'-AMP, 5'-AMP, cyclic (2' 3')-AMP and cyclic (3' 5')-AMP. The main components of the products were 2'- and 3'-AMP, though cyclic (2' 3')-AMP was the main component in the early period of the incubation at pH 9.0. The yields (conversion rate of adenosine to AMPs) were increased almost linearly with the incubation time for 5 months in the case of pH 9.0. The final yields were about 3% (pH 9.0), 6% (pH 9.0, 1 M NaCl), 5% (pH 9.0, 0.01 M CaCl2, 0.01 M MgCl2), 7% (pH 9.0, 0.5 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 9% (pH 9.0, 1 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 32% (pH 10.5), 43% (pH 11.5), 35% (pH 12.5).

  14. Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine

    PubMed Central

    Naguib, Fardos N. M.; Rais, Reem H.; Al Safarjalani, Omar N.; el Kouni, Mahmoud H.

    2015-01-01

    Toxoplasma gondii has an extraordinarily ability to utilize adenosine (Ado) as the primary source of all necessary purines in this parasite which lacks de novo purine biosynthesis. The activity of T. gondii adenosine kinase (TgAK, EC 2.7.1.20) is responsible for this efficient salvage of Ado in T. gondii. To fully understand this remarkable efficiency of TgAK in the utilization of Ado, complete kinetic parameters of this enzyme are necessary. Initial velocity and product inhibition studies of TgAK demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo = 0.002 ± 0.0002 mM, KATP = 0.05 ± 0.008 mM, and Vmax = 920 ± 35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5′-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. PMID:26112826

  15. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. AMP deaminase 3 deficiency enhanced 5'-AMP induction of hypometabolism.

    PubMed

    Daniels, Isadora Susan; O Brien, William G; Nath, Vinay; Zhao, Zhaoyang; Lee, Cheng Chi

    2013-01-01

    A hypometabolic state can be induced in mice by 5'-AMP administration. Previously we proposed that an underlying mechanism for this hypometabolism is linked to reduced erythrocyte oxygen transport function due to 5'-AMP uptake altering the cellular adenylate equilibrium. To test this hypothesis, we generated mice deficient in adenosine monophosphate deaminase 3 (AMPD3), the key catabolic enzyme for 5'-AMP in erythrocytes. Mice deficient in AMPD3 maintained AMPD activities in all tissues except erythrocytes. Developmentally and morphologically, the Ampd3(-/-) mice were indistinguishable from their wild type siblings. The levels of ATP, ADP but not 5'-AMP in erythrocytes of Ampd3(-/-) mice were significantly elevated. Fasting blood glucose levels of the Ampd3(-/-) mice were comparable to wild type siblings. In comparison to wild type mice, the Ampd3(-/-) mice displayed a deeper hypometabolism with a significantly delayed average arousal time in response to 5'-AMP administration. Together, these findings demonstrate a central role of AMPD3 in the regulation of 5'-AMP mediated hypometabolism and further implicate erythrocytes in this behavioral response.

  17. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    PubMed

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  18. In Vivo Cardiovascular Pharmacology of 2′,3′-cAMP, 2′-AMP, and 3′-AMP in the Rat

    PubMed Central

    Mi, Zaichuan

    2013-01-01

    The naturally occurring purine 2′,3′-cAMP is metabolized in vitro to 2′-AMP and 3′-AMP, which are subsequently metabolized to adenosine. Whether in vivo 2′,3′-cAMP, 2′-AMP, or 3′-AMP are rapidly converted to adenosine and exert rapid effects via adenosine receptors is unknown. To address this question, we compared the cardiovascular and renal effects of 2′,3′-cAMP, 2′-AMP, 3′-AMP, 3′,5′-cAMP, 5′-AMP, and adenosine in vivo in the rat. Purines were infused intravenously while monitoring mean arterial blood pressure (MABP), heart rate (HR), cardiac output, and renal and mesenteric blood flows. Total peripheral (TPR), renal vascular (RVR), and mesenteric vascular (MVR) resistances were calculated. Urine was collected for determination of urine excretion rate [urine volume (UV)]. When sufficient urine was available, the sodium excretion rate (Na+ER) and glomerular filtration rate (GFR) were determined. 2′,3′-cAMP, 2′-AMP, and 3′-AMP dose-dependently and profoundly reduced MABP, HR, TPR, and MVR with efficacy and potency similar to adenosine and 5′-AMP. These effects of 2′,3′-cAMP, 2′-AMP, and 3′-AMP were attenuated by blockade of adenosine receptors with 1,3-dipropyl-8-(p-sulfophenyl)xanthine. 2′,3′-cAMP, 2′-AMP, 3′-AMP, adenosine, and 5′-AMP variably affected RVR, but profoundly (nearly 100%) decreased UV at higher doses. GFR and Na+ER could be measured at the lower doses and were suppressed by 2′,3′-cAMP, 2′-AMP, and 3′-AMP, but not by adenosine or 5′-AMP. 2′,3′-cAMP increased urinary excretion rates of 2′-AMP, 3′-AMP, and adenosine. 3′,5′-cAMP exerted no adverse hemodynamic effects yet increased urinary adenosine as efficiently as 2′,3′-cAMP. Conclusions: In vivo 2′,3′-cAMP is rapidly converted to adenosine. Because both cAMPs increase adenosine in the urinary compartment, these agents may provide unique therapeutic opportunities. PMID:23759508

  19. [High performance liquid chromatogram (HPLC) determination of adenosine phosphates in rat myocardium].

    PubMed

    Miao, Yu; Wang, Cheng-long; Yin, Hui-jun; Shi, Da-zhuo; Chen, Ke-ji

    2005-04-18

    To establish method for the quantitative determination of adenosine phosphates in rat myocardium by optimized high performance liquid chromatogram (HPLC). ODS HYPERSIL C(18) column and a mobile phase of 50 mmol/L tribasic potassium phosphate buffer solution (pH 6.5), with UV detector at 254 nm were used. The average recovery rates of myocardial adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were 99%-107%, 96%-104% and 95%-119%, respectively; relative standard deviations (RSDs) of within-day and between-days were less than 1.5% and 5.1%, respectively. The method is simple, rapid and accurate, and can be used to analyse the adenosine phosphates in myocardium.

  20. AMP Deaminase 3 Deficiency Enhanced 5′-AMP Induction of Hypometabolism

    PubMed Central

    Daniels, Isadora Susan; O′Brien, William G.; Nath, Vinay; Zhao, Zhaoyang; Lee, Cheng Chi

    2013-01-01

    A hypometabolic state can be induced in mice by 5′-AMP administration. Previously we proposed that an underlying mechanism for this hypometabolism is linked to reduced erythrocyte oxygen transport function due to 5′-AMP uptake altering the cellular adenylate equilibrium. To test this hypothesis, we generated mice deficient in adenosine monophosphate deaminase 3 (AMPD3), the key catabolic enzyme for 5′-AMP in erythrocytes. Mice deficient in AMPD3 maintained AMPD activities in all tissues except erythrocytes. Developmentally and morphologically, the Ampd3−/− mice were indistinguishable from their wild type siblings. The levels of ATP, ADP but not 5′-AMP in erythrocytes of Ampd3−/− mice were significantly elevated. Fasting blood glucose levels of the Ampd3−/− mice were comparable to wild type siblings. In comparison to wild type mice, the Ampd3−/− mice displayed a deeper hypometabolism with a significantly delayed average arousal time in response to 5′-AMP administration. Together, these findings demonstrate a central role of AMPD3 in the regulation of 5′-AMP mediated hypometabolism and further implicate erythrocytes in this behavioral response. PMID:24066180

  1. [Features of influence adenosine, AMP and hyperadrenalinemiya on the immune status, metabolic enzymes of purine nucleotides and the antioxidant defense system].

    PubMed

    Tapbergenov, S O; Sovetov, B S; Tapbergenov, A T

    2016-11-01

    Administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) increased blood levels of total leukocytes, lymphocytes, decreased T-cell suppressors, leukocyte migration inhibition reaction (LMIR) and NBT test, but increased the level of conjugated dienes (CD). Administration of AMPand adenosine increased levels of total leukocytes, lymphocytes, T- lymphocytes, T-helpers, decreased the level of malondialdehyde (MDA), LMIR, and T-cell suppressors. Sympathetic hyperactivation induced by administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) was accompanied by an increase in heart and liver activities of glutathione peroxidase (GPx), catalase, AMP deaminase (AMPD), and adenosine deaminase (AD). Administration of AMP or adenosine caused a decrease in activities of glutathione reductase (GR), GPx, catalase, a decrease in the MDA level and an increase in activities of AMPD and AD in the heart. In the liver AMP and adenosine also caused a decrease in activities of glutathione reductase (GR), GPx, a decrease in the MDA level and an increase in activities of AMPD and AD. The data obtained suggest that administration of adrenaline, AMP, and adenosine influences activity of enzymes involved in purine nucleotide metabolism. However, in contrast to adrenaline, administration of AMP or adenosine does not provoke stress reaction.

  2. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    PubMed

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Role of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the renal 2′,3′-cAMP-adenosine pathway

    PubMed Central

    Gillespie, Delbert G.; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M.

    2014-01-01

    Energy depletion increases the renal production of 2′,3′-cAMP (a positional isomer of 3′,5′-cAMP that opens mitochondrial permeability transition pores) and 2′,3′-cAMP is converted to 2′-AMP and 3′-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this “2′,3′-cAMP-adenosine pathway” are unknown, we examined whether 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) participates in the renal metabolism of 2′,3′-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3′,5′-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2′,3′-cAMP to 2′-AMP. Infusions of 2′,3′-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2′-AMP, and this response was diminished by 63% in CNPase knockout (−/−) kidneys, whereas the conversion of 3′,5′-cAMP to 5′-AMP was similar in CNPase +/+ vs. −/− kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2′,3′-cAMP. In contrast, in CNPase −/− kidneys, energy depletion increased kidney tissue levels of 2′,3′-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2′,3′-cAMP-adenosine pathway. PMID:24808540

  4. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)].

    PubMed

    Kaye, Karl; Bryant, David E; Marriott, Katie E R; Ohara, Shohei; Fishwick, Colin W G; Kee, Terence P

    2016-11-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H 2 P 2 O 5 2- ; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M 2+ ) and by organic co-factors such as acetate (AcO - ). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M 2+ & AcO - . Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  5. In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport.

    PubMed

    Miotto, Paula M; Holloway, Graham P

    2016-09-15

    The transport of cytosolic adenosine diphosphate (ADP) into the mitochondria is a major control point in metabolic homeostasis, as ADP concentrations directly affect glycolytic flux and oxidative phosphorylation rates within mitochondria. A large contributor to the efficiency of this process is thought to involve phosphocreatine (PCr)/Creatine (Cr) shuttling through mitochondrial creatine kinase (Mi-CK), whereas the biological importance of alterations in Cr-independent ADP transport during exercise remains unknown. Therefore, we utilized an Mi-CK knockout (KO) model to determine whether in vivo Cr-independent mechanisms are biologically important for sustaining energy homeostasis during exercise. Ablating Mi-CK did not alter exercise tolerance, as the time to volitional fatigue was similar between wild-type (WT) and KO mice at various exercise intensities. In addition, skeletal muscle metabolic profiles after exercise, including glycogen, PCr/Cr ratios, free ADP/adenosine monophosphate (AMP), and lactate, were similar between genotypes. While these data suggest that the absence of PCr/Cr shuttling is not detrimental to maintaining energy homeostasis during exercise, KO mice displayed a dramatic increase in Cr-independent mitochondrial ADP sensitivity after exercise. Specifically, whereas mitochondrial ADP sensitivity decreased with exercise in WT mice, in stark contrast, exercise increased mitochondrial Cr-independent ADP sensitivity in KO mice. As a result, the apparent ADP Km was 50% lower in KO mice after exercise, suggesting that in vivo activation of voltage-dependent anion channel (VDAC)/adenine nucleotide translocase (ANT) can support mitochondrial ADP transport. Altogether, we provide insight that Cr-independent ADP transport mechanisms are biologically important for regulating ADP sensitivity during exercise, while highlighting complex regulation and the plasticity of the VDAC/ANT axis to support adenosine triphosphate demand. © 2016 The Author

  6. Schwann Cells Metabolize Extracellular 2′,3′-cAMP to 2′-AMP

    PubMed Central

    Verrier, Jonathan D.; Kochanek, Patrick M.

    2015-01-01

    The 3′,5′-cAMP–adenosine pathway (3′,5′-cAMP→5′-AMP→adenosine) and the 2′,3′-cAMP–adenosine pathway (2′,3′-cAMP→2′-AMP/3′-AMP→adenosine) are active in the brain. Oligodendrocytes participate in the brain 2′,3′-cAMP–adenosine pathway via their robust expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase; converts 2′,3′-cAMP to 2′-AMP). Because Schwann cells also express CNPase, it is conceivable that the 2′,3′-cAMP–adenosine pathway exists in the peripheral nervous system. To test this and to compare the 2′,3′-cAMP–adenosine pathway to the 3′,5′-cAMP–adenosine pathway in Schwann cells, we examined the metabolism of 2′,3′-cAMP, 2′-AMP, 3′-AMP, 3′,5′-cAMP, and 5′-AMP in primary rat Schwann cells in culture. Addition of 2′,3′-cAMP (3, 10, and 30 µM) to Schwann cells increased levels of 2′-AMP in the medium from 0.006 ± 0.002 to 21 ± 2, 70 ± 3, and 187 ± 10 nM/µg protein, respectively; in contrast, Schwann cells had little ability to convert 2′,3′-cAMP to 3′-AMP or 3′,5′-cAMP to either 3′-AMP or 5′-AMP. Although Schwann cells slightly converted 2′,3′-cAMP and 2′-AMP to adenosine, they did so at very modest rates (e.g., 5- and 3-fold, respectively, more slowly compared with our previously reported studies in oligodendrocytes). Using transected myelinated rat sciatic nerves in culture medium, we observed a time-related increase in endogenous intracellular 2′,3′-cAMP and extracellular 2′-AMP. These findings indicate that Schwann cells do not have a robust 3′,5′-cAMP–adenosine pathway but do have a 2′,3′-cAMP–adenosine pathway; however, because the pathway mostly involves 2′-AMP formation rather than 3′-AMP, and because the conversion of 2′-AMP to adenosine is slow, metabolism of 2′,3′-cAMP mostly results in the accumulation of 2′-AMP. Accumulation of 2′-AMP in peripheral nerves postinjury could have

  7. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  8. Cultured astrocytes do not release adenosine during hypoxic conditions

    PubMed Central

    Fujita, Takumi; Williams, Erika K; Jensen, Tina K; Smith, Nathan A; Takano, Takahiro; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine from cultured astrocytes. Similar results were obtained using a chemiluminescent enzymatic assay. Moreover, since the chemiluminescent enzymatic assay relies on hydrogen peroxide generation, release of free-radical scavengers from hypoxic cells can interfere with the assay. Accordingly, adenosine added to samples collected from hypoxic cultures could not be detected using the chemiluminescent enzymatic assay. Furthermore, addition of free-radical scavengers sharply reduced the sensitivity of adenosine detection. Conversely, use of a single-step assay inflated measured values due to the inability of the assay to distinguish adenosine and its metabolite inosine. These results show that cultured astrocytes do not release adenosine during mild hypoxia, an observation consistent with their high resistance to hypoxia. PMID:21989480

  9. Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor.

    PubMed

    Muzzi, Mirko; Coppi, Elisabetta; Pugliese, Anna Maria; Chiarugi, Alberto

    2013-12-01

    Purinergic neurotransmission mediated by adenosine (Ado) type 1 receptors (A1Rs) plays pivotal roles in negative modulation of epileptic seizures, and Ado is thought to be a key endogenous anticonvulsant. Recent evidence, however, indicates that AMP, the metabolic precursor of Ado, also activate A1Rs. Here, we evaluated the antiepileptic effects of AMP adopting in vitro and in vivo models of epilepsy. We report that AMP reversed the increase in population spike (PS) amplitude and the decrease in PS latency induced by a Mg(2+)-free extracellular solution in CA1 neurons of mouse hippocampal slices. The AMP effects were inhibited by the A1R antagonist DPCPX, but not prevented by inhibiting conversion of AMP into Ado, indicating that AMP inhibited per se sustained hippocampal excitatory neurotransmission by directly activating A1Rs. AMP also reduced seizure severity and mortality in a model of audiogenic convulsion. Of note, the anticonvulsant effects of AMP were potentiated by preventing its conversion into Ado and inhibited by DPCPX. When tested in a model of kainate-induced seizure, AMP prolonged latency of convulsions but had no effects on seizure severity and mortality. Data provide the first evidence that AMP is an endogenous anticonvulsant acting at A1Rs. © 2013.

  10. Adenosine Phosphates in Germinating Radish (Raphanus sativus L.) Seeds 1

    PubMed Central

    Moreland, Donald E.; Hussey, Griscelda G.; Shriner, Carole R.; Farmer, Fred S.

    1974-01-01

    Changes in concentrations of adenosine phosphates (AMP, ADP, and ATP), oxygen utilization, and fresh weights were measured during the first 48 hours after imbibition of water by quiescent radish seeds (Raphanus sativus L.) at 22.5 C. The changes in ATP concentrations, oxygen utilization, and fresh weights followed a triphasic time course, characterized by a rapid initial increase, which extended from 0 to approximately 1.5 hours, a lag phase from 1.5 to 16 hours, and a sharp linear increase from 16 to 48 hours. In unimbibed seeds, the concentrations of ATP, ADP, and AMP were <0.1, 0.9, and 2.2 nmoles/seed, respectively. After imbibition of water by the quiescent seeds, for 1 hour, the ATP concentration had increased to 2.5, and ADP and AMP concentrations had decreased to 0.3 and 0.1 nmole/seed, respectively. These early changes occurred also in seeds maintained under anaerobic conditions (argon), or when treated with either 5 mm fluoroacetate, or 5 mm iodoacetate. The concentrations of ADP and AMP did not change significantly from 1 to 48 hours. The termination of the lag phase at 16 hours correlated with radicle emergence. Cell division in the radicles was initiated at approximately 28 hours. ATP concentrations in seeds maintained under argon or treated with fluoroacetate remained relatively constant from approximately 2 to 48 hours. In contrast, the ATP concentration of iodoacetate-treated seeds decreased curvilinearly from 4 to 48 hours. Oxidative phosphorylation was estimated to have contributed 15, 20, and 65% of the pool ATP at 1.5, 16, and 48 hours, respectively. PMID:16658928

  11. The alterations in adenosine nucleotides and lactic acid in striated muscles of rats during Rigor mortis following death with drowning or cervical dislocation.

    PubMed

    Pençe, Halime Hanim; Pençe, Sadrettin; Kurtul, Naciye; Yilmaz, Necat; Kocoglu, Hasan; Bakan, Ebubekir

    2003-01-01

    In this study, adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid in the muscles of masseter, triceps, and quadriceps obtained from right and left sides of Spraque-Dawley rats following death were investigated. The samples were taken immediately and 120 minutes after death occurred. The rats were killed either by cervical dislocation or drowning. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than in those obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in triceps muscles of the rats killed with drowning. When rats killed with cervical dislocation and with drowning were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of drowning, ATP is consumed faster because of hard exercise or severe physical activity, resulting in a faster rigor mortis. Higher lactic acid levels were determined in muscles of the rats killed with drowning than the other group. In the control and electric shock rats, ATP decreased in different levels in the three different muscle types mentioned above in control group, being much decline in masseter and then in quadriceps. This may be caused by lower mass and less glycogen storage of masseter. No different ATP levels were measured in drowning group with respect to the muscle type possibly because of the severe activity of triceps and quadriceps and because of smaller mass of masseter. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.

  12. Adenosine A2A receptor agonists with potent antiplatelet activity.

    PubMed

    Fuentes, Eduardo; Fuentes, Manuel; Caballero, Julio; Palomo, Iván; Hinz, Sonja; El-Tayeb, Ali; Müller, Christa E

    2018-05-01

    Selected adenosine A 2A receptor agonists (PSB-15826, PSB-12404, and PSB-16301) have been evaluated as new antiplatelet agents. In addition, radioligand-binding studies and receptor-docking experiments were performed in order to explain their differential biological effects on a molecular level. Among the tested adenosine derivatives, PSB-15826 was the most potent compound to inhibit platelet aggregation (EC 50 0.32 ± 0.05 µmol/L) and platelet P-selectin cell-surface localization (EC 50 0.062 ± 0.2 µmol/L), and to increase intraplatelets cAMP levels (EC 50 0.24 ± 0.01 µmol/L). The compound was more active than CGS21680 (EC 50 0.97±0.07 µmol/L) and equipotent to NECA (EC 50 0.31 ± 0.05 µmol/L) in platelet aggregation induced by ADP. In contrast to the results from cAMP assays, K i values determined in radioligand-binding studies were not predictive of the A 2A agonists' antiplatelet activity. Docking studies revealed the key molecular determinants of this new family of adenosine A 2A receptor agonists: differences in activities are related to π-stacking interactions between the ligands and the residue His264 in the extracellular loop of the adenosine A 2A receptor which may result in increased residence times. In conclusion, these results provide an improved understanding of the requirements of antiplatelet adenosine A 2A receptor agonists.

  13. ADP-ribosyl-N₃: A Versatile Precursor for Divergent Syntheses of ADP-ribosylated Compounds.

    PubMed

    Li, Lingjun; Li, Qianqian; Ding, Shengqiang; Xin, Pengyang; Zhang, Yuqin; Huang, Shenlong; Zhang, Guisheng

    2017-08-14

    Adenosine diphosphate-ribose (ADP-ribose) and its derivatives play important roles in a series of complex physiological procedures. The design and synthesis of artificial ADP-ribosylated compounds is an efficient way to develop valuable chemical biology tools and discover new drug candidates. However, the synthesis of ADP-ribosylated compounds is currently difficult due to structural complexity, easily broken pyrophosphate bond and high hydrophilicity. In this paper, ADP-ribosyl-N₃ was designed and synthesized for the first time. With ADP-ribosyl-N₃ as the key precursor, a divergent post-modification strategy was developed to prepare structurally diverse ADP-ribosylated compounds including novel nucleotides and peptides bearing ADP-ribosyl moieties.

  14. Discovery of a cAMP Deaminase That Quenches Cyclic AMP-Dependent Regulation

    PubMed Central

    Goble, Alissa M.; Feng, Youjun; Raushel, Frank M.; Cronan, John E.

    2013-01-01

    An enzyme of unknown function within the amidohydrolase superfamily was discovered to catalyze the hydrolysis of the universal second messenger, cyclic-3’, 5’-adenosine monophosphate (cAMP). The enzyme, which we have named CadD, is encoded by the human pathogenic bacterium Leptospira interrogans. Although CadD is annotated as an adenosine deaminase, the protein specifically deaminates cAMP to cyclic-3’, 5’-inosine monophosphate (cIMP) with a kcat/Km of 2.7 ± 0.4 × 105 M−1 s−1 and has no activity on adenosine, adenine, or 5’-adenosine monophosphate (AMP). This is the first identification of a deaminase specific for cAMP. Expression of CadD in Escherichia coli mimics the loss of adenylate cyclase in that it blocks growth on carbon sources that require the cAMP-CRP transcriptional activator complex for expression of the cognate genes. The cIMP reaction product cannot replace cAMP as the ligand for CRP binding to DNA in vitro and cIMP is a very poor competitor of cAMP activation of CRP for DNA binding. Transcriptional analyses indicate that CadD expression represses expression of several cAMP-CRP dependent genes. CadD adds a new activity to the cAMP metabolic network and may be a useful tool in intracellular study of cAMP-dependent processes. PMID:24074367

  15. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine

    PubMed Central

    Laver, Derek R; Lenz, Gerlinde K E; Lamb, Graham D

    2001-01-01

    Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With ‘resting’ calcium (100 nm cytoplasmic and 1 mm luminal), RyRs had an open probability (Po) of ∼0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with Po at saturation (Pmax) ∼0.33 and Ka (concentration for half-maximal activation) ∼0.36 mm and with a Hill coefficient (nH) of ∼1.8 in RyRs when Pmax < 0.5 and ∼4 when Pmax > 0.5. AMP was a much weaker agonist (Pmax∼0.09) and adenosine was weaker still (Pmax∼0.01–0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with nH∼1 and Ki∼0.06 mm at [ATP] < 0.5 mm, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mm. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mm for ATP, AMP and adenosine, respectively. Importantly, IMP (≤ 8 mm) had no inhibitory effect whatsoever on ATP-activated RyRs. Mean open (τo) and closed (τc) dwell-times were more closely related to Po than to the nucleotide species or individual RyRs. At Po < 0.2, RyR regulation occurred via changes in τc, whereas at higher Po this also occurred via changes in τo. The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. The results also show how deleterious adenosine accumulation is to the function of RyRs in skeletal muscle and, by comparison with voltage sensor-controlled Ca2+ release, indicate that voltage sensor activation requires ATP binding to

  16. Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms.

    PubMed

    Carlin, Jesse Lea; Jain, Shalini; Gizewski, Elizabeth; Wan, Tina C; Tosh, Dilip K; Xiao, Cuiying; Auchampach, John A; Jacobson, Kenneth A; Gavrilova, Oksana; Reitman, Marc L

    2017-03-01

    Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1 -/- , Adora3 -/- ) mice. Confirming prior data, stimulation of the A 3 adenosine receptor (AR) induced hypothermia via peripheral mast cell degranulation, histamine release, and activation of central histamine H 1 receptors. In contrast, A 1 AR agonists and AMP both acted centrally to cause hypothermia. Commonly used, selective A 1 AR agonists, including N 6 -cyclopentyladenosine (CPA), N 6 -cyclohexyladenosine (CHA), and MRS5474, caused hypothermia via both A 1 AR and A 3 AR when given intraperitoneally. Intracerebroventricular dosing, low peripheral doses of Cl-ENBA [(±)-5'-chloro-5'-deoxy-N 6 -endo-norbornyladenosine], or using Adora3 -/- mice allowed selective stimulation of A 1 AR. AMP-stimulated hypothermia can occur independently of A 1 AR, A 3 AR, and mast cells. A 1 AR and A 3 AR agonists and AMP cause regulated hypothermia that was characterized by a drop in total energy expenditure, physical inactivity, and preference for cooler environmental temperatures, indicating a reduced body temperature set point. Neither A 1 AR nor A 3 AR was required for fasting-induced torpor. A 1 AR and A 3 AR agonists and AMP trigger regulated hypothermia via three distinct mechanisms. Published by Elsevier Ltd.

  17. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    PubMed Central

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  18. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    PubMed Central

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  19. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice.

    PubMed

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-09

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.

  20. Beneficial Role of Erythrocyte Adenosine A2B Receptor-Mediated AMP-Activated Protein Kinase Activation in High-Altitude Hypoxia.

    PubMed

    Liu, Hong; Zhang, Yujin; Wu, Hongyu; D'Alessandro, Angelo; Yegutkin, Gennady G; Song, Anren; Sun, Kaiqi; Li, Jessica; Cheng, Ning-Yuan; Huang, Aji; Edward Wen, Yuan; Weng, Ting Ting; Luo, Fayong; Nemkov, Travis; Sun, Hong; Kellems, Rodney E; Karmouty-Quintana, Harry; Hansen, Kirk C; Zhao, Bihong; Subudhi, Andrew W; Jameson-Van Houten, Sonja; Julian, Colleen G; Lovering, Andrew T; Eltzschig, Holger K; Blackburn, Michael R; Roach, Robert C; Xia, Yang

    2016-08-02

    High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. Together, human and mouse studies reveal novel

  1. Ticagrelor Compared with Clopidogrel Increased Adenosine and Cyclic Adenosine Monophosphate Plasma Concentration in Acute Coronary Syndrome Patients.

    PubMed

    Li, Xiaoye; Wang, Qibing; Xue, Ying; Chen, Jiahui; Lv, Qianzhou

    2017-06-01

    Ticagrelor produces a more potent antiplatelet effect than clopidogrel and inhibits cellular uptake of adenosine, which is associated with several cardiovascular consequences. We aimed to explore the correlation between adenosine and cyclic adenosine monophosphate (cAMP) plasma concentration and antiplatelet effect by clopidogrel or ticagrelor in patients with acute coronary syndrome (ACS) receiving dual antiplatelet therapy (DAPT). We conducted a prospective, observational and single-centre cohort study enrolling 68 patients with non-ST-segment elevation ACS from January 2016 to May 2016. We monitored the inhibition of platelet aggregation (IPA) and assessed adenosine, adenosine deaminase (ADA) and cAMP plasma concentrations by immunoassay on admission and 48 hr after coronary angiography. The demographic and clinical data were collected by reviewing their medical records. The two groups exhibited similar baseline characteristics including adenosine, ADA and cAMP. The mean IPA in patients receiving ticagrelor was significantly higher than that in patients receiving clopidogrel (93.5% versus 67.2%; p = 0.000). Also, we observed that patients treated with ticagrelor had a significantly higher increase in levels of adenosine and cAMP compared with those treated with clopidogrel (1.04 (0.86; 1.41) versus 0.04 (-0.25; 0.26); p = 0.029 and 0.78 (-1.67; 1.81) versus 0.60 (-1.91; 4.60); p = 0.037, respectively). And there was a weak correlation between IPA and adenosine as well as cAMP plasma concentration (r = 0.390, p = 0.001 and r = 0.335, p = 0.005, respectively). Ticagrelor increased adenosine and cAMP plasma concentration compared with clopidogrel in patients with ACS. © 2017 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine.

    PubMed

    Laver, D R; Lenz, G K; Lamb, G D

    2001-12-15

    1. Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With 'resting' calcium (100 nM cytoplasmic and 1 mM luminal), RyRs had an open probability (P(o)) of approximately 0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with P(o) at saturation (P(max)) approximately 0.33 and K(a) (concentration for half-maximal activation) approximately 0.36 mM and with a Hill coefficient (n(H)) of approximately 1.8 in RyRs when P(max) < 0.5 and approximately 4 when P(max) > 0.5. 2. AMP was a much weaker agonist (P(max) approximately 0.09) and adenosine was weaker still (P(max) approximately 0.01-0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. 3. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with n(H) approximately 1 and K(i) approximately 0.06 mM at [ATP] < 0.5 mM, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mM. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mM for ATP, AMP and adenosine, respectively. Importantly, IMP (< or = 8 mM) had no inhibitory effect whatsoever on ATP-activated RyRs. 4. Mean open (tau(o)) and closed (tau(c)) dwell-times were more closely related to P(o) than to the nucleotide species or individual RyRs. At P(o) < 0.2, RyR regulation occurred via changes in tau(c), whereas at higher P(o) this also occurred via changes in tau(o). The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. 5. The results also show how deleterious adenosine accumulation is to the function of

  3. Identification of a receptor for ADP on blood platelets by photoaffinity labelling.

    PubMed Central

    Cristalli, G; Mills, D C

    1993-01-01

    The synthesis of a new analogue of ADP, 2-(p-azidophenyl)-ethythioadenosine 5'-diphosphate (AzPET-ADP), is described. This compound contains a photolabile phenylazide group attached to the ADP molecule by a thioether link at the purine 2 position. It has been prepared in radioactive form with 32P in the beta-phosphate at a specific radioactivity of 100 mCi/mumol. The reagent activated platelets, causing shape change and aggregation, with somewhat lower affinity than ADP. On photolysis the affinity was increased. The reagent also inhibited platelet adenylate cyclase stimulation by prostaglandin E1, with considerably higher affinity than ADP. On photolysis the affinity was decreased. AzPET-ADP competitively inhibited the binding of 2-methylthio[beta-32P]ADP, a ligand for the receptor by which ADP causes inhibition of adenylate cyclase. In the dark, AzPET-[beta-32P]ADP bound reversibly and with high affinity to a single population of sites similar in number to the sites that bind 2-methylthio[beta-32P]ADP. Binding was inhibited by ADP and by ATP and by p-chloromercuribenzenesulphonic acid (pCMBS). On exposure to u.v. light in the presence of platelets, AzPET-[beta-32P]ADP was incorporated covalently but non-specifically into several platelet proteins, although prominent intracellular proteins were not labelled. Specific labelling was confined to a single region of SDS/polyacrylamide gels, overlying but not comigrating with actin. Incorporation of radioactivity into this region was inhibited by ADP and by ATP as well as by ADP beta S, ATP alpha S and pCMBS, but not by adenosine, GDP or AMP. Inhibition of AzPET-[beta-32P]ADP incorporation was closely correlated with inhibition of equilibrium binding of 2-methylthio[beta-32P]ADP. These results suggests that the labelled protein, which migrates with an apparent molecular mass of 43 kDa in reduced gels, is the receptor through which ADP inhibits adenylate cyclase. Images Figure 5 PMID:8387782

  4. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  5. Adenosine receptor subtypes in the airways responses to 5'-adenosine monophosphate inhalation of sensitized guinea-pigs.

    PubMed

    Smith, N; Broadley, K J

    2008-09-01

    Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.

  6. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    PubMed

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  7. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease.

    PubMed

    Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A

    2018-03-05

    The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy. Copyright © 2017. Published by Elsevier B.V.

  8. Adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus.

    PubMed

    Valentine, Nyoli; Van de Laar, Floris A; van Driel, Mieke L

    2012-11-14

    Cardiovascular disease (CVD) is the most prevalent complication of type 2 diabetes with an estimated 65% of people with type 2 diabetes dying from a cause related to atherosclerosis. Adenosine-diphosphate (ADP) receptor antagonists like clopidogrel, ticlopidine, prasugrel and ticagrelor impair platelet aggregation and fibrinogen-mediated platelet cross-linking and may be effective in preventing CVD. To assess the effects of adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (issue 2, 2011), MEDLINE (until April 2011) and EMBASE (until May 2011). We also performed a manual search, checking references of original articles and pertinent reviews to identify additional studies. Randomised controlled trials comparing an ADP receptor antagonist with another antiplatelet agent or placebo for a minimum of 12 months in patients with diabetes. In particular, we looked for trials assessing clinical cardiovascular outcomes. Two review authors extracted data for studies which fulfilled the inclusion criteria, using standard data extraction templates. We sought additional unpublished information and data from the principal investigators of all included studies. Eight studies with a total of 21,379 patients with diabetes were included. Three included studies investigated ticlopidine compared to aspirin or placebo. Five included studies investigated clopidogrel compared to aspirin or a combination of aspirin and dipyridamole, or compared clopidogrel in combination with aspirin to aspirin alone. All trials included patients with previous CVD except the CHARISMA trial which included patients with multiple risk factors for coronary artery disease. Overall the risk of bias of the trials was low. The mean duration of follow-up ranged from 365 days to 913 days.Data for diabetes patients on all-cause mortality, vascular

  9. Monitoring of the ADP/ATP Ratio by Induced Circularly Polarised Europium Luminescence.

    PubMed

    Shuvaev, Sergey; Fox, Mark A; Parker, David

    2018-06-18

    A series of three europium complexes bearing picolyl amine moieties was found to possess differing binding affinities towards Zn 2+ and three nucleotides: AMP, ADP, and ATP. A large increase in the total emission intensity was observed upon binding Zn 2+ , followed by signal amplification upon the addition of nucleotides. The resulting adducts possessed strong induced circularly polarised emission, with ADP and ATP signals of opposite sign. Model DFT geometries of the adducts suggest the Δ diastereoisomer is preferred for ATP and the Λ isomer for ADP/AMP. This change in sign allows the ADP/ATP (or AMP/ATP) ratio to be assessed by monitoring changes in the emission dissymmetry factor, g em . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  11. Content of Adenosine Phosphates and Adenylate Energy Charge in Germinating Ponderosa Pine Seeds

    PubMed Central

    Ching, Te May; Ching, Kim K.

    1972-01-01

    An average of 540 picomoles of total adenosine phosphates was found in the embryo of mature seeds of ponderosa pine (Pinus ponderosa Laws.) and 1140 picomoles in the gametophyte. Adenylate energy charges were 0.44 and 0.26, respectively. After stratification, total adenosine phosphates increased 7-fold and 6-fold in embryo and gametophyte, respectively, and energy charges rose to 0.85 and 0.75. During germination, total adenosine phosphates increased to a 20-fold peak on the 9th day in gametophytic tissue, parallel with the peak of reserve regradation and organellar synthesis, and then decreased. In embryo and seedling, total adenosine phosphates elevated 80-fold with two distinct oscillating increases of AMP and ADP. The oscillating increases occurred before the emergence of radicle and cotyledons during which the highest mitotic index prevailed in all tissues. Energy charges fluctuated between 0.65 at the rapid cell dividing stage to 0.85 at the fully differentiated stage of the seedling, while energy charges remained around 0.75 in the gametophyte. These data indicated that the content of adenosine phosphates of germinating seeds reflects growth, organogenesis, and morphogenesis, and that a compartmentalized energy metabolism must exist in dividing and growing plant cells. PMID:16658212

  12. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  13. Sustained release carrier for adenosine triphosphate as signaling molecule.

    PubMed

    Wischke, Christian; Weigel, Judith; Bulavina, Larisa; Lendlein, Andreas

    2014-12-10

    Adenosine triphosphate (ATP) is a molecule with a fascinating variety of intracellular and extracellular biological functions that go far beyond energy metabolism. Due to its limited passive diffusion through biological membranes, controlled release systems may allow to interact with ATP-mediated extracellular processes. In this study, two release systems were explored to evaluate the capacity for either long-term or short-term release: (i) Poly[(rac-lactide)-co-glycolide] (PLGA) implant rods were capable of ATP release over days to weeks, depending on the PLGA molecular weight and end-group capping, but were also associated with partial hydrolytic degradation of ATP to ADP and AMP, but not adenosine. (ii) Thermosensitive methylcellulose hydrogels with a gelation occurring at body temperature allowed combining adjustable loading levels and the capacity for injection, with injection forces less than 50N even for small 27G needles. Finally, a first in vitro study illustrated purinergic-triggered response of primary murine microglia to ATP released from hydrogels, demonstrating the potential relevance for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. [Activation of the alternative oxidase of Yarrowia lipolytica by adenosine 5'-monophosphate].

    PubMed

    Medentsev, A G; Arinbasarova, A Iu; Smirnova, N M; Akimenko, V K

    2004-01-01

    The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and the submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of the intact mitochondria. The incubation of the mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated by AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order. AMP = GMP > GDP > GTP > XMP > IMP. The apparent reaction rate constant Km for AMP upon the reactivation of the alternative oxidase of mitochondria treated with Triton X-100 or incubated at 25 degrees C was 12.5 and 20 microM, respectively. The Km for AMP upon the reactivation of the alternative oxidase of submitochondrial particles was 15 microM. During the incubation of yeast cells under conditions promoting the development of alternative oxidase, the content of adenine nucleotides (AMP, ADP, and ATP) in the cells and their respiration tended to decrease. The subsequent addition of cyanide to the cells activated their respiration, diminished the intracellular content of ATP three times, and augmented the content of AMP five times. These data suggest that the stimulation of cell respiration by cyanide may be due to the activation of alternative oxidase by AMP.

  15. Mechanistic insights into the allosteric regulation of bacterial ADP-glucose pyrophosphorylases

    PubMed Central

    Comino, Natalia; Cifuente, Javier O.; Marina, Alberto; Orrantia, Ane; Eguskiza, Ander; Guerin, Marcelo E.

    2017-01-01

    ADP-glucose pyrophosphorylase (AGPase) controls bacterial glycogen and plant starch biosynthetic pathways, the most common carbon storage polysaccharides in nature. AGPase activity is allosterically regulated by a series of metabolites in the energetic flux within the cell. Very recently, we reported the first crystal structures of the paradigmatic AGPase from Escherichia coli (EcAGPase) in complex with its preferred physiological negative and positive allosteric regulators, adenosine 5′-monophosphate (AMP) and fructose 1,6-bisphosphate (FBP), respectively. However, understanding the molecular mechanism by which AMP and FBP allosterically modulates EcAGPase enzymatic activity still remains enigmatic. Here we found that single point mutations of key residues in the AMP-binding site decrease its inhibitory effect but also clearly abolish the overall AMP-mediated stabilization effect in wild-type EcAGPase. Single point mutations of key residues for FBP binding did not revert the AMP-mediated stabilization. Strikingly, an EcAGPase-R130A mutant displayed a dramatic increase in activity when compared with wild-type EcAGPase, and this increase correlated with a significant increment of glycogen content in vivo. The crystal structure of EcAGPase-R130A revealed unprecedented conformational changes in structural elements involved in the allosteric signal transmission. Altogether, we propose a model in which the positive and negative energy reporters regulate AGPase catalytic activity via intra- and interprotomer cross-talk, with a “sensory motif” and two loops, RL1 and RL2, flanking the ATP-binding site playing a significant role. The information reported herein provides exciting possibilities for industrial/biotechnological applications. PMID:28223362

  16. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals.

    PubMed

    Daniels, Isadora Susan; Zhang, Jianfa; O'Brien, William G; Tao, Zhenyin; Miki, Tomoko; Zhao, Zhaoyang; Blackburn, Michael R; Lee, Cheng Chi

    2010-07-02

    Biochemical and mechanistic aspects into how various hypometabolic states are initiated in mammals are poorly understood. Here, we show how a state of hypometabolism is initiated by 5'-AMP uptake by erythrocytes. Wild type, ecto-5'-nucleotidase-deficient, and adenosine receptor-deficient mice undergo 5'-AMP-induced hypometabolism in a similar fashion. Injection of 5'-AMP leads to two distinct declining phases of oxygen consumption (VO(2)). The phase I response displays a rapid and steep decline in VO(2) that is independent of body temperature (T(b)) and ambient temperature (T(a)). It is followed by a phase II decline that is linked to T(b) and moderated by T(a). Altering the dosages of 5'-AMP from 0.25- to 2-fold does not change the phase I response. For mice, a T(a) of 15 degrees C is effective for induction of DH with the appropriate dose of 5'-AMP. Erythrocyte uptake of 5'-AMP leads to utilization of ATP to synthesize ADP. This is accompanied by increased glucose but decreased lactate levels, suggesting that glycolysis has slowed. Reduction in glycolysis is known to stimulate erythrocytes to increase intracellular levels of 2,3-bisphosphoglycerate, a potent allosteric inhibitor of hemoglobin's affinity for oxygen. Our studies showed that both 2,3-bisphosphoglycerate and deoxyhemoglobin levels rose following 5'-AMP administration and is in parallel with the phase I decline in VO(2). In summary, our investigations reveal that 5'-AMP mediated hypometabolism is probably triggered by reduced oxygen transport by erythrocytes initiated by uptake of 5'-AMP.

  17. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells.

    PubMed

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-03-25

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5'-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a 'calm down' signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001.

  18. Molecular Bases of Catalysis and ADP-Ribose Preference of Human Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase and Conversion by Mutagenesis to a Preferential Cyclic ADP-Ribose Phosphohydrolase

    PubMed Central

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose K m and unchanged k cat of F37A-ADPRibase-Mn, while the K m values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type. PMID:25692488

  19. The effect of adenosine 5'-monophosphate (AMP) on tenderness, microstructure and chemical-physical index of duck breast meat.

    PubMed

    Wang, Daoying; Deng, Shaoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-30

    Adenosine 5'-monophosphate (AMP) is often used in meat and poultry soups as a flavor enhancer (flavor modifier), or as food additives for specific nutritional purposes. Our previous research as well as evidence from others showed that actomyosin could be dissociated into myosin and actin by AMP in extracted muscle solution. However, there is no report available on the application of AMP to dissociate actomyosin and to improve meat tenderness. The objectives of this study were to evaluate the effect of AMP on duck meat tenderness and other quality traits and to explore the mechanism of the action of AMP on meat tenderness. Duck breast muscle was treated with 0, 10, 20, 30, 40 mmol L(-1) AMP at 5 °C for 10 h and examined for shear force, microstructure, actomyosin dissociation, myofibril fragmentation index (MFI), pH, water content, cooking loss, CIE* color (L*, a*, b*), inosine monophosphate (IMP) and free amino acid (FAA) contents. Results showed that shear force, cooking loss, L* and b* of the muscles significantly decreased after AMP treatment (P < 0.05); actomyosin dissociation, MFI, pH, water content, fiber diameter, sarcomere length, IMP and ammonia significantly increased (P < 0.05); no significant change in a* or other FAA content was observed (P > 0.05), and muscle shrinkage in transverse and longitudinal directions were restrained after AMP treatment. The results suggest that AMP could notably improve meat tenderness, and this effect was probably mainly through increasing muscle pH, promoting actomyosin dissociation and disrupting the Z-line; meanwhile, the conversion of AMP to IMP may contribute to the flavor of meat. © 2015 Society of Chemical Industry.

  20. Self-Assembled Tb3+ Complex Probe for Quantitative Analysis of ATP during Its Enzymatic Hydrolysis via Time-Resolved Luminescence in Vitro and in Vivo.

    PubMed

    Jung, Sung Ho; Kim, Ka Young; Lee, Ji Ha; Moon, Cheol Joo; Han, Noh Soo; Park, Su-Jin; Kang, Dongmin; Song, Jae Kyu; Lee, Shim Sung; Choi, Myong Yong; Jaworski, Justyn; Jung, Jong Hwa

    2017-01-11

    To more accurately assess the pathways of biological systems, a probe is needed that may respond selectively to adenosine triphosphate (ATP) for both in vitro and in vivo detection modes. We have developed a luminescence probe that can provide real-time information on the extent of ATP, ADP, and AMP by virtue of the luminescence and luminescence lifetime observed from a supramolecular polymer based on a C 3 symmetrical terpyridine complex with Tb 3+ (S1-Tb). The probe shows remarkable selective luminescence enhancement in the presence of ATP compared to other phosphate-displaying nucleotides including adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), thymidine triphosphate (TTP), H 2 PO 4 - (Pi), and pyrophosphate (PPi). In addition, the time-resolved luminescence lifetime and luminescence spectrum of S1-Tb could facilitate the quantitative measurement of the exact amount of ATP and similarly ADP and AMP within living cells. The time-resolved luminescence lifetime of S1-Tb could also be used to quantitatively monitor the amount of ATP, ADP, and AMP in vitro following the enzymatic hydrolysis of ATP. The long luminescence lifetime, which was observed into the millisecond range, makes this S1-Tb-based probe particularly attractive for monitoring biological ATP levels in vivo, because any short lifetime background fluorescence arising from the complex molecular environment may be easily eliminated.

  1. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells

    PubMed Central

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001 PMID:24668173

  3. A Role of Erythrocytes in Adenosine Monophosphate Initiation of Hypometabolism in Mammals*

    PubMed Central

    Daniels, Isadora Susan; Zhang, Jianfa; O'Brien, William G.; Tao, Zhenyin; Miki, Tomoko; Zhao, Zhaoyang; Blackburn, Michael R.; Lee, Cheng Chi

    2010-01-01

    Biochemical and mechanistic aspects into how various hypometabolic states are initiated in mammals are poorly understood. Here, we show how a state of hypometabolism is initiated by 5′-AMP uptake by erythrocytes. Wild type, ecto-5′-nucleotidase-deficient, and adenosine receptor-deficient mice undergo 5′-AMP-induced hypometabolism in a similar fashion. Injection of 5′-AMP leads to two distinct declining phases of oxygen consumption (VO2). The phase I response displays a rapid and steep decline in VO2 that is independent of body temperature (Tb) and ambient temperature (Ta). It is followed by a phase II decline that is linked to Tb and moderated by Ta. Altering the dosages of 5′-AMP from 0.25- to 2-fold does not change the phase I response. For mice, a Ta of 15 °C is effective for induction of DH with the appropriate dose of 5′-AMP. Erythrocyte uptake of 5′-AMP leads to utilization of ATP to synthesize ADP. This is accompanied by increased glucose but decreased lactate levels, suggesting that glycolysis has slowed. Reduction in glycolysis is known to stimulate erythrocytes to increase intracellular levels of 2,3-bisphosphoglycerate, a potent allosteric inhibitor of hemoglobin's affinity for oxygen. Our studies showed that both 2,3-bisphosphoglycerate and deoxyhemoglobin levels rose following 5′-AMP administration and is in parallel with the phase I decline in VO2. In summary, our investigations reveal that 5′-AMP mediated hypometabolism is probably triggered by reduced oxygen transport by erythrocytes initiated by uptake of 5′-AMP. PMID:20430891

  4. Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia

    PubMed Central

    Raju, Sammeta V.; Wang, Guoshun

    2012-01-01

    Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662

  5. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    PubMed Central

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  6. [Effects of +Gx load on energy metabolism of brain tissue in rats].

    PubMed

    Wu, Bin; Xie, Bao-sheng; You, Guang-xing; Liu, Xing-hua; Lu, Sheng-qiang; Huang, Wei-fen

    2002-12-01

    Objective. To observe the changes of energy metabolism of brain tissue in rats under +Gx loads, and to explore its possible role in changes of brain function and work efficiency induced by +Gx stress. Method. Forty-five male Wistar rats were randomly divided into control, +5 Gx, +10 Gx, +15 Gx and +20 Gx group. Each group was exposed to the corresponding G value for 3 min. After that, cortical adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid (LA) content, lactate dehydrogenase (LDH) activity were measured. Result. Compared with the control group, the cortical (LA) content increased significantly after +5 Gx, +10 Gx, +15 Gx and +20 Gx exposure (P<0.01). Cortical ADP content and ratio of ADP/AMP and AMP/ATP increased significantly after +10 Gx, +15 Gx and +20 Gx exposure (P<0.01), whereas ATP content, energy charge and LDH activity decreased significantly (P<0.05 or 0.01). Cortical AMP content increased significantly after +15 Gx and +20 Gx exposure (P<0.05 and 0.01). Conclusion. It is suggested that +Gx load can result in obvious depression of brain energy metabolism, which could be an important reason for the change of brain function and work efficiency induced by +Gx stress.

  7. Caffeine Suppresses the Activation of Hepatic Stellate Cells cAMP-Independently by Antagonizing Adenosine Receptors.

    PubMed

    Yamaguchi, Momoka; Saito, Shin-Ya; Nishiyama, Ryota; Nakamura, Misuzu; Todoroki, Kenichiro; Toyo'oka, Toshimasa; Ishikawa, Tomohisa

    2017-01-01

    During liver injury, hepatic stellate cells (HSCs) are activated by various cytokines and transdifferentiated into myofibroblast-like activated HSCs, which produce collagen, a major source of liver fibrosis. Therefore, the suppression of HSC activation is regarded as a therapeutic target for liver fibrosis. Several epidemiological reports have revealed that caffeine intake decreases the risk of liver disease. In this study, therefore, we investigated the effect of caffeine on the activation of primary HSCs isolated from mice. Caffeine suppressed the activation of HSC in a concentration-dependent manner. BAPTA-AM, an intracellular Ca 2+ chelator, had no effect on the caffeine-induced suppression of HSC activation. None of the isoform-selective inhibitors of phosphodiesterase1 to 5 affected changes in the morphology of HSC during activation, whereas CGS-15943, an adenosine receptor antagonist, inhibited them. Caffeine had no effect on intracellular cAMP level or on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2. In contrast, caffeine significantly decreased the phosphorylation of Akt1. These results suggest that caffeine inhibits HSC activation by antagonizing adenosine receptors, leading to Akt1 signaling activation.

  8. Bronchodilator responses after methacholine and adenosine 5'-monophosphate (AMP) challenges in children with asthma: their relationships with eosinophil markers.

    PubMed

    Yoo, Young; Seo, Sung Chul; Kim, Young Il; Chung, Bo Hyun; Song, Dae Jin; Choung, Ji Tae

    2012-09-01

    Bronchodilator responsiveness (BDR) and eosinophilic inflammation are characteristic features of asthma. Objective. The aim of this study was to compare the relationships of BDR after methacholine challenge or adenosine 5'-monophosphate (AMP) challenge to blood eosinophil markers in children with asthma. Methacholine and AMP challenges were performed on 69 children with mild intermittent to moderate persistent asthma. BDR was calculated as the change in forced expiratory volume in 1 second, expressed as percentage change of the value immediately after the each challenge and the value after inhalation of salbutamol. Serum total IgE levels, blood eosinophil counts, and serum eosinophil cationic protein (ECP) levels were determined for each subject. A positive relationship between serum total IgE levels and BDR was found only after the AMP challenge (R(2) = 0.345, p = .001) rather than after the methacholine challenge (R(2) = 0.007, p = .495). Peripheral blood eosinophil counts correlated more significantly with BDR after AMP challenge (R(2) = 0.212, p = .001) than BDR after methacholine challenge (R(2) = 0.002, p = .724). Both BDR after methacholine challenge (R(2) = 0.063, p = .038) and BDR after AMP challenge (R(2) = 0.192, p = .001) were significantly correlated with serum ECP levels. BDR after AMP challenge may be more closely related to eosinophilic inflammation, compared with that after methacholine challenge.

  9. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    ... view the expand/collapse boxes. Description Adenosine monophosphate (AMP) deaminase deficiency is a condition that can affect ... for movement ( skeletal muscles ). In many affected individuals, AMP deaminase deficiency does not cause any symptoms. People ...

  10. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  11. Defense ADP Acquisition Study.

    DTIC Science & Technology

    1981-11-30

    Logistics ALS - Advanced Logistics System AMP - ADPS Master Plan ANSI - American National Standards Institute APR - Agency Procurement Request ASD(C...Computers IRM - Information Resources Management ISO - International Standards Organization L LCC - Life Cycle Costs LCM - Life Cycle Management LE...man- agement in the process * Lack of a mission orientation . Lack of systems management and life cycle perspectives * Lack of effective leadership

  12. Effects of adenosine 5'-monophosphate on epidermal turnover.

    PubMed

    Furukawa, Fukumi; Kanehara, Shoko; Harano, Fumiki; Shinohara, Shigeo; Kamimura, Junko; Kawabata, Shigekatsu; Igarashi, Sachiyo; Kawamura, Mitsuaki; Yamamoto, Yuki; Miyachi, Yoshiki

    2008-10-01

    The structure and function of the epidermis is maintained by cell renewal based on epidermal turnover. Epidermal turnover is delayed by aging, and it is thought that the delay of the epidermal turnover is a cause of aging alternation of skin. The epidermal turnover is related to the energy metabolism of epidermal basal cells. Adenosine 5'-triphosphate (ATP) is needed for cell renewal: cell division, and adenosine 5'-monophosphate (AMP) increases the amount of intracellular ATP. These findings suggest that AMP accelerates the epidermal turnover delayed by aging. This study investigated whether AMP and adenosine 5'-monophosphate disodium salt (AMP2Na) accelerates the epidermal turnover. An effect of AMP2Na on cell proliferation was examined by our counting of keratinocytes. An effect of AMP2Na on cell cycle was examined by our counting of basal cells in DNA synthetic period of hairless rats. The effects of AMP2Na (or AMP) on the epidermal turnover were examined by our measuring stratum corneum transit time by use of guinea pigs, and by our measuring stratum corneum surface area by use of hairless rats and in a clinical pharmacological study. The AMP2Na showed two different profiles on the proliferation of primary cultured keratinocytes. At a low concentration it induced cell growth, whereas at a high concentration it inhibited cell growth. The number of basal cells in the DNA synthetic period of AMP2Na was significantly higher than that of the vehicle in hairless rats. The stratum corneum transit time of AMP2Na was significantly shorter than that of the vehicle in guinea pigs. The corneocyte surface area of emulsion containing AMP2Na was significantly smaller than that of the vehicle in volunteers. We conclude that AMP promotes the cell proliferation and the cell cycle progression of epidermal basal cells and accelerates epidermal turnover safely. In addition, AMP is useful for skin rejuvenation in dermatology and aesthetic dermatology.

  13. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.

    PubMed

    Deng, Shaoying; Wang, Daoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-01

    Based on single factor experiments, NaCl concentration, adenosine 5'-monophosphate (AMP) concentration and temperature were selected as independent variables for a three-level Box-Behnken experimental design, and the shear force and cooking loss were response values for regression analysis. According to the statistical models, it showed that all independent variables had significant effects on shear force and cooking loss, and optimal values were at the NaCl concentration of 4.15%, AMP concentration of 22.27 mmol/L and temperature of 16.70°C, which was determined with three-dimensional response surface diagrams and contour plots. Under this condition, the observed shear force and cooking loss were 0.625 kg and 8.07%, respectively, exhibiting a good agreement with their predicted values, showing the good applicability and feasibility of response surface methodology (RSM) for improving pork tenderness. Compared with control pig muscles, AMP combined with NaCl treatment demonstrated significant effects on improvement of meat tenderness and reduction of cooking loss. Therefore, AMP could be regarded as an effective tenderization agent for pork. © 2015 Japanese Society of Animal Science.

  14. Reciprocal regulation of insulin and plasma 5'-AMP in glucose homeostasis in mice.

    PubMed

    Xia, Lin; Wang, Zhongqiu; Zhang, Ying; Yang, Xiao; Zhan, Yibei; Cheng, Rui; Wang, Shiming; Zhang, Jianfa

    2015-03-01

    A previous investigation has demonstrated that plasma 5'-AMP (pAMP) exacerbates and causes hyperglycemia in diabetic mice. However, the crosstalk between pAMP and insulin signaling to regulate glucose homeostasis has not been investigated in depth. In this study, we showed that the blood glucose level was more dependent on the ratio of insulin to pAMP than on the absolute level of these two factors. Administration of 5'-AMP significantly attenuated the insulin-stimulated insulin receptor (IR) autophosphorylation in the liver and muscle tissues, resulting in the inhibition of downstream AKT phosphorylation. A docking analysis indicated that adenosine was a potential inhibitor of IR tyrosine kinase. Moreover, the 5'-AMP treatment elevated the ATP level in the pancreas and in the isolated islets, stimulating insulin secretion and increasing the plasma level of insulin. The insulin administration decreased the 5'-AMP-induced hyper-adenosine level by the up-regulation of adenosine kinase activities. Our results indicate that blood glucose homeostasis is reciprocally regulated by pAMP and insulin. © 2015 Society for Endocrinology.

  15. Cyclic AMP differentiates two separate but interacting pathways of phosphoinositide hydrolysis in the DDT1-MF2 smooth muscle cell line.

    PubMed

    Schachter, J B; Wolfe, B B

    1992-03-01

    The activation of adenosine A1 receptors in DDT1-MF2 smooth muscle cells resulted in both the inhibition of agonist-stimulated cAMP accumulation and the potentiation of norepinephrine-stimulated phosphoinositide hydrolysis. Pharmacological analysis indicated the involvement of an A1 adenosine receptor subtype in both of these responses. In the absence of norepinephrine, the activation of the adenosine receptor did not directly stimulate phosphoinositide hydrolysis. The adenosine receptor-mediated augmentation of norepinephrine-stimulated phosphoinositide hydrolysis was pertussis toxin sensitive and was selectively antagonized by agents that mimicked cAMP (8-bromo-cAMP) or raised cellular cAMP levels (forskolin). This initially suggested that cAMP might partially regulate the magnitude of the phospholipase C response to norepinephrine and that adenosine agonists might enhance the phospholipase C response by reducing cAMP levels. However, neither the reduction of cellular cAMP levels by other agents nor the inhibition of cAMP-dependent protein kinase was sufficient to replicate the action of adenosine receptor activation on phosphoinositide hydrolysis. Thus, in the presence of norepinephrine, adenosine receptor agonists appear to stimulate phosphoinositide hydrolysis via a pathway that is separate from, but dependent upon, that of norepinephrine. This second pathway can be distinguished from that which is stimulated by norepinephrine on the basis of its sensitivity to inhibition by both cAMP and pertussis toxin.

  16. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine

    PubMed Central

    2011-01-01

    Background Prostatic acid phosphatase (PAP) and ecto-5'-nucleotidase (NT5E, CD73) produce extracellular adenosine from the nucleotide AMP in spinal nociceptive (pain-sensing) circuits; however, it is currently unknown if these are the main ectonucleotidases that generate adenosine or how rapidly they generate adenosine. Results We found that AMP hydrolysis, when measured histochemically, was nearly abolished in dorsal root ganglia (DRG) neurons and lamina II of spinal cord from Pap/Nt5e double knockout (dKO) mice. Likewise, the antinociceptive effects of AMP, when combined with nucleoside transport inhibitors (dipyridamole or 5-iodotubericidin), were reduced by 80-100% in dKO mice. In addition, we used fast scan cyclic voltammetry (FSCV) to measure adenosine production at subsecond resolution within lamina II. Adenosine was maximally produced within seconds from AMP in wild-type (WT) mice but production was reduced >50% in dKO mice, indicating PAP and NT5E rapidly generate adenosine in lamina II. Unexpectedly, we also detected spontaneous low frequency adenosine transients in lamina II with FSCV. Adenosine transients were of short duration (<2 s) and were reduced (>60%) in frequency in Pap-/-, Nt5e-/- and dKO mice, suggesting these ectonucleotidases rapidly hydrolyze endogenously released nucleotides to adenosine. Field potential recordings in lamina II and behavioral studies indicate that adenosine made by these enzymes acts through the adenosine A1 receptor to inhibit excitatory neurotransmission and nociception. Conclusions Collectively, our experiments indicate that PAP and NT5E are the main ectonucleotidases that generate adenosine in nociceptive circuits and indicate these enzymes transform pulsatile or sustained nucleotide release into an inhibitory adenosinergic signal. PMID:22011440

  17. [Role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia].

    PubMed

    Yang, Yang; Wang, Wen-Sheng; Qiu, Yuan; Sun, Li-Hua; Yang, Hua

    2013-05-01

    To investigate the role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia. Intestinal epithelial barrier was established by Caco-2 monolayers. Cells were divided into four groups: normoxia (Nx), normoxia plus Forskolin(Nx+FSK), hypoxia(Hx), hypoxia plus SQ22536(Hx+SQ22536). cAMP concentrations of different groups were assessed by cAMP enzyme immunoassay kit. RT-PCR and Western blotting were used to detect the mRNA and protein expressions of claudin-1 and occludin under normoxic and hypoxic condition. Caco-2 monolayers were grown on Millicell filters, and transepithelial electrical resistance(TER) was measured using a Millipore electric resistance system. The concentration of cAMP under hypoxic conditions(Hx group) was higher compared with Nx group [(6.30±0.50) pmol/L vs. (2.38±0.18) pmol/L, P<0.01]. At the same time, both mRNA and protein expressions of claudin-1 and occluding were lower in Hx group than those in Nx group(all P<0.05). TER decreased by 76.30±0.64(P<0.01). When the monolayers were exposed to hypoxia plus SQ22536 (Hx+SQ22536 group), the concentration of cAMP was(2.12±0.23) pmol/L, which was lower than that under hypoxic conditions(Hx group, P<0.01). Both mRNA and protein expressions of claudin-1 and occludin were higher compared to Hx group (all P<0.01). TER increased by 32.96±2.16 (P<0.05). When Caco-2 cells are exposed to hypoxia, barrier function, claudin-1 and occludin expression are diminished in parallel with a high level of intracellular cAMP compared with the normoxic condition. Inhibition of the intracellular cAMP level under hypoxia can maintain the intestinal epithelial function through regulating the claudin-1 and occludin expression and attenuate the permeability of intestinal mucosa.

  18. AMP Affects Intracellular Ca2+ Signaling, Migration, Cytokine Secretion and T Cell Priming Capacity of Dendritic Cells

    PubMed Central

    Panther, Elisabeth; Dürk, Thorsten; Ferrari, Davide; Di Virgilio, Francesco; Grimm, Melanie; Sorichter, Stephan; Cicko, Sanja; Herouy, Yared; Norgauer, Johannes; Idzko, Marco; Müller, Tobias

    2012-01-01

    The nucleotide adenosine-5′-monophosphate (AMP) can be released by various cell types and has been shown to elicit different cellular responses. In the extracellular space AMP is dephosphorylated to the nucleoside adenosine which can then bind to adenosine receptors. However, it has been shown that AMP can also activate A1 and A2a receptors directly. Here we show that AMP is a potent modulator of mouse and human dendritic cell (DC) function. AMP increased intracellular Ca2+ concentration in a time and dose dependent manner. Furthermore, AMP stimulated actin-polymerization in human DCs and induced migration of immature human and bone marrow derived mouse DCs, both via direct activation of A1 receptors. AMP strongly inhibited secretion of TNF-α and IL-12p70, while it enhanced production of IL-10 both via activation of A2a receptors. Consequently, DCs matured in the presence of AMP and co-cultivated with naive CD4+CD45RA+ T cells inhibited IFN-γ production whereas secretion of IL-5 and IL-13 was up-regulated. An enhancement of Th2-driven immune response could also be observed when OVA-pulsed murine DCs were pretreated with AMP prior to co-culture with OVA-transgenic naïve OTII T cells. An effect due to the enzymatic degradation of AMP to adenosine could be ruled out, as AMP still elicited migration and changes in cytokine secretion in bone-marrow derived DCs generated from CD73-deficient animals and in human DCs pretreated with the ecto-nucleotidase inhibitor 5′-(alpha,beta-methylene) diphosphate (APCP). Finally, the influence of contaminating adenosine could be excluded, as AMP admixed with adenosine desaminase (ADA) was still able to influence DC function. In summary our data show that AMP when present during maturation is a potent regulator of dendritic cell function and point out the role for AMP in the pathogenesis of inflammatory disorders. PMID:22624049

  19. Methacholine and adenosine 5'-monophosphate (AMP) responsiveness, and the presence and degree of atopy in children with asthma.

    PubMed

    Suh, Dong I; Lee, Ju K; Kim, Chang K; Koh, Young Y

    2011-02-01

    The relationship between atopy and bronchial hyperresponsiveness (BHR), both key features of asthma, remains to be clarified. BHR is commonly evaluated by bronchial challenges using direct and indirect stimuli. The aim of this study was to investigate the degree of BHR to methacholine (direct stimulus) and adenosine 5'-monophosphate (AMP) (indirect stimulus) according to the presence and degree of atopy in children with asthma. We performed a retrospective analysis of data from 120 children presenting with a diagnosis of asthma. These children were characterized by skin-prick tests (SPTs), spirometry and bronchial challenges with methacholine and AMP. Atopy was defined by at least one positive reaction to SPTs, and its degree was measured using serum total IgE levels, number of positive SPTs and atopic scores (sum of graded wheal size). A provocative concentration causing a 20% decline in FEV(1) (PC(20) ) was determined for each challenge. Patients with atopy(n=94) had a significantly lower AMP PC(20) than non-atopic patients (n=26), whereas methacholine PC(20) was not different between the two groups. Among the patients with atopy, there was no association between methacholine PC(20) and any atopy parameter. In contrast, a significant association was found between AMP PC(20) and the degree of atopy reflected in serum total IgE, number of positive SPTs and atopic scores (anova trend test, p=0.002, 0.001, 0.003, respectively). AMP responsiveness was associated with the presence and degree of atopy, whereas such a relationship was not observed for methacholine responsiveness. These findings suggest that atopic status may be better reflected by bronchial responsiveness assessed by AMP than by methacholine. © 2011 John Wiley & Sons A/S.

  20. Dietary Supplementation of Ginger and Turmeric Rhizomes Modulates Platelets Ectonucleotidase and Adenosine Deaminase Activities in Normotensive and Hypertensive Rats.

    PubMed

    Akinyemi, Ayodele Jacob; Thomé, Gustavo Roberto; Morsch, Vera Maria; Bottari, Nathieli B; Baldissarelli, Jucimara; de Oliveira, Lizielle Souza; Goularte, Jeferson Ferraz; Belló-Klein, Adriane; Oboh, Ganiyu; Schetinger, Maria Rosa Chitolina

    2016-07-01

    Hypertension is associated with platelet alterations that could contribute to the development of cardiovascular complications. Several studies have reported antiplatelet aggregation properties of ginger (Zingiber officinale) and turmeric (Curcuma longa) with limited scientific basis. Hence, this study assessed the effect of dietary supplementation of these rhizomes on platelet ectonucleotidase and adenosine deaminase (ADA) activities in Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Animals were divided into seven groups (n = 10): normotensive control rats; induced (l-NAME hypertensive) rats; hypertensive rats treated with atenolol (10 mg/kg/day); normotensive and hypertensive rats treated with 4% supplementation of turmeric or ginger, respectively. After 14 days of pre-treatment, the animals were induced with hypertension by oral administration of l-NAME (40 mg/kg/day). The results revealed a significant (p < 0.05) increase in platelet ADA activity and ATP hydrolysis with a concomitant decrease in ADP and AMP hydrolysis of l-NAME hypertensive rats when compared with the control. However, dietary supplementation with turmeric or ginger efficiently prevented these alterations by modulating the hydrolysis of ATP, ADP and AMP with a concomitant decrease in ADA activity. Thus, these activities could suggest some possible mechanism of the rhizomes against hypertension-derived complications associated to platelet hyperactivity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  2. Effects of nucleotides adenosine monophosphate and adenosine triphosphate in combination with L-arginine on male rabbit corpus cavernosum tissue.

    PubMed

    Hupertan, V; Neuzillet, Y; Stücker, O; Pons, C; Leammel, E; Lebret, T

    2012-12-01

    Purines and more specifically adenosine monophosphate (AMP) and adenosine triphosphate (ATP) have a strong relaxant effect on smooth muscle cells of the dog, rabbit and human corpus cavernosum, to approximately the same degree as nitric oxide (NO). However, purines are considered as modulators of erectile function rather than key mediators. This suggests that the use of purines combined with NO donors could be effective to treat some specific erectile disorders. The relaxation induced by the combination of l-arginine (Arg), a natural substrate for NO synthase, was assessed with a purine-nucleotide (AMP, ATP) on a rabbit corpus cavernosum model, to determine if these substances could potentiate each other's effect. When a pre-contraction was induced by phenylephrine, AMP alone induced a 43% CC relaxation rate and ATP alone a 26% rate. The relaxation rate induced by Arg was lower in comparison (8% at 5.10(-4) m vs. 25% at AMP 5.10(-4) m and 15% at ATP 5.10(-4) m). NO synthase inhibitor n-nitro-l-arginine did not modify the relaxing effect provoked by AMP suggesting that the mechanism of action of this nucleotide does not involve the NO pathway. The combination of Arg at 5.10(-4) m with either AMP or ATP at different doses ranging from 5.10(-4) to 10(-3) m significantly enhanced the relaxing response reaching rates of 62 and 80% respectively, leading to a synergistic effect. The present data indicate that a 'NO donor' combined with an 'adenosine donor' could be an effective therapeutic approach. © 2012 The Authors. International Journal of Andrology © 2012 European Academy of Andrology.

  3. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    PubMed Central

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  4. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum.

    PubMed

    Cassera, María B; Hazleton, Keith Z; Riegelhaupt, Paul M; Merino, Emilio F; Luo, Minkui; Akabas, Myles H; Schramm, Vern L

    2008-11-21

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.

  5. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    PubMed Central

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  6. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase.

    PubMed

    Townley, Robert; Shapiro, Lawrence

    2007-03-23

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 A resolution for ATP- and AMP-bound forms of a core alphabetagamma adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the gamma subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  7. The P2Y12 Antagonists, 2-Methylthioadenosine 5′-Monophosphate Triethylammonium Salt and Cangrelor (ARC69931MX), Can Inhibit Human Platelet Aggregation through a Gi-independent Increase in cAMP Levels*

    PubMed Central

    Srinivasan, Subhashini; Mir, Fozia; Huang, Jin-Sheng; Khasawneh, Fadi T.; Lam, Stephen C.-T.; Le Breton, Guy C.

    2009-01-01

    ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5′-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors. PMID:19346255

  8. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus.

    PubMed

    Bowman, Lisa; Zeden, Merve S; Schuster, Christopher F; Kaever, Volkhard; Gründling, Angelika

    2016-12-30

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus*

    PubMed Central

    Bowman, Lisa; Zeden, Merve S.; Kaever, Volkhard

    2016-01-01

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5′-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism. PMID:27834680

  10. Mechanism-specific effects of adenosine on ventricular tachycardia.

    PubMed

    Lerman, Bruce B; Ip, James E; Shah, Bindi K; Thomas, George; Liu, Christopher F; Ciaccio, Edward J; Wit, Andrew L; Cheung, Jim W; Markowitz, Steven M

    2014-12-01

    There is no universally accepted method by which to diagnose clinical ventricular tachycardia (VT) due to cAMP-mediated triggered activity. Based on cellular and clinical data, adenosine termination of VT is thought to be consistent with a diagnosis of triggered activity. However, a major gap in evidence mitigates the validity of this proposal, namely, defining the specificity of adenosine response in well-delineated reentrant VT circuits. To this end, we systematically studied the effects of adenosine in a model of canine reentrant VT and in human reentrant VT, confirmed by 3-dimensional, pace- and substrate mapping. Adenosine (12 mg [IQR 12-24]) failed to terminate VT in 31 of 31 patients with reentrant VT due to structural heart disease, and had no effect on VT cycle length (age, 67 years [IQR 53-74]); ejection fraction, 35% [IQR 20-55]). In contrast, adenosine terminated VT in 45 of 50 (90%) patients with sustained focal right or left outflow tract tachycardia. The sensitivity of adenosine for identifying VT due to triggered activity was 90% (95% CI, 0.78-0.97) and its specificity was 100% (95% CI, 0.89-1.0). Additionally, reentrant circuits were mapped in the epicardial border zone of 4-day-old infarcts in mongrel dogs. Adenosine (300-400 μg/kg) did not terminate sustained VT or have any effect on VT cycle length. These data support the concept that adenosine's effects on ventricular myocardium are mechanism specific, such that termination of VT in response to adenosine is diagnostic of cAMP-mediated triggered activity. © 2014 Wiley Periodicals, Inc.

  11. Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology.

    PubMed

    Zabielska, Magdalena A; Borkowski, Tomasz; Slominska, Ewa M; Smolenski, Ryszard T

    2015-08-01

    AMP deaminase (AMPD; EC 3.5.4.6) catalyzes hydrolysis of the amino group from the adenine ring of AMP resulting in production of inosine 5'-monophosphate (IMP) and ammonia. This reaction helps to maintain healthy cellular energetics by removing excess AMP that accumulates in energy depleted cells. Furthermore, AMPD permits the synthesis of guanine nucleotides from the larger adenylate pool. This enzyme competes with cytosolic 5'-nucleotidases (c5NT) for AMP. Adenosine, a product of c5NT is a vasodilator, antagonizes inotropic effects of catecholamines and exerts anti-platelet, anti-inflammatory and immunosuppressive activities. The ratio of AMPD/c5NT defines the amount of adenosine produced in adenine nucleotide catabolic pathway. Inhibition of AMPD could alter this ratio resulting in increased adenosine production. Besides the potential effect on adenosine production, elevation of AMP due to inhibition of AMPD could also lead to activation of AMP regulated protein kinase (AMPK) with myriad of downstream events including enhanced energetic metabolism, mitochondrial biogenesis and cytoprotection. While the benefits of these processes are well appreciated in cells such as skeletal or cardiac myocytes its role in protection of endothelium could be even more important. Therapeutic use of AMPD inhibition has been limited due to difficulties with obtaining compounds with adequate characteristics. However, endothelium seems to be the easiest target as effective inhibition of AMPD could be achieved at much lower concentration than in the other types of cells. New generation of AMPD inhibitors has recently been established and its testing in context of endothelial and organ protection could provide important basic knowledge and potential therapeutic tools. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Ap4A and ADP-beta-S binding to P2 purinoceptors present on rat brain synaptic terminals.

    PubMed Central

    Pintor, J.; Díaz-Rey, M. A.; Miras-Portugal, M. T.

    1993-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide stored and released from rat brain synaptic terminals presents two types of affinity binding sites in synaptosomes. When [3H]-Ap4A was used for binding studies a Kd value of 0.10 +/- 0.014 nM and a Bmax value of 16.6 +/- 1.2 fmol mg-1 protein were obtained for the high affinity binding site from the Scatchard analysis. The second binding site, obtained by displacement studies, showed a Ki value of 0.57 +/- 0.09 microM. 2. Displacement of [3H]-Ap4A by non-labelled Ap4A and P2-purinoceptor ligands showed a displacement order of Ap4A > adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S) > 5'-adenylyl-imidodiphosphate (AMP-PNP) > alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) in both sites revealed by the Ki values of 0.017 nM, 0.030 nM, 0.058 nM and 0.147 nM respectively for the high affinity binding site and values of 0.57 microM, 0.87 microM, 2.20 microM and 4.28 microM respectively for the second binding site. 3. Studies of the P2-purinoceptors present in synaptosomes were also performed with [35S]-ADP-beta-S. This radioligand showed two binding sites the first with Kd and Bmax values of 0.11 +/- 0.022 nM and 3.9 +/- 2.1 fmol mg-1 of protein respectively for the high affinity binding site obtained from the Scatchard plot. The second binding site showed a Ki of 0.018 +/- 0.0035 microM obtained from displacement curves. 4. Competition studies with diadenosine polyphosphates of [35S]-ADP-beta-S binding showed a displacement order of Ap4A > Ap5A > Ap6A in the high affinity binding site and Ki values of 0.023 nM, 0.081 nM and 5.72 nM respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8485620

  13. ST 1535: a preferential A2A adenosine receptor antagonist.

    PubMed

    Stasi, Maria Antonietta; Borsini, Franco; Varani, Katia; Vincenzi, Fabrizio; Di Cesare, Maria Assunta; Minetti, Patrizia; Ghirardi, Orlando; Carminati, Paolo

    2006-10-01

    Antagonism of the A2A adenosine function has proved beneficial in the treatment of Parkinson's disease, in that it increases L-dopa therapeutical effects without concomitant worsening of its side-effects. In this paper we describe a preferential A2A adenosine antagonist, ST 1535, with long-lasting pharmacodynamic effects. It competitively antagonizes the effects of the A2A adenosine agonist NECA on cAMP in cells cloned with the human A2A adenosine receptor (IC50=353+/-30 nM), and the effects of the A1 adenosine agonist CHA on cAMP in cells cloned with the human A1 adenosine receptor (IC50=510+/-38 nM). ST 1535, at oral doses of 5 and 10 mg/kg, antagonizes catalepsy induced by intracerebroventricular administration of the A2A adenosine agonist CGS 21680 (10 microg/5 microl) in mice. At oral doses ranging between 5 and 20 mg/kg, ST 1535 induces hypermotility and antagonizes haloperidol-induced catalepsy in mice up to 7 h. Oral ST 1535, at 1.25 and 2.5 mg/kg, potentiates L-dopa effects in reducing haloperidol-induced catalepsy. ST 1535 represents a potential new compound, with long-lasting activity, for the treatment of Parkinson's disease.

  14. Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing.

    PubMed

    Yang, Ya-Chun; Wang, Yen-Ting; Tseng, Wei-Lung

    2017-03-22

    Numerous compounds such as protein and double-stranded DNA have been shown to efficiently inhibit intrinsic peroxidase-mimic activity in Fe 3 O 4 nanoparticles (NP) and other related nanomaterials. However, only a few studies have focused on finding new compounds for enhancing the catalytic activity of Fe 3 O 4 NP-related nanomaterials. Herein, phosphate containing adenosine analogs are reported to enhance the oxidation reaction of hydrogen peroxide (H 2 O 2 ) and amplex ultrared (AU) for improving the peroxidase-like activity in Fe 3 O 4 NPs. This enhancement is suggested to be a result of the binding of adenosine analogs to Fe 2+ /Fe 3+ sites on the NP surface and from adenosine 5'-monophosphate (AMP) acting as the distal histidine residue of horseradish peroxidase for activating H 2 O 2 . Phosphate containing adenosine analogs revealed the following trend for the enhanced activity of Fe 3 O 4 NPs: AMP > adenosine 5'-diphosphate > adenosine 5'-triphosphate. The peroxidase-like activity in the Fe 3 O 4 NPs progressively increased with increasing AMP concentration and polyadenosine length. The Michaelis constant for AMP attached Fe 3 O 4 NPs is 5.3-fold lower and the maximum velocity is 2.7-fold higher than those of the bare Fe 3 O 4 NPs. Furthermore, on the basis of AMP promoted peroxidase mimicking activity in the Fe 3 O 4 NPs and the adsorption of protein on the NP surface, a selective fluorescent turn-off system for the detection of urinary protein is developed.

  15. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  16. Relationships of methacholine and adenosine 5'-monophosphate (AMP) responsiveness to the postbronchodilator FEV₁/FVC ratio in children with asthma.

    PubMed

    Suh, Dong In; Choi, Sun Hee; Lee, Ju Kyung; Kim, Jin-Tack; Koh, Young Yull

    2011-05-01

    Airway remodeling has been assumed to cause bronchial hyperresponsiveness (BHR). A low postbronchodilator FEV₁/FVC ratio has been suggested to be a functional surrogate marker of airway remodeling in asthma. BHR is commonly assessed by bronchial challenges using direct or indirect stimuli. The aim of this study was to compare BHR to methacholine and adenosine 5'-monophosphate (AMP) with regard to their relationship with a marker of airway remodeling in children with asthma. Methacholine and AMP challenge tests were performed in 129 children with asthma, aged 12 years, and a provocative concentration causing a 20% fall in FEV₁ (PC₂₀) was calculated for each challenge. All subjects also underwent pre- and postbronchodilator spirometry. A postbronchodilator FEV₁/FVC ratio below the lower limits of normal was used as a marker of airway remodeling. A low postbronchodilator FEV₁/FVC ratio was found in 17 subjects (13.2%). These subjects had a significantly lower methacholine PC₂₀ (geometric mean: 0.63 mg/mL, range of 1 SD: 0.17-2.29) than those (n = 112) with a normal postbronchodilator FEV₁/FVC ratio (2.42 mg/mL, 0.57-10.32, p = .000), whereas AMP PC₂₀ was similar between the two groups (22.1 mg/mL, 3.9-125.9 vs. 27.7 mg/mL, 4.2-183.5, p = .231). In the whole group of subjects, methacholine PC₂₀, but not AMP PC₂₀, correlated significantly with the postbronchodilator FEV₁/FVC ratio (r = 0.340, p = .000, and r = 0.056, p = .526, respectively). Our results provide evidence, though indirect, that BHR to methacholine is related to airway remodeling in children with asthma and suggest that BHR to methacholine may be a better marker of airway remodeling than BHR to AMP.

  17. Benzodiazepines modulate the A2 adenosine binding sites on 108CC15 neuroblastoma X glioma hybrid cells.

    PubMed Central

    Snell, C. R.; Snell, P. H.

    1984-01-01

    We have demonstrated high affinity diazepam binding sites of the Ro5-4864 benzodiazepine receptor subtype on 108CC15 neuroblastoma X glioma hybrid cells. These cells were previously shown to have purinoceptors of the A2 adenosine subtype and we have now found that [3H]-adenosine can be displaced from this binding site by the benzodiazepines and related compounds that can also bind to the Ro5-4864 site. Diazepam was found to have no intrinsic activity at the A2-receptor as measured by the stimulation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production in this cell line. At concentrations sufficient to compete for the A2-receptor, diazepam was shown to facilitate, by approximately 2 fold, the stimulation of cyclic AMP by adenosine. These effects are not due to inhibition of adenosine uptake or phosphodiesterase activity, but are probably a consequence of modulation of the coupling of the A2-receptor to cyclic AMP production in this hybrid cell line. PMID:6150742

  18. AMP sensing by DEAD-box RNA helicases

    PubMed Central

    Putnam, Andrea A.; Jankowsky, Eckhard

    2013-01-01

    In eukaryotes, cellular levels of adenosine monophosphate (AMP) signal the metabolic state of the cell. AMP concentrations increase significantly upon metabolic stress, such as glucose deprivation in yeast. Here we show that several DEAD-box RNA helicases are sensitive to AMP, which is not produced during ATP hydrolysis by these enzymes. We find that AMP potently inhibits RNA binding and unwinding by the yeast DEAD-box helicases Ded1p, Mss116p, and eIF4A. However, the yeast DEAD-box helicases Sub2p and Dbp5p are not inhibited by AMP. Our observations identify a subset of DEAD-box helicases as enzymes with the capacity to directly link changes in AMP concentrations to RNA metabolism. PMID:23702290

  19. A novel adenosine precursor 2',3'-cyclic adenosine monophosphate inhibits formation of post-surgical adhesions.

    PubMed

    Forman, Mervyn B; Gillespie, Delbert G; Cheng, Dongmei; Jackson, Edwin K

    2014-09-01

    Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.

  20. Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia

    PubMed Central

    Muzzi, Mirko; Blasi, Francesco; Masi, Alessio; Coppi, Elisabetta; Traini, Chiara; Felici, Roberta; Pittelli, Maria; Cavone, Leonardo; Pugliese, Anna Maria; Moroni, Flavio; Chiarugi, Alberto

    2013-01-01

    Therapeutic hypothermia is of relevance to treatment of increased body temperature and brain injury, but drugs inducing selective, rapid, and safe cooling in humans are not available. Here, we show that injections of adenosine 5′-monophosphate (AMP), an endogenous nucleotide, promptly triggers hypothermia in mice by directly activating adenosine A1 receptors (A1R) within the preoptic area (POA) of the hypothalamus. Inhibition of constitutive degradation of brain extracellular AMP by targeting ecto 5′-nucleotidase, also suffices to prompt hypothermia in rodents. Accordingly, sensitivity of mice and rats to the hypothermic effect of AMP is inversely related to their hypothalamic 5′-nucleotidase activity. Single-cell electrophysiological recording indicates that AMP reduces spontaneous firing activity of temperature-insensitive neurons of the mouse POA, thereby retuning the hypothalamic thermoregulatory set point towards lower temperatures. Adenosine 5′-monophosphate also suppresses prostaglandin E2-induced fever in mice, having no effects on peripheral hyperthermia triggered by dioxymetamphetamine (ecstasy) overdose. Together, data disclose the role of AMP, 5′-nucleotidase, and A1R in hypothalamic thermoregulation, as well and their therapeutic relevance to treatment of febrile illness. PMID:23093068

  1. AMP sensing by DEAD-box RNA helicases.

    PubMed

    Putnam, Andrea A; Jankowsky, Eckhard

    2013-10-23

    In eukaryotes, cellular levels of adenosine monophosphate (AMP) signal the metabolic state of the cell. AMP concentrations increase significantly upon metabolic stress, such as glucose deprivation in yeast. Here, we show that several DEAD-box RNA helicases are sensitive to AMP, which is not produced during ATP hydrolysis by these enzymes. We find that AMP potently inhibits RNA binding and unwinding by the yeast DEAD-box helicases Ded1p, Mss116p, and eIF4A. However, the yeast DEAD-box helicases Sub2p and Dbp5p are not inhibited by AMP. Our observations identify a subset of DEAD-box helicases as enzymes with the capacity to directly link changes in AMP concentrations to RNA metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions.

    PubMed

    Zeden, Merve S; Schuster, Christopher F; Bowman, Lisa; Zhong, Qiyun; Williams, Huw D; Gründling, Angelika

    2018-03-02

    Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA , the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions.

    PubMed

    Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A

    Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.

  4. tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications.

    PubMed

    Blais, Sébastien P; Kornblatt, Jack A; Barbeau, Xavier; Bonnaure, Guillaume; Lagüe, Patrick; Chênevert, Robert; Lapointe, Jacques

    2015-01-01

    For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of -TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant Kd is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3'-OH oxygen of the 3'-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.

  5. tRNAGlu Increases the Affinity of Glutamyl-tRNA Synthetase for Its Inhibitor Glutamyl-Sulfamoyl-Adenosine, an Analogue of the Aminoacylation Reaction Intermediate Glutamyl-AMP: Mechanistic and Evolutionary Implications

    PubMed Central

    Blais, Sébastien P.; Kornblatt, Jack A.; Barbeau, Xavier; Bonnaure, Guillaume; Lagüe, Patrick; Chênevert, Robert; Lapointe, Jacques

    2015-01-01

    For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of –TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant K d is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3’-OH oxygen of the 3’-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP. PMID:25860020

  6. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  7. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.

    PubMed

    Li, Dapeng; Zhang, Longteng; Song, Sijia; Wang, Zhiying; Kong, Chunli; Luo, Yongkang

    2017-06-01

    Biochemical and microbial changes after harvest strongly affect the final quality and shelf life of fish and fish products. In this study, the role of microbes in the degradation of adenosine triphosphate (ATP), and the origin of adenosine monophosphate deaminase (AMPD) and acid phosphatase (ACP) in common carp fillets during different stages of chilled storage (at 4°C) were investigated. The content of ATP, ADP, AMP, IMP, HxR, and Hx, the activity of AMPD and ACP, and the total count of viable, Aeromonas, Pseudomonas, H 2 S-producing bacteria, and lactic acid bacteria were examined. Results indicated that the population of microbial communities in control samples increased with storage time, and Pseudomonas peaked on the 10th day of storage. Changes in AMPD activity were less related to the abundance of microbes during the entire storage period. However, ACP was derived from both fish muscle and microbial secretion during the middle and late stages of storage. Degradation of ATP to IMP was not affected by spoilage bacteria, but the hydrolysis of IMP, and the transformation of HxR to Hx was affected considerably by the spoilage bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases.

    PubMed

    Simpson, L L; Stiles, B G; Zepeda, H; Wilkins, T D

    1989-01-01

    Clostridium spiroforme iotalike toxin produced time- and concentration-dependent incorporation of ADP-ribose into homo-poly-L-arginine. Polyasparagine, polyglutamic acid, polylysine, and agmatine were poor substrates. Enzyme activity was associated with the light-chain polypeptide of the toxin. The heavy chain did not possess ADP-ribosyltransferase activity, nor did it enhance or inhibit activity of the light chain. In broken-cell assays, the toxin acted mainly on G-actin, rather than F-actin. A single ADP-ribose group was transferred to each substrate molecule (G-actin). The enzyme was heat sensitive, had a pH optimum in the range of 7 to 8, was inhibited by high concentrations of nicotinamide, and was reversibly denatured by urea and guanidine. Physiological levels of nucleotides (AMP, ADP, ATP, and ADP-ribose) and cations (Na+, K+, Ca2+, and Mg2+) were not very active as enzyme inhibitors. The toxin was structurally and functionally similar to Clostridium botulinum type C2 toxin and Clostridium perfringens iota toxin. When combined with previous findings, the data suggest that a new class of mono(ADP-ribosyl)ating toxins has been found and that these agents belong to a related and possibly homologous series of binary toxins.

  9. Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases.

    PubMed Central

    Simpson, L L; Stiles, B G; Zepeda, H; Wilkins, T D

    1989-01-01

    Clostridium spiroforme iotalike toxin produced time- and concentration-dependent incorporation of ADP-ribose into homo-poly-L-arginine. Polyasparagine, polyglutamic acid, polylysine, and agmatine were poor substrates. Enzyme activity was associated with the light-chain polypeptide of the toxin. The heavy chain did not possess ADP-ribosyltransferase activity, nor did it enhance or inhibit activity of the light chain. In broken-cell assays, the toxin acted mainly on G-actin, rather than F-actin. A single ADP-ribose group was transferred to each substrate molecule (G-actin). The enzyme was heat sensitive, had a pH optimum in the range of 7 to 8, was inhibited by high concentrations of nicotinamide, and was reversibly denatured by urea and guanidine. Physiological levels of nucleotides (AMP, ADP, ATP, and ADP-ribose) and cations (Na+, K+, Ca2+, and Mg2+) were not very active as enzyme inhibitors. The toxin was structurally and functionally similar to Clostridium botulinum type C2 toxin and Clostridium perfringens iota toxin. When combined with previous findings, the data suggest that a new class of mono(ADP-ribosyl)ating toxins has been found and that these agents belong to a related and possibly homologous series of binary toxins. Images PMID:2521214

  10. Isolation of novel ribozymes that ligate AMP-activated RNA substrates

    NASA Technical Reports Server (NTRS)

    Hager, A. J.; Szostak, J. W.

    1997-01-01

    BACKGROUND: The protein enzymes RNA ligase and DNA ligase catalyze the ligation of nucleic acids via an adenosine-5'-5'-pyrophosphate 'capped' RNA or DNA intermediate. The activation of nucleic acid substrates by adenosine 5'-monophosphate (AMP) may be a vestige of 'RNA world' catalysis. AMP-activated ligation seems ideally suited for catalysis by ribozymes (RNA enzymes), because an RNA motif capable of tightly and specifically binding AMP has previously been isolated. RESULTS: We used in vitro selection and directed evolution to explore the ability of ribozymes to catalyze the template-directed ligation of AMP-activated RNAs. We subjected a pool of 10(15) RNA molecules, each consisting of long random sequences flanking a mutagenized adenosine triphosphate (ATP) aptamer, to ten rounds of in vitro selection, including three rounds involving mutagenic polymerase chain reaction. Selection was for the ligation of an oligonucleotide to the 5'-capped active pool RNA species. Many different ligase ribozymes were isolated; these ribozymes had rates of reaction up to 0.4 ligations per hour, corresponding to rate accelerations of approximately 5 x10(5) over the templated, but otherwise uncatalyzed, background reaction rate. Three characterized ribozymes catalyzed the formation of 3'-5'-phosphodiester bonds and were highly specific for activation by AMP at the ligation site. CONCLUSIONS: The existence of a new class of ligase ribozymes is consistent with the hypothesis that the unusual mechanism of the biological ligases resulted from a conservation of mechanism during an evolutionary replacement of a primordial ribozyme ligase by a more modern protein enzyme. The newly isolated ligase ribozymes may also provide a starting point for the isolation of ribozymes that catalyze the polymerization of AMP-activated oligonucleotides or mononucleotides, which might have been the prebiotic analogs of nucleoside triphosphates.

  11. 21 CFR 862.1230 - Cyclic AMP test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure the level of adenosine 3′, 5′-monophosphate (cyclic AMP) in plasma, urine, and other body fluids...

  12. [Prognostic significance of the cyclic AMP concentration in acute leukemias].

    PubMed

    Paietta, E; Mittermayer, K; Schwarzmeier, J D

    1979-01-01

    In patients with acute leukemia (myeloblastic, lymphoblastic, undifferentiated) proliferation kinetics and cyclic adenosine-3', 5'-monophosphate (cAMP) concentration of the leukemic cells were studied for their significance in the prediction of responsiveness to cytostatic therapy. Patients with good clinical response had significantly faster turnover and lower cAMP-levels than those who failed to respond to treatment.

  13. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  14. Measurement of cAMP in an undergraduate teaching laboratory, using ALPHAscreen technology.

    PubMed

    Bartho, Joseph D; Ly, Kien; Hay, Debbie L

    2012-02-14

    Adenosine 3',5'-monophosphate (cAMP) is a cellular second messenger with central relevance to pharmacology, cell biology, and biochemistry teaching programs. cAMP is produced from adenosine triphosphate by adenylate cyclase, and its production is reduced or enhanced upon activation of many G protein-coupled receptors. Therefore, the measurement of cAMP serves as an indicator of receptor activity. Although there are many assays available for measuring cAMP, few are suitable for large class teaching, and even fewer seem to have been adapted for this purpose. Here, we describe the use of bead-based ALPHAscreen (Amplified Luminescent Proximity Homogenous Assay) technology for teaching a class of more than 300 students the practical aspects of detecting signal transduction. This technology is applicable to the measurement of many different signaling pathways. This resource is designed to provide a practical guide for instructors and a useful model for developing other classes using similar technologies.

  15. Effects of protopine on blood platelet aggregation. II. Effect on metabolic system of adenosine 3',5'-cyclic monophosphate in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1990-08-01

    The mode of action of protopine on rabbit platelet aggregation was investigated in the metabolic system of adenosine 3',5'-cyclic monophosphate (cyclic AMP) in vitro experimental models. The inhibitory activity of protopine on adenosine 5'-diphosphate induced platelet aggregation was increased in the presence of prostaglandin I2 or papaverine in platelets. Protopine elevated content of the basal cyclic AMP accumulation in platelets and enhanced activity of crude adenylate cyclase prepared from platelets, but was ineffective on cyclic AMP phosphodiesterase. It is concluded that protopine has an inhibitory activity on platelet aggregation, activates adenylate cyclase and increases cyclic AMP content in platelets, in addition to other inhibitory actions in the metabolic system of cyclic AMP.

  16. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Z.; Wang, Xuan; Feng, Ju

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  17. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE PAGES

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; ...

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  18. REGULATION OF THE T-CELL RESPONSE BY CD39

    PubMed Central

    Takenaka, Maisa C.; Robson, Simon; Quintana, Francisco J.

    2016-01-01

    The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular adenosine triphosphate (eATP) and diphosphate (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates adenosine monophosphate (AMP), which is in turn used by the ecto-5’-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have major impacts on the dynamic equilibrium of pro-inflammatory eATP and ADP nucleotides vs. immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. Here, we review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections and cancer. PMID:27236363

  19. Caffeine Inhibits the Activation of Hepatic Stellate Cells Induced by Acetaldehyde via Adenosine A2A Receptor Mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK Signal Pathway

    PubMed Central

    Yang, Wanzhi; Wang, Qi; Zhao, Han; Yang, Feng; Lv, Xiongwen; Li, Jun

    2014-01-01

    Hepatic stellate cell (HSC) activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR). Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine’s inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway. Conclusions: Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III. PMID:24682220

  20. Central or Peripheral Delivery of an Adenosine A1 Receptor Agonist Improves Mechanical Allodynia in a Mouse Model of Painful Diabetic Neuropathy

    PubMed Central

    Katz, N. K.; Ryals, J. M.; Wright, D. E.

    2014-01-01

    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8-weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N6-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of painful

  1. Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds

    PubMed Central

    2012-01-01

    Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Result Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Conclusion Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests

  2. Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds.

    PubMed

    Jaiswal, Pundrik; Soldati, Thierry; Thewes, Sascha; Baskar, Ramamurthy

    2012-01-23

    Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and

  3. Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A₂A receptor levels in rats subjected to neuroinflammation.

    PubMed

    Smith, Mark D; Bhatt, Dhaval P; Geiger, Jonathan D; Rosenberger, Thad A

    2014-06-04

    Acetate supplementation reduces neuroglia activation and pro-inflammatory cytokine expression in rat models of neuroinflammation and Lyme neuroborreliosis. Because single-dose glyceryl triacetate (GTA) treatment increases brain phosphocreatine and reduces brain AMP levels, we postulate that GTA modulates adenosine metabolizing enzymes and receptors, which may be a possible mechanism to reduce neuroinflammation. To test this hypothesis, we quantified the ability of GTA to alter brain levels of ecto-5'-nucleotidase (CD73), adenosine kinase (AK), and adenosine A2A receptor using western blot analysis and CD73 activity by measuring the rate of AMP hydrolysis. Neuroinflammation was induced by continuous bacterial lipopolysaccharide (LPS) infusion in the fourth ventricle of the brain for 14 and 28 days. Three treatment strategies were employed, one and two where rats received prophylactic GTA through oral gavage with LPS infusion for 14 or 28 days. In the third treatment regimen, an interventional strategy was used where rats were subjected to 28 days of neuroinflammation, and GTA treatment was started on day 14 following the start of the LPS infusion. We found that rats subjected to neuroinflammation for 28 days had a 28% reduction in CD73 levels and a 43% increase in AK levels that was reversed with prophylactic acetate supplementation. CD73 activity in these rats was increased by 46% with the 28-day GTA treatment compared to the water-treated rats. Rats subjected to neuroinflammation for 14 days showed a 50% increase in levels of the adenosine A2A receptor, which was prevented with prophylactic acetate supplementation. Interventional GTA therapy, beginning on day 14 following the induction of neuroinflammation, resulted in a 67% increase in CD73 levels and a 155% increase in adenosine A2A receptor levels. These results support the hypothesis that acetate supplementation can modulate brain CD73, AK and adenosine A2A receptor levels, and possibly influence purinergic

  4. RED BLOOD CELL PRESERVATION.

    DTIC Science & Technology

    red cells were assayed by ion exchange chromatography. The O-day 2,3- diphosphoglycerate concentrations of the ACD-AP bloods were below the normal...adenosine or guanosine. After a small initial increase, the ADP levels remained fairly constant. The AMP values increased as the ATP decreased and in

  5. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  6. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  7. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    PubMed

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A Temporal-Specific and Transient cAMP Increase Characterizes Odorant Classical Conditioning

    ERIC Educational Resources Information Center

    Cui, Wen; Smith, Andrew; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.

    2007-01-01

    Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory…

  9. Adenosine production by human B cells and B cell–mediated suppression of activated T cells

    PubMed Central

    Saze, Zenichiro; Schuler, Patrick J.; Hong, Chang-Sook; Cheng, Dongmei; Jackson, Edwin K.

    2013-01-01

    Antibody-independent role of B cells in modulating T-cell responses is incompletely understood. Freshly isolated or cultured B cells isolated from the peripheral blood of 30 normal donors were evaluated for CD39 and CD73 coexpression, the ability to produce adenosine 5′-monophosphate (AMP) and adenosine (ADO) in the presence of exogenous adenosine triphosphate (ATP) as well as A1, A2A, A2B, and A3 adenosine receptor (ADOR) expression. Human circulating B cells coexpress ectonucleotidases CD39 and CD73, hydrolyze exogenous ATP to 5′-AMP and ADO, and express messenger RNA for A1R, A2AR, and A3R. 2-chloroadenosine inhibited B-cell proliferation and cytokine expression, and only A3R selective antagonist restored B-cell functions. This suggested that B cells use the A3R for autocrine signaling and self-regulation. Mediated effects on B-cell growth ± ADOR antagonists or agonists were tested in carboxyfluorescein diacetate succinimidyl ester assays. In cocultures, resting B cells upregulated functions of CD4+ and CD8+ T cells. However, in vitro–activated B cells downregulated CD73 expression, mainly produced 5′-AMP, and inhibited T-cell proliferation and cytokine production. These B cells acquire the ability to restrict potentially harmful effects of activated T cells. Thus, B cells emerge as a key regulatory component of T cell–B cell interactions, and their dual regulatory activity is mediated by the products of ATP hydrolysis, 5′-AMP, and ADO. PMID:23678003

  10. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides.

    PubMed

    Guo, Li; Breakspear, Andrew; Zhao, Guoyi; Gao, Lixin; Kistler, H Corby; Xu, Jin-Rong; Ma, Li-Jun

    2016-02-01

    The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is a central signalling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signalling in fungal biology has been well documented and the key conserved components, adenylate cyclase (AC) and the catalytic subunit of PKA (CPKA), have been functionally characterized. However, other genes involved in this signalling pathway and their regulation are not well understood in filamentous fungi. Here, we performed a comparative transcriptomics analysis of AC and CPKA mutants in two closely related fungi: Fusarium graminearum (Fg) and F. verticillioides (Fv). Combining available Fg transcriptomics and phenomics data, we reconstructed the Fg cAMP signalling pathway. We developed a computational program that combines sequence conservation and patterns of orthologous gene expression to facilitate global transcriptomics comparisons between different organisms. We observed highly correlated expression patterns for most orthologues (80%) between Fg and Fv. We also identified a subset of 482 (6%) diverged orthologues, whose expression under all conditions was at least 50% higher in one genome than in the other. This enabled us to dissect the conserved and unique portions of the cAMP-PKA pathway. Although the conserved portions controlled essential functions, such as metabolism, the cell cycle, chromatin remodelling and the oxidative stress response, the diverged portions had species-specific roles, such as the production and detoxification of secondary metabolites unique to each species. The evolution of the cAMP-PKA signalling pathway seems to have contributed directly to fungal divergence and niche adaptation. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  11. A step into the RNA world: Conditional analysis of hydrogel formation of adenosine 5'-monophosphate induced by cyanuric acid.

    PubMed

    Yokosawa, Takumi; Enomoto, Ryota; Uchino, Sho; Hirasawa, Ito; Umehara, Takuya; Tamura, Koji

    2017-12-01

    Nucleotide polymerization occurs by the nucleophilic attack of 3'-oxygen of the 3'-terminal nucleotide on the α-phosphorus of the incoming nucleotide 5'-triphosphate. The π-stacking of mononucleotides is an important factor for prebiotic RNA polymerization in terms of attaining the proximity of two reacting moieties. Adenosine and adenosine 5'-monophosphate (AMP) are known to form hydrogel in the presence of cyanuric acid at neutral pH. However, we observed that other canonical ribonucleotides did not gel under the same condition. The π-stacking-induced hydrogel formation of AMP was destroyed at pH 2.0, suggesting that the protonation of N at position 1 of adenine abolished hydrogen bonding with the NH of cyanuric acid and resulted in the deformation of the hexad of adenine and cyanuric acid. A liquid-like gel was formed in the case of adenosine with cyanuric acid and boric acid, whereas AMP caused the formation of a solid gel, implying that the negative charge inherent to AMP prevented the formation of esters of boric acid with the cis-diols of ribose. Cyanuric acid-driven oligomerizations of AMP might have been the first crucial event in the foundation of the RNA world. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The role of adenosine monophosphate kinase in remodeling white adipose tissue metabolism.

    PubMed

    Gaidhu, Mandeep Pinky; Ceddia, Rolando Bacis

    2011-04-01

    Recent evidence indicates that the enzyme adenosine monophosphate (AMP) kinase exerts important fat-reducing effects in the adipose tissue, which has created great interest in this enzyme as a potential target for obesity treatment. This review summarizes our findings that chronic AMP kinase activation remodels adipocyte glucose and lipid metabolism and enhances the ability of adipose tissue to dissipate energy within itself and reduce adiposity.

  13. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases

    PubMed Central

    Raker, Verena Katharina; Becker, Christian; Steinbrink, Kerstin

    2016-01-01

    Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes. PMID:27065076

  14. Cyclic AMP- and (Rp)-cAMPS-induced Conformational Changes in a Complex of the Catalytic and Regulatory (RIα) Subunits of Cyclic AMP-dependent Protein Kinase*

    PubMed Central

    Anand, Ganesh S.; Krishnamurthy, Srinath; Bishnoi, Tanushree; Kornev, Alexandr; Taylor, Susan S.; Johnson, David A.

    2010-01-01

    We took a discovery approach to explore the actions of cAMP and two of its analogs, one a cAMP mimic ((Sp)-adenosine cyclic 3′:5′-monophosphorothioate ((Sp)-cAMPS)) and the other a diastereoisomeric antagonist ((Rp)-cAMPS), on a model system of the type Iα cyclic AMP-dependent protein kinase holoenzyme, RIα(91–244)·C-subunit, by using fluorescence spectroscopy and amide H/2H exchange mass spectrometry. Specifically, for the fluorescence experiments, fluorescein maleimide was conjugated to three cysteine single residue substitution mutants, R92C, T104C, and R239C, of RIα(91–244), and the effects of cAMP, (Sp)-cAMPS, and (Rp)-cAMPS on the kinetics of R-C binding and the time-resolved anisotropy of the reporter group at each conjugation site were measured. For the amide exchange experiments, ESI-TOF mass spectrometry with pepsin proteolytic fragmentation was used to assess the effects of (Rp)-cAMPS on amide exchange of the RIα(91–244)·C-subunit complex. We found that cAMP and its mimic perturbed at least parts of the C-subunit interaction Sites 2 and 3 but probably not Site 1 via reduced interactions of the linker region and αC of RIα(91–244). Surprisingly, (Rp)-cAMPS not only increased the affinity of RIα(91–244) toward the C-subunit by 5-fold but also produced long range effects that propagated through both the C- and R-subunits to produce limited unfolding and/or enhanced conformational flexibility. This combination of effects is consistent with (Rp)-cAMPS acting by enhancing the internal entropy of the R·C complex. Finally, the (Rp)-cAMPS-induced increase in affinity of RIα(91–244) toward the C-subunit indicates that (Rp)-cAMPS is better described as an inverse agonist because it decreases the fractional dissociation of the cyclic AMP-dependent protein kinase holoenzyme and in turn its basal activity. PMID:20167947

  15. Oral Adenosine-5'-triphosphate (ATP) Administration Increases Postexercise ATP Levels, Muscle Excitability, and Athletic Performance Following a Repeated Sprint Bout.

    PubMed

    Purpura, Martin; Rathmacher, John A; Sharp, Matthew H; Lowery, Ryan P; Shields, Kevin A; Partl, Jeremy M; Wilson, Jacob M; Jäger, Ralf

    2017-01-01

    Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.

  16. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase

    NASA Astrophysics Data System (ADS)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-01

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.

  17. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.

    PubMed

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-05

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Apyrase activity and adenosine diphosphate induced platelet aggregation inhibition by the salivary gland proteins of Culicoides variipennis, the North American vector of bluetongue viruses.

    PubMed

    Pérez de León, A A; Tabachnick, W J

    1996-02-01

    Salivary gland homogenates of Culicoides variipennis, the primary vector of bluetongue (BLU) viruses in North America, were analyzed for apyrase activity. Apyrase (ATP diphosphohydrolase, EC 3.6.1.5) is an anti-hemostatic and anti-inflammatory salivary enzyme of most hematophagous arthropods. The enzyme activity was measured by the release of orthophosphate using ATP, ADP, and AMP as substrates with Ca2+ as the divalent cation. ATPase (11.5 +/- 1 mU/pair of glands), ADPase (7.3 +/- 0.7 mU/pair of glands), and insignificant (P < 0.05) AMPase (0.07 mU/pair of glands) activities were detected in female salivary glands. Male salivary glands contained lower amounts of ATPase and ADPase activity (P < 0.05). The ATPase and ADPase activities were greatest at pH 8.5, and were similarly activated by Mg2+. Molecular sieving HPLC of salivary gland homogenates generated a single peak which coincided with ATPase and ADPase, but no AMPase, activity; the protein has an estimated molecular mass of 35,000 Da. ATPase and ADPase activity, and total protein concentration, were reduced (P < 0.05) in the salivary glands of females after taking a blood meal from a sheep. Salivary gland homogenates also inhibited ADP-induced platelet aggregation in vitro. It is concluded that the salivary ATPase and ADPase activities of C. variipennis reside in one enzyme, and that this enzyme is likely an apyrase. The apyrase activity is thought to be responsible for the inhibition of ADP-induced platelet aggregation, as indicated by the apparent discharge of apyrase from salivary glands into the host during blood feeding. This suggests that apyrase is one of the salivary proteins present in C. variipennis acting as antigens in the development of Culicoides hypersensitivity in ruminants and horses. Apyrase may inhibit an inflammatory response at the feeding site through the subsequent degradation of its end-product, AMP, to adenosine, a potent anti-inflammatory substance, by the ecto-5' nucleotidase

  19. Molecular structure of human KATP in complex with ATP and ADP

    PubMed Central

    Lee, Kenneth Pak Kin

    2017-01-01

    In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K+ channel Kir6.2, in the presence of Mg2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg2+-ATP in the degenerate site and Mg2+-ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP’s ability to override ATP inhibition. PMID:29286281

  20. Effects of chlorogenic acid, caffeine and coffee on components of the purinergic system of streptozotocin-induced diabetic rats.

    PubMed

    Stefanello, Naiara; Schmatz, Roberta; Pereira, Luciane Belmonte; Cardoso, Andréia Machado; Passamonti, Sabina; Spanevello, Rosélia Maria; Thomé, Gustavo; de Oliveira, Giovanna Medeiros Tavares; Kist, Luiza Wilges; Bogo, Maurício Reis; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2016-12-01

    We evaluated the effect of chlorogenic acid (CGA), caffeine (CA) and coffee (CF) on components of the purinergic system from the cerebral cortex and platelets of streptozotocin-induced diabetic rats. Animals were divided into eight groups: control animals treated with (I) water (WT), (II) CGA (5 mg/kg), (III) CA (15 mg/kg) and (IV) CF (0.5 g/kg), and diabetic animals treated with (V) WT, (VI) CGA (5 mg/kg), (VII) CA (15 mg/kg) and (VIII) CF (0.5 g/kg). Our results showed an increase (173%) in adenosine monophosphate (AMP) hydrolysis in the cerebral cortex of diabetic rats. In addition, CF treatment increased adenosine diphosphate (ADP) and AMP hydrolysis in group VIII synaptosomes. Platelets showed an increase in ectonucleotidase activity in group V, and all treatments reduced the increase in adenosine triphosphate and ADP hydrolysis. Furthermore, there was an increase in platelet aggregation of 72% in the diabetic rats, and CGA and CF treatment reduced platelet aggregation by nearly 60% when compared to diabetic rats. In this context, we can suggest that CGA and CF treatment should be considered a therapeutic and scientific target to be investigated in diseases associated with hyperglycemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cyclic AMP system in muscle tissue during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.

    1980-01-01

    Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

  2. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion

    PubMed Central

    Schwede, Frank; Chepurny, Oleg G.; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A.; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E.; MacDonald, Patrick E.; Genieser, Hans-G.; Herberg, Friedrich W.

    2015-01-01

    cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564

  3. Involvement of a cyclic adenosine monophosphate-dependent signal in the diet-induced canalicular trafficking of adenosine triphosphate-binding cassette transporter g5/g8.

    PubMed

    Yamazaki, Yasuhiro; Yasui, Kenta; Hashizume, Takahiro; Suto, Arisa; Mori, Ayaka; Murata, Yuzuki; Yamaguchi, Masahiko; Ikari, Akira; Sugatani, Junko

    2015-10-01

    The adenosine triphosphate-binding cassette (ABC) half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterol into bile. Studies have demonstrated the diet-induced gene expression of these transporters, but the regulation of their trafficking when the nutritional status changes in the liver remains to be elucidated. Here, we generated a novel in vivo kinetic analysis that can monitor the intracellular trafficking of Abcg5/Abcg8 in living mouse liver by in vivo transfection of the genes of fluorescent protein-tagged transporters and investigated how hypernutrition affects the canalicular trafficking of these transporters. The kinetic analysis showed that lithogenic diet consumption accelerated the translocation of newly synthesized fluorescent-tagged transporters to intracellular pools in an endosomal compartment and enhanced the recruitment of these pooled gene products into the bile canalicular membrane in mouse liver. Because some ABC transporters are reported to be recruited from intracellular pools to the bile canaliculi by cyclic adenosine monophosphate (cAMP) signaling, we next evaluated the involvement of this machinery in a diet-induced event. Administration of a protein kinase A inhibitor, N-(2-{[3-(4-bromophenyl)-2-propenyl]amino}ethyl)-5-isoquinolinesulfonamide, decreased the canalicular expression of native Abcg5/Abcg8 in lithogenic diet-fed mice, and injection of a cAMP analog, dibutyryl cAMP, transiently increased their levels in standard diet-fed mice, indicating the involvement of cAMP signaling. Indeed, canalicular trafficking of the fluorescent-tagged Abcg5/Abcg8 was enhanced by dibutyryl cAMP administration. These observations suggest that diet-induced lipid loading into liver accelerates the trafficking of Abcg5/Abcg8 to the bile canalicular membrane through cAMP signaling machinery. © 2015 by the American Association for the Study of Liver Diseases.

  4. AMP-activated protein kinase and adenosine are both metabolic modulators that regulate chloride secretion in the shark rectal gland ( Squalus acanthias).

    PubMed

    Neuman, Rugina I; van Kalmthout, Juliette A M; Pfau, Daniel J; Menendez, Dhariyat M; Young, Lawrence H; Forrest, John N

    2018-04-01

    The production of endogenous adenosine during secretagogue stimulation of CFTR leads to feedback inhibition limiting further chloride secretion in the rectal gland of the dogfish shark (Squalus acanthias). In the present study, we examined the role of AMP-kinase (AMPK) as an energy sensor also modulating chloride secretion through CFTR. We found that glands perfused with forskolin and isobutylmethylxanthine (F + I), potent stimulators of chloride secretion in this ancient model, caused significant phosphorylation of the catalytic subunit Thr 172 of AMPK. These findings indicate that AMPK is activated during energy-requiring stimulated chloride secretion. In molecular studies, we confirmed that the activating Thr 172 site is indeed present in the α-catalytic subunit of AMPK in this ancient gland, which reveals striking homology to AMPKα subunits sequenced in other vertebrates. When perfused rectal glands stimulated with F + I were subjected to severe hypoxic stress or perfused with pharmacologic inhibitors of metabolism (FCCP or oligomycin), phosphorylation of AMPK Thr 172 was further increased and chloride secretion was dramatically diminished. The pharmacologic activation of AMPK with AICAR-inhibited chloride secretion, as measured by short-circuit current, when applied to the apical side of shark rectal gland monolayers in primary culture. These results indicate that that activated AMPK, similar to adenosine, transmits an inhibitory signal from metabolism, that limits chloride secretion in the shark rectal gland.

  5. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+.

    PubMed

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D

    2005-03-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  6. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+

    NASA Technical Reports Server (NTRS)

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D.

    2005-01-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  7. Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca(2+)] i mobilization and fibrinogen binding via phosphorylation of IP 3R and VASP.

    PubMed

    Lee, Dong-Ha; Kwon, Hyuk-Woo; Kim, Hyun-Hong; Lim, Deok Hwi; Nam, Gi Suk; Shin, Jung-Hae; Kim, Yun-Yi; Kim, Jong-Lae; Lee, Jong-Jin; Kwon, Ho-Kyun; Park, Hwa-Jin

    2015-01-01

    In this study, we investigated the effect of cordycepin-enriched (CE)-WIB801C from Cordyceps militaris on ADP (20 µM)-stimulated platelet aggregation. CE-WIB801C dose-dependently inhibited ADP-induced platelet aggregation, and its IC50 value was 18.5 μg/mL. CE-WIB801C decreased TXA2 production, but did not inhibit the activities of COX-1 and thromboxane synthase (TXAS) in ADP-activated platelets, which suggests that the inhibition of TXA2 production by CE-WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. CE-WIB801C inhibited ATP release and [Ca(2+)]i mobilization, and increased cAMP level and IP3RI (Ser(1756)) phosphorylation in ADP-activated platelets. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased CE-WIB801C-inhibited [Ca(2+)]i mobilization, and strongly inhibited CE-WIB801C-increased IP3RI (Ser(1756)) phosphorylation. CE-WIB801C elevated the phosphorylation of VASP (Ser(157)), an A-kinase substrate, but inhibited fibrinogen binding to αIIb/β3. These results suggest that CE-WIB801C-elevated cAMP involved in IP3RI (Ser(1756)) phosphorylation to inhibit [Ca(2+)]i mobilization and, VASP (Ser(157)) phosphorylation to inhibit αIIb/β3 activation. Therefore, in this study, we demonstrate that CE-WIB801C may have a preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

  8. An easy and fast adenosine 5'-diphosphate quantification procedure based on hydrophilic interaction liquid chromatography-high resolution tandem mass spectrometry for determination of the in vitro adenosine 5'-triphosphatase activity of the human breast cancer resistance protein ABCG2.

    PubMed

    Wagmann, Lea; Maurer, Hans H; Meyer, Markus R

    2017-10-27

    Interactions with the human breast cancer resistance protein (hBCRP) significantly influence the pharmacokinetic properties of a drug and can even lead to drug-drug interactions. As efflux pump from the ABC superfamily, hBCRP utilized energy gained by adenosine 5'-triphosphate (ATP) hydrolysis for the transmembrane movement of its substrates, while adenosine 5'-diphosphate (ADP) and inorganic phosphate were released. The ADP liberation can be used to detect interactions with the hBCRP ATPase. An ADP quantification method based on hydrophilic interaction liquid chromatography (HILIC) coupled to high resolution tandem mass spectrometry (HR-MS/MS) was developed and successfully validated in accordance to the criteria of the guideline on bioanalytical method validation by the European Medicines Agency. ATP and adenosine 5'-monophosphate were qualitatively included to prevent interferences. Furthermore, a setup consisting of six sample sets was evolved that allowed detection of hBCRP substrate or inhibitor properties of the test compound. The hBCRP substrate sulfasalazine and the hBCRP inhibitor orthovanadate were used as controls. To prove the applicability of the procedure, the effect of amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir on the hBCRP ATPase activity was tested. Nelfinavir, ritonavir, and saquinavir were identified as hBCRP ATPase inhibitors and none of the five HIV protease inhibitors turned out to be an hBCRP substrate. These findings were in line with a pervious publication. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Riboswitches in eubacteria sense the second messenger c-di-AMP

    PubMed Central

    Nelson, James W.; Sudarsan, Narasimhan; Furukawa, Kazuhiro; Weinberg, Zasha; Wang, Joy X.; Breaker, Ronald R.

    2013-01-01

    Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered bacterial second messenger implicated in the control of cell wall metabolism, osmotic stress responses, and sporulation. However, the mechanisms by which c-di-AMP triggers these physiological responses have remained largely unknown. Intriguingly, a candidate riboswitch class called ydaO associates with numerous genes involved in these same processes. Although a representative ydaO motif RNA recently was reported to weakly bind ATP, we report that numerous members of this noncoding RNA class selectively respond to c-di-AMP with sub-nanomolar affinity. Our findings resolve the mystery regarding the primary ligand for this extremely common riboswitch class and expose a major portion of the super-regulon of genes that are controlled by the widespread bacterial second messenger c-di-AMP. PMID:24141192

  10. Sepsis induced by cecal ligation and perforation (CLP) alters nucleotidase activities in platelets of rats.

    PubMed

    Pereira, Renata S; Bertoncheli, Claudia M; Adefegha, Stephen A; Castilhos, Lívia G; Silveira, Karine L; Rezer, João Felipe P; Doleski, Pedro H; Abdalla, Fátima H; Santos, Karen F; Leal, Claudio A M; Santos, Roberto C V; Casali, Emerson A; Moritz, Cesar E J; Stainki, Daniel R; Leal, Daniela B R

    2017-10-01

    Sepsis is a potentially lethal condition, and it is associated with platelet alterations. The present study sought to investigate the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), E-5'-nucleotidase, and ecto-adenosine deaminase (E-ADA) in the platelets of rats that were induced with sepsis. Male Wistar rats were divided into three groups of ten animals each: a negative control group (normal; NC); a group that underwent surgical procedures (sham); and a group that underwent cecal ligation and perforation (CLP). The induction of sepsis was confirmed by bacteremia, and the causative pathogen identified was Escherichia coli. Hematological parameters showed leukocytosis and thrombocytopenia in animals in the septic group. The results also revealed that there were significant (p < 0.05) increases in adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolyses, and in the deamination of adenosine in the CLP group compared to the sham and control groups. Conversely, ADP hydrolysis was significantly decreased (p < 0.05) in the CLP group compared to the sham and control groups. Purine levels were analyzed by high-performance liquid chromatography (HPLC) in serum samples from control, sham, and CLP groups. Increased concentrations of ATP, adenosine, and inosine were found in the CLP group compared to the sham and control groups. Conversely, the concentrations of ADP and AMP in the CPL group were not significantly altered. We suggest that alterations in hematological parameters, nucleotide hydrolysis in platelets, and nucleotide concentrations in serum samples of rats with induced sepsis may be related to thromboembolic events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Determination of ionization constants by paper electrophoresis.

    PubMed Central

    Tate, M E

    1981-01-01

    Dimensionless apparent ionization constants of charged low-molecular-weight species may be obtained from paper-electrophoretic data at 20-25 degrees C with buffers (I0.1-0.5) of measured pH (1.5-12.5) containing oxalate ions. Relative mobilities rather than absolute mobilities were measured by using glycerol and m-nitrobenzenesulphonate respectively as standards of zero and unit mobility. Application of the procedure to ionizations of adenine, adenosine, 2'-deoxyadenosine, 3'-deoxyadenosine, 3':5'-cyclic AMP, ADP, ADP-glucose-agrocin 84 and ATP is described. PMID:6976169

  12. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes.

    PubMed

    Pietropaolo, Adriana; Pierri, Ciro Leonardo; Palmieri, Ferdinando; Klingenberg, Martin

    2016-06-01

    The ADP/ATP carrier (AAC) of mitochondria has been an early example for elucidating the transport mechanism alternating between the external (c-) and internal (m-) states (M. Klingenberg, Biochim. Biophys. Acta 1778 (2008) 1978-2021). An atomic resolution crystal structure of AAC is available only for the c-state featuring a three repeat transmembrane domain structure. Modeling of transport mechanism remained hypothetical for want of an atomic structure of the m-state. Previous molecular dynamics studies simulated the binding of ADP or ATP to the AAC remaining in the c-state. Here, a full description of the AAC switching from the c- to the m-state is reported using well-tempered metadynamics simulations. Free-energy landscapes of the entire translocation from the c- to the m-state, based on the gyration radii of the c- and m-gates and of the center of mass, were generated. The simulations revealed three free-energy basins attributed to the c-, intermediate- and m-states separated by activation barriers. These simulations were performed with the empty and with the ADP- and ATP-loaded AAC as well as with the poorly transported AMP and guanine nucleotides, showing in the free energy landscapes that ADP and ATP lowered the activation free-energy barriers more than the other substrates. Upon binding AMP and guanine nucleotides a deeper free-energy level stabilized the intermediate-state of the AAC2 hampering the transition to the m-state. The structures of the substrate binding sites in the different states are described producing a full picture of the translocation events in the AAC. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A*

    PubMed Central

    Yang, Yidai; Ye, Qilu; Jia, Zongchao; Côté, Graham P.

    2015-01-01

    The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site. PMID:26260792

  14. (S)-α-Chlorohydrin Inhibits Protein Tyrosine Phosphorylation through Blocking Cyclic AMP - Protein Kinase A Pathway in Spermatozoa

    PubMed Central

    Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2012-01-01

    α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5′-triphosphate (ATP) levels, 3′-5′-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH. PMID:22916194

  15. (S)-α-chlorohydrin inhibits protein tyrosine phosphorylation through blocking cyclic AMP - protein kinase A pathway in spermatozoa.

    PubMed

    Zhang, Hao; Yu, Huan; Wang, Xia; Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2012-01-01

    α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5'-triphosphate (ATP) levels, 3'-5'-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH.

  16. Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels.

    PubMed

    Du, Xuewen; Li, Junfeng; Gao, Yuan; Kuang, Yi; Xu, Bing

    2012-02-18

    The use of enzyme to instruct the self-assembly of the nucleoside of adenosine in water provides a new class of molecular nanofibers/hydrogels as functional soft materials. This journal is © The Royal Society of Chemistry 2012

  17. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  18. Effect of nitrogen starvation on the level of adenosine 3',5'-monophosphate in Anabaena variabilis.

    PubMed

    Hood, E E; Armour, S; Ownby, J D; Handa, A K; Bressan, R A

    1979-12-03

    Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.

  19. Further studies on the effect of adenosine cyclic monophosphate derivatives on cell proliferation in the jejunal crypts of rat.

    PubMed

    Tutton, P J; Barkla, D H

    1982-01-01

    1. Cell proliferation in the jejunal crypt epithelium of rat was measured using a stathmokinetic technique. 2. Sodium butyrate was found to promote jejunal crypt cell proliferation. 3. N6, O2'-Dibutyryl cyclic adenosine monophosphate (cAMP), N6-monobutyryl-cAMP and N6-monobutyryl-8-bromo-cAMP were found to inhibit cell proliferation when compared to sodium butyrate treated tissues. 4. 8-Chlorophenylthio-cAMP was found to inhibit cell division when compared to untreated animals. 5. O2'-Monobutyryl cAMP and 8-bromo-cAMP were not found to inhibit cell proliferation.

  20. A High Affinity Adenosine Kinase from Anopheles gambiae

    PubMed Central

    Cassera, María B.; Ho, Meng-Chiao; Merino, Emilio F.; Burgos, Emmanuel S.; Rinaldo-Matthis, Agnes; Almo, Steven C.; Schramm, Vern L.

    2011-01-01

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (Km 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap4A (2.0 Å resolution) reveals interactions for adenosine, ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg2+ ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layered α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight-binding for adenosine arises from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168 and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64 and Asn68 and the ribosyl 2′- and 3′-hydroxyl groups. The structure is more similar to human adenosine kinase (48% identity) than to AK from Toxoplasma gondii (31% identity). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role of this enzyme to maintain the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects. PMID:21247194

  1. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Cassera; M Ho; E Merino

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactionsmore » for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.« less

  2. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.

    PubMed

    Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre

    2016-06-07

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.

  3. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    PubMed

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  4. AMP-Conjugated Quantum Dots: Low Immunotoxicity Both In Vitro and In Vivo

    NASA Astrophysics Data System (ADS)

    Dai, Tongcheng; Li, Na; Liu, Lu; Liu, Qin; Zhang, Yuanxing

    2015-11-01

    Quantum dots (QDs) are engineered nanoparticles that possess special optical and electronic properties and have shown great promise for future biomedical applications. In this work, adenosine 5'-monophosphate (AMP), a small biocompatible molecular, was conjugated to organic QDs to produce hydrophilic AMP-QDs. Using macrophage J774A.1 as the cell model, AMP-QDs exhibited both prior imaging property and low toxicity, and more importantly, triggered limited innate immune responses in macrophage, indicating low immunotoxicity in vitro. Using BALB/c mice as the animal model, AMP-QDs were found to be detained in immune organs but did not evoke robust inflammation responses or obvious histopathological abnormalities, which reveals low immunotoxicity in vivo. This work suggests that AMP is an excellent surface ligand with low immunotoxicity, and potentially used in surface modification for more extensive nanoparticles.

  5. Adenosine monophosphate affects competence development and plasmid DNA transformation in Escherichia coli.

    PubMed

    Zhang, Yan; Li, Wenhua; Wang, Liming; Shen, Ping; Xie, Zhixiong

    2013-11-01

    Artificial plasmid DNA transformation of Escherichia coli induced by calcium chloride is a routine technique in molecular biology and genetic engineering processes, but its mechanism has remained elusive. Because adenosine monophosphate (AMP) has been found to regulate natural transformation in Haemophilus influenza, we aimed to investigate the effects of AMP and its derivatives on E. coli transformation by treating competence with different concentrations of them. Analysis of the transformation efficiencies revealed that AMP inhibited the artificial plasmid DNA transformation of E. coli in a concentration- and time-dependent manner. Furthermore, we found that AMP had no effect on the expression of the transformed gene but that the intracellular AMP level of the competent cells rose after a 6 h treatment. These results suggested that the intracellular AMP level had an important role in E. coli transformation. And these have useful implications for the further investigation of the mechanism of E. coli transformation.

  6. Role of adenosine receptors in caffeine tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity ofmore » caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.« less

  7. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    PubMed

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  8. [Physiopathology of cAMP/PKA signaling in neurons].

    PubMed

    Castro, Liliana; Yapo, Cedric; Vincent, Pierre

    2016-01-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases. © Société de Biologie, 2017.

  9. Design, synthesis and biological evaluation of a bivalent micro opiate and adenosine A1 receptor antagonist.

    PubMed

    Mathew, Smitha C; Ghosh, Nandita; By, Youlet; Berthault, Aurélie; Virolleaud, Marie-Alice; Carrega, Louis; Chouraqui, Gaëlle; Commeiras, Laurent; Condo, Jocelyne; Attolini, Mireille; Gaudel-Siri, Anouk; Ruf, Jean; Parrain, Jean-Luc; Rodriguez, Jean; Guieu, Régis

    2009-12-01

    The cross talk between different membrane receptors is the source of increasing research. We designed and synthesized a new hetero-bivalent ligand that has antagonist properties on both A(1) adenosine and mu opiate receptors with a K(i) of 0.8+/-0.05 and 0.7+/-0.03 microM, respectively. This hybrid molecule increases cAMP production in cells that over express the mu receptor as well as those over expressing the A(1) adenosine receptor and reverses the antalgic effects of mu and A(1) adenosine receptor agonists in animals.

  10. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers.

    PubMed Central

    Madara, J L; Patapoff, T W; Gillece-Castro, B; Colgan, S P; Parkos, C A; Delp, C; Mrsny, R J

    1993-01-01

    Neutrophil transmigration across intestinal epithelia is thought to contribute to epithelial dysfunction and characterizes many inflammatory intestinal diseases. Neutrophils activated by factors, normally present in the lumen, release a neutrophil-derived secretagogue activity to which intestinal epithelia respond with an electrogenic chloride secretion, the transport event which underlies secretory diarrhea. Using sequential ultrafiltration, column chromatographic, and mass and Raman spectroscopic techniques, neutrophil-derived secretagogue was identified as 5'-AMP. Additional studies suggested that neutrophil-derived 5'-AMP is subsequently converted to adenosine at the epithelial cell surface by ecto-5'-nucleotidase and that adenosine subsequently activates intestinal secretion through adenosine receptors on the apical membrane of target intestinal epithelial cells. These findings suggest that this ATP metabolite may serve as a neutrophil-derived paracrine mediator that contributes to secretory diarrhea in states of intestinal inflammation. PMID:8486793

  11. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    PubMed

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  12. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    PubMed

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  13. An Effect of Dexamethasone on Adenosine 3′,5′ -Monophosphate Content and Adenosine 3′,5′ -Monophosphate Phosphodiesterase Activity of Cultured Hepatoma Cells

    PubMed Central

    Manganiello, Vincent; Vaughan, Martha

    1972-01-01

    The effect of dexamethasone on adenosine 3′,5′-monophosphate (cAMP) phosphodiesterase activity in cultured HTC hepatoma cells was investigated. Homogenates of these cells contain phosphodiesterase activity with two apparent Michaelis constants for cAMP (2-5 μm and 50 μm). At all substrate concentrations tested, phosphodiesterase activity was decreased 25-40% in cells incubated for 36 hr or more with 1 μm dexamethasone. Acid phosphatase activity in the same cells was not decreased. α-Methyl testosterone, 1 μm, was without effect on phosphodiesterase activity. Incubation for 10 min with epinephrine plus theophylline increased the cAMP content of the HTC cells 3- to 6-fold. In cells incubated for 72 hr with dexamethasone, the basal concentration of cAMP was slightly increased and the increment produced by epinephrine plus theophylline was markedly increased. We believe that in many cells the so-called permissive effects of steroid hormones on cAMP mediated processes may be due to an effect of these hormones on cAMP phosphodiesterase activity similar to that observed in HTC cells incubated with dexamethasone. PMID:4341439

  14. The reproducibility of adenosine monophosphate bronchial challenges in mild, steroid-naive asthmatics

    PubMed Central

    Singh, Dave; Fairwood, Jennifer; Murdoch, Robert; Weeks, Amanda; Russell, Paul; Roy, Kay; Langley, Steve; Woodcock, Ashley

    2008-01-01

    WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Repeated adenosine monophosphate (AMP) challenges are used to assess drug effects in asthma clinical trials, but may be prone to tachyphylaxis when repeated at short intervals. Possible tachyphylaxis at 12- and 24-h intervals has not been studied. WHAT THIS STUDY ADDS Clinically relevant tachyphylaxis after repeated AMP challenges does not occur when repeated at 12- and 24-h intervals. AMP challenges at these intervals can be used to assess drug effects in clinical trials. AIMS Repeated adenosine monophosphate (AMP) challenges are used to assess drug efficacy in clinical trials of mild, steroid-naive asthmatics. Refractoriness has been reported after repeated challenges over short intervals. This study evaluated possible tachyphylaxis after repeated AMP challenges at 12 and 24 h in mild, steroid-naive asthmatics. METHODS This was an open, three-way crossover study. Twenty-six steroid-naive asthmatic subjects were randomized to the following AMP challenge regimens separated by 7–14 days: (A) challenge at 08.00 h, repeated 24 h later; (B) challenge at 08.00 h, repeated 12 and 24 h later; (C) challenge at 20.00 h, repeated 12 h later. Comparisons within day were assessed using 90% confidence intervals (CIs). Non-inferiority approach taken with 1 doubling concentration (DC) as a clinically relevant difference. RESULTS Regimen A: Significant increase in AMP reactivity at 24 h. Mean DC difference was 0.6 (90% CI 0.24, 0.96). Regimen B: No evidence of difference between AMP reactivity at 08.00 h and a repeated challenge 12 h later. Repeated challenge at 24 h caused a significant increase in provocation concentration (PC)20 compared with 12 h (mean DC difference 0.48, 90% CI 0.02, 0.95) and 0 h (mean DC difference 0.82, 90% CI 0.49, 1.14 – the upper CI exceeds the criteria of 1 DC). Challenge regimen C: No difference between challenges; mean DC difference of 0.28 (90% CI −0.2, 0.76). CONCLUSION The small decline in AMP

  15. In Vivo Activation of cAMP Signaling Induces Growth Arrest and Differentiation in Acute Promyelocytic Leukemia

    PubMed Central

    Guillemin, Marie-Claude; Raffoux, Emmanuel; Vitoux, Dominique; Kogan, Scott; Soilihi, Hassane; Lallemand-Breitenbach, Valérie; Zhu, Jun; Janin, Anne; Daniel, Marie-Thérèse; Gourmel, Bernard; Degos, Laurent; Dombret, Hervé; Lanotte, Michel; de Thé, Hugues

    2002-01-01

    Differentiation therapy for acute myeloid leukemia uses transcriptional modulators to reprogram cancer cells. The most relevant clinical example is acute promyelocytic leukemia (APL), which responds dramatically to either retinoic acid (RA) or arsenic trioxide (As2O3). In many myeloid leukemia cell lines, cyclic adenosine monophosphate (cAMP) triggers growth arrest, cell death, or differentiation, often in synergy with RA. Nevertheless, the toxicity of cAMP derivatives and lack of suitable models has hampered trials designed to assess the in vivo relevance of theses observations. We show that, in an APL cell line, cAMP analogs blocked cell growth and unraveled As2O3-triggered differentiation. Similarly, in RA-sensitive or RA-resistant mouse models of APL, continuous infusions of 8-chloro-cyclic adenosine monophosphate (8-Cl-cAMP) triggered major growth arrest, greatly enhanced both spontaneous and RA- or As2O3-induced differentiation and accelerated the restoration of normal hematopoiesis. Theophylline, a well-tolerated phosphodiesterase inhibitor which stabilizes endogenous cAMP, also impaired APL growth and enhanced spontaneous or As2O3-triggered cell differentiation in vivo. Accordingly, in an APL patient resistant to combined RA–As2O3 therapy, theophylline induced blast clearance and restored normal hematopoiesis. Taken together, these results demonstrate that in vivo activation of cAMP signaling contributes to APL clearance, independently of its RA-sensitivity, thus raising hopes that other myeloid leukemias may benefit from this therapeutic approach. PMID:12438428

  16. Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes.

    PubMed

    Bilodeau-Goeseels, Sylvie

    2011-01-01

    Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures. Copyright © 2011 Wiley Periodicals, Inc.

  17. Proliferation kinetics and cyclic AMP as prognostic factors in adult acute leukemia.

    PubMed

    Paietta, E; Mittermayer, K; Schwarzmeier, J

    1980-07-01

    In 41 adult patients with acute leukemia (myeloblastic, lymphoblastic, and undifferentiated), proliferation kinetics (as determined by double-label autoradiography) and cyclic adenosine 3',5'-monophosphate (cAMP) concentration were studied for their significance in the prediction of responsiveness to cytostatic therapy. Patients with good clinical response had significantly shorter turnover times and higher labeling indices in the bone marrow than did those who failed to respond to treatment. Cases for which cell kinetics did not correlate with clinical response were explained by variance in the distribution of leukemic blasts between the proliferative cell cycle and the resting pool. Good clinical response was also found to be associated with low levels of cAMP in leukemic cells prior to therapy, whereas high cAMP contents predicted failure. Low cAMP concentrations, however, did not necessarily correlate with short turnover times and vice versa. This might be due to fluctuations of the cAMP concentrations during the cell cycle.

  18. cAMP enhances BMP2-signaling through PKA and MKP1-dependent mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghayor, Chafik; Ehrbar, Martin; Miguel, Blanca San

    2009-04-03

    Recent studies suggest that the elevation of intracellular cyclic adenosine monophosphate (cAMP) and the activation of the protein kinase A regulate BMP-induced osteogenesis. However, the precise mechanisms underlying the enhancing effect of cAMP on BMP2 signaling were not completely revealed. In this study we investigated the effect of elevated cAMP level and PKA activation on the BMP2-induced osteoblastic differentiation in pluripotent C2C12 cells. Alkaline phosphatase activity and its mRNA were consistently induced by BMP2 treatment. The pretreatment of C2C12 cells with Forskolin, a cAMP generating agent, dbcAMP, an analogue of cAMP, or IBMX (3-isobutyl 1-methyl xanthine), and a nonspecific inhibitormore » of phosphodiesterases elicited further activation of alkaline phosphatase. Furthermore, elevated intracellular cAMP level increased BMP2-induced MKP1. On the other hand, BMP2-induced Erk phosphorylation (p44/p42) and cell proliferation were suppressed in the presence of cAMP. Thus, cAMP might enhance BMP2-induced osteoblastic differentiation by a MKP1-Erk-dependent mechanism.« less

  19. The A2B Adenosine Receptor Modulates the Epithelial– Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells

    PubMed Central

    Giacomelli, Chiara; Daniele, Simona; Romei, Chiara; Tavanti, Laura; Neri, Tommaso; Piano, Ilaria; Celi, Alessandro; Martini, Claudia; Trincavelli, Maria L.

    2018-01-01

    The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different

  20. Recognition of adenosine monophosphate and H2PO4- using zinc ensemble of new hexaphenylbenzene derivative: potential bioprobe and multichannel keypad system.

    PubMed

    Bhalla, Vandana; Vij, Varun; Kumar, Manoj; Sharma, Parduman Raj; Kaur, Tandeep

    2012-02-17

    Zinc ensemble of hexaphenylbenzene derivative 3 exhibits sensitive response toward adenosine monophosphate (AMP) and H(2)PO(4)(-) ions. Further, the application of derivative 3 as a multichannel molecular keypad could be realized in the presence of inputs of Zn(2+) ions, H(2)PO(4)(-) ions, and AMP.

  1. ON THE MECHANISM OF ACTION OF ADRENOCORTICOTROPIC HORMONE: THE BINDING OF CYCLIC-3′,5′-ADENOSINE MONOPHOSPHATE TO AN ADRENAL CORTICAL PROTEIN*

    PubMed Central

    Gill, Gordon N.; Garren, Leonard D.

    1969-01-01

    The binding of cyclic 3′,5′-adenosine monophosphate (cyclic AMP) within the adrenal cortical cell was studied. Cyclic AMP binds specifically to a protein which is associated predominantly with the microsomal fraction of the cell. The binding protein was purified approximately 100-fold. PMID:4308274

  2. Release abilities of adenosine diphosphate from phospholipid vesicles with different membrane properties and their hemostatic effects as a platelet substitute.

    PubMed

    Okamura, Yosuke; Katsuno, Shunsuke; Suzuki, Hidenori; Maruyama, Hitomi; Handa, Makoto; Ikeda, Yasuo; Takeoka, Shinji

    2010-12-20

    We have constructed phospholipid vesicles with hemostatic activity as a platelet substitute. The vesicles were conjugated with a dodecapeptide (HHLGGAKQAGDV, H12), which is a fibrinogen γ-chain carboxy-terminal sequence (γ400-411). We have recently exploited these vesicles as a potential drug delivery system by encapsulation of adenosine 5'-diphosphate (ADP) (H12-(ADP)-vesicles). Here we explore the relationship between the ADP release from H12-(ADP)-vesicles with different membrane properties and their hemostatic effects. In total, we prepared five kinds of H12-(ADP)-vesicles with different lamellarities and membrane flexibilities. By radioisotope-labeling, we directly show that H12-(ADP)-vesicles were capable of augmenting platelet aggregation by releasing ADP in an aggregation-dependent manner. The amount of ADP released from the vesicles was dependent on their membrane properties. Specifically, the amount of ADP released increased with decreasing lamellarity and tended to increase with increasing membrane flexibility. Our in vivo results clearly demonstrated that H12-(ADP)-vesicles with the ability to release ADP exert considerable hemostatic action in terms of correcting prolonged bleeding time in a busulphan-induced thrombocytopenic rat model. We propose a recipe to control the hemostatic abilities of H12-(ADP)-vesicles by modulating ADP release based on membrane properties. We believe that this concept will be invaluable to the development of platelet substitutes and other drug carriers. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.

    PubMed

    Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L; Vaughan-Jones, Richard D; Lefkimmiatis, Konstantinos; Swietach, Pawel

    2016-06-01

    3',5'-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm(2)/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  4. Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry.

    PubMed

    Van Damme, Thomas; Zhang, Yanhua; Lynen, Frédéric; Sandra, Pat

    2012-11-15

    3',5'-Cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are essential second messenger molecules. They are involved in signal transduction within cells, in physiological functions such as neurotransmission and in the modulation of cell growth and differentiation of organisms, respectively. A quantitative solid phase extraction method (SPE) based on hydrophilic interaction on silica was developed and applied to both plasma and tissue samples. The stable isotope-labeled internal standards ²D₁, ¹⁵N₃-3',5'-cGMP and ¹³C₁₀, ¹⁵N₅-3',5'-cAMP were added prior to the sample preparation to ensure high precision and accuracy. The samples were analyzed by reversed-phase liquid chromatography (RP-LC). Negative electrospray (ESI)-MS/MS was used to selectively monitor several transitions of each metabolite. The method for the analysis of 3',5'-cAMP and 3',5'-cGMP in plasma was validated in the range of 0.15-20 ng/mL (R²=0.9996 and 0.9994 for 3',5'-cAMP and 3',5'-cGMP, respectively). Basal plasma concentrations for fifteen healthy human patients determined with this method varied between 4.66-9.20 ng/mL for 3',5'-cAMP and between 0.30-1.20 ng/mL for 3',5'-cGMP, with precisions better than 9.1%. 3',5'-cGMP and 3',5'-cAMP together with their 2',3'-isomers were also determined in a semi quantitative way in animal tissues. The structures of the isomers were confirmed by analysis with LC-high resolution time-of-flight MS and subsequently by comparison of retention times with standards. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Abnormal regulation of adenosine 3′,5′-monophosphate and corticosterone formation in an adrenocortical carcinoma

    PubMed Central

    Ney, R. L.; Hochella, N. J.; Grahame-Smith, D. G.; Dexter, R. N.; Butcher, R. W.

    1969-01-01

    A spontaneously occurring rat adrenocortical carcinoma which produces corticosterone was maintained by transplantation. The carcinoma appeared to utilize corticosterone biosynthetic steps similar to those of the normal adrenal, but the tumor produced only about 1-10% as much corticosterone per unit tissue weight as nontumorous adrenal glands. The tumor demonstrated little or no increase in corticosterone production in response to adrenocorticotropic hormone (ACTH) either in vivo or in vitro. In normal adrenals, ACTH increases the activity of adenyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine-3′,5′-monophosphate (cyclic AMP), the latter then serving as an intracellular regulator of steroidogenesis. ACTH failed to increase cyclic AMP levels in the tumor in vivo or in slices in vitro, conditions under which there were 50- and 20-fold increases in nontumorous adrenals. However, in homogenates fortified with exogenous ATP, adenyl cyclase activity was comparable in the tumor and adrenals, and cyclic AMP formation was increased 3-fold by ACTH in each. As measured in homogenates, the tumor did not possess a greater ability to destroy cyclic AMP than did normal adrenals. Although ATP levels in the carcinoma were found to be considerably lower than those in normal adrenals, it was not clear that this finding can explain the inability of ACTH to increase cyclic AMP levels in intact tumor cells. While the failure to normally influence cyclic AMP levels in the carcinoma cells could be an important factor in the lack of a steroid response to ACTH, several lines of evidence suggest that the tumor possesses one or more additional abnormalities in the regulation of steroidogenesis. First, in the absence of ACTH stimulation, the tissue concentrations of cyclic AMP were comparable in the tumor and in nontumorous adrenals, but these cyclic AMP levels were associated with a lower level of steroidogenesis in the tumor. Second, tumor slices

  6. Enzymatic production of 5'-inosinic acid by AMP deaminase from a newly isolated Aspergillus oryzae.

    PubMed

    Li, Shubo; Chen, Leitao; Hu, Yangjun; Fang, Guohui; Zhao, Mouming; Guo, Yuan; Pang, Zongwen

    2017-02-01

    5'-adenylic acid deaminase (AMP deaminase), an important enzyme for the food industry, can catalyze the irreversible hydrolysis of adenosine monophosphate (AMP) to inosine monophosphate (IMP) and ammonia. In this study, a new strain was screened that efficiently produces 3191.6U/g of AMP deaminase at 32°C. After purification, the optimal temperature and pH of the AMP deaminase were found to be 40°C and 6.0, respectively, but it was partially inhibited by Fe(3+), Cu(2+), Al(3+), and Zn(2+). With amplification of the AMP deaminase production system, 6mL of crude enzyme could produce 2.00mg/g of IMP from 2.04mg/g of dried yeast with an 84.8% molar yield after 40min. These results provide a new insight into AMP deaminase production and offer a potential platform for producing 5'-IMP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Stabilities of lead(II) complexes formed in aqueous solution with methyl thiophosphate (MeOPS(2-)), uridine 5'- O-thiomonophosphate (UMPS(2-)) or adenosine 5'- O-thiomonophosphate (AMPS(2-)).

    PubMed

    Da Costa, Carla P; Krajewska, Danuta; Okruszek, Andrzej; Stec, Wojciech J; Sigel, Helmut

    2002-04-01

    The acidity constants of twofold protonated methyl thiophosphate (MeOPS(2-)) and of monoprotonated uridine 5'- O-thiomonophosphate (UMPS(2-)) have been determined in aqueous solution (25 degrees C; I= 0.1 M, NaNO(3)) by potentiometric pH titration. The stability constants of their 1:1 complexes formed with Pb(2+), i.e. Pb(MeOPS) and Pb(UMPS), have also been measured. The results show that replacement of a phosphate oxygen by a sulfur atom increases the acidity by about 1.4 p K units. On the basis of recently established log versus plots ( = simple phosphate or phosphonate ligands where R is a non-coordinating residue), it is shown that the stability of the Pb(thiophosphate) complexes is by log Delta= 2.43+/-0.09 larger than expected for a Pb(2+)-phosphate interaction. The identity of the stability increase (log Delta) observed for Pb(MeOPS) and Pb(UMPS) shows that the nucleobase residue in the Pb(UMPS) complex has no influence on complex formation. To be able to carry out the mentioned comparisons, we have also determined the stability constant of the complex formed between Pb(2+) and methyl phosphate; the corresponding data for Pb(UMP) were already known from our earlier studies. The present results allow an evaluation of other Pb(2+) complexes formed with thiophosphate derivatives and they are applied now to the Pb(2+) complexes of adenosine 5'- O-thiomonophosphate (AMPS(2-)). The stability constants of the Pb(H;AMPS)(+) and Pb(AMPS) complexes were measured and it is shown that, within the error limits, the stability of the Pb(AMPS) complex is determined by the basicity of the thiophosphate group of AMPS(2-); in other words, no hint for macrochelate formation involving N7 was observed. More important, with the aid of micro-stability-constant considerations it is concluded that the structure of the dominating isomer of the Pb(H;AMPS)(+) species is the one where the proton is located at the N1 site of the adenine residue and Pb(2+) is coordinated to the

  8. Purification and properties of adenosine kinase from rat brain.

    PubMed

    Yamada, Y; Goto, H; Ogasawara, N

    1980-12-04

    Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.

  9. Histone deacetylases 6 increases the cyclic adenosine monophosphate level and promotes renal cyst growth.

    PubMed

    Wu, Ming; Mei, Changlin

    2016-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by abnormal enhanced cell proliferation and fluid secretion, which are triggered by increased levels of cyclic adenosine monophosphate (cAMP). Cebotaru et al. showed that a HDAC6 inhibitor reduced the cAMP level and inhibited cyst formation in Pkd1 knockout mice, which may become a new potential therapeutic agent for ADPKD. This study also raised several intriguing questions that might advance our understanding of the molecular pathogenesis of ADPKD. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria

    PubMed Central

    Fahmi, Tazin; Port, Gary C.

    2017-01-01

    Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an

  11. Adenosine diphosphate-induced platelet-fibrin clot strength: a new thrombelastographic indicator of long-term poststenting ischemic events.

    PubMed

    Gurbel, Paul A; Bliden, Kevin P; Navickas, Irene A; Mahla, Elizabeth; Dichiara, Joseph; Suarez, Thomas A; Antonino, Mark J; Tantry, Udaya S; Cohen, Eli

    2010-08-01

    Poststenting ischemic events occur despite dual-antiplatelet therapy, suggesting that a "one size fits all" antithrombotic strategy has significant limitations. Ex vivo platelet function measurements may facilitate risk stratification and personalized antiplatelet therapy. We investigated the prognostic utility of the strength of adenosine diphosphate (ADP)-induced (MA(ADP)) and thrombin-induced (MA(THROMBIN)) platelet-fibrin clots measured by thrombelastography and ADP-induced light transmittance aggregation (LTA(ADP)) in 225 serial patients after elective stenting treated with aspirin and clopidogrel. Ischemic and bleeding events were assessed over 3 years. Overall, 59 (26%) first ischemic events occurred. Patients with ischemic events had higher MA(ADP), MA(THROMBIN), and LTA(ADP) (P < .0001 for all comparisons). By receiver operating characteristic curve analysis, MA(ADP) >47 mm had the best predictive value of long-term ischemic events compared with other measurements (P < .0001), with an area under the curve = 0.84 (95% CI 0.78-0.89, P < .0001). The univariate Cox proportional hazards model identified MA(ADP) >47 mm, MA(THROMBIN) >69 mm, and LTA(ADP) >34% as significant independent predictors of first ischemic events at the 3-year time point, with hazard ratios of 10.3 (P < .0001), 3.8 (P < .0001), and 4.8 (P < .0001), respectively. Fifteen bleeding events occurred. Receiver operating characteristic curve and quartile analysis suggests MA(ADP) ADP) in predicting long-term event occurrence after stenting. The quantitative assessment of ADP-stimulated platelet-fibrin clot strength measured by thrombelastography can serve as a future tool in investigations of personalized antiplatelet treatment designed to reduce ischemic events and bleeding. Copyright 2010 Mosby, Inc. All rights reserved.

  12. Stability Characteristics of "Aerobic" Acetyl-CoA Synthetase of Yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Klein, Harold P.

    1976-01-01

    During the purification of the "aerobic" acetyl-CoA synthetase (ACS) of Saccharomyces cerevisiae, strain LK2Gl2, it was noted that stronge at 4 C resulted in the loss of enzyme activity within 24 hr. Similar losses were observed during column chromatography. Addition of boiled extracts from either aerobic or anerobic cells completely prevents this. The stabilizing factor (SF) in these extracts is non-dialyzable and organic in nature. SF is excluded on G-25 and G-50 Sephadex columns and is slightly retarded on G-75 columns. On G-100 columns, SF elutes as a peak exactly coincident with that of cytochrome c, indicating a molecular weight of 13,000. SF activity was not destroyed by Pronase treatment, was adsorbed onto Norite, and absorbed in the UV with a single maximum at 260 nm. The action of SF could be replaced by a number of nucleotides. At 0.01 M, the order of effectiveness was: ATP>ADP>AMP>GTP>CTP>/=UTP>XTP. Even at 2 x 10(exp -4) M, ATP and ADP, but not AMP, cyclic AMP, adenosine or adenine, were effective in stabilizing this ACS. The mechanism of stabilization by ATP and AMP appears to be the same, since AMP competitively inhibited the ACS with respect to ATP in in vitro assays, while ADP gave a mixed type of inhibition, thus indicating a different mechanism. ACS from nonaerobic cells is also unstable in the absence of SF but, unlike aerobic ACS, is not affected by ATP or other nucleotides.

  13. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.

    PubMed

    Mazhab-Jafari, Mohammad T; Das, Rahul; Fotheringham, Steven A; SilDas, Soumita; Chowdhury, Somenath; Melacini, Giuseppe

    2007-11-21

    cAMP (adenosine 3',5'-cyclic monophosphate) is a ubiquitous second messenger that activates a multitude of essential cellular responses. Two key receptors for cAMP in eukaryotes are protein kinase A (PKA) and the exchange protein directly activated by cAMP (EPAC), which is a recently discovered guanine nucleotide exchange factor (GEF) for the small GTPases Rap1 and Rap2. Previous attempts to investigate the mechanism of allosteric activation of eukaryotic cAMP-binding domains (CBDs) at atomic or residue resolution have been hampered by the instability of the apo form, which requires the use of mixed apo/holo systems, that have provided only a partial picture of the CBD apo state and of the allosteric networks controlled by cAMP. Here, we show that, unlike other eukaryotic CBDs, both apo and cAMP-bound states of the EPAC1 CBD are stable under our experimental conditions, providing a unique opportunity to define at an unprecedented level of detail the allosteric interactions linking two critical functional sites of this CBD. These are the phosphate binding cassette (PBC), where cAMP binds, and the N-terminal helical bundle (NTHB), which is the site of the inhibitory interactions between the regulatory and catalytic regions of EPAC. Specifically, the combined analysis of the cAMP-dependent changes in chemical shifts, 2 degrees structure probabilities, hydrogen/hydrogen exchange (H/H) and hydrogen/deuterium exchange (H/D) protection factors reveals that the long-range communication between the PBC and the NTHB is implemented by two distinct intramolecular cAMP-signaling pathways, respectively, mediated by the beta2-beta3 loop and the alpha6 helix. Docking of cAMP into the PBC perturbs the NTHB inner core packing and the helical probabilities of selected NTHB residues. The proposed model is consistent with the allosteric role previously hypothesized for L273 and F300 based on site-directed mutagenesis; however, our data show that such a contact is part of a

  14. Inhibition of basolateral cAMP permeability in the toad urinary bladder.

    PubMed

    Boom, A; Golstein, P E; Frerotte, M; Sande, J V; Beauwens, R

    2000-10-01

    1. The effect of sulphonylurea drugs on hydrosmotic flow across toad urinary bladder epithelium was re-evaluated in the present study. Glibenclamide, added to the basolateral medium, significantly enhanced the osmotic flow induced by low doses of antidiuretic hormone (ADH) or forskolin (FK), while it inhibited the effect of exogenous cyclic adenosine monophosphate (cAMP) or its non-hydrolysable bromo derivative, 8-Br-cAMP, added to the basolateral medium. These opposite effects of glibenclamide on the transepithelial osmotic flow can be explained by a reduction of cAMP permeability across the basolateral membrane of the epithelium. The decrease in cAMP permeability leads, according to the direction of the cAMP gradient, to firstly an enhanced osmotic flow when cAMP is generated intracellularly by addition of ADH and FK, glibenclamide reducing cAMP exit from the cell, and secondly a decreased osmotic flow in response to cAMP (and 8-Br-cAMP) added to the basolateral medium, glibenclamide inhibiting, in this case, their entry into the cell. 2. The demonstration that glibenclamide actually inhibits the basolateral cAMP permeability rests on the fact that firstly it decreases the release of cAMP into the basolateral medium by about 40 %, at each concentration of ADH or forskolin tested, secondly it increases the cAMP content of paired hemibladders incubated in the presence of ADH or FK, when intracellular degradation was prevented by phosphodiesterase inhibition, and thirdly it decreases also the uptake of basolateral 8-Br-[3H]cAMP into paired toad hemibladders. 3. Taken together, the present data demonstrate that glibenclamide inhibits the toad urinary bladder basolateral membrane permeability to cAMP, most probably by a direct interaction with a membrane protein not yet indentified but distinct from the sulphonylurea receptor.

  15. Thyroid hormone activates rat liver adenosine 5,-monophosphate-activated protein kinase: relation to CaMKKb, TAK1 and LKB1 expression and energy status.

    PubMed

    Vargas, R; Ortega, Y; Bozo, V; Andrade, M; Minuzzi, G; Cornejo, P; Fernandez, V; Videla, L A

    2013-01-01

    AMP-activated protein kinase (AMPK) is a sensor of energy status supporting cellular energy homeostasis that may represent the metabolic basis for 3,3,,5-triiodo-L-thyronine (T3) liver preconditioning. Functionally transient hyperthyroid state induced by T3 (single dose of 0.1 mg/kg) in fed rats led to upregulation of mRNA expression (RT-PCR) and protein phosphorylation (Western blot) of hepatic AMPK at 8 to 36 h after treatment. AMPK Thr 172 phosphorylation induced by T3 is associated with enhanced mRNA expression of the upstream kinases Ca2+ -calmodulin-dependent protein kinase kinase-beta (CaMKKbeta) and transforming growth-factor-beta-activated kinase-1 (TAK1), with increased protein levels of CaMKKbeta and higher TAK1 phosphorylation, without changes in those of the liver kinase B1 (LKB1) signaling pathway. Liver contents of AMP and ADP were augmented by 291 percent and 44 percent by T3 compared to control values (p less than 0.05), respectively, whereas those of ATP decreased by 64% (p less than 0.05), with no significant changes in the total content of adenine nucleotides (AMP + ADP + ATP) at 24 h after T3 administration. Consequently, hepatic ATP/ADP content ratios exhibited 64 percent diminution (p less than 0.05) and those of AMP/ATP increased by 425 percent (p less than 0.05) in T3-treated rats over controls. It is concluded that in vivoT3 administration triggers liver AMPK upregulation in association with significant enhancements in AMPK mRNA expression, AMPK phosphorylation coupled to CaMKKbeta and TAK1 activation, and in AMP/ATP ratios, which may promote enhanced AMPK activity to support T3-induced energy consuming processes such as those of liver preconditioning.

  16. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendrick, J.L.; Iglewski, W.J.

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of trypticmore » peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.« less

  17. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide-gated channels.

    PubMed

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet

    2017-04-15

    Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of

  18. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions.

    PubMed

    de Lourdes Mora-García, María; García-Rocha, Rosario; Morales-Ramírez, Omar; Montesinos, Juan José; Weiss-Steider, Benny; Hernández-Montes, Jorge; Ávila-Ibarra, Luis Roberto; Don-López, Christian Azucena; Velasco-Velázquez, Marco Antonio; Gutiérrez-Serrano, Vianey; Monroy-García, Alberto

    2016-10-26

    In recent years, immunomodulatory mechanisms of mesenchymal stem/stromal cells (MSCs) from bone marrow and other "classic" sources have been described. However, the phenotypic and functional properties of tumor MSCs are poorly understood. The aim of this study was to analyze the immunosuppressive capacity of cervical cancer-derived MSCs (CeCa-MSCs) on effector T lymphocytes through the purinergic pathway. We determined the expression and functional activity of the membrane-associated ectonucleotidases CD39 and CD73 on CeCa-MSCs and normal cervical tissue-derived MSCs (NCx-MSCs). We also analyzed their immunosuppressive capacity to decrease proliferation, activation and effector cytotoxic T (CD8+) lymphocyte function through the generation of adenosine (Ado). We detected that CeCa-MSCs express higher levels of CD39 and CD73 ectonucleotidases in cell membranes compared to NCx-MSCs, and that this feature was associated with the ability to strongly suppress the proliferation, activation and effector functions of cytotoxic T-cells through the generation of large amounts of Ado from the hydrolysis of ATP, ADP and AMP nucleotides. This study suggests that CeCa-MSCs play an important role in the suppression of the anti-tumor immune response in CeCa through the purinergic pathway.

  19. Adenosine 5'-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation.

    PubMed

    Yang, Xiao; Zhan, Yibei; Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-24

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5'-monophsphate (5'-AMP). We demonstrated that co-administration of APAP and 5'-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5'-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5'-AMP formulation could prevent APAP-induced hepatotoxicity.

  20. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  1. Antinociceptive effect of purine nucleotides.

    PubMed

    Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R

    1996-10-01

    The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.

  2. Influence of infection by Toxoplasma gondii on purine levels and E-ADA activity in the brain of mice experimentally infected mice.

    PubMed

    Tonin, Alexandre A; Da Silva, Aleksandro S; Casali, Emerson A; Silveira, Stephanie S; Moritz, Cesar E J; Camillo, Giovana; Flores, Mariana M; Fighera, Rafael; Thomé, Gustavo R; Morsch, Vera M; Schetinger, Maria Rosa C; Rue, Mario De La; Vogel, Fernanda S F; Lopes, Sonia T A

    2014-07-01

    The aim of this study was to assess the purine levels and E-ADA activity in the brain of mice (BALB/c) experimentally infected with Toxoplasma gondii. In experiment I (n=24) the mice were infected with RH strain of T. gondii, while in experiment II (n=36) they were infected with strain ME-49 of T. gondii. Our results showed that, for RH strain (acute phase), an increase in both periods in the levels of ATP, ADP, AMP, adenosine, hypoxanthine, xanthine (only on day 6 PI) and uric acid (only on day 6 PI). By the other hand, the RH strain led, on days 4 and 6 PI, to a reduction in the concentration of inosine. ME-49, a cystogenic strain, showed some differences in acute and chronic phase, since on day 6 PI the levels of ATP and ADP were increased, while on day 30 these same nucleotides were reduced. On day 60 PI, ME-49 induced a reduction in the levels of ATP, ADP, AMP, adenosine, inosine and xanthine, while uric acid was increased. A decrease of E-ADA activity was observed in brain on days 4 and 6 PI (RH), and 30 PI (ME-49); however on day 60 PI E-ADA activity was increased for infection by ME-49 strain. Therefore, it was possible to conclude that infection with T. gondii changes the purine levels and the activity of E-ADA in brain, which may be associated with neurological signs commonly observed in this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Rapid adenosine release in the nucleus tractus solitarii during defence response in rats: real-time measurement in vivo

    PubMed Central

    Dale, Nicholas; Gourine, Alexander V; Llaudet, Enrique; Bulmer, David; Thomas, Teresa; Spyer, K Michael

    2002-01-01

    We have measured the release of adenosine and inosine from the dorsal surface of the brainstem and from within the nucleus tractus solitarii (NTS) during the defence response evoked by hypothalamic stimulation in the anaesthetised rat. At the surface of the brainstem, only release of inosine was detected on hypothalamic defence area stimulation. This inosine signal was greatly reduced by addition of the ecto-5′-nucleotidase inhibitor α,β-methylene ADP (200 μM), suggesting that the inosine arose from adenosine that was produced in the extracellular space by the prior release of ATP. By placing a microelectrode biosensor into the NTS under stereotaxic control we have recorded release of adenosine within this nucleus. By contrast to the brainstem surface, a fast increase in adenosine, accompanied only by a much smaller change in inosine levels, was seen following stimulation of the hypothalamic defence area. The release of adenosine following hypothalamic stimulation was mainly confined to a narrow region of the NTS some 500 μm in length around the level of the obex. Interestingly the release of adenosine was depletable: when the defence reaction was evoked at short time intervals, much less adenosine was released on the second stimulus. Our novel techniques have given unprecedented real-time measurement and localisation of adenosine release in vivo and demonstrate that adenosine is released at the right time and in sufficient quantities to contribute to the cardiovascular components of the defence reaction. PMID:12356888

  4. Adenosine A2a receptors and O2 sensing in development

    PubMed Central

    2011-01-01

    Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265

  5. [The effects of epinephrine and adrenergic antagonists on adenosine 3', 5'-monophosphate level of bovine trabecular cells in vitro].

    PubMed

    Lu, Y; Li, M; Shen, Y

    1998-03-01

    To determine the effects of epinephrine (EPI) and adrenergic antagonists on adenosine 3', 5'-monophosphate (cAMP) level of bovine trabecular cells (BTC) in vitro. (3)H-cAMP was used in protein binding assay for measuring the intracellular level of cAMP. (1) 10(-5) mol/L EPI induced a fold increase of cAMP in cultured BTC in vitro; (2) Timilol and ICI 118, 551 blocked efficiently the effect of EPI at a lower concentration (10(-6) mol/L). (3) Bisoprolol did not efficiently block the effect of EPI unless at high concentrations (>or= 10(-5) mol/L). The effects of EPI increasing outflow facility may be associated with its increase of cAMP in trabecular cells; BTC contains beta-adrenergic receptors, and beta(2)-adrenergic receptors are dominant.

  6. Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae

    PubMed Central

    Sivasankar, Mahalakshmi; Nofziger, Charity; Blazer-Yost, Bonnie

    2012-01-01

    Objectives/Hypothesis Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-α (TNFα) were investigated. Study Design In vitro experimental design with matched treatment and control groups. Methods Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNFα, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNFα did not significantly alter cAMP concentration. Conclusions We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. PMID:18596479

  7. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine

    PubMed Central

    Zylka, Mark J.; Sowa, Nathaniel A.; Taylor-Blake, Bonnie; Twomey, Margaret A.; Herrala, Annakaisa; Voikar, Vootele; Vihko, Pirkko

    2008-01-01

    SUMMARY Thiamine monophosphatase (TMPase, also known as Fluoride-Resistant Acid Phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of Prostatic Acid Phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent anti-nociceptive, anti-hyperalgesic and anti-allodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5’-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain. PMID:18940592

  8. Synthesis and Release of Cyclic Adenosine 3′:5′-Monophosphate by Ochromonas malhamensis1

    PubMed Central

    Bressan, Ray A.; Handa, Avtar K.; Quader, Hartmut; Filner, Philip

    1980-01-01

    The chrysophycean alga, Ochromonas malhamensis Pringsheim, was shown to synthesize cyclic adenosine 3′:5′-monophosphate (cAMP) and to release it into the culture medium. Cells contained 3 to 3,000 picomoles per gram fresh weight; medium contained up to 20 times the amount in the cells. Putative [32P]cAMP was purified from cultures supplied [32P]phosphate. The compound was identified as [32P]cAMP by co-chromatography with authentic cAMP through 10 serial steps; by chemical deamination at the same rate as authentic cAMP, to a 32P compound with the chromatographic behavior of cIMP; and by its conversion through the action of cyclic nucleotide phosphodiesterase to a 32P compound with the chromatographic behavior of 5′-AMP. A two-step procedure involving chromatography on alumina and on Dowex 50 purified the unlabeled compound from cells or medium sufficiently for it to be assayable by competitive inhibition of binding of [3H]cAMP to cAMP-binding protein (Gilman assay) or by stimulation of cAMP-dependent protein kinase. The activity was destroyed by cyclic nucleotide phosphodiesterase with the same kinetics as authentic cAMP, provided that an endogenous inhibitor of the phosphodiesterase was first removed by an additional purification step. Images PMID:16661154

  9. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    PubMed

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  10. Self-assembled copper(II) metallacycles derived from asymmetric Schiff base ligands: efficient hosts for ADP/ATP in phosphate buffer.

    PubMed

    Kumar, Amit; Pandey, Rampal; Kumar, Ashish; Gupta, Rakesh Kumar; Dubey, Mrigendra; Mohammed, Akbar; Mobin, Shaikh M; Pandey, Daya Shankar

    2015-10-21

    Novel asymmetric Schiff base ligands 2-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-phenol (H2L(1)) and 1-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-naphthalen-2-ol (H2L(2)) possessing dissimilar N,O-chelating sites and copper(ii) metallacycles (CuL(1))4 (1) and (CuL(2))4 (2) based on these ligands have been described. The ligands and complexes have been thoroughly characterized by satisfactory elemental analyses, and spectral (IR, (1)H, (13)C NMR, ESI-MS, UV/vis) and electrochemical studies. Structures of H2L(2) and 1 have been unambiguously determined by X-ray single crystal analyses. The crystal structure of H2L(2) revealed the presence of two distinct N,O-chelating sites on dissimilar cores (naphthalene and β-ketoaminato groups) offering a diverse coordination environment. Metallacycles 1 and 2 having a cavity created by four Cu(ii) centres coordinated in a homo- and heteroleptic fashion with respective ligands act as efficient hosts for adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) respectively, over other nucleoside polyphosphates (NPPs). The disparate sensitivity of these metallacycles toward ADP and ATP has been attributed to the size of the ligands assuming diverse dimensions and spatial orientations. These are attuned for π-π stacking and electrostatic interactions suitable for different guest molecules under analogous conditions, metallacycle 1 offers better orientation for ADP, while 2 for ATP. The mechanism of the host-guest interaction has been investigated by spectral and electrochemical studies and supported by molecular docking studies.

  11. Evaluation of Aspirin and Clopidogrel resistance in patients with Acute Coronary Syndrome by using Adenosine Diposphate Test and Aspirin Test

    PubMed Central

    O, Ibrahim; M, Oteh; A, A Syukur; HH, Che Hassan; W, S Fadilah; Rahman, MM

    2013-01-01

    Objectives: To evaluate Aspirin and Clopidogrel resistance/non-responders in patients with acute coronary syndrome (ACS) by using adenosine diposphate and aspirin tests. Methodology: In the study patients with ACS loaded with 300 mg of clopidogrel and 300 mg aspirin and patients on stable daily dose of 75 mg of clopidogrel (more than 3 days) underwent PCI. Response to clopidogrel and Aspirin was assessed by Adenosine Diphosphate (ADP) Test (20 µmol/L) and Aspirin Test (Acetyl Acid) (ASP) 20 µmol/L, respectively, using the Multiplate Platelet Function Analyzer (Dynabyte Medical, Munich, Germany). Results: Sixty four patients were included in this study out of which 57 were with ACS and 7 scheduled for percutaneous coronary intervention (PCI) electively. The proportion of Aspirin good responders and adequate responders were 76.56% and 18.75%, respectively while adequate response and good response to Clopidogrel accounted for 29.7 and 48.4%, respectively Hyperlipidaemia was only co-morbidity associated with higher AUC ADP value (p: 0.046). Hypertriglyceridaemia and serum calcium were weakly correlated with higher AUC ADP serum calcium r=0.08, triglyceride r=0.12. Patients admitted for scheduled PCI and on stable dose of 75mg clopidogrel exhibited lower AUC ADP value as compared to those admitted with acute coronary syndrome given loading dose of 300mg of Clopidogrel. Post loading dose measurement of anti-platelet therapy among ACS patients using the Multiplate Platelet Function Analyzer showed comparable results with other methods. Conclusions : As determined by Multiplate Platelet Function Analyzer, Aspirin resistance/non-responders in this study in acute coronary syndrome patients accounted for 4.69% while Non-responders in Clopidogrel was 21.9%. PMID:24353516

  12. Cyclic adenosine 3′,5′-monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation

    PubMed Central

    Smith, Jay W.; Steiner, Alton L.; Newberry, W. Marcus; Parker, Charles W.

    1971-01-01

    We have studied cyclic adenosine 3′,5′-monophosphate (cyclic AMP) concentrations in human peripheral blood lymphocytes after stimulation with phytohemagglutinin (PHA), isoproterenol, prostaglandins, and aminophylline. Purified lymphocytes were obtained by nylon fiber chromatography, and low speed centrifugation to remove platelets. Cyclic AMP levels were determined by a highly sensitive radioimmunoassay. At concentrations of 0.1-1.0 mmoles/liter isoproterenol and aminophylline produced moderate increases in cyclic AMP concentrations, whereas prostaglandins produced marked elevations. High concentrations of PHA produced 25-300% increases in cyclic AMP levels, alterations being demonstrated within 1-2 min. The early changes in cyclic AMP concentration appear to precede previously reported metabolic changes in PHA-stimulated cells. After 6 hr cyclic AMP levels in PHA-stimulated cells had usually fallen to the levels of control cells. After 24 hr the level in PHA-stimulated cells was characteristically below that of the control cells. Adenyl cyclase, the enzyme which converts ATP to cyclic AMP, was measured in lymphocyte homogenates. Adenyl cyclase activity was rapidly stimulated by fluoride, isoproterenol, prostaglandins, and PHA. Since adenyl cyclase is characteristically localized in external cell membranes, our results are consistent with an initial action of PHA at this level. PMID:4395563

  13. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    PubMed Central

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  15. Change in single cystathionine β-synthase domain-containing protein from a bent to flat conformation upon adenosine monophosphate binding.

    PubMed

    Jeong, Byung-Cheon; Park, Si Hoon; Yoo, Kyoung Shin; Shin, Jeong Sheop; Song, Hyun Kyu

    2013-07-01

    Cystathionine β-synthase (CBS) domains are small intracellular modules that can act as binding domains for adenosine derivatives, and they may regulate the activity of associated enzymes or other functional domains. Among these, the single CBS domain-containing proteins, CBSXs, from Arabidopsis thaliana, have recently been identified as redox regulators of the thioredoxin system. Here, the crystal structure of CBSX2 in complex with adenosine monophosphate (AMP) is reported at 2.2Å resolution. The structure of dimeric CBSX2 with bound-AMP is shown to be approximately flat, which is in stark contrast to the bent form of apo-CBSXs. This conformational change in quaternary structure is triggered by a local structural change of the unique α5 helix, and by moving each loop P into an open conformation to accommodate incoming ligands. Furthermore, subtle rearrangement of the dimer interface triggers movement of all subunits, and consequently, the bent structure of the CBSX2 dimer becomes a flat structure. This reshaping of the structure upon complex formation with adenosine-containing ligand provides evidence that ligand-induced conformational reorganization of antiparallel CBS domains is an important regulatory mechanism. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    PubMed

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  17. The cyclic AMP cascade is altered in the fragile X nervous system.

    PubMed

    Kelley, Daniel J; Davidson, Richard J; Elliott, Jamie L; Lahvis, Garet P; Yin, Jerry C P; Bhattacharyya, Anita

    2007-09-26

    Fragile X syndrome (FX), the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP). Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3', 5'-monophosphate (cAMP) cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling.

  18. Kinetics of the phosphotransferase reaction of the catalytic subunit of the tick salivary gland cAMP-dependent protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, S.D.; Essenberg, R.C.; Sauer, J.R.

    1986-05-01

    The catalytic subunit of the cAMP dependent protein kinase was purified 100-fold from tick salivary glands. The enzyme mechanism of the phosphotransferase reaction catalyzed by this subunit was investigated. Highly purified enzyme did not show ATP-ase activity in the absence of protein substrates. Initial velocities were measured using histone H-1 or a synthetic heptapeptide, Kemptide, as P/sub i/ acceptors and (..gamma..-/sup 32/P) ATP as a phosphodonor. Patterns were consistent with a sequential, but not a ping pong mechanism. At high concentration (>2Km), histone showed substrate inhibition which was noncompetitive versus ATP. Product inhibition by Mg.ADP was competitive versus ATP andmore » noncompetitive with respect to H-1. Phosphohistone on the other hand was noncompetitive with respect to H-1, but gave parabolic competitive inhibition against ATP. Dead-end inhibition by AMP-PNP, an analogue of ATP, was competitive and noncompetitive against ATP and H-1, respectively. The inhibitory of cAMP dependent protein kinase was noncompetitive with ATP and competitive with histone. These studies strongly suggest that the tick salivary gland protein kinase has a sequential mechanism with primarily ordered addition of ATP followed by protein substrate and ordered release of phosphoprotein and ADP, but some random character.« less

  19. The effect of adenosine monophosphate deaminase overexpression on the accumulation of umami-related metabolites in tomatoes.

    PubMed

    Chew, Bee Lynn; Fisk, Ian D; Fray, Rupert; Tucker, Gregory A; Bodi, Zsuzsanna; Ferguson, Alison; Xia, Wei; Seymour, Graham B

    2017-01-01

    This study highlights the changes in umami-related nucleotide and glutamate levels when the AMP deaminase gene was elevated in transgenic tomato. Taste is perceived as one of a combination of five sensations, sweet, sour, bitter, salty, and umami. The umami taste is best known as a savoury sensation and plays a central role in food flavour, palatability, and eating satisfaction. Umami flavour can be imparted by the presence of glutamate and is greatly enhanced by the addition of ribonucleotides, such as inosine monophosphate (IMP) and guanosine monophosphate (GMP). The production of IMP is regulated by the enzyme adenosine monophosphate (AMP) deaminase which functions to convert AMP into IMP. We have generated transgenic tomato (Solanum lycopersicum) lines over expressing AMP deaminase under the control of a fruit-specific promoter. The transgenic lines showed substantially enhanced levels of AMP deaminase expression in comparison to the wild-type control. Elevated AMP deaminase levels resulted in the reduced accumulation of glutamate and increased levels of the umami nucleotide GMP. AMP concentrations were unchanged. The effects on the levels of glutamate and GMP were unexpected and are discussed in relation to the metabolite flux within this pathway.

  20. Effects of adenosine monophosphate used in combination with L-arginine on female rabbit corpus cavernosum tissue.

    PubMed

    Stücker, Olivier; Pons, Catherine; Neuzillet, Yann; Laemmel, Elisabeth; Lebret, Thierry

    2014-04-01

    Sexual dysfunction is significantly more prevalent in women than in men. However, to date, no satisfactory oral treatment is yet available. The aim of this study was to study the effects of adenosine monophosphate (AMP) alone or its combination with L-Arginine on the relaxation of the female rabbit corpus cavernosum. Cylinder strips from the corporal body of the excised clitoris from female New Zealand White rabbits were incubated in Krebs solution. Phenylephrine (PE) precontraction was achieved, then the drugs AMP and L-Arginine were administered either independently or in sequential combinations to the strips under precontracted conditions. Contraction percentages were compared. When precontraction was induced by PE 8 μM or 20 μM, AMP was shown to induce relaxation up to 25% in a dose-dependent manner. The relaxation induced by L-Arginine reached 15.6% at 5.10(-4) M vs. 16.5% at AMP 5.10(-4) M under the same experimental conditions. Nitric oxide (NO) synthase inhibitor N-nitro-L-arginine strongly inhibited the relaxing effect provoked by AMP, suggesting that the action mechanism of this nucleotide is related to the NO pathway. The combination of L-Arginine at 5.10(-4) M with AMP at different doses ranging from 5.10(-4) M to 10(-3) M significantly amplified the relaxing response up to 40.7% and 58%, respectively. Our results demonstrate that AMP induces a relaxing effect on the female rabbit corpora. They also show that L-Arginine and AMP can potentiate each other and that a synergistic effect can be obtained by their combined use. Because only slight differences exist between both sexes in response to NO donors and/or nucleotide purines or in their use together, it is very likely that close biochemical mechanisms, although not to the same degree and not quite similar, are involved in the engorgement of the penis and the clitoris of New Zealand White rabbits. Stücker O, Pons C, Neuzillet Y, Laemmel E, and Lebret T. Original research-sexual medicine: Effects of

  1. STUDIES ON THE MECHANISM OF ACTION OF CYCLIC 3’,5’-ADENOSINE MONOPHOSPHATE ON STEROID HYDROXYLATIONS IN ADRENAL HOMOGENATES,

    DTIC Science & Technology

    Cyclic 3’,5’-adenosine monophosphate (cyclic 3’,5’AMP) has recently been shown to stimulate selectively steroid C-11- beta hydroxylase activity in rat...to be mediated via stimulation of alpha- glucan phosphorylase, which in turn led to enhanced production of G-6-P from glycogen and a concomitant...increase in NADPH generation. However, if cyclic 3’,5’-AMP stimulated steroid 11- beta -hydroxylation in adrenal homogenates only by this mechanism, its

  2. Effect of parathyroid hormone and insulin on extracellular cyclic adenosine-3',5'-monophosphate in patients with benign and malignant breast tumors.

    PubMed

    Berstein, L M; Semiglazov, V F; Vishnevski, A S; Dilman, V M

    1978-01-01

    Basal excretion of cyclic adenosine monophosphate (cAMP) and its basal level in blood plasma in breast cancer (BC) patients and those with fibroadenomatosis did not differ essentially. However, intravenous injection of parathyroid hormone (100 U) and insulin (0.08 U/kg body weight) was followed by a much less rise in urine-cAMP excretion and blood-cAMP levels in BC patients than in benign process in mammary gland. A substantial correlation between changes in plasma cAMP level and the degree of insulin-induced hypoglycemia was not observed. There was a negative correlation between reponse to parathyroid hormone and insulin and body overweight in BC patients. It was suggested that body fat content may influence the peculiarities of metabolism of extracellular cAMP in cancer patients considerably.

  3. Coupling to protein kinases A and C of adenosine A2B receptors involved in the facilitation of noradrenaline release in the prostatic portion of rat vas deferens.

    PubMed

    Queiroz, Glória; Quintas, Clara; Talaia, Carlos; Gonçalves, Jorge

    2004-08-01

    In the prostatic portion of rat vas deferens, the non-selective adenosine receptor agonist NECA (0.1-30 microM), but not the A(2A) agonist CGS 21680 (0.001-10 microM), caused a facilitation of electrically evoked noradrenaline release (up to 43 +/- 4%), when inhibitory adenosine A(1) receptors were blocked. NECA-elicited facilitation of noradrenaline release was prevented by the A(2B) receptor-antagonist MRS 1754, enhanced by preventing cyclic-AMP degradation with rolipram, abolished by the protein kinase A inhibitors H-89, KT 5720 and cyclic-AMPS-Rp and attenuated by the protein kinase C inhibitors Ro 32-0432 and calphostin C. The adenosine uptake inhibitor NBTI also elicited a facilitation of noradrenaline release; an effect that was abolished by adenosine deaminase and attenuated by MRS 1754, by inhibitors of the extracellular nucleotide metabolism and by blockade of alpha(1)-adrenoceptors and P2X receptors with prazosin and NF023, respectively. It was concluded that adenosine A(2B) receptors are involved in a facilitation of noradrenaline release in the prostatic portion of rat vas deferens that can be activated by adenosine formed by extracellular catabolism of nucleotides. The receptors seem to be coupled to the adenylyl cyclase-protein kinase A pathway but activation of the protein kinase C by protein kinase A, may also contribute to the adenosine A(2B) receptor-mediated facilitation of noradrenaline release.

  4. [Development of Fluorescence Resonance Energy Transfer Sensor for Determination of Adenosine Monophosphate in Biological Drug].

    PubMed

    Dong, Ling-yu; Du, Hong-ming; Wang, Peng; Wang, Li-yun; Li, Yi-ke; Zhai, Hong; Feng, Ting; Wang, Xiang-feng; Zhu, Qiao-you; Xie, Meng-xia

    2015-11-01

    The biological drug of the calf-blood dialysate has various pharmacological effects. It can promote the oxygen and glucose uptake for the hypoxia cells, and has beneficial effects on the malfunction of the blood circulation and trophic disturbances in the brain, and the impairment of peripheral blood circulation. Furthermore, it is favorable to wound healing and can regulate the central nervous system. Adenosine monophosphate (AMP) is a main active ingredient of the biological drug. In this report, a fluorescence resonance energy transfer (FRET) sensor has been developed with β-CD-capped ZnS QDs as energy donor and 3-hydroxyflavone (3-HF) as energy acceptor. The results showed that AMP can lead to the fluorescence quenching of the FRET sensor at 526 nm, and the Stern-Volmer curve between the fluorescence quenching and the concentrations of AMP present a satisfactory linearity with the correlation coefficient of 0.996. The developed sensor has successfully applied for determination of the AMP in the biological drug.

  5. cAMP Level Modulates Scleral Collagen Remodeling, a Critical Step in the Development of Myopia

    PubMed Central

    Liu, Shufeng; Fang, Fang; Lu, Runxia; Lu, Chanyi; Zheng, Min; An, Jianhong; Xu, Hongjia; Zhao, Fuxin; Chen, Jiang-fan; Qu, Jia; Zhou, Xiangtian

    2013-01-01

    The development of myopia is associated with decreased ocular scleral collagen synthesis in humans and animal models. Collagen synthesis is, in part, under the influence of cyclic adenosine monophosphate (cAMP). We investigated the associations between cAMP, myopia development in guinea pigs, and collagen synthesis by human scleral fibroblasts (HSFs). Form-deprived myopia (FDM) was induced by unilateral masking of guinea pig eyes. Scleral cAMP levels increased selectively in the FDM eyes and returned to normal levels after unmasking and recovery. Unilateral subconjunctival treatment with the adenylyl cyclase (AC) activator forskolin resulted in a myopic shift accompanied by reduced collagen mRNA levels, but it did not affect retinal electroretinograms. The AC inhibitor SQ22536 attenuated the progression of FDM. Moreover, forskolin inhibited collagen mRNA levels and collagen secretion by HSFs. The inhibition was reversed by SQ22536. These results demonstrate a critical role of cAMP in control of myopia development. Selective regulation of cAMP to control scleral collagen synthesis may be a novel therapeutic strategy for preventing and treating myopia. PMID:23951163

  6. Platelet reactivity to adenosine diphosphate and long-term ischemic event occurrence following percutaneous coronary intervention: a potential antiplatelet therapeutic target.

    PubMed

    Gurbel, Paul A; Antonino, Mark J; Bliden, Kevin P; Dichiara, Joseph; Suarez, Thomas A; Singla, Anand; Tantry, Udaya S

    2008-12-01

    Platelets play a central role in the genesis of post-percutaneous coronary intervention (PCI) ischemic events. High post-procedural platelet reactivity to adenosine diphosphate (HPR(ADP)) may be a risk factor for ischemic events after PCI. The study was designed to evaluate a cutpoint of platelet reactivity that is associated with the occurrence of ischemic events after PCI. Post-procedural platelet reactivity to ADP was measured by conventional aggregometry in 297 consecutive patients undergoing non-emergent PCI. Patients were prospectively followed for up to 2 years for post-discharge ischemic events. All patients had received clopidogrel and aspirin therapy at the time of aggregation measurements. Eighty-one patients (27%) suffered ischemic events. Patients with ischemic events had higher 5 microM ADP-induced platelet aggregation (46 +/- 14% vs. 30 +/- 17%, p < 0.001) and 20 microM ADP-induced platelet aggregation (60 +/- 13% vs. 43 +/- 19%, p < 0.001) compared to patients without ischemic events. Using a combined receiver operator curve analysis, cutpoints of >46% aggregation following 5 microM ADP stimulation and >59% aggregation following 20 microM ADP stimulation (HPR(ADP)) were associated with 58 and 54% of ischemic events, respectively. Multivariate Cox regression demonstrated a significant relation between event occurrence and post-procedural HPR(ADP) cutpoints (5 microM ADP, OR=3.9, and 20 microM ADP, OR=3.8, p < 0.001 for both). High post-procedural platelet reactivity to ADP is an independent risk factor for ischemic events within 2 years of non-emergent PCI. These data support a potential therapeutic target for antiplatelet therapy based on the results of an ex vivo platelet function test. The study is a step towards a personalized medicine approach to guide the intensity of antiplatelet therapy.

  7. Nucleotide and nucleoside involvement in immunomodulation in experimental Chagas disease.

    PubMed

    do Carmo, Guilherme M; de Sá, Mariângela F; Baldissera, Matheus D; Grando, Thirssa H; Mendes, Ricardo E; Cardoso, Valesca V; Casali, Emerson A; Moritz, Cesar Eduardo J; Monteiro, Silvia G; Da Silva, Aleksandro S

    2018-02-05

    The aim of this study was to evaluate whether Trypanosma cruzi infections cause alterations in the levels of seric purines, which could contribute to host immunomodulation. Twelve mice were divided into two groups identified as control (uninfected) and infected (T. cruzi) groups. The influence of the disease on seric purine levels was verified on day 20 post-infection (PI) by HPLC. Infected mice had circulating trypomastigotes during the experiment, as well as amastigote forms in the heart associated with inflammatory infiltrates. Increases on adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), inosine (INO), and uric acid (URIC) levels were observed in the infected animals, while the adenosine monophosphate (AMP) and xanthine (XAN) levels were reduced compared with mice of the control group, indicating a possible impairment on the purinergic system, and consequently, on the immune system during the clinical course of the disease. In summary, the T. cruzi infection alters the seric purine levels, and consequently, modulates the immune system.

  8. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    PubMed Central

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  9. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  10. Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1.

    PubMed

    Li, Kai; Zhang, Haipeng; Qiu, Jianguang; Lin, Yuan; Liang, Jiankai; Xiao, Xiao; Fu, Liwu; Wang, Fang; Cai, Jing; Tan, Yaqian; Zhu, Wenbo; Yin, Wei; Lu, Bingzheng; Xing, Fan; Tang, Lipeng; Yan, Min; Mai, Jialuo; Li, Yuan; Chen, Wenli; Qiu, Pengxin; Su, Xingwen; Gao, Guangping; Tai, Phillip W L; Hu, Jun; Yan, Guangmei

    2016-02-01

    Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.

  11. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  12. Adenosine 5′-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation

    PubMed Central

    Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5′-monophsphate (5′-AMP). We demonstrated that co-administration of APAP and 5′-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5′-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5′-AMP formulation could prevent APAP-induced hepatotoxicity. PMID:28031524

  13. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling.

    PubMed

    Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter

    2013-03-01

    Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    -operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. New and Noteworthy We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies. PMID:27384524

  15. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies.

  16. Interactions of 1,12-diamino-4,9-dioxadodecane (OSpm) and Cu(II) ions with pyrimidine and purine nucleotides: adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP).

    PubMed

    Lomozik, L; Gasowska, A; Krzysko, G

    2006-11-01

    The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.

  17. The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation

    PubMed Central

    Mueller-Dieckmann, Christoph; Kernstock, Stefan; Lisurek, Michael; von Kries, Jens Peter; Haag, Friedrich; Weiss, Manfred S.; Koch-Nolte, Friedrich

    2006-01-01

    Posttranslational modifications are used by cells from all kingdoms of life to control enzymatic activity and to regulate protein function. For many cellular processes, including DNA repair, spindle function, and apoptosis, reversible mono- and polyADP-ribosylation constitutes a very important regulatory mechanism. Moreover, many pathogenic bacteria secrete toxins which ADP-ribosylate human proteins, causing diseases such as whooping cough, cholera, and diphtheria. Whereas the 3D structures of numerous ADP-ribosylating toxins and related mammalian enzymes have been elucidated, virtually nothing is known about the structure of protein de-ADP-ribosylating enzymes. Here, we report the 3Dstructure of human ADP-ribosylhydrolase 3 (hARH3). The molecular architecture of hARH3 constitutes the archetype of an all-α-helical protein fold and provides insights into the reversibility of protein ADP-ribosylation. Two magnesium ions flanked by highly conserved amino acids pinpoint the active-site crevice. Recombinant hARH3 binds free ADP-ribose with micromolar affinity and efficiently de-ADP-ribosylates poly- but not monoADP-ribosylated proteins. Docking experiments indicate a possible binding mode for ADP-ribose polymers and suggest a reaction mechanism. Our results underscore the importance of endogenous ADP-ribosylation cycles and provide a basis for structure-based design of ADP-ribosylhydrolase inhibitors. PMID:17015823

  18. Hydrogels Based on Ag+ -Modulated Assembly of 5'-Adenosine Monophosphate for Enriching Biomolecules.

    PubMed

    Hu, Yuanyuan; Xie, Dong; Wu, Yang; Lin, Nangui; Song, Aixin; Hao, Jingcheng

    2017-11-07

    Supramolecular hydrogels obtained by combining 5'-adenosine monophosphate (AMP) with Ag + were fabricated in this work. Their gelation capability was enhanced by increasing the concentration of Ag + or decreasing the pH. The gels are very sensitive to light, which endows them with potential applications as visible-light photosensitive materials. Coordination between the nucleobase of AMP and Ag + , as well as π-π stacking of nucleobases, are considered to be the main driving forces for self-assembly. The hydrogels successfully achieved the encapsulation and enrichment of biomolecules. Hydrogen bonding between the amino group of guest molecules and silver nanoparticles along the nanofibers drives the enrichment and is considered to be a crucial interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An enzyme-linked immuno-mass spectrometric assay with the substrate adenosine monophosphate.

    PubMed

    Florentinus-Mefailoski, Angelique; Soosaipillai, Antonius; Dufresne, Jaimie; Diamandis, Eleftherios P; Marshall, John G

    2015-02-01

    An enzyme-linked immuno-mass spectrometric assay (ELIMSA) with the specific detection probe streptavidin conjugated to alkaline phosphatase catalyzed the production of adenosine from the substrate adenosine monophosphate (AMP) for sensitive quantification of prostate-specific antigen (PSA) by mass spectrometry. Adenosine ionized efficiently and was measured to the femtomole range by dilution and direct analysis with micro-liquid chromatography, electrospray ionization, and mass spectrometry (LC-ESI-MS). The LC-ESI-MS assay for adenosine production was shown to be linear and accurate using internal (13)C(15)N adenosine isotope dilution, internal (13)C(15)N adenosine one-point calibration, and external adenosine standard curves with close agreement. The detection limits of LC-ESI-MS for alkaline phosphatase-streptavidin (AP-SA, ∼190,000 Da) was tested by injecting 0.1 μl of a 1 pg/ml solution, i.e., 100 attograms or 526 yoctomole (5.26E-22) of the alkaline-phosphatase labeled probe on column (about 315 AP-SA molecules). The ELIMSA for PSA was linear and showed strong signals across the picogram per milliliter range and could robustly detect PSA from all of the prostatectomy patients and all of the female plasma samples that ranged as low as 70 pg/ml with strong signals well separated from the background and well within the limit of quantification of the AP-SA probe. The results of the ELIMSA assay for PSA are normal and homogenous when independently replicated with a fresh standard over multiple days, and intra and inter diem assay variation was less than 10 % of the mean. In a blind comparison, ELIMSA showed excellent agreement with, but was more sensitive than, the present gold standard commercial fluorescent ELISA, or ECL-based detection, of PSA from normal and prostatectomy samples, respectively.

  20. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells

    PubMed Central

    Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia

    2014-01-01

    In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2×7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2×7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2×7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling—p53 increase, AMPK activation, and PARP cleavage—as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. PMID:25103241

  1. Inhibition of vascular smooth muscle growth via signaling crosstalk between AMP-activated protein kinase and cAMP-dependent protein kinase

    PubMed Central

    Stone, Joshua D.; Narine, Avinash; Tulis, David A.

    2012-01-01

    Abnormal vascular smooth muscle (VSM) growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP)-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remain unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells (VSMC), the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSMC migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashion. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth. PMID:23112775

  2. Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2.

    PubMed

    Zoccarato, Anna; Surdo, Nicoletta C; Aronsen, Jan M; Fields, Laura A; Mancuso, Luisa; Dodoni, Giuliano; Stangherlin, Alessandra; Livie, Craig; Jiang, He; Sin, Yuan Yan; Gesellchen, Frank; Terrin, Anna; Baillie, George S; Nicklin, Stuart A; Graham, Delyth; Szabo-Fresnais, Nicolas; Krall, Judith; Vandeput, Fabrice; Movsesian, Matthew; Furlan, Leonardo; Corsetti, Veronica; Hamilton, Graham; Lefkimmiatis, Konstantinos; Sjaastad, Ivar; Zaccolo, Manuela

    2015-09-25

    Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications. © 2015 American Heart Association, Inc.

  3. Increases in cAMP, MAPK Activity and CREB Phosphorylation during REM Sleep: Implications for REM Sleep and Memory Consolidation

    PubMed Central

    Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.

    2013-01-01

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  4. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System.

    PubMed

    Pliotas, Christos; Grayer, Samuel C; Ekkerman, Silvia; Chan, Anthony K N; Healy, Jess; Marius, Phedra; Bartlett, Wendy; Khan, Amjad; Cortopassi, Wilian A; Chandler, Shane A; Rasmussen, Tim; Benesch, Justin L P; Paton, Robert S; Claridge, Timothy D W; Miller, Samantha; Booth, Ian R; Naismith, James H; Conway, Stuart J

    2017-08-15

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.

  5. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System

    PubMed Central

    2017-01-01

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme–substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding. PMID:28656748

  6. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    PubMed

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  7. Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation.

    PubMed

    Pouliot, Marc; Fiset, Marie-Elaine; Massé, Mireille; Naccache, Paul H; Borgeat, Pierre

    2002-11-01

    Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.

  8. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.

    PubMed

    Castro, Liliana R V; Guiot, Elvire; Polito, Marina; Paupardin-Tritsch, Daniéle; Vincent, Pierre

    2014-02-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Isoproterenol-stimulated labelling of particulate proteins by using [adenylate-32P]NAD+ independent on a cAMP-dependent protein kinase in parotid acinar cells.

    PubMed

    Sugiya, H; Hara-Yokoyama, M; Furuyama, S

    1992-03-30

    When saponin-permeabilized rat parotid acinar cells were incubated with [adenylate-32P]NAD+, labelling of proteins (33, 27 and 23 kDa) in particulate fractions of the cells was stimulated by isoproterenol. The effect of isoproterenol was completely blocked by a beta-antagonist. Both forskolin or cAMP mimicked the effect of isoproterenol on the labelling. However, an inhibitor of cAMPdPK failed to induce complete inhibition of the effects of isoproterenol, forskolin and cAMP. When the labelled proteins were treated with snake venom phosphodiesterase, neither [32P]5'-AMP nor [32P]phosphoribosyladenosine was released. These results suggest that covalent modification of proteins with NAD+, which is distinct from ADP-ribosylation and cAMPdPK-dependent phosphorylation, is coupled to beta-receptor-cAMP signalling system in rat parotid acinar cells.

  10. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    PubMed Central

    Madrigal-Perez, Luis Alberto; Ramos-Gomez, Minerva

    2016-01-01

    Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV) has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1) decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2) increases adenosine monophosphate/adenosine diphosphate (AMP/ADP) ratio that can lead to AMP protein kinase (AMPK) activation, which is related to its health effects, and (3) increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol. PMID:26999118

  11. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family.

    PubMed

    Cho, Sung Hoon; Ahn, Annie K; Bhargava, Prerna; Lee, Chih-Hao; Eischen, Christine M; McGuinness, Owen; Boothby, Mark

    2011-09-20

    Poly(ADP-ribose)polymerase (PARP)14--a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs--is an ADP ribosyltransferase that interacts with Stat6, enhances induction of certain genes by IL-4, and is expressed in B lymphocytes. We now show that IL-4 enhancement of glycolysis in B cells requires PARP14 and that this process is central to a role of PARP14 in IL-4-induced survival. Thus, enhancements of AMP-activated protein kinase activity restored both IL-4-induced glycolytic activity in Parp14(-/-) B cells and prosurvival signaling by this cytokine. Suppression of apoptosis is central to B-lymphoid oncogenesis, and elevated macro-PARP expression has been correlated with lymphoma aggressiveness. Strikingly, PARP14 deficiency delayed B lymphomagenesis and reversed the block to B-cell maturation driven by the Myc oncogene. Collectively, these findings reveal links between a mammalian ADP ribosyltransferase, cytokine-regulated metabolic activity, and apoptosis; show that PARP14 influences Myc-induced oncogenesis; and suggest that the PARP14-dependent capacity to increase cellular metabolic rates may be an important determinant of lymphoma pathobiology.

  12. Stochastic Noise and Synchronisation during Dictyostelium Aggregation Make cAMP Oscillations Robust

    PubMed Central

    Kim, Jongrae; Heslop-Harrison, Pat; Postlethwaite, Ian; Bates, Declan G

    2007-01-01

    Stable and robust oscillations in the concentration of adenosine 3′, 5′-cyclic monophosphate (cAMP) are observed during the aggregation phase of starvation-induced development in Dictyostelium discoideum. In this paper we use mathematical modelling together with ideas from robust control theory to identify two factors which appear to make crucial contributions to ensuring the robustness of these oscillations. Firstly, we show that stochastic fluctuations in the molecular interactions play an important role in preserving stable oscillations in the face of variations in the kinetics of the intracellular network. Secondly, we show that synchronisation of the aggregating cells through the diffusion of extracellular cAMP is a key factor in ensuring robustness of the oscillatory waves of cAMP observed in Dictyostelium cell cultures to cell-to-cell variations. A striking and quite general implication of the results is that the robustness analysis of models of oscillating biomolecular networks (circadian clocks, Ca2+ oscillations, etc.) can only be done reliably by using stochastic simulations, even in the case where molecular concentrations are very high. PMID:17997595

  13. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes.

    PubMed

    Scantland, Sara; Tessaro, Irene; Macabelli, Carolina H; Macaulay, Angus D; Cagnone, Gaël; Fournier, Éric; Luciano, Alberto M; Robert, Claude

    2014-09-01

    Although the oocyte is the largest cell in the body and an unavoidable phase in life, its physiology is still poorly understood, and other cell types provide little insight into its unique nature. Even basic cellular functions in the oocyte such as energy metabolism are not yet fully understood. It is known that the mitochondria of the female gamete exhibit an immature form characterized by limited energy production from glucose and oxidative phosphorylation. We show that the bovine oocyte uses alternative means to maintain ATP production during maturation, namely, the adenosine salvage pathway. Meiosis resumption is triggered by destruction of cyclic AMP by phosphodiesterases producing adenosine monophosphate that is converted into ATP by adenylate kinases and creatine kinases. Inhibition of these enzymes decreased ATP production, and addition of their substrates restored ATP production in denuded oocytes. Addition of phosphocreatine to the oocyte maturation medium influenced the phenotype of the resulting blastocysts. We propose a model in which adenylate kinases and creatine kinases act as drivers of ATP production from added AMP during oocyte maturation. © 2014 by the Society for the Study of Reproduction, Inc.

  14. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation

    PubMed Central

    Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.

    2016-01-01

    The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653

  15. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells.

    PubMed

    Chimote, Ameet A; Hajdu, Peter; Kucher, Vladimir; Boiko, Nina; Kuras, Zerrin; Szilagyi, Orsolya; Yun, Yeo-Heung; Conforti, Laura

    2013-12-15

    Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.

  16. Effect of cAMP on short-circuit current in isolated human ciliary body.

    PubMed

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  17. Mitochondrial Free [Ca2+] Increases during ATP/ADP Antiport and ADP Phosphorylation: Exploration of Mechanisms

    PubMed Central

    Haumann, Johan; Dash, Ranjan K.; Stowe, David F.; Boelens, Age D.; Beard, Daniel A.; Camara, Amadou K.S.

    2010-01-01

    ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2+] ([Ca2+]m) and consequently mitochondrial bioenergetics by several postulated mechanisms. We tested how [Ca2+]m is affected by H2PO4− (Pi), Mg2+, calcium uniporter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2+]m, membrane potential, redox state, matrix volume, pHm, and O2 consumption in guinea pig heart mitochondria with or without ruthenium red, carboxyatractyloside, or oligomycin, and at several levels of Mg2+ and Pi. Energized mitochondria showed a dose-dependent increase in [Ca2+]m after adding CaCl2 equivalent to 20, 114, and 485 nM extramatrix free [Ca2+] ([Ca2+]e); this uptake was attenuated at higher buffer Mg2+. Adding ADP transiently increased [Ca2+]m up to twofold. The ADP effect on increasing [Ca2+]m could be partially attributed to matrix contraction, but was little affected by ruthenium red or changes in Mg2+ or Pi. Oligomycin largely reduced the increase in [Ca2+]m by ADP compared to control, and [Ca2+]m did not return to baseline. Carboxyatractyloside prevented the ADP-induced [Ca2+]m increase. Adding CaCl2 had no effect on bioenergetics, except for a small increase in state 2 and state 4 respiration at 485 nM [Ca2+]e. These data suggest that matrix ADP influx and subsequent phosphorylation increase [Ca2+]m largely due to the interaction of matrix Ca2+ with ATP, ADP, Pi, and cation buffering proteins in the matrix. PMID:20712982

  18. Additional hydrogen bonds and base-pair kinetics in the symmetrical AMP-DNA aptamer complex.

    PubMed Central

    Nonin-Lecomte, S; Lin, C H; Patel, D J

    2001-01-01

    The solution structure of an adenosine monophosphate (AMP)-DNA aptamer complex has been determined previously [Lin, C. H., and Patel, D. J. (1997) Chem. Biol. 4:817-832]. On a symmetrical aptamer complex containing the same binding loop, but with better resolved spectra, we have identified two additional hydrogen bond-mediated associations in the binding loop. One of these involves a rapidly exchanging G imino proton. The phosphate group of the AMP ligand was identified as the acceptor by comparison with other aptamer complexes. Imino proton exchange measurements also yielded the dissociation constants of the stem and binding loop base pairs. This study shows that nuclear magnetic resonance-based imino proton exchange is a good probe for detection of weak hydrogen-bond associations. PMID:11721004

  19. Roles of the Adenosine Receptor and CD73 in the Regulatory Effect of γδ T Cells

    PubMed Central

    Liang, Dongchun; Zuo, Aijun; Shao, Hui; Chen, Mingjiazi; Kaplan, Henry J.; Sun, Deming

    2014-01-01

    The adenosine A2A receptor (A2AR), the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses. PMID:25268760

  20. Regulation of cAMP on the first mitotic cell cycle of mouse embryos.

    PubMed

    Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi

    2008-03-01

    Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.

  1. cAMP inhibits inducible nitric oxide synthase expression and NF-kappaB-binding activity in cultured rat hepatocytes.

    PubMed

    Harbrecht, B G; Taylor, B S; Xu, Z; Ramalakshmi, S; Ganster, R W; Geller, D A

    2001-08-01

    The inducible nitric oxide synthase (iNOS) is strongly expressed following inflammatory stimuli. Adenosine 3',5'-cyclic monophosphate (cAMP) increases iNOS expression and activity in a number of cell types but decreases cytokine-stimulated iNOS expression in hepatocytes. The mechanisms for this effect are unknown. Rat hepatocytes were stimulated with cytokines to induce iNOS and cultured with cAMP agonists dibutyryl-cAMP (dbcAMP), 8-bromo-cAMP, and forskolin (FSK). Nitric oxide synthesis was assessed by supernatant nitrite levels and iNOS expression was measured by Northern and Western blot analyses. Nuclear factor kappaB binding was assessed by electromobility shift assay. Cyclic AMP dose dependently decreased NO synthesis in response to a combination of proinflammatory cytokines or interleukin-1beta (IL-1beta) alone. The adenylate cyclase inhibitor SQ 22,536 increased cytokine- or IL-1beta-stimulated NO synthesis. dbcAMP decreased iNOS mRNA expression and iNOS protein expression. Both dbcAMP and glucagon decreased iNOS promoter activity in rat hepatocytes transfected with the murine iNOS promoter and decreased DNA binding of the transcription factor NF-kappaB. These data suggest that cAMP is important in hepatocyte iNOS expression and agents that alter cAMP levels may profoundly alter the response of hepatocytes to inflammatory stimuli through effects onthe iNOS promoter region and NF-kappaB. Copyright 2001 Academic Press.

  2. Cellular Energetic Status Supervises the Synthesis of Bis-Diphosphoinositol Tetrakisphosphate Independently of AMP-Activated Protein Kinase

    PubMed Central

    Choi, Kuicheon; Mollapour, Elahe; Choi, Jae H.; Shears, Stephen B.

    2009-01-01

    Cells aggressively defend adenosine nucleotide homeostasis; intracellular biosensors detect variations in energetic status and communicate with other cellular networks to initiate adaptive responses. Here, we demonstrate some new elements of this communication process, and we show that this networking is compromised by off-target, bioenergetic effects of some popular pharmacological tools. Treatment of cells with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), so as to simulate elevated AMP levels, reduced the synthesis of bis-diphosphoinositol tetrakisphosphate ([PP]2-InsP4), an intracellular signal that phosphorylates proteins in a kinase-independent reaction. This was a selective effect; levels of other inositol phosphates were unaffected by AICAR. By genetically manipulating cellular AMP-activated protein kinase activity, we showed that it did not mediate these effects of AICAR. Instead, we conclude that the simulation of deteriorating adenosine nucleotide balance itself inhibited [PP]2-InsP4 synthesis. This conclusion is consistent with our demonstrating that oligomycin elevated cellular [AMP] and selectively inhibited [PP]2-InsP4 synthesis without affecting other inositol phosphates. In addition, we report that the short-term increases in [PP]2-InsP4 levels normally seen during hyperosmotic stress were attenuated by 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide (PD184352). The latter is typically considered an exquisitely specific mitogen-activated protein kinase kinase (MEK) inhibitor, but small interfering RNA against MEK or extracellular signal-regulated kinase revealed that this mitogen-activated protein kinase pathway was not involved. Instead, we demonstrate that [PP]2-InsP4 synthesis was inhibited by PD184352 through its nonspecific effects on cellular energy balance. Two other MEK inhibitors, 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2′-amino-3′-methoxyflavone (PD98059), had similar off

  3. 45 CFR 95.621 - ADP reviews.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... use; (C) Software and data security; (D) Telecommunications security; (E) Personnel security; (F... Federal review. (f) ADP System Security Requirements and Review Process—(1) ADP System Security Requirement. State agencies are responsible for the security of all ADP projects under development, and...

  4. Glutathione upregulates cAMP signalling via G protein alpha 2 during the development of Dictyostelium discoideum.

    PubMed

    Lee, Hyang-Mi; Kim, Ji-Sun; Kang, Sa-Ouk

    2016-12-01

    Despite the importance of glutathione in Dictyostelium, the role of glutathione synthetase (gshB/GSS) has not been clearly investigated. In this study, we observed that increasing glutathione content by constitutive expression of gshB leads to mound-arrest and defects in 3',5'-cyclic adenosine monophosphate (cAMP)-mediated aggregation and developmental gene expression. The overexpression of gpaB encoding G protein alpha 2 (Gα2), an essential component of the cAMP signalling pathway, results in a phenotype similar to that caused by gshB overexpression, whereas gpaB knockdown in gshB-overexpressing cells partially rescues the above-mentioned phenotypic defects. Furthermore, Gα2 is highly enriched at the plasma membrane of gshB-overexpressing cells compared to wild-type cells. Therefore, our findings suggest that glutathione upregulates cAMP signalling via Gα2 modulation during Dictyostelium development. © 2016 Federation of European Biochemical Societies.

  5. Studying Catabolism of Protein ADP-Ribosylation.

    PubMed

    Palazzo, Luca; James, Dominic I; Waddell, Ian D; Ahel, Ivan

    2017-01-01

    Protein ADP-ribosylation is a conserved posttranslational modification that regulates many major cellular functions, such as DNA repair, transcription, translation, signal transduction, stress response, cell division, aging, and cell death. Protein ADP-ribosyl transferases catalyze the transfer of an ADP-ribose (ADPr) group from the β-nicotinamide adenine dinucleotide (β-NAD + ) cofactor onto a specific target protein with the subsequent release of nicotinamide. ADP-ribosylation leads to changes in protein structure, function, stability, and localization, thus defining the appropriate cellular response. Signaling processes that are mediated by modifications need to be finely tuned and eventually silenced and one of the ways to achieve this is through the action of enzymes that remove (reverse) protein ADP-ribosylation in a timely fashion such as PARG, TARG1, MACROD1, and MACROD2. Here, we describe several basic methods used to study the enzymatic activity of de-ADP-ribosylating enzymes.

  6. cAMP and forskolin decrease. gamma. -aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuschneider, G.; Schwartz, R.D.

    1989-04-01

    The effects of the cyclic nucleotide cAMP on {gamma}-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N{sup 6}, O{sup 2{prime}}-dibutyryladenosine 3{prime},5{prime}-cyclic monophosphate inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3{prime},5{prime}-cyclic monophosphate, 8-bromoadenosine 3{prime},5{prime}-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the {gamma}-aminobutyric acid-gated Cl{sup {minus}} channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, inmore » the intact synaptoneurosomes, forskolin inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl{sup {minus}} channel directly. The data suggest that {gamma}-aminobutyric acid (GABA{sub A}) receptor function in brain can be regulated by cAMP-dependent phosphorylation.« less

  7. A conjugate of decyltriphenylphosphonium with plastoquinone can carry cyclic adenosine monophosphate, but not cyclic guanosine monophosphate, across artificial and natural membranes.

    PubMed

    Firsov, Alexander M; Rybalkina, Irina G; Kotova, Elena A; Rokitskaya, Tatyana I; Tashlitsky, Vadim N; Korshunova, Galina A; Rybalkin, Sergei D; Antonenko, Yuri N

    2018-02-01

    The present study demonstrated for the first time the interaction between adenosine 3',5'-cyclic monophosphate (cAMP), one of the most important signaling compounds in living organisms, and the mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1). The data obtained on model liquid membranes and human platelets revealed the ability of SkQ1 to selectively transport cAMP, but not guanosine 3',5'-cyclic monophosphate (cGMP), across both artificial and natural membranes. In particular, SkQ1 elicited translocation of cAMP from the source to the receiving phase of a Pressman-type cell, while showing low activity with cGMP. Importantly, only conjugate with plastoquinone, but not dodecyl-triphenylphosphonium, was effective in carrying cAMP. In human platelets, SkQ1 also appeared to serve as a carrier of cAMP, but not cGMP, from outside to inside the cell, as measured by phosphorylation of the vasodilator stimulated phosphoprotein. The SkQ1-induced transfer of cAMP across the plasma membrane found here can be tentatively suggested to interfere with cAMP signaling pathways in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Adenosine Monophosphate Forms Ordered Arrays in Multilamellar Lipid Matrices: Insights into Assembly of Nucleic Acid for Primitive Life

    PubMed Central

    Toppozini, Laura; Dies, Hannah; Deamer, David W.; Rheinstädter, Maikel C.

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5′-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers. PMID:23667523

  9. Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: insights into assembly of nucleic acid for primitive life.

    PubMed

    Toppozini, Laura; Dies, Hannah; Deamer, David W; Rheinstädter, Maikel C

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5'-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers.

  10. Nucleotide and Nucleotide Sugar Analysis by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry on Surface-Conditioned Porous Graphitic Carbon

    PubMed Central

    2010-01-01

    We examined the analysis of nucleotides and nucleotide sugars by chromatography on porous graphitic carbon with mass spectrometric detection, a method that evades contamination of the MS instrument with ion pairing reagent. At first, adenosine triphosphate (ATP) and other triphosphate nucleotides exhibited very poor chromatographic behavior on new columns and could hardly be eluted from columns previously cleaned with trifluoroacetic acid. Satisfactory performance of both new and older columns could, however, be achieved by treatment with reducing agent and, unexpectedly, hydrochloric acid. Over 40 nucleotides could be detected in cell extracts including many isobaric compounds such as ATP, deoxyguanosine diphosphate (dGTP), and phospho-adenosine-5′-phosphosulfate or 3′,5′-cyclic adenosine 5'-monophosphate (AMP) and its much more abundant isomer 2′,3′-cylic AMP. A fast sample preparation procedure based on solid-phase extraction on carbon allowed detection of very short-lived analytes such as cytidine 5'-monophosphate (CMP)-2-keto-deoxy-octulosonic acid. In animal cells and plant tissues, about 35 nucleotide sugars were detected, among them rarely considered metabolites such as uridine 5'-diphosphate (UDP)-l-arabinopyranose, UDP-l-arabinofuranose, guanosine 5'-diphosphate (GDP)-l-galactofuranose, UDP-l-rhamnose, and adenosine diphosphate (ADP)-sugars. Surprisingly, UDP-arabinopyranose was also found in Chinese hamster ovary (CHO) cells. Due to the unique structural selectivity of graphitic carbon, the method described herein distinguishes more nucleotides and nucleotide sugars than previously reported approaches. PMID:21043458

  11. Toward a unified nomenclature for mammalian ADP-ribosyltransferases.

    PubMed

    Hottiger, Michael O; Hassa, Paul O; Lüscher, Bernhard; Schüler, Herwig; Koch-Nolte, Friedrich

    2010-04-01

    ADP-ribosylation is a post-translational modification of proteins catalyzed by ADP-ribosyltransferases. It comprises the transfer of the ADP-ribose moiety from NAD+ to specific amino acid residues on substrate proteins or to ADP-ribose itself. Currently, 22 human genes encoding proteins that possess an ADP-ribosyltransferase catalytic domain are known. Recent structural and enzymological evidence of poly(ADP-ribose)polymerase (PARP) family members demonstrate that earlier proposed names and classifications of these proteins are no longer accurate. Here we summarize these new findings and propose a new consensus nomenclature for all ADP-ribosyltransferases (ARTs) based on the catalyzed reaction and on structural features. A unified nomenclature would facilitate communication between researchers both inside and outside the ADP-ribosylation field. 2009 Elsevier Ltd. All rights reserved.

  12. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative.

    PubMed

    Kimura, T; Okajima, F; Sho, K; Kobayashi, I; Kondo, Y

    1995-01-01

    The production of hydrogen peroxide (H2O2) as an essential process for iodide organification is a key reaction in TSH-induced thyroid hormone synthesis. Here we characterize the signal transduction pathway involved in TSH-induced H2O2 production in FRTL-5 thyroid cells. At higher than 1 nM TSH, N6-(L-2-phenylisopropyl)adenosine (PIA), an adenosine receptor agonist having, by itself, no influence on H2O2 generation, potentiated this TSH action, whereas the TSH increase and PIA addition reduced cAMP accumulation. RO 20-1724, a phosphodiesterase inhibitor, amplified the TSH-induced cAMP accumulation, but did not change H2O2 generation in the whole range of TSH used. Ca(2+)-mobilizing agonists, GTP and ATP, also induced H2O2 production without stimulating cAMP accumulation. Chelation of intracellular Ca2+ markedly inhibited the TSH action, but intracellular Ca2+ increases by either thapsigargin or ionomycin mimicking it. All of the findings show the participation of Ca2+, but not cAMP, in the action of TSH. Desensitization of protein kinase-C (PKC) did not influence the receptor-mediated H2O2 production, suggesting the reduced importance of PKC activation compared to Ca2+ signaling to the reaction. A rise in intracellular Ca2+ independent of receptor activation also induced H2O2 production as well as arachidonate release, and both were potentiated by PIA. In addition, inhibitors of phospholipase-A2 and the arachidonate metabolic pathway depressed H2O2 generation, suggesting the participation of an arachidonate cascade in the Ca(2+)-dependent H2O2 production. Lipoxygenase inhibitors depressed the Ca2+ action without influencing arachidonate release, suggesting the involvement of a lipoxygenase product(s) of arachidonate in the Ca(2+)-signaling mechanism. In conclusion, in FRTL-5 cells, TSH-induced H2O2 production is mediated not by cAMP, but by the phospholipase-C/Ca2+ cascade, possibly followed by the Ca(2+)-dependent phospholipase-A2/arachidonate cascade. PIA

  13. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred arrangement satisfies the ADP...

  14. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J.

    2012-01-20

    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors forcemore » a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.« less

  15. Hepatic gene expression profiling of 5'-AMP-induced hypometabolism in mice.

    PubMed

    Zhao, Zhaoyang; Miki, Takao; Van Oort-Jansen, Anita; Matsumoto, Tomoko; Loose, David S; Lee, Cheng Chi

    2011-04-12

    There is currently much interest in clinical applications of therapeutic hypothermia. Hypothermia can be a consequence of hypometabolism. We have recently established a procedure for the induction of a reversible deep hypometabolic state in mice using 5'-adenosine monophosphate (5'-AMP) in conjunction with moderate ambient temperature. The current study aims at investigating the impact of this technology at the gene expression level in a major metabolic organ, the liver. Our findings reveal that expression levels of the majority of genes in liver are not significantly altered by deep hypometabolism. However, among those affected by hypometabolism, more genes are differentially upregulated than downregulated both in a deep hypometabolic state and in the early arousal state. These altered gene expression levels during 5'-AMP induced hypometabolism are largely restored to normal levels within 2 days of the treatment. Our data also suggest that temporal control of circadian genes is largely stalled during deep hypometabolism.

  16. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases.

    PubMed

    Cronstein, Bruce N; Sitkovsky, Michail

    2017-01-01

    Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory cells by engaging one or more cell-surface receptors. The expression and function of adenosine receptors on different cell types change during the course of rheumatic diseases, such as rheumatoid arthritis (RA). Targeting adenosine receptors directly for the treatment of rheumatic diseases is currently under study; however, indirect targeting of adenosine receptors by enhancing adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of methotrexate, the anchor drug for the treatment of RA. In this Review, we discuss the regulation of extracellular adenosine levels and the role of adenosine in regulating the inflammatory and immune responses in rheumatic diseases such as RA, psoriasis and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in promoting fibrous matrix production in the skin and other organs, and the role of adenosine in fibrosis and fibrosing diseases is also discussed.

  17. cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes.

    PubMed Central

    Heuschneider, G; Schwartz, R D

    1989-01-01

    The effects of the cyclic nucleotide cAMP on gamma-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner (IC50 = 1.3 mM). The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the gamma-aminobutyric acid-gated Cl- channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36Cl- uptake and generated cAMP with similar potencies (IC50 = 14.3 microM; EC50 = 6.2 microM, respectively). Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl- channel directly. Indeed, forskolin inhibition of muscimol-induced 36Cl- uptake was extremely rapid (within 5 sec), preceding the accumulation of sufficient levels of cAMP. After 5 min, a slower phase of inhibition was seen, similar to the time course for cAMP accumulation. The data suggest that gamma-aminobutyric acid (GABAA) receptor function in brain can be regulated by cAMP-dependent phosphorylation. PMID:2468163

  18. Adenosine and preeclampsia.

    PubMed

    Salsoso, Rocío; Farías, Marcelo; Gutiérrez, Jaime; Pardo, Fabián; Chiarello, Delia I; Toledo, Fernando; Leiva, Andrea; Mate, Alfonso; Vázquez, Carmen M; Sobrevia, Luis

    2017-06-01

    Adenosine is an endogenous nucleoside with pleiotropic effects in different physiological processes including circulation, renal blood flow, immune function, or glucose homeostasis. Changes in adenosine membrane transporters, adenosine receptors, and corresponding intracellular signalling network associate with development of pathologies of pregnancy, including preeclampsia. Preeclampsia is a cause of maternal and perinatal morbidity and mortality affecting 3-5% of pregnancies. Since the proposed mechanisms of preeclampsia development include adenosine-dependent biological effects, adenosine membrane transporters and receptors, and the associated signalling mechanisms might play a role in the pathophysiology of preeclampsia. Preeclampsia associates with increased adenosine concentration in the maternal blood and placental tissue, likely due to local hypoxia and ischemia (although not directly demonstrated), microthrombosis, increased catecholamine release, and platelet activation. In addition, abnormal expression and function of equilibrative nucleoside transporters is described in foetoplacental tissues from preeclampsia; however, the role of adenosine receptors in the aetiology of this disease is not well understood. Adenosine receptors activation may be related to abnormal trophoblast invasion, angiogenesis, and ischemia/reperfusion mechanisms in the placenta from preeclampsia. These mechanisms may explain only a low fraction of the associated abnormal transformation of spiral arteries in preeclampsia, triggering cellular stress and inflammatory mediators release from the placenta to the maternal circulation. Although increased adenosine concentration in preeclampsia may be a compensatory or adaptive mechanism favouring placental angiogenesis, a poor angiogenic state is found in preeclampsia. Thus, preeclampsia-associated complications might affect the cell response to adenosine due to altered expression and activity of adenosine receptors, membrane transporters

  19. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres

    PubMed Central

    Duke, Adrian M; Steele, Derek S

    1998-01-01

    The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mm reduced the caffeine-induced Ca2+ transient by 89 ± 1.4 % (mean ± s.e.m., n = 16), while SR Ca2+ uptake was unaffected.The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine.Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 ± 4 % (mean ± s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site.These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5′ carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions. PMID:9782158

  20. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres.

    PubMed

    Duke, A M; Steele, D S

    1998-11-15

    1. The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mM reduced the caffeine-induced Ca2+ transient by 89 +/- 1.4% (mean +/- s.e.m., n = 16), while SR Ca2+ uptake was unaffected. 2. The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine. 3. Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 +/- 4% (mean +/- s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site. 4. These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5' carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions.

  1. Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells.

    PubMed

    Barth, Holger; Stiles, Bradley G

    2008-01-01

    Binary bacterial toxins are unique AB-type toxins, composed of two non-linked proteins that act as a binding/translocation component and an enzyme component. All known actin-ADP-ribosylating toxins from clostridia possess this binary structure. This toxin family is comprised of the prototypical Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridium difficile CDT, and Clostridium spiroforme toxin. Once in the cytosol of host cells, these toxins transfer an ADP-ribose moiety from nicotinamide-adenosine-dinucleotide onto G-actin that then leads to depolymerization of actin filaments. In recent years much progress has been made towards understanding the cellular uptake mechanism of binary actin-ADP-ribosylating toxins, and in particular that of C2 toxin. Both components act in a precisely concerted manner to intoxicate eukaryotic cells. The binding/translocation (B-) component forms a complex with the enzyme (A-) component and mediates toxin binding to a cell-surface receptor. Following receptor-mediated endocytosis, the enzyme component escapes from acidic endosomes into the cytosol. Acidification of endosomes triggers pore formation by the binding/translocation component in endosomal membranes and the enzyme component subsequently translocates through the pore. This step requires a host cell chaperone, Hsp90. Due to their unique structure, binary toxins are naturally "tailor made" for transporting foreign proteins into the cytosol of host cells. Several highly specific and cell-permeable recombinant fusion proteins have been designed and successfully used in experimental cell research. This review will focus on the recent progress in studying binary actin ADP-ribosylating toxins as highly effective virulence factors and innovative tools for cell physiology as well as pharmacology.

  2. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells.

    PubMed

    Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-04-01

    Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Effects of Site-Directed Mutagenesis of Escherichia coli Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors

    PubMed Central

    A. Stevens, Linda; Moss, Joel; Vaughan, Martha; Pizza, Mariagrazia; Rappuoli, Rino

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsα, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  4. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.

    PubMed

    Hsu, Chia George; Burkholder, Thomas J

    2016-12-01

    The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

  5. Bronchial hyperresponsiveness to methacholine and adenosine monophosphate and the degree of atopy in children with allergic rhinitis.

    PubMed

    Kim, Chang Keun; Choi, Soo Jeon; Lee, Ju Kyung; Suh, Dong In; Koh, Young Yull

    2011-01-01

    nonasthmatic patients with allergic rhinitis often have bronchial hyperresponsiveness (BHR). Not only the presence but also the degree of atopy are important factors in BHR of patients with asthma. BHR is commonly evaluated by bronchial challenges using direct or indirect stimuli. to assess BHR to methacholine (direct) and to adenosine monophosphate (AMP) (indirect) in children with allergic rhinitis and to compare their relationships with the degree of atopy. methacholine and AMP challenges were performed in 88 children with allergic rhinitis, and a provocative concentration causing a 20% decrease in forced expiratory volume in 1 second (PC(20)) was calculated for each challenge. The degree of atopy was measured using serum total IgE levels, number of positive skin prick test results, and atopic scores (sum of graded wheal size). BHR to methacholine (PC(20) <8 mg/mL) and to AMP (PC(20) <200 mg/mL) was observed in 22 (25%) and 30 (34%) patients, respectively. No association was found between BHR to methacholine and any atopy parameter. In contrast, serum total IgE levels and atopic scores were higher in the group with BHR to AMP than in the group without BHR to AMP. Furthermore, a significant association was found between the degree of these 2 parameters and BHR to AMP (score for trend, P < .001 and P = .03, respectively). both BHR to methacholine and BHR to AMP were detected in a significant proportion of children with allergic rhinitis. The degree of atopy seems to be an important factor in BHR to AMP but not in BHR to methacholine.

  6. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide‐gated channels

    PubMed Central

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G.; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre‐Olivier; Hell, Stefan W.

    2017-01-01

    Key points Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell‐to‐cell diffusion of ions, metabolites and second messengers.Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood–brain barrier endothelial cell line hCMEC/D3.Although the increased gap junction coupling is cAMP‐dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase.We found that cAMP activates cyclic nucleotide‐gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling.The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood–brain barrier. Abstract The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood–brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT‐PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2‐phenylaminoadenosine (2‐PAA) on the gap junction coupling. We found that 2‐PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration‐dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2‐PAA‐related enhancement of gap junction coupling. In contrast, the cyclic nucleotide‐gated (CNG) channel inhibitor l‐cis‐diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+, suppressed the 2‐PAA‐related enhancement of gap junction coupling. Moreover, we observed a 2

  7. Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3.

    PubMed

    Li, R H L; Stern, J A; Ho, V; Tablin, F; Harris, S P

    2016-09-01

    Clopidogrel is commonly prescribed to cats with perceived increased risk of thromboembolic events, but little information exists regarding its antiplatelet effects. To determine effects of clopidogrel on platelet responsiveness in cats with or without the A31P mutation in the MYBPC3 gene. A secondary aim was to characterize variability in feline platelet responses to clopidogrel. Fourteen healthy cats from a Maine Coon/outbred mixed Domestic cat colony: 8 cats homozygous for A31P mutation in the MYPBC3 gene and 6 wild-type cats without the A31P mutation. Ex vivo study. All cats received clopidogrel (18.75 mg PO q24h) for 14 days. Before and after clopidogrel treatment, adenosine diphosphate (ADP)-induced P-selectin expression was evaluated. ADP- and thrombin-induced platelet aggregation was measured by optical aggregometry (OA). Platelet pVASP and ADP receptor response index (ARRI) were measured by Western blot analysis. Platelet activation from cats with the A31P mutation was significantly (P = .0095) increased [35.55% (18.58-48.55) to 58.90% (24.85-69.90)], in response to ADP. Clopidogrel treatment attenuated ADP-induced P-selectin expression and platelet aggregation. ADP- and PGE 1 -treated platelets had a similar level of pVASP as PGE 1 -treated platelets after clopidogrel treatment. Clopidogrel administration resulted in significantly lower ARRI [24.13% (12.46-35.50) to 11.30% (-7.383 to 23.27)] (P = .017). Two of 13 cats were nonresponders based on OA and flow cytometry. Clopidogrel is effective at attenuating platelet activation and aggregation in some cats. Cats with A31P mutation had increased platelet activation relative to the variable response seen in wild-type cats. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  8. Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata.

    PubMed

    Demuyser, Liesbeth; Van Genechten, Wouter; Mizuno, Hideaki; Colombo, Sonia; Van Dijck, Patrick

    2018-05-29

    The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is central to signal transduction in many organisms. In pathogenic fungi such as Candida albicans, this signalling cascade has proven to be involved in several processes, such as virulence, indicating its potential importance in antifungal drug discovery. Candida glabrata is an upcoming pathogen of the same species, yet information regarding the role of cAMP-PKA signalling in virulence is largely lacking. To enable efficient monitoring of cAMP-PKA activity in this pathogen, we here present the usage of two FRET-based biosensors. Both variations in the activity of PKA and the quantity of cAMP can be detected in a time-resolved manner, as we exemplify by glucose-induced activation of the pathway. We also present information on how to adequately process and analyse the data in a mathematically correct and physiologically relevant manner. These sensors will be of great benefit for scientists interested in linking the cAMP-PKA signalling cascade to downstream processes, such as virulence, possibly in a host environment. © 2018 John Wiley & Sons Ltd.

  9. Inhibiting poly(ADP-ribosylation) improves axon regeneration.

    PubMed

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-10-04

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration.

  10. cAMP levels in fast- and slow-twitch skeletal muscle after an acute bout of aerobic exercise

    NASA Technical Reports Server (NTRS)

    Sheldon, A.; Booth, F. W.; Kirby, C. R.

    1993-01-01

    The present study examined whether exercise duration was associated with elevated and/or sustained elevations of postexercise adenosine 3',5'-cyclic monophosphate (cAMP) by measuring cAMP levels in skeletal muscle for up to 4 h after acute exercise bouts of durations that are known to either produce (60 min) or not produce (10 min) mitochondrial proliferation after chronic training. Treadmill-acclimatized, but untrained, rats were run at 22 m/min for 0 (control), 10, or 60 min and were killed at various postexercise (0, 0.5, 1, 2, and 4 h) time points. Fast-twitch white and red (quadriceps) and slow-twitch (soleus) muscles were quickly excised, frozen in liquid nitrogen, and assayed for cAMP with a commercial kit. Unexpectedly, cAMP contents in all three muscles were similar to control (nonexercise) at most (21 of 30) time points after a single 10- or 60-min run. Values at 9 of 30 time points were significantly different from control (P < 0.05); i.e., 3 time points were significantly higher than control and 6 were significantly less than control. These data suggest that the cAMP concentration of untrained skeletal muscle after a single bout of endurance-type exercise is not, by itself, associated with exercise duration.

  11. Isolation and properties of AMP deaminase from jumbo squid (Dosidicus gigas) mantle muscle from the Gulf of California, Mexico.

    PubMed

    Marquez-Rios, E; Pacheco-Aguilar, R; Castillo-Yañez, F J; Figueroa-Soto, C G; Ezquerra-Brauer, J M; Gollas-Galvan, T

    2008-09-01

    Adenosine monophosphate (AMP) deaminase was purified from jumbo squid mantle muscle by chromatography in cellulose phosphate, Q-Fast and 5'-AMP sepharose. Specific activity of 2.5U/mg protein, 4.5% recovery and 133.68 purification fold were obtained at the end of the experiment. SDS-PAGE showed a single band with 87kDa molecular mass, native PAGE proved a band of 178kDa, whereas gel filtration detected a 180kDa protein, suggesting the homodimeric nature of this enzyme, in which subunits are not linked by covalent forces. Isoelectric focusing of this enzyme showed a pI of 5.76, which agrees with pI values of AMP deaminase from other invertebrate organisms. AMP deaminase presented a kinetic sigmoidal plot with Vmax of 1.16μM/min/mg, Km of 13mM, Kcat of 3.48μM.s(-1) and a Kcat/Km of 267 (mol/L)(-1).s(-1). The apparent relative low catalytic activity of jumbo squid muscle AMP deaminase in the absence of positive effectors is similar to that reported for homologous enzymes in other invertebrate organisms. Copyright © 2008 Elsevier Ltd. All rights reserved.

  12. Effect of the dB-c-AMP and forskolin on /sup 45/Ca influx, net Ca uptake and tension on rabbit aortic smooth muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-03-01

    The effect of dibutiryl-adenosine-3',5'-cyclic-monophosphate (dB-c-AMP) and forskolin on aortic tension and /sup 45/Ca influx were measured. dB-c-AMP reduced both the rate of force development and the maximal tension achieved in solutions containing various K/sup +/ concentrations. Stimulated /sup 45/Ca influx was also reduced however to a lesser extent than was the tension. Forskolin showed more marked effects of a similar nature. Thus, both these agents which increase intracellular c-AMP caused a rightward shift in the curve expressing force(ordinate) as a function of Ca influx (abscissa). Consequently, they found that dB-c-AMP stimulated more net Ca to be taken up by themore » sarcoplasmic reticulum(SR) at the same influx rate. The conclusion that c-AMP produced these effects by stimulating Ca uptake into the superficial SR was supported by the finding that dB-c-AMP increased the amount of Ca taken up into a caffeine releasable fraction.« less

  13. [Qualitative analysis of bis-(3'-5')-cyclic dimeric adenosine monophosphate of Porphyromonas gingivalis by high performance liquid chromatography coupled with mass spectrometry].

    PubMed

    Yongmei, Tan; Xiaojun, Yang; Juan, Du; Wanghong, Zhao; Xiaodan, Chen; Jin, Hou

    2016-06-01

    To test whether Porphyromonas gingivalis (P. gingivalis) could produce bacterial signal molecule, bis-(3'-5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and lay the foundation for explorations of its roles in life metabolism and periodontitis immunity of P. gingivalis. P. gingivalis standard strain ATCC33277 was used as the experimental strain to extract nucleic acids from the bacteria. Then, c-di-AMP was detected using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Subsequently, HPLC was used to validate the sample further. Based on the signal/noise (S/N) for 3 : 1, the limit of determination of HPLC-MS/MS for peak time of c-di-AMP standard substances was 7.49 min and nucleic acid extractions from P. gingivalis was 8.82 min (S/N > 3). Further confirmation of HPLC showed that nucleic acid extractions from both P. gingivalis and c-di-AMP standard substances pre- sented goal absorbent peaks at 15.7 min, with the same ultraviolet absorbent spectrum. The nucleic acid extrac- tions from P. gingivalis contained c-di-AMP, which shows that P. gingivalis could produce c-di-AMP.

  14. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  15. Hepatic gene expression profiling of 5′-AMP-induced hypometabolism in mice

    PubMed Central

    Miki, Takao; Van Oort-Jansen, Anita; Matsumoto, Tomoko; Loose, David S.; Lee, Cheng Chi

    2011-01-01

    There is currently much interest in clinical applications of therapeutic hypothermia. Hypothermia can be a consequence of hypometabolism. We have recently established a procedure for the induction of a reversible deep hypometabolic state in mice using 5′-adenosine monophosphate (5′-AMP) in conjunction with moderate ambient temperature. The current study aims at investigating the impact of this technology at the gene expression level in a major metabolic organ, the liver. Our findings reveal that expression levels of the majority of genes in liver are not significantly altered by deep hypometabolism. However, among those affected by hypometabolism, more genes are differentially upregulated than downregulated both in a deep hypometabolic state and in the early arousal state. These altered gene expression levels during 5′-AMP induced hypometabolism are largely restored to normal levels within 2 days of the treatment. Our data also suggest that temporal control of circadian genes is largely stalled during deep hypometabolism. PMID:21224422

  16. An evaluation of short-term corticosteroid response in perennial allergic rhinitis using histamine and adenosine monophosphate nasal challenge

    PubMed Central

    Wilson, Andrew M; Sims, Erika J; Orr, Linda C; Robb, Fiona; Lipworth, Brian J

    2003-01-01

    Aims To evaluate the role of AMP nasal challenge as a measure of short-term treatment response in patients receiving intranasal corticosteroids. Adenosine monophosphate (AMP) challenge has been shown to be a good inflammatory surrogate in the lower airways, but it has not been properly evaluated as a nasal challenge test. Methods Fourteen patients with perennial allergic rhinitis (PAR) were randomized to receive 2 weeks treatment with placebo (PL) or 200 µg intranasal mometasone furoate (MF) once daily in a randomized single-blind crossover study. AMP (25–800 mg ml−1) and histamine (0.25–8 mg ml−1) nasal challenge testing were performed after each treatment period with 30% decrease in minimal cross-sectional area (MCA). Domiciliary symptom data were collected. Results There was a significant (P < 0.05) improvement in PC30 MCA and nasal volume with AMP but not with histamine comparing MF vs PL. This amounted to a 2.8 (95% CI 1.5, 4.0) and 0.7 (95% CI −0.5, 1.9) doubling-dose change for AMP and histamine challenges, respectively. There were significant (P < 0.05) improvements in nasal symptoms and quality of life. Conclusions AMP nasal challenge using acoustic rhinometry may be a useful test to assess short-term treatment response in patient with PAR. PMID:12680883

  17. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    PubMed Central

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001 PMID:27697151

  18. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred arrangement...

  19. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred arrangement...

  20. Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells after oxidant injury.

    PubMed Central

    Spragg, R G; Hinshaw, D B; Hyslop, P A; Schraufstätter, I U; Cochrane, C G

    1985-01-01

    To investigate mechanisms whereby oxidant injury of cells results in cell dysfunction and death, cultured endothelial cells or P388D1 murine macrophage-like cells were exposed to oxidants including H2O2, O2-. (generated by the enzymatic oxidation of xanthine), or to stimulated polymorphonuclear leukocytes (PMN). Although Trypan Blue exclusion was not diminished before 30 min, cellular ATP was found to fall to less than 30% of control values within 3 min of exposure to 5 mM H2O2. Stimulated PMN plus P388D1 caused a 50% fall in cellular ATP levels. During the first minutes of oxidant injury, total adenylate content of cells fell by 85%. Cellular ADP increased 170%, AMP increased 900%, and an 83% loss of ATP was accompanied by a stoichiometric increase in IMP and inosine. Calculated energy charge [(ATP + 1/2 AMP)/(ATP + ADP + AMP)] fell from 0.95 to 0.66. Exposure of P388D1 to oligomycin plus 2-deoxyglucose (which inhibit oxidative and glycolytic generation of ATP, respectively) resulted in a rate of ATP fall similar to that induced by H2O2. In addition, nucleotide alterations induced by exposure to oligomycin plus 2-deoxyglucose were qualitatively similar to those induced by the oxidant. Loss of cell adenylates could not be explained by arrest of de novo purine synthesis or increased ATP consumption by the Na+-K+ ATPase or the mitochondrial F0-ATPase. These results indicate that H2O2 causes a rapid and profound fall in cellular ATP levels similar to that seen when ATP production is arrested by metabolic inhibitors. PMID:2997279

  1. ADP--A Must in the Secondary School

    ERIC Educational Resources Information Center

    Majernik, John A.

    1974-01-01

    The rationale for including automated data processing (ADP) in secondary schools is given. ADP instruction: prepares students for data processing employment and for advanced ADP study, aids all students preparing for business careers, aids students in choosing a career, provides consumer information, and adds realism to other classroom…

  2. Identification and structural characterization of O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate in yeast methionine initiator tRNA.

    PubMed Central

    Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W

    1990-01-01

    We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65. PMID:2235481

  3. Identification and structural characterization of O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate in yeast methionine initiator tRNA.

    PubMed

    Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W

    1990-10-25

    We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65.

  4. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption

    PubMed Central

    Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni

    2017-01-01

    Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570

  5. Stereochemical control over Mn(II)-Thio versus Mn(II)-Oxy coordination in adenosine 5 prime -O-(1-thiodiphosphate) complexes at the active site of creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smithers, G.W.; Sammons, R.D.; Goodhart, P.J.

    1989-02-21

    The stereochemical configurations of the Mn(II) complexes with the resolved epimers of adenosine 5{prime}-O-(1-thiodiphosphate) (ADP{alpha}S), bound at the active site of creatine kinase, have been determined in order to assess the relative strengths of enzymic stereoselectivity versus Lewis acid/base preferences in metal-ligand binding. Electron paramagnetic resonance (EPR) data have been obtained for Mn(II) in anion-stabilized, dead-end (transition-state analogue) complexes, in ternary enzyme-Mn{sup II}ADP{alpha}S complexes, and in the central complexes of the equilibrium mixture. The modes of coordination of Mn(II) at P{sub alpha} in the nitrate-stabilized, dead-end complexes with each epimer of ADP{alpha}S were ascertained by EPR measurements with (R{sub p})-({alpha}-{supmore » 17}O)ADP{alpha}S and (S{sub p})-({alpha}-{sup 17}O)ADP{alpha}S. A reduction in the magnitude of the {sup 55}Mn hyperfine coupling constant in the spectrum for the complex containing (S{sub p})-ADP{alpha}S is indicative of Mn(II)-thio coordination at P{sub alpha}. The results indicate that a strict discrimination for a unique configuration of the metal-nucleotide substrate is expressed upon binding of all of the substrates to form the active complex (or an analogue thereof). This enzymic stereoselectivity provides sufficient binding energy to overcome an intrinsic preference for the hard Lewis acid Mn(II) to coordinate to the hard Lewis base oxygen.« less

  6. The formation of novel layered compounds by exfoliation and restacking of cadmium phosphorus trisulphide with the biological molecules adenosine monophosphate and cytidine monophosphate included

    NASA Astrophysics Data System (ADS)

    Westreich, Philippe

    2004-12-01

    Exfoliated single layer Cd0.8PS3 has been combined with the biological molecules cytidine monophosphate (CMP) and adenosine monophosphate (AMP) to form the novel restacked compound LixCd 0.8PS3(NMP)z(H2O) y, where N stands for cytidine or adenosine. Composition was determined using energy dispersive X-ray spectroscopy, and the structure of these compounds was studied using X-ray diffraction on oriented films. It was found that for the AMP samples, there is little influence of relative humidity (RH) in the range of 0 to 80%, after which there is a rapid expansion of the interlayer space. In the 0 to 80% range, for (AMP)0.5, a host plane spacing near 19.6 A was found. Electron density calculations on the X-ray diffraction pattern suggest a model for the arrangement of guest AMP molecules between the host layers, with an accompanying water molecule. The calculations also suggest that there is a buckling in the host layer of about +/-0.6 A. For the (CMP)0.3 samples, there is more sensitivity to relative humidity in the 0--80% range, with spacings varying from 20 to 24 A. Much of this variation is gradual, but at around 50% RH, there is a discontinous change in the spacing of about 1.8 A, corresponding to less than the size of a water molecule, that appears to arise from a modification of the CMP conformation. Possible reasons far the differences in the behaviour of the two systems are explored.

  7. Hypothermia induced by adenosine 5'-monophosphate attenuates injury in an L-arginine-induced acute pancreatitis rat model.

    PubMed

    Wang, Yunlong; Guo, Weiting; Li, Yuan; Pan, Xinting; Lv, Wenshan; Cui, Lingling; Li, Changgui; Wang, Yangang; Yan, Shengli; Zhang, Jidong; Liu, Bin

    2014-04-01

    This study sought to investigate the effects of hypothermia induced by adenosine 5'-monophosphate (5'-AMP) on L-arginine (L-Arg)-induced acute pancreatitis in rats. The rats were divided into four groups: the control group, the acute pancreatitis group, the 5'-AMP pretreatment group, and the 5'-AMP posttreatment group. Rats in all groups, except for the control group, received two injections of 2.5 g/kg body weight (intraperitoneally) L-Arg, with an interval of 1 h between the injections. Subsequently, the rats were observed to assess whether hypothermia induced by 5'-AMP could effectively inhibit inflammation associated with L-Arg-induced acute pancreatitis in rats. Hypothermia induced by 5'-AMP produced protective effects in our acute pancreatitis model. These effects exhibited the following manifestations: (i) a significant reduction in rat mortality rates; (ii) a significant decrease in the occurrence of pancreatic edema; (iii) significant reductions in serum amylase (P < 0.001), interleukin-6 (P < 0.001), interleukin-1β (P < 0.001) and tumor necrosis factor-α (P < 0.001); (iv) the significant inhibition of nuclear factor-κB (NF-κB) activation in rats that were pre- and posttreated with 5'-AMP compared with rats that were only injected with L-Arg; and (v) significant decreases in the occurrence of pancreatic interstitial edema, inflammatory cell infiltration, hemorrhage, and acinar cell necrosis. Hypothermia induced by 5'-AMP could inhibit the acute inflammatory reaction and NF-κB activation associated with acute pancreatitis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  8. Atomistic modeling of alternating access of a mitochondrial ADP/ATP membrane transporter with molecular simulations

    PubMed Central

    Hayashi, Shigehiko

    2017-01-01

    The mitochondrial ADP/ATP carrier (AAC) is a membrane transporter that exchanges a cytosolic ADP for a matrix ATP. Atomic structures in an outward-facing (OF) form which binds an ADP from the intermembrane space have been solved by X-ray crystallography, and revealed their unique pseudo three-fold symmetry fold which is qualitatively different from pseudo two-fold symmetry of most transporters of which atomic structures have been solved. However, any atomic-level information on an inward-facing (IF) form, which binds an ATP from the matrix side and is fixed by binding of an inhibitor, bongkrekic acid (BA), is not available, and thus its alternating access mechanism for the transport process is unknown. Here, we report an atomic structure of the IF form predicted by atomic-level molecular dynamics (MD) simulations of the alternating access transition with a recently developed accelerating technique. We successfully obtained a significantly stable IF structure characterized by newly formed well-packed and -organized inter-domain interactions through the accelerated simulations of unprecedentedly large conformational changes of the alternating access without a prior knowledge of the target protein structure. The simulation also shed light on an atomistic mechanism of the strict transport selectivity of adenosine nucleotides over guanosine and inosine ones. Furthermore, the IF structure was shown to bind ATP and BA, and thus revealed their binding mechanisms. The present study proposes a qualitatively novel view of the alternating access of transporters having the unique three-fold symmetry in atomic details and opens the way for rational drug design targeting the transporter in the dynamic functional cycle. PMID:28727843

  9. 5'- Adenosine monophosphate induced hypothermia reduces early stage myocardial ischemia/reperfusion injury in a mouse model.

    PubMed

    Tao, Zhenyin; Zhao, Zhaoyang; Lee, Cheng Chi

    2011-08-15

    Early intervention using hypothermia treatment has been shown to reduce early inflammation, apoptosis and infarct size in animal models of cardiac ischemia/reperfusion. We have shown that 5'-adenosine monophosphate (5'-AMP) can induce a reversible deep hypothermia in mammals. We hypothesize that 5'-AMP-induced hypothermia (AIH) may reduce ischemic/reperfusion damage following myocardial infarct. C57BL/6J male mice were subjected to myocardial ischemia by ligating the left anterior descending coronary artery (LAD) followed by reperfusion. Compared to euthermic controls, mice given AIH treatment exhibited significant inhibition of neutrophil infiltration and a reduction in matrix metallopeptidase 9 (MMP-9) expressions in the infarcted myocardium. A decrease in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive nuclei in the left ventricle myocardium were also observed. The overall infarct size of the heart was significantly smaller in AIH treated mice. Myocardial ischemia in mice given 5'-AMP without hypothermia had similar ischemia/reperfusion injuries as the euthermic control. Thus, the AIH cardio-protective effects were primarily hypothermia based.

  10. Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells.

    PubMed

    Bertoni, Ana Paula Santin; de Campos, Rafael Paschoal; Tsao, Marisa; Braganhol, Elizandra; Furlanetto, Tania Weber; Wink, Márcia Rosângela

    2018-02-17

    The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.

  11. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  12. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.

    PubMed

    Narayana, N; Cox, S; Shaltiel, S; Taylor, S S; Xuong, N

    1997-04-15

    The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other

  13. An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis.

    PubMed

    Kamath, Vidyulata; Moberg, Paul J; Calkins, Monica E; Borgmann-Winter, Karin; Conroy, Catherine G; Gur, Raquel E; Kohler, Christian G; Turetsky, Bruce I

    2012-07-01

    While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3',5'-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n=17) and controls at low risk for developing psychosis (n=15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis

    PubMed Central

    Kamath, Vidyulata; Moberg, Paul J.; Calkins, Monica E.; Borgmann-Winter, Karin; Conroy, Catherine G.; Gur, Raquel E.; Kohler, Christian G.; Turetsky, Bruce I.

    2012-01-01

    Background While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3’,5’-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Method Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n = 17) and controls at low risk for developing psychosis (n = 15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. Results The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. Conclusions This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. PMID:22537567

  15. Regulation of Mct1 by cAMP-dependent internalization in rat brain endothelial cells.

    PubMed

    Smith, Jeffrey P; Uhernik, Amy L; Li, Lun; Liu, Zejian; Drewes, Lester R

    2012-10-22

    In the cerebrovascular endothelium, monocarboxylic acid transporter 1 (Mct1) controls blood-brain transport of short chain monocarboxylic and keto acids, including pyruvate and lactate, to support brain energy metabolism. Mct1 function is acutely decreased in rat brain cerebrovascular endothelial cells by β-adrenergic signaling through cyclic adenosine monophosphate (cAMP); however, the mechanism for this acute reduction in transport capacity is unknown. In this report, we demonstrate that cAMP induces the dephosphorylation and internalization of Mct1 from the plasma membrane into caveolae and early endosomes in the RBE4 rat brain cerebrovascular endothelial cell line. Additionally, we provide evidence that Mct1 constitutively cycles through clathrin vesicles and recycling endosomes in a pathway that is not dependent upon cAMP signaling in these cells. Our results are important because they show for the first time the regulated and unregulated vesicular trafficking of Mct1 in cerebrovascular endothelial cells; processes which have significance for better understanding normal brain energy metabolism, and the etiology and potential therapeutic approaches to treating brain diseases, such as stroke, in which lactic acidosis is a key component. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Regulation of Mct1 by cAMP-dependent internalization in rat brain endothelial cells

    PubMed Central

    Smith, Jeffrey P.; Uhernik, Amy L.; Li, Lun; Liu, Zejian; Drewes, Lester R.

    2012-01-01

    In the cerebrovascular endothelium, monocarboxylic acid transporter 1 (Mct1) controls blood-brain transport of short chain monocarboxylic and keto acids, including pyruvate and lactate, to support brain energy metabolism. Mct1 function is acutely decreased in rat brain cerebrovascular endothelial cells by β-adrenergic signaling through cyclic adenosine monophosphate (cAMP); however, the mechanism for this acute reduction in transport capacity is unknown. In this report, we demonstrate that cAMP induces the dephosphorylation and internalization of Mct1 from the plasma membrane into caveolae and early endosomes in the RBE4 rat brain cerebrovascular endothelial cell line. Additionally, we provide evidence that Mct1 constitutively cycles through clathrin vesicles and recycling endosomes in a pathway that is not dependent upon cAMP signaling in these cells. Our results are important because they show for the first time the regulated and unregulated vesicular trafficking of Mct1 in cerebrovascular endothelial cells; processes which have significance for better understanding normal brain energy metabolism, and the etiology and potential therapeutic approaches to treating brain diseases, such as stroke, in which lactic acidosis is a key component PMID:22925948

  17. Stepwise hydration and evaporation of adenosine monophosphate nucleotide anions: a multiscale theoretical study.

    PubMed

    Calvo, F; Douady, J

    2010-04-14

    The structure and finite-temperature properties of hydrated nucleotide anion adenosine 5'-monophosphate (AMP) have been theoretically investigated with a variety of methods. Using a polarizable version of the Amber force field and replica-exchange molecular dynamics simulations, putative lowest-energy structures have been located for the AMP(-)(H(2)O)(n) cluster anions with n = 0-20. The hydration energies obtained with the molecular mechanics potential slightly overestimate experimental measurements. However, closer values are found after reoptimizing the structures locally at more sophisticated levels, namely semi-empirical (PM6) and density-functional theory (B3LYP/6-31+G*). Upon heating the complexes, various indicators such as the heat capacity, number of hydrogen bonds or surface area provide evidence that the water cluster melts below 200 K but remains bonded to the AMP anion. The sequential loss of water molecules after sudden heating has been studied using a statistical approach in which unimolecular evaporation is described using the orbiting transition state version of phase space theory, together with anharmonic densities of vibrational states. The evaporation rates are calibrated based on the results of molecular dynamics trajectories at high internal energy. Our results indicate that between 4 and 10 water molecules are lost from AMP(-)(H(2)O)(20) after one second depending on the initial heating in the 250-350 K range, with a concomitant cooling of the remaining cluster by 75-150 K.

  18. Dynamics of platelet glycoprotein IIb-IIIa receptor expression and fibrinogen binding. I. Quantal activation of platelet subpopulations varies with adenosine diphosphate concentration.

    PubMed Central

    Frojmovic, M. M.; Mooney, R. F.; Wong, T.

    1994-01-01

    We have previously reported that maximal platelet activation with adenosine diphosphate (100 microM ADP) causes rapid expression of all GPIIb-IIIa receptors for fibrinogen (FgR) (< 1-3 s), measured with FITC-labeled PAC1 by flow cytometry. We have extended these studies to examine the effects of ADP concentration on the graded expression and Fg occupancy of GPIIb-IIIa receptors. Human citrated platelet-rich plasma, diluted 10-fold with Walsh-albumin-Mg+2 (2 mM), was treated with ADP (0.1-100 microM). The rates of GPIIb-IIIa receptor expression or Fg binding were measured in unstirred samples by flow cytometry, using FITC-labeled monoclonal antibodies (mAb) PAC1 and 9F9, respectively, from on-rates, using increasing times between mAb and ADP additions. Fibrinogen receptors were all expressed rapidly at low (1 microM) or high (100 microM) ADP (few seconds), whereas Fg occupancy was 50% of maximal by about 2 min. The maximal extent of GPIIb-IIIa receptor expression and Fg occupancy was determined from maximal binding (Flmax) at 30 min incubation with PAC1 or 9F9. On-rates and maximal extents of binding for either PAC1 or 9F9 probes showed identical [ADP]-response profiles ("KD" approximately 1.4 +/- 0.1 microM). However, Flmax studies showed bimodal histograms consisting of "resting" (Po) and maximally "activated" (P*) platelets for both PAC1 and 9F9 binding, with the fraction of "activated" platelets increasing with ADP concentration. The data best fit a model where platelet subpopulations are "quantally" transformed from Po to P*, expressing all GPIIb-IIIa receptors, rapidly filled by Fg, but "triggered" at critical ADP concentrations. Larger, but not the largest, platelets appear to be the most sensitive subpopulation. The implications for clinical studies are discussed, and the relationship to dynamics of aggregation are described in a companion paper. PMID:7858143

  19. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate.

    PubMed

    Yu, Cheng-Ju; Tseng, Wei-Lung

    2008-11-04

    A new colorimetric sensor for sensing Hg2+ in a high-salinity solution has been developed using gold nanoparticles (AuNPs) decorated with 3-mercaptopropionate acid (MPA) and adenosine monophosphate (AMP). Because of the high negative charge density of AMP on each AuNP surface, MPA/AMP-capped AuNPs are well dispersed in a high-salt solution. In contrast, the aggregation of MPA-capped AuNPs was induced by sodium ions, which shield the negative charges of the carboxylic groups of MPA. Through the coordination between the carboxylic group of MPA and Hg2+, the selectivity of MPA/AMP-capped AuNPs for Hg2+ in a high-salt solution is remarkably high over that of the other metals without the addition of a masking agent or a change in the temperature. We have carefully investigated the effect of the AMP concentration on the stability and sensitivity of MPA/AMP-capped AuNPs. Under optimum conditions, the lowest detectable concentration of Hg2+ using this probe was 500 nM on the basis of the measurement of the ratio of absorption at 620 nm to that at 520 nm. The sensitivity to Hg2+ can be further improved by modifying the MPA/AMP-capped AuNPs with highly fluorescent rhodamine 6G (R6G). By monitoring the fluorescence enhancement, the lowest detectable concentration of Hg2+ using R6G/MPA/AMP-capped AuNPs was 50 nM.

  20. Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide.

    PubMed

    Caiazzo, Elisabetta; Maione, Francesco; Morello, Silvana; Lapucci, Andrea; Paccosi, Sara; Steckel, Bodo; Lavecchia, Antonio; Parenti, Astrid; Iuvone, Teresa; Schrader, Jürgen; Ialenti, Armando; Cicala, Carla

    2016-07-15

    Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to changes under pathophysiological conditions has identified this pathway as an endogenous modulator in several diseases and was shown to be involved in the molecular mechanism of drugs, such as methotrexate, salicylates , interferon-β. We evaluated whether CD73/adenosine/A2A signalling pathway is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine A2A agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680, 2mg/kg ip.), inhibited carrageenan-induced rat paw oedema and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3mg/kg i.p.). Nimesulide (5mg/kg i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3mg/kg i.p.) and by local administration of the CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP; 400μg/paw). Furthermore, we found increased activity of 5'-nucleotidase/CD73 in paws and plasma of nimesulide treated rats, 4h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and prostaglandin E2 production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385 and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73

  1. cAMP Signaling Regulates Synchronised Growth of Symbiotic Epichloë Fungi with the Host Grass Lolium perenne

    PubMed Central

    Voisey, Christine R.; Christensen, Michael T.; Johnson, Linda J.; Forester, Natasha T.; Gagic, Milan; Bryan, Gregory T.; Simpson, Wayne R.; Fleetwood, Damien J.; Card, Stuart D.; Koolaard, John P.; Maclean, Paul H.; Johnson, Richard D.

    2016-01-01

    The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3′, 5′-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling. PMID:27833620

  2. Ratiometric detection of adenosine triphosphate (ATP) in water and real-time monitoring of apyrase activity with a tripodal zinc complex.

    PubMed

    Butler, Stephen J

    2014-11-24

    Two tripodal fluorescent probes Zn⋅L(1,2) have been synthesised, and their anion-binding capabilities were examined by using fluorescence spectroscopy. Probe Zn⋅L(1) allows the selective and ratiometric detection of adenosine triphosphate (ATP) at physiological pH, even in the presence of several competing anions, such as ADP, phosphate and bicarbonate. The probe was applied to the real-time monitoring of the apyrase-catalysed hydrolysis of ATP, in a medium that mimics an extracellular fluid. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Short-term hyperthyroidism modulates adenosine receptors and catalytic activity of adenylate cyclase in adipocytes.

    PubMed Central

    Rapiejko, P J; Malbon, C C

    1987-01-01

    The effects of short-term hyperthyroidism in vivo on the status of the components of the fat-cell hormone-sensitive adenylate cyclase were investigated. The number of beta-adrenergic receptors was elevated by about 25% in membranes of fat-cells isolated from hyperthyroid rats as compared with euthyroid rats, but their affinity for radioligand was unchanged. Membranes of hyperthyroid-rat fat-cells displayed less than 65% of the normal complement of receptors for [3H]cyclohexyladenosine. The affinity of the receptors for this ligand was normal. In contrast with the marked increase in the amounts of the alpha-subunits of the guanine nucleotide-binding proteins Gi (Mr 41,000) and Go (Mr 39,000) observed in the hypothyroid state [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564], the amounts of alpha-Gi, alpha-Go as well as alpha-Gs subunits [Mr 42,000 (major) and 46,000/48,000 (minor)] were not changed by hyperthyroidism. Adenylate cyclase activity in response to forskolin, guanosine 5'-[gamma-thio]triphosphate or isoprenaline, in contrast, was decreased by 30-50% in fat-cell membranes from hyperthyroid rats. Fat-cells isolated from hyperthyroid rats accumulated cyclic AMP to less than 50% of the extent in their euthyroid counterparts in the presence of adenosine deaminase and either adrenaline or forskolin, suggesting a decrease in the amount or activity of the catalytic subunit of adenylate cyclase. In the absence of exogenous adenosine deaminase, cyclic AMP accumulation in response to adrenaline was elevated rather than decreased in fat-cells from hyperthyroid rats. The inhibitory influence of adenosine is apparently limited in the hyperthyroid state by the decreased complement of inhibitory R-site purinergic receptors in these fat-cells. Short-term hyperthyroidism modulates the fat-cell adenylate cyclase system at the receptor level (beta-receptor number increased, R-site purinergic-receptor number decreased) and the catalytic subunit of adenylate

  4. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.

    2015-01-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  5. P2-, but not P1-purinoceptors mediate formation of 1, 4, 5-inositol trisphosphate and its metabolites via a pertussis toxin-insensitive pathway in the rat renal cortex.

    PubMed Central

    Nanoff, C.; Freissmuth, M.; Tuisl, E.; Schütz, W.

    1990-01-01

    1. The adenosine receptor (P1-purinoceptor) agonists N6-cyclopentyladenosine and N-5'-ethyl-carboxamidoadenosine at concentrations up to 10 mumols 1(-1) affected neither basal, nor noradrenaline- and angiotensin II-stimulated formation of inositol-1-phosphate, inositol-1,4-bisphosphate, and inositol-1,4,5-trisphosphate in slices of rat renal cortex. 2. In contrast, adenine nucleotides (P2-purinoceptor agonists) markedly stimulated inositol phosphate formation. The observed rank order of potency adenosine-5'-O-(2-thiodiphosphate) (EC50 39 mumols 1(-1] greater than adenosine-5'-O-(3-thiotriphosphate) (587) greater than or equal to 5'-adenylylimidodiphosphate (App(NH)p, 899) greater than adenylyl-(beta, gamma-methylene)-diphosphate (4,181) was consistent with the interaction of the compounds with the P2Y-subtype of P2-purinoceptors. AMP and the ADP analogue (alpha, beta-methylene)-adenosine-5'-diphosphate were ineffective. ATP and ADP (less than or equal to 10 mmol 1(-1] did not produce a consistent increase, owing to their hydrolytic degradation in the incubation medium. 3. Whereas the inositol phosphate response to App(NH)p was linear only up to 5 min incubation, the time-dependent stimulation of noradrenaline declined at a slower rate. Following pre-exposure of the renal cortical slices to App(NH)p, renewed addition of App(NH)p caused no further enhancement in the accumulation of inositol phosphates, whilst noradrenaline was still capable of eliciting a response. This suggests that the apparent loss of responsiveness to App(NH)p is not due to substrate depletion or enzymatic inactivation, but most likely attributable to homologous desensitization of the purinoceptor.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:2115389

  6. Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP.

    PubMed

    Lauhon, Charles T

    2012-11-06

    Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed require the four proteins YwlC (TsaC), YdiB (TsaE), YdiC (TsaB) and YdiE (TsaD). YwlC was found to catalyze the conversion of L-threonine, bicarbonate/CO(2) and ATP to give the intermediate L-threonylcarbamoyl-AMP (TC-AMP) and pyrophosphate as products. TC-AMP was isolated by HPLC and characterized by mass spectrometry and (1)H NMR. NMR analysis showed that TC-AMP decomposes to give AMP and a nearly equimolar mixture of L-threonine and 5-methyl-2-oxazolidinone-4-carboxylate as final products. Under physiological conditions (pH 7.5, 37 °C, 2 mM MgCl(2)), the half-life of TC-AMP was measured to be 3.5 min. Both YwlC (in the presence of pyrophosphatase) and its Escherichia coli homologue YrdC catalyze the formation of TC-AMP while producing only a small molar fraction of AMP. This suggests that CO(2) and not an activated form of bicarbonate is the true substrate for these enzymes. In the presence of pyrophosphate, both enzymes catalyze clean conversion of TC-AMP back to ATP. Purified TC-AMP is efficiently processed to t(6)A by the YdiBCE proteins in the presence of tRNA substrates. This reaction is ATP independent in vitro, despite the known ATPase activity of YdiB. The estimated rate of conversion of TC-AMP by YdiBCE to t(6)A is somewhat lower than the initial rate from L-threonine, bicarbonate and ATP, which together with the stability data, is consistent with previous studies that suggest channeling of this intermediate.

  7. Deficits in Endogenous Adenosine Formation by Ecto-5′-Nucleotidase/CD73 Impair Neuromuscular Transmission and Immune Competence in Experimental Autoimmune Myasthenia Gravis

    PubMed Central

    Cristina Costa, Ana; Guerra-Gomes, Sónia; Ferreirinha, Fátima; Magalhães-Cardoso, Maria Teresa; Correia-de-Sá, Paulo

    2015-01-01

    AMP dephosphorylation via ecto-5′-nucleotidase/CD73 is the rate limiting step to generate extracellular adenosine (ADO) from released adenine nucleotides. ADO, via A2A receptors (A2ARs), is a potent modulator of neuromuscular and immunological responses. The pivotal role of ecto-5′-nucleotidase/CD73, in controlling extracellular ADO formation, prompted us to investigate its role in a rat model of experimental autoimmune myasthenia gravis (EAMG). Results show that CD4+CD25+FoxP3+ regulatory T cells express lower amounts of ecto-5′-nucleotidase/CD73 as compared to controls. Reduction of endogenous ADO formation might explain why proliferation of CD4+ T cells failed upon blocking A2A receptors activation with ZM241385 or adenosine deaminase in EAMG animals. Deficits in ADO also contribute to neuromuscular transmission failure in EAMG rats. Rehabilitation of A2AR-mediated immune suppression and facilitation of transmitter release were observed by incubating the cells with the nucleoside precursor, AMP. These findings, together with the characteristic increase in serum adenosine deaminase activity of MG patients, strengthen our hypothesis that the adenosinergic pathway may be dysfunctional in EAMG. Given that endogenous ADO formation is balanced by ecto-5′-nucleotidase/CD73 activity and that A2ARs exert a dual role to restore use-dependent neurocompetence and immune suppression in myasthenics, we hypothesize that stimulation of the two mechanisms may have therapeutic potential in MG. PMID:25691808

  8. Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A*

    PubMed Central

    Wilderman, Andrea; Guo, Yurong; Divakaruni, Ajit S.; Perkins, Guy; Zhang, Lingzhi; Murphy, Anne N.; Taylor, Susan S.; Insel, Paul A.

    2015-01-01

    Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin− (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin− S49 cells. WT, but not kin−, S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin− cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin− cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin− S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin− cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses. PMID:26203188

  9. Kinetic parameters and renal clearances of plasma adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in man

    PubMed Central

    Broadus, Arthur E.; Kaminsky, Neil I.; Hardman, Joel G.; Sutherland, Earl W.; Liddle, Grant W.

    1970-01-01

    Kinetic parameters and the renal clearances of plasma adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) were evaluated in normal subjects using tritium-labeled cyclic nucleotides. Each tracer was administered both by single, rapid intravenous injection and by constant intravenous infusion, and the specific activities of the cyclic nucleotides in plasma and urine were determined. Both cyclic AMP and cyclic GMP were cleared from plasma by glomerular filtration. The kidney was found to add a variable quantity of endogenous cyclic AMP to the tubular urine, amounting to an average of approximately one-third of the total level of cyclic AMP excreted. Plasma was the source of virtually all of the cyclic GMP excreted. Plasma levels of the cyclic nucleotides appeared to be in dynamic steady state. The apparent volumes of distribution of both nucleotides exceeded extracellular fluid volume, averaging 27 and 38% of body weight for cyclic AMP and cyclic GMP, respectively. Plasma production rates ranged from 9 to 17 nmoles/min for cyclic AMP and from 7 to 13 nmoles/min for cyclic GMP. Plasma clearance rates averaged 668 ml/min for cyclic AMP and 855 ml/min for cyclic GMP. Approximately 85% of the elimination of the cyclic nucleotides from the circulation was due to extrarenal clearance. PMID:5480849

  10. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells.

    PubMed

    Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia

    2014-10-01

    In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2 × 7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2 × 7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2 × 7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling-p53 increase, AMPK activation, and PARP cleavage-as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. © 2014 Mello et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Adrenal hormones and liver cAMP in exercising rats--different modes of anesthesia.

    PubMed

    Winder, W W; Fuller, E O; Conlee, R K

    1983-11-01

    We have compared five different modes of anesthesia (iv and ip pentobarbital sodium, ether, CO2, and cervical dislocation) with respect to their effects on liver glycogen, liver adenosine 3',5'-cyclic monophosphate (cAMP), blood glucose and lactate, plasma corticosterone, norepinephrine, and epinephrine in resting rats and in rats run on a treadmill at 26 m/min for 30 min. Ether, CO2, and cervical dislocation were found to be unsuitable due to the marked elevation in plasma catecholamines seen in both resting and exercising rats. Injection of pentobarbital sodium ip required an average of 8 min before onset of surgical anesthesia as opposed to less than 5 s for iv pentobarbital. Exercising rats anesthetized with ip pentobarbital showed markedly lower plasma catecholamines compared with rats given iv pentobarbital. Hepatic cAMP increased in response to exercise in all groups except the ip pentobarbital group. This is most likely due to the long delay between the end of the exercise and freezing of the liver in the ip pentobarbital-anesthetized animals. We conclude that iv injection of pentobarbital is the most suitable method of anesthesia for obtaining accurate measurements of plasma stress hormones, substrates, and metabolites and of hepatic cAMP and glycogen in resting and exercising rats.

  12. Cigarette Smoke Upregulates PDE3 and PDE4 to Decrease cAMP in Airway Cells.

    PubMed

    Zuo, Haoxiao; Han, Bing; Poppinga, Wilfred J; Ringnalda, Lennard; Kistemaker, Loes E M; Halayko, Andrew J; Gosens, Reinoud; Nikolaev, Viacheslav O; Schmidt, Martina

    2018-05-03

    3', 5'-cyclic adenosine monophosphate (cAMP) is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease (COPD), a lung disease primarily provoked by cigarette smoke (CS), the induction of cAMP-dependent pathways, via inhibition of hydrolyzing phosphodiesterases (PDEs), is a prime therapeutic strategy. Mechanisms that disrupt cAMP signaling in airway cells, in particular regulation of endogenous PDEs are poorly understood. We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mouse in vivo, ex vivo precision cut lung slices (PCLS), and in human in vitro cell models to track the effects of CS exposure. Under fenoterol stimulated conditions, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein upregulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed downregulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre-contracted airways. We show that CS upregulates expression and activity of both PDE3 and PDE4, which regulate real-time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS-induced pulmonary pathophysiology. This article is protected by copyright. All rights reserved.

  13. Adenosine and the Auditory System

    PubMed Central

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R

    2009-01-01

    Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966

  14. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  15. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo.

    PubMed

    Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai

    2017-06-08

    Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.

  16. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo

    PubMed Central

    Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai

    2017-01-01

    Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression. PMID:28629115

  17. The Clinical Correlation of Regulatory T Cells and Cyclic Adenosine Monophosphate in Enterovirus 71 Infection

    PubMed Central

    Wang, Shih-Min; Chen, I-Chun; Liao, Yu-Ting; Liu, Ching-Chuan

    2014-01-01

    Background Brainstem encephalitis (BE) and pulmonary edema (PE) are notable complications of enterovirus 71 (EV71) infection. Objective This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment. Study Design Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD) or BE group, and the autonomic nervous system (ANS) dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP) levels, and the regulatory T cell (Tregs) profiles of the patients were determined. Results Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4+CD25+Foxp3+ and CD4+Foxp3+ T cells compared with patients with HFMD or BE. The expression frequency of CD4−CD8− was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment. Conclusions These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels. PMID:25010330

  18. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production

    PubMed Central

    Pulliainen, Arto T.; Pieles, Kathrin; Brand, Cameron S.; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W.; Dehio, Christoph

    2012-01-01

    Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium. PMID:22635269

  19. Effect of dibutyryl cyclic adenosine monophosphate on the gene expression of plasminogen activator inhibitor-1 and tissue factor in adipocytes.

    PubMed

    Taniguchi, Makoto; Ono, Naoko; Hayashi, Akira; Yakura, Yuwna; Takeya, Hiroyuki

    2011-10-01

    Hypertrophic adipocytes in obese states express the elevated levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF). An increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP) promotes triglyceride hydrolysis and may improve dysregulation of adipocyte metabolism. Here, we investigate the effect of dibutyryl-cAMP (a phosphodiesterase-resistant analog of cAMP) on the gene expression of PAI-1 and TF in adipocytes. Differentiated 3T3-L1 adipocytes were treated with dibutyryl-cAMP and agents that would be expected to elevate intracellular cAMP, including cilostazol (a phosphodiesterase inhibitor with anti-platelet and vasodilatory properties), isoproterenol (a beta adrenergic agonist) and forskolin (an adenylyl cyclase activator). The levels of PAI-1 and TF mRNAs were measured using real-time quantitative reverse transcription-PCR. The treatment of adipocytes with dibutyryl-cAMP resulted in the inhibition of both lipid accumulation and TF gene expression. However, PAI-1 gene expression was slightly but significantly increased by dibutyryl-cAMP. On the other hand, cilostazol inhibited the expression of PAI-1 without affecting lipid accumulation. When the adipocytes were treated with cilostazol in combination with isoproterenol or forskolin, the inhibitory effect of cilostazol on PAI-1 gene expression was counteracted, thus suggesting that inhibition by cilostazol may not be the result of intracellular cAMP accumulation by phosphodiesterase inhibition. These results suggest the implication of cAMP in regulation of the gene expression of TF and PAI-1 in adipocytes. Our findings will serve as a useful basis for further research in therapy for obesity-associated thrombosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis.

    PubMed

    Savi, Pierre; Herbert, Jean-Marc

    2005-04-01

    Ticlopidine and clopidogrel belong to the same chemical family of thienopyridine adenosine diphosphate (ADP)-receptor antagonists. They have shown their efficacy as platelet antiaggregant and antithrombotic agents in many animal models, both ex vivo and in vivo. Although ticlopidine was discovered more than 30 years ago, it was only recently that the mechanism of action of ADP-receptor antagonists was characterized in detail. Ticlopidine and clopidogrel both behave in vivo as specific antagonists of P2Y (12), one of the ADP receptors on platelets. Metabolic steps that involve cytochrome P450-dependent pathways are required to generate the active metabolite responsible for this in vivo activity. The active moiety is a reactive thiol derivative that targets P2Y (12) on platelets. The interaction is irreversible, accounting for the observation that platelets are definitely antiaggregated, even if no active metabolite is detectable in plasma. The interaction is specific for P2Y (12); other purinoceptors such as P2Y (1) and P2Y (13) are spared. This results in inhibition of the binding of the P2Y (12) agonist 2-methylthio-ADP and the ADP-induced downregulation of adenylyl cyclase. Platelet aggregation is affected not only when triggered by ADP but also by aggregation inducers when used at concentrations requiring released ADP as an amplifier. The efficacy and safety of clopidogrel has been established in several large, randomized, controlled trials. The clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE) trial demonstrated the superiority of clopidogrel over acetylsalicylic acid (ASA) in patients at risk of ischemic events, including ischemic stroke, myocardial infarction (MI), and peripheral arterial disease. The clopidogrel in unstable angina to prevent recurrent ischemic events (CURE) trial showed a sustained, incremental benefit when clopidogrel was added to standard therapy (including ASA) in patients with unstable angina and non-Q-wave MI

  1. Immunomodulatory Effects of Lippia sidoides Extract: Induction of IL-10 Through cAMP and p38 MAPK-Dependent Mechanisms

    PubMed Central

    Rajgopal, Arun; Rebhun, John F.; Burns, Charlie R.; Scholten, Jeffrey D.; Balles, John A.

    2015-01-01

    Abstract Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway. PMID:25599252

  2. Immunomodulatory effects of Lippia sidoides extract: induction of IL-10 through cAMP and p38 MAPK-dependent mechanisms.

    PubMed

    Rajgopal, Arun; Rebhun, John F; Burns, Charlie R; Scholten, Jeffrey D; Balles, John A; Fast, David J

    2015-03-01

    Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway.

  3. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle.

    PubMed

    Brand, Thomas; Schindler, Roland

    2017-12-01

    The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity.

    PubMed

    Graeff, R M; Walseth, T F; Fryxell, K; Branton, W D; Lee, H C

    1994-12-02

    Cyclic nucleotides such as cAMP and cGMP are second messengers subserving various signaling pathways. Cyclic ADP-ribose (cADPR), a recently discovered member of the family, is derived from NAD+ and is a mediator of Ca2+ mobilization in various cellular systems. The synthesis and degradation of cADPR are, respectively, catalyzed by ADP-ribosyl cyclase and cADPR hydrolase. CD38, a differentiation antigen of B lymphocytes, has recently been shown to be a bifunctional enzyme catalyzing both the formation and hydrolysis of cADPR. The overall reaction catalyzed by CD38 is the formation of ADP-ribose and nicotinamide from NAD+, identical to that catalyzed by NADase. The difficulties in detecting the formation of cADPR have led to frequent identification of CD38 as a classical NADase. In this study, we show that both ADP-ribosyl cyclase and CD38, but not NADase, can cyclize nicotinamide guanine dinucleotide (NGD+) producing a new nucleotide. Analyses by high performance liquid chromatography and mass spectroscopy indicate the product is cyclic GDP-ribose (cGDPR) with a structure similar to cADPR except with guanine replacing adenine. Compared to cADPR, cGDPR is a more stable compound showing 2.8 times more resistance to heat-induced hydrolysis. These results are consistent with a catalytic scheme for CD38 where the cyclization of the substrate precedes the hydrolytic reaction. Spectroscopic analyses show that cGDPR is fluorescent and has an absorption spectrum different from both NGD+ and GDPR, providing a very convenient way for monitoring its enzymatic formation. The use of NGD+ as substrate for assaying the cyclization reaction was found to be applicable to pure enzymes as well as crude tissue extracts making it a useful diagnostic tool for distinguishing CD38-like enzymes from degradative NADases.

  5. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major.

    PubMed

    Hossain, Md Sakhawat; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; Sony, Nadia Mahjabin

    2016-09-01

    Our study explored the dietary effects of adenosine monophosphate (AMP) to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream. A semi-purified basal diet supplemented with 0% (Control), 0.1% (AMP-0.1), 0.2% (AMP-0.2), 0.4% (AMP-0.4) and 0.8% (AMP-0.8) purified AMP to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (mean initial weight 3.4 g) for 56 days. The results indicated that dietary AMP supplements tended to improve growth performances. One of the best ones was found in diet group AMP-0.2, followed by diet groups AMP-0.1, AMP-0.4 and AMP-0.8. The Apparent digestibility coefficients (dry matter, protein and lipid) also improved by AMP supplementation and the significantly highest dry matter digestibility was observed in diet group AMP-0.2. Fish fed diet groups AMP-0.2 and AMP-0.4 had significantly higher peroxidase and bactericidal activities than fish fed the control diet. Nitro-blue-tetrazolium (NBT) activity was found to be significantly (P < 0.05) greater in fish fed diet groups AMP-0.4 and AMP-0.8. Total serum protein, lysozyme activity and agglutination antibody titer were also increased (P > 0.05) by dietary supplementation. In contrast, catalase activity decreased with AMP supplementation. Moreover, the fish fed AMP supplemented diets had better improvement (P < 0.05) in body lipid contents, condition factor, hematocrit content and glutamyl oxaloacetic transaminase (GOT) level than the control group. Supplementation also improved both freshwater and oxidative stress resistances. Interestingly, the fish fed diet groups AMP-0.2 and AMP-0.4 showed the least oxidative stress condition. Finally it is concluded that, dietary AMP supplementation enhanced the growth, digestibility, immune response and stress resistance of red sea bream. The regression analysis revealed that a dietary AMP supplementation between 0.2 and 0.4% supported weight gain and

  6. Lipoic acid stimulates cAMP production via G protein coupled receptor dependent and independent mechanisms

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Tsang, Catherine; Regan, John W.; Bourdette, Dennis N.; Carr, Daniel W.

    2010-01-01

    Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer’s disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R and S LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCc with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G- protein coupled receptors, including histamine and adenosine, but not the beta adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases. PMID:21036588

  7. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5'-monophosphate.

    PubMed

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5'-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. © 2013.

  8. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element.

    PubMed Central

    Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J

    1994-01-01

    Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470

  9. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.

    PubMed

    Karlberg, Tobias; Klepsch, Mirjam; Thorsell, Ann-Gerd; Andersson, C David; Linusson, Anna; Schüler, Herwig

    2015-03-20

    The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence motif; the domain has enigmatic functions and apparently lacks catalytic activity. We used x-ray crystallography, molecular dynamics simulations, and biochemical analyses to investigate the structural requirements for ADP-ribosyltransferase activity in human PARP13 and two of its functional partners in stress granules: PARP12/ARTD12, and PARP15/BAL3/ARTD7. The crystal structure of the PARP homology domain of PARP13 shows obstruction of the canonical active site, precluding NAD(+) binding. Molecular dynamics simulations indicate that this closed cleft conformation is maintained in solution. Introducing consensus side chains in PARP13 did not result in 3-aminobenzamide binding, but in further closure of the site. Three-dimensional alignment of the PARP homology domains of PARP13, PARP12, and PARP15 illustrates placement of PARP13 residues that deviate from the PARP family consensus. Introducing either one of two of these side chains into the corresponding positions in PARP15 abolished PARP15 ADP-ribosyltransferase activity. Taken together, our results show that PARP13 lacks the structural requirements for ADP-ribosyltransferase activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Adenosine monophosphate is not superior to histamine for bronchial provocation test for assessment of asthma control and symptoms.

    PubMed

    Wu, Fan; Guan, Wei-Jie; Gao, Yi; An, Jia-Ying; Xie, Yan-Qing; Liu, Wen-Ting; Yu, Xin-Xin; Zheng, Jin-Ping

    2017-07-01

    Adenosine monophosphate (AMP) may reflect airway inflammation and hyperresponsiveness, but relationship between AMP and histamine (His, a conventional stimulus) bronchial provocation test (BPT) in asthma is not fully elucidated. To compare both BPTs and determine their utility in reflecting changes of asthmatic symptoms. BPTs were performed in a cross-over fashion, at 2-4 day intervals. Cumulative doses eliciting 20% FEV 1 fall (PD 20 FEV 1 ), diagnostic performance and adverse events (AEs) were compared. Patients with PD 20 FEV 1 lower than geometric mean were defined as responders, otherwise poor responders. Patients with uncontrolled and partly controlled asthma, who maintained their original inhaled corticosteroids therapy, underwent reassessment of airway responsiveness and asthmatic symptoms 3 and 6 months after. Nineteen uncontrolled, 22 partly controlled and 19 controlled asthmatic patients and 24 healthy subjects were recruited. Lower PD 20 FEV 1 geometric means were associated with poorer asthma control in His-BPT (0.424 μmol vs 1.684 μmol vs 3.757 μmol), but not AMP-BPT (11.810 μmol vs 7.781 μmol vs 10.220 μmol). Both BPTs yielded similar overall diagnostic performance in asthma (area under curve: 0.842 in AMP-BPT vs 0.850 in His-BPT). AEs, including wheezing and tachypnea, were similar and mild. Ten patients with uncontrolled and 10 partly controlled asthma were followed-up. At months 3 and 6, we documented an increase in PD 20 FEV 1 -AMP and PD 20 FEV 1 -His, which did not correlate with reduction asthmatic symptom scores. This overall applied in responders and poor responders of AMP-BPT and His-BPT. Despite higher screening capacity of well-controlled asthma, AMP-BPT confers similar diagnostic performance and safety with His-BPT. AMP-BPT might not preferentially reflect changes asthmatic symptoms. © 2015 John Wiley & Sons Ltd.

  11. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual...(k)(3)(F), the ADP test is performed under the plan (determined without regard to disaggregation...

  12. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual...(k)(3)(F), the ADP test is performed under the plan (determined without regard to disaggregation...

  13. Hydrostatic pressure-dependent changes in cyclic AMP signaling in optic nerve head astrocytes from Caucasian and African American donors

    PubMed Central

    Chen, Lin; Hernandez, M. Rosario

    2009-01-01

    Purpose Investigate the effect of hydrostatic pressure (HP) on 3′, 5′-cyclic adenosine monophosphate (cAMP) levels and downstream signaling in cultures of normal optic nerve head (ONH) astrocytes from Caucasian American (CA) and African American (AA) donors. Methods Intracellular cAMP levels were assayed after exposing ONH astrocytes to HP for varying times. Quantitative RT–PCR was used to determine the expression levels of selected cAMP pathway genes in human ONH astrocytes after HP treatment. Western blots were used to measure changes in the phosphorylation state of cAMP response element binding protein (CREB) in astrocytes subjected to HP, ATP, and phosphodiesterase or kinase inhibitors. Results The basal intracellular cAMP level is similar among AA and CA astrocytes. After exposure to HP for 15 min and 30 min in the presence of a phosphodiesterase inhibitor a further increase of intracellular cAMP was observed in AA astrocytes, but not in CA astrocytes. Consistent with activation of the cAMP-dependent protein kinase pathway, CREB phosphorylation (Ser-133) was increased to a greater extent in AA than in CA astrocytes after 3 h of HP. Exposure to elevated HP for 3–6 h differentially altered the expression levels of selected cAMP pathway genes (ADCY3, ADCY9, PTHLH, PDE7B) in AA compared to CA astrocytes. Treatment with ATP increased more CREB phosphorylation in CA than in AA astrocytes, suggesting differential Ca2+ signaling in these populations. Conclusions Activation of the cAMP-dependent signaling pathway by pressure may be an important contributor to increased susceptibility to elevated intraocular pressure and glaucoma in AA, a population at higher risk for the disease. PMID:19710943

  14. Protection from AMP 579 can be added to that from either cariporide or ischemic preconditioning in ischemic rabbit heart.

    PubMed

    Xu, Zhelong; Jiao, Zhe; Cohen, Michael V; Downey, James M

    2002-10-01

    AMP 579, an adenosine A /A receptor agonist, is cardioprotective when administered at reperfusion. Pretreatment with the Na /H exchanger inhibitor cariporide or ischemic preconditioning (PC) also limits infarct size. To gain insight into the mechanism of AMP 579 we investigated whether its protection could be added to that from either cariporide or PC. rabbit hearts were subjected to 45 min of regional ischemia followed by 3 h of reperfusion. Infarct size in the control group was 55.8 +/- 3.9% of the risk zone. PC significantly reduced infarct size to 26.0 +/- 6.7% (p<0.05). AMP 579 (30 micro g/kg) given just before reperfusion followed by 3 micro g/kg/min infusion for 70 min also limited infarct size (32.1 +/- 1.8%,) but the combination of AMP 579 and PC showed a significantly greater limitation of infarct size (5.5 +/- 2.7%, p < 0.05). Because cariporide pretreatment was so protective (8.5 +/- 3.7% infarction), we had to increase the ischemic insult to 60 min to test for any additive effect of the combination of AMP 579 + cariporide. Infarct size in the untreated group was 66.0 +/- 4.9% of the risk zone. Cariporide (0.5 mg/kg) 5 min prior to ischemia significantly reduced infarct size to 41.5 +/- 7.7%. When cariporide pre-treatment was combined with AMP 579 at reperfusion, infarction was further limited (14.2 +/- 4.5%). Because AMP 579's protection can be added to that of either cariporide or PC, AMP 579's mechanism of protection probably differs from either of them. The combination of AMP 579 + cariporide was particularly efficacious and could be useful in the surgical setting.

  15. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    PubMed

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  17. 45 CFR 95.621 - ADP reviews.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false ADP reviews. 95.621 Section 95.621 Public Welfare....621 ADP reviews. The Department will conduct periodic onsite surveys and reviews of State and local... the Department and State or local agencies prior to conducting such surveys or reviews, which may...

  18. Induction of chinook salmon growth hormone promoter activity by the adenosine 3',5'-monophosphate (cAMP)-dependent pathway involves two cAMP-response elements with the CGTCA motif and the pituitary-specific transcription factor Pit-1.

    PubMed

    Wong, A O; Le Drean, Y; Liu, D; Hu, Z Z; Du, S J; Hew, C L

    1996-05-01

    In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH4ZR7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2-specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH4ZR7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a viral thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene

  19. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies.

    PubMed

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5'-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1  μ m(2) (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods.

  20. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies

    PubMed Central

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5′-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μm2 (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods. PMID:24159349

  1. Enhancement of Astroglial Aerobic Glycolysis by Extracellular Lactate-Mediated Increase in cAMP

    PubMed Central

    Vardjan, Nina; Chowdhury, Helena H.; Horvat, Anemari; Velebit, Jelena; Malnar, Maja; Muhič, Marko; Kreft, Marko; Krivec, Špela G.; Bobnar, Saša T.; Miš, Katarina; Pirkmajer, Sergej; Offermanns, Stefan; Henriksen, Gjermund; Storm-Mathisen, Jon; Bergersen, Linda H.; Zorec, Robert

    2018-01-01

    Besides being a neuronal fuel, L-lactate is also a signal in the brain. Whether extracellular L-lactate affects brain metabolism, in particular astrocytes, abundant neuroglial cells, which produce L-lactate in aerobic glycolysis, is unclear. Recent studies suggested that astrocytes express low levels of the L-lactate GPR81 receptor (EC50 ≈ 5 mM) that is in fat cells part of an autocrine loop, in which the Gi-protein mediates reduction of cytosolic cyclic adenosine monophosphate (cAMP). To study whether a similar signaling loop is present in astrocytes, affecting aerobic glycolysis, we measured the cytosolic levels of cAMP, D-glucose and L-lactate in single astrocytes using fluorescence resonance energy transfer (FRET)-based nanosensors. In contrast to the situation in fat cells, stimulation by extracellular L-lactate and the selective GPR81 agonists, 3-chloro-5-hydroxybenzoic acid (3Cl-5OH-BA) or 4-methyl-N-(5-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-4-(2-thienyl)-1,3-thiazol-2-yl)cyclohexanecarboxamide (Compound 2), like adrenergic stimulation, elevated intracellular cAMP and L-lactate in astrocytes, which was reduced by the inhibition of adenylate cyclase. Surprisingly, 3Cl-5OH-BA and Compound 2 increased cytosolic cAMP also in GPR81-knock out astrocytes, indicating that the effect is GPR81-independent and mediated by a novel, yet unidentified, excitatory L-lactate receptor-like mechanism in astrocytes that enhances aerobic glycolysis and L-lactate production via a positive feedback mechanism. PMID:29867342

  2. Energy status and oxidation reduction status in rat liver at high altitude /3.8 km/

    NASA Technical Reports Server (NTRS)

    Reed, R. D.; Pace, N.

    1980-01-01

    Adult male rats were exposed to 3.8-km altitude for intervals ranging from 1 h-60 d. Liver samples were taken under light ether anesthesia and were examined by enzymatic analyses. Within 1-6 h of hypoxic exposure, ATP levels decreased while ADP and AMP levels increased, producing a fall in calculated ATP/ADP and adenylate charge ratios. Concurrently, lactate/pyruvate and alpha-glycerophosphate/dihydroxyacetone phosphate ratios increased markedly. Direct measurements of cellular pyridine nucleotides indicated increased NADH/NAD and NADPH/NADP ratios. Levels of total adenosine phosphates and pyridine nucleotides decreased in a significant accompanying response. Many metabolite levels and calculated ratios returned to near-normal values within 1 week of exposure, indicating secondary intracellular adjustments to hypoxic stress; however, persistence of that stress is reflected in lactate concentrations and both substrate redox ratios. Results support and explore concepts that increased oxidation-reduction status and decreased energy status are primary events during hypoxia.

  3. cAMP and in vivo hypoxia induce tob, ifr1, and fos expression in erythroid cells of the chick embryo.

    PubMed

    Dragon, Stefanie; Offenhäuser, Nina; Baumann, Rosemarie

    2002-04-01

    During avian embryonic development, terminal erythroid differentiation occurs in the circulation. Some of the key events, such as the induction of erythroid 2,3-bisphosphoglycerate (2,3-BPG), carbonic anhydrase (CAII), and pyrimidine 5'-nucleotidase (P5N) synthesis are oxygen dependent (Baumann R, Haller EA, Schöning U, and Weber M, Dev Biol 116: 548-551, 1986; Dragon S and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 280: R870-R878, 2001; Dragon S, Carey C, Martin K, and Baumann R, J Exp Biol 202: 2787-2795, 1999; Dragon S, Glombitza S, Götz R, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon S, Hille R, Götz R, and Baumann R, Blood 91: 3052-3058, 1998; Million D, Zillner P, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 261: R1188-R1196, 1991) in an indirect way: hypoxia stimulates the release of norepinephrine (NE)/adenosine into the circulation (Dragon et al., J Exp Biol 202: 2787-2795, 1999; Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996). This leads via erythroid beta-adrenergic/adenosine A(2) receptor activation to a cAMP signal inducing several proteins in a transcription-dependent manner (Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon et al., Blood 91: 3052-3058, 1998; Glombitza S, Dragon S, Berghammer M, Pannermayr M, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R973-R981, 1996). To understand how the cAMP-dependent processes are initiated, we screened an erythroid cDNA library for cAMP-regulated genes. We detected three genes that were strongly upregulated (>5-fold) by cAMP in definitive and primitive red blood cells. They are homologous to the mammalian Tob, Ifr1, and Fos proteins. In addition, the genes are induced in the intact embryo during short-term hypoxia. Because the genes are regulators of proliferation and differentiation in other cell types, we suggest that cAMP

  4. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro.

    PubMed

    Schlegel, Nicolas; Baumer, Yvonne; Drenckhahn, Detlev; Waschke, Jens

    2009-05-01

    To determine whether cyclic adenosine monophosphate (cAMP) is critically involved in lipopolysaccharide (LPS)-induced breakdown of endothelial barrier functions in vivo and in vitro. Experimental laboratory research. Research laboratory. Wistar rats and cultured human microvascular endothelial cells. Permeability measurements in single postcapillary venules in vivo and permeability measurements and cell biology techniques in vitro. We demonstrate that within 120 minutes LPS increased endothelial permeability in rat mesenteric postcapillary venules in vivo and caused a barrier breakdown in human dermal microvascular endothelial cells in vitro. This was associated with the formation of large intercellular gaps and fragmentation of vascular endothelial cadherin immunostaining. Furthermore, claudin 5 immunostaining at cell borders was drastically reduced after LPS treatment. Interestingly, activity of the small GTPase Rho A, which has previously been suggested to mediate the LPS-induced endothelial barrier breakdown, was not increased after 2 hours. However, activity of Rac 1, which is known to be important for maintenance of endothelial barrier functions, was significantly reduced to 64 +/- 8% after 2 hours. All LPS-induced changes of endothelial cells were blocked by a forskolin-mediated or rolipram-mediated increase of cAMP. Consistently, enzyme-linked immunosorbent assay-based measurements demonstrated that LPS significantly decreased intracellular cAMP. In summary, our data demonstrate that LPS disrupts endothelial barrier properties by decreasing intracellular cAMP. This mechanism may involve inactivation of Rac 1 rather than activation of Rho A.

  5. Regulation of cyclic adenosine monophosphate response element binding protein on renin expression in kidney via complex cyclic adenosine monophosphate response element-binding-protein-binding protein/P300 recruitment.

    PubMed

    Li, Pei; Zhang, Jing; Zhu, Yuanfang; Liu, Ming; Xuan, Jin

    2015-11-01

    Renin synthesis and release is the rate-limiting step in the renin-angiotensin system, because cyclic adenosine monophosphate (cAMP) has been identified as dominant pathway for renin gene expression, and cAMP response element-binding protein (CREB) is found in the human and mouse renin promoter. This study aimed to evaluate the role of CREB in expression of the renin gene. We created conditional deletion of CREB in mice with low-sodium diet, specifically in renin cells of the kidney. To assess the effect of CREB on renin expression, immunostaining of renin was used in samples from wild-type mice and mice with gene knock-down of CREB. Cyclic AMP response element-binding-protein-binding protein (CBP) and p300 were measured in cultured renin cells of the mice, and RNA detection was done with real-time polymerase chain reaction. With low-sodium diet, renin was expressed along the whole wall of the afferent glomerular arterioles in wild-type mice, while there was no increase or even decrease in renin expression in CREB-specific deletion mice; RNA level of renin in cultured cells decreased by 50% with single knock-down of CREB, CBP, or p300, and decreased 70% with triple knock-down of CREB, CBP, and p300. This study found that CREB was important for renin synthesis and the role of CREB can be achieved through the recruitment of co-activators CBP and p300.

  6. Adenovirus Death Protein (ADP) Is Required for Lytic Infection of Human Lymphocytes

    PubMed Central

    Murali, V. K.; Ornelles, D. A.; Gooding, L. R.; Wilms, H. T.; Huang, W.; Tollefson, A. E.; Wold, W. S. M.

    2014-01-01

    The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection. PMID:24198418

  7. Metabolic control mechanisms in mammalian systems. Involvement of adenosine 3′:5′-cyclic monophosphate in androgen action

    PubMed Central

    Singhal, Radhey L.; Parulekar, M. R.; Vijayvargiya, R.; Robison, G. Alan

    1971-01-01

    1. The ability of exogenously administered cyclic AMP (adenosine 3′:5′-monophosphate) to exert andromimetic action on certain carbohydrate-metabolizing enzymes was investigated in the rat prostate gland and seminal vesicles. 2. Cyclic AMP, when injected concurrently with theophylline, produced marked increases in hexokinase, phosphofructokinase, glyceraldehyde phosphate dehydrogenase, pyruvate kinase, and two hexose monophosphate-shunt enzymes, as well as α-glycerophosphate dehydrogenase activity in accessory sexual tissues of castrated rats. The 6-N,2′-O-dibutyryl analogue of cyclic AMP caused increases of enzyme activity that were greater than those induced by the parent compound. 3. Time-course studies demonstrated that, whereas significant increases in the activities of most enzymes occurred within 4h after the injection of cyclic AMP, maximal increases were attained at 16–24h. 4. Increase in the activity of the various prostatic and vesicular enzymes was dependent on the dose of cyclic AMP; in most instances, 2.5mg of the cyclic nucleotide/rat was sufficient to elicit a statistically significant response. 5. Administration of cyclic AMP and theophylline also produced stimulation of enzyme activities in secondary sexual tissues of immature rats. 6. Cyclic AMP and theophylline did not affect significantly any of the enzymes studied in hepatic tissue. 7. Stimulation of various carbohydrate-metabolizing enzymes in the prostate gland and seminal vesicles by cyclic AMP was independent of adrenal function. 8. Concurrent treatment with actinomycin or cycloheximide prevented the cyclic AMP- and theophylline-induced increases in enzyme activities in both castrated and adrenalectomized–castrated animals. 9. Administration of a single dose of testosterone propionate (5.0mg/100g) to castrated rats caused a significant increase in cyclic AMP concentration in both accessory sexual tissues. 10. In addition, treatment with theophylline potentiated the effects of a

  8. Preparation, chromatographic evaluation and application of adenosine 5'-monophosphate modified ZrO2/SiO2 stationary phase in hydrophilic interaction chromatography.

    PubMed

    Wang, Qing; Luo, Zhi-Yuan; Ye, Mao; Wang, Yu-Zhuo; Xu, Li; Shi, Zhi-Guo; Xu, Lanying

    2015-02-27

    The zirconia-coated silica (ZrO2/SiO2) material was obtained by coupling layer-by-layer (LbL) self-assembly method and sol-gel technology, to take dual advantages of the suitable porous structure of SiO2 and basic resistance of ZrO2. Adenosine 5'-monophosphate (5'-AMP) was then self-assembled onto ZrO2/SiO2 via Lewis acid-base interaction, generating 5'-AMP-ZrO2/SiO2. The chromatographic properties of 5'-AMP-ZrO2/SiO2 were systemically studied by evaluating the effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the 5'-AMP-ZrO2/SiO2 possessed hydrophilic interaction chromatographic (HILIC) property comprising hydrophilic, hydrogen-bonding, electrostatic and ion-exchange interactions. For basic analytes, the column efficiency of ZrO2/SiO2 and 5'-AMP-ZrO2/SiO2 was superior to the bare ZrO2, and different selectivity was obtained after the introduction of 5'-AMP. For acidic analytes, good resolution was obtained on 5'-AMP-ZrO2/SiO2 while the analysis failed on the bare ZrO2 column owing to strong adsorption. Hence, the proposed 5'-AMP-ZrO2/SiO2 had great potential in analyzing acidic compounds in HILIC mode. It was an extended application of ZrO2 based SP. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2.

    PubMed

    Kowieski, Terri M; Lee, Susan; Denu, John M

    2008-02-29

    Sirtuins are a highly conserved family of proteins implicated in diverse cellular processes such as gene silencing, aging, and metabolic regulation. Although many sirtuins catalyze a well characterized protein/histone deacetylation reaction, there are a number of reports that suggest protein ADP-ribosyltransferase activity. Here we explored the mechanisms of ADP-ribosylation using the Trypanosoma brucei Sir2 homologue TbSIR2rp1 as a model for sirtuins that reportedly display both activities. Steady-state kinetic analysis revealed a highly active histone deacetylase (k cat = 0.1 s(-1), with Km values of 42 microm and for NAD+ and 65 microm for acetylated substrate). A series of biochemical assays revealed that TbSIR2rp1 ADP-ribosylation of protein/histone requires an acetylated substrate. The data are consistent with two distinct ADP-ribosylation pathways that involve an acetylated substrate, NAD+ and TbSIR2rp1 as follows: 1) a noncatalytic reaction between the deacetylation product O-acetyl-ADP-ribose (or its hydrolysis product ADP-ribose) and histones, and 2) a more efficient mechanism involving interception of an ADP-ribose-acetylpeptide-enzyme intermediate by a side-chain nucleophile from bound histone. However, the sum of both ADP-ribosylation reactions was approximately 5 orders of magnitude slower than histone deacetylation under identical conditions. The biological implications of these results are discussed.

  10. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity

    PubMed Central

    Hess, Kenneth C.; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A.; Buck, Jochen; Levin, Lonny R.; Barrientos, Antoni

    2014-01-01

    Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.—Hess, K. C., Liu, J., Manfredi, G., Mühlschlegel, F. A., Buck, J., Levin, L. R., Barrientos, A. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. PMID:25002117

  11. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters

    PubMed Central

    Lynge, J; Juel, C; Hellsten, Y

    2001-01-01

    The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km= 177 ± 36 μm and Vmax= 1.9 ± 0.2 nmol ml−1 s−1 (0.7 nmol (mg protein)−1 s−1). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72 % inhibition) or dipyridamol (64 % inhibition; P < 0.05). In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57 % larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. Inhibition of ecto-5′-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70 % lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells

  13. Adenosine Stimulate Proliferation and Migration in Triple Negative Breast Cancer Cells

    PubMed Central

    Fernandez-Gallardo, Miriam; González-Ramírez, Ricardo; Sandoval, Alejandro; Monjaraz, Eduardo

    2016-01-01

    Emerging evidence suggests that the adenosine (Ado) receptors may play crucial roles in tumor progression. Here, we show that Ado increases proliferation and migration in a triple negative breast cancer model, the MDA-MB 231 cell line. The use of specific agonists and antagonists evidenced that these effects depend on the activation of the A2B receptor, which then triggers an intracellular response mediated by the adenylate cyclase/PKA/cAMP signaling pathway. Ado also increases the expression of NaV1.5 channels, a potential biomarker in breast cancer. Together, these data suggest important roles of the A2B receptors and NaV1.5 channels in the Ado-induced increase in proliferation and migration of the MDA-MB 231 cells. PMID:27911956

  14. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury

    PubMed Central

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-01-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  15. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  16. ADP-ribosylation of proteins: Enzymology and biological significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althaus, F.R.; Richter, C.

    1987-01-01

    This book presents an overview of the molecular and biological consequences of the posttranslational modification of proteins with ADP-ribose monomers and polymers. Part one focuses on chromatin-associated poly ADP-ribosylation reactions which have evolved in higher eukaryotes as modulators of chromatin functions. The significance of poly ADP-ribosylation in DNA repair, carcinogenesis, and gene expression during terminal differentiation is discussed. Part two reviews mono ADP-ribosylation reactions which are catalyzed by prokaryotic and eukaryotic enzymes. Consideration is given to the action of bacterial toxins, such as cholera toxin, pertussis toxin, and diphtheria toxin. These toxins have emerged as tools for the molecular probingmore » of proteins involved in signal transduction and protein biosynthesis.« less

  17. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding.

    PubMed

    Tantry, Udaya S; Bonello, Laurent; Aradi, Daniel; Price, Matthew J; Jeong, Young-Hoon; Angiolillo, Dominick J; Stone, Gregg W; Curzen, Nick; Geisler, Tobias; Ten Berg, Jurrien; Kirtane, Ajay; Siller-Matula, Jolanta; Mahla, Elisabeth; Becker, Richard C; Bhatt, Deepak L; Waksman, Ron; Rao, Sunil V; Alexopoulos, Dimitrios; Marcucci, Rossella; Reny, Jean-Luc; Trenk, Dietmar; Sibbing, Dirk; Gurbel, Paul A

    2013-12-17

    Dual antiplatelet therapy with aspirin and a P2Y12 receptor blocker is a key strategy to reduce platelet reactivity and to prevent thrombotic events in patients treated with percutaneous coronary intervention. In an earlier consensus document, we proposed cutoff values for high on-treatment platelet reactivity to adenosine diphosphate (ADP) associated with post-percutaneous coronary intervention ischemic events for various platelet function tests (PFTs). Updated American and European practice guidelines have issued a Class IIb recommendation for PFT to facilitate the choice of P2Y12 receptor inhibitor in selected high-risk patients treated with percutaneous coronary intervention, although routine testing is not recommended (Class III). Accumulated data from large studies underscore the importance of high on-treatment platelet reactivity to ADP as a prognostic risk factor. Recent prospective randomized trials of PFT did not demonstrate clinical benefit, thus questioning whether treatment modification based on the results of current PFT platforms can actually influence outcomes. However, there are major limitations associated with these randomized trials. In addition, recent data suggest that low on-treatment platelet reactivity to ADP is associated with a higher risk of bleeding. Therefore, a therapeutic window concept has been proposed for P2Y12 inhibitor therapy. In this updated consensus document, we review the available evidence addressing the relation of platelet reactivity to thrombotic and bleeding events. In addition, we propose cutoff values for high and low on-treatment platelet reactivity to ADP that might be used in future investigations of personalized antiplatelet therapy. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Hypoxia induces cancer-associated cAMP/PKA signalling through HIF-mediated transcriptional control of adenylyl cyclases VI and VII.

    PubMed

    Simko, Veronika; Iuliano, Filippo; Sevcikova, Andrea; Labudova, Martina; Barathova, Monika; Radvak, Peter; Pastorekova, Silvia; Pastorek, Jaromir; Csaderova, Lucia

    2017-08-31

    Hypoxia is a phenomenon often arising in solid tumours, linked to aggressive malignancy, bad prognosis and resistance to therapy. Hypoxia-inducible factor-1 has been identified as a key mediator of cell and tissue adaptation to hypoxic conditions through transcriptional activation of many genes involved in glucose metabolism and other cancer-related processes, such as angiogenesis, cell survival and cell invasion. Cyclic adenosine 3'5'-monophosphate is one of the most ancient and evolutionarily conserved signalling molecules and the cAMP/PKA signalling pathway plays an important role in cellular adaptation to hypoxia. We have investigated possible new mechanisms behind hypoxic activation of the cAMP/PKA pathway. For the first time, we have shown that hypoxia induces transcriptional up-regulation of the system of adenylyl cyclases, enzymes responsible for cAMP production, in a panel of carcinoma cell lines of various origin. Our data prove functional relevance of the hypoxic increase of adenylyl cyclases VI and VII at least partially mediated by HIF-1 transcription factor. We have identified adenylyl cyclase VI and VII isoforms as mediators of cellular response to hypoxia, which led to the elevation of cAMP levels and enhanced PKA activity, with an impact on cell migration and pH regulation.

  19. Relationships of methacholine and adenosine monophosphate responsiveness with serum vascular endothelial growth factor in children with asthma.

    PubMed

    Yoo, Young; Choi, Ic Sun; Byeon, Jung Hye; Lee, Seung Min; La, Kyong Suk; Choi, Byung Min; Park, Sang Hee; Choung, Ji Tae

    2010-01-01

    Airway hyperresponsiveness, which is a characteristic feature of asthma, is usually measured by means of bronchial challenge with direct or indirect stimuli. Vascular endothelial growth factor (VEGF) increases vascular permeability and angiogenesis, leads to mucosal edema, narrows the airway diameter, and reduces airway flow. To examine the relationships between serum VEGF level and airway responsiveness to methacholine and adenosine monophosphate (AMP) in children with asthma. Peripheral blood eosinophil counts, serum eosinophil cationic protein (ECP) concentrations, and serum VEGF concentrations were measured in 31 asthmatic children and 26 control subjects. Methacholine and AMP bronchial challenges were performed on children with asthma. Children with asthma had a significantly higher mean (SD) level of VEGF than controls (361.2 [212.0] vs 102.7 [50.0] pg/mL; P < .001). Blood eosinophil counts and serum ECP levels significantly correlated inversely with AMP provocation concentration that caused a decrease in forced expiratory volume in 1 second of 20% (PC20) (r = -0.474, P =.01; r = -0.442, P =.03, respectively), but not with methacholine PC20 (r = -0.228, P = .26; r = -0.338, P =.10, respectively). Serum VEGF levels significantly correlated with airway responsiveness to AMP (r = -0.462; P = .009) but not to methacholine (r = -0.243; P = .19). Serum VEGF levels were increased in children with asthma and were related to airway responsiveness to AMP but not to methacholine. Increased VEGF levels in asthmatic children may result in increased airway responsiveness by mechanisms related to airway inflammation or increased permeability of airway vasculature.

  20. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Masatoshi, E-mail: ohnishi@fupharm.fukuyama-u.ac.jp; Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292; Urasaki, Tomoka

    2015-11-13

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3′, 5’-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), withmore » dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt4 expression in the adult rat brain after 24 h, and the increases in wnt4 mRNA and protein levels reached statistical significance in the hippocampus and striatum, respectively. This is the first finding to help elucidate the selective biosynthesis of central wnt4 through cAMP-stimulated microglia and astrocytes interaction. - Highlights: • Dibutyryl cAMP increased wnt4, but not wnt3a, 5a, 7a and 11, mRNA in mixed glia. • Wnt4 protein increased in astrocytes co-cultivated with microglia. • It took a long time to robustly increase wnt4 expression.

  1. Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.

    PubMed

    Herfindal, Lars; Nygaard, Gyrid; Kopperud, Reidun; Krakstad, Camilla; Døskeland, Stein Ove; Selheim, Frode

    2013-08-09

    The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Ex vivo cytotoxic drug evaluation by DiSC assay to expedite identification of clinical targets: results with 8-chloro-cAMP.

    PubMed Central

    Bosanquet, A. G.; Burlton, A. R.; Bell, P. B.; Harris, A. L.

    1997-01-01

    There is a pressing need to reduce the time and cost of developing new cytotoxic agents and to accurately identify clinically active agents at an early stage. In this study, the differential staining cytotoxicity (DiSC) assay was used to assess the efficacy of the novel antitumour cAMP analogue, 8-chloro-cAMP (8-Cl-cAMP) (and its metabolite 8-Cl-adenosine) against 107 fresh specimens of human neoplastic and normal cells. Diagnoses included chronic and acute leukaemias, myeloma, non-Hodgkin's lymphoma (NHL) and miscellaneous solid tumours. The aim was to identify targets for subsequent phase I, II and III trials. 8-Cl-cAMP was tested at 4-985 microM, along with standard chemotherapeutic drugs. 8-Cl-cAMP and its metabolite caused no morphologically observable cell differentiation but induced dose-dependent cytotoxicity. Compared with untreated patients, previously treated chronic lymphocytic leukaemia (CLL) patients showed no increase in ex vivo resistance to 8-Cl-cAMP (P = 0.878); minimal cross-resistance with other cytotoxic drugs was detected. Compared with normal cells (mean LC90 = 1803 microM), 8-Cl-cAMP showed significant ex vivo activity against CLL (117.0 microM; P < 0.0001) and NHL (140.0 microM; P < 0.0001), of which eight were mantle cell NHL (84.7 microM), and greatest activity against cells from patients with acute myeloid leukaemia (AML; mean LC90 = 24.3 microM; in vitro therapeutic index 74-fold, P < 0.0001). Solid tumour specimens were comparatively resistant to 8-Cl-cAMP. The results highlight the clinical potential of 8-Cl-cAMP, point to several new phase I, II and III trial possibilities and provide a rationale for the inclusion of ex vivo cytotoxic drug evaluation in the drug development process. PMID:9275029

  3. Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum.

    PubMed

    Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena

    2009-02-01

    Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.

  4. A cAMP-Regulated Chloride Channel in Lymphocytes that is Affected in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Chen, Jennifer H.; Schulman, Howard; Gardner, Phyllis

    1989-02-01

    A defect in regulation of a chloride channel appears to be the molecular basis for cystic fibrosis (CF), a common lethal genetic disease. It is shown here that a chloride channel with kinetic and regulatory properties similar to those described for secretory epithelial cells is present in both T and B lymphocyte cell lines. The regulation of the channels by adenosine 3',5'-monophosphate (cAMP)--dependent protein kinase in transformed B cells from CF patients is defective. Thus, lymphocytes may be an accessible source of CF tissue for study of this defect, for cloning of the chloride channel complex, and for diagnosis of the disease.

  5. Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds.

    PubMed

    Yokoyama, Seiya; Kato, Kouji; Koba, Atsuko; Minami, Yuji; Watanabe, Keiichi; Yagi, Fumio

    2008-12-01

    Novel antimicrobial peptides (AMP), designated Cy-AMP1, Cy-AMP2, and Cy-AMP3, were purified from seeds of the cycad (Cycas revoluta) by a CM cellulofine column, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They had molecular masses of 4583.2 Da, 4568.9 Da and 9275.8 Da, respectively, by MALDI-TOF MS analysis. Half of the amino acid residues of Cy-AMP1 and Cy-AMP2 were cysteine, glycine and proline, and their sequences were similar. The sequence of Cy-AMP3 showed high homology to various lipid transfer proteins. For Cy-AMP1 and Cy-AMP2, the concentrations of peptides required for 50% inhibition (IC(50)) of the growth of plant pathogenic fungi, Gram-positive and Gram-negative bacteria were 7.0-8.9 microg/ml. The Cy-AMP3 had weak antimicrobial activity. The structural and antimicrobial characteristics of Cy-AMP1 and Cy-AMP2 indicated that they are a novel type of antimicrobial peptide belonging to a plant defensin family.

  6. Kinetics of nitrogenase of Klebsiella pneumoniae. Heterotropic interactions between magnesium-adenosine 5'-diphosphate and magnesium-adenosine 5'-triphosphate.

    PubMed Central

    Thorneley, R N; Cornish-Bowden, A

    1977-01-01

    The effects of MgADP and MgATP on the kinetics of a pre-steady-state electron-transfer reaction and on the steady-state kinetics of H2 evulution for nitrogenase proteins of K. pneumoniae were studied. MgADP was a competitive inhibitor of MgATP in the MgATP-induced electron transfer from the Fe-protein to the Mo-Fe-protein. A dissociation constant K'i = 20 micron was determined for MgADP. The release of MgADP or a coupled conformation change in the Fe-protein of K.pneumoniae occurred with a rate comparable with that of electron transfer, k approximately 2 X 10(2)S-1. Neither homotropic nor heterotropic interactions involving MgATP and MgADP were observed for this reaction. Steady-state kinetic data for H2 evolution exhibited heterotropic effects between MgADP and MgATP. The data have been fitted to symmetry and sequential-type models involving conformation changes in two identical subunits. The data suggest that the enzyme can bind up to molecules of either MgATP or MgADP, but is unable to bind both nucleotides simultaneously. The control of H2 evolution by the MgATP/MgADP ratio is not at the level of electron transfer between the Fe- and Mo-Fe-proteins. Images Fig. 2. PMID:336036

  7. Predictors of thrombotic complications and mass effect exacerbation after pipeline embolization: The significance of adenosine diphosphate inhibition, fluoroscopy time, and aneurysm size.

    PubMed

    Raychev, Radoslav; Tateshima, Satoshi; Vinuela, Fernando; Sayre, Jim; Jahan, Reza; Gonzalez, Nestor; Szeder, Viktor; Duckwiler, Gary

    2016-02-01

    The mechanisms leading to delayed rupture, distal emboli and intraparenchymal hemorrhage in relation to pipeline embolization device (PED) placement remain debatable and poorly understood. The aim of this study was to identify clinical and procedural predictors of these perioperative complications. We conducted a retrospective review of consecutive patients who underwent PED placement. We utilized a non-commercial platelet aggregation method measuring adenosine diphosphate (ADP)% inhibition for evaluation of clopidogrel response. To our knowledge, this is the first study to test ADP in neurovascular procedures. Multivariable regression analysis was used to identify the strongest predictor of three separate outcomes: (1) thrombotic complications, (2) hemorrhagic complications, and (3) aneurysm mass effect exacerbation Permanent complication-related morbidity and mortality at 3 months was 6% (3/48). No specific predictors of hemorrhagic complications were identified. In the univariate analysis, the strongest predictors of thrombotic complications were: ADP% inhibition<49 (p=0.01), aneurysm size (p=0.04) and fluoroscopy time (p=0.002). In the final multivariate analysis, among all baseline variables, fluoroscopy time exceeding 52 min was the only factor associated with thrombotic complications (p=0.007). Aneurysm size≥18 mm was the single predictor of mass effect exacerbation (p=0.039). Procedural complexity, reflected by fluoroscopy time, is the strongest predictor of thrombotic complications in this study. ADP% inhibition is a reliable method of testing clopidogrel response in neurovascular procedures and values of <50% may predict thrombotic complications. Interval mass effect exacerbation after PED placement may be anticipated in large aneurysms exceeding 18 mm. © The Author(s) 2015.

  8. Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome.

    PubMed

    de Lima, Flávia Mafra; Moreira, Leonardo M; Villaverde, A B; Albertini, Regiane; Castro-Faria-Neto, Hugo C; Aimbire, Flávio

    2011-05-01

    The aim of this work was to investigate if the low-level laser therapy (LLLT) on acute lung inflammation (ALI) induced by lipopolysaccharide (LPS) is linked to tumor necrosis factor (TNF) in alveolar macrophages (AM) from bronchoalveolar lavage fluid (BALF) of mice. LLLT has been reported to actuate positively for relieving the late and early symptoms of airway and lung inflammation. It is not known if the increased TNF mRNA expression and dysfunction of cAMP generation observed in ALI can be influenced by LLLT. For in vivo studies, Balb/c mice (n = 5 for group) received LPS inhalation or TNF intra nasal instillation and 3 h after LPS or TNF-α, leukocytes in BALF were analyzed. LLLT administered perpendicularly to a point in the middle of the dissected bronchi with a wavelength of 660 nm and a dose of 4.5 J/cm(2). The mice were irradiated 15 min after ALI induction. In vitro AM from mice were cultured for analyses of TNF mRNA expression and protein and adenosine3':5'-cyclic monophosphate (cAMP) levels. One hour after LPS, the TNF and cAMP levels in AM were measured by ELISA. RT-PCR was used to measure TNF mRNA in AM. The LLLT was inefficient in potentiating the rolipram effect in presence of a TNF synthesis inhibitor. LLLT attenuated the neutrophil influx and TNF in BALF. In AM, the laser increased the cAMP and reduced the TNF-α mRNA. LLLT increases indirectly the cAMP in AM by a TNF-dependent mechanism.

  9. Effects of adenosine monophosphate on induction of therapeutic hypothermia and neuronal damage after cardiopulmonary resuscitation in rats.

    PubMed

    Knapp, Jürgen; Schneider, Andreas; Nees, Corinna; Bruckner, Thomas; Böttiger, Bernd W; Popp, Erik

    2014-09-01

    Animal studies and pathophysiological considerations suggest that therapeutic hypothermia after cardiopulmonary resuscitation is the more effective the earlier it is induced. Therefore this study is sought to examine whether pharmacological facilitated hypothermia by administration of 5'-adenosine monophosphate (AMP) is neuroprotective in a rat model of cardiac arrest (CA) and resuscitation. Sixty-one rats were subjected to CA. After 6 min of ventricular fibrillation advanced cardiac life support was started. After successful return of spontaneous circulation (ROSC, n=40), animals were randomized either to placebo group (n=14) or AMP group (800 mg/kg body weight, n=14). Animals were kept at an ambient temperature of 18°C for 12 h after ROSC and core body temperature was measured using a telemetry temperature probe. Neuronal damage was analyzed by counting Nissl-positive (i.e. viable) neurons and TUNEL-positive (i.e. apoptotic) cells in coronal brain sections 7 days after ROSC. Functional status evaluated on days 1, 3 and 7 after ROSC by a tape removal test. Time until core body temperature dropped to <34.0°C was 31 min [28; 45] in AMP-treated animals and 125 min [90; 180] in the control group (p=0.003). Survival until 7 days after ROSC was comparable in both groups. Also number of Nissl-positive cells (AMP: 1 [1; 7] vs. placebo: 2 [1; 3] per 100 pixel; p=0.66) and TUNEL-positive cells (AMP: 56 [44; 72] vs. placebo: 53 [41; 67] per 100 pixel; p=0.70) did not differ. Neither did AMP affect functional neurological outcome up to 7 days after ROSC. Mean arterial pressure 20 min after ROSC was 49 [45; 55] mmHg in the AMP group in comparison to 91 [83; 95] mmHg in the control group (p<0.001). Although application of AMP reduced the time to reach a core body temperature of <34°C neither survival was improved nor neuronal damage attenuated. Reason for this is probably induction of marked hypotension as an adverse reaction to AMP treatment. Copyright © 2014 Elsevier

  10. ADP Analysis project for the Human Resources Management Division

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  11. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    PubMed

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  12. Regulatory actions of 3',5'-cyclic adenosine monophosphate on osteoclast function: possible roles of Epac-mediated signaling.

    PubMed

    Jeevaratnam, Kamalan; Salvage, Samantha C; Li, Mengye; Huang, Christopher L-H

    2018-05-30

    Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP] i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated G s -protein activation known to increase [cAMP] i , unaccompanied by the [Ca 2+ ] i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed. © 2018 New York Academy of Sciences.

  13. Reversible switching of fluorophore property based on intrinsic conformational transition of adenylate kinase during its catalytic cycle.

    PubMed

    Fujii, Akira; Hirota, Shun; Matsuo, Takashi

    2013-07-17

    Adenylate kinase shows a conformational transition (OPEN and CLOSED forms) during substrate binding and product release to mediate the phosphoryl transfer between ADP and ATP/AMP. The protein motional characteristics will be useful to construct switching systems of fluorophore properties caused by the catalytic cycle of the enzyme. This paper demonstrates in situ reversible switching of a fluorophore property driven by the conformational transition of the enzyme. The pyrene-conjugated mutant adenylate kinase is able to switch the monomer/excimer emission property of pyrene on addition of ADP or P(1)P(5)-di(adenosine-5')pentaphosphate (Ap5A, a transition state analog). The observation under the dilute condition (~0.1 μM) indicates that the emission spectral change was caused by the motion of a protein molecule and not led by protein-protein interactions through π-π stacking of pyrene rings. The switching can be reversibly conducted by using hexokinase-coupling reaction. The fashion of the changes in emission intensities at various ligand concentrations is different between ADP, Mg(2+)-bound ADP, and Mg(2+)-bound Ap5A. The emission property switching is repeatable by a sequential addition of a substrate in a one-pot process. It is proposed that the property of a synthetic molecule on the enzyme surface is switchable in response to the catalytic cycle of adenylate kinase.

  14. Induction of a Torpor-Like State by 5’-AMP Does Not Depend on H2S Production

    PubMed Central

    Dugbartey, George J.; Bouma, Hjalmar R.; Strijkstra, Arjen M.; Boerema, Ate S.; Henning, Robert H.

    2015-01-01

    Background Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called ‘torpor’ without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5’-Adenosine monophosphate (5’-AMP). The mechanism by which 5’-AMP leads to the induction of a torpor-like state, and the role of H2S herein, remains to be unraveled. Therefore, we investigated whether induction of a torpor-like state by 5-AMP depends on H2S production. Methods To study the role of H2S on the induction of torpor, amino-oxyacetic acid (AOAA), a non-specific inhibitor of H2S, was administered before injection with 5'-AMP to block endogenous H2S production in Syrian hamster. To assess the role of H2S on maintenance of torpor induced by 5’-AMP, additional animals were injected with AOAA during torpor. Key Results During the torpor-like state induced by 5’-AMP, the expression of H2S- synthesizing enzymes in the kidneys and plasma levels of H2S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H2S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H2S production was associated with increased renal injury. Conclusions Induction of a torpor-like state by 5’-AMP does not depend on H2S, although production of H2S seems to attenuate renal injury. Unraveling the mechanisms by which 5’-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery. PMID:26295351

  15. 5'-adenosine monophosphate-induced hypothermia attenuates brain ischemia/reperfusion injury in a rat model by inhibiting the inflammatory response.

    PubMed

    Miao, Yi-Feng; Wu, Hui; Yang, Shao-Feng; Dai, Jiong; Qiu, Yong-Ming; Tao, Zhen-Yi; Zhang, Xiao-Hua

    2015-01-01

    Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5'-adenosine monophosphate (5'-AMP), a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5'-AMP-induced hypothermia (AIH) may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO) model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9), interleukin-1 receptor (IL-1R), tumor necrosis factor receptor (TNFR), and Toll-like receptor (TLR) protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL-) positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5'-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.

  16. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain.

    PubMed

    Salehi, Forouz; Hosseini-Zare, Mahshid S; Aghajani, Haleh; Seyedi, Seyedeh Yalda; Hosseini-Zare, Maryam S; Sharifzadeh, Mohammad

    2017-08-01

    The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  17. Magnesium Lithospermate B Implicates 3'-5'-Cyclic Adenosine Monophosphate/Protein Kinase A Pathway and N-Methyl-d-Aspartate Receptors in an Experimental Traumatic Brain Injury.

    PubMed

    Chang, Chih-Zen; Wu, Shu-Chuan; Kwan, Aij-Lie; Lin, Chih-Lung

    2015-10-01

    Decreased 3'-5'-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and increased N-methyl-d-aspartate (NMDA) related apoptosis were observed in traumatic brain injury (TBI). It is of interest to examine the effect of magnesium lithospermate B (MLB) on cAMP/PKA pathway and NMDAR in TBI. A rodent weight-drop TBI model was used. Administration of MLB was initiated 1 week before (precondition) and 24 hours later (reversal). Cortical homogenates were harvested to measure cAMP (enzyme-linked immunosorbent assay), soluble guanylyl cyclases, PKA and NMDA receptor-2β (Western blot). In addition, cAMP kinase antagonist and H-89 dihydrochloride hydrate were used to test MLB's effect on the cytoplasm cAMP/PKA pathway after TBI. Morphologically, vacuolated neuron and activated microglia were observed in the TBI groups but absent in the MLB preconditioning and healthy controls. Induced cAMP, soluble guanylyl cyclase α1, and PKA were observed in the MLB groups, when compared with the TBI group (P < 0.01) Administration of H-89 dihydrochloride hydrate reversed the effect of MLB on cortical PKA and NMDA-2β expression after TBI. This study showed that MLB exerted an antioxidant effect on the enhancement of cytoplasm cAMP and PKA. This compound also decreased NMDA-2β levels, which may correspond to its neuroprotective effects. This finding lends credence to the presumption that MLB modulates the NMDA-2β neurotoxicity through a cAMP-dependent mechanism in the pathogenesis of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Family-wide analysis of poly(ADP-ribose) polymerase activity

    PubMed Central

    Uchima, Lilen; Rood, Jenny; Zaja, Roko; Hay, Ronald T.; Ahel, Ivan; Chang, Paul

    2014-01-01

    The poly(ADP-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD+ as substrate. Based on the composition of three NAD+ coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino acid targets. In addition, we identify cysteine as a novel amino acid target for ADP-ribosylation on PARPs. PMID:25043379

  19. The role of ADP-ribosylation in regulating DNA interstrand crosslink repair

    PubMed Central

    Gunn, Alasdair R.; Banos-Pinero, Benito; Paschke, Peggy; Sanchez-Pulido, Luis; Ariza, Antonio; Day, Joseph; Emrich, Mehera; Leys, David; Ponting, Chris P.

    2016-01-01

    ABSTRACT ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches were used to identify a protein that contains a permutated macrodomain (which we call aprataxin/APLF-and-PNKP-like protein; APL). Structural analysis reveals that this permutated macrodomain retains features associated with ADP-ribose interactions and that APL is capable of binding poly(ADP-ribose) through this macrodomain. APL is enriched in chromatin in response to cisplatin treatment, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2− cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells owing to redundant signalling by the double-strand break (DSB)-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify that NHEJ can function to resolve this form of DNA damage in the absence of Adprt2. PMID:27587838

  20. Single and short-term dosing effects of levocetirizine on adenosine monophosphate bronchoprovocation in atopic asthma

    PubMed Central

    Lee, Daniel K C; Gray, Robert D; Wilson, Andrew M; Robb, Fiona M; Soutar, Patricia C; Lipworth, Brian J

    2004-01-01

    Aims Adenosine monophosphate (AMP) acts indirectly via primed airway mast cells to induce bronchial hyper-responsiveness, which in turn correlates with eosinophilic asthmatic inflammation and atopic disease expression. We evaluated single and short-term dosing effects of a modern histamine H1-receptor antagonist, levocetirizine, given at the usual clinically recommended dose, on the primary outcome of AMP bronchoprovocation. Methods Fifteen atopic asthmatics were randomized in double-blind, cross-over fashion to receive for 1 week either levocetirizine 5 mg or placebo. There was a 1-week washout period prior to each randomized treatment. The provocative concentration of AMP producing a 20% fall in FEV1 (PC20) was measured after each washout at baseline and at 4–6 h following the first and last doses of each randomized treatment. Results Baseline mean ± SEM values after washout prior to each randomized treatment comparing levocetirizine vs placebo were not significantly different for prechallenge FEV1 (% predicted) 83 ± 4 vs 82 ± 4, or AMP PC20 (mg ml−1) 45 ± 24 vs 45 ± 22, respectively. Airway calibre as prechallenge FEV1 for levocetirizine vs placebo was not significantly different following the first dose 86 ± 4 vs 82 ± 4, or the last dose 85 ± 4 vs 83 ± 4, respectively. There were significant improvements (P< 0.05) in AMP PC20 comparing levocetirizine vs placebo following the first dose 123 ± 73 vs 48 ± 24, a 1.4 doubling dilution difference (95% CI 0.8, 1.9), and the last dose 127 ± 74 vs 53 ± 29, a 1.2 doubling dilution difference (95% CI 0.5, 2.0). AMP PC20 was also improved (P< 0.05) by the first and last doses of levocetirizine but not placebo, vs respective baseline values, with there being no difference in the degree of protection between first and last doses. Conclusions Single and short-term dosing with levocetirizine conferred similar improvements in bronchial hyper-responsiveness to AMP challenge, which was unrelated to prechallenge

  1. Effect of Zinc in Enteropathogenic Escherichia coli Infection▿ †

    PubMed Central

    Crane, John K.; Naeher, Tonniele M.; Shulgina, Irina; Zhu, Chengru; Boedeker, Edgar C.

    2007-01-01

    Enteropathogenic Escherichia coli (EPEC) infection triggers the release of ATP from host intestinal cells, and the ATP is broken down to ADP, AMP, and adenosine in the lumen of the intestine. Ecto-5′-nucleotidase (CD73) is the main enzyme responsible for the conversion of 5′-AMP to adenosine, which triggers fluid secretion from host intestinal cells and also has growth-promoting effects on EPEC bacteria. In a recent study, we examined the role of the host enzyme CD73 in EPEC infection by testing the effect of ecto-5′-nucleotidase inhibitors. Zinc was a less potent inhibitor of ecto-5′-nucleotidase in vitro than the nucleotide analog α,β-methylene-ADP, but in vivo, zinc was much more efficacious in preventing EPEC-induced fluid secretion in rabbit ileal loops than α,β-methylene-ADP. This discrepancy between the in vitro and in vivo potencies of the two inhibitors prompted us to search for potential targets of zinc other than ecto-5′-nucleotidase. Zinc, at concentrations that produced little or no inhibition of EPEC growth, caused a decrease in the expression of EPEC protein virulence factors, such as bundle-forming pilus (BFP), EPEC secreted protein A, and other EPEC secreted proteins, and reduced EPEC adherence to cells in tissue culture. The effects of zinc were not mimicked by other transition metals, such as manganese, iron, copper, or nickel, and the effects were not reversed by an excess of iron. Quantitative real-time PCR showed that zinc reduced the abundance of the RNAs encoded by the bfp gene, by the plasmid-encoded regulator (per) gene, by the locus for the enterocyte effacement (LEE)-encoded regulator (ler) gene, and by several of the esp genes. In vivo, zinc reduced EPEC-induced fluid secretion into ligated rabbit ileal loops, decreased the adherence of EPEC to rabbit ileum, and reduced histopathological damage such as villus blunting. Some of the beneficial effects of zinc on EPEC infection appear to be due to the action of the metal on

  2. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  3. A calmodulin inhibitor, W-7 influences the effect of cyclic adenosine 3', 5'-monophosphate signaling on ligninolytic enzyme gene expression in Phanerochaete chrysosporium

    PubMed Central

    2012-01-01

    The capacity of white-rot fungi to degrade wood lignin may be highly applicable to the development of novel bioreactor systems, but the mechanisms underlying this function are not yet fully understood. Lignin peroxidase (LiP) and manganese peroxidase (MnP), which are thought to be very important for the ligninolytic property, demonstrated increased activity in Phanerochaete chrysosporium RP-78 (FGSC #9002, ATCC MYA-4764™) cultures following exposure to 5 mM cyclic adenosine 3', 5'-monophosphate (cAMP) and 500 μM 3'-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that transcription of most LiP and MnP isozyme genes was statistically significantly upregulated in the presence of the cAMP and IBMX compared to the untreated condition. However, 100 μM calmodulin (CaM) inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which had insignificant effects on fungal growth and intracellular cAMP concentration, not only offset the increased activity and transcription induced by the drugs, but also decreased them to below basal levels. Like the isozyme genes, transcription of the CaM gene (cam) was also upregulated by cAMP and IBMX. These results suggest that cAMP signaling functions to increase the transcription of LiP and MnP through the induction of cam transcription. PMID:22273182

  4. ADP-ribosyl cyclases regulate early development of the sea urchin.

    PubMed

    Ramakrishnan, Latha; Uhlinger, Kevin; Dale, Leslie; Hamdoun, Amro; Patel, Sandip

    2016-06-01

    ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca 2+ signalling such as cADPR and NAADP. Although Ca 2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca 2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.

  5. Past Strategies and Future Directions for Identifying AMP-Activated Protein Kinase (AMPK) Modulators

    PubMed Central

    Sinnett, Sarah E.; Brenman, Jay E.

    2014-01-01

    AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs. PMID:24583089

  6. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria.

    PubMed

    Nocek, Boguslaw; Kochinyan, Samvel; Proudfoot, Michael; Brown, Greg; Evdokimova, Elena; Osipiuk, Jerzy; Edwards, Aled M; Savchenko, Alexei; Joachimiak, Andrzej; Yakunin, Alexander F

    2008-11-18

    Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer alpha/beta/alpha sandwich fold with an alpha-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.

  7. Small interfering RNA mediated Poly (ADP-ribose) Polymerase-1 inhibition upregulates the heat shock response in a murine fibroblast cell line

    PubMed Central

    2011-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) is a highly conserved multifunctional enzyme, and its catalytic activity is stimulated by DNA breaks. The activation of PARP-1 and subsequent depletion of nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) contributes to significant cytotoxicity in inflammation of various etiologies. On the contrary, induction of heat shock response and production of heat shock protein 70 (HSP-70) is a cytoprotective defense mechanism in inflammation. Recent data suggests that PARP-1 modulates the expression of a number of cellular proteins at the transcriptional level. In this study, small interfering RNA (siRNA) mediated PARP-1 knockdown in murine wild-type fibroblasts augmented heat shock response as compared to untreated cells (as evaluated by quantitative analysis of HSP-70 mRNA and HSP-70 protein expression). These events were associated with increased DNA binding of the heat shock factor-1 (HSF-1), the major transcription factor of the heat shock response. Co-immunoprecipitation experiments in nuclear extracts of the wild type cells demonstrated that PARP-1directly interacted with HSF-1. These data demonstrate that, in wild type fibroblasts, PARP-1 plays a pivotal role in modulating the heat shock response both through direct interaction with HSF-1 and poly (ADP-ribosylation). PMID:21345219

  8. Regulation of phosphatidylcholine synthesis in rat liver endoplasmic reticulum.

    PubMed Central

    Sribney, M; Knowles, C L; Lyman, E M

    1976-01-01

    The biosynthesis of phosphatidylcholine in rat liver microsomal preparations catalysed by CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) was inhibited by a combination of ATP and CoA or ATP and pantetheine. ATP alone at high concentrations (20 mM) inhibits phosphatidylcholine formation to the extent of 70%. In the presence of 0.1 mM-CoA, ATP (2 mM) inhibits to the extent of 80% and in the presence of 1 mM-pantetheine to the extent of 90%. ADP and other nucleotide triphosphates in combination with either CoA or pantetheine are only 10-30% as effective in inhibiting phosphatidylcholine synthesis. AMP(CH2)PP [adenosine 5'-(alphabeta-methylene)triphosphate] together with CoA inhibits to the extent of 59% and with pantetheine by 48%. AMP-P(CH2)P [adenosine 5'-(betagamma-methylene)triphosphate] together with either CoA or pantetheine had no significant effect on phosphatidylcholine formation. Other closely related derivatives of pantothenic acid were without effect either alone or in the presence of ATP, as were thiol compounds such as cysteine, homocysteine, cysteamine, dithiothreitol and glutathione. Several mechanisms by which this inhibition might take place were ruled out and it is concluded that ATP together with either CoA or pantetheine interacts reversibly with phosphatidylcholine synthetase to cause temporarily the inhibition of phosphatidylcholine formation. PMID:182154

  9. Adenosine A1 receptors modulate high voltage-activated Ca2+ currents and motor pattern generation in the Xenopus embryo

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2000-01-01

    Adenosine causes voltage- and non-voltage-dependent inhibition of high voltage-activated (HVA) Ca2+ currents in Xenopus laevis embryo spinal neurons. As this inhibition can be blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by N6-cyclopentyladenosine (CPA) it appears to be mediated by A1 receptors. Agents active at A2 receptors either were without effect or could be blocked by DPCPX. AMP had no agonist action on these receptors. By using ω-conotoxin GVIA we found that adenosine inhibited an N-type Ca2+ current as well as a further unidentified HVA current that was insensitive to dihydropyridines, ω-agatoxin TK and ω-conotoxin MVIIC. Both types of current were subject to voltage- and non-voltage-dependent inhibition. We used CPA and DPCPX to test whether A1 receptors regulated spinal motor pattern generation in spinalized Xenopus embryos. DPCPX caused a near doubling of, while CPA greatly shortened, the length of swimming episodes. In addition, DPCPX slowed, while CPA greatly speeded up, the rate of run-down of motor activity. Our results demonstrate a novel action of A1 receptors in modulating spinal motor activity. Furthermore they confirm that adenosine is produced continually throughout swimming episodes and acts to cause the eventual termination of activity. PMID:10856119

  10. Time-resolved photoelectron spectroscopy of adenosine and adenosine monophosphate photodeactivation dynamics in water microjets

    NASA Astrophysics Data System (ADS)

    Williams, Holly L.; Erickson, Blake A.; Neumark, Daniel M.

    2018-05-01

    The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69-4.97 eV, the lowest ππ* excited state, S1, was accessed and its decay dynamics were probed via ionization at 6.20 eV. By reversing the role of the pump and probe lasers, a higher-lying ππ* state was excited at 6.20 eV and its time-evolving photoelectron spectrum was monitored at probe energies of 4.69-4.97 eV. The S1 ππ* excited state was found to decay with a lifetime ranging from ˜210 to 250 fs in adenosine and ˜220 to 250 fs in adenosine monophosphate. This lifetime drops with increasing pump photon energy. Signal from the higher-lying ππ* excited state decayed on a time scale of ˜320 fs and was measureable only in adenosine monophosphate.

  11. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    PubMed Central

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  12. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    PubMed

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA

  13. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms?

    PubMed

    Chagoya de Sánchez, V

    1995-03-01

    The present review describes the biological implications of the periodic changes of adenosine concentrations in different tissues of the rat. Adenosine is a purine molecule that could have been formed in the prebiotic chemical evolution and has been preserved. The rhythmicity of this molecule, as well as its metabolism and even the presence of specific receptors, suggests a regulatory role in eukaryotic cells and in multicellular organisms. Adenosine may be considered a chemical messenger and its action could take place at the level of the same cell (autocrine), the same tissue (paracrine), or on separate organs (endocrine). Exploration of the circadian variations of adenosine was planned considering the liver as an important tissue for purine formation, the blood as a vehicle among tissues, and the brain as the possible acceptor for hepatic adenosine or its metabolites. The rats used in these studies were adapted to a dark-light cycle of 12 h with an unrestrained feeding and drinking schedule. The metabolic control of adenosine concentration in the different tissues studied through the 24-h cycle is related to the activity of adenosine-metabolizing enzyme: 5'-nucleotidase adenosine deaminase, adenosine kinase, and S-adenosylhomocysteine hydrolase. Some possibilities of the factors modulating the activity of these enzymes are commented upon. The multiphysiological action of adenosine could be mediated by several actions: (i) by interaction with extracellular and intracellular receptors and (ii) through its metabolism modulating the methylation pathway, possibly inducing physiological lipoperoxidation, or participating in the energetic homeostasis of the cell. The physiological meaning of the circadian variations of adenosine and its metabolism was focused on: maintenance of the energetic homeostasis of the tissues, modulation of membrane structure and function, regulation of fasting and feeding metabolic pattern, and its participation in the sleep-wake cycle. From

  14. Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.

    PubMed Central

    Cakir-Kiefer, C; Muller-Steffner, H; Schuber, F

    2000-01-01

    Highly purified Aplysia californica ADP-ribosyl cyclase was found to be a multifunctional enzyme. In addition to the known transformation of NAD(+) into cADP-ribose this enzyme is able to catalyse the solvolysis (hydrolysis and methanolysis) of cADP-ribose. This cADP-ribose hydrolase activity, which becomes detectable only at high concentrations of the enzyme, is amplified with analogues such as pyridine adenine dinucleotide, in which the cleavage rate of the pyridinium-ribose bond is much reduced compared with NAD(+). Although the specificity ratio V(max)/K(m) is in favour of NAD(+) by 4 orders of magnitude, this multifunctionality allowed us to propose a 'partitioning' reaction scheme for the Aplysia enzyme, similar to that established previously for mammalian CD38/NAD(+) glycohydrolases. This mechanism involves the formation of a single oxocarbenium-type intermediate that partitions to cADP-ribose and solvolytic products via competing pathways. In favour of this mechanism was the finding that the enzyme also catalysed the hydrolysis of NMN(+), a substrate that cannot undergo cyclization. The major difference between the mammalian and the invertebrate enzymes resides in their relative cyclization/hydrolysis rate-constant ratios, which dictate their respective yields of cADP-ribose (ADP-ribosyl cyclase activity) and ADP-ribose (NAD(+) glycohydrolase activity). For the Aplysia enzyme's catalysed transformation of NAD(+) we favour a mechanism where the formation of cADP-ribose precedes that of ADP-ribose; i.e. macroscopically the invertebrate ADP-ribosyl cyclase conforms to a sequential reaction pathway as a limiting form of the partitioning mechanism. PMID:10861229

  15. Cyclic AMP-elevating Agents Promote Cumulus Cell Survival and Hyaluronan Matrix Stability, Thereby Prolonging the Time of Mouse Oocyte Fertilizability*

    PubMed Central

    Di Giacomo, Monica; Camaioni, Antonella; Klinger, Francesca G.; Bonfiglio, Rita; Salustri, Antonietta

    2016-01-01

    Cumulus cells sustain the development and fertilization of the mammalian oocyte. These cells are retained around the oocyte by a hyaluronan-rich extracellular matrix synthesized before ovulation, a process called cumulus cell-oocyte complex (COC) expansion. Hyaluronan release and dispersion of the cumulus cells progressively occur after ovulation, paralleling the decline of oocyte fertilization. We show here that, in mice, postovulatory changes of matrix are temporally correlated to cumulus cell death. Cumulus cell apoptosis and matrix disassembly also occurred in ovulated COCs cultured in vitro. COCs expanded in vitro with FSH or EGF underwent the same changes, whereas those expanded with 8-bromo-adenosine-3′,5′-cyclic monophosphate (8-Br-cAMP) maintained integrity for a longer time. It is noteworthy that 8-Br-cAMP treatment was also effective on ovulated COCs cultured in vitro, prolonging the vitality of the cumulus cells and the stability of the matrix from a few hours to >2 days. Stimulation of endogenous adenylate cyclase with forskolin or inhibition of phosphodiesterase with rolipram produced similar effects. The treatment with selective cAMP analogues suggests that the effects of cAMP elevation are exerted through an EPAC-independent, PKA type II-dependent signaling pathway, probably acting at the post-transcriptional level. Finally, overnight culture of ovulated COCs with 8-Br-cAMP significantly counteracted the decrease of fertilization rate, doubling the number of fertilized oocytes compared with control conditions. In conclusion, these studies suggest that cAMP-elevating agents prevent cumulus cell senescence and allow them to continue to exert beneficial effects on oocyte and sperm, thereby extending in vitro the time frame of oocyte fertilizability. PMID:26694612

  16. Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells.

    PubMed

    Abukhashim, Mohamed; Wiebe, Glenis J; Seubert, John M

    2011-10-01

    Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which in turn are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). EETs are known to modulate a number of vascular and renal functions, but the exact signaling mechanism(s) of these EET-mediated effects remains unknown. The purpose of this study is to investigate the role of EETs and DHETs in regulating cyclic adenosine monophosphate (cAMP) production via adenylyl cyclase in a human embryonic kidney cell line (HEK293). HEK293 cells were treated with vehicle, forskolin, epinephrine, 11,12-EET, 11,12-DHET, as well as potential pathway and G-protein inhibitors to assess changes in cAMP production. Co-administering 11,12-EET with forskolin effectively eliminated the increased cAMP levels observed in cells treated with forskolin alone. The inhibitory effect of EETs on forskolin-mediated cAMP production was abolished when cells were treated with a sEH inhibitor (tAUCB). 11,12-DHET also negated the effects of forskolin, suggesting that the inhibitory effect observed in EET-treated cells could be attributed to the downstream metabolites, DHETs. In contrast, inhibition of phosphodiesterase IV (PDE4) with rolipram eliminated the effects of EETs or DHETs, and inhibition of Gαi with pertussis toxin also resulted in enhanced cAMP production. Our data suggest that DHETs regulate cAMP production via PDE4 and Gαi protein. Moreover, they provide novel evidence as to how EET-mediated signaling may alter G-protein coupling in HEK293 cells. © Springer Science+Business Media B.V. 2011

  17. Downregulation of adenosine and adenosine 1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy.

    PubMed

    Kan, Hung-Wei; Chang, Chin-Hong; Lin, Chih-Lung; Lee, Yi-Chen; Hsieh, Sung-Tsang; Hsieh, Yu-Lin

    2018-04-16

    The neurochemical effects of adenosine signaling in small-fiber neuropathy leading to neuropathic pain are yet to be explored in a direct manner. This study examined this system at the level of ligand (via the ectonucleotidase activity of prostatic acid phosphatase, PAP) and adenosine A1 receptors (A1Rs) in resiniferatoxin (RTX) neuropathy, a peripheral neurodegenerative disorder which specifically affects nociceptive nerves expressing transient receptor potential vanilloid type 1 (TRPV1). We conducted immunohistochemistry on dorsal root ganglion neurons (DRG), high-performance liquid chromatography (HPLC) for functional assays, and pharmacological interventions to alter PAP and A1Rs in mice with RTX neuropathy. In DRG of RTX neuropathy, PAP(+) neurons were reduced compared with vehicle-treated mice (P = 0.002) . Functionally, PAP ectonucleotidase activity was consequently reduced (i.e., the content of adenosine in DRG, P = 0.012). PAP(+) neuronal density was correlated with the degree of mechanical allodynia, which was reversed by intrathecal lumbar puncture (i.t.) injection of recombinant PAP with a dose-dependent effect. Furthermore, A1Rs were downregulated (P = 0.002), and this downregulation was colocalized with the TRPV1 receptor (31.0% ± 2.8%). Mechanical allodynia was attenuated in a dose-dependent response by i.t. injection of the A1R ligand, adenosine; however, no analgesia was evident when an exogenous adenosine was blocked by A1R antagonist. This study demonstrated dual mechanisms of neuropathic pain in TRPV1-induced neuropathy, involving a reduced adenosine system at both the ligand (adenosine) and receptor (A1Rs) levels.

  18. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels.

    PubMed

    Phillis, John W

    2004-01-01

    A considerable volume of evidence implicates the purine adenosine in the regulation of cerebral blood flow during states such as hypotension, neural activation, hypoxia/ischemia, and hypercapnia/acidosis. The aim of this review is to describe developments in our understanding of the roles that adenosine and the adenine nucleotides play in cerebral blood flow control, with some comparisons to coronary blood flow. The first part of the review focuses on the categorization of receptors for adenosine (A1, A2A, A2B, and A3) and the adenine nucleotides, ATP and ADP (P2X and P2Y). Frequently used agonists and antagonists for these different receptors are mentioned. A description follows of the distribution of these different receptors in cerebral arterioles. The second part of the review initially deals with the literature on the release of adenosine and adenine nucleotides into the extracellular space of the brain, describing the various techniques used to make these measurements and assessing the pitfalls associated with their use. This is followed by a discussion of the factors affecting purine release, which include cell swelling and acidosis. The third section evaluates the role of smooth muscle potassium channels in controlling arteriolar diameter. There is evidence for an important role of KATP and KCa channels, but less is known about the contributions of voltage-dependent (KV) and inwardly rectifying (KIR) channels. This section ends with a discussion on the reported inhibitory effect of nitric oxide synthase inhibitors on the KATP channel and the consequences of such an action for the interpretation of much of the published work on nitric oxide as a regulator of cerebral blood flow. The fourth section evaluates the data supporting a role of adenosine and ATP in the regulation of cerebral blood flow during autoregulation, hypotension, neural activity, hypoxia/ ischemia, and hypercapnia. Studies using antagonists and potentiators of adenosine's actions have led to

  19. Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone

    PubMed Central

    Chase, Lewis R.; Melson, G. Leland; Aurbach, G. D.

    1969-01-01

    Urinary excretion of cyclic adenosine 3′,5′-monophosphate (3′,5′-AMP) was tested in normal subjects and patients with pseudohypoparathyroidism, idiopathic hypoparathyroidism, surgical hypoparathyroidism, and pseudopseudohypoparathyroidism under basal conditions and after a 15 min infusion of purified parathyroid hormone. Basal excretion of the nucleotide was less than normal in the patients with hypocalcemic disorders and greater than normal in pseudopseudohypoparathyroidism. Parathyroid hormone caused a marked increase in excretion of 3′,5′-AMP in all subjects except those with pseudohypoparathyroidism; nine patients with this disorder did not respond to the hormone and four showed a markedly deficient response. Radioimmunoassay showed that parathyroid hormone circulated in increased amounts in plasma from patients with pseudohypoparathyroidism and became undetectable when serum calcium was increased above 12 mg/100 ml. Suppression of parathyroid hormone secretion by induction of hypercalcemia did not alter the deficient response to exogenous hormone. The results indicate that: (a) parathyroid hormone circulates in abnormally high concentrations in pseudohypoparathyroidism and secretion of the hormone responds normally to physiological control by calcium; (b) testing urinary excretion of 3′,5′-AMP in response to infusion of purified parathyroid hormone appears to be an accurate and sensitive index for establishing the diagnosis of pseudohypoparathyroidism; and (c) the metabolic defect of the disorder can be accounted for by a lack of or defective form of parathyroid hormone-sensitive adenyl cyclase in bone and kidney. PMID:4309802

  20. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration.

    PubMed

    Zhang, Li; He, Huamei; Balschi, James A

    2007-07-01

    AMP-activated protein kinase (AMPK) acts as a cellular energy sensor: it responds to an increase in AMP concentration ([AMP]) or the AMP-to-ATP ratio (AMP/ATP). Metformin and phenformin, which are biguanides, have been reported to increase AMPK activity without increasing AMP/ATP. This study tests the hypothesis that these biguanides increase AMPK activity in the heart by increasing cytosolic [AMP]. Groups of isolated rat hearts (n = 5-7 each) were perfused with Krebs-Henseleit buffer with or without 0.2 mM phenformin or 10 mM metformin, and (31)P-NMR-measured phosphocreatine, ATP, and intracellular pH were used to calculate cytosolic [AMP]. At various times, hearts were freeze-clamped and assayed for AMPK activity, phosphorylation of Thr(172) on AMPK-alpha, and phosphorylation of Ser(79) on acetyl-CoA carboxylase, an AMPK target. In hearts treated with phenformin for 18 min and then perfused for 20 min with Krebs-Henseleit buffer, [AMP] began to increase at 26 min and AMPK activity was elevated at 36 min. In hearts treated with metformin, [AMP] was increased at 50 min and AMPK activity, phosphorylated AMPK, and phosphorylated acetyl-CoA carboxylase were elevated at 61 min. In metformin-treated hearts, HPLC-measured total AMP content and total AMP/ATP did not increase. In summary, phenformin and metformin increase AMPK activity and phosphorylation in the isolated heart. The increase in AMPK activity was always preceded by and correlated with increased cytosolic [AMP]. Total AMP content and total AMP/ATP did not change. Cytosolic [AMP] reported metabolically active AMP, which triggered increased AMPK activity, but measures of total AMP did not.

  1. Adenosine and sleep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanik, G.M. Jr.

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% andmore » 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.« less

  2. Functions of the poly(ADP-ribose) polymerase superfamily in plants.

    PubMed

    Lamb, Rebecca S; Citarelli, Matteo; Teotia, Sachin

    2012-01-01

    Poly(ADP-ribosyl)ation is the covalent attachment of ADP-ribose subunits from NAD(+) to target proteins and was first described in plants in the 1970s. This post-translational modification is mediated by poly(ADP-ribose) polymerases (PARPs) and removed by poly(ADP-ribose) glycohydrolases (PARGs). PARPs have important functions in many biological processes including DNA repair, epigenetic regulation and transcription. However, these roles are not always associated with enzymatic activity. The PARP superfamily has been well studied in animals, but remains under-investigated in plants. Although plants lack the variety of PARP superfamily members found in mammals, they do encode three different types of PARP superfamily proteins, including a group of PARP-like proteins, the SRO family, that are plant specific. In plants, members of the PARP family and/or poly(ADP-ribosyl)ation have been linked to DNA repair, mitosis, innate immunity and stress responses. In addition, members of the SRO family have been shown to be necessary for normal sporophytic development. In this review, we summarize the current state of plant research into poly(ADP-ribosyl)ation and the PARP superfamily in plants.

  3. Methylation stabilizes the imino tautomer of dAMP and amino tautomer of dCMP in solution.

    PubMed

    Jayanth, Namrata; Puranik, Mrinalini

    2011-05-19

    Alkylating agents cause methylation of adenosine and cytidine in DNA to generate 1-methyladenosine and 3-methylcytidine. These modified nucleosides can serve as regulators of cells or can act as agents of mutagenesis depending on the context and the partner enzymes. Solution structures and the chemical interactions with enzymes that lead to their recognition are of inherent interest. At physiological pH, 1-methyladenosine and 3-methylcytidine are presumed to be in the protonated amino forms in the literature. We report the structures, ionization states, and UV resonance Raman spectra of both substrates over a range of pH (2.5-11.0). The Raman excitation wavelength was tuned to selectively enhance Raman scattering from the nucleobase (260 nm) and further specifically from the imino form (210 nm) of 1-me-dAMP. We find that contrary to the general assumption, 1-me-dAMP is present in its neutral imino form at physiological pH and 3-me-dCMP is in the amino form. © 2011 American Chemical Society

  4. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  5. Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins.

    PubMed

    Aktories, K; Wegner, A

    1992-10-01

    Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, and Clostridium spiroforme toxin ADP-ribosylate actin monomers. Toxin-induced ADP-ribosylation disturbs the cellular equilibrium between monomeric and polymeric actin and traps monomeric actin in its unpolymerized form, thereby depolymerizing actin filaments and destroying the microfilament network. Furthermore, the toxins ADP-ribosylate gelsolin actin complexes. These modifications may contribute to the cytopathic action of the toxins.

  6. Pain-relieving prospects for adenosine receptors and ectonucleotidases

    PubMed Central

    Zylka, Mark J.

    2010-01-01

    Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731

  7. Inhibition of src family kinases by a combinatorial action of 5'-AMP and small heat shock proteins, identified from the adult heart.

    PubMed

    Kasi, V S; Kuppuswamy, D

    1999-10-01

    Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.

  8. 8-CPT-cAMP/all-trans retinoic acid targets t(11;17) acute promyelocytic leukemia through enhanced cell differentiation and PLZF/RARα degradation

    PubMed Central

    Jiao, Bo; Ren, Zhi-Hong; Liu, Ping; Chen, Li-Juan; Shi, Jing-Yi; Dong, Ying; Ablain, Julien; Shi, Lin; Gao, Li; Hu, Jun-Pei; Ren, Rui-Bao; de Thé, Hugues; Chen, Zhu; Chen, Sai-Juan

    2013-01-01

    The refractoriness of acute promyelocytic leukemia (APL) with t(11;17)(q23;q21) to all-trans retinoic acid (ATRA)-based therapy concerns clinicians and intrigues basic researchers. By using a murine leukemic model carrying both promyelocytic leukemia zinc finger/retinoic acid receptor-α (PLZF/RARα) and RARα/PLZF fusion genes, we discovered that 8-chlorophenylthio adenosine-3′, 5′-cyclic monophosphate (8-CPT-cAMP) enhances cellular differentiation and improves gene trans-activation by ATRA in leukemic blasts. Mechanistically, in combination with ATRA, 8-CPT-cAMP activates PKA, causing phosphorylation of PLZF/RARα at Ser765 and resulting in increased dissociation of the silencing mediator for retinoic acid and thyroid hormone receptors/nuclear receptor corepressor from PLZF/RARα. This process results in changes of local chromatin and transcriptional reactivation of the retinoic acid pathway in leukemic cells. Meanwhile, 8-CPT-cAMP also potentiated ATRA-induced degradation of PLZF/RARα through its Ser765 phosphorylation. In vivo treatment of the t(11;17) APL mouse model demonstrated that 8-CPT-cAMP could significantly improve the therapeutic effect of ATRA by targeting a leukemia-initiating cell activity. This combined therapy, which induces enhanced differentiation and oncoprotein degradation, may benefit t(11;17) APL patients. PMID:23382200

  9. The Sound of Silence: RNAi in Poly (ADP-Ribose) Research

    PubMed Central

    Blenn, Christian; Wyrsch, Philippe; Althaus, Felix R.

    2012-01-01

    Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption. PMID:24705085

  10. Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα

    PubMed Central

    Akimoto, Madoka; McNicholl, Eric Tyler; Ramkissoon, Avinash; Moleschi, Kody; Taylor, Susan S.; Melacini, Giuseppe

    2015-01-01

    Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91–379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics. PMID:26618408

  11. Clostridial ADP-ribosylating toxins: effects on ATP and GTP-binding proteins.

    PubMed

    Aktories, K

    1994-09-01

    The actin cytoskeleton appears to be as the cellular target of various clostridial ADP-ribosyltransferases which have been described during recent years. Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin and Clostridium spiroforme toxin ADP-ribosylate actin monomers and inhibit actin polymerization. Clostridium botulinum exoenzyme C3 and Clostridium limosum exoenzyme ADP-ribosylate the low-molecular-mass GTP-binding proteins of the Rho family, which participate in the regulation of the actin cytoskeleton. ADP-ribosylation inactivates the regulatory Rho proteins and disturbs the organization of the actin cytoskeleton.

  12. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal

    PubMed Central

    Cadieux, Jean-Sébastien; Leclerc, Patrick; St-Onge, Mireille; Dussault, Andrée-Anne; Laflamme, Cynthia; Picard, Serge; Ledent, Catherine; Borgeat, Pierre; Pouliot, Marc

    2010-01-01

    Summary Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B4 from the 5-lipoxygenase pathway and prostaglandin E2 through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B4 while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A2A receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A2A receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A2A receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine’s effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E2 on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A2A receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine. PMID:15769843

  13. Modifications in forced vital capacity during adenosine monophosphate-induced bronchoconstriction in asthma: relationship with the response to methacholine and the effect of inhaled corticosteroids.

    PubMed

    Prieto, Luis; López, Victoria; Catalan, Pablo; Barato, Desiree; Marín, Julio

    2009-05-01

    The effect of adenosine monophosphate (AMP) on forced vital capacity (FVC) has never been systematically investigated. To compare methacholine- and AMP-induced changes in FVC, as a marker of air trapping, in asthmatic patients treated and not treated with inhaled corticosteroids (ICSs). Airway responsiveness to equipotent concentrations of AMP and methacholine was obtained in asthmatic patients treated (n = 32) and not treated (n = 18) with ICSs. The response was expressed by the provocation concentration of agonist that caused a decrease in forced expiratory volume in 1 second (FEV1) of 20% (PC20) and by the slope of the FVC values recorded at each step of the challenge against the corresponding FEV1 values (sFVC). Although methacholine and AMP PC20 values were similar in patients treated and not treated with ICSs, the mean (95% confidence interval) methacholine sFVC (but not AMP sFVC) was higher in those treated with ICSs (0.91; 0.77-1.06) than in those not taking ICSs (0.69; 0.57-0.81; P = .03). No significant correlation was found between sFVC and PC20 values obtained with either methacholine or AMP. Methacholine and AMP sFVC values were significantly related, but only in the group treated with ICSs (r = 0.60, P < .001). Although the AMP-induced decline in FVC in asthmatic patients is similar to that observed with equipotent concentrations of methacholine, the apparently different effect of ICSs on changes in FVC induced by each agonist suggests that the information provided by the 2 bronchoconstrictor agents is not interchangeable and that the information generated by the analysis of the effect of each agonist on FEV1 and FVC may be complementary.

  14. cAMP and Mitochondria

    PubMed Central

    Valsecchi, Federica; Ramos-Espiritu, Lavoisier S.; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Phosphorylation of mitochondrial proteins has emerged as a major regulatory mechanism for metabolic adaptation. cAMP signaling and PKA phosphorylation of mitochondrial proteins have just started to be investigated, and the presence of cAMP-generating enzymes and PKA inside mitochondria is still controversial. Here, we discuss the role of cAMP in regulating mitochondrial bioenergetics through protein phosphorylation and the evidence for soluble adenylyl cyclase as the source of cAMP inside mitochondria. PMID:23636265

  15. Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture.

    PubMed

    Wang, Shengbiao; Amidi, Fataneh; Beall, Marie; Gui, Lizhen; Ross, Michael G

    2006-04-01

    The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amniotic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if AQP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP). AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of AQP3 expression. We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytiotrophoblasts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA significantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment. This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second-messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.

  16. [Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder].

    PubMed

    Zhou, Rong-Yi; Wang, Jiao-Jiao; You, Yue; Sun, Ji-Chao; Song, Yu-Chen; Yuan, Hai-Xia; Han, Xin-Min

    2017-05-01

    To study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD). A total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA. Compared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (P<0.05). Compared with the ADHD model group, the methylphenidate hydrochloride group and the medium- and high-dose baicalin groups had a significant increase in the ATPase activity (P<0.05), a significant reduction in the LDH activity (P<0.05), and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the methylphenidate hydrochloride group, the high-dose baicalin group had significantly greater changes in these indices (P<0.05). Compared with the low-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05); the medium- and high-dose baicalin groups had a significant reduction in the LDH activity (P<0.05) and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the medium-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity

  17. The rapid and direct determination of ATP-ase activity by ion exchange chromatography and the application to the activity of heat shock protein-90

    PubMed Central

    Bartolini, Manuela; Wainer, Irving W.; Bertucci, Carlo; Andrisano, Vincenza

    2012-01-01

    Adenosine nucleotides are involved as substrates or co-factors in several biochemical reactions, catalyzed by enzymes, which modulate energy production, signal transduction and cell proliferation. We here report the development and optimization of an ion exchange liquid chromatography (LC) method for the determination of ATP, ADP and AMP. This method is specifically aimed at the determination of the ATP-ase activity of human heat shock protein 90 (Hsp90), a molecular chaperone that has emerged as target enzyme in cancer therapy. Separation of the three nucleotides was achieved in a 15-min run by using a disk shaped monolithic ethylene diamine stationary phase of small dimensions (2×6 mm i.d.), under a three-solvent gradient elution mode and UV detection at 256 nm. The described direct LC method resulted highly specific as a consequence of the baseline separation of the three adenosine nucleotides and could be applied to the determination of the enzymatic activity of ADP/ATP generating or consuming enzymes (such as kinases). Furthermore, comparison of the LOD and LOQ values of the LC method with those obtained with the malachite green assay, which is one of the most used indirect screening methodologies for ATP-ase activity, showed that the LC method has a similar range of application without presenting the drawbacks related to contamination by inorganic phosphate ions and glycerol, which are present in Hsp90 commercial samples. PMID:22497853

  18. The rapid and direct determination of ATPase activity by ion exchange chromatography and the application to the activity of heat shock protein-90.

    PubMed

    Bartolini, Manuela; Wainer, Irving W; Bertucci, Carlo; Andrisano, Vincenza

    2013-01-25

    Adenosine nucleotides are involved as substrates or co-factors in several biochemical reactions, catalyzed by enzymes, which modulate energy production, signal transduction and cell proliferation. We here report the development and optimization of an ion exchange liquid chromatography (LC) method for the determination of ATP, ADP and AMP. This method is specifically aimed at the determination of the ATP-ase activity of human heat shock protein 90 (Hsp90), a molecular chaperone that has emerged as target enzyme in cancer therapy. Separation of the three nucleotides was achieved in a 15-min run by using a disk shaped monolithic ethylene diamine stationary phase of small dimensions (2mm×6mm i.d.), under a three-solvent gradient elution mode and UV detection at 256nm. The described direct LC method resulted highly specific as a consequence of the baseline separation of the three adenosine nucleotides and could be applied to the determination of the enzymatic activity of ADP/ATP generating or consuming enzymes (such as kinases). Furthermore, comparison of the LOD and LOQ values of the LC method with those obtained with the malachite green assay, which is one of the most used indirect screening methodologies for ATP-ase activity, showed that the LC method has a similar range of application without presenting the drawbacks related to contamination by inorganic phosphate ions and glycerol, which are present in Hsp90 commercial samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors

    PubMed Central

    Lund, Kaleb C.; Wallace, Kendall B.

    2008-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTI) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3′-azido-3′-deoxythymidine (AZT; 10 and 50 μM), AZT monophosphate (150 μM), and 2′,3′-dideoxycytidine (ddC; 1μM) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2′,3′-dideoxyinosine (ddI; 10 μM) and ddC (1 μM). In the presence of succinate + cAMP AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-γ activity; in the case of AZT these observations may provide a mechanism for the observed long-term toxicity with this drug. PMID:17904600

  20. Regulation of AMP-activated protein kinase by natural and synthetic activators

    PubMed Central

    Grahame Hardie, David

    2015-01-01

    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function. PMID:26904394

  1. A short review on structure and role of cyclic-3',5'-adenosine monophosphate-specific phosphodiesterase 4 as a treatment tool.

    PubMed

    Eskandari, Nahid; Mirmosayyeb, Omid; Bordbari, Gazaleh; Bastan, Reza; Yousefi, Zahra; Andalib, Alireza

    2015-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are known as a super-family of enzymes which catalyze the metabolism of the intracellular cyclic nucleotides, cyclic-3',5'-adenosine monophosphate (cAMP), and cyclic-3',5'-guanosine monophosphate that are expressed in a variety of cell types that can exert various functions based on their cells distribution. The PDE4 family has been the focus of vast research efforts over recent years because this family is considered as a prime target for therapeutic intervention in a number of inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, and it should be used and researched by pharmacists. This is because the major isoform of PDE that regulates inflammatory cell activity is the cAMP-specific PDE, PDE4. This review discusses the relationship between PDE4 and its inhibitor drugs based on structures, cells distribution, and pharmacological properties of PDE4 which can be informative for all pharmacy specialists.

  2. Mesenchymal Stem Cells Induce Expression of CD73 in Human Monocytes In Vitro and in a Swine Model of Myocardial Infarction In Vivo.

    PubMed

    Monguió-Tortajada, Marta; Roura, Santiago; Gálvez-Montón, Carolina; Franquesa, Marcella; Bayes-Genis, Antoni; Borràs, Francesc E

    2017-01-01

    The ectoenzymes CD39 and CD73 regulate the purinergic signaling through the hydrolysis of adenosine triphosphate (ATP)/ADP to AMP and to adenosine (Ado), respectively. This shifts the pro-inflammatory milieu induced by extracellular ATP to the anti-inflammatory regulation by Ado. Mesenchymal stem cells (MSCs) have potent immunomodulatory capabilities, including monocyte modulation toward an anti-inflammatory phenotype aiding tissue repair. In vitro , we observed that human cardiac adipose tissue-derived MSCs (cATMSCs) and umbilical cord MSCs similarly polarize monocytes toward a regulatory M2 phenotype, which maintained the expression of CD39 and induced expression of CD73 in a cell contact dependent fashion, correlating with increased functional activity. In addition, the local treatment with porcine cATMSCs using an engineered bioactive graft promoted the in vivo CD73 expression on host monocytes in a swine model of myocardial infarction. Our results suggest the upregulation of ectonucleotidases on MSC-conditioned monocytes as an effective mechanism to amplify the long-lasting immunomodulatory and healing effects of MSCs delivery.

  3. Advanced Multi-Physics (AMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby

    2012-06-01

    The Advanced Multi-Physics (AMP) code, in its present form, will allow a user to build a multi-physics application code for existing mechanics and diffusion operators and extend them with user-defined material models and new physics operators. There are examples that demonstrate mechanics, thermo-mechanics, coupled diffusion, and mechanical contact. The AMP code is designed to leverage a variety of mathematical solvers (PETSc, Trilinos, SUNDIALS, and AMP solvers) and mesh databases (LibMesh and AMP) in a consistent interchangeable approach.

  4. PARPs and ADP-Ribosylation: 50 Years … and Counting.

    PubMed

    Kraus, W Lee

    2015-06-18

    Over 50 years ago, the discovery of poly(ADP-ribose) (PAR) set a new field of science in motion-the field of poly(ADP-ribosyl) transferases (PARPs) and ADP-ribosylation. The field is still flourishing today. The diversity of biological processes now known to require PARPs and ADP-ribosylation was practically unimaginable even two decades ago. From an initial focus on DNA damage detection and repair in response to genotoxic stresses, the field has expanded to include the regulation of chromatin structure, gene expression, and RNA processing in a wide range of biological systems, including reproduction, development, aging, stem cells, inflammation, metabolism, and cancer. This special focus issue of Molecular Cell includes a collection of three Reviews, three Perspectives, and a SnapShot, which together summarize the current state of the field and suggest where it may be headed. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Adenosine kinase regulation of cardiomyocyte hypertrophy

    PubMed Central

    Fassett, John T.; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie

    2011-01-01

    There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKTSer473 phosphorylation but did attenuate sustained phosphorylation of RafSer338 (24–48 h), mTORSer2448 (24–48 h), p70S6kThr389 (2.5–48 h), and ERKThr202/Tyr204 (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6kThr389 phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERKThr202/Tyr204 and AKTSer473. Reduction of Raf-induced p70S6kThr389 phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of

  6. Adenosine kinase regulation of cardiomyocyte hypertrophy.

    PubMed

    Fassett, John T; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie; Bache, Robert J

    2011-05-01

    There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser⁴⁷³) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser³³⁸) (24-48 h), mTOR(Ser²⁴⁴⁸) (24-48 h), p70S6k(Thr³⁸⁹) (2.5-48 h), and ERK(Thr²⁰²/Tyr²⁰⁴) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser⁴⁷³). Reduction of Raf-induced p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte

  7. Can exhaled nitric oxide be a surrogate marker of bronchial hyperresponsiveness to adenosine 5'-monophosphate in steroid-naive asthmatic children?

    PubMed

    Arga, M; Bakirtas, A; Topal, E; Turktas, I

    2015-04-01

    The interrelation between airway inflammation, bronchial hyperresponsiveness (BHR) and atopy remains controversial. The aim of this study was to document whether exhaled nitric oxide (eNO) may be used as a surrogate marker that predicts BHR to adenosine 5'-monophosphate (AMP) in steroid-naive school children with asthma. This study was a retrospective analysis of steroid-naive school age children with atopic and non-atopic asthma. All patients whose eNO levels had been measured and who had been challenged with both methacholine (MCH) and AMP were included. Receiver operation characteristic analysis was performed, in both the atopic and the non-atopic groups, to evaluate the ability of eNO to detect the BHR to AMP. One hundred and sixteen patients, sixty-nine (59.5%) of whom had been atopic, were included in the analysis. In the atopic group, eNO values were significantly higher in patients with BHR to AMP compared to those without BHR to AMP (51.9 ± 16.9 p.p.b. vs. 33.7 ± 16.4 p.p.b.; P < 0.001), whereas in the non-atopic group, the differences were not statistically significant (29.7 ± 16.9 p.p.b. vs. 22.6 ± 8.1 p.p.b.; P = 0.152). In the atopic group, eNO levels (R(2) : 0.401; β: 0.092; 95% CI: 1.19-14.42; OR: 7.12; P = 0.008) were found to be the only independent factor for BHR to AMP, whereas none of the parameters predicted BHR to AMP in the non-atopic group. The best cut-off value of eNO that significantly predicts BHR to AMP was 33.3 p.p.b. in the atopic group (P < 0.001), whereas a significant cut-off value for eNO that predicts BHR to AMP was not determined in the non-atopic group (P = 0.142). An eNO ≤ 17.4 p.p.b. has 100% negative predictive values and 100% sensitivity and 60.47% PPV for prediction of BHR to AMP in the atopic group. Exhaled NO may be used to predict BHR to AMP in atopic but not in non-atopic steroid-naïve asthmatic children. © 2014 John Wiley & Sons Ltd.

  8. Inhibition of Src Family Kinases by a Combinatorial Action of 5′-AMP and Small Heat Shock Proteins, Identified from the Adult Heart

    PubMed Central

    Kasi, Vijaykumar S.; Kuppuswamy, Dhandapani

    1999-01-01

    Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5′-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5′-AMP and to a lesser extent 5′-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including αB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5′-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5′-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5′-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state. PMID:10490624

  9. Changes in Purines Concentration in the Cerebrospinal Fluid of Pregnant Women Experiencing Pain During Active Labor.

    PubMed

    Schmidt, André P; Böhmer, Ana E; Hansel, Gisele; Soares, Félix A; Oses, Jean P; Giordani, Alex T; Posso, Irimar P; Auler, José Otávio C; Mendes, Florentino F; Félix, Elaine A; Portela, Luís V; Souza, Diogo O

    2015-11-01

    Labor pain has been reported as a severe pain and can be considered as a model of acute visceral pain. It is well known that extracellular purines have an important role in pain signaling in the central nervous system. This study analyzes the relationship between extracellular purines and pain perception during active labor. A prospective observational study was performed. Cerebrospinal fluid (CSF) levels of the purines and their metabolites were compared between women at term pregnancy with labor pain (n = 49) and without labor pain (Caesarian section; n = 47). Control groups (healthy men and women without chronic or acute pain-n = 40 and 32, respectively) were also investigated. The CSF levels of adenosine were significantly lower in the labor pain group (P = 0.026) and negatively correlated with pain intensity measured by a visual analogue scale (r = -0.48, P = 0.0005). Interestingly, CSF levels of uric acid were significantly higher in healthy men as compared to women. Additionally, pregnant women showed increased CSF levels of ADP, GDP, adenosine and guanosine and reduced CSF levels of AMP, GTP, and uric acid as compared to non-pregnant women (P < 0.05). These findings suggest that purines, in special the nucleoside adenosine, are associated with pregnancy and labor pain.

  10. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  11. Calcium modulates the ATP and ADP hydrolysis in human placental mitochondria.

    PubMed

    Martínez, Federico; Uribe, Aida; Espinosa-García, M Teresa; Flores-Herrera, Oscar; García-Pérez, Cecilia; Milán, Rebeca

    2002-08-01

    This study evaluated the effect of Ca2+ on the extramitochondrial hydrolysis of ATP and ADP by the extramitochondrial ATPase in isolated mitochondria and submitochondrial particles (SMPs) from human term placenta. The effect of different oxidizable substrates on the hydrolysis of ATP and ADP in the presence of sucrose or K+ was evaluated. Ca2+ increased phosphate release from ATP and ADP, but this stimulation showed different behavior depending on the oxidizable substrate present in the incubation media. Ca2+ stimulated the hydrolysis of ATP and ADP in the presence of sucrose. However, Ca2+ did not stimulate the hydrolysis of ADP in the medium containing K+. Ca2+ showed inhibition depending on the respiratory substrate. This study suggests that the energetic state of mitochondria controls the extramitochondrial ATPase activity, which is modulated by Ca2+ and respiratory substrates.

  12. Novel bacterial ADP-ribosylating toxins: structure and function

    PubMed Central

    Simon, Nathan C.; Aktories, Klaus; Barbieri, Joseph T.

    2018-01-01

    Preface Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to promote bacterial pathogenesis. In this review we use prototype bARTTs, such as diphtheria and pertussis toxins, as references for the characterization of several new bARTTs from human, insect, and plant pathogens, which were identified recently through bioinformatic analyses. Several of these toxins, including Cholix toxin from Vibrio cholerae, SpyA from Streptococcus pyogenes, HopU1 from Pseudomonas syringae, and the Tcc toxins from Photorhabdus luminescens, ADP-ribosylate novel substrates and possess unique organizations, which distinguish them from the reference toxins. The characterization of these toxins extends our appreciation for the variety of structure-function properties possessed by bARTTs and their roles in bacterial pathogenesis. PMID:25023120

  13. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  14. Use of hypometabolic TRIS extenders and high cooling rate refrigeration for cryopreservation of stallion sperm: presence and sensitivity of 5' AMP-activated protein kinase (AMPK).

    PubMed

    Córdova, Alex; Strobel, Pablo; Vallejo, Andrés; Valenzuela, Pamela; Ulloa, Omar; Burgos, Rafael A; Menarim, Bruno; Rodríguez-Gil, Joan Enric; Ratto, Marcelo; Ramírez-Reveco, Alfredo

    2014-12-01

    This study evaluated the effect of the use of hypometabolic TRIS extenders in the presence or the absence of AMPK activators as well as the utilization of high cooling rates in the refrigeration step on the freezability of stallion sperm. Twelve ejaculates were cryopreserved using Botucrio® as a control extender and a basic TRIS extender (HM-0) separately supplemented with 10 mM metformin, 2mM 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), 2 mM Adenosine monophosphate (AMP), 40 μM compound C AMPK inhibitor or 2 mM AMP+40 μM compound C. Our results showed that the utilization of a hypometabolic TRIS extender supplemented or not with AMP or metformin significantly improves stallion sperm freezability when compared with a commercial extender. Additionally, high cooling rates do not affect stallion sperm quality after cooling and post-thawing. Finally, stallion spermatozoa present several putative AMPK sperm isoforms that do not seem to respond to classical activators, but do respond to the Compound C inhibitor. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    PubMed

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Kinetics of acrylodan-labelled cAMP-dependent protein kinase catalytic subunit denaturation.

    PubMed

    Kivi, Rait; Loog, Mart; Jemth, Per; Järv, Jaak

    2013-10-01

    Fluorescence spectroscopy was used to study denaturation of cAMP-dependent protein kinase catalytic subunit labeled with an acrylodan moiety. The dye was covalently bound to a cystein residue introduced into the enzyme by replacement of arginine in position 326 in the native sequence, located near the enzyme active center. This labeling had no effect on catalytic activity of the enzyme, but provided possibility to monitor changes in protein structure through measuring the fluorescence spectrum of the dye, which is sensitive to changes in its environment. This method was used to monitor denaturation of the protein kinase catalytic subunit and study the kinetics of this process as well as influence of specific ligands on stability of the protein. Stabilization of the enzyme structure was observed in the presence of adenosine triphosphate, peptide substrate RRYSV and inhibitor peptide PKI[5-24].

  17. ADP-ribosylation of membrane components by pertussis and cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its ..cap alpha../sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its ..cap alpha..; subunit. By using (/sup 32/P)NAD/sup +/ and determining the transfer of its (/sup 32/P)ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/submore » s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin.« less

  18. Dual functional bioactive-peptide, AIMP1-derived peptide (AdP), for anti-aging.

    PubMed

    Kim, Jina; Kang, Sujin; Kwon, HanJin; Moon, HoSang; Park, Min Chul

    2018-06-19

    Human skin aging is caused by several factors, such as UV irradiation, stress, hormone, and pollution. Wrinkle formation and skin pigmentation are representative features of skin aging. Although EGF and arbutin are used as anti-wrinkle and skin whitening agents, respectively, they have adverse effects on skin. When more cosmeceutical ingredients are added to cosmetic product, adverse effects are also accumulated. For these reasons, multifunctional and safe cosmetic ingredients are in demand. The aim of the present study is to investigate the novel anti-aging agents, AIMP1-derived peptide (AdP, INCI name: sh-oligopeptide-5/sh-oligopeptide SP) for cosmetic products. To assess the anti-wrinkle effect of AdP, collagen type I synthesis and fibroblast proliferation were determined on human fibroblasts. The anti-wrinkle effect of AdP was examined by ELISA and cell titer glo assay. To assess the whitening, melanin content and tyrosinase activity were determined on melanocytes. The whitening effect of AdP was examined by melanin measurement and enzyme activity assay. The safety of AdP was determined by cytotoxicity and immunogenicity, CCK-8 and TNF-α ELISA assay, respectively. AdP treatment induced the collagen type I synthesis and fibroblast proliferation. Also, AdP treatment inhibited melanin synthesis by regulating tyrosinase activity. The anti-aging effect of AdP is more potent than EGF and albutin. AdP did not show adverse effects. These results show that AdP can be dual functional and safe cosmeceutical agent to prevent skin aging. © 2018 Wiley Periodicals, Inc.

  19. Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling.

    PubMed

    Krishnamurthy, Srinath; Tulsian, Nikhil Kumar; Chandramohan, Arun; Anand, Ganesh S

    2015-09-15

    The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5' AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Chemical Synthesis of a 5'-Terminal TMG-Capped Triribonucleotide m(3)(2,2,7)G(5)(')pppAmpUmpA of U1 RNA.

    PubMed

    Sekine, Mitsuo; Kadokura, Michinori; Satoh, Takahiko; Seio, Kohji; Wada, Takeshi; Fischer, Utz; Sumpter, Vicki; Lührmann, Reinhard

    1996-06-26

    The 5'-terminal TMG-capped triribonucleotide, m(3)(2,2,7)G(5)(')pppAmpUmpA, has been synthesized by condensation of an appropriately protected triribonucleotide derivative of ppAmpUmpA with a new TMG-capping reagent. During this total synthesis, it was found that the regioselective 2'-O-methylation of 3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-N-(4-monomethoxytrityl)adenosine was achieved by use of MeI/Ag(2)O without affecting the base moiety. A new route to 2-N,2-N-dimethylguanosine from guanosine via a three-step reaction has also been developed by reductive methylation using paraformaldehyde and sodium cyanoborohydride. These key intermediates were used as starting materials for the construction of a fully protected derivative of pAmpUmpA and a TMG-capping reagent of Im-pm(3)(2,2,7)G. The target TMG-capped tetramer, m(3)(2,2,7)G(5)(')pppAmpUmpA, was synthesized by condensation of a partially protected triribonucleotide 5'-terminal diphosphate species, ppA(MMTr)mpUmpA, with Im-pm(3)(2,2,7)G followed by treatment with 80% acetic acid. The structure of m(3)(2,2,7)G(5)(')pppAmpUmpA was characterized by (1)H and (31)P NMR spectroscopy as well as enzymatic assay using snake venom phosphodiesterase, calf intestinal phosphatase, and nuclease P1.

  1. Caffeine and adenosine.

    PubMed

    Ribeiro, Joaquim A; Sebastião, Ana M

    2010-01-01

    Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.

  2. Specific cardiolipin binding interferes with labeling of sulfhydryl residues in the adenosine diphosphate/adenosine triphosphate carrier protein from beef heart mitochondria.

    PubMed

    Beyer, K; Nuscher, B

    1996-12-10

    The interaction of cardiolipin with the isolated ADP/ATP carrier protein from beef heart mitochondria has been studied by means of the unmasking of a single cysteinyl residue, Cys56, which accompanies the conformational transition of the protein [Leblanc, P., & Clauser, H, (1972) FEBS Lett. 23, 107-113]. The unmasking was monitored by using the static fluorescence of the sulfhydryl reagent N-(1-pyrenyl)maleimide (PYM). The rate of PYM binding that was observed after initiation of the conformational transition by ADP was drastically reduced in the presence of cardiolipin (CL). Phospholipids other than CL were much less effective. It can be shown that the conformational transition and the binding reaction are both affected by CL, although to varying extents. An enhancement of the rate of the ADP-dependent PYM binding was observed upon digestion of the protein bound phospholipid by phospholipase A2. The phospholipase treatment also led to an increased ADP-independent PYM binding, thus indicating that the ADP control of the carrier transition was gradually lost. The ADP control could be fully restored through the addition of CL, provided that the phospholipase incubation had been terminated after approximately 1 h. These results will be discussed in relation to an earlier report of tight cardiolipin binding [Beyer, K., & Klingenberg, M. (1985) Biochemistry 24, 3821-3826] and to current structural models of the ADP/ATP carrier protein.

  3. Activation of the cAMP-PKA signaling pathway in rat dorsal root ganglion and spinal cord contributes toward induction and maintenance of bone cancer pain.

    PubMed

    Zhu, Gui-Qin; Liu, Su; He, Duan-Duan; Liu, Yue-Peng; Song, Xue-Jun

    2014-08-01

    The objective of this study was to explore the role of cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling in the development of bone cancer pain in rats. Female Sprague-Dawley rats (N=48) were divided randomly into four groups: sham (n=8), tumor cell implantation (TCI) (n=16), TCI+saline (n=8), and TCI+PKA inhibitor (n=16). Bone cancer-induced pain behaviors - thermal hyperalgesia and mechanical allodynia - were tested at postoperative days -3, -1, 1, 3, 5, 7, 10, and 14. A PKA inhibitor, Rp-cAMPS (1 mmol/l/20 μl), was injected intrathecally on postoperative days 3, 4, and 5 (early phase) or 7, 8, and 9 postoperative days (late phase). The expression of PKA mRNA in dorsal root ganglia (DRG) was detected by reverse transcription-PCR. The concentration of cAMP and activity of PKA in DRG and spinal cord were measured by enzyme-linked immunosorbent assay. TCI treatment induced significant pain behaviors, manifested as thermal hyperalgesia and mechanical allodynia. Spinal administration of the PKA inhibitor Rp-cAMPS during the early phase and late phase significantly delayed or reversed, respectively, TCI-induced thermal hyperalgesia and mechanical allodynia. TCI treatment also led to obvious tumor growth and bone destruction. The level of PKA mRNA in the DRG, as well as the concentration of cAMP and the activity of PKA, in both the DRG and spinal cord were significantly increased after TCI treatment (P<0.01). We conclude that the inhibition of the cAMP-PKA signaling pathway may reduce bone cancer pain.

  4. Vascular CD39/ENTPD1 Directly Promotes Tumor Cell Growth by Scavenging Extracellular Adenosine Triphosphate12

    PubMed Central

    Feng, Lili; Sun, Xiaofeng; Csizmadia, Eva; Han, Lihui; Bian, Shu; Murakami, Takashi; Wang, Xin; Robson, Simon C; Wu, Yan

    2011-01-01

    Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5′-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X7 receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X7 expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management. PMID:21390184

  5. Effects of cigarette smoke on methacholine- and AMP-induced air trapping in asthmatics.

    PubMed

    Prieto, Luis; Palop, Julio; Llusar, Ruth; Herrera, Susana; Perez-Frances, Carmen; Lanuza, Amparo; Aguilar, Daniela

    2015-02-01

    Abstract Objective: No information is available on the effect of cigarette smoke on bronchoconstrictor-induced air trapping in asthma. The aim of this study was to evaluate the additional influence of smoking on methacholine- and adenosine 5'-monophosphate (AMP)-induced air trapping in subjects with asthma. Airway responsiveness to methacholine and AMP, bronchial (J'awNO) and alveolar (CANO) nitric oxide (NO) and exhaled breath condensate pH were measured in 68 adults (23 current smokers with asthma, 23 non-smokers with asthma and 22 current or former smokers with chronic obstructive pulmonary disease; COPD). The degree of air trapping induced by each bronchoconstrictor agent was expressed by the percent fall in forced vital capacity (FVC) at a 20% fall in forced expiratory volume in 1 s relative to FVC after saline inhalation (ΔFVC%). The ΔFVC% for AMP was higher in both smokers with asthma and patients with COPD than in non-smokers with asthma (p<0.001). By contrast, ΔFVC% for methacholine was similar in the three groups of subjects (p=0.69). In smokers with asthma, but not in the other two groups, there was a correlation between the residual volume/total lung capacity at baseline and the ΔFVC% induced by each bronchoconstrictor agent. Mean values for J'awNO were higher in non-smokers with asthma than in the other two groups (p<0.05). The results of this study suggest that factors underlying bronchoconstriction induced by indirect agonists are different in smokers and non-smokers with asthma. These observations might be clinically relevant, because triggers that frequently induce bronchial obstruction in the real world act by an indirect mechanism.

  6. Effect of an ADP analog on isometric force and ATPase activity of active muscle fibers.

    PubMed

    Karatzaferi, Christina; Myburgh, Kathryn H; Chinn, Marc K; Franks-Skiba, Kathleen; Cooke, Roger

    2003-04-01

    The role played by ADP in modulating cross-bridge function has been difficult to study, because it is hard to buffer ADP concentration in skinned muscle preparations. To solve this, we used an analog of ADP, spin-labeled ADP (SL-ADP). SL-ADP binds tightly to myosin but is a very poor substrate for creatine kinase or pyruvate kinase. Thus ATP can be regenerated, allowing well-defined concentrations of both ATP and SL-ADP. We measured isometric ATPase rate and isometric tension as a function of both [SL-ADP], 0.1-2 mM, and [ATP], 0.05-0.5 mM, in skinned rabbit psoas muscle, simulating fresh or fatigued states. Saturating levels of SL-ADP increased isometric tension (by P'), the absolute value of P' being nearly constant, approximately 0.04 N/mm(2), in variable ATP levels, pH 7. Tension decreased (50-60%) at pH 6, but upon addition of SL-ADP, P' was still approximately 0.04 N/mm(2). The ATPase was inhibited competitively by SL-ADP with an inhibition constant, K(i), of approximately 240 and 280 microM at pH 7 and 6, respectively. Isometric force and ATPase activity could both be fit by a simple model of cross-bridge kinetics.

  7. Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?

    PubMed Central

    Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.

    2006-01-01

    Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear

  8. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaife, R.M.; Wilson, L.; Purich, D.L.

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extentmore » of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.« less

  9. ADP's ABCs of Training

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    When a company's core competence is processing data, it is sometimes easy to lose sight of the obvious--the information right under its nose. In the case of Automatic Data Processing, Inc. (ADP), a business outsourcing company specializing in human resources, payroll, tax, and benefits administrations solutions, that is not a problem. Through…

  10. The ceramide-1-phosphate analogue PCERA-1 modulates tumour necrosis factor-alpha and interleukin-10 production in macrophages via the cAMP-PKA-CREB pathway in a GTP-dependent manner.

    PubMed

    Avni, Dorit; Philosoph, Amir; Meijler, Michael M; Zor, Tsaffrir

    2010-03-01

    The synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production. We show here that PCERA-1 elevates intra-cellular cAMP level in a guanosine triphosphate-dependent manner in RAW264.7 macrophages. The cell-permeable dibutyryl cAMP was able to mimic the effects of PCERA-1 on cytokine production, whereas 8-chloro-phenylthio-methyladenosine-cAMP, which specifically activates the exchange protein directly activated by cAMP (EPAC) but not protein kinase A (PKA), failed to mimic PCERA-1 activities. Consistently, the PKA inhibitor H89 efficiently blocked PCERA-1-driven cytokine modulation as well as PCERA-1-stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133. Finally, PCERA-1 activated cAMP-responsive transcription of a luciferase reporter, in synergism with the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results suggest that PCERA-1 activates a G(s) protein-coupled receptor, leading to elevation of cAMP, which acts via the PKA-CREB pathway to promote TNF-alpha suppression and IL-10 induction in LPS-stimulated macrophages. Identification of the PCERA-1 receptor is expected to set up a new target for development of novel anti-inflammatory drugs.

  11. Stimulation of cAMP signalling allows isolation of clonal pancreatic precursor cells from adult mouse pancreas.

    PubMed

    Yamamoto, T; Yamato, E; Taniguchi, H; Shimoda, M; Tashiro, F; Hosoi, M; Sato, T; Fujii, S; Miyazaki, J-I

    2006-10-01

    Duct cells of the pancreas are thought to include latent progenitors of islet endocrine cells that can be induced to differentiate by appropriate morphogens. Here we developed a method for isolating pancreatic ductal epithelial cells from adult mice that overcomes the shortcomings of previous methods. Pancreatic ductal cells were grown in serum-free DMEM/F12 medium in the presence of cholera toxin or 8-bromo-cyclic adenosine monophosphate, which is known to be an intracellular cAMP generator. Single cell cloning was performed by limiting dilution in serum-free medium. The isolated clonal cells expressed high levels of cytokeratin and Ipf1 (formerly known as Pdx-1). Adenovirus-mediated expression of ngn3 (also known as Neurog3) and Ptf1a in these cells induced expression of insulin and somatostatin, and of carboxypeptidase A, respectively. Furthermore, albumin production was induced by dexamethasone or by long-term culture in serum-containing medium. Stimulation of the cAMP-dependent signalling allowed us to isolate clonal pancreatic ductal cells from adult mice. These cells are able to partially differentiate into endocrine cells, exocrine cells and hepatocyte-like cells and are therefore considered to have the characteristics of endodermal progenitor cells.

  12. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase

  13. Butyric acid regulates progesterone and estradiol secretion via cAMP signaling pathway in porcine granulosa cells.

    PubMed

    Lu, Naisheng; Li, Mengjiao; Lei, Hulong; Jiang, Xueyuan; Tu, Weilong; Lu, Yang; Xia, Dong

    2017-09-01

    Butyric acid (BA), one of the short chain fatty acids (SCFAs), has positive actions on the metabolism, inflammation, etc. However, whether it influences the reproductive physiology and if so the detail mechanism involved has not yet been determined. In this study, the porcine granulosa cells (PGCs) were treated with gradient concentrations of BA. After 24h culture, 0.05mM BA significantly stimulated the progesterone (P 4 ) secretion (P<0.05), 5mM and 10mM BA significantly inhibited the P 4 secretion (P<0.05). Simultaneously, BA up-regulated the estradiol (E 2 ) secretion in a dose dependent manner, 5mM and 10mM BA significantly promoted the E 2 level (P<0.05). In addition, 10mM BA significantly promoted the G-protein-coupled receptor 41/43 mRNA (P<0.05). Interestingly, 5mM BA treatment significantly down-regulated cyclic adenosine monophosphate (cAMP) content (P<0.05), steroidogenic acute regulatory (StAR), steroidogenic factor 1 (SF1), P450scc in the mRNA and/or protein level (P<0.05), and these actions were reversed by cAMP activator forskolin (FK). Moreover, the co-treatment of 5mM BA and bupivacaine (BPC, the cAMP inhibitor) significantly accumulated the inhibition action of BPC on cAMP, the secretion of P 4 , and the abundance of StAR mRNA (P<0.05), inhibited the up-regulation of 5mM BA on the E 2 secretion (P<0.05). Further, the Global Proteome and KEGG pathway analysis found that 5mM BA significantly up-regulated the I3LM80 proteins (P<0.05), which is involved in the steroid biosynthesis signaling pathway. 5mM BA significantly decreased the F2Z5G3 protein level (P<0.05), and the cAMP signaling pathway. In conclusion, present findings for the first time demonstrated that BA could regulate the P 4 and E 2 hormone synthesis in PGCs via the cAMP signaling pathway. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. ADP-ribosylation of transducin by pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.

    1985-11-05

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is (TSP)ADP-ribosylated by pertussis toxin and (TSP)NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1more » molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and TS kDa. The amino terminus of both 38- and TS-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The TS-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of (TSP)ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased (TSP)ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed (TSP)ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma.« less

  15. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or themore » maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).« less

  16. The Effect of Nucleotides and Inhibitors on Respiration in Isolated Wheat Mitochondria 1

    PubMed Central

    Pomeroy, M. Keith

    1975-01-01

    The effect of mono-, di-, and trinucleoside phosphates and respiratory inhibitors on respiration in winter wheat (Triticum aestivum L. cv. Rideau) mitochondria has been examined. When added during state 4 respiration, subsequent to addition of ADP, all of the dinucleotides stimulated oxidation and induced respiratory control with all substrates examined. Similar results were obtained with AMP, but other mononucleotides and all trinucleotides did not affect the rate of oxidation. Nucleoside diphosphates did not stimulate respiration when added prior to the addition of ADP, but subsequent addition of AMP, ADP, or ATP re-established coupled respiration in the presence of the dinucleotides. The duration of 2, 4-dinitrophenol stimulated respiration during oxidation of α-ketoglutarate was found to be dependent on the amount of AMP, ADP, or ATP added, either prior, or subsequent to, addition of the uncoupler. The addition of oligomycin during 2, 4-dinitrophenol stimulated respiration reestablished coupled respiration with low ADP/O ratios, when added after addition of ATP or conditions which allow formation of ATP from added ADP. The nucleoside diphosphates, other than ADP, did not stimulate oxidation of α-ketoglutarate in the presence of 2, 4-dinitrophenol until a small amount of adenine nucleotide was added to the system. The results suggest that dinucleotides other than ADP, are able to participate in the energy conversion processs of the mitochondria, probably via transphosphorylation reactions. Images PMID:16659027

  17. Adenosine and inflammation: what's new on the horizon?

    PubMed

    Antonioli, Luca; Csóka, Balázs; Fornai, Matteo; Colucci, Rocchina; Kókai, Endre; Blandizzi, Corrado; Haskó, György

    2014-08-01

    Adenosine contributes to the maintenance of tissue integrity by modulating the immune system. Encouraging results have emerged with adenosine receptor ligands for the management of several inflammatory conditions in preclinical and clinical settings. However, therapeutic applications of these drugs are sometimes complicated by the occurrence of serious adverse effects. The scientific community is making intensive efforts to design novel adenosine receptor ligands endowed with greater selectivity or to develop innovative compounds acting as allosteric receptor modulators. In parallel, research is focusing on novel pharmacological entities (designated as adenosine-regulating agents) that can increase, in a site- and event-specific manner, adenosine concentrations at the inflammatory site, thereby minimizing the adverse systemic effects of adenosine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life

    PubMed Central

    Perina, Dragutin; Mikoč, Andreja; Ahel, Josip; Ćetković, Helena; Žaja, Roko; Ahel, Ivan

    2014-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in regulation of many cellular pathways. Poly(ADP-ribose) (PAR) consists of chains of repeating ADP-ribose nucleotide units and is synthesized by the family of enzymes called poly(ADP-ribose) polymerases (PARPs). This modification can be removed by the hydrolytic action of poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3). Hydrolytic activity of macrodomain proteins (MacroD1, MacroD2 and TARG1) is responsible for the removal of terminal ADP-ribose unit and for complete reversion of protein ADP-ribosylation. Poly(ADP-ribosyl)ation is widely utilized in eukaryotes and PARPs are present in representatives from all six major eukaryotic supergroups, with only a small number of eukaryotic species that do not possess PARP genes. The last common ancestor of all eukaryotes possessed at least five types of PARP proteins that include both mono and poly(ADP-ribosyl) transferases. Distribution of PARGs strictly follows the distribution of PARP proteins in eukaryotic species. At least one of the macrodomain proteins that hydrolyse terminal ADP-ribose is also always present. Therefore, we can presume that the last common ancestor of all eukaryotes possessed a fully functional and reversible PAR metabolism and that PAR signalling provided the conditions essential for survival of the ancestral eukaryote in its ancient environment. PARP proteins are far less prevalent in bacteria and were probably gained through horizontal gene transfer. Only eleven bacterial species possess all proteins essential for a functional PAR metabolism, although it is not known whether PAR metabolism is truly functional in bacteria. Several dsDNA viruses also possess PARP homologues, while no PARP proteins have been identified in any archaeal genome. Our analysis of the distribution of enzymes involved in PAR metabolism provides insight into the evolution of these important signalling systems, as well as

  19. ε Subunit of Bacillus subtilis F1-ATPase Relieves MgADP Inhibition

    PubMed Central

    Mizumoto, Junya; Kikuchi, Yuka; Nakanishi, Yo-Hei; Mouri, Naoto; Cai, Anrong; Ohta, Tokushiro; Haruyama, Takamitsu; Kato-Yamada, Yasuyuki

    2013-01-01

    MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition. PMID:23967352

  20. Synergistic role of ADP and Ca2+ in diastolic myocardial stiffness

    PubMed Central

    Sequeira, Vasco; Najafi, Aref; McConnell, Mark; Fowler, Ewan D; Bollen, Ilse A E; Wüst, Rob C I; dos Remedios, Cris; Helmes, Michiel; White, Ed; Stienen, Ger J M; Tardiff, Jil; Kuster, Diederik W D; van der Velden, Jolanda

    2015-01-01

    Abstract Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca2+] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca2+ handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca2+] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca2+ in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca2+ both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca2+] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca2+ overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca2+]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca2+, and thereby increase myocardial stiffness. Key points Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin