Sample records for adenosine mono phosphate

  1. [High performance liquid chromatogram (HPLC) determination of adenosine phosphates in rat myocardium].

    PubMed

    Miao, Yu; Wang, Cheng-long; Yin, Hui-jun; Shi, Da-zhuo; Chen, Ke-ji

    2005-04-18

    To establish method for the quantitative determination of adenosine phosphates in rat myocardium by optimized high performance liquid chromatogram (HPLC). ODS HYPERSIL C(18) column and a mobile phase of 50 mmol/L tribasic potassium phosphate buffer solution (pH 6.5), with UV detector at 254 nm were used. The average recovery rates of myocardial adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were 99%-107%, 96%-104% and 95%-119%, respectively; relative standard deviations (RSDs) of within-day and between-days were less than 1.5% and 5.1%, respectively. The method is simple, rapid and accurate, and can be used to analyse the adenosine phosphates in myocardium.

  2. Identification and structural characterization of O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate in yeast methionine initiator tRNA.

    PubMed Central

    Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W

    1990-01-01

    We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65. PMID:2235481

  3. Identification and structural characterization of O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate in yeast methionine initiator tRNA.

    PubMed

    Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W

    1990-10-25

    We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65.

  4. 21 CFR 184.1521 - Monosodium phosphate derivatives of mono- and diglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Monosodium phosphate derivatives of mono- and... derivatives of mono- and diglycerides. (a) Monosodium phophate derivatives of mono- and diglycerides are composed of glyceride derivatives formed by reacting mono- and diglycerides that are derived from edible...

  5. Content of Adenosine Phosphates and Adenylate Energy Charge in Germinating Ponderosa Pine Seeds

    PubMed Central

    Ching, Te May; Ching, Kim K.

    1972-01-01

    An average of 540 picomoles of total adenosine phosphates was found in the embryo of mature seeds of ponderosa pine (Pinus ponderosa Laws.) and 1140 picomoles in the gametophyte. Adenylate energy charges were 0.44 and 0.26, respectively. After stratification, total adenosine phosphates increased 7-fold and 6-fold in embryo and gametophyte, respectively, and energy charges rose to 0.85 and 0.75. During germination, total adenosine phosphates increased to a 20-fold peak on the 9th day in gametophytic tissue, parallel with the peak of reserve regradation and organellar synthesis, and then decreased. In embryo and seedling, total adenosine phosphates elevated 80-fold with two distinct oscillating increases of AMP and ADP. The oscillating increases occurred before the emergence of radicle and cotyledons during which the highest mitotic index prevailed in all tissues. Energy charges fluctuated between 0.65 at the rapid cell dividing stage to 0.85 at the fully differentiated stage of the seedling, while energy charges remained around 0.75 in the gametophyte. These data indicated that the content of adenosine phosphates of germinating seeds reflects growth, organogenesis, and morphogenesis, and that a compartmentalized energy metabolism must exist in dividing and growing plant cells. PMID:16658212

  6. Determination of adenosine phosphates in rat gastrocnemius at various postmortem intervals using high performance liquid chromatography.

    PubMed

    Huang, Hong; Yan, Youyi; Zuo, Zhong; Yang, Lin; Li, Bin; Song, Yu; Liao, Linchuan

    2010-09-01

    Although the change in adenosine phosphate levels in muscles may contribute to the development of rigor mortis, the relationship between their levels and the onset and development of rigor mortis has not been well elucidated. In the current study, levels of the adenosine phosphates including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in gastrocnemius at various postmortem intervals of 180 rats from different death modes were detected by high performance liquid chromatography. The results showed that the levels of ATP and ADP significantly decreased along with the postmortem period of rats from different death mode whereas the AMP level remained the same. In addition, it was found that changes in the ATP levels in muscles after death correlated well with the development of rigor mortis. Therefore, the ATP level could serve as a reference parameter for the deduction of rigor mortis in forensic science.

  7. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or...

  8. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or...

  9. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or...

  10. slalom encodes an adenosine 3′-phosphate 5′-phosphosulfate transporter essential for development in Drosophila

    PubMed Central

    Lüders, Florian; Segawa, Hiroaki; Stein, David; Selva, Erica M.; Perrimon, Norbert; Turco, Salvatore J.; Häcker, Udo

    2003-01-01

    Sulfation of all macromolecules entering the secretory pathway in higher organisms occurs in the Golgi and requires the high-energy sulfate donor adenosine 3′-phosphate 5′-phosphosulfate. Here we report the first molecular identification of a gene that encodes a transmembrane protein required to transport adenosine 3′-phosphate 5′-phosphosulfate from the cytosol into the Golgi lumen. Mutations in this gene, which we call slalom, display defects in Wg and Hh signaling, which are likely due to the lack of sulfation of glycos aminoglycans by the sulfotransferase sulfateless. Analysis of mosaic mutant ovaries shows that sll function is also essential for dorsal–ventral axis determination, suggesting that sll transports the sulfate donor required for sulfotransferase activity of the dorsal–ventral determinant pipe. PMID:12853478

  11. On the use of X-ray absorption spectroscopy to elucidate the structure of lutetium adenosine mono- and triphosphate complexes.

    PubMed

    Mostapha, S; Berthon, C; Fontaine-Vive, F; Gaysinski, M; Guérin, L; Guillaumont, D; Massi, L; Monfardini, I; Solari, P L; Thomas, O P; Charbonnel, M C; Den Auwer, C

    2014-02-01

    Although the physiological impact of the actinide elements as nuclear toxicants has been widely investigated for half a century, a description of their interactions with biological molecules remains limited. It is however of primary importance to better assess the determinants of actinide speciation in cells and more generally in living organisms to unravel the molecular processes underlying actinide transport and deposition in tissues. The biological pathways of this family of elements in case of accidental contamination or chronic natural exposure (in the case of uranium rich soils for instance) are therefore a crucial issue of public health and of societal impact. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, phosphate derivatives are considered as probable targets of these cations. Among them, nucleotides and in particular adenosine mono- (AMP) and triphosphate (ATP) nucleotides occur in more chemical reactions than any other compounds on the earth's surface, except water, and are therefore critical target molecules. In the present study, we are interested in trans-plutonium actinide elements, in particular americium and curium that are more rarely considered in environmental and bioaccumulation studies than early actinides like uranium, neptunium and plutonium. A first step in this strategy is to work with chemical analogues like lanthanides that are not radioactive and therefore allow extended physical chemical characterization to be conducted that are difficult to perform with radioactive materials. We describe herein the interaction of lutetium(III) with adenosine AMP and ATP. With AMP and ATP, insoluble amorphous compounds have been obtained with molar ratios of 1:2 and 1:1, respectively. With an excess of ATP, with 1:2 molar ratio, a soluble complex has been obtained. A combination of spectroscopic techniques (IR, NMR, ESI-MS, EXAFS) together with quantum

  12. Selective Phosphonylation of 5'-Adenosine Monophosphate (5'-AMP) via Pyrophosphite [PPi(III)].

    PubMed

    Kaye, Karl; Bryant, David E; Marriott, Katie E R; Ohara, Shohei; Fishwick, Colin W G; Kee, Terence P

    2016-11-01

    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H 2 P 2 O 5 2- ; PPi(III)], to the phosphate group of 5'-adenosine mono phosphate (5'-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M 2+ ) and by organic co-factors such as acetate (AcO - ). In this specific case of P-transfer from PPi(III) to 5'-AMP, we show a synergistic enhancement of transfer in the combined presence of M 2+ & AcO - . Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5'-AMP, [P(III)P(V)-5'-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus.

  13. Synthesis of γ-Phosphate-Labeled and Doubly Labeled Adenosine Triphosphate Analogs.

    PubMed

    Hacker, Stephan M; Welter, Moritz; Marx, Andreas

    2015-03-09

    This unit describes the synthesis of γ-phosphate-labeled and doubly labeled adenosine triphosphate (ATP) analogs and their characterization using the phosphodiesterase I from Crotalus adamanteus (snake venom phosphodiesterase; SVPD). In the key step of the synthesis, ATP or an ATP analog, bearing a linker containing a trifluoroacetamide group attached to the nucleoside, are modified with an azide-containing linker at the terminal phosphate using an alkylation reaction. Subsequently, different labels are introduced to the linkers by transformation of one functional group to an amine and coupling to an N-hydroxysuccinimide ester. Specifically, the Staudinger reaction of the azide is employed as a straightforward means to obtain an amine in the presence of various labels. Furthermore, the fluorescence characteristics of a fluorogenic, doubly labeled ATP analog are investigated following enzymatic cleavage by SVPD. Copyright © 2015 John Wiley & Sons, Inc.

  14. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  15. Calcium phosphate-phosphorylated adenosine hybrid microspheres for anti-osteosarcoma drug delivery and osteogenic differentiation.

    PubMed

    Zhou, Zi-Fei; Sun, Tuan-Wei; Chen, Feng; Zuo, Dong-Qing; Wang, Hong-Sheng; Hua, Ying-Qi; Cai, Zheng-Dong; Tan, Jun

    2017-03-01

    Biocompatibility, biodegradability and bioactivity are significantly important in practical applications of various biomaterials for bone tissue engineering. Herein, we develop a functional inorganic-organic hybrid system of calcium phosphate-phosphorylated adenosine (CPPA). Both calcium phosphate and phosphorylated adenosine molecules in CPPA are fundamental components in mammalians and play important roles in biological metabolism. In this work, we report our three leading research qualities: (1) CPPA hybrid microspheres with hollow and porous structure are synthesized by a facile one-step microwave-assisted solvothermal method; (2) CPPA hybrid microspheres show high doxorubicin loading capacity and pH-responsive drug release properties, and demonstrate positive therapeutic effects on six osteosarcoma cell lines in vitro and a mouse model of 143B osteosarcoma subcutaneous tumor in vivo; (3) CPPA hybrid microspheres are favorable to promote osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) by activating the AMPK pathway, with satisfactory evidences from cellular alkaline phosphatase staining, alizarin red staining, real time PCR and western analysis. The as-prepared CPPA hybrid microspheres are promising in anti-osteosarcoma and bone regeneration, which simultaneously display excellent properties on drug delivery and osteogenic differentiation of hBMSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    PubMed

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis. © The Author(s) 2016.

  17. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  18. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (b) Conditions of use. This substance is generally recognized...

  19. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (b) Conditions of use. This substance is generally recognized...

  20. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV).

    PubMed

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-10-12

    Zr(IV) can form phosphate and Zr(IV) (-PO₃ 2- -Zr 4+ -) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A 520nm / A 650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.

  1. The hydrogen bonding and hydration of 2'-OH in adenosine and adenosine 3'-ethyl phosphate.

    PubMed

    Acharya, Parag; Chattopadhyaya, Jyoti

    2002-03-22

    The 2'-OH group has major structural implications in the recognition, processing, and catalytic properties of RNA. We report here intra- and intermolecular H-bonding of 2'-OH in adenosine 3'-ethyl phosphate (1), 3'-deoxyadenosine (2), and adenosine (3) by both temperature- and concentration-dependent NMR studies, as well as by detailed endo ((3)J(H,H)) and exocyclic ((3)J(H,OH)) coupling constant analyses. We have also examined the nature of hydration and exchange processes of 2'-OH with water by a combination of NOESY and ROESY experiments in DMSO-d(6) containing 2 mol % HOD. The NMR-constrained molecular modeling (by molecular mechanics as well as by ab initio methods both in the gas and solution phase) has been used to characterize the energy minima among the four alternative dihedrals possible from the solution of the Karplus equation for (3)J(H2',OH) and (3)J(H3',OH) to delineate the preferred orientation of 2'-O-H proton in 1 and 2 as well as for 2'/3'-O-H protons in 3. The NMR line shape analysis of 2'-OH gave the DeltaG(H-bond)(298K) of 7.5 kJ mol(-1) for 1 and 8.4 kJ mol(-1) for 3; similar analyses of the methylene protons of 3'-ethyl phosphate moiety in 1 also gave comparable DeltaG(H-bond)(298K) of 7.3 kJ mol(-1). The donor nature of the 2'-OH in the intramolecular H-bonding in 3 is evident from its relatively reduced flexibility [-TDeltaS++](2'-OH) = -17.9(+/-0.5) kJ mol(-1)] because of the loss of conformational freedom owing to the intramolecular 2'O-H...O3' H-bonding, compared to the acceptor 3'-OH in 3 [-TDeltaS++](3'-OH) = -19.8 (+/- 0.6) kJ mol(-1)] at 298 K. The presence of intramolecular 2'-OH...O3' H-bonding in 3 is also corroborated by the existence of weak long-range (4)J(H2',OH3') in 3 (i.e., W conformation of H2'-C2'-C3'-O3'-H) as well as by (3)J(H,OH) dependent orientation of the 2'- and 3'-OH groups. The ROESY spectra for 1 and 3 at 308 K, in DMSO-d(6), show a clear positive ROE contact of both 2'- and 3'-OH with water. The presence of a

  2. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV)

    PubMed Central

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-01-01

    Zr(IV) can form phosphate and Zr(IV) (–PO32−–Zr4+–) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP. PMID:27754349

  3. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  4. Formation of adenosine 5'-tetraphosphate from the acyl phosphate intermediate: a difference between the MurC and MurD synthetases of Escherichia coli.

    PubMed

    Bouhss, A; Dementin, S; van Heijenoort, J; Parquet, C; Blanot, D

    1999-06-18

    The mechanism of the Mur synthetases of peptidoglycan biosynthesis is thought to involve in each case the successive formation of an acyl phosphate and a tetrahedral intermediate. The existence of the acyl phosphates for the MurC and MurD enzymes from Escherichia coli was firmly established by their in situ reduction by sodium borohydride followed by acid hydrolysis, yielding the corresponding amino alcohols. Furthermore, it was found that MurD, but not MurC, catalyses the synthesis of adenosine 5'-tetraphosphate from the acyl phosphate, thereby substantiating its existence and pointing out a difference between the two enzymes.

  5. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  6. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  7. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  8. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  10. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  11. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  12. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  13. Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine

    PubMed Central

    Naguib, Fardos N. M.; Rais, Reem H.; Al Safarjalani, Omar N.; el Kouni, Mahmoud H.

    2015-01-01

    Toxoplasma gondii has an extraordinarily ability to utilize adenosine (Ado) as the primary source of all necessary purines in this parasite which lacks de novo purine biosynthesis. The activity of T. gondii adenosine kinase (TgAK, EC 2.7.1.20) is responsible for this efficient salvage of Ado in T. gondii. To fully understand this remarkable efficiency of TgAK in the utilization of Ado, complete kinetic parameters of this enzyme are necessary. Initial velocity and product inhibition studies of TgAK demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo = 0.002 ± 0.0002 mM, KATP = 0.05 ± 0.008 mM, and Vmax = 920 ± 35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5′-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. PMID:26112826

  14. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    PubMed

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  16. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  17. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  18. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  19. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono...

  20. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  1. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  2. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  3. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  4. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  5. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  6. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  7. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  8. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  10. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  11. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  12. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  13. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  14. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  15. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  16. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  17. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  18. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  20. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  1. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  2. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  3. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  4. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  5. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  6. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  7. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  8. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di...

  10. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono...

  11. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  12. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  13. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  14. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  15. Adenosine Phosphates in Germinating Radish (Raphanus sativus L.) Seeds 1

    PubMed Central

    Moreland, Donald E.; Hussey, Griscelda G.; Shriner, Carole R.; Farmer, Fred S.

    1974-01-01

    Changes in concentrations of adenosine phosphates (AMP, ADP, and ATP), oxygen utilization, and fresh weights were measured during the first 48 hours after imbibition of water by quiescent radish seeds (Raphanus sativus L.) at 22.5 C. The changes in ATP concentrations, oxygen utilization, and fresh weights followed a triphasic time course, characterized by a rapid initial increase, which extended from 0 to approximately 1.5 hours, a lag phase from 1.5 to 16 hours, and a sharp linear increase from 16 to 48 hours. In unimbibed seeds, the concentrations of ATP, ADP, and AMP were <0.1, 0.9, and 2.2 nmoles/seed, respectively. After imbibition of water by the quiescent seeds, for 1 hour, the ATP concentration had increased to 2.5, and ADP and AMP concentrations had decreased to 0.3 and 0.1 nmole/seed, respectively. These early changes occurred also in seeds maintained under anaerobic conditions (argon), or when treated with either 5 mm fluoroacetate, or 5 mm iodoacetate. The concentrations of ADP and AMP did not change significantly from 1 to 48 hours. The termination of the lag phase at 16 hours correlated with radicle emergence. Cell division in the radicles was initiated at approximately 28 hours. ATP concentrations in seeds maintained under argon or treated with fluoroacetate remained relatively constant from approximately 2 to 48 hours. In contrast, the ATP concentration of iodoacetate-treated seeds decreased curvilinearly from 4 to 48 hours. Oxidative phosphorylation was estimated to have contributed 15, 20, and 65% of the pool ATP at 1.5, 16, and 48 hours, respectively. PMID:16658928

  16. Administration of exogenous adenosine triphosphate to ischemic skeletal muscle induces an energy-sparing effect: role of adenosine receptors.

    PubMed

    Maldonado, Claudio; Pushpakumar, Sathnur B; Perez-Abadia, Gustavo; Arumugam, Sengodagounder; Lane, Andrew N

    2013-05-01

    Ischemia-reperfusion injury is a devastating complication that occurs in allotransplantation and replantation of limbs. Over the years, several preservation strategies have been used to conserve the critical levels of intracellular adenosine triphosphate (ATP) during ischemia to sustain the ion gradients across the membranes and thus the tissue viability. The administration of exogenous ATP to ischemic tissues is known to provide beneficial effects during reperfusion, but it is unclear whether it provides protection during ischemia. The purpose of the present study was to determine the effect of ATP administration on high-energy phosphate levels in ischemic skeletal muscle and to examine the role of purinergic and adenosine receptors in mediating the response to exogenous ATP. The extensor digitorum longus muscles of Fischer rats were subjected to ischemia and treated with different concentrations of ATP with or without purinergic and adenosine receptor blockers. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to measure the rate of decay of ATP, phosphocreatine (PCr), and the formation of adenosine monophosphate and acidification. Phosphorylated compounds were analyzed using a simple model of energy metabolism, and the PCr half-life was used as an index of internal depletion of ATP to distinguish between intracellular and extracellular ATP. PCr decay was rapid in all muscle groups and was followed by gradual ATP decay. The half-life of PCr was significantly longer in the ATP-treated muscles than in the vehicle controls and was maximally prolonged by treating with slow hydrolyzing adenosine 5'-O-(3-thio)triphosphate. Purinoceptor (P2X) blockade with ATP treatment significantly increased the half-life of PCr, and adenosine receptor blockers blunted the response. Administration of adenosine to ischemic muscles significantly increased the half-life of PCr compared with that in the vehicle controls. Exogenous ATP administration to ischemic skeletal

  17. Indigo Carmine-Cu complex probe exhibiting dual colorimetric/fluorimetric sensing for selective determination of mono hydrogen phosphate ion and its logic behavior

    NASA Astrophysics Data System (ADS)

    Tavallali, Hossein; Deilamy-Rad, Gohar; Moaddeli, Ali; Asghari, Khadijeh

    2017-08-01

    A new selective probe based on copper complex of Indigo Carmine (IC-Cu2) for colorimetric, naked-eye, and fluorimetric recognition of mono hydrogen phosphate (MHP) ion in H2O/DMSO (4:1 v/v, 1.0 mmol L- 1 HEPES buffer solution pH 7.5) was developed. Detection limit of HPO42 - determination, achieved by fluorimetric and 3lorimetric method, are 0.071 and 1.46 μmol L- 1, respectively. Potential, therefore is clearly available in IC-Cu2 complex to detect HPO42 - in micromolar range via dual visible color change and fluorescence response. Present method shows high selectivity toward HPO42 - over other phosphate species and other anions and was successfully utilized for analysis of P2O5 content of a fertilizer sample. The results obtained by proposed chemosensor presented good agreement with those obtained the colorimetric reference method. INHIBIT and IMPLICATION logic gates operating at molecular level have been achieved using Cu2 + and HPO42 - as chemical inputs and UV-Vis absorbance signal as output.

  18. Microchannel conductivity measurements in microchip for on line monitoring of dephosphorylation rates of organic phosphates using paramagnetic-beads linked alkaline phosphatase.

    PubMed

    Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean

    2015-01-01

    This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Use of tailored loading-dose clopidogrel in patients undergoing selected percutaneous coronary intervention based on adenosine diphosphate-mediated platelet aggregation.

    PubMed

    Meng, Kang; Lü, Shu-Zheng; Zhu, Hua-Gang; Chen, Xin; Ge, Chang-Jiang; Song, Xian-Tao

    2010-12-01

    Adenosine phosphate-mediated platelet aggregation is a prognostic factor for major adverse cardiac events in patients who have undergone selective percutaneous coronary interventions. This study aimed to assess whether an adjusted loading dose of clopidogrel could more effectively inhibit platelet aggregation in patients undergoing selected percutaneous coronary intervention. A total of 205 patients undergoing selected percutaneous coronary intervention were enrolled in this multicenter, prospective, randomized study. Patients receiving domestic clopidogrel (n = 104) served as the Talcom (Taijia) group; others (n = 101) received Plavix, the Plavix group. Patients received up to 3 additional 300-mg loading doses of clopidogrel to decrease the adenosine phosphate-mediated platelet aggregation index by more than 50% (the primary endpoint) compared with the baseline. The secondary endpoint was major adverse cardiovascular events at 12 months. Compared with the rational loading dosage, the tailored loading dosage better inhibited platelet aggregation based on a > 50% decrease in adenosine phosphate-mediated platelet aggregation (rational loading dosage vs. tailored loading dosage, 48% vs. 73%, P = 0.028). There was no significant difference in the eligible index between the Talcom and Plavix groups (47% vs. 49% at 300 mg; 62% vs. 59% at 600 mg; 74% vs. 72% at 900 mg; P > 0.05) based on a standard adenosine diphosphate-mediated platelet aggregation decrease of > 50%. After 12 months of follow-up, there were no significant differences in major adverse cardiac events (2.5% vs. 2.9%, P = 5.43). No acute or subacute stent thrombosis events occurred. An adjusted loading dose of clopidogrel could have significant effects on antiplatelet aggregation compared with a rational dose, decreasing 1-year major adverse cardiac events in patients undergoing percutaneous coronary interventions based on adenosine phosphate-mediated platelet aggregation with no increase in bleeding.

  20. Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing.

    PubMed

    Yang, Ya-Chun; Wang, Yen-Ting; Tseng, Wei-Lung

    2017-03-22

    Numerous compounds such as protein and double-stranded DNA have been shown to efficiently inhibit intrinsic peroxidase-mimic activity in Fe 3 O 4 nanoparticles (NP) and other related nanomaterials. However, only a few studies have focused on finding new compounds for enhancing the catalytic activity of Fe 3 O 4 NP-related nanomaterials. Herein, phosphate containing adenosine analogs are reported to enhance the oxidation reaction of hydrogen peroxide (H 2 O 2 ) and amplex ultrared (AU) for improving the peroxidase-like activity in Fe 3 O 4 NPs. This enhancement is suggested to be a result of the binding of adenosine analogs to Fe 2+ /Fe 3+ sites on the NP surface and from adenosine 5'-monophosphate (AMP) acting as the distal histidine residue of horseradish peroxidase for activating H 2 O 2 . Phosphate containing adenosine analogs revealed the following trend for the enhanced activity of Fe 3 O 4 NPs: AMP > adenosine 5'-diphosphate > adenosine 5'-triphosphate. The peroxidase-like activity in the Fe 3 O 4 NPs progressively increased with increasing AMP concentration and polyadenosine length. The Michaelis constant for AMP attached Fe 3 O 4 NPs is 5.3-fold lower and the maximum velocity is 2.7-fold higher than those of the bare Fe 3 O 4 NPs. Furthermore, on the basis of AMP promoted peroxidase mimicking activity in the Fe 3 O 4 NPs and the adsorption of protein on the NP surface, a selective fluorescent turn-off system for the detection of urinary protein is developed.

  1. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing

  2. Using phosphate supplementation to reverse hypophosphatemia and phosphate depletion in neurological disease and disturbance.

    PubMed

    Håglin, Lena

    2016-06-01

    Hypophosphatemia (HP) with or without intracellular depletion of inorganic phosphate (Pi) and adenosine triphosphate has been associated with central and peripheral nervous system complications and can be observed in various diseases and conditions related to respiratory alkalosis, alcoholism (alcohol withdrawal), diabetic ketoacidosis, malnutrition, obesity, and parenteral and enteral nutrition. In addition, HP may explain serious muscular, neurological, and haematological disorders and may cause peripheral neuropathy with paresthesias and metabolic encephalopathy, resulting in confusion and seizures. The neuropathy may be improved quickly after proper phosphate replacement. Phosphate depletion has been corrected using potassium-phosphate infusion, a treatment that can restore consciousness. In severe ataxia and tetra paresis, complete recovery can occur after adequate replacement of phosphate. Patients with multiple risk factors, often with a chronic disease and severe HP that contribute to phosphate depletion, are at risk for neurologic alterations. To predict both risk and optimal phosphate replenishment requires assessing the nutritional status and risk for re-feeding hypophosphatemia. The strategy for correcting HP depends on the severity of the underlying disease and the goal for re-establishing a phosphate balance to limit the consequences of phosphate depletion.

  3. Purification and properties of adenosine kinase from rat brain.

    PubMed

    Yamada, Y; Goto, H; Ogasawara, N

    1980-12-04

    Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.

  4. Inhibition of Dengue Virus RNA Synthesis by an Adenosine Nucleoside ▿ †

    PubMed Central

    Chen, Yen-Liang; Yin, Zheng; Duraiswamy, Jeyaraj; Schul, Wouter; Lim, Chin Chin; Liu, Boping; Xu, Hao Ying; Qing, Min; Yip, Andy; Wang, Gang; Chan, Wai Ling; Tan, Hui Pen; Lo, Melissa; Liung, Sarah; Kondreddi, Ravinder Reddy; Rao, Ranga; Gu, Helen; He, Handan; Keller, Thomas H.; Shi, Pei-Yong

    2010-01-01

    We recently reported that (2R,3R,4R,5R)-2-(4-amino-pyrrolo[2,3-d]pyrimidin-7-yl)-3-ethynyl-5-hydroxy-methyl-tetrahydro-furan-3,4-diol is a potent inhibitor of dengue virus (DENV), with 50% effective concentration (EC50) and cytotoxic concentration (CC50) values of 0.7 μM and >100 μM, respectively. Here we describe the synthesis, structure-activity relationship, and antiviral characterization of the inhibitor. In an AG129 mouse model, a single-dose treatment of DENV-infected mice with the compound suppressed peak viremia and completely prevented death. Mode-of-action analysis using a DENV replicon indicated that the compound blocks viral RNA synthesis. Recombinant adenosine kinase could convert the compound to a monophosphate form. Suppression of host adenosine kinase, using a specific inhibitor (iodotubercidin) or small interfering RNA (siRNA), abolished or reduced the compound's antiviral activity in cell culture. Studies of rats showed that 14C-labeled compound was converted to mono-, di-, and triphosphate metabolites in vivo. Collectively, the results suggest that this adenosine inhibitor is phosphorylated to an active (triphosphate) form which functions as a chain terminator for viral RNA synthesis. PMID:20457821

  5. What's Mono?

    MedlinePlus

    ... mono? Have you ever heard of the "kissing disease"? If you said that it's mono, you're absolutely correct. But you don't get mono only from kissing. Infectious mononucleosis, called mono for short, is caused by the Epstein-Barr virus (EBV), which is a type of herpes ...

  6. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  7. Microcontroller-assisted compensation of adenosine triphosphate levels: instrument and method development.

    PubMed

    Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L

    2015-01-30

    In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2-48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme.

  8. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases.

    PubMed

    Cronstein, Bruce N; Sitkovsky, Michail

    2017-01-01

    Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory cells by engaging one or more cell-surface receptors. The expression and function of adenosine receptors on different cell types change during the course of rheumatic diseases, such as rheumatoid arthritis (RA). Targeting adenosine receptors directly for the treatment of rheumatic diseases is currently under study; however, indirect targeting of adenosine receptors by enhancing adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of methotrexate, the anchor drug for the treatment of RA. In this Review, we discuss the regulation of extracellular adenosine levels and the role of adenosine in regulating the inflammatory and immune responses in rheumatic diseases such as RA, psoriasis and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in promoting fibrous matrix production in the skin and other organs, and the role of adenosine in fibrosis and fibrosing diseases is also discussed.

  9. Adenosine and preeclampsia.

    PubMed

    Salsoso, Rocío; Farías, Marcelo; Gutiérrez, Jaime; Pardo, Fabián; Chiarello, Delia I; Toledo, Fernando; Leiva, Andrea; Mate, Alfonso; Vázquez, Carmen M; Sobrevia, Luis

    2017-06-01

    Adenosine is an endogenous nucleoside with pleiotropic effects in different physiological processes including circulation, renal blood flow, immune function, or glucose homeostasis. Changes in adenosine membrane transporters, adenosine receptors, and corresponding intracellular signalling network associate with development of pathologies of pregnancy, including preeclampsia. Preeclampsia is a cause of maternal and perinatal morbidity and mortality affecting 3-5% of pregnancies. Since the proposed mechanisms of preeclampsia development include adenosine-dependent biological effects, adenosine membrane transporters and receptors, and the associated signalling mechanisms might play a role in the pathophysiology of preeclampsia. Preeclampsia associates with increased adenosine concentration in the maternal blood and placental tissue, likely due to local hypoxia and ischemia (although not directly demonstrated), microthrombosis, increased catecholamine release, and platelet activation. In addition, abnormal expression and function of equilibrative nucleoside transporters is described in foetoplacental tissues from preeclampsia; however, the role of adenosine receptors in the aetiology of this disease is not well understood. Adenosine receptors activation may be related to abnormal trophoblast invasion, angiogenesis, and ischemia/reperfusion mechanisms in the placenta from preeclampsia. These mechanisms may explain only a low fraction of the associated abnormal transformation of spiral arteries in preeclampsia, triggering cellular stress and inflammatory mediators release from the placenta to the maternal circulation. Although increased adenosine concentration in preeclampsia may be a compensatory or adaptive mechanism favouring placental angiogenesis, a poor angiogenic state is found in preeclampsia. Thus, preeclampsia-associated complications might affect the cell response to adenosine due to altered expression and activity of adenosine receptors, membrane transporters

  10. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  11. Determination of ortho-cresyl phosphate isomers of tricresyl phosphate used in aircraft turbine engine oils by gas chromatography and mass spectrometry.

    PubMed

    De Nola, G; Kibby, J; Mazurek, W

    2008-07-25

    Tricresyl phosphate (TCP) is used as an anti-wear additive in aircraft turbine engine oil. Concerns about its toxicity are largely based on the tri-o-cresyl phosphate isomer content. However, the presence of other and more toxic isomers has been previously suggested. In this work, the structural isomers of TCP have been determined by two methods (experimental and semi-theoretical). First, the TCP isomers were separated by gas chromatography (GC) and identified by mass spectrometry (MS). Second, after base cleavage of TCP, GC was used to quantify the cresol precursors. These results were used to calculate the TCP isomer distribution based on the assumption of a statistical distribution of the TCP isomers. The results from the two determinations showed reasonable agreement for three of the four oils studied. The o-cresyl isomers were found to be present almost exclusively as the more toxic mono-o-cresyl isomers in the concentration range 13-150 mg/L. The ability to analyse for the mono-o-cresyl isomers allows the toxicity of TCP to be based on the latter isomers rather than on the less toxic tri-o-cresyl phosphate isomer.

  12. A novel adenosine precursor 2',3'-cyclic adenosine monophosphate inhibits formation of post-surgical adhesions.

    PubMed

    Forman, Mervyn B; Gillespie, Delbert G; Cheng, Dongmei; Jackson, Edwin K

    2014-09-01

    Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.

  13. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  14. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.

  15. Structure of RNA 3′-phosphate cyclase bound to substrate RNA

    PubMed Central

    Desai, Kevin K.; Bingman, Craig A.; Cheng, Chin L.; Phillips, George N.

    2014-01-01

    RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme. PMID:25161314

  16. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  17. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  18. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  19. Molecular recognition of nucleotides in micelles and the development and expansion of a chemistry outreach program

    NASA Astrophysics Data System (ADS)

    Schechinger, Linda Sue

    I. To investigate the delivery of nucleotide-based drugs, we are studying molecular recognition of nucleotide derivatives in environments that are similar to cell membranes. The Nowick group previously discovered that membrane-like surfactant micelles tetradecyltrimethylammonium bromide (TTAB) micelle facilitate molecular of adenosine monophosphate (AMP) recognition. The micelles bind nucleotides by means of electrostatic interactions and hydrogen bonding. We observed binding by following 1H NMR chemical shift changes of unique hexylthymine protons upon addition of AMP. Cationic micelles are required for binding. In surfactant-free or sodium dodecylsulfate solutions, no hydrogen bonding is observed. These observations suggest that the cationic surfactant headgroups bind the nucleotide phosphate group, while the intramicellar base binds the nucleotide base. The micellar system was optimized to enhance binding and selectivity for adenosine nucleotides. The selectivity for adenosine and the number of phosphate groups attached to the adenosine were both investigated. Addition of cytidine, guanidine, or uridine monophosphates, results in no significant downfield shifting of the NH resonance. Selectivity for the phosphate is limited, since adenosine mono-, di-, and triphosphates all have similar binding constants. We successfully achieved molecular recognition of adenosine nucleotides in micellar environments. There is significant difference in the binding interactions between the adenosine nucleotides and three other natural nucleotides. II. The UCI Chemistry Outreach Program (UCICOP) addresses the declining interest of the nations youth for science. UCICOP brings fun and exciting chemistry experiments to local high schools, to remind students that science is fun and has many practical uses. Volunteer students and alumni of UCI perform the demonstrations using scripts and material provided by UCICOP. The preparation of scripts and materials is done by two coordinators

  20. Adenosine and the Auditory System

    PubMed Central

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R

    2009-01-01

    Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea. PMID:20190966

  1. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites

    Treesearch

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci

    2012-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...

  2. Mono Lake, California

    NASA Image and Video Library

    2017-03-24

    In eastern California, along the western edge of the Great Basin, sits Mono Lake. This is a salty remnant of a wetter era. Estimates are that the lake existed for at least 760,000 years. Now surrounded by mountain ranges, however, Mono Lake has no outlet; water entering the lake can only evaporate away, so Mono Lake is saltier than the ocean. South of the lake appear some of the geologic features known as Mono Craters. Geologists estimate that the Mono Craters last erupted about 650 years ago. The image was acquired July 7, 2016, covers an area of 22.6 by 34 km, and is located at 37.9 degrees north, 119 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21518

  3. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana.

    PubMed

    Peralta, Diego A; Araya, Alejandro; Busi, Maria V; Gomez-Casati, Diego F

    2016-01-01

    The E3 ubiquitin-protein ligases are associated to various processes such as cell cycle control and diverse developmental pathways. Arabidopsis thaliana SEVEN IN ABSENTIA like 7, which has ubiquitin ligase activity, is located in the nucleus and cytosol and is expressed at several stages in almost all plant tissues suggesting an important role in plant functions. However, the mechanism underlying the regulation of this protein is unknown. Since we found that the SEVEN IN ABSENTIA like 7 gene expression is altered in plants with impaired mitochondria, and in plants deficient in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 1, we decided to study the possible interactions between both proteins as potential partners in plant signaling functions. We found that SEVEN IN ABSENTIA like 7 is able to interact in vitro with glyceraldehyde-3-phosphate dehydrogenase and that the Lys231 residue of the last is essential for this function. Following the interaction, a concomitant increase in the glyceraldehyde-3-phosphate dehydrogenase catalytic activity was observed. However, when SEVEN IN ABSENTIA like 7 was supplemented with E1 and E2 proteins to form a complete E1-E2-E3 modifier complex, we observed the mono-ubiquitination of glyceraldehyde-3-phosphate dehydrogenase 1 at the Lys76 residue and a dramatic decrease of its catalytic activity. Moreover, we found that localization of glyceraldehyde-3-phosphate dehydrogenase 1 in the nucleus is dependent on the expression SEVEN IN ABSENTIA like 7. These observations suggest that the association of both proteins might result in different biological consequences in plants either through affecting the glycolytic flux or via cytoplasm-nucleus relocation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Improving the quality of infant sleep through the inclusion at supper of cereals enriched with tryptophan, adenosine-5'-phosphate, and uridine-5'-phosphate.

    PubMed

    Cubero, Javier; Chanclón, Belen; Sánchez, Soledad; Rivero, Montserrat; Rodríguez, Ana Beatriz; Barriga, Carmen

    2009-12-01

    The present study evaluated whether the administration of cereals enriched with nutrients that are facilitators of sleep could help improve the sleep of infants who had sleep disorders at night time. Thirty infants aged 8-16 months with sleep disorders involving at least three nocturnal waking episodes took part in the study. They were given a night-time 'sleep facilitating cereal' product containing 225 mg tryptophan, 5.3 mg adenosine-5'-P, and 6.3 mg uridine-5'-P per 100 g of product. These cereals were given in a double-blind procedure lasting 5 weeks, with ingestion of the cereal between 18:00 and 06:00. In the control week, the children received a standard cereal (75 mg tryptophan/100 g product without nucleotides) dissolved in a standard formula milk (231.5 mg tryptophan, 2.6 mg adenosine-5'-P, 5 mg uridine-5'-P, per 100 g product). In one experimental week, the children received the night-time sleep facilitating cereal together with the standard formula milk. In another week, they received the sleep facilitating cereal together with a night milk specially formulated to attain the sleep rhythm (480 mg tryptophan, 8.8 mg uridine-5'-P, and 7.6 mg adenosine-5'-P per 100 g product). The three experimental weeks were separated by two wash-out weeks in which the milk and cereal administered was identical in composition to that of the control week. All the infants received a programmed writer actimeter which they wore continually, attached to their ankles, to record their motor activity. The recorded activity was used to calculate information about the time in bed, assumed sleep, actual sleep, sleep efficiency, sleep latency, immobility, and total activity. The infants receiving the enriched cereal during the time of darkness showed improvements in their sleep parameters, regardless of whether the milk they took at night was standard or enriched with tryptophan, adenosine-5'-P, and uridine-5'-P. In summary, the administration of enriched cereals led to an

  5. Crystal structures of RIalpha subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)-adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP.

    PubMed

    Wu, Jian; Jones, John M; Nguyen-Huu, Xuong; Ten Eyck, Lynn F; Taylor, Susan S

    2004-06-01

    Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced

  6. How Is Mono Spread?

    MedlinePlus

    ... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...

  7. Adenosine receptor desensitization and trafficking.

    PubMed

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. AMP and adenosine are both ligands for adenosine 2B receptor signaling.

    PubMed

    Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M

    2018-01-15

    Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters

    PubMed Central

    Lynge, J; Juel, C; Hellsten, Y

    2001-01-01

    The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km= 177 ± 36 μm and Vmax= 1.9 ± 0.2 nmol ml−1 s−1 (0.7 nmol (mg protein)−1 s−1). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72 % inhibition) or dipyridamol (64 % inhibition; P < 0.05). In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57 % larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. Inhibition of ecto-5′-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70 % lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells

  10. Study on the valorization routes of ashes from thermoelectric power plants working under mono-and co-combustion regimes

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro Fernandes

    The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for

  11. Glycolytic intermediates and adenosine phosphates in rat liver at high altitude /3,800 m/.

    NASA Technical Reports Server (NTRS)

    Cipriano, L. F.; Pace, N.

    1973-01-01

    Liver tissue obtained from adult rats exposed to 3800 m altitude for intervals ranging from 1.5 hr to 63 days was examined by enzymatic analysis. During the first 3 hr of exposure, an immediate decrease in rephosphorylation of high-energy phosphates led to reduced glycogenesis and eventual pileup of AMP, pyruvate, fructose 1,6-diphosphate, glucose 6-phosphate, and glucose. This was accompanied by a reduction of pentose phosphate pathway activity. After 3 to 6 hr, a secondary adjustment of substrate concentrations occurred along with the apparent facilitation of phosphofructokinase. This secondary adjustment appears to increase anaerobic production of ATP and represents a significant intracellular contribution to the acclimatization process at high altitude.

  12. Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide.

    PubMed

    Caiazzo, Elisabetta; Maione, Francesco; Morello, Silvana; Lapucci, Andrea; Paccosi, Sara; Steckel, Bodo; Lavecchia, Antonio; Parenti, Astrid; Iuvone, Teresa; Schrader, Jürgen; Ialenti, Armando; Cicala, Carla

    2016-07-15

    Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to changes under pathophysiological conditions has identified this pathway as an endogenous modulator in several diseases and was shown to be involved in the molecular mechanism of drugs, such as methotrexate, salicylates , interferon-β. We evaluated whether CD73/adenosine/A2A signalling pathway is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine A2A agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680, 2mg/kg ip.), inhibited carrageenan-induced rat paw oedema and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3mg/kg i.p.). Nimesulide (5mg/kg i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3mg/kg i.p.) and by local administration of the CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP; 400μg/paw). Furthermore, we found increased activity of 5'-nucleotidase/CD73 in paws and plasma of nimesulide treated rats, 4h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and prostaglandin E2 production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385 and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73

  13. Potentiation of adenosine triphosphate-induced contractile responses of the guinea-pig isolated vas deferens by adenosine monophosphate and adenosine 5'-monophosphorothioate.

    PubMed Central

    Fedan, J. S.

    1987-01-01

    The effects of incubating the guinea-pig isolated vas deferens in the presence of adenine nucleotides (adenosine triphosphate, ATP; adenosine diphosphate, ADP; and adenosine monophosphate, AMP), or in the presence of their phosphorothioate analogues (adenosine 5'-O-(3-thiotriphosphate), ATP gamma S; adenosine 5'-O-(2-thiodiphosphate), ADP beta S; and adenosine 5'-monophosphorothioate, AMP alpha S), on contractile responses to ATP were compared. After challenge with a low (1 microM) or high (300 microM) concentration of ATP to obtain control responses, one vas deferens of a pair was incubated for 5 min with one of the adenine nucleotides, while the contralateral preparation was incubated with the corresponding phosphorothioate analogue. At the conclusion of the incubation the preparations were challenged again with ATP. Incubation with AMP or AMP alpha S resulted in a transient potentiation of responses to 1 microM and 300 microM ATP. The potentiation following incubation with AMP alpha S was larger than that produced by AMP. After incubation with ADP, ADP beta S, ATP and ATP gamma S, responses to 1 microM ATP were decreased, while those to 300 microM ATP were unaffected. Thus, incubation with AMP and AMP alpha S results in potentiation, rather than inhibition, of ATP-induced responses. On the other hand, 5'-diphosphate, 5'-triphosphate, 5'-O-(2-thiodiphosphate) and 5'-O-(3-thiotriphosphate) moieties on adenosine have no effect or cause autoinhibition. These results indicate that AMP exerts a potentiating effect on reactivity to exogenous ATP. AMP arising from the enzymatic degradation of ATP might modulate the level of response to ATP released endogenously as a cotransmitter. PMID:3038248

  14. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    PubMed Central

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  15. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  16. Time-resolved photoelectron spectroscopy of adenosine and adenosine monophosphate photodeactivation dynamics in water microjets

    NASA Astrophysics Data System (ADS)

    Williams, Holly L.; Erickson, Blake A.; Neumark, Daniel M.

    2018-05-01

    The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69-4.97 eV, the lowest ππ* excited state, S1, was accessed and its decay dynamics were probed via ionization at 6.20 eV. By reversing the role of the pump and probe lasers, a higher-lying ππ* state was excited at 6.20 eV and its time-evolving photoelectron spectrum was monitored at probe energies of 4.69-4.97 eV. The S1 ππ* excited state was found to decay with a lifetime ranging from ˜210 to 250 fs in adenosine and ˜220 to 250 fs in adenosine monophosphate. This lifetime drops with increasing pump photon energy. Signal from the higher-lying ππ* excited state decayed on a time scale of ˜320 fs and was measureable only in adenosine monophosphate.

  17. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms?

    PubMed

    Chagoya de Sánchez, V

    1995-03-01

    The present review describes the biological implications of the periodic changes of adenosine concentrations in different tissues of the rat. Adenosine is a purine molecule that could have been formed in the prebiotic chemical evolution and has been preserved. The rhythmicity of this molecule, as well as its metabolism and even the presence of specific receptors, suggests a regulatory role in eukaryotic cells and in multicellular organisms. Adenosine may be considered a chemical messenger and its action could take place at the level of the same cell (autocrine), the same tissue (paracrine), or on separate organs (endocrine). Exploration of the circadian variations of adenosine was planned considering the liver as an important tissue for purine formation, the blood as a vehicle among tissues, and the brain as the possible acceptor for hepatic adenosine or its metabolites. The rats used in these studies were adapted to a dark-light cycle of 12 h with an unrestrained feeding and drinking schedule. The metabolic control of adenosine concentration in the different tissues studied through the 24-h cycle is related to the activity of adenosine-metabolizing enzyme: 5'-nucleotidase adenosine deaminase, adenosine kinase, and S-adenosylhomocysteine hydrolase. Some possibilities of the factors modulating the activity of these enzymes are commented upon. The multiphysiological action of adenosine could be mediated by several actions: (i) by interaction with extracellular and intracellular receptors and (ii) through its metabolism modulating the methylation pathway, possibly inducing physiological lipoperoxidation, or participating in the energetic homeostasis of the cell. The physiological meaning of the circadian variations of adenosine and its metabolism was focused on: maintenance of the energetic homeostasis of the tissues, modulation of membrane structure and function, regulation of fasting and feeding metabolic pattern, and its participation in the sleep-wake cycle. From

  18. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition.

    PubMed

    Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T

    2016-11-01

    Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular

  19. Downregulation of adenosine and adenosine 1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy.

    PubMed

    Kan, Hung-Wei; Chang, Chin-Hong; Lin, Chih-Lung; Lee, Yi-Chen; Hsieh, Sung-Tsang; Hsieh, Yu-Lin

    2018-04-16

    The neurochemical effects of adenosine signaling in small-fiber neuropathy leading to neuropathic pain are yet to be explored in a direct manner. This study examined this system at the level of ligand (via the ectonucleotidase activity of prostatic acid phosphatase, PAP) and adenosine A1 receptors (A1Rs) in resiniferatoxin (RTX) neuropathy, a peripheral neurodegenerative disorder which specifically affects nociceptive nerves expressing transient receptor potential vanilloid type 1 (TRPV1). We conducted immunohistochemistry on dorsal root ganglion neurons (DRG), high-performance liquid chromatography (HPLC) for functional assays, and pharmacological interventions to alter PAP and A1Rs in mice with RTX neuropathy. In DRG of RTX neuropathy, PAP(+) neurons were reduced compared with vehicle-treated mice (P = 0.002) . Functionally, PAP ectonucleotidase activity was consequently reduced (i.e., the content of adenosine in DRG, P = 0.012). PAP(+) neuronal density was correlated with the degree of mechanical allodynia, which was reversed by intrathecal lumbar puncture (i.t.) injection of recombinant PAP with a dose-dependent effect. Furthermore, A1Rs were downregulated (P = 0.002), and this downregulation was colocalized with the TRPV1 receptor (31.0% ± 2.8%). Mechanical allodynia was attenuated in a dose-dependent response by i.t. injection of the A1R ligand, adenosine; however, no analgesia was evident when an exogenous adenosine was blocked by A1R antagonist. This study demonstrated dual mechanisms of neuropathic pain in TRPV1-induced neuropathy, involving a reduced adenosine system at both the ligand (adenosine) and receptor (A1Rs) levels.

  20. Adenosine and sleep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanik, G.M. Jr.

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% andmore » 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.« less

  1. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice.

    PubMed

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-09

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.

  2. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  3. Pain-relieving prospects for adenosine receptors and ectonucleotidases

    PubMed Central

    Zylka, Mark J.

    2010-01-01

    Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731

  4. A novel inositol phosphate selectively inhibits vasoconstriction evoked by the sympathetic co-transmitters neuropeptide Y (NPY) and adenosine triphosphate (ATP).

    PubMed

    Wahlestedt, C; Reis, D J; Yoo, H; Adamsson, M; Andersson, D; Edvinsson, L

    1992-08-31

    Postganglionic sympathetic nerves release norepinephrine (NE) as their primary neurotransmitter at vascular and other targets. However, much evidence supports involvement of additional messengers, co-transmitters, which are co-released with NE upon sympathetic nerve stimulation and thereby contribute to their actions, e.g., vasoconstriction. Two such putative co-transmitters, neuropeptide Y (NPY) and adenosine triphosphate (ATP) have been of particular interest since they fulfill several neurotransmitter criteria. Importantly, hitherto it has been difficult to antagonize vasoconstriction evoked by either NPY or ATP with agents that are devoid of intrinsic activity. The present study describes the ability of a novel inositol phosphate, D-myo-inositol 1,2,6-trisphosphate (Ins[1,2,6]P3; PP-56) to in vitro potently block vasoconstrictor responses elicited by NPY and ATP, but not by NE, as studied in guinea-pig isolated basilar artery. The action of Ins[1,2,6]P3 does not seem to occur through antagonism at NPY- or ATP-receptor recognition sites, labeled by 125I-peptide YY and 35S-gamma-ATP, respectively, in membranes of rat cultured vena cava vascular smooth muscle cells. However, it does involve inhibition of the influx of Ca2+ induced by either co-transmitter in these same vena cava cells. It is proposed that Ins[1,2,6]P3 may be a useful functional antagonist of non-adrenergic component(s) of the vasoconstrictor response to sympathetic nerve stimulation.

  5. Adenosine kinase regulation of cardiomyocyte hypertrophy

    PubMed Central

    Fassett, John T.; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie

    2011-01-01

    There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKTSer473 phosphorylation but did attenuate sustained phosphorylation of RafSer338 (24–48 h), mTORSer2448 (24–48 h), p70S6kThr389 (2.5–48 h), and ERKThr202/Tyr204 (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6kThr389 phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERKThr202/Tyr204 and AKTSer473. Reduction of Raf-induced p70S6kThr389 phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of

  6. Adenosine kinase regulation of cardiomyocyte hypertrophy.

    PubMed

    Fassett, John T; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie; Bache, Robert J

    2011-05-01

    There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser⁴⁷³) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser³³⁸) (24-48 h), mTOR(Ser²⁴⁴⁸) (24-48 h), p70S6k(Thr³⁸⁹) (2.5-48 h), and ERK(Thr²⁰²/Tyr²⁰⁴) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser⁴⁷³). Reduction of Raf-induced p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte

  7. Poly(propyleneimine) glycodendrimers non-covalently bind ATP in a pH- and salt-dependent manner - model studies for adenosine analogue drug delivery.

    PubMed

    Gorzkiewicz, Michał; Buczkowski, Adam; Appelhans, Dietmar; Voit, Brigitte; Pułaski, Łukasz; Pałecz, Bartłomiej; Klajnert-Maculewicz, Barbara

    2018-06-10

    Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  9. Ticagrelor Compared with Clopidogrel Increased Adenosine and Cyclic Adenosine Monophosphate Plasma Concentration in Acute Coronary Syndrome Patients.

    PubMed

    Li, Xiaoye; Wang, Qibing; Xue, Ying; Chen, Jiahui; Lv, Qianzhou

    2017-06-01

    Ticagrelor produces a more potent antiplatelet effect than clopidogrel and inhibits cellular uptake of adenosine, which is associated with several cardiovascular consequences. We aimed to explore the correlation between adenosine and cyclic adenosine monophosphate (cAMP) plasma concentration and antiplatelet effect by clopidogrel or ticagrelor in patients with acute coronary syndrome (ACS) receiving dual antiplatelet therapy (DAPT). We conducted a prospective, observational and single-centre cohort study enrolling 68 patients with non-ST-segment elevation ACS from January 2016 to May 2016. We monitored the inhibition of platelet aggregation (IPA) and assessed adenosine, adenosine deaminase (ADA) and cAMP plasma concentrations by immunoassay on admission and 48 hr after coronary angiography. The demographic and clinical data were collected by reviewing their medical records. The two groups exhibited similar baseline characteristics including adenosine, ADA and cAMP. The mean IPA in patients receiving ticagrelor was significantly higher than that in patients receiving clopidogrel (93.5% versus 67.2%; p = 0.000). Also, we observed that patients treated with ticagrelor had a significantly higher increase in levels of adenosine and cAMP compared with those treated with clopidogrel (1.04 (0.86; 1.41) versus 0.04 (-0.25; 0.26); p = 0.029 and 0.78 (-1.67; 1.81) versus 0.60 (-1.91; 4.60); p = 0.037, respectively). And there was a weak correlation between IPA and adenosine as well as cAMP plasma concentration (r = 0.390, p = 0.001 and r = 0.335, p = 0.005, respectively). Ticagrelor increased adenosine and cAMP plasma concentration compared with clopidogrel in patients with ACS. © 2017 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  11. Synthesis of methylene- and difluoromethylenephosphonate analogues of uridine-4-phosphate and 3-deazauridine-4-phosphate.

    PubMed

    Taylor, Scott D; Mirzaei, Farzad; Sharifi, Ali; Bearne, Stephen L

    2006-12-08

    Cytidine triphosphate synthetase (CTPS) catalyzes the formation of cytidine triphosphate from glutamine, uridine-5'-triphosphate (UTP), and adenosine-5'-triphosphate. Inhibitors of CTPS are of interest because of their potential as therapeutic agents. One approach to potent enzyme inhibitors is to use analogues of high energy intermediates formed during the reaction. The CTPS reaction proceeds via the high energy intermediate UTP-4-phosphate (UTP-4-P). Four novel analogues of uridine-4-phosphate (U-4-P) and 3-deazauridine-4-phosphate (3-deazaU-4-P) were synthesized in which the labile phosphate ester oxygen was replaced with a methylene and difluoromethylene group. The methylene analogue of U-4-P, compound 1, was prepared by a reaction of the sodium salt of tert-butyl diethylphosphonoacetate with protected, 4-O-activated uridine followed by acetate deprotection and decarboxylation. It was found that this compound undergoes relatively facile dephosphonylation presumably via a metaphosphate intermediate. The difluoromethylene derivative, compound 2, was prepared by electrophilic fluorination of protected 1. This compound was stable and did not undergo dephosphonylation. Synthesis of the methylene analogue of 3-deazaU-4-P, compound 3, was achieved by ribosylation of protected 4-(phosphonomethyl)-2-hydroxypyridine. Electrophilic fluorination was also employed in the preparation of protected 4-(phosphonodifluoromethyl)-2-hydroxypyridine which was used as the key building block in the synthesis of difluoro derivative 4. These compounds represent the first examples of a nucleoside in which the base has been chemically modified with a methylene or difluormethylenephosphonate group.

  12. Effect of phosphate supplementation on oxygen delivery at high altitude

    NASA Astrophysics Data System (ADS)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  13. AMP is an adenosine A1 receptor agonist.

    PubMed

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  14. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  15. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  16. Caffeine and adenosine.

    PubMed

    Ribeiro, Joaquim A; Sebastião, Ana M

    2010-01-01

    Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.

  17. Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway.

    PubMed

    El-Ashmawy, Nahla E; Khedr, Naglaa F; El-Bahrawy, Hoda A; Abo Mansour, Hend E

    2017-05-01

    Since the incidence of breast cancer increases dramatically all over the world, the search for effective treatment is an urgent need. Metformin has demonstrated anti-tumorigenic effect both in vivo and in vitro in different cancer types. This work was designed to examine on molecular level the mode of action of metformin in mice bearing solid Ehrlich carcinoma and to evaluate the use of metformin in conjunction with doxorubicin as a combined therapy against solid Ehrlich carcinoma. Ehrlich ascites carcinoma cells were inoculated in 60 female mice as a model of breast cancer. The mice were divided into four equal groups: Control tumor, metformin, doxorubicin, and co-treatment. Metformin (15 mg/kg) and doxorubicin (4 mg/kg) were given intraperitoneally (i.p.) for four cycles every 5 days starting on day 12 of inoculation. The anti-tumorigenic effect of metformin was mediated by enhancement of adenosine monophosphate protein kinase activity and elevation of P53 protein as well as the suppression of nuclear factor-kappa B, DNA contents, and cyclin D1 gene expression. Metformin and doxorubicin mono-treatments exhibited opposing action regarding cyclin D1 gene expression, phosphorylated adenosine monophosphate protein kinase, and nuclear factor-kappa B levels. Co-treatment markedly decreased tumor volume, increased survival rate, and improved other parameters compared to doxorubicin group. In parallel, the histopathological findings demonstrated enhanced apoptosis and absence of necrosis in tumor tissue of co-treatment group. Metformin proved chemotherapeutic effect which could be mediated by the activation of adenosine monophosphate protein kinase and related pathways. Combining metformin and doxorubicin, which exhibited different mechanisms of action, produced greater efficacy as anticancer therapeutic regimen.

  18. AMP Is an Adenosine A1 Receptor Agonist*

    PubMed Central

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  19. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed mono- and... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono...

  20. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, mixed mono- and... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono...

  1. How Long Is Mono Contagious?

    MedlinePlus

    ... Here's how it works: Mono is short for mononucleosis . It's usually caused by an infection with the ... May 2018 More on this topic for: Teens Mononucleosis How Do Doctors Test for Mono? Can a ...

  2. Adenosine and inflammation: what's new on the horizon?

    PubMed

    Antonioli, Luca; Csóka, Balázs; Fornai, Matteo; Colucci, Rocchina; Kókai, Endre; Blandizzi, Corrado; Haskó, György

    2014-08-01

    Adenosine contributes to the maintenance of tissue integrity by modulating the immune system. Encouraging results have emerged with adenosine receptor ligands for the management of several inflammatory conditions in preclinical and clinical settings. However, therapeutic applications of these drugs are sometimes complicated by the occurrence of serious adverse effects. The scientific community is making intensive efforts to design novel adenosine receptor ligands endowed with greater selectivity or to develop innovative compounds acting as allosteric receptor modulators. In parallel, research is focusing on novel pharmacological entities (designated as adenosine-regulating agents) that can increase, in a site- and event-specific manner, adenosine concentrations at the inflammatory site, thereby minimizing the adverse systemic effects of adenosine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Cultured astrocytes do not release adenosine during hypoxic conditions

    PubMed Central

    Fujita, Takumi; Williams, Erika K; Jensen, Tina K; Smith, Nathan A; Takano, Takahiro; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine from cultured astrocytes. Similar results were obtained using a chemiluminescent enzymatic assay. Moreover, since the chemiluminescent enzymatic assay relies on hydrogen peroxide generation, release of free-radical scavengers from hypoxic cells can interfere with the assay. Accordingly, adenosine added to samples collected from hypoxic cultures could not be detected using the chemiluminescent enzymatic assay. Furthermore, addition of free-radical scavengers sharply reduced the sensitivity of adenosine detection. Conversely, use of a single-step assay inflated measured values due to the inability of the assay to distinguish adenosine and its metabolite inosine. These results show that cultured astrocytes do not release adenosine during mild hypoxia, an observation consistent with their high resistance to hypoxia. PMID:21989480

  4. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    PubMed

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  5. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    PubMed

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  6. Hydration properties of adenosine phosphate series as studied by microwave dielectric spectroscopy.

    PubMed

    Mogami, George; Wazawa, Tetsuichi; Morimoto, Nobuyuki; Kodama, Takao; Suzuki, Makoto

    2011-02-01

    Hydration properties of adenine nucleotides and orthophosphate (Pi) in aqueous solutions adjusted to pH=8 with NaOH were studied by high-resolution microwave dielectric relaxation (DR) spectroscopy at 20 °C. The dielectric spectra were analyzed using a mixture theory combined with a least-squares Debye decomposition method. Solutions of Pi and adenine nucleotides showed qualitatively similar dielectric properties described by two Debye components. One component was characterized by a relaxation frequency (f(c)=18.8-19.7 GHz) significantly higher than that of bulk water (17 GHz) and the other by a much lower f(c) (6.4-7.6 GHz), which are referred to here as hyper-mobile water and constrained water, respectively. By contrast, a hydration shell of only the latter type was found for adenosine (f(c)~6.7 GHz). The present results indicate that phosphoryl groups are mostly responsible for affecting the structure of the water surrounding the adenine nucleotides by forming one constrained water layer and an additional three or four layers of hyper-mobile water. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.

    PubMed

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-02-01

    This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  9. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence

    PubMed Central

    Jing, Lili; Tamplin, Owen J.; Chen, Michael J.; Deng, Qing; Patterson, Shenia; Kim, Peter G.; Durand, Ellen M.; McNeil, Ashley; Green, Julie M.; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K.; Schlaeger, Thorsten M.; Huttenlocher, Anna; Daley, George Q.; Ravid, Katya

    2015-01-01

    Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1+/cmyb+ HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl+ hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP–protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates. PMID:25870200

  10. Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life

    NASA Astrophysics Data System (ADS)

    Whicher, Alexandra; Camprubi, Eloi; Pinna, Silvana; Herschy, Barry; Lane, Nick

    2018-03-01

    Metabolism is primed through the formation of thioesters via acetyl CoA and the phosphorylation of substrates by ATP. Prebiotic equivalents such as methyl thioacetate and acetyl phosphate have been proposed to catalyse analogous reactions at the origin of life, but their propensity to hydrolyse challenges this view. Here we show that acetyl phosphate (AcP) can be synthesised in water within minutes from thioacetate (but not methyl thioacetate) under ambient conditions. AcP is stable over hours, depending on temperature, pH and cation content, giving it an ideal poise between stability and reactivity. We show that AcP can phosphorylate nucleotide precursors such as ribose to ribose-5-phosphate and adenosine to adenosine monophosphate, at modest ( 2%) yield in water, and at a range of pH. AcP can also phosphorylate ADP to ATP in water over several hours at 50 °C. But AcP did not promote polymerization of either glycine or AMP. The amino group of glycine was preferentially acetylated by AcP, especially at alkaline pH, hindering the formation of polypeptides. AMP formed small stacks of up to 7 monomers, but these did not polymerise in the presence of AcP in aqueous solution. We conclude that AcP can phosphorylate biologically meaningful substrates in a manner analogous to ATP, promoting the origins of metabolism, but is unlikely to have driven polymerization of macromolecules such as polypeptides or RNA in free solution. This is consistent with the idea that a period of monomer (cofactor) catalysis preceded the emergence of polymeric enzymes or ribozymes at the origin of life.

  11. Is adenosine associated with sudden death in schizophrenia? A new framework linking the adenosine pathway to risk of sudden death.

    PubMed

    Gadelha, Ary; Zugman, André; Calzavara, Mariana Bendlin; de Mendonça Furtado, Remo Holanda; Scorza, Fulvio Alexandre; Bressan, Rodrigo Afonsecca

    2018-01-01

    Schizophrenia is associated with an increased mortality from cardiovascular disease. Relatively few studies have assessed the putative association of schizophrenia pathophysiology with sudden death. Low adenosine levels have been associated with schizophrenia. In cardiology, increased mortality among patients with congestive heart failure has been associated with genetic polymorphisms that potentially lead to lower adenosine levels. Thus, we hypothesize that adenosine could link schizophrenia and cardiovascular mortality, with decreased adenosine levels leading to increased vulnerability to hyperexcitability following hypoxic insults, increasing the odds of fatal arrhythmias. Low adenosine levels might also lead to a small increase in overall mortality rates and a major increase in the sudden death rate. This hypothesis paves the way for further investigation of the increased cardiac mortality associated with schizophrenia. Potentially, a better characterization of adenosine-related mechanisms of sudden death in schizophrenia could lead to new evidence of factors leading to sudden death in the general population. Copyright © 2017. Published by Elsevier Ltd.

  12. Staphylococcus aureus synthesizes adenosine to escape host immune responses

    PubMed Central

    Thammavongsa, Vilasack; Kern, Justin W.; Missiakas, Dominique M.

    2009-01-01

    Staphylococcus aureus infects hospitalized or healthy individuals and represents the most frequent cause of bacteremia, treatment of which is complicated by the emergence of methicillin-resistant S. aureus. We examined the ability of S. aureus to escape phagocytic clearance in blood and identified adenosine synthase A (AdsA), a cell wall–anchored enzyme that converts adenosine monophosphate to adenosine, as a critical virulence factor. Staphylococcal synthesis of adenosine in blood, escape from phagocytic clearance, and subsequent formation of organ abscesses were all dependent on adsA and could be rescued by an exogenous supply of adenosine. An AdsA homologue was identified in the anthrax pathogen, and adenosine synthesis also enabled escape of Bacillus anthracis from phagocytic clearance. Collectively, these results suggest that staphylococci and other bacterial pathogens exploit the immunomodulatory attributes of adenosine to escape host immune responses. PMID:19808256

  13. A High Affinity Adenosine Kinase from Anopheles gambiae

    PubMed Central

    Cassera, María B.; Ho, Meng-Chiao; Merino, Emilio F.; Burgos, Emmanuel S.; Rinaldo-Matthis, Agnes; Almo, Steven C.; Schramm, Vern L.

    2011-01-01

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (Km 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap4A (2.0 Å resolution) reveals interactions for adenosine, ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg2+ ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layered α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight-binding for adenosine arises from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168 and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64 and Asn68 and the ribosyl 2′- and 3′-hydroxyl groups. The structure is more similar to human adenosine kinase (48% identity) than to AK from Toxoplasma gondii (31% identity). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role of this enzyme to maintain the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects. PMID:21247194

  14. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Cassera; M Ho; E Merino

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactionsmore » for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.« less

  15. Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression

    PubMed Central

    Headrick, John P; Willems, Laura; Ashton, Kevin J; Holmgren, Kirsten; Peart, Jason; Matherne, G Paul

    2003-01-01

    The genesis of the ischaemia intolerant phenotype in aged myocardium is poorly understood. We tested the hypothesis that impaired adenosine-mediated protection contributes to ischaemic intolerance, and examined whether this is countered by A1 adenosine receptor (A1AR) overexpression. Responses to 20 min ischaemia and 45 min reperfusion were assessed in perfused hearts from young (2–4 months) and moderately aged (16–18 months) mice. Post-ischaemic contractility was impaired by ageing with elevated ventricular diastolic (32 ± 2 vs. 18 ± 2 mmHg in young) and reduced developed (37 ± 3 vs. 83 ± 6 mmHg in young) pressures. Lactate dehydrogenase (LDH) loss was exaggerated (27 ± 2 vs. 16 ± 2 IU g−1in young) whereas the incidence of tachyarrhythmias was similar in young (15 ± 1 %) and aged hearts (16 ± 1 %). Functional analysis confirmed equipotent effects of 50 μm adenosine at A1 and A2 receptors in young and aged hearts. Nonetheless, while 50 μm adenosine improved diastolic (5 ± 1 mmHg) and developed pressures (134 ± 7 mmHg) and LDH loss (6 ± 2 IU g−1) in young hearts, it did not alter these variables in the aged group. Adenosine did attenuate arrhythmogenesis for both ages (to ∼10 %). In contrast to adenosine, 50 μm diazoxide reduced ischaemic damage and arrhythmogenesis for both ages. Contractile and anti-necrotic effects of adenosine were limited by 100 μm 5-hydroxydecanoate (5-HD) and 3 μm chelerythrine. Anti-arrhythmic effects were limited by 5-HD but not chelerythrine. Non-selective (100 μm 8-sulfophenyltheophylline) and A1-selective (150 nm 8-cyclopentyl-1,3-dipropylxanthine) adenosine receptor antagonism impaired ischaemic tolerance in young but not aged hearts. Quantitative real-time PCR and radioligand analysis indicated that impaired protection is unrelated to changes in A1AR mRNA transcription, or receptor density (∼8 fmol mg−1 protein in both age groups). However, A1AR overexpression improved tolerance for both ages, restoring

  16. Adenosine regulation of microtubule dynamics in cardiac hypertrophy.

    PubMed

    Fassett, John T; Xu, Xin; Hu, Xinli; Zhu, Guangshuo; French, Joel; Chen, Yingjie; Bache, Robert J

    2009-08-01

    There is evidence that endogenous extracellular adenosine reduces cardiac hypertrophy and heart failure in mice subjected to chronic pressure overload, but the mechanism by which adenosine exerts these protective effects is unknown. Here, we identified a novel role for adenosine in regulation of the cardiac microtubule cytoskeleton that may contribute to its beneficial effects in the overloaded heart. In neonatal cardiomyocytes, phenylephrine promoted hypertrophy and reorganization of the cytoskeleton, which included accumulation of sarcomeric proteins, microtubules, and desmin. Treatment with adenosine or the stable adenosine analog 2-chloroadenosine, which decreased hypertrophy, specifically reduced accumulation of microtubules. In hypertrophied cardiomyocytes, 2-chloroadenosine or adenosine treatment preferentially targeted stabilized microtubules (containing detyrosinated alpha-tubulin). Consistent with a role for endogenous adenosine in reducing microtubule stability, levels of detyrosinated microtubules were elevated in hearts of CD73 knockout mice (deficient in extracellular adenosine production) compared with wild-type mice (195%, P < 0.05). In response to aortic banding, microtubules increased in hearts of wild-type mice; this increase was exaggerated in CD73 knockout mice, with significantly greater amounts of tubulin partitioning into the cold-stable Triton-insoluble fractions. The levels of this stable cytoskeletal fraction of tubulin correlated strongly with the degree of heart failure. In agreement with a role for microtubule stabilization in promoting cardiac dysfunction, colchicine treatment of aortic-banded mice reduced hypertrophy and improved cardiac function compared with saline-treated controls. These results indicate that microtubules contribute to cardiac dysfunction and identify, for the first time, a role for adenosine in regulating cardiomyocyte microtubule dynamics.

  17. Differential distribution of adenosine receptors in rat cochlea.

    PubMed

    Vlajkovic, Srdjan M; Abi, Shukri; Wang, Carol J H; Housley, Gary D; Thorne, Peter R

    2007-06-01

    Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.

  18. Mechanism-specific effects of adenosine on ventricular tachycardia.

    PubMed

    Lerman, Bruce B; Ip, James E; Shah, Bindi K; Thomas, George; Liu, Christopher F; Ciaccio, Edward J; Wit, Andrew L; Cheung, Jim W; Markowitz, Steven M

    2014-12-01

    There is no universally accepted method by which to diagnose clinical ventricular tachycardia (VT) due to cAMP-mediated triggered activity. Based on cellular and clinical data, adenosine termination of VT is thought to be consistent with a diagnosis of triggered activity. However, a major gap in evidence mitigates the validity of this proposal, namely, defining the specificity of adenosine response in well-delineated reentrant VT circuits. To this end, we systematically studied the effects of adenosine in a model of canine reentrant VT and in human reentrant VT, confirmed by 3-dimensional, pace- and substrate mapping. Adenosine (12 mg [IQR 12-24]) failed to terminate VT in 31 of 31 patients with reentrant VT due to structural heart disease, and had no effect on VT cycle length (age, 67 years [IQR 53-74]); ejection fraction, 35% [IQR 20-55]). In contrast, adenosine terminated VT in 45 of 50 (90%) patients with sustained focal right or left outflow tract tachycardia. The sensitivity of adenosine for identifying VT due to triggered activity was 90% (95% CI, 0.78-0.97) and its specificity was 100% (95% CI, 0.89-1.0). Additionally, reentrant circuits were mapped in the epicardial border zone of 4-day-old infarcts in mongrel dogs. Adenosine (300-400 μg/kg) did not terminate sustained VT or have any effect on VT cycle length. These data support the concept that adenosine's effects on ventricular myocardium are mechanism specific, such that termination of VT in response to adenosine is diagnostic of cAMP-mediated triggered activity. © 2014 Wiley Periodicals, Inc.

  19. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  20. Role of adenosine receptors in caffeine tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity ofmore » caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.« less

  1. Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC

    PubMed Central

    Jin, Hui; Hilaire, Cynthia St.; Huang, Yuting; Yang, Dan; Dmitrieva, Natalia I.; Negro, Alejandra; Schwartzbeck, Robin; Liu, Yangtengyu; Yu, Zhen; Walts, Avram; Davaine, Jean-Michel; Lee, Duck-Yeon; Donahue, Danielle; Hsu, Kevin S.; Chen, Jessica; Cheng, Tao; Gahl, William; Chen, Guibin; Boehm, Manfred

    2017-01-01

    ACDC (arterial calcification due to deficiency of CD73) is an autosomal recessive disease resulting from loss-of-function mutations in NT5E, which encodes CD73, a 5′-ectonucleotidase that converts extracellular adenosine monophosphate to adenosine. ACDC patients display progressive calcification of lower extremity arteries, causing limb ischemia. Tissue-nonspecific alkaline phosphatase (TNAP), which converts pyrophosphate (PPi) to inorganic phosphate (Pi), and extracellular purine metabolism play important roles in other inherited forms of vascular calcification. Compared to cells from healthy subjects, induced pluripotent stem cell–derived mesenchymal stromal cells (iMSCs) from ACDC patients displayed accelerated calcification and increased TNAP activity when cultured under conditions that promote osteogenesis. TNAP activity generated adenosine in iMSCs derived from ACDC patients but not in iMSCs from control subjects, which have CD73. In response to osteogenic stimulation, ACDC patient–derived iMSCs had decreased amounts of the TNAP substrate PPi, an inhibitor of extracellular matrix calcification, and exhibited increased activation of AKT, mechanistic target of rapamycin (mTOR), and the 70-kDa ribosomal protein S6 kinase (p70S6K), a pathway that promotes calcification. In vivo, teratomas derived from ACDC patient cells showed extensive calcification and increased TNAP activity. Treating mice bearing these teratomas with an A2b adenosine receptor agonist, the mTOR inhibitor rapamycin, or the bisphosphonate etidronate reduced calcification. These results show that an increase of TNAP activity in ACDC contributes to ectopic calcification by disrupting the extracellular balance of PPi and Pi and identify potential therapeutic targets for ACDC. PMID:27965423

  2. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells.

    PubMed

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-03-25

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5'-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a 'calm down' signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001.

  3. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    PubMed

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  4. Increased cortical extracellular adenosine correlates with seizure termination.

    PubMed

    Van Gompel, Jamie J; Bower, Mark R; Worrell, Gregory A; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J; Kim, Inyong; Bennet, Kevin E; Meyer, Fredric B; Marsh, W Richard; Blaha, Charles D; Lee, Kendall H

    2014-02-01

    Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent on neurotransmitters of which little is known regarding their periictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Furthermore, microdialysis studies in humans suggest that adenosine is elevated periictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. White farm swine (n = 45) were used in an acute cortical model of epilepsy, and 10 human epilepsy patients were studied during intraoperative electrocorticography (ECoG). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS)-based fast scan cyclic voltammetry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine-specific triangular waveform or biosensors, respectively. Simultaneous ECoG and electrochemistry demonstrated an average adenosine increase of 260% compared to baseline, at 7.5 ± 16.9 s with amperometry (n = 75 events) and 2.6 ± 11.2 s with FSCV (n = 15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Simultaneous ECoG and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS-based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. Wiley Periodicals, Inc. © 2014 International League Against

  5. A Role for Adenosine Deaminase in Drosophila Larval Development

    PubMed Central

    Dolezal, Tomas; Dolezelova, Eva; Zurovec, Michal

    2005-01-01

    Adenosine deaminase (ADA) is an enzyme present in all organisms that catalyzes the irreversible deamination of adenosine and deoxyadenosine to inosine and deoxyinosine. Both adenosine and deoxyadenosine are biologically active purines that can have a deep impact on cellular physiology; notably, ADA deficiency in humans causes severe combined immunodeficiency. We have established a Drosophila model to study the effects of altered adenosine levels in vivo by genetic elimination of adenosine deaminase-related growth factor-A (ADGF-A), which has ADA activity and is expressed in the gut and hematopoietic organ. Here we show that the hemocytes (blood cells) are the main regulator of adenosine in the Drosophila larva, as was speculated previously for mammals. The elevated level of adenosine in the hemolymph due to lack of ADGF-A leads to apparently inconsistent phenotypic effects: precocious metamorphic changes including differentiation of macrophage-like cells and fat body disintegration on one hand, and delay of development with block of pupariation on the other. The block of pupariation appears to involve signaling through the adenosine receptor (AdoR), but fat body disintegration, which is promoted by action of the hemocytes, seems to be independent of the AdoR. The existence of such an independent mechanism has also been suggested in mammals. PMID:15907156

  6. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage: the neuroprotective effects of adenosine triphosphate against apoptosis

    PubMed Central

    Lu, Na; Wang, Baoying; Deng, Xiaohui; Zhao, Honggang; Wang, Yong; Li, Dongliang

    2014-01-01

    After hypoxia, ischemia, or inflammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, flow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy first appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury. PMID:25368646

  7. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  8. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    PubMed

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  9. Adenosine receptors and caffeine in retinopathy of prematurity.

    PubMed

    Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling

    2017-06-01

    Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A 1 R, A 2A R, A 2B R) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Adenosine receptors and caffeine in retinopathy of prematurity

    PubMed Central

    Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling

    2017-01-01

    Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A1R, A2AR, A2BR) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. PMID:28088487

  11. Application of the newly developed Japanese adenosine normal database for adenosine stress myocardial scintigraphy.

    PubMed

    Harata, Shingo; Isobe, Satoshi; Morishima, Itsuro; Suzuki, Susumu; Tsuboi, Hideyuki; Sone, Takahito; Ishii, Hideki; Murohara, Toyoaki

    2015-10-01

    The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University). Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic. In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively. Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results.

  12. In vitro study comparing the ability of mono-octanoin and mono-octanoin plus methyl tert-butyl ether to dissolve biliary stones.

    PubMed

    Tritapepe, R; Cesana, B

    1996-01-01

    This in vitro study compared the gallstone dissolution rates of mono-octanoin, mono-octanoin plus 10% distilled water, and mono-octanoin plus methyl tert-butyl ether 2:1. Sixteen stones were treated with each solvent at a slow perfusion rate of 3-4 ml/h and a rapid perfusion rate of 2.5 ml/30 min with 20-sec instillation/aspiration cycles, both with and without bile. The stones were weighed before, and 3, 6, 12 and 24 hrs after the start of treatment: the solvent was changed every 30 min. After 24 hrs of instillation/aspiration without bile, the mono-octanoin/methyl tert-butyl ether mixture reduced the weight of the stones by 93%, mono-octanoin plus water by 63%, and mono-octanoin alone by 52%; with bile, the figures were, respectively, 86%, 42% and 40%. The mono-octanoin/methyl tert-butyl ether mixture thus took approximately half the time needed by the other two preparations to dissolve the stones to the same extent, a finding which may be relevant for the clinical dissolution of bile duct stones.

  13. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5′-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  14. Adenosine signaling in normal and sickle erythrocytes and beyond.

    PubMed

    Zhang, Yujin; Xia, Yang

    2012-08-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A(2B) receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O(2) release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A(2A) receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and

  15. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells

    PubMed Central

    Yamaguchi, Hiroshi; Maruyama, Toshihiko; Urade, Yoshihiro; Nagata, Shigekazu

    2014-01-01

    Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5’-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a ‘calm down’ signal. DOI: http://dx.doi.org/10.7554/eLife.02172.001 PMID:24668173

  16. Reaction kinetics and inhibition of adenosine kinase from Leishmania donovani.

    PubMed

    Bhaumik, D; Datta, A K

    1988-04-01

    The reaction kinetics and the inhibitor specificity of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) from Leishmania donovani, have been analysed using homogeneous preparation of the enzyme. The reaction proceeds with equimolar stoichiometry of each reactant. Double reciprocal plots of initial velocity studies in the absence of products yielded intersecting lines for both adenosine and Mg2+-ATP. AMP is a competitive inhibitor of the enzyme with respect to adenosine and noncompetitive inhibitor with respect to ATP. In contrast, ADP was a noncompetitive inhibitor with respect to both adenosine and ATP, with inhibition by ADP becoming uncompetitive at very high concentration of ATP. Parallel equilibrium dialysis experiments against [3H]adenosine and [gamma-32P]ATP resulted in binding of adenosine to fre enzyme. Tubercidin (7-deazaadenosine) and 6-methyl-mercaptopurine riboside acted as substrates for the enzyme and were found to inhibit adenosine phosphorylation competitively in vitro. 'Substrate efficiency (Vmax/Km)' and 'turnover numbers (Kcat)' of the enzyme with respect to specific analogs were determined. Taken together the results suggest that (a) the kinetic mechanism of adenosine kinase is sequential Bi-Bi, (b) AMP and ADP may regulate enzyme activity in vivo and (c) tubercidin and 6-methylmercaptopurine riboside are monophosphorylated by the parasite enzyme.

  17. 21 CFR 172.834 - Ethoxylated mono- and diglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ethoxylated mono-and diglycerides (polyoxyethylene (20) mono- and diglycerides of fatty acids) (polyglycerate... labeling it shall be followed by either “polyoxyethylene (20) mono-and diglycerides of fatty acids” or... myristic acids; or (2) Direct esterification of glycerol with a mixture of primarily stearic, palmitic, and...

  18. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions.

    PubMed

    Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A

    Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.

  19. Correlation of transient adenosine release and oxygen changes in the caudate-putamen

    PubMed Central

    Wang, Ying; Venton, B. Jill

    2016-01-01

    Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2–4 seconds, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 μM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients were 3.2 seconds and 3.5 seconds, respectively. On average, the adenosine release starts and peaks 0.2 seconds prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor L-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests adenosine modulates blood flow on a rapid, sub-second time scale. PMID:27314215

  20. An easy and fast adenosine 5'-diphosphate quantification procedure based on hydrophilic interaction liquid chromatography-high resolution tandem mass spectrometry for determination of the in vitro adenosine 5'-triphosphatase activity of the human breast cancer resistance protein ABCG2.

    PubMed

    Wagmann, Lea; Maurer, Hans H; Meyer, Markus R

    2017-10-27

    Interactions with the human breast cancer resistance protein (hBCRP) significantly influence the pharmacokinetic properties of a drug and can even lead to drug-drug interactions. As efflux pump from the ABC superfamily, hBCRP utilized energy gained by adenosine 5'-triphosphate (ATP) hydrolysis for the transmembrane movement of its substrates, while adenosine 5'-diphosphate (ADP) and inorganic phosphate were released. The ADP liberation can be used to detect interactions with the hBCRP ATPase. An ADP quantification method based on hydrophilic interaction liquid chromatography (HILIC) coupled to high resolution tandem mass spectrometry (HR-MS/MS) was developed and successfully validated in accordance to the criteria of the guideline on bioanalytical method validation by the European Medicines Agency. ATP and adenosine 5'-monophosphate were qualitatively included to prevent interferences. Furthermore, a setup consisting of six sample sets was evolved that allowed detection of hBCRP substrate or inhibitor properties of the test compound. The hBCRP substrate sulfasalazine and the hBCRP inhibitor orthovanadate were used as controls. To prove the applicability of the procedure, the effect of amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir on the hBCRP ATPase activity was tested. Nelfinavir, ritonavir, and saquinavir were identified as hBCRP ATPase inhibitors and none of the five HIV protease inhibitors turned out to be an hBCRP substrate. These findings were in line with a pervious publication. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phosphate fertilizer impacts on glyphosate sorption by soil.

    PubMed

    Munira, Sirajum; Farenhorst, Annemieke; Flaten, Don; Grant, Cynthia

    2016-06-01

    This research examined the impact of field-aged phosphate and cadmium (Cd) concentrations, and fresh phosphate co-applications, on glyphosate sorption by soil. Soil samples were collected in 2013 from research plots that had received, from 2002 to 2009, annual applications of mono ammonium phosphate (MAP) at 20, 40 and 80 kg P ha(-1) and from products containing 0.4, 70 or 210 mg Cd kg(-1) as an impurity. A series of batch equilibrium experiments were carried out to quantify the glyphosate sorption distribution constant, Kd. Extractable Cd concentrations in soil had no significant effect on glyphosate sorption. Glyphosate Kd values significantly decreased with increasing Olsen-P concentrations in soil, regardless of the pH conditions studied. Experiments repeated with a commercially available glyphosate formulation showed statistically similar results as the experiments performed with analytical-grade glyphosate. Co-applications of MAP with glyphosate also reduced the available sorption sites to retain glyphosate, but less so when soils already contain large amounts of phosphate. Glyphosate Kd values in soils ranged from 173 to 939 L kg(-1) under very strong to strongly acidic condition but the Kd was always <100 L kg(-1) under moderately acidic to slightly alkaline conditions. The highest Olsen-P concentrations in soil reduced Kd values by 25-44% relative to control soils suggesting that, under moderately acidic to slightly alkaline conditions, glyphosate may become mobile by water in soils with high phosphate levels. Otherwise, glyphosate residues in agricultural soils are more likely to be transported off-site by wind and water-eroded sediments than by leaching or runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ticagrelor and Rosuvastatin Have Additive Cardioprotective Effects via Adenosine.

    PubMed

    Birnbaum, Yochai; Birnbaum, Gilad D; Birnbaum, Itamar; Nylander, Sven; Ye, Yumei

    2016-12-01

    Ticagrelor inhibits the equilibrative-nucleoside-transporter-1 and thereby, adenosine cell re-uptake. Ticagrelor limits infarct size (IS) in non-diabetic rats and the effect is adenosine-dependent. Statins, via ecto-5'-nucleotidase activation, also increase adenosine levels and limit IS. Ticagrelor and rosuvastatin have additive effects on myocardial adenosine levels, and therefore, on IS and post-reperfusion activation of the NLRP3-inflammasome. Diabetic ZDF rats received via oral gavage; water (control), ticagrelor (150 mg/kg/d), prasugrel (7.5 mg/kg/d), rosuvastatin (5 mg/kg/d), ticagrelor + rosuvastatin and prasugrel + rosuvastatin for 3d. On day 4, rats underwent 30 min coronary artery occlusion and 24 h of reperfusion. Two additional groups received, ticagrelor + rosuvastatin or water in combination with CGS15943 (CGS, an adenosine receptor antagonist, 10 mg/kg i.p. 1 h before ischemia). Both ticagrelor and rosuvastatin increased myocardial adenosine levels with an additive effect of the combination whereas prasugrel had no effect. Similarly, both ticagrelor and rosuvastatin significantly reduced IS with an additive effect of the combination whereas prasugrel had no effect. The effect on IS was adenosine dependent as CGS15943 reversed the effect of ticagrelor + rosuvastatin. The ischemia-reperfusion injury increased myocardial mRNA levels of NLRP3, ASC, IL-1β and IL-6. Ticagrelor and rosuvastatin, but not prasugrel, significantly decreased these pro-inflammatory mediators with a trend to an additive effect of the combination. The combination also increased the levels of anti-inflammatory 15-epilipoxin A 4 . Ticagrelor and rosuvastatin when given in combination have an additive effect on local myocardial adenosine levels in the setting of ischemia reperfusion. This translates into an additive cardioprotective effect mediated by adenosine-induced effects including downregulation of pro- but upregulation of anti-inflammatory mediators.

  3. Detrimental effects of adenosine signaling in sickle cell disease

    PubMed Central

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2016-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046

  4. Detrimental effects of adenosine signaling in sickle cell disease.

    PubMed

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2011-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A(2B) receptor (A(2B)R)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A(2B)R has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease.

  5. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.

    PubMed

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-02-24

    Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.

  6. Adenosine uptake by the isolated epithelium of guine pig jejunum.

    PubMed

    Kolassa, N; Stengg, R; Turnheim, K

    1977-10-01

    The uptake of [8-14C]adenosine by the isolated epithelium of guinea pig jejunum was faster than that of inosine, hypoxanthine, or adenine. The initial velocity of adenosine uptake from both the luminal and the antiluminal side of the epithelium exhibited saturation kinetics. The apparent Km, V, and passive permeability of luminal adenosine uptake were all lower than the corresponding values of antiluminal uptake. p-Nitrobenzyl-thioguanosine inhibited adenosine uptake from both the luminal and the antiluminal side, whilst hexobendine decreased the uptake only from the antiluminal side of the epithelium. The results suggest that adenosine enters the intestinal epithelium by a carrier-mediated process in addition to passive diffusion. The antiluminal transport system for adenosine seems similar to that of other tissues with respect to hexobendine inhibition; the luminal transport mechanism, however, exhibits different properties, being insensitive to hexobendine.

  7. Ratiometric detection of adenosine triphosphate (ATP) in water and real-time monitoring of apyrase activity with a tripodal zinc complex.

    PubMed

    Butler, Stephen J

    2014-11-24

    Two tripodal fluorescent probes Zn⋅L(1,2) have been synthesised, and their anion-binding capabilities were examined by using fluorescence spectroscopy. Probe Zn⋅L(1) allows the selective and ratiometric detection of adenosine triphosphate (ATP) at physiological pH, even in the presence of several competing anions, such as ADP, phosphate and bicarbonate. The probe was applied to the real-time monitoring of the apyrase-catalysed hydrolysis of ATP, in a medium that mimics an extracellular fluid. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiroshi; Timossi, Chris

    2006-10-19

    Mono is an independent implementation of the .NET Frameworkby Novell that runs on multiple operating systems (including Windows,Linux and Macintosh) and allows any .NET compatible application to rununmodified. For instance Mono can run programs with graphical userinterfaces (GUI) developed with the C# language on Windows with VisualStudio (a full port of WinForm for Mono is in progress). We present theresults of tests we performed to evaluate the portability of our controlssystem .NET applications from MS Windows to Linux.

  9. Determination of nucleoside analog mono-, di-, and tri-phosphates in cellular matrix by solid phase extraction and ultra-sensitive LC-MS/MS detection.

    PubMed

    Bushman, Lane R; Kiser, Jennifer J; Rower, Joseph E; Klein, Brandon; Zheng, Jia-Hua; Ray, Michelle L; Anderson, Peter L

    2011-09-10

    An ultra-sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and validated to facilitate the assessment of clinical pharmacokinetics of nucleotide analogs from lysed intracellular matrix. The method utilized a strong anion exchange isolation of mono-(MP), di-(DP), and tri-phosphates (TP) from intracellular matrix. Each fraction was then dephosphorylated to the parent moiety yielding a molar equivalent to the original nucleotide analog intracellular concentration. The analytical portion of the methodology was optimized in specific nucleoside analog centric modes (i.e. tenofovir (TFV) centric, zidovudine (ZDV) centric), which included desalting/concentration by solid phase extraction and detection by LC-MS/MS. Nucleotide analog MP-, DP-, and TP-determined on the TFV centric mode of analysis include TFV, lamivudine (3TC), and emtricitibine (FTC). The quantifiable linear range for TFV was 2.5-2000 fmol/sample, and that for 3TC/FTC was 0.1 200 pmol/sample. Nucleoside analog MP-, DP-, and TP-determined on the ZDV centric mode of analysis included 3TC and ZDV. The quantifiable linear range for 3TC was 0.1 100 pmol/sample, and 5-2000 fmol/sample for ZDV. Stable labeled isotopic internal standards facilitated accuracy and precision in alternative cell matrices, which supported the intended use of the method for MP, DP, and TP determinations in various cell types. The method was successfully applied to clinical research samples generating novel intracellular information for TFV, FTC, ZDV, and 3TC nucleotides. This document outlines method development, validation, and application to clinical research. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Reentry Tachycardia in Children: Adenosine Can Make It Worse.

    PubMed

    Hien, Maximilian D; Benito Castro, Fernando; Fournier, Philippe; Filleron, Anne; Tran, Tu-Anh

    2016-10-08

    We report on a rare but severe complication of adenosine use in a child with reentry tachycardia. Treatment with adenosine, which is the standard medical therapy of atrioventricular reentry tachycardia, led to the development of an irregular wide complex tachycardia, caused by rapid ventricular response to atrial fibrillation. The girl was finally stabilized with electrical cardioversion. We analyze the pathomechanism and discuss possible treatment options. Atrial fibrillation, as well as its conduction to the ventricles, can be caused by adenosine. Rapid ventricular response in children with Wolff-Parkinson-White syndrome is more frequent than previously believed. A patient history of atrial fibrillation is a contraindication for cardioversion with adenosine and needs to be assessed in children with reentry tachycardia. High-risk patients may potentially profit from prophylactic comedication with antiarrhythmic agents, such as flecainide, ibutilide, or vernakalant, before adenosine administration.

  11. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase.

    PubMed

    Filippov, Sergey; Pinkosky, Stephen L; Newton, Roger S

    2014-08-01

    To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.

  12. TOR-induced resistance to toxic adenosine analogs in Leishmania brought about by the internalization and degradation of the adenosine permease.

    PubMed

    Detke, Siegfried

    2007-05-15

    TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain, which was recognized by TOR in this internalization pathway, was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature-sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking.

  13. Beneficial and detrimental role of adenosine signaling in diseases and therapy

    PubMed Central

    Liu, Hong

    2015-01-01

    Adenosine is a major signaling nucleoside that orchestrates cellular and tissue adaptation under energy depletion and ischemic/hypoxic conditions by activation of four G protein-coupled receptors (GPCR). The regulation and generation of extracellular adenosine in response to stress are critical in tissue protection. Both mouse and human studies reported that extracellular adenosine signaling plays a beneficial role during acute states. However, prolonged excess extracellular adenosine is detrimental and contributes to the development and progression of various chronic diseases. In recent years, substantial progress has been made to understand the role of adenosine signaling in different conditions and to clarify its significance during the course of disease progression in various organs. These efforts have and will identify potential therapeutic possibilities for protection of tissue injury at acute stage by upregulation of adenosine signaling or attenuation of chronic disease progression by downregulation of adenosine signaling. This review is to summarize current progress and the importance of adenosine signaling in different disease stages and its potential therapeutic effects. PMID:26316513

  14. Insulin and adenosine regulate the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes.

    PubMed

    Kiechle, F L; Sykes, E; Artiss, J D

    1995-01-01

    Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.

  15. Heat- and exercise-induced hyperthermia: effects on high-energy phosphates.

    PubMed

    Francesconi, R; Mager, M

    1979-08-01

    To assess the role of high-energy phosphate compounds in the etiology of heat injury with respect to the release of intracellular constituents, the susceptibility of selected tissues to heat injury, and the shock-like demise of the animals, rats were exercised on a treadmill (9.14 m/min) in a hot environment (34.5-35 degrees C) to a rectal temperature (Tre) of 42.5-43 degrees C. In the heart, kidney, left lateral lobe of the liver, and gastrocnemius muscle extricated from animals immediately upon termination of the treadmill run, levels of glucose-6-phosphate (G-6-P), adenosine triphosphate (ATP), and creatine phosphate (CP) were unchanged when compared with sedentary controls. In animals which had been resuscitated by infusion of isotonic saline into a jugular catheter, levels of CP were significantly (p less than 0.025) elevated in gastrocnemius muscle. In rats which were unconscious and succumbing to the effects of hyperthermic injury, levels of hepatic G-6-P and ATP were significantly reduced (p less than 0.05, p less than 0.02, respectively). These results indicate that the combination of exhaustive excercise/heat injury had the most deleterious effects upon hepatic metabolism. However, while resuscitation with physiological saline may be accompanied by an increased synthesis of CP, hyperthermic exhaustion and the concomitant efflux of cellular constituents cannot be attributed to a depletion or even a decrement of high-energy phosphates in vital tissues.

  16. Low-dose adenosine stress echocardiography: detection of myocardial viability.

    PubMed

    Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav

    2003-06-03

    The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of >or= 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 +/- 2 months) were available in 24 revascularized patients. Wall motion score index improved from rest 1.55 +/- 0.30 to 1.33 +/- 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 +/- 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.

  17. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    PubMed Central

    Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav

    2003-01-01

    Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability. PMID:12812523

  18. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA)

    PubMed Central

    2011-01-01

    Background Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity. Results NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5'-nucleotidase signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates. Conclusion Collectively, these results provide insight into the unique ability of AdsA to produce adenosine through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing S. aureus with the ability to modulate host immune responses. PMID:22035583

  19. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  20. Adenosine signaling promotes regeneration of pancreatic β-cells in vivo

    PubMed Central

    Andersson, Olov; Adams, Bruce A.; Yoo, Daniel; Ellis, Gregory C.; Gut, Philipp; Anderson, Ryan M.; German, Michael S.; Stainier, Didier Y. R.

    2012-01-01

    Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β-cells is still needed. Using a zebrafish model of diabetes, we screened ~7000 small molecules to identify enhancers of β-cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β-cell regeneration was the adenosine agonist 5′-N-Ethylcarboxamidoadenosine (NECA), which acting through the adenosine receptor A2aa increased β-cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β-cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β-cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes. PMID:22608007

  1. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    PubMed Central

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  2. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors.

    PubMed

    Sun, D; Samuelson, L C; Yang, T; Huang, Y; Paliege, A; Saunders, T; Briggs, J; Schnermann, J

    2001-08-14

    Adenosine is a determinant of metabolic control of organ function increasing oxygen supply through the A2 class of adenosine receptors and reducing oxygen demand through A1 adenosine receptors (A1AR). In the kidney, activation of A1AR in afferent glomerular arterioles has been suggested to contribute to tubuloglomerular feedback (TGF), the vasoconstriction elicited by elevations in [NaCl] in the macula densa region of the nephron. To further elucidate the role of A1AR in TGF, we have generated mice in which the entire A1AR coding sequence was deleted by homologous recombination. Homozygous A1AR mutants that do not express A1AR mRNA transcripts and do not respond to A1AR agonists are viable and without gross anatomical abnormalities. Plasma and urinary electrolytes were not different between genotypes. Likewise, arterial blood pressure, heart rates, and glomerular filtration rates were indistinguishable between A1AR(+/+), A1AR(+/-), and A1AR(-/-) mice. TGF responses to an increase in loop of Henle flow rate from 0 to 30 nl/min, whether determined as change of stop flow pressure or early proximal flow rate, were completely abolished in A1AR(-/-) mice (stop flow pressure response, -6.8 +/- 0.55 mmHg and -0.4 +/- 0.2 in A1AR(+/+) and A1AR(-/-) mice; early proximal flow rate response, -3.4 +/- 0.4 nl/min and +0.02 +/- 0.3 nl/min in A1AR(+/+) and A1AR(-/-) mice). Absence of TGF responses in A1AR-deficient mice suggests that adenosine is a required constituent of the juxtaglomerular signaling pathway. A1AR null mutant mice are a promising tool to study the functional role of A1AR in different target tissues.

  3. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  4. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. Copyright © 2016 The Author(s).

  5. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  6. Extracellular cyclic AMP-adenosine pathway in isolated adipocytes and adipose tissue.

    PubMed

    Strouch, Marci B; Jackson, Edwin K; Mi, Zaichuan; Metes, Nicole A; Carey, Gale B

    2005-06-01

    Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)-adenosine pathway in adipose tissue. Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 microL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 microM isoproterenol, or 10 microM isoproterenol plus 1 mM alpha,beta-methylene adenosine 5'-diphosphate (AMPCP), a 5'-nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 microM isoproterenol, or 1 microM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP-provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. These data suggest the existence of a cyclic AMP-adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.

  7. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn(2+)-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane).

    PubMed

    Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin

    2016-01-01

    We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.

  8. TOR induced resistance to toxic adenosine analogs in Leishmania brought about by the internalization and degradation of the adenosine permease

    PubMed Central

    Detke, Siegfried

    2007-01-01

    TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain which was recognized by TOR in this internalization pathway was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking. PMID:17428463

  9. Effect of two imidazolium derivatives of ionic liquids on the structure and activity of adenosine deaminase.

    PubMed

    Ajloo, Davood; Sangian, Masoomeh; Ghadamgahi, Maryam; Evini, Mina; Saboury, Ali Akbar

    2013-04-01

    The effect of two ionic liquids, 1-allyl 3-methyl-imidazolium (IL1) and 1-octhyl 3-methyl-imidozolium chlorides (IL2), on the structure and activity of adenosine deaminase (ADA) were described by UV-vis and fluorescence spectrophotometry in phosphate buffer and results were compared with docking and molecular dynamics (MD) simulation studies. All results showed that inhibition of activity and reduction of enzyme tertiary structure are more for octhyl than allyl derivative due to the more hydrophobic property of it. Finally structure parameters obtained from MD simulation showed that ionic liquid reduces intermolecular hydrogen bond and unfold enzyme structure. Calculation results are in good agreement with spectrophotometric studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    PubMed

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  11. Adenosine for postoperative analgesia: A systematic review and meta-analysis

    PubMed Central

    2017-01-01

    Purpose Perioperative infusion of adenosine has been suggested to reduce the requirement for inhalation anesthetics, without causing serious adverse effects in humans. We conducted a meta-analysis of randomized controlled trials evaluating the effect of adenosine on postoperative analgesia. Methods We retrieved articles in computerized searches of Scopus, Web of Science, PubMed, EMBASE, and Cochrane Library databases, up to July 2016. We used adenosine, postoperative analgesia, and postoperative pain(s) as key words, with humans, RCT, and CCT as filters. Data of eligible studies were extracted, which included pain scores, cumulative opioid consumption, adverse reactions, and vital signs. Overall incidence rates, relative risk (RR), and 95% confidence intervals (CI) were calculated employing fixed-effects or random-effects models, depending on the heterogeneity of the included trials. Results In total, 757 patients from 9 studies were included. The overall effect of adenosine on postoperative VAS/VRS scores and postoperative opioid consumption was not significantly different from that of controls (P >0.1). The occurrence of PONV and pruritus was not statistically significantly different between an adenosine and nonremifentanil subgroup (P >0.1), but the rate of PONV occurrence was greater in the remifentanil subgroup (P <0.01). Time to first postoperative analgesic requirement in the adenosine group was not significantly difference from that of the saline group (SMD = 0.07, 95%CI: −0.28 to 0.41, P = 0.71); but this occurred significantly later than with remifentanil (SMD = 1.10, 95%CI: 2.48 to 4.06, P < 0.01). Time to hospital discharge was not significantly different between the control and adenosine groups (P = 0.78). The perioperative systolic blood pressure was significantly lower in the adenosine than in the control group in the mannitol subgroup (P < 0.01). The incidence of bradycardia, transient first- degree atrioventricular block, and tachycardia was not

  12. Adenosine-Induced Atrial Fibrillation: Localized Reentrant Drivers in Lateral Right Atria due to Heterogeneous Expression of Adenosine A1 Receptors and GIRK4 Subunits in the Human Heart.

    PubMed

    Li, Ning; Csepe, Thomas A; Hansen, Brian J; Sul, Lidiya V; Kalyanasundaram, Anuradha; Zakharkin, Stanislav O; Zhao, Jichao; Guha, Avirup; Van Wagoner, David R; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L; Biesiadecki, Brandon J; Hummel, John D; Weiss, Raul; Fedorov, Vadim V

    2016-08-09

    Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado). We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10-100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; P<0.01) than LA (from 307±24 to 286±23 ms, 6.7±6.6%; P<0.01). In 10 hearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10-100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; P<0.01) and GIRK4 (1.7±0.8-fold; P<0.05) protein expression than lateral/posterior LA. This study revealed a 3-fold RA-to-LA adenosine A1 receptor protein expression gradient in the human heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine. © 2016 American Heart Association, Inc.

  13. ST 1535: a preferential A2A adenosine receptor antagonist.

    PubMed

    Stasi, Maria Antonietta; Borsini, Franco; Varani, Katia; Vincenzi, Fabrizio; Di Cesare, Maria Assunta; Minetti, Patrizia; Ghirardi, Orlando; Carminati, Paolo

    2006-10-01

    Antagonism of the A2A adenosine function has proved beneficial in the treatment of Parkinson's disease, in that it increases L-dopa therapeutical effects without concomitant worsening of its side-effects. In this paper we describe a preferential A2A adenosine antagonist, ST 1535, with long-lasting pharmacodynamic effects. It competitively antagonizes the effects of the A2A adenosine agonist NECA on cAMP in cells cloned with the human A2A adenosine receptor (IC50=353+/-30 nM), and the effects of the A1 adenosine agonist CHA on cAMP in cells cloned with the human A1 adenosine receptor (IC50=510+/-38 nM). ST 1535, at oral doses of 5 and 10 mg/kg, antagonizes catalepsy induced by intracerebroventricular administration of the A2A adenosine agonist CGS 21680 (10 microg/5 microl) in mice. At oral doses ranging between 5 and 20 mg/kg, ST 1535 induces hypermotility and antagonizes haloperidol-induced catalepsy in mice up to 7 h. Oral ST 1535, at 1.25 and 2.5 mg/kg, potentiates L-dopa effects in reducing haloperidol-induced catalepsy. ST 1535 represents a potential new compound, with long-lasting activity, for the treatment of Parkinson's disease.

  14. Amp Synthesis in Aqueous Solution of Adenosine and Phosphorus Pentoxide

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Kojima, H.; Ejiri, K.; Inomata, K.

    1982-12-01

    Possible formation of a P4O10 molecule in magma, the stability of the molecule in hydrous volcanic gas at high temperatures and a possible prebiotic phosphate cycle were discussed in relation to chemical evolution. To demonstrate the utility of phosphorus pentoxide as a phosphorylating agent, aqueous solutions of adenosine (0.02M) and phosphorus pentoxide (0.2M) were incubated at 37°C for 5 months. The pH of the solutions was adjusted every day or every few days to each fixed value (9.0, 10.5, 11.5, 12.5) with 10 N NaOH. The HPLC analysis showed the formation of 2'-AMP, 3'-AMP, 5'-AMP, cyclic (2' 3')-AMP and cyclic (3' 5')-AMP. The main components of the products were 2'- and 3'-AMP, though cyclic (2' 3')-AMP was the main component in the early period of the incubation at pH 9.0. The yields (conversion rate of adenosine to AMPs) were increased almost linearly with the incubation time for 5 months in the case of pH 9.0. The final yields were about 3% (pH 9.0), 6% (pH 9.0, 1 M NaCl), 5% (pH 9.0, 0.01 M CaCl2, 0.01 M MgCl2), 7% (pH 9.0, 0.5 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 9% (pH 9.0, 1 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 32% (pH 10.5), 43% (pH 11.5), 35% (pH 12.5).

  15. Adenosine formation and release from neonatal-rat heart cells in culture.

    PubMed Central

    Meghji, P; Holmquist, C A; Newby, A C

    1985-01-01

    The incorporation of [3H]adenosine (10 microM) into neonatal-rat heart cell nucleotides was inhibited in a concentration-dependent manner, such that 50% inhibition was obtained with 0.75 microM-dipyridamole, 0.26 microM-hexobendine or 0.22 microM-dilazep. Adenosine formation was accelerated 2.5-fold to 2.1 +/- 0.3 nmol/10(7) cells in 10 min when cells were incubated with a combination of 30 mM-2-deoxyglucose and 2 micrograms of oligomycin/ml. Of the newly formed adenosine, 6 +/- 2% was in the cells. Dipyridamole, hexobendine or dilazep (10 microM) increased the amount of adenosine in the cells and decreased that in the medium such that 45-50% of the newly formed adenosine was in the cells. Antibodies which inhibited ecto-5'-nucleotidase by 98.7 +/- 0.3% did not alter the rate of adenosine formation or its distribution between cells and medium. We conclude that adenosine was formed in the cytoplasm during catabolism of cellular ATP and was released via the dipyridamole-sensitive symmetric nucleoside transporter. PMID:2996488

  16. Variable p-CREB expression depicts different asthma phenotypes.

    PubMed

    Chiappara, G; Chanez, P; Bruno, A; Pace, E; Pompeo, F; Bousquet, J; Bonsignore, G; Gjomarkaj, M

    2007-07-01

    Chromatin modification may play a role in inflammatory gene regulation in asthma. Cyclic adenosine mono-phosphate response element-binding protein (CREB), with the specific co-activator, the CREB-binding protein (CBP), contributes to the acetylation of chromatin and to the transcription of pro-inflammatory genes. To evaluate the expression of CBP and of phospho-CREB (p-CREB) in bronchial biopsies and in peripheral blood mononuclear cells (PBMC) of controls (C), untreated (UA), inhaled steroid treated (ICS) and steroid-dependent asthmatic (SDA) patients. We used immunohistochemistry in bronchial biopsies and western blot analysis and immunocytochemistry in PBMC. Cyclic adenosine mono-phosphate response element-binding protein expression, in the epithelium was similar in all groups, while p-CREB expression was increased in UA and in SDA in comparison with ICS and C subjects (C vs UA P = 0.002, C vs SDA P = 0.007), (ICS vs SDA P = 0.005), (ICS vs UA P = 0.001). Interestingly, also in the submucosa, p-CREB was increased in UA and SDA in comparison with ICS and C subjects (C vs UA P = 0.0004) (C vs SDA P < 0.0001) (ICS vs UA P = 0.002) (ICS vs SDA P < 0.0001) and positively correlated with leukocyte infiltration within the bronchi (CD45RB+ cells). Similar results were obtained with PBMC isolated from the same patient groups. Incubation of PBMC in vitro, with fluticasone propionate, decreased the p-CREB expression induced by cytokine activation (interferon-gamma, tumor necrosis factor-alpha). This study demonstrates that the expression of p-CREB is related, in asthma, to the persistent inflammation according to the disease severity. p-CREB expression can be modulated by glucocorticoids in responsive patients.

  17. Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A₂A receptor levels in rats subjected to neuroinflammation.

    PubMed

    Smith, Mark D; Bhatt, Dhaval P; Geiger, Jonathan D; Rosenberger, Thad A

    2014-06-04

    Acetate supplementation reduces neuroglia activation and pro-inflammatory cytokine expression in rat models of neuroinflammation and Lyme neuroborreliosis. Because single-dose glyceryl triacetate (GTA) treatment increases brain phosphocreatine and reduces brain AMP levels, we postulate that GTA modulates adenosine metabolizing enzymes and receptors, which may be a possible mechanism to reduce neuroinflammation. To test this hypothesis, we quantified the ability of GTA to alter brain levels of ecto-5'-nucleotidase (CD73), adenosine kinase (AK), and adenosine A2A receptor using western blot analysis and CD73 activity by measuring the rate of AMP hydrolysis. Neuroinflammation was induced by continuous bacterial lipopolysaccharide (LPS) infusion in the fourth ventricle of the brain for 14 and 28 days. Three treatment strategies were employed, one and two where rats received prophylactic GTA through oral gavage with LPS infusion for 14 or 28 days. In the third treatment regimen, an interventional strategy was used where rats were subjected to 28 days of neuroinflammation, and GTA treatment was started on day 14 following the start of the LPS infusion. We found that rats subjected to neuroinflammation for 28 days had a 28% reduction in CD73 levels and a 43% increase in AK levels that was reversed with prophylactic acetate supplementation. CD73 activity in these rats was increased by 46% with the 28-day GTA treatment compared to the water-treated rats. Rats subjected to neuroinflammation for 14 days showed a 50% increase in levels of the adenosine A2A receptor, which was prevented with prophylactic acetate supplementation. Interventional GTA therapy, beginning on day 14 following the induction of neuroinflammation, resulted in a 67% increase in CD73 levels and a 155% increase in adenosine A2A receptor levels. These results support the hypothesis that acetate supplementation can modulate brain CD73, AK and adenosine A2A receptor levels, and possibly influence purinergic

  18. Digital Bathymetric Model of Mono Lake, California

    USGS Publications Warehouse

    Raumann, Christian G.; Stine, Scott; Evans, Alexander; Wilson, Jerry

    2002-01-01

    In 1986 and 1987, Pelagos Corporation of San Diego (now Racal Pelagos) undertook a bathymetric survey of Mono Lake in eastern California for the Los Angeles Department of Water and Power (DWP). The result of that survey was a series of maps at various scales and contour intervals. From these maps, the DWP hoped to predict consequences of the drop in lake level that resulted from their diversion of streams in the Mono Basin. No digital models, including shaded-relief and perspective-view renderings, were made from the data collected during the survey. With the permission of Pelagos Corporation and DWP, these data are used to produce a digital model of the floor of Mono Lake. The model was created using a geographic information system (GIS) to incorporate these data with new observations and measurements made in the field. This model should prove to be a valuable tool for enhanced visualization and analyses of the floor of Mono Lake.

  19. Characterization of adenosine receptors in guinea-pig isolated left atria.

    PubMed Central

    Jahnel, U.; Nawrath, H.

    1989-01-01

    1. The effects of purinergic stimulation on action potential, force of contraction, 86Rb efflux and 45Ca uptake were investigated in guinea-pig left atria. 2. Adenosine exerted a negative inotropic effect which was antagonized by adenosine deaminase but enhanced by dipyridamole. 3. The negative inotropic effect of adenosine was mimicked by 5'-(N-ethyl)-carboxamido-adenosine (NECA) and the isomers of N6-(phenyl-isopropyl)-adenosine, R-PIA and S-PIA. NECA and R-PIA were about 100 times more potent than adenosine, whereas R-PIA was about 100 times more potent than S-PIA. 4. The inotropic effects of adenosine (in the presence of dipyridamole), NECA, R-PIA and S-PIA were competitively antagonized either by theophylline (pA2 about 4.5) or 8-phenyltheophylline (pA2 about 6.3). 5. NECA and R-PIA shortened the action potential duration and increased the rate constant of the efflux of 86Rb in a concentration-dependent manner with no differences in potency; the effects were competitively antagonized by 8-phenyltheophylline. 6. Barium ions reduced the efflux of 86Rb under control conditions and antagonized the increase induced by NECA and R-PIA. 7. NECA and R-PIA significantly reduced 45Ca uptake in beating preparations. 8. It is concluded that adenosine, NECA and R-PIA activate a common receptor population (P1 or A3) on the outside of the cell membrane of atrial heart muscle to increase the potassium conductance and to reduce the action potential and, thereby, calcium influx and force of contraction. PMID:2790380

  20. Brain levels of high-energy phosphate metabolites and executive function in geriatric depression.

    PubMed

    Harper, David G; Joe, Elizabeth B; Jensen, J Eric; Ravichandran, Caitlin; Forester, Brent P

    2016-11-01

    Depression in late life has been associated with difficulties in cognitive processing, particularly in the domains of executive function, processing speed and memory, and increases the risk of developing dementia suggesting a neurodegenerative phenotype. Mitochondrial dysfunction is frequently an early event in neurodegenerative illnesses and may be operative in patients with late life depression. Phosphorus magnetic resonance spectroscopy (31P MRS) allows for the quantification of bioenergetic molecules produced by mitochondria. Ten patients with late life depression and eight normal elderly controls were studied with Stroop color and interference tests, which are widely used measures of processing speed and executive function, respectively, followed by (31P) MRS 3-dimensional chemical-shift imaging measuring levels of adenosine triphosphate, phosphocreatine, inorganic phosphate, and pH over the whole brain. In all subjects, gray matter phosphocreatine was positively associated with Stroop interference. Levels of white matter adenosine triphosphate were associated with Stroop interference in subjects with late life depression but not normal elderly. There was also a complementary association between white matter inorganic phosphate and Stroop interference in late life depression patients. These findings suggest two independent sources of executive function dependence on bioenergetic state in the aging brain. The dependence of executive function performance in subjects with late life depression on ATP in white matter may be associated with mitochondrial impairment and is consistent with predictions of the vascular depression hypothesis. Further research with wider neuropsychological testing targeting bioenergetic markers could help clarify the scope of these effects. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Myocardial high-energy phosphate metabolism is altered after treatment with anthracycline in childhood.

    PubMed

    Eidenschink, A B; Schröter, G; Müller-Weihrich, S; Stern, H

    2000-11-01

    We aimed to investigate whether changes in high-energy phosphate metabolism after treatment of children and young adults with anthracycline can be demonstrated non-invasively by 31P magnetic resonance spectroscopy. Abnormal myocardial energy metabolism has been suggested as a mechanism for anthracycline-induced cardiotoxicity. Deterioration in such has been shown in animal studies by resonance spectroscopy. We studied 62 patients, with a mean age of 13.5+/-5 years, 3.7+/-4.3 years after a cumulative anthracycline dose of 270+/-137 mg/m2. Normal echocardiographic findings had been elicited in 54 patients. The control group consisted of 28 healthy subjects aged 20+/-7 years. Resonance spectrums of the anterior left ventricular myocardium were obtained at 1.5 Tesla using an image-selected in vivo spectroscopy localization technique. The ratio of phosphocreatine to adenosine triphosphate after blood correction was 1.09+/-0.43 for the patients, and 1.36+/-0.36 (mean+/-SD) for controls (p=0.005), with a significantly reduced mean ratio even in the subgroup of patients with normal echocardiographic results (1.11+/-0.44 versus 1.36+/-0.36, p=0.01). The ratio did not correlate with the cumulative dose of anthracycline. The ratio of phosphodiester to adenosine triphosphate was similar in patients and controls (0.90+/-0.56 versus 0.88+/-0.62). In patients treated with anthracyclines in childhood, myocardial high-energy phosphate metabolism may be impaired even in the absence of cardiomyopathy. Our data support the concept that anthracycline-induced cardiotoxicity is not clearly dose dependent.

  2. Mono-W dark matter signals at the LHC: simplified model analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K., E-mail: n.bell@unimelb.edu.au, E-mail: yi.cai@unimelb.edu.au, E-mail: rleane@physics.unimelb.edu.au

    2016-01-01

    We study mono-W signals of dark matter (DM) production at the LHC, in the context of gauge invariant renormalizable models. We analyze two simplified models, one involving an s-channel Z' mediator and the other a t-channel colored scalar mediator, and consider examples in which the DM-quark couplings are either isospin conserving or isospin violating after electroweak symmetry breaking. While previous work on mono-W signals have focused on isospin violating EFTs, obtaining very strong limits, we find that isospin violating effects are small once such physics is embedded into a gauge invariant simplified model. We thus find that the 8 TeVmore » mono-W results are much less constraining than those arising from mono-jet searches. Considering both the leptonic (mono-lepton) and hadronic (mono fat jet) decays of the W, we determine the 14 TeV LHC reach of the mono-W searches with 3000 fb{sup −1} of data. While a mono-W signal would provide an important complement to a mono-jet discovery channel, existing constraints on these models imply it will be a challenging signal to observe at the 14 TeV LHC.« less

  3. Effects of an ATP analogue, adenosine 5'-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation.

    PubMed

    Yukawa, Ayako; Watanabe, Rikiya; Noji, Hiroyuki

    2015-03-13

    F1-ATPase (F1), an important rotary motor protein, converts the chemical energy of ATP hydrolysis into mechanical energy using rotary motion with extremely high efficiency. The energy-conversion mechanism for this molecular motor has been extensively clarified by previous studies, which indicate that the interactions between the catalytic residues and the β- and γ-phosphates of ATP are indispensable for efficient catalysis and torque generation. However, the role of α-phosphate is largely unknown. In this study, we observed the rotation of F1 fuelled with an ATP analogue, adenosine 5'-[α-thio]-triphosphate (ATPαS), in which the oxygen has been substituted with a sulfur ion to perturb the α-phosphate/F1 interactions. In doing so, we have revealed that ATPαS does not appear to have any impact on the kinetic properties of the motor or on torque generation compared to ATP. On the other hand, F1 was observed to lapse into the ADP-inhibited intermediate states when in the presence of ATPαS more severely than in the presence of ATP, suggesting that the α-phosphate group of ATP contributes to the avoidance of ADP-inhibited intermediate formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.

    PubMed

    De Rienzo, Mayri A Díaz; Martin, Peter J

    2016-08-01

    Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies.

  5. Mono Lake, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-154-160 (9-20 April 1994) --- Orient with Mono Lake, California at the lower right; then the view is westward across the Sierra Nevada into the San Joaquin River drainage. A tiny network of ski trails can be seen on the Mono Lake side of the Sierras, on a line between Mono Lake and the snow-free San Joaquin headwaters. The ski trails mark Mammoth Mountain, where SRL investigators are studying microwave measurements of the water content of snowpacks. Linhof camera.

  6. Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat

    PubMed Central

    D’eon, Jessica C.; Mabury, Scott A.

    2011-01-01

    Background Perfluorinated carboxylic acids (PFCAs) are ubiquitous in human sera worldwide. Biotransformation of the polyfluoroalkyl phosphate esters (PAPs) is a possible source of PFCA exposure, because PAPs are used in food-contact paper packaging and have been observed in human sera. Objectives We determined pharmacokinetic parameters for the PAP monoesters (monoPAPs) and PAP diesters (diPAPs), as well as biotransformation yields to the PFCAs, using a rat model. Methods The animals were dosed intravenously or by oral gavage with a mixture of 4:2, 6:2, 8:2, and 10:2 monoPAP or diPAP chain lengths. Concentrations of the PAPs and PFCAs, as well as metabolic intermediates and phase II metabolites, were monitored over time in blood, urine, and feces. Results The diPAPs were bioavailable, with bioavailability decreasing as the chain length increased from 4 to 10 perfluorinated carbons. The monoPAPs were not absorbed from the gut; however, we found evidence to suggest phosphate-ester cleavage within the gut contents. We observed biotransformation to the PFCAs for both monoPAP and diPAP congeners. Conclusions Using experimentally derived biotransformation yields, perfluorooctanoic acid (PFOA) sera concentrations were predicted from the biotransformation of 8:2 diPAP at concentrations observed in human serum. Because of the long human serum half-life of PFOA, biotransformation of diPAP even with low-level exposure could over time result in significant exposure to PFOA. Although humans are exposed directly to PFCAs in food and dust, the pharmacokinetic parameters determined here suggest that PAP exposure should be considered a significant indirect source of human PFCA contamination. PMID:21059488

  7. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    PubMed Central

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  8. Natural-abundance 17O NMR spectra of some inorganic and biologically important phosphates

    NASA Astrophysics Data System (ADS)

    Gerothanassis, Ioannis P.; Sheppard, Norman

    A number of optimization techniques were employed to obtain 17O NMR spectra at natural abundance for a variety of inorganic and orgnic phosphates and polyphosphates. 17O chemical shifts and some JPO coupling constants are reported for the orthophosphate series of ions from H 3PO 4 to PO 43-, the pyrophosphate ion, P 2O 74-, the linear tripolyphosphate ion, P 3O 105-, and the cyclic trimetaphosphate ion, P 3O 93-; and for disodium DL-α-glycerophosphate and monosodium adenosine monophosphate. 17O- depleted water enables much improved results to be obtained in acqueous solutions.

  9. Adenosine receptor subtypes in the airways responses to 5'-adenosine monophosphate inhalation of sensitized guinea-pigs.

    PubMed

    Smith, N; Broadley, K J

    2008-09-01

    Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.

  10. Intracoronary Adenosine: Dose-Response Relationship With Hyperemia.

    PubMed

    Adjedj, Julien; Toth, Gabor G; Johnson, Nils P; Pellicano, Mariano; Ferrara, Angela; Floré, Vincent; Di Gioia, Giuseppe; Barbato, Emanuele; Muller, Olivier; De Bruyne, Bernard

    2015-09-01

    The present study sought to establish the dosage of intracoronary (IC) adenosine associated with minimal side effects and above which no further increase in flow can be expected. Despite the widespread adoption of IC adenosine in clinical practice, no wide-ranging, dose-response study has been conducted. A recurring debate still exists regarding its optimal dose. In 30 patients, Doppler-derived flow velocity measurements were obtained in 10 right coronary arteries (RCAs) and 20 left coronary arteries (LCAs) free of stenoses >20% in diameter. Flow velocity was measured at baseline and after 8 ml bolus administrations of arterial blood, saline, contrast medium, and 9 escalating doses of adenosine (4 to 500 μg). The hyperemic value was expressed in percent of the maximum flow velocity reached in a given artery (Q/Qmax, %). Q/Qmax did not increase significantly beyond dosages of 60 μg for the RCA and 160 μg for LCA. Heart rate did not change, whereas mean arterial blood pressure decreased by a maximum of 7% (p < 0.05) after bolus injections of IC adenosine. The incidence of transient A-V blocks was 40% after injection of 100 μg in the RCA and was 15% after injection of 200 μg in the LCA. The duration of the plateau reached 12 ± 13 s after injection of 100 μg in the RCA and 21 ± 6 s after the injection of 200 μg in the LCA. A progressive prolongation of the time needed to return to baseline was observed. Hyperemic response after injection of 8 ml of contrast medium reached 65 ± 36% of that achieved after injection of 200 μg of adenosine. This wide-ranging, dose-response study indicates that an IC adenosine bolus injection of 100 μg in the RCA and 200 μg in the LCA induces maximum hyperemia while being associated with minimal side effects. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    PubMed

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  12. Magnetic and gravity studies of Mono Lake, east-central, California

    USGS Publications Warehouse

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  13. Delayed production of adenosine underlies temporal modulation of swimming in frog embryo

    PubMed Central

    Dale, Nicholas

    1998-01-01

    To investigate the dynamics of adenosine production in the spinal cord during motor activity, and its possible contribution to the temporal modulation of motor patterns, a sensor sensitive to adenosine at concentrations as low as 10 nm was devised.When pressed against the outside of the spinal cord, the sensor detected slow changes in the levels of adenosine during fictive swimming that ranged from 10 to 650 nm. In four embryos where particularly large signals were recorded due to favourable probe placement, the adenosine levels continued to rise for up to a minute following cessation of activity before slowly returning to baseline. In the remaining thirteen embryos, levels of adenosine started to return slowly to baseline almost immediately after activity had stopped.Inhibitors of adenosine uptake increased the magnitude of the signal recorded and slowed the recovery following cessation of activity.A realistic computational model of the spinal circuitry was combined with models of extracellular breakdown of ATP to adenosine. ATP and adenosine inhibited, as in the real embryo, the voltage-gated K+ and Ca2+ currents, respectively. The model reproduced the temporal run-down of motor activity seen in the real embryo suggesting that synaptic release of ATP together with its extracellular breakdown to adenosine is sufficient to exert time-dependent control over motor pattern generation.The computational analysis also suggested that the delay in the rise of adenosine levels is likely to result from feed-forward inhibition of the 5′-ectonucleotidase in the spinal cord. This inhibition is a key determinant of the rate of run-down. PMID:9679180

  14. The effects of noradrenaline and adenosine 5'-triphosphate on polyphosphoinositide and phosphatidylcholine hydrolysis in arterial smooth muscle.

    PubMed Central

    Nally, J. E.; Muir, T. C.; Guild, S. B.

    1992-01-01

    1. The effects of noradrenaline and alpha,beta,methylene adenosine 5'-triphosphate (alpha,beta,methylene ATP) on polyphosphoinositide metabolism, phosphatidylcholine hydrolysis and contraction in rabbit saphenous arteries were investigated. The effect of noradrenaline upon polyphosphoinositide metabolism was also investigated in the rat tail artery. 2. Noradrenaline (10(-7)-10(-4) M) evoked a concentration-dependent increase in total inositol phosphate accumulation in the rat tail but not in the rabbit saphenous artery. Propranolol (3 x 10(-6) M) did not alter this result in the rabbit saphenous artery. In addition, alpha,beta,methylene ATP (10(-6) M) significantly increased total inositol phosphate accumulation in the rabbit saphenous artery, while potassium chloride (8 x 10(-2) M) was ineffective. 3. Phorbol 1,2-myristate 1,3-acetate (3 x 10(-8) M) enhanced noradrenaline (10(-2)-10(-4) M)-evoked contractions in rabbit saphenous artery. The contractile responses to potassium chloride (1- 16 x 10(-2) M) in tissues treated with 6-hydroxydopamine (5 x 10(-4) M), in vitro, were unaffected by these concentrations of the phorbol ester. 4. Noradrenaline (10(-6)-10(-4) M) evoked a concentration-dependent increase in the levels of choline and choline phosphate, but not in those of glycerophosphocholine, in the rabbit saphenous artery. Choline levels increased significantly over the first 15-30 s then declined to control levels within 2 min of addition of noradrenaline (10(-5) M). A smaller initial rise in choline phosphate levels (15-30 s) was followed by a larger secondary rise at 2-4 min.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1327389

  15. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.

    PubMed

    Narayana, N; Cox, S; Shaltiel, S; Taylor, S S; Xuong, N

    1997-04-15

    The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other

  16. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  17. Mono Lake, California

    NASA Image and Video Library

    1994-10-01

    STS068-150-020 (30 September-11 October 1994) --- An exceptionally clear, high-contrast view of the desert basins east and south of Mono Lake, California. Light clouds dot the mountain ranges; the clouds were transparent to radar beams from the Space Radar Laboratory 2 (SRL-2) payload.

  18. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus

    PubMed Central

    Wall, Mark J; Dale, Nicholas

    2013-01-01

    The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca2+ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73−/− and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources. PMID:23713028

  19. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  20. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to

  1. 21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium mono- and dimethyl naphthalene sulfonates... sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in... statement declaring the presence of sodium mono- and dimethyl naphthalene sulfonates. [42 FR 14491, Mar. 15...

  2. Structural simulation of adenosine phosphate via plumbagin and zoledronic acid competitively targets JNK/Erk to synergistically attenuate osteoclastogenesis in a breast cancer model

    PubMed Central

    Qiao, H; Wang, T-y; Yu, Z-f; Han, X-g; Liu, X-q; Wang, Y-g; Fan, Q-m; Qin, A; Tang, T-t

    2016-01-01

    The treatment of breast cancer-induced osteolysis remains a challenge in clinical settings. Here, we explored the effect and mechanism of combined treatment with zoledronic acid (ZA) and plumbagin (PL), a widely investigated component derived from Plumbago zeylanica, against breast cancer-induced osteoclastogenesis. We found that the combined treatment with PL and ZA suppressed cell viability of precursor osteoclasts and synergistically inhibited MDA-MB-231-induced osteoclast formation (combination index=0.28) with the abrogation of recombinant mouse receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of NF-κB/MAPK (nuclear factor-κB/mitogen-activated protein kinase) pathways. Molecular docking suggested a putative binding area within c-Jun N-terminal kinase/extracellular signal-regulated kinase (JNK/Erk) protease active sites through the structural mimicking of adenosine phosphate (ANP) by the spatial combination of PL with ZA. A homogeneous time-resolved fluorescence assay further illustrated the direct competitiveness of the dual drugs against ANP docking to phosphorylated JNK/Erk, contributing to the inhibited downstream expression of c-Jun/c-Fos/NFATc-1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1). Then, in vivo testing demonstrated that the combined administration of PL and ZA attenuated breast cancer growth in the bone microenvironment. Additionally, these molecules prevented the destruction of proximal tibia, with significant reduction of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclast cells and potentiation of apoptotic cancer cells, to a greater extent when combined than when the drugs were applied independently. Altogether, the combination treatment with PL and ZA could significantly and synergistically suppress osteoclastogenesis and inhibit tumorigenesis both in vitro and in vivo by simulating the spatial structure of ANP to inhibit competitively phosphorylation of c-Jun N

  3. Adenosine transiently modulates stimulated dopamine release in the caudate putamen via A1 receptors

    PubMed Central

    Ross, Ashley E.; Venton, B. Jill

    2014-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 µM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7 %, similar to the 54 ± 6 % decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 minutes. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. PMID:25219576

  4. The Role of Extracellular Adenosine Triphosphate in Ischemic Organ Injury.

    PubMed

    Zhao, Hailin; Kilgas, Susan; Alam, Azeem; Eguchi, Shiori; Ma, Daqing

    2016-05-01

    Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.

  5. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    PubMed Central

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  6. Occupational exposures in two industrial plants devoted to the production of ammonium phosphate fertilisers.

    PubMed

    Bolívar, J P; García-Tenorio, R; Mosqueda, F; Gázquez, M J; López-Coto, I; Adame, J A; Vaca, F

    2013-03-01

    In order to fill a gap in the open literature, occupational exposures and activity concentrations have been assessed in two NORM industrial plants, located in the south-west of Spain, devoted to the production of mono-ammonium phosphate (MAP) and di-ammonium phosphate (DAP) fertilisers. The annual effective doses received by the workers from these plants are clearly below 1 mSv yr(-1) and the contribution due to external radiation is similar to that due to inhalation. The contribution to the maximum effective doses due to inhalation of particulate matter has been estimated to be about 0.12 mSv yr(-1), while the (222)Rn concentrations inside the plants are of no concern. Consequently, no additional actions or radiological protection measures need to be taken to decrease the natural radiation received by the workers in these facilities.

  7. The 2′,3′-cAMP-adenosine pathway

    PubMed Central

    2011-01-01

    Our recent studies employing HPLC-tandem mass spectrometry to analyze venous perfusate from isolated, perfused kidneys demonstrate that intact kidneys produce and release into the extracellular compartment 2′,3′-cAMP, a positional isomer of the second messenger 3′,5′-cAMP. To our knowledge, this represents the first detection of 2′,3′-cAMP in any cell/tissue/organ/organism. Nuclear magnetic resonance experiments with isolated RNases and experiments in isolated, perfused kidneys suggest that 2′,3′-cAMP likely arises from RNase-mediated transphosphorylation of mRNA. Both in vitro and in vivo kidney experiments demonstrate that extracellular 2′,3′-cAMP is efficiently metabolized to 2′-AMP and 3′-AMP, both of which can be further metabolized to adenosine. This sequence of reactions is called the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine). Experiments in rat and mouse kidneys show that metabolic poisons increase extracellular levels of 2′,3′-cAMP, 2′-AMP, 3′-AMP, and adenosine; however, little is known regarding the pharmacology of 2′,3′-cAMP, 2′-AMP, and 3′-AMP. What is known is that 2′,3′-cAMP facilitates activation of mitochondrial permeability transition pores, a process that can lead to apoptosis and necrosis, and inhibits proliferation of vascular smooth muscle cells and glomerular mesangial cells. In summary, there is mounting evidence that at least some types of cellular injury, by triggering mRNA degradation, engage the 2′,3′-cAMP-adenosine pathway, and therefore this pathway should be added to the list of biochemical pathways that produce adenosine. Although speculative, it is possible that the 2′,3′-cAMP-adenosine pathway may protect against some forms of acute organ injury, for example acute kidney injury, by both removing an intracellular toxin (2′,3′-cAMP) and increasing an extracellular renoprotectant (adenosine). PMID:21937608

  8. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins

    PubMed Central

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I.; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A2AR). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits. PMID:29497379

  9. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins.

    PubMed

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A 2A R present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A 2A R and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A 2A R involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A 2A R-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A 2A R). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.

  10. Opiate-induced Changes in Brain Adenosine Levels and Narcotic Drug Responses

    PubMed Central

    Wu, Manhong; Sahbaie, Peyman; Zheng, Ming; Lobato, Robert; Boison, Detlev; Clark, J. David; Peltz, Gary

    2012-01-01

    We have very little information about the metabolomic changes that mediate neurobehavioral responses, including addiction. It was possible that opioid-induced metabolomic changes in brain could mediate some of the pharmacodynamic effects of opioids. To investigate this, opiate-induced brain metabolomic responses were profiled using a semi-targeted method in C57BL/6 and 129Sv1 mice, which exhibit extreme differences in their tendency to become opiate dependent. Escalating morphine doses (10–40 mg/kg) administered over a 4-day period selectively induced a two-fold decrease (p<0.00005) in adenosine abundance in the brainstem of C57BL/6 mice, which exhibited symptoms of narcotic drug dependence; but did not decrease adenosine abundance in 129Sv1 mice, which do not exhibit symptoms of dependence. Based on this finding, the effect of adenosine on dependence was investigated in genetically engineered mice with alterations in adenosine tone in the brain and in pharmacologic experiments. Morphine withdrawal behaviors were significantly diminished (P<0.0004) in genetically engineered mice with reduced adenosine tone in the brainstem, and by treatment with an adenosine receptor1 (A1) agonist (2-chloro-N6-cyclopentyladenosine, 0.5 mg/kg) or an A2a receptor (A2a) antagonist (SCH 58261 1 mg/kg). These results indicate that adenosine homeostasis plays a crucial role in narcotic drug responses. Opiate-induced changes in brain adenosine levels may explain many important neurobehavioral features associated with opiate addiction and withdrawal. PMID:23098802

  11. Systemic Adenosine Triphosphate Impairs Neutrophil Chemotaxis and Host Defense in Sepsis.

    PubMed

    Li, Xiaoou; Kondo, Yutaka; Bao, Yi; Staudenmaier, Laura; Lee, Albert; Zhang, Jingping; Ledderose, Carola; Junger, Wolfgang G

    2017-01-01

    Sepsis remains an unresolved clinical problem. Therapeutic strategies focusing on inhibition of neutrophils (polymorphonuclear neutrophils) have failed, which indicates that a more detailed understanding of the underlying pathophysiology of sepsis is required. Polymorphonuclear neutrophil activation and chemotaxis require cellular adenosine triphosphate release via pannexin-1 channels that fuel autocrine feedback via purinergic receptors. In the current study, we examined the roles of endogenous and systemic adenosine triphosphate on polymorphonuclear neutrophil activation and host defense in sepsis. Prospective randomized animal investigation and in vitro studies. Preclinical academic research laboratory. Wild-type C57BL/6 mice, pannexin-1 knockout mice, and healthy human subjects used to obtain polymorphonuclear neutrophils for in vitro studies. Wild-type and pannexin-1 knockout mice were treated with suramin or apyrase to block the endogenous or systemic effects of adenosine triphosphate. Mice were subjected to cecal ligation and puncture and polymorphonuclear neutrophil activation (CD11b integrin expression), organ (liver) injury (plasma aspartate aminotransferase), bacterial spread, and survival were monitored. Human polymorphonuclear neutrophils were used to study the effect of systemic adenosine triphosphate and apyrase on chemotaxis. Inhibiting endogenous adenosine triphosphate reduced polymorphonuclear neutrophil activation and organ injury, but increased the spread of bacteria and mortality in sepsis. By contrast, removal of systemic adenosine triphosphate improved bacterial clearance and survival in sepsis by improving polymorphonuclear neutrophil chemotaxis. Systemic adenosine triphosphate impairs polymorphonuclear neutrophil functions by disrupting the endogenous purinergic signaling mechanisms that regulate cell activation and chemotaxis. Removal of systemic adenosine triphosphate improves polymorphonuclear neutrophil function and host defenses

  12. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    PubMed Central

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  13. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum.

    PubMed

    Cassera, María B; Hazleton, Keith Z; Riegelhaupt, Paul M; Merino, Emilio F; Luo, Minkui; Akabas, Myles H; Schramm, Vern L

    2008-11-21

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.

  14. Polyfluoroalkyl phosphate esters and perfluoroalkyl carboxylic acids in target food samples and packaging--method development and screening.

    PubMed

    Gebbink, Wouter A; Ullah, Shahid; Sandblom, Oskar; Berger, Urs

    2013-11-01

    Polyfluoroalkyl phosphate mono-, di-, and tri-esters (mono-, di-, and triPAPs) are used to water- and grease-proof food packaging materials, and these chemicals are known precursors to perfluoroalkyl carboxylic acids (PFCAs). Existing analytical methods for PAPs lack sample clean-up steps in the sample preparation. In the present study, a method based on ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS) was developed and optimized for the analysis of mono-, di-, and triPAPs, including a clean-up step for the raw extracts. The method was applied to food samples and their PAP-containing packaging materials. The optimized UPLC/MS/MS method enabled the separation and identification of a total of 4 monoPAPs, 16 diPAPs, and 7 triPAPs in the technical mixture Zonyl®-RP. For sample clean-up, weak anion exchange solid phase extraction columns were tested. PAPs standard solutions spiked onto the columns were separated into a fraction containing neutral compounds (triPAPs) and a fraction with ionic compounds (mono- and diPAPs) with recoveries between 72-110%. Method limits of quantification for food samples were in the sub to low picogram per gram range. For quantitative analysis of PAPs, compound-specific labeled internal standards showed to be essential as sorption and matrix effects were observed. Mono-, di-, and/or triPAPs were detected in all food packaging materials obtained from the Swedish market. Up to nine diPAPs were detected in the food samples, with the 6:2/6:2 and 6:2/8:2 diPAPs as the dominant compounds. DiPAP concentrations in the food samples ranged from 0.9 to 36 pg/g, which was comparable to individual PFCA concentrations in the same samples. Consumption of food packed in PAP-containing materials could be an indirect source of human exposure to PFCAs.

  15. Adenosine-Induced Atrial Fibrillation: Localized Reentrant Drivers in Lateral Right Atria due to Heterogeneous Expression of Adenosine A1 Receptors and GIRK4 Subunits in the Human Heart

    PubMed Central

    Li, Ning; Csepe, Thomas A.; Hansen, Brian J.; Sul, Lidiya V.; Kalyanasundaram, Anuradha; Zakharkin, Stanislav O.; Zhao, Jichao; Guha, Avirup; Van Wagoner, David R.; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul ML; Biesiadecki, Brandon; Hummel, John D; Weiss, Raul; Fedorov, Vadim V.

    2016-01-01

    Background Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor (A1R) and its downstream GIRK channels (IK,Ado). Methods We applied bi-atrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and non-failing human hearts (n=37). Results Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10–100μM) produced more significant shortening of action potential durations (APD80) in RA (from 290±45ms to 239±41ms, 17.3±10.4%; p<0.01) than LA (from 307±24ms to 286±23ms, 6.7±6.6%; p<0.01). In ten hearts, adenosine induced AF (317±116 sec) that, when sustained (≥2 min), was primarily maintained by one/two localized reentrant drivers in lateral RA. Tertiapin (10–100nM), a selective GIRK channel blocker, counteracted adenosine-induced APD shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher A1R (2.7±1.7 fold; p<0.01) and GIRK4 (1.7±0.8 fold; p<0.05) protein expression than lateral/posterior LA. Conclusions This study revealed a three-fold RA-to-LA A1R protein expression gradient in the human heart, leading to significantly greater RA vs. LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest A1R/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine. PMID:27462069

  16. Adenosine/guanosine-3',5'-bis-phosphates as biocompatible and selective Zn2+-ion chelators. Characterization and comparison with adenosine/guanosine-5'-di-phosphate.

    PubMed

    Sayer, Alon Haim; Blum, Eliav; Major, Dan Thomas; Vardi-Kilshtain, Alexandra; Levi Hevroni, Bosmat; Fischer, Bilha

    2015-04-28

    Although involved in various physiological functions, nucleoside bis-phosphate analogues and their metal-ion complexes have been scarcely studied. Hence, here, we explored the solution conformation of 2′-deoxyadenosine- and 2′-deoxyguanosine-3′,5′-bisphosphates, 3 and 4, d(pNp), as well as their Zn(2+)/Mg(2+) binding sites and binding-modes (i.e. inner- vs. outer-sphere coordination), acidity constants, stability constants of their Zn(2+)/Mg(2+) complexes, and their species distribution. Analogues 3 and 4, in solution, adopted a predominant Southern ribose conformer (ca. 84%), gg conformation around C4'-C5' and C5'-O5' bonds, and glycosidic angle in the anti-region (213-270°). (1)H- and (31)P-NMR experiments indicated that Zn(2+)/Mg(2+) ions coordinated to P5' and P3' groups of 3 and 4 but not to N7 nitrogen atom. Analogues 3 and 4 formed ca. 100-fold more stable complexes with Zn(2+)vs. Mg(2+)-ions. Complexes of 3 and 4 with Mg(2+) at physiological pH were formed in minute amounts (11% and 8%, respectively) vs. Zn(2+) complexes (46% and 44%). Stability constants of Zn(2+)/Mg(2+) complexes of analogues 3 and 4 (log KML(M) = 4.65-4.75/2.63-2.79, respectively) were similar to those of the corresponding complexes of ADP and GDP (log KML(M) = 4.72-5.10/2.95-3.16, respectively). Based on the above findings, we hypothesized that the unexpectedly low log K values of Zn(2+)-d(pNp) as compared to Zn(2+)-NDP complexes, are possibly due to formation of outer-sphere coordination in the Zn(2+)-d(pNp) complex vs. inner-sphere in the NDP-Zn(2+) complex, in addition to loss of chelation to N7 nitrogen atom in Zn(2+)-d(pNp). Indeed, explicit solvent molecular dynamics simulations of 1 and 3 for 100 ns supported this hypothesis.

  17. World-Wide Indoor Exposure to Polyfluoroalkyl Phosphate Esters (PAPs) and other PFASs in Household Dust.

    PubMed

    Eriksson, Ulrika; Kärrman, Anna

    2015-12-15

    Human exposure to perfluorooctanoic acid (PFOA) and other per- and polyfluoroalkyl substances (PFASs) is ongoing and in some cases increasing, despite efforts made to reduce emissions. The role of precursor compounds such as polyfluorinated phosphate esters (PAPs) has received increasing attention, but there are knowledge gaps regarding their occurrence and impact on human exposure. In this study, mono-, di-, and triPAPs, perfluorinated alkyl acids (PFAAs), saturated, and unsaturated fluorotelomer carboxylic acids (FTCA/FTUCAs), perfluoroalkane sulfonamides, and sulfonamidethanols (FOSA/FOSEs), and one fluorotelomer sulfonic acid (FTSA)) were compared in household dust samples from Canada, the Faroe Islands, Sweden, Greece, Spain, Nepal, Japan, and Australia. Mono-, di-, and triPAPs, including several diPAP homologues, were frequently detected in dust from all countries, revealing an ubiquitous spread in private households from diverse geographic areas, with significant differences between countries. The median levels of monoPAPs and diPAPs ranged from 3.7 ng/g to 1 023 ng/g and 3.6 ng/g to 692 ng/g, respectively, with the lowest levels found in Nepal and the highest in Japan. The levels of PAPs exceeded those of the other PFAS classes. These findings reveal the importance of PAPs as a source of PFAS exposure worldwide.

  18. Treatment of out-of-hospital supraventricular tachycardia: adenosine vs verapamil.

    PubMed

    Brady, W J; DeBehnke, D J; Wickman, L L; Lindbeck, G

    1996-06-01

    To compare the use of adenosine and the use of verapamil as out-of-hospital therapy for supraventricular tachycardia (SVT). A period of prospective adenosine use (March 1993 to February 1994) was compared with a historical control period of verapamil use (March 1990 to February 1991) for SVT. Data were obtained for SVT patients treated in a metropolitan, fire-department-based paramedic system serving a population of approximately 1 million persons. Standard drug protocols were used and patient outcomes (i.e., conversion rates, complications, and recurrences) were monitored. During the adenosine treatment period, 105 patients had SVT; 87 (83%) received adenosine, of whom 60 (69%) converted to a sinus rhythm (SR). Vagal maneuvers (VM) resulted in restoration of SR in 8 patients (7.6%). Some patients received adenosine for non-SVT rhythms: 7 sinus tachycardia, 18 atrial fibrilation, 7 wide-complex tachycardia (WCT), and 2 ventricular tachycardia; no non-SVT rhythm converted to SR and none of these patients experienced an adverse effect. Twenty-five patients were hemodynamically unstable (systolic blood pressure < 90 mm Hg), with 20 receiving drug and 13 converting to SR; 8 patients required electrical cardioversion. Four patients experienced adverse effects related to adenosine (chest pain dyspnea, prolonged bradycardia, and ventricular tachycardia). In the verapamil period, 106 patients had SVT: 52 (49%) received verapamil (p < 0.001, compared with the adenosine period), of whom 43 (88%) converted to SR (p = 0.11). Two patients received verapamil for WCT; neither converted to SR and both experienced cardiovascular collapse. VM resulted in restoration of SR in 12 patients (11.0%) (p = 0.52). Sixteen patients were hemodynamically unstable, with 5 receiving drug (p = 0.005) and 5 converting to SR; 9 patients required electrical cardioversion (p = 0.48). Four patients experienced adverse effects related to verapamil (hypotension ventricular tachycardia, ventricular

  19. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine

    PubMed Central

    2011-01-01

    Background Prostatic acid phosphatase (PAP) and ecto-5'-nucleotidase (NT5E, CD73) produce extracellular adenosine from the nucleotide AMP in spinal nociceptive (pain-sensing) circuits; however, it is currently unknown if these are the main ectonucleotidases that generate adenosine or how rapidly they generate adenosine. Results We found that AMP hydrolysis, when measured histochemically, was nearly abolished in dorsal root ganglia (DRG) neurons and lamina II of spinal cord from Pap/Nt5e double knockout (dKO) mice. Likewise, the antinociceptive effects of AMP, when combined with nucleoside transport inhibitors (dipyridamole or 5-iodotubericidin), were reduced by 80-100% in dKO mice. In addition, we used fast scan cyclic voltammetry (FSCV) to measure adenosine production at subsecond resolution within lamina II. Adenosine was maximally produced within seconds from AMP in wild-type (WT) mice but production was reduced >50% in dKO mice, indicating PAP and NT5E rapidly generate adenosine in lamina II. Unexpectedly, we also detected spontaneous low frequency adenosine transients in lamina II with FSCV. Adenosine transients were of short duration (<2 s) and were reduced (>60%) in frequency in Pap-/-, Nt5e-/- and dKO mice, suggesting these ectonucleotidases rapidly hydrolyze endogenously released nucleotides to adenosine. Field potential recordings in lamina II and behavioral studies indicate that adenosine made by these enzymes acts through the adenosine A1 receptor to inhibit excitatory neurotransmission and nociception. Conclusions Collectively, our experiments indicate that PAP and NT5E are the main ectonucleotidases that generate adenosine in nociceptive circuits and indicate these enzymes transform pulsatile or sustained nucleotide release into an inhibitory adenosinergic signal. PMID:22011440

  20. The Relationship between Mono-abundance and Mono-age Stellar Populations in the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Minchev, I.; Steinmetz, M.; Chiappini, C.; Martig, M.; Anders, F.; Matijevic, G.; de Jong, R. S.

    2017-01-01

    Studying the Milky Way disk structure using stars in narrow bins of [Fe/H] and [α/Fe] has recently been proposed as a powerful method to understand the Galactic thick and thin disk formation. It has been assumed so far that these mono-abundance populations (MAPs) are also coeval, or mono-age, populations. Here we study this relationship for a Milky Way chemodynamical model and show that equivalence between MAPs and mono-age populations exists only for the high-[α/Fe] tail, where the chemical evolution curves of different Galactic radii are far apart. At lower [α/Fe]-values an MAP is composed of stars with a range in ages, even for small observational uncertainties and a small MAP bin size. Due to the disk inside-out formation, for these MAPs younger stars are typically located at larger radii, which results in negative radial age gradients that can be as large as 2 Gyr kpc-1. Positive radial age gradients can result for MAPs at the lowest [α/Fe] and highest [Fe/H] end. Such variations with age prevent the simple interpretation of observations for which accurate ages are not available. Studying the variation with radius of the stellar surface density and scale height in our model, we find good agreement to recent analyses of the APOGEE red-clump (RC) sample when 1-4 Gyr old stars dominate (as expected for the RC). Our results suggest that the APOGEE data are consistent with a Milky Way model for which mono-age populations flare for all ages. We propose observational tests for the validity of our predictions and argue that using accurate age measurements, such as from asteroseismology, is crucial for putting constraints on Galactic formation and evolution.

  1. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose

    PubMed Central

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  2. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.

    2012-01-01

    Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621

  4. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX.

    PubMed

    Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D

    2010-02-01

    Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.

  5. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  6. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance.

    PubMed

    Shen, Hai-Ying; Li, Tianfu; Boison, Detlev

    2010-03-01

    Sudden unexpected death in epilepsy (SUDEP) is a significant cause of mortality in people with epilepsy. Two postulated causes for SUDEP, cardiac and respiratory depression, can both be explained by overstimulation of adenosine receptors. We hypothesized that SUDEP is a consequence of a surge in adenosine as a result of prolonged seizures combined with deficient adenosine clearance; consequently, blockade of adenosine receptors should prevent SUDEP. Here we induced impaired adenosine clearance in adult mice by pharmacologic inhibition of the adenosine-removing enzymes, adenosine kinase and deaminase. Combination of impaired adenosine clearance with kainic acid-induced seizures triggered sudden death in all animals. Most importantly, the adenosine receptor antagonist caffeine, when given after seizure onset, increased survival from 23.75 +/- 1.35 min to 54.86 +/- 6.59 min (p < 0.01). Our data indicate that SUDEP is due to overactivation of adenosine receptors and that caffeine treatment after seizure onset might be beneficial.

  8. A2B Adenosine Receptor–Mediated Induction of IL-6 Promotes CKD

    PubMed Central

    Dai, Yingbo; Zhang, Weiru; Wen, Jiaming; Zhang, Yujin; Kellems, Rodney E.

    2011-01-01

    Chronic elevation of adenosine, which occurs in the setting of repeated or prolonged tissue injury, can exacerbate cellular dysfunction, suggesting that it may contribute to the pathogenesis of CKD. Here, mice with chronically elevated levels of adenosine, resulting from a deficiency in adenosine deaminase (ADA), developed renal dysfunction and fibrosis. Both the administration of polyethylene glycol–modified ADA to reduce adenosine levels and the inhibition of the A2B adenosine receptor (A2BR) attenuated renal fibrosis and dysfunction. Furthermore, activation of A2BR promoted renal fibrosis in both mice infused with angiotensin II (Ang II) and mice subjected to unilateral ureteral obstruction (UUO). These three mouse models shared a similar profile of profibrotic gene expression in kidney tissue, suggesting that they share similar signaling pathways that lead to renal fibrosis. Finally, both genetic and pharmacologic approaches showed that the inflammatory cytokine IL-6 mediates adenosine-induced renal fibrosis downstream of A2BR. Taken together, these data suggest that A2BR-mediated induction of IL-6 contributes to renal fibrogenesis and shows potential therapeutic targets for CKD. PMID:21511827

  9. Effect of phosphate activating group on oligonucleotide formation on montmorillonite: the regioselective formation of 3',5'-linked oligoadenylates

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Cole, T. D.; Ferris, J. P.

    1994-01-01

    The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.

  10. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  11. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  12. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.

  13. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  14. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    PubMed

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P < 0.0001). The change in vellus hair proportion (<40 μm) was significantly lower in the adenosine group than that in the placebo group (P = 0.0154). The change in hair density compared with baseline of the adenosine group was also significantly higher compared with that of the placebo group (P = 0.0470). No adverse effects due to treatment were noted during this study by dermatological evaluation. Adenosine is effective in increasing the proportion of thick hair in Caucasian men with AGA as well as in Japanese men and women. © 2015 Japanese Dermatological Association.

  15. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    NASA Astrophysics Data System (ADS)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  16. Selective Mono-reduction of Pyrrole-2,5 and 2,4-Dicarboxylates.

    PubMed

    Yasui, Eiko; Tsuda, Jyunpei; Ohnuki, Satoshi; Nagumo, Shinji

    2016-01-01

    Pyrrole-2,5-dicarboxylates were rapidly and selectively reduced to the corresponding mono-alcohol using 3 eq of diisobutylaluminum hydride at 0°C. Pyrrole-2,4-dicarboxylate showed the same reactivity; however, the selectivity decreased with pyrrole-3,4-dicarboxylate. When the nitrogen atom of the pyrrole-2,5-dicarboxylate is protected with a benzyl group, selective mono-reduction does not occur. Considering that furan-2,5-dicarboxylates did not give the corresponding mono-alcohol under the same conditions, the unprotected nitrogen atom of pyrrole apparently plays an important role in this selective mono-reduction.

  17. Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia

    PubMed Central

    Raju, Sammeta V.; Wang, Guoshun

    2012-01-01

    Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662

  18. Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity.

    PubMed

    Poppe, Daniel; Doerr, Jonas; Schneider, Marion; Wilkens, Ruven; Steinbeck, Julius A; Ladewig, Julia; Tam, Allison; Paschon, David E; Gregory, Philip D; Reik, Andreas; Müller, Christa E; Koch, Philipp; Brüstle, Oliver

    2018-06-01

    As a powerful regulator of cellular homeostasis and metabolism, adenosine is involved in diverse neurological processes including pain, cognition, and memory. Altered adenosine homeostasis has also been associated with several diseases such as depression, schizophrenia, or epilepsy. Based on its protective properties, adenosine has been considered as a potential therapeutic agent for various brain disorders. Since systemic application of adenosine is hampered by serious side effects such as vasodilatation and cardiac suppression, recent studies aim at improving local delivery by depots, pumps, or cell-based applications. Here, we report on the characterization of adenosine-releasing human embryonic stem cell-derived neuroepithelial stem cells (long-term self-renewing neuroepithelial stem [lt-NES] cells) generated by zinc finger nuclease (ZFN)-mediated knockout of the adenosine kinase (ADK) gene. ADK-deficient lt-NES cells and their differentiated neuronal and astroglial progeny exhibit substantially elevated release of adenosine compared to control cells. Importantly, extensive adenosine release could be triggered by excitation of differentiated neuronal cultures, suggesting a potential activity-dependent regulation of adenosine supply. Thus, ZFN-modified neural stem cells might serve as a useful vehicle for the activity-dependent local therapeutic delivery of adenosine into the central nervous system. Stem Cells Translational Medicine 2018;7:477-486. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Adenosine-dependent phrenic motor facilitation is inflammation resistant

    PubMed Central

    Agosto-Marlin, Ibis M.; Nichols, Nicole L.

    2016-01-01

    Phrenic motor facilitation (pMF), a form of respiratory plasticity, can be elicited by acute intermittent hypoxia (i.e., phrenic long-term facilitation, pLTF) or direct application of drugs to the cervical spinal cord. Moderate acute intermittent hypoxia (mAIH; 3 × 5-min episodes of 35–50 mmHg arterial Po2, 5-min normoxic intervals) induces pLTF by a serotonin-dependent mechanism; mAIH-induced pLTF is abolished by mild systemic inflammation induced by a low dose of lipopolysaccharide (LPS; 100 μg/kg ip). In contrast, severe acute intermittent hypoxia (sAIH; 3 × 5-min episodes of 25–30 mmHg arterial Po2, 5-min normoxic intervals) elicits pLTF by a distinct, adenosine-dependent mechanism. Since it is not known if systemic LPS blocks the mechanism giving rise to sAIH-induced pLTF, we tested the hypothesis that sAIH-induced pLTF and adenosine 2A (A2A) receptor-induced pMF are insensitive to mild systemic inflammation elicited by the same low dose of LPS. In agreement with our hypothesis, neither sAIH-induced pLTF nor cervical intrathecal A2A receptor agonist (CGS-21680; 200 μM, 10 μl × 3)-induced pMF were affected 24 h post-LPS. Pretreatment with intrathecal A2A receptor antagonist injections (MSX-3; 10 μM, 12 μl) blocked sAIH-induced pLTF 24 h post LPS, confirming that pLTF was adenosine dependent. Our results give insights concerning the differential impact of systemic inflammation and the functional significance of multiple cascades capable of giving rise to phrenic motor plasticity. The relative resistance of adenosine-dependent pMF to inflammation suggests that it provides a “backup” system in animals lacking serotonin-dependent pMF due to ongoing inflammation associated with systemic infections and/or neural injury. NEW & NOTEWORTHY This study gives novel insights concerning how a mild systemic inflammation impacts phrenic motor plasticity (pMF), particularly adenosine-dependent pMF. We suggest that since this adenosine-dependent pathway is

  20. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus1

    PubMed Central

    Frenguelli, Bruno G; Wigmore, Geoffrey; Llaudet, Enrique; Dale, Nicholas

    2007-01-01

    Abstract Adenosine is well known to be released during cerebral metabolic stress and is believed to be neuroprotective. ATP release under similar circumstances has been much less studied. We have now used biosensors to measure and compare in real time the release of ATP and adenosine during in vitro ischaemia in hippocampal slices. ATP release only occurred following the anoxic depolarisation, whereas adenosine release was apparent almost immediately after the onset of ischaemia. ATP release required extracellular Ca2+. By contrast adenosine release was enhanced by removal of extracellular Ca2+, whilst TTX had no effect on either ATP release or adenosine release. Blockade of ionotropic glutamate receptors substantially enhanced ATP release, but had only a modest effect on adenosine release. Carbenoxolone, an inhibitor of gap junction hemichannels, also greatly enhanced ischaemic ATP release, but had little effect on adenosine release. The ecto-ATPase inhibitor ARL 67156, whilst modestly enhancing the ATP signal detected during ischaemia, had no effect on adenosine release. Adenosine release during ischaemia was reduced by pre-treament with homosysteine thiolactone suggesting an intracellular origin. Adenosine transport inhibitors did not inhibit adenosine release, but instead they caused a twofold increase of release. Our data suggest that ATP and adenosine release during ischaemia are for the most part independent processes with distinct underlying mechanisms. These two purines will consequently confer temporally distinct influences on neuronal and glial function in the ischaemic brain. PMID:17459147

  1. Amyotrophic Lateral Sclerosis (ALS) and Adenosine Receptors.

    PubMed

    Sebastião, Ana M; Rei, Nádia; Ribeiro, Joaquim A

    2018-01-01

    In the present review we discuss the potential involvement of adenosinergic signaling, in particular the role of adenosine receptors, in amyotrophic lateral sclerosis (ALS). Though the literature on this topic is not abundant, the information so far available on adenosine receptors in animal models of ALS highlights the interest to continue to explore the role of these receptors in this neurodegenerative disease. Indeed, all motor neurons affected in ALS are responsive to adenosine receptor ligands but interestingly, there are alterations in pre-symptomatic or early symptomatic stages that mirror those in advanced disease stages. Information starts to emerge pointing toward a beneficial role of A 2A receptors (A 2A R), most probably at early disease states, and a detrimental role of caffeine, in clear contrast with what occurs in other neurodegenerative diseases. However, some evidence also exists on a beneficial action of A 2A R antagonists. It may happen that there are time windows where A 2A R prove beneficial and others where their blockade is required. Furthermore, the same changes may not occur simultaneously at the different synapses. In line with this, it is not fully understood if ALS is a dying back disease or if it propagates in a centrifugal way. It thus seems crucial to understand how motor neuron dysfunction occurs, how adenosine receptors are involved in those dysfunctions and whether the early changes in purinergic signaling are compensatory or triggers for the disease. Getting this information is crucial before starting the design of purinergic based strategies to halt or delay disease progression.

  2. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    PubMed Central

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  3. Lack of endogenous adenosine tonus on sympathetic neurotransmission in spontaneously hypertensive rat mesenteric artery.

    PubMed

    Sousa, Joana Beatriz; Vieira-Rocha, Maria Sofia; Sá, Carlos; Ferreirinha, Fátima; Correia-de-Sá, Paulo; Fresco, Paula; Diniz, Carmen

    2014-01-01

    Increased sympathetic activity has been implicated in hypertension. Adenosine has been shown to play a role in blood flow regulation. In the present study, the endogenous adenosine neuromodulatory role, in mesenteric arteries from normotensive and spontaneously hypertensive rats, was investigated. The role of endogenous adenosine in sympathetic neurotransmission was studied using electrically-evoked [3H]-noradrenaline release experiments. Purine content was determined by HPLC with fluorescence detection. Localization of adenosine A1 or A2A receptors in adventitia of mesenteric arteries was investigated by Laser Scanning Confocal Microscopy. Results indicate a higher electrically-evoked noradrenaline release from hypertensive mesenteric arteries. The tonic inhibitory modulation of noradrenaline release is mediated by adenosine A1 receptors and is lacking in arteries from hypertensive animals, despite their purine levels being higher comparatively to those determined in normotensive ones. Tonic facilitatory adenosine A2A receptor-mediated effects were absent in arteries from both strains. Immunohistochemistry revealed an adenosine A1 receptors redistribution from sympathetic fibers to Schwann cells, in adventitia of hypertensive mesenteric arteries which can explain, at least in part, the absence of effects observed for these receptors. Data highlight the role of purines in hypertension revealing that an increase in sympathetic activity in hypertensive arteries is occurring due to a higher noradrenaline/ATP release from sympathetic nerves and the loss of endogenous adenosine inhibitory tonus. The observed nerve-to-glial redistribution of inhibitory adenosine A1 receptors in hypertensive arteries may explain the latter effect.

  4. The rate of the AMP/adenosine substrate cycle in concanavalin-A-stimulated rat lymphocytes.

    PubMed Central

    Szondy, Z; Newsholme, E A

    1989-01-01

    The effect of adenosine on the metabolism of prelabelled adenine nucleotides was investigated in concanavalin-A-stimulated rat lymphocytes. Adenosine in the presence of the adenosine deaminase inhibitor, deoxycoformycin, caused a 2-fold increase in the ATP concentration. This effect was, in part, countereacted by an increased rate of adenine nucleotide catabolism, which could be explained by a stimulation of AMP deaminase (EC 3.5.4.6). At the same time a continuous rate of labelled adenosine production was found, which was not affected by the increased ATP concentration and which could only be detected by the trapping effect of a high concentration of added unlabelled adenosine. It is concluded that the rate of the substrate cycle between AMP and adenosine is low (1.9 +/- 0.2 nmol/h per 10(7) cells) in comparison to the rate of AMP deamination. PMID:2552990

  5. Role of adenosine as adjunctive therapy in acute myocardial infarction.

    PubMed

    Forman, Mervyn B; Stone, Gregg W; Jackson, Edwin K

    2006-01-01

    Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy.

  6. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

    PubMed Central

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  7. Smoke Extract Impairs Adenosine Wound Healing. Implications of Smoke-Generated Reactive Oxygen Species

    PubMed Central

    Zimmerman, Matthew C.; Zhang, Hui; Castellanos, Glenda; O’Malley, Jennifer K.; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H.; Wyatt, Todd A.

    2013-01-01

    Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5′-(N-cyclopropyl)–carboxamido–adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract–mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate–dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species–dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of

  8. Adenosine triphosphate-guided pulmonary vein isolation for atrial fibrillation: the UNmasking Dormant Electrical Reconduction by Adenosine TriPhosphate (UNDER-ATP) trial.

    PubMed

    Kobori, Atsushi; Shizuta, Satoshi; Inoue, Koichi; Kaitani, Kazuaki; Morimoto, Takeshi; Nakazawa, Yuko; Ozawa, Tomoya; Kurotobi, Toshiya; Morishima, Itsuro; Miura, Fumiharu; Watanabe, Tetsuya; Masuda, Masaharu; Naito, Masaki; Fujimoto, Hajime; Nishida, Taku; Furukawa, Yoshio; Shirayama, Takeshi; Tanaka, Mariko; Okajima, Katsunori; Yao, Takenori; Egami, Yasuyuki; Satomi, Kazuhiro; Noda, Takashi; Miyamoto, Koji; Haruna, Tetsuya; Kawaji, Tetsuma; Yoshizawa, Takashi; Toyota, Toshiaki; Yahata, Mitsuhiko; Nakai, Kentaro; Sugiyama, Hiroaki; Higashi, Yukei; Ito, Makoto; Horie, Minoru; Kusano, Kengo F; Shimizu, Wataru; Kamakura, Shiro; Kimura, Takeshi

    2015-12-07

    Most of recurrent atrial tachyarrhythmias after pulmonary vein isolation (PVI) for atrial fibrillation (AF) are due to reconnection of PVs. The aim of the present study was to evaluate whether elimination of adenosine triphosphate (ATP)-induced dormant PV conduction by additional energy applications during the first ablation procedure could reduce the incidence of recurrent atrial tachyarrhythmias. We randomly assigned 2113 patients with paroxysmal, persistent, or long-lasting AF to either ATP-guided PVI (1112 patients) or conventional PVI (1001 patients). The primary endpoint was recurrent atrial tachyarrhythmias lasting for >30 s or those requiring repeat ablation, hospital admission, or usage of Vaughan Williams class I or III antiarrhythmic drugs at 1 year with the blanking period of 90 days post ablation. Among patients assigned to ATP-guided PVI, 0.4 mg/kg body weight of ATP provoked dormant PV conduction in 307 patients (27.6%). Additional radiofrequency energy applications successfully eliminated dormant conduction in 302 patients (98.4%). At 1 year, 68.7% of patients in the ATP-guided PVI group and 67.1% of patients in the conventional PVI group were free from the primary endpoint, with no significant difference (adjusted hazard ratio [HR] 0.89; 95% confidence interval [CI] 0.74-1.09; P = 0.25). The results were consistent across all the prespecified subgroups. Also, there was no significant difference in the 1-year event-free rates from repeat ablation for any atrial tachyarrhythmia between the groups (adjusted HR 0.83; 95% CI 0.65-1.08; P = 0.16). In the catheter ablation for AF, we found no significant reduction in the 1-year incidence of recurrent atrial tachyarrhythmias by ATP-guided PVI compared with conventional PVI. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  9. [Activation of the alternative oxidase of Yarrowia lipolytica by adenosine 5'-monophosphate].

    PubMed

    Medentsev, A G; Arinbasarova, A Iu; Smirnova, N M; Akimenko, V K

    2004-01-01

    The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and the submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of the intact mitochondria. The incubation of the mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated by AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order. AMP = GMP > GDP > GTP > XMP > IMP. The apparent reaction rate constant Km for AMP upon the reactivation of the alternative oxidase of mitochondria treated with Triton X-100 or incubated at 25 degrees C was 12.5 and 20 microM, respectively. The Km for AMP upon the reactivation of the alternative oxidase of submitochondrial particles was 15 microM. During the incubation of yeast cells under conditions promoting the development of alternative oxidase, the content of adenine nucleotides (AMP, ADP, and ATP) in the cells and their respiration tended to decrease. The subsequent addition of cyanide to the cells activated their respiration, diminished the intracellular content of ATP three times, and augmented the content of AMP five times. These data suggest that the stimulation of cell respiration by cyanide may be due to the activation of alternative oxidase by AMP.

  10. Effects of adenosine on pressure-flow relationships in an in vitro model of compartment syndrome.

    PubMed

    Shrier, I; Baratz, A; Magder, S

    1997-03-01

    Blood flow through skeletal muscle is best modeled with a vascular waterfall at the arteriolar level. Under these conditions, flow is determined by the difference between perfusion pressure (Pper) and the waterfall pressure (Pcrit), divided by the arterial resistance (Ra). By pump perfusing an isolated canine gastrocnemius muscle (n = 6) after it was placed within an airtight box, with and without adenosine infusion, we observed an interaction between the pressure surrounding a muscle (as occurs in compartment syndrome) and baseline vascular tone. We titrated adenosine concentration to double baseline flow. We measured Pcrit and Ra at box pressures (Pbox), which resulted in 100 (Pbox = 0), 90, 75, and 50% flow without adenosine; and 200, 180, 150, 100, and 50% flow with adenosine. Without adenosine, each 10% decline in flow was associated with a 5.7 mmHg increase in Pcrit (P < 0.01). With adenosine, the same decrease in flow was associated with a 2.6-mmHg increase in Pcrit (P < 0.01). Values of Pcrit at 50% of flow were almost identical. Each 10% decrease in flow was also associated with 2.2% increase in Ra with or without adenosine (P < 0.001). Ra decreased with adenosine infusion (P < 0.05), and there was no interaction between adenosine and flow (P > 0.9). We conclude that increases in pressure surrounding a muscle limit flow primarily through changes in Pcrit with and without adenosine-induced vasodilation. The interaction between Pbox and adenosine with respect to Pcrit but not Ra suggests that Pbox affects the tone of the vessels responsible for Pcrit but not Ra.

  11. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronstein, B.N.; Eberle, M.A.; Levin, R.I.

    1991-03-15

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from ({sup 14}C)adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up ({sup 14}C)adenine and released {sup 14}C-labeled purine (a measure of cell injury) in a mannermore » identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs.« less

  12. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.

    PubMed

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Tae Han; Kim, Hyung-Mo; Lee, Sang Hun; Lee, Yoon-Sik; Jeong, Dae Hong; Jun, Bong-Hyun

    2017-06-23

    In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 10 10 . The detection limit of liposome was calculated to be 1.3 × 10 -17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.

  13. Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors

    PubMed Central

    Ross, Fiona M; Brodie, Martin J; Stone, Trevor W

    1998-01-01

    When perfused with a medium containing no added magnesium and 4-aminopyridine (4AP) (50 μM) hippocampal slices generated epileptiform bursts of an interictal nature. We have shown in a previous study that adenosine 5′-triphosphate (ATP) depressed epileptiform activity and that this effect was blocked by the adenosine A1 receptor antagonist cyclopentyltheophylline but was not affected by adenosine deaminase. This implied that ATP might act indirectly at P1 receptors or at a xanthine-sensitive P2 receptor. The aim of the present study was to investigate further the action of ATP on epileptiform activity.ATP can be metabolized by ecto-nucleotidases to adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP) and adenosine, respectively. Each of these metabolites can activate receptors in its own right: P2 receptors for ADP and P1 receptors for AMP and adenosine.We now show that both AMP and ATP (50 μM) significantly decrease epileptiform discharge rate in a rapid and reversible manner. 5′Adenylic acid deaminase (AMP deaminase, AMPase) (0.2 u ml−1), when perfused alone did not significantly alter the discharge rate over the 10 min superfusion period used for drug application. When perfused concurrently with AMP (50 μM), AMP deaminase prevented the depressant effect of AMP on discharge rate.AMP deaminase, at a concentration of 0.2 u ml−1 which annulled the effect of AMP (50 μM), prevented the inhibitory activity of ATP (50 μM). A higher concentration of ATP (200 μM) depressed the frequency of spontaneous bursts to approximately 30% control and this response was also prevented by AMP deaminase.Superfusion of the slices with 5′-nucleotidase also prevented the inhibitory activity of ATP on epileptiform discharges.The results suggest that AMP mediates the inhibitory effects of ATP on epileptiform activity, a conclusion which can explain the earlier finding that cyclopentyltheophylline but not adenosine deaminase inhibited the

  14. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial.

    PubMed

    Mahaffey, K W; Puma, J A; Barbagelata, N A; DiCarli, M F; Leesar, M A; Browne, K F; Eisenberg, P R; Bolli, R; Casas, A C; Molina-Viamonte, V; Orlandi, C; Blevins, R; Gibbons, R J; Califf, R M; Granger, C B

    1999-11-15

    The Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial was designed to test the hypothesis that adenosine as an adjunct to thrombolysis would reduce myocardial infarct size. Reperfusion therapy for acute myocardial infarction (MI) has been shown to reduce mortality, but reperfusion itself also may have deleterious effects. The AMISTAD trial was a prospective, open-label trial of thrombolysis with randomization to adenosine or placebo in 236 patients within 6 h of infarction onset. The primary end point was infarct size as determined by Tc-99 m sestamibi single-photon emission computed tomography (SPECT) imaging 6+/-1 days after enrollment based on multivariable regression modeling to adjust for covariates. Secondary end points were myocardial salvage index and a composite of in-hospital clinical outcomes (death, reinfarction, shock, congestive heart failure or stroke). In all, 236 patients were enrolled. Final infarct size was assessed in 197 (83%) patients. There was a 33% relative reduction in infarct size (p = 0.03) with adenosine. There was a 67% relative reduction in infarct size in patients with anterior infarction (15% in the adenosine group vs. 45.5% in the placebo group) but no reduction in patients with infarcts located elsewhere (11.5% for both groups). Patients randomized to adenosine tended to reach the composite clinical end point more often than those assigned to placebo (22% vs. 16%; odds ratio, 1.43; 95% confidence interval, 0.71 to 2.89). Many agents thought to attenuate reperfusion injury have been unsuccessful in clinical investigation. In this study, adenosine resulted in a significant reduction in infarct size. These data support the need for a large clinical outcome trial.

  15. Age-dependent changes of presynaptic neuromodulation via A1-adenosine receptors in rat hippocampal slices.

    PubMed

    Sperlágh, B; Zsilla, G; Baranyi, M; Kékes-Szabó, A; Vizi, E S

    1997-10-01

    The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.

  16. Effects of different carboxylic ester spacers on chemical stability, release characteristics, and anticancer activity of mono-PEGylated curcumin conjugates.

    PubMed

    Wichitnithad, Wisut; Nimmannit, Ubonthip; Callery, Patrick S; Rojsitthisak, Pornchai

    2011-12-01

    We investigated the effects of different carboxylic ester spacers of mono-PEGylated curcumin conjugates on chemical stability, release characteristics, and anticancer activity. Three novel conjugates were synthesized with succinic acid, glutaric acid, and methylcarboxylic acid as the respective spacers between curcumin and monomethoxy polyethylene glycol of molecular weight 2000 (mPEG(2000) ): mPEG(2000) -succinyl-curcumin (PSC), mPEG(2000) -glutaryl-curcumin (PGC), and mPEG(2000) -methylcarboxyl-curcumin (PMC), respectively. Hydrolysis of all conjugates in buffer and human plasma followed pseudo first-order kinetics. In phosphate buffer, the overall degradation rate constant and half-life values indicated an order of stability of PGC > PSC > PMC > curcumin. In human plasma, more than 90% of curcumin was released from the esters after incubation for 0.25, 1.5, and 2 h, respectively. All conjugates exhibited cytotoxicity against four human cancer cell lines: Caco-2 (colon), KB (oral cavity), MCF7 (breast), and NCI-H187 (lung) with half maximal inhibitory concentration (IC(50) ) values in the range of 1-6 µM, similar to that observed for curcumin itself. Our results suggest that mono-PEGylation of curcumin produces prodrugs that are stable in buffer at physiological pH, release curcumin readily in human plasma, and show anticancer activity. Copyright © 2011 Wiley-Liss, Inc.

  17. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    PubMed

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  18. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    PubMed Central

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  19. 21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.824 Sodium mono- and dimethyl naphthalene sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in...

  20. Genetics Home Reference: adenosine deaminase deficiency

    MedlinePlus

    ... to eliminate a molecule called deoxyadenosine, which is generated when DNA is broken down. Adenosine deaminase converts ... a substitute for professional medical care or advice. Users with questions about a personal health condition should ...

  1. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex

    PubMed Central

    Goldfarb, P. S. G.; Rodnight, R.

    1970-01-01

    1. The intrinsic Na+, K+, Mg2+ and Ca2+ contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na+ from 90±20 to 24±12, the bound K+ from 27±3 to 7±2, the bound Mg2+ from 20±2 to 3±1 and the bound calcium from 8±1 to <1nmol/mg of protein. 3. The activities of the Na++K++Mg2+-stimulated adenosine triphosphatase and the Na+-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5μm (ATP/protein ratio 12.5pmol/μg). 4. The Na+-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5μm-magnesium chloride and 2μm-potassium chloride. Addition of 2.5μm-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na+-dependent ATP hydrolysis was partly restored with 2.5μm-magnesium chloride; addition of K+ in the range 2–10μm-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0°C with 0.5nmol of K+/mg of protein so that the final added K+ in the reaction mixture was 0.1μm restored the Na+-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [42K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K+/mg of protein was linear over a period of 20min and was inhibited by Na+. Half-maximal inhibition of 42K+-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na+-dependent hydrolysis of ATP observed

  2. Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine.

    PubMed

    Yang, Chao; Tang, Yingxia; Xu, Hua; Yan, Ning; Li, Naiyu; Zhang, Yongming; Rittmann, Bruce E

    2018-05-21

    Pyridine and its heterocyclic derivatives are widely encountered in industrial wastewaters, and they are relatively recalcitrant to biodegradation. Pyridine biodegradation is initiated by two mono-oxygenation reactions that compete for intracellular electron donor (2H). In our experiments, UV photolysis of pyridine generated succinate, whose oxidation augmented the intracellular electron donor and accelerated pyridine biodegradation and mineralization. The first mono-oxygenation reaction always was faster than the second one, because electrons provided by intracellular electron donors were preferentially utilized by the first mono-oxygenase; this was true even when the concentration of 2HP was greater than the concentration of pyridine. In addition, the first mono-oxygenation had faster kinetics because it had higher affinity for its substrate (pyridine), along with less substrate self-inhibition.

  3. Adenosine A2A receptor agonists with potent antiplatelet activity.

    PubMed

    Fuentes, Eduardo; Fuentes, Manuel; Caballero, Julio; Palomo, Iván; Hinz, Sonja; El-Tayeb, Ali; Müller, Christa E

    2018-05-01

    Selected adenosine A 2A receptor agonists (PSB-15826, PSB-12404, and PSB-16301) have been evaluated as new antiplatelet agents. In addition, radioligand-binding studies and receptor-docking experiments were performed in order to explain their differential biological effects on a molecular level. Among the tested adenosine derivatives, PSB-15826 was the most potent compound to inhibit platelet aggregation (EC 50 0.32 ± 0.05 µmol/L) and platelet P-selectin cell-surface localization (EC 50 0.062 ± 0.2 µmol/L), and to increase intraplatelets cAMP levels (EC 50 0.24 ± 0.01 µmol/L). The compound was more active than CGS21680 (EC 50 0.97±0.07 µmol/L) and equipotent to NECA (EC 50 0.31 ± 0.05 µmol/L) in platelet aggregation induced by ADP. In contrast to the results from cAMP assays, K i values determined in radioligand-binding studies were not predictive of the A 2A agonists' antiplatelet activity. Docking studies revealed the key molecular determinants of this new family of adenosine A 2A receptor agonists: differences in activities are related to π-stacking interactions between the ligands and the residue His264 in the extracellular loop of the adenosine A 2A receptor which may result in increased residence times. In conclusion, these results provide an improved understanding of the requirements of antiplatelet adenosine A 2A receptor agonists.

  4. DNA adsorption characteristics of hollow spherule allophane nano-particles.

    PubMed

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju; Okamoto, Masami; Hayashi, Hidetomo

    2013-12-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5'-monophosphate (5'-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5'-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al-OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. © 2013.

  5. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  6. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  7. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  8. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  9. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following specifications...

  10. Polymorphisms in adenosine receptor genes are associated with infarct size in patients with ischemic cardiomyopathy.

    PubMed

    Tang, Z; Diamond, M A; Chen, J-M; Holly, T A; Bonow, R O; Dasgupta, A; Hyslop, T; Purzycki, A; Wagner, J; McNamara, D M; Kukulski, T; Wos, S; Velazquez, E J; Ardlie, K; Feldman, A M

    2007-10-01

    The goal of this experiment was to identify the presence of genetic variants in the adenosine receptor genes and assess their relationship to infarct size in a population of patients with ischemic cardiomyopathy. Adenosine receptors play an important role in protecting the heart during ischemia and in mediating the effects of ischemic preconditioning. We sequenced DNA samples from 273 individuals with ischemic cardiomyopathy and from 203 normal controls to identify the presence of genetic variants in the adenosine receptor genes. Subsequently, we analyzed the relationship between the identified genetic variants and infarct size, left ventricular size, and left ventricular function. Three variants in the 3'-untranslated region of the A(1)-adenosine gene (nt 1689 C/A, nt 2206 Tdel, nt 2683del36) and an informative polymorphism in the coding region of the A3-adenosine gene (nt 1509 A/C I248L) were associated with changes in infarct size. These results suggest that genetic variants in the adenosine receptor genes may predict the heart's response to ischemia or injury and might also influence an individual's response to adenosine therapy.

  11. INFLUENCE OF TOTAL BODY X-IRRADIATION ON THE LEVELS OF CREATINE PHOSPHATE, INORGANIC PHOSPHORUS AND ATP IN MUSCLE AND ON THE LEVELS OF CREATINE, CREATININE, N'-METHYL-NICOTINAMIDE AND NITROGEN IN URINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, U.S.; Gurnani, S.U.; Sahasrabudhe, M.B.

    1957-09-01

    The influence of total-body irradiation on the levels of creatine phosphate (CP), adenosine triphosphate (ATP) and inorganic phosphorus (IP) in muscle has been investigated in rats. CP and ATP levels decrease by about 33% while those of 1P increase 4 times in irradiated rats. Studies on the influence of irradiation on the excretion of creatine, creatinine, and N'-methyl- nicotinamide in urine show that the excretion of creatine and N'-methyl- nlcotinamide is increased two-fold while that of creatinine is increased by 160%. It is suggested that the low levels of creatine phosphate are probably due to an impairment in the phosphorylationmore » of creatine or due to an adaptive breakdown of creatine phosphate leading to increased excretion of creatine and creatinine. (auth)« less

  12. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent

    PubMed Central

    Song, Anren; Zhang, Yujin; Han, Leng; Yegutkin, Gennady G.; Liu, Hong; Sun, Kaiqi; D'Alessandro, Angelo; Li, Jessica; Karmouty-Quintana, Harry; Iriyama, Takayuki; Weng, Tingting; Zhao, Shushan; Wang, Wei; Wu, Hongyu; Nemkov, Travis; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Hansen, Kirk C.; Zhang, Hong; Bogdanov, Mikhail; Dowhan, William; Jin, Jianping; Kellems, Rodney E.; Eltzschig, Holger K.; Blackburn, Michael; Roach, Robert C.; Xia, Yang

    2017-01-01

    Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation. PMID:28169986

  13. Does adenosine triphosphate released into voided urodynamic fluid contribute to urgency signaling in women with bladder dysfunction?

    PubMed

    Cheng, Ying; Mansfield, Kylie J; Allen, Wendy; Walsh, Colin A; Burcher, Elizabeth; Moore, Kate H

    2010-03-01

    Adenosine triphosphate released from urothelium during stretch stimulates afferent nerves and conveys information on bladder fullness. We measured adenosine triphosphate released during cystometric bladder filling in women with idiopathic detrusor overactivity and stress incontinence (controls), and assessed whether the level of released adenosine triphosphate is related to cystometric parameters. Routine cystometry was done in 51 controls and 48 women with detrusor overactivity who were 28 to 87 years old. Voided urodynamic fluid was collected and stored at -30 C. Adenosine triphosphate was measured by a bioluminescence assay. Adenosine triphosphate levels were similar in voided urodynamic fluid of controls and patients with detrusor overactivity (p = 0.79). A significant inverse correlation was seen between adenosine triphosphate and maximal cystometric capacity in controls (p = 0.013), and between voided volume and adenosine triphosphate in controls (p = 0.015) and detrusor overactivity cases (p = 0.019). A significant correlation between first desire to void and adenosine triphosphate was also noted in detrusor overactivity cases (p = 0.033) but not in controls (p = 0.58). No correlation was seen between adenosine triphosphate and detrusor pressure during filling or voiding. Adenosine triphosphate measurement in voided urodynamic fluid is a novel approach to understanding signals that may contribute to the urgency sensation (a sudden compelling desire to pass urine). The inverse correlation between adenosine triphosphate in voided urodynamic fluid and first desire to void suggests that adenosine triphosphate has a role in modulating the early filling sensation in patients with detrusor overactivity. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  15. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  16. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  17. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  18. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  19. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes.

    PubMed

    Wang, Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-11-14

    TGF-beta activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-beta enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-beta type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.

  20. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study

    PubMed Central

    Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B

    2012-01-01

    BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324

  1. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  2. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy.

    PubMed

    Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong

    2018-05-01

    Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.

  3. Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine.

    PubMed

    Malave, Lauren B; Broderick, Patricia A

    2014-06-01

    Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE ® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo , in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction.

  4. Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine

    PubMed Central

    Malave, Lauren B.

    2014-01-01

    Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction. PMID:25054079

  5. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine.

    PubMed

    Xu, Lei; Shen, Xin; Li, Bingzhi; Zhu, Chunhong; Zhou, Xuemin

    2017-08-08

    Adenosine is an endogenous nucleotide pivotally involved in nucleic acid and energy metabolism. Its excessive existence may indicate tumorigenesis, typically lung cancer. Encouraged by its significance as the clinical biomarker, sensitive assay methods towards adenosine have been popularized, with high cost and tedious procedures as the inevitable defects. Herein, we report a label-free aptamer-based exonuclease III (Exo III) amplification colorimetric aptasensor for the highly sensitive and cost-effective detection of adenosine. The strategy employed two unlabeled hairpin DNA oligonucleotides (HP1 and HP2), where HP1 contained the aptamer towards adenosine and HP2 embedded the guanine-rich sequence (GRS). In the presence of adenosine, hairpin HP1 could form specific binding with adenosine and trigger the unfolding of HP1's hairpin structure. The resulting adenosine-HP1 complex could hybridize with HP2, generating the Exo III recognition site. After Exo III-assisted degradation, the GRS was released from HP2, and the adenosine-HP1 was released back to the solution to combine another HP2, inducing the cycling amplification. After multiple circulations, the released ample GRSs were induced to form G-quadruplex, further catalyzing the oxidation of TMB, yielding a color change which was finally mirrored in the absorbance change. On the contrary, the absence of adenosine failed to unfold HP1, remaining color unchanged eventually. Thanks to the amplification strategy, the limit of detection was lowered to 17 nM with a broad linear range from 50 nM to 6 μM. The proposed method was successfully applied to the detection of adenosine in biological samples and satisfying recoveries were acquired. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.

    PubMed

    el Kouni, Mahmoud H

    2007-01-01

    Toxoplasma gondii is an intracellular parasitic protozoan that infects approximately a billion people worldwide. Infection with T. gondii represents a major health problem for immunocompromised individuals, such as AIDS patients, organ transplant recipients, and the unborn children of infected mothers. Currently available drugs usually do not eradicate infection and as many as 50% of the patients do not respond to this therapy. Furthermore, they are ineffective against T. gondii tissue cysts. In addition, prolonged exposure to these drugs induces serious host toxicity forcing the discontinuation of the therapy. Finally, there is no effective vaccine currently available for the treatment of toxoplasmosis. Therefore, it is necessary to develop new and effective drugs for the treatment and management of toxoplasmosis. The rational design of a drug depends on the exploitation of fundamental biochemical or physiological differences between pathogens and their host. Some of the most striking differences between T. gondii and their mammalian host are found in purine metabolism. T. gondii, like most parasites studied, lack the ability to synthesize purines do novo and depend on the salvage of purines from their host to satisfy their requirements of purines. In this respect, the salvage of adenosine is the major source of purines in T. gondii. Therefore, interference with adenosine uptake and metabolism in T. gondii can be selectively detrimental to the parasite. The host cells, on the other hand, can still obtain their purine requirements by their de novo pathways. This review will focus on the broad aspects of the adenosine transport and the enzyme adenosine kinase (EC 2.7.1.20) which are the two primary routes for adenosine utilization in T. gondii, in an attempt to illustrate their potentials as targets for chemotherapy against this parasite.

  7. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    PubMed

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  8. An enzyme-linked immuno-mass spectrometric assay with the substrate adenosine monophosphate.

    PubMed

    Florentinus-Mefailoski, Angelique; Soosaipillai, Antonius; Dufresne, Jaimie; Diamandis, Eleftherios P; Marshall, John G

    2015-02-01

    An enzyme-linked immuno-mass spectrometric assay (ELIMSA) with the specific detection probe streptavidin conjugated to alkaline phosphatase catalyzed the production of adenosine from the substrate adenosine monophosphate (AMP) for sensitive quantification of prostate-specific antigen (PSA) by mass spectrometry. Adenosine ionized efficiently and was measured to the femtomole range by dilution and direct analysis with micro-liquid chromatography, electrospray ionization, and mass spectrometry (LC-ESI-MS). The LC-ESI-MS assay for adenosine production was shown to be linear and accurate using internal (13)C(15)N adenosine isotope dilution, internal (13)C(15)N adenosine one-point calibration, and external adenosine standard curves with close agreement. The detection limits of LC-ESI-MS for alkaline phosphatase-streptavidin (AP-SA, ∼190,000 Da) was tested by injecting 0.1 μl of a 1 pg/ml solution, i.e., 100 attograms or 526 yoctomole (5.26E-22) of the alkaline-phosphatase labeled probe on column (about 315 AP-SA molecules). The ELIMSA for PSA was linear and showed strong signals across the picogram per milliliter range and could robustly detect PSA from all of the prostatectomy patients and all of the female plasma samples that ranged as low as 70 pg/ml with strong signals well separated from the background and well within the limit of quantification of the AP-SA probe. The results of the ELIMSA assay for PSA are normal and homogenous when independently replicated with a fresh standard over multiple days, and intra and inter diem assay variation was less than 10 % of the mean. In a blind comparison, ELIMSA showed excellent agreement with, but was more sensitive than, the present gold standard commercial fluorescent ELISA, or ECL-based detection, of PSA from normal and prostatectomy samples, respectively.

  9. An incubation medium for the elevation of adenosine triphosphate and 2,3-diphosphoglycerate in fresh and long-preserved human erythrocytes.

    PubMed

    Rubinstein, D; Warrendorf, E

    1975-06-01

    The levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate in freshly drawn human erythrocytes can be tripled by a 2 h incubation at 37 degrees C in a medium containing 21 mM glucose, 1.8 mM adenine, 5 mM pyruvate, 10 mM inosine, and 96 mM phosphate. Similar incubation conditions will restore the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood levels preserved for 12 and 15 weeks, respectively, to those of fresh cells. Omission of pyruvate from the incubation medium further increases the level of ATP slightly, but there is little elevation of 2,3-diphosphoglycerate. Under these conditions labelled pyruvate and lactate production from [14-C]glucose or [14-C]inosine is not diminished, but labelled fructose 1,6-diphosphate, rather than 2,3-diphosphoglycerate, accumulates. In addition, omission of pyruvate from the incubation medium, with a concomitant decrease in accumulation of 2,3-diphosphoglycerate, diminishes the concentration of inorganic phosphate required for optimal ATP elevation. A 5 h incubation in the glucose-adenine-pyruvate-inosine-phosphate medium elevates the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood preserved in the cold for 15 weeks to twice that of fresh cells, indicating that the cells retain their metabolic potential even after prolonged storage at 2 degrees C. The medium may provide a method of rejuvenating 10-12 week cold-preserved erythrocytes for transfusion purposes, by a 1 h incubation at 37 degrees C.

  10. Predictors and Diagnostic Significance of the Adenosine Related Side Effects on Myocardial Perfusion SPECT/CT Imaging

    PubMed Central

    Yıldırım Poyraz, Nilüfer; Özdemir, Elif; Poyraz, Barış Mustafa; Kandemir, Zuhal; Keskin, Mutlay; Türkölmez, Şeyda

    2014-01-01

    Objective: The aim of this study was to investigate the relationship between patient characteristics and adenosine-related side-effects during stress myocard perfusion imaging (MPI). The effect of presence of adenosine-related side-effects on the diagnostic value of MPI with integrated SPECT/CT system for coronary artery disease (CAD), was also assessed in this study. Methods: Total of 281 patients (109 M, 172 F; mean age:62.6±10) who underwent standard adenosine stress protocol for MPI, were included in this study. All symptoms during adenosine infusion were scored according to the severity and duration. For the estimation of diagnostic value of adenosine MPI with integrated SPECT/CT system, coronary angiography (CAG) or clinical follow-up were used as gold standard. Results: Total of 173 patients (61.6%) experienced adenosine-related side-effects (group 1); flushing, dyspnea, and chest pain were the most common. Other 108 patients completed pharmacologic stress (PS) test without any side-effects (group 2). Test tolerability were similar in the patients with cardiovascular or airway disease to others, however dyspnea were observed significantly more common in patients with mild airway disease. Body mass index (BMI) ≥30 kg/m2 and age ≤45 years were independent predictors of side-effects. The diagnostic value of MPI was similar in both groups. Sensitivity of adenosine MPI SPECT/CT was calculated to be 86%, specificity was 94% and diagnostic accuracy was 92% for diagnosis of CAD. Conclusion: Adenosine MPI is a feasible and well tolerated method in patients who are not suitable for exercise stress test as well as patients with cardiopulmonary disease. However age ≤45 years and BMI ≥30 kg/m2 are the positive predictors of adenosine-related side-effects, the diagnostic value of adenosine MPI SPECT/CT is not affected by the presence of adenosine related side-effects. PMID:25541932

  11. Role of nitric oxide in adenosine-induced vasodilation in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1998-01-01

    Vasodilation is one of the most prominent effects of adenosine and one of the first to be recognized, but its mechanism of action is not completely understood. In particular, there is conflicting information about the potential contribution of endothelial factors. The purpose of this study was to explore the role of nitric oxide in the vasodilatory effect of adenosine. Forearm blood flow responses to intrabrachial adenosine infusion (125 microg/min) were assessed with venous occlusion plethysmography during intrabrachial infusion of saline or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) (12.5 mg/min). Intrabrachial infusions of acetylcholine (50 microg/min) and nitroprusside (3 microg/min) were used as a positive and negative control, respectively. These doses were chosen to produce comparable levels of vasodilation. In a separate study, a second saline infusion was administered instead of L-NMMA to rule out time-related effects. As expected, pretreatment with L-NMMA reduced acetylcholine-induced vasodilation; 50 microg/min acetylcholine increased forearm blood flow by 150+/-43% and 51+/-12% during saline and L-NMMA infusion, respectively (P<.01, n=6). In contrast, L-NMMA did not affect the increase in forearm blood flow produced by 3 microg/min nitroprusside (165+/-30% and 248+/-41% during saline and L-NMMA, respectively) or adenosine (173+/-48% and 270+/-75% during saline and L-NMMA, respectively). On the basis of our observations, we conclude that adenosine-induced vasodilation is not mediated by nitric oxide in the human forearm.

  12. Dual activity of certain HIT-proteins: A. thaliana Hint4 and C. elegans DcpS act on adenosine 5'-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP).

    PubMed

    Guranowski, Andrzej; Wojdyła, Anna Maria; Zimny, Jarosław; Wypijewska, Anna; Kowalska, Joanna; Jemielity, Jacek; Davis, Richard E; Bieganowski, Paweł

    2010-01-04

    Histidine triad (HIT)-family proteins interact with different mono- and dinucleotides and catalyze their hydrolysis. During a study of the substrate specificity of seven HIT-family proteins, we have shown that each can act as a sulfohydrolase, catalyzing the liberation of AMP from adenosine 5'-phosphosulfate (APS or SO(4)-pA). However, in the presence of orthophosphate, Arabidopsis thaliana Hint4 and Caenorhabditis elegans DcpS also behaved as APS phosphorylases, forming ADP. Low pH promoted the phosphorolytic and high pH the hydrolytic activities. These proteins, and in particular Hint4, also catalyzed hydrolysis or phosphorolysis of some other adenylyl-derivatives but at lower rates than those for APS cleavage. A mechanism for these activities is proposed and the possible role of some HIT-proteins in APS metabolism is discussed.

  13. Mono-isotope Prediction for Mass Spectra Using Bayes Network.

    PubMed

    Li, Hui; Liu, Chunmei; Rwebangira, Mugizi Robert; Burge, Legand

    2014-12-01

    Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized naïve Bayes network as the classifier with the assumption that the selected features are independent to predict mono-isotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to publicMo dataset demonstrates that our naïve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity.

  14. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    PubMed Central

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  15. The regulation of ATP release from the urothelium by adenosine and transepithelial potential.

    PubMed

    Dunning-Davies, Bryony M; Fry, Christopher H; Mansour, Dina; Ferguson, Douglas R

    2013-03-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Stretch of the urothelium, as occurs during bladder filling, is associated with a release of ATP that is postulated to act as a sensory neurotransmitter. The regulation of ATP release is poorly understood and in particular if there is a feedback mechanism provided by ATP itself. Adenosine, a breakdown product of ATP, is a potent inhibitor of stretch-induced ATP release, acting through and A1 receptor; endogenous levels are about 0.6μM. Data are consistent with ATP release relying on the rise of intracellular Ca2+. Transepithelial potential also controls ATP release, also acting via an A1 receptor-dependent pathway. To test the hypothesis that distension-induced ATP release from the bladder urothelium is regulated by adenosine as well as changes to transurothelial potential (TEP). To examine the role of changes to intracellular [Ca(2+) ] in ATP release. Rabbit urothelium/suburothelium membranes were used in an Ussing chamber system. Distension was induced by fluid removal from the chamber bathing the serosal (basolateral) membrane face. The TEP and short-circuit current were measured. ATP was measured in samples aspirated from the serosal chamber by a luciferin-luciferase assay. Intracellular [Ca(2+) ] was measured in isolated urothelial cells using the fluorochrome Fura-2. All experiments were performed at 37°C. Distension-induced ATP release was decreased by adenosine (1-10 μm) and enhanced by adenosine deaminase and A1- (but not A2-) receptor antagonists. Distension-induced ATP release was reduced by 2-APB, nifedipine and capsazepine; capsaicin induced ATP release in the absence of distension. ATP and capsaicin, but not adenosine, generated intracellular Ca(2+) transients; adenosine did not affect the ATP-generated Ca(2+) transient. ATP release was dependent on a finite transepithelial potential. Changes to TEP, in the absence of distension, generated ATP release that was in turn reduced by adenosine

  16. Adenosine Monophosphate Forms Ordered Arrays in Multilamellar Lipid Matrices: Insights into Assembly of Nucleic Acid for Primitive Life

    PubMed Central

    Toppozini, Laura; Dies, Hannah; Deamer, David W.; Rheinstädter, Maikel C.

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5′-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers. PMID:23667523

  17. Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: insights into assembly of nucleic acid for primitive life.

    PubMed

    Toppozini, Laura; Dies, Hannah; Deamer, David W; Rheinstädter, Maikel C

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5'-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers.

  18. Regulation of rat mesangial cell growth by diadenosine phosphates.

    PubMed Central

    Heidenreich, S; Tepel, M; Schlüter, H; Harrach, B; Zidek, W

    1995-01-01

    The newly recognized human endogenous vasoconstrictive dinucleotides, diadenosine pentaphosphate (AP5A) and diadenosine hexaphosphate (AP6A), were tested for growth stimulatory effects in rat mesangial cells (MC). Both AP5A and AP6A stimulated growth in micromolar concentrations. The growth stimulatory effect exceeded that of ATP, alpha,beta-methylene ATP, adenosine 5'-O-(3-thio)triphosphate and UTP. Both diadenosine phosphates potentiated the growth response to platelet-derived growth factor, but not to insulin-like growth factor-1. To further elucidate the site of action in the cell cycle, RNA and protein synthesis were assessed. AP5 and AP6A stimulated protein synthesis, but not RNA formation. Furthermore, both agents increased cytosolic free Ca2+ concentration. It is concluded that AP5A and AP6A may play a regulatory role in MC growth as progression factors and possibly modify MC proliferation in glomerular disease. PMID:7769127

  19. Adenosine-loaded dissolving microneedle patches to improve skin wrinkles, dermal density, elasticity and hydration.

    PubMed

    Kang, G; Tu, T N T; Kim, S; Yang, H; Jang, M; Jo, D; Ryu, J; Baek, J; Jung, H

    2018-04-01

    Although dissolving microneedle patches have been widely studied in the cosmetics field, no comparisons have been drawn with the topical applications available for routine use. In this study, two wrinkle-improving products, adenosine-loaded dissolving microneedle patches and an adenosine cream, were evaluated for efficacy, with respect to skin wrinkling, dermal density, elasticity, and hydration, and safety in a clinical test on the crow's feet area. Clinical efficacy and safety tests were performed for 10 weeks on 22 female subjects with wrinkles around their eyes. The adenosine-loaded dissolving microneedle patch was applied once every 3 days, in the evening, for 8 weeks to the designated crow's feet area. The adenosine cream was applied two times per day, in the morning and evening, for 8 weeks to the other crow's feet area. Skin wrinkling, dermal density, elasticity, and hydration were measured by using PRIMOS ® premium, Dermascan ® C, Cutometer ® MPA580, and Corneometer ® CM 825, respectively. In addition, subjective skin irritation was evaluated by self-observation, and objective skin irritation was assessed through expert interviews. The adenosine-loaded dissolving microneedle patches had a similar or better efficacy than the adenosine cream. Both groups showed statistically significant efficacy for almost all parameters (P < 0.05). The dissolving microneedle patches had a long-lasting effect on the average wrinkle depth (P < 0.05), only showed efficacy in dermal density (P < 0.05), had an early improving effect on elasticity (P < 0.05), and demonstrated better hydration efficacy (P < 0.001). No adverse effects were observed in either group during the test period. In the clinical efficacy test of four skin-improvement parameters, adenosine-loaded dissolving microneedle patches showed the same or better effect than the adenosine cream, although the weekly adenosine dose was 140 times lower. The dissolving microneedle patches caused no

  20. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-11-14

    TGF-{beta} activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-{beta} enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-{beta} type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smadmore » complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.« less

  1. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  2. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling

    PubMed Central

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-01-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334

  3. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling.

    PubMed

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-09-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.

  4. Adenosine deaminase deficiency: a review.

    PubMed

    Flinn, Aisling M; Gennery, Andrew R

    2018-04-24

    Adenosine deaminase (ADA) deficiency leads to an accumulation of toxic purine degradation by-products, most potently affecting lymphocytes, leading to adenosine deaminase-deficient severe combined immunodeficiency. Whilst most notable affects are on lymphocytes, other manifestations include skeletal abnormalities, neurodevelopmental affects and pulmonary manifestations associated with pulmonary-alveolar proteinosis. Affected patients present in early infancy, usually with persistent infection, or with pulmonary insufficiency. Three treatment options are currently available. Initial treatment with enzyme replacement therapy may alleviate acute symptoms and enable partial immunological reconstitution, but treatment is life-long, immune reconstitution is incomplete, and the reconstituted immune system may nullify the effects of the enzyme replacement. Hematopoietic stem cell transplant has long been established as the treatment of choice, particularly where a matched sibling or well matched unrelated donor is available. More recently, the use of gene addition techniques to correct the genetic defect in autologous haematopoietic stem cells treatment has demonstrated immunological and clinical efficacy. This article reviews the biology, clinical presentation, diagnosis and treatment of ADA-deficiency.

  5. Role of CNPase in the Oligodendrocytic Extracellular 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M.; Jackson, Edwin K.

    2014-01-01

    Extracellular adenosine 3′,5′-cyclic monophosphate (3′,5′-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2′,3′-cAMP to adenosine. Here we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2′,3′-cAMP and their respective adenosine monophosphates (2′-AMP and 3′-AMP). Cells were also isolated from mice deficient in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2′,3′-cAMP to 2′-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3′-AMP was minimal in both oligodendrocytes and neurons. The production of 2′-AMP from 2′,3′-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2′-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3′,5′-cAMP-3′-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2′,3′-cAMP to 2′-AMP and inhibition of classic ecto-5′-nucleotidase (CD73) with α,β-methylene-adenosine-5′-diphosphate did not attenuate the conversion of 2′-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2′,3′-cAMP to 2-AMP in CNS cells. By reducing levels of 2′,3′-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant

  6. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  7. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  8. Interleukin-6 Contributes to Inflammation and Remodeling in a Model of Adenosine Mediated Lung Injury

    PubMed Central

    Pedroza, Mesias; Schneider, Daniel J.; Karmouty-Quintana, Harry; Coote, Julie; Shaw, Stevan; Corrigan, Rebecca; Molina, Jose G.; Alcorn, Joseph L.; Galas, David; Gelinas, Richard; Blackburn, Michael R.

    2011-01-01

    Background Chronic lung diseases are the third leading cause of death in the United States due in part to an incomplete understanding of pathways that govern the progressive tissue remodeling that occurs in these disorders. Adenosine is elevated in the lungs of animal models and humans with chronic lung disease where it promotes air-space destruction and fibrosis. Adenosine signaling increases the production of the pro-fibrotic cytokine interleukin-6 (IL-6). Based on these observations, we hypothesized that IL-6 signaling contributes to tissue destruction and remodeling in a model of chronic lung disease where adenosine levels are elevated. Methodology/Principal Findings We tested this hypothesis by neutralizing or genetically removing IL-6 in adenosine deaminase (ADA)-deficient mice that develop adenosine dependent pulmonary inflammation and remodeling. Results demonstrated that both pharmacologic blockade and genetic removal of IL-6 attenuated pulmonary inflammation, remodeling and fibrosis in this model. The pursuit of mechanisms involved revealed adenosine and IL-6 dependent activation of STAT-3 in airway epithelial cells. Conclusions/Significance These findings demonstrate that adenosine enhances IL-6 signaling pathways to promote aspects of chronic lung disease. This suggests that blocking IL-6 signaling during chronic stages of disease may provide benefit in halting remodeling processes such as fibrosis and air-space destruction. PMID:21799929

  9. The role of adenosine challenge in catheter ablation for atrial fibrillation: A systematic review and meta-analysis.

    PubMed

    McLellan, Alex J A; Kumar, Saurabh; Smith, Catherine; Ling, Liang-Han; Prabhu, Sandeep; Kalman, Jonathan M; Kistler, Peter M

    2017-06-01

    Adenosine may unmask dormant PV conduction and facilitate consolidation of PV isolation. We performed a meta-analysis to determine the impact of adenosine administration on clinical outcomes in patients undergoing PVI. References and electronic databases reporting AF ablation and adenosine following PVI were searched through to 22nd November 2015. The impact of adenosine on freedom from AF was assessed in twenty publications after radiofrequency ablation (RFA), and in four publications after cryoablation to achieve PVI. Relative risks were calculated and combined in a meta-analysis using random effects modeling. In patients undergoing RFA with adenosine challenge, there was a significant reduction in freedom from AF in patients with versus without adenosine induced reconnection (RR 0.86; 95%CI 0.77-0.98; p=0.02) particularly if no further ablation was performed (RR 0.66; 95%CI 0.50-0.87; p<0.01). There was no difference when comparing outcomes in studies of routine adenosine challenge vs no adenosine (RR 1.07; 95%CI 0.93-1.22; p=0.36). There was a non-significant trend to an increase in freedom from AF in patients receiving routine adenosine challenge (RR 1.18 95%CI 0.99-1.42; p=0.07) in non-randomized studies using cryoablation. Adenosine induced PV reconnection following PVI is associated with a significant increase in AF recurrence, particularly if the reconnection sites are not targeted for ablation. The routine use of adenosine may be beneficial in AF ablation if given early post-PVI, at sufficient dose and reconnection is ablated. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Quaternary Eruptions of the Mono-Inyo Craters, California

    NASA Astrophysics Data System (ADS)

    Bursik, M. I.; Pouget, S.; Mangan, M.; Marcaida, M.; Vazquez, J. A.

    2013-12-01

    The eruptive products of the Mono-Inyo Craters volcanic chain include the tephra and associated volcanic rocks of Black Point, islands of Mono Lake, Mono Craters, Inyo Craters, late eruptions of Mammoth Mountain and Red Cones. Most of the eruptions were explosive, and generated numerous pyroclastic flows, surges and falls as well as the prominent domes and lava flows that now cover vents. The eruptions range in age from several hundred years to at least 60,000 yr BP. The Mono-Inyo tephras are dispersed throughout the Sierra Nevada and Basin and Range, providing key time-stratigraphic marker layers. Recent work has not only resulted in high-precision radiometric dating of many of the tephras, but also detailed geochemical data that for the first time provides fingerprinting sufficiently precise to discriminate among the tephras. Lithostratigraphy of many of the layers is herein described for the first time, based on careful sampling and description in the field, and laboratory grain size, grain shape and componentry analyses of the late Pleistocene tephras of the Wilson Creek Formation. Most of the Wilson Creek volcanic layers are fall deposits accumulated within paleolake Russell, which were generated by eruptions of variable intensity and influenced by paleowinds of different orientation. Prevailing winds were generally to the North and East, but often the Pleistocene layers less than 25 ka were dispersed to the West. Many of the fall layers show evidence of wave reworking, generally near the top, although in some cases it is pervasive. Only near the vent do some layers of apparent debris flow origin occur. Maximum pumice sizes range up to nearly 3 cm, and lithics range up to 1 cm in the rhyolitic fall beds, while thicknesses range up to c. 30 cm. These data are consistent with relatively low volume, subplinian style eruptive behavior for most of the life of the Mono-Inyo Craters.

  11. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate.

    PubMed

    Qian, Zhaosheng; Chai, Lujing; Tang, Cong; Huang, Yuanyuan; Chen, Jianrong; Feng, Hui

    2015-03-03

    A convenient, reliable, and highly sensitive real-time assay for alkaline phosphatase (ALP) activity in the continuous and recyclable way is established on the basis of aggregation and disaggregation of carbon quantum dots (CQDs) through the competitive assay approach. CQDs and adenosine triphosphate (ATP) were used as the fluorescent indicator and substrate for ALP activity assessment, respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by cerium ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, ATP can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to cerium ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by redispersion of CQDs in the presence of ALP and ATP. Quantitative evaluation of ALP activity in a broad range from 4.6 to 383.3 U/L with the detection limit of 1.4 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. The assay can be used in a recyclable way for more than three times since the generated product CePO4 as a precipitate can be easily removed from the standard assay system. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility and provides an example based on disaggregation in optical probe development.

  12. New parasite inhibitors encompassing novel conformationally-locked 5'-acyl sulfamoyl adenosines.

    PubMed

    Dixit, Shailesh S; Upadhayaya, Ram Shankar; Chattopadhyaya, Jyoti

    2012-08-14

    We describe the design, synthesis and biological evaluation of conformationally-locked 5'-acyl sulfamoyl adenosine derivatives as new parasitic inhibitors against Trypanosoma and Leishmania. The conformationally-locked (3'-endo, North-type) nucleosides have been synthesized by covalently attaching a 4'-CH(2)-O-2' bridge () across C2'-C4' of adenosine in order to reduce the conformational flexibility of the pentose ring. This is designed to decrease the entropic penalty for complex formation with the target protein, which may improve free-energy of stabilization of the complex leading to improved potency. Conformationally-locked 5'-acyl sulfamoyl adenosine derivatives (16-22) were tested against parasitic protozoans for the first time in this work, and showed potent inhibition of Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma rhodesiense and Leishmania infantum with IC(50) = 0.25-0.51 μM. In particular, the potent 5'-pentanyl acyl sulfamoyl adenosine derivative 17 (IC(50) = 0.25 μM) against intracellular L. infantum amastigotes and Trypanosoma subspecies is interesting in view of its almost insignificant cytotoxicity in murine macrophage host cells (CC(50) >4 μM) and in diploid human fibroblasts MRC-5 cell lines (CC(50) 4 μM). This work also suggests that variable alkyl chain length of the acyl group on the acylsulfamoyl side chain at 5' can modulate the toxicity of 5'-O-sulfamoylnucleoside analogues. This conformationally-locked sulfamoyl adenosine scaffold presents some interesting possibilities for further drug design and lead optimization.

  13. Potentiation of the depression by adenosine of rat cerebral cortical neurones by progestational agents.

    PubMed Central

    Phillis, J. W.

    1986-01-01

    The effects of four progestational agents pregnenolone sulphate, cyproterone acetate, norethindrone acetate and progesterone, on adenosine-evoked depression of the firing of rat cerebral cortical neurones have been studied. When applied iontophoretically, pregnenolone sulphate, cyproterone, and norethindrone enhanced the actions of iontophoretically applied adenosine and failed to potentiate the depressant effects of adenosine 5'-N-ethylcarboxamide and gamma-aminobutyric acid. Cyproterone acetate (50 micrograms kg-1) and progesterone (200 micrograms kg-1) administered intravenously enhanced the depressant actions of iontophoretically applied adenosine. When applied by large currents, cyproterone, and less frequently norethindrone, depressed the firing of cerebral cortical neurones. The depressant effects of cyproterone were antagonized by caffeine. Pregnenolone sulphate tended to excite cortical neurones but neither this action, nor its potentiation of adenosine were reproduced by application of sulphate ions. It is hypothesized that some of the psychotropic actions of progestational agents may involve an enhancement of 'purinergic' tone in the central nervous system. PMID:3814905

  14. Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    PubMed

    Liang, Dongchun; Woo, Jeong-Im; Shao, Hui; Born, Willi K; O'Brien, Rebecca L; Kaplan, Henry J; Sun, Deming

    2018-01-01

    Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.

  15. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells.

    PubMed

    Chimote, Ameet A; Hajdu, Peter; Kucher, Vladimir; Boiko, Nina; Kuras, Zerrin; Szilagyi, Orsolya; Yun, Yeo-Heung; Conforti, Laura

    2013-12-15

    Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.

  16. Inhibition of Transient Receptor Potential Channel Mucolipin-1 (TRPML1) by Lysosomal Adenosine Involved in Severe Combined Immunodeficiency Diseases*

    PubMed Central

    Zhong, Xi Zoë; Zou, Yuanjie; Sun, Xue; Dong, Gaofeng; Cao, Qi; Pandey, Aditya; Rainey, Jan K.; Zhu, Xiaojuan; Dong, Xian-Ping

    2017-01-01

    Impaired adenosine homeostasis has been associated with numerous human diseases. Lysosomes are referred to as the cellular recycling centers that generate adenosine by breaking down nucleic acids or ATP. Recent studies have suggested that lysosomal adenosine overload causes lysosome defects that phenocopy patients with mutations in transient receptor potential channel mucolipin-1 (TRPML1), a lysosomal Ca2+ channel, suggesting that lysosomal adenosine overload may impair TRPML1 and then lead to subsequent lysosomal dysfunction. In this study, we demonstrate that lysosomal adenosine is elevated by deleting adenosine deaminase (ADA), an enzyme responsible for adenosine degradation. We also show that lysosomal adenosine accumulation inhibits TRPML1, which is rescued by overexpressing ENT3, the adenosine transporter situated in the lysosome membrane. Moreover, ADA deficiency results in lysosome enlargement, alkalinization, and dysfunction. These are rescued by activating TRPML1. Importantly, ADA-deficient B-lymphocytes are more vulnerable to oxidative stress, and this was rescued by TRPML1 activation. Our data suggest that lysosomal adenosine accumulation impairs lysosome function by inhibiting TRPML1 and subsequently leads to cell death in B-lymphocytes. Activating TRPML1 could be a new therapeutic strategy for those diseases. PMID:28087698

  17. Prebiotic synthesis and reactions of nucleosides and nucleotides

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J.

    Diiminosuccinonitrile (DISN) has been investigated as a potential prebiotic phosphorylating agent. It is formed readily by the oxidation of diaminomaleonitrile (DAMN), a tetramer of HCN, DISN effects the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 40% yield. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiently in aqueous solution. The reaction of DISN and BrCN with uridine-5'-phosphate and uridine results in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2'- and 3'-hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3'-phosphate was investigated using homoionic montmorillonites.

  18. The prebiotic chemistry of nucleotides

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1984-01-01

    Diminosuccinonitrile (DISN), formed by the oxidation of diaminomaleonitrile, has been investigated as a potential prebiotic phosphorylating agent. DISN affects the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 39 percent yield. The mechanism of this reaction was investigated. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiencly in aqueous solution. The reaction of DISN with uridine-5'-phosphate and uridine results in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2'- and 3'-hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3'-phosphate was investigated using homoionic montmorillonites.

  19. The Prebiotic Chemistry of Nucleotides

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1984-12-01

    Diiminosuccinonitrile (DISN), formed by the oxidation of diaminomaleonitrile (DAMN), has been investigated as a potential prebiotic phosphorylating agent. DISN effects the cyclization of 3'-adenosine monophosphate to adenosine 2', 3'-cyclic phosphate in up to 39% yield. The mechanism of this reaction was investigated. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiently in aqueous solution. The reaction of DISN with uridine-5'-phosphate and uridine results in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2'- and 3'-hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3'-phosphate was investigated using homoionic montmorillonites.

  20. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    ... view the expand/collapse boxes. Description Adenosine monophosphate (AMP) deaminase deficiency is a condition that can affect ... for movement ( skeletal muscles ). In many affected individuals, AMP deaminase deficiency does not cause any symptoms. People ...

  1. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, M.E.; Geiger, J.D.

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than didmore » mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.« less

  2. Comparative Transcriptome Analysis of Bacillus subtilis Responding to Dissolved Oxygen in Adenosine Fermentation

    PubMed Central

    Yin, Chun-Yun; Zhou, Ying; Ye, Bang-Ce

    2011-01-01

    Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism. PMID:21625606

  3. Investigations into the origin of the molecular recognition of several adenosine deaminase inhibitors.

    PubMed

    Gillerman, Irina; Fischer, Bilha

    2011-01-13

    Inhibitors of adenosine deaminase (ADA, EC 3.5.4.4) are potential therapeutic agents for the treatment of various health disorders. Several highly potent inhibitors were previously identified, yet they exhibit unacceptable toxicities. We performed a SAR study involving a series of C2 or C8 substituted purine-riboside analogues with a view to discover less potent inhibitors with a lesser toxicity. We found that any substitution at C8 position of nebularine resulted in total loss of activity toward calf intestinal ADA. However, several 2-substituted-adenosine, 8-aza-adenosine, and nebularine analogues exhibited inhibitory activity. Specifically, 2-Cl-purine riboside, 8-aza-2-thiohexyl adenosine, 2-thiohexyl adenosine, and 2-MeS-purine riboside were found to be competitive inhibitors of ADA with K(i) values of 25, 22, 6, and 3 μM, respectively. We concluded that electronic parameters are not major recognition determinants of ADA but rather steric parameters. A C2 substituent which fits ADA hydrophobic pocket and improves H-bonding with the enzyme makes a good inhibitor. In addition, a gg rotamer about C4'-C5' bond is apparently an important recognition determinant.

  4. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes.

    PubMed

    Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal

    2006-10-01

    To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

  5. Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1

    PubMed Central

    Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup

    2014-01-01

    Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402

  6. Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation.

    PubMed

    Pouliot, Marc; Fiset, Marie-Elaine; Massé, Mireille; Naccache, Paul H; Borgeat, Pierre

    2002-11-01

    Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.

  7. Arginine mediated purification of trehalose-6-phosphate synthase (TPS) from Candida utilis: Its characterization and regulation.

    PubMed

    Sengupta, Shinjinee; Lahiri, Sagar; Banerjee, Shakri; Bashistha, Bipasha; Ghosh, Anil K

    2011-12-01

    Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC). An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37°C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl₂, MgCl₂ and ZnSO₄, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest V(max) and lowest K(m) values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors. Substrate specificity, V(max) and K(m) values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis. 2011 Elsevier B.V. All rights reserved.

  8. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol mono- and diesters of fats and... CONSUMPTION Multipurpose Additives § 172.856 Propylene glycol mono- and diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely used in food, subject to the...

  9. Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats.

    PubMed

    Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R

    2003-12-01

    Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the

  10. Adenosine signaling in striatal circuits and alcohol use disorders.

    PubMed

    Nam, Hyung Wook; Bruner, Robert C; Choi, Doo-Sup

    2013-09-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction.

  11. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  12. Gas exchange on Mono Lake and Crowley Lake, California

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik; Ledwell, James R.; Broecker, Wallace S.

    1987-01-01

    Gas exchange coefficients (k) have been determined for freshwater Crowley Lake and saline Mono Lake through the use of a man-made purposefully injected gas, SF6. The concentration decreased from an initial value of 40 to 4 pmol/L for Mono Lake and from 20 to 1 pmol/L for Crowley lake over a period of 6 wks. Wind-speed (u) records from anemometers on the shore of each lake made it possible to determine the relationship between k and u. The average u and k values for the experiment were identical for the two lakes, despite the large chemical differences. It is estimated that, for the u values observed over Mono Lake from July to December 1984, the exchange of CO2 occurred 2.5 times faster than without chemical enhancement. This is a factor of 4 lower than needed to explain the high invasion rate of C-14 produced by nuclear bomb tests.

  13. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria

    2013-01-01

    Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Novel polyethylene glycol derivative suitable for the preparation of mono-PEGylated protein.

    PubMed

    Yun, Qiang; Chen, Ting; Zhang, Guifeng; Bi, Jingxiu; Ma, Guanghui; Su, Zhiguo

    2005-02-01

    A novel methoxypolyethylene glycol (mPEG) derivative, containing a reactive group of 1-methyl pyridinium toluene-4-sulfonate, was synthesized and characterized. The mPEG derivative was successfully conjugated with two proteins: recombinant human granulocyte-colony stimulating factor (rhG-CSF) and consensus interferon (C-IFN). Homogeneous mono-PEGylated proteins were obtained which were identified by high performance size-exclusion chromatography and MALDI-TOF mass spectrometry. The biological activities of the mono-PEGylated rhG-CSF and the mono-PEGylated C-IFN were maintained at 90% and 88%, respectively.

  15. Use of antibody to membrane adenosine triphosphatase in the study of bacterial relatioships.

    PubMed

    Whiteside, T L; De Siervo, A J; Salton, M R

    1971-03-01

    An antiserum to Ca(2+)-activated adenosine triphosphatase from membranes of Micrococcus lysodeikticus cross-reacted in agar gels with membrane adenosine triphosphatases from other pigmented micrococci and related species. Species of Micrococcus and Sarcina showed different levels of inhibition of adenosine triphosphatase activities in heterologous reactions with antiserum. Inter- and intraspecific relationships based on the inhibition reaction were compared with an independent parameter, namely the quantitative and qualitative composition of the bacterial membrane phospholipids and fatty acids. The guanine plus cytosine contents in the deoxyribonucleic acid of the species studied correlated well with the serological cross-reactivity of adenosine triphosphatases from their membranes. The types of cross-bridges found in the peptidoglycans of these cocci were also compared with the other properties. The results suggest that an antiserum specific for a major membrane protein may be a reliable and most useful adjunct in studying bacterial serotaxonomy.

  16. Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine.

    PubMed

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A; Kwizera, Chantal; Sijbesma, Jurgen W A; Ishiwata, Kiichi; Willemsen, Antoon T M; Elsinga, Philip H; Dierckx, Rudi A J O; van Waarde, Aren

    2011-08-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX) and PET. This study aims to test whether (11)C-MPDX can be used for quantitative studies of cerebral A(1)R in rodents. (11)C-MPDX was injected (intravenously) into isoflurane-anesthetized male Wistar rats (300 g). A dynamic scan of the central nervous system was obtained, using a small-animal PET camera. A cannula in a femoral artery was used for blood sampling. Three groups of animals were studied: group 1, controls (saline-treated); group 2, animals pretreated with the A(1)R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 mg, intraperitoneally); and group 3, animals pretreated (intraperitoneally) with a 20% solution of ethanol in saline (2 mL) plus the adenosine kinase inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d] pyrimidine dihydrochloride (ABT-702) (1 mg). DPCPX is known to occupy cerebral A(1)R, whereas ethanol and ABT-702 increase extracellular adenosine. In groups 1 and 3, the brain was clearly visualized. High uptake of (11)C-MPDX was noted in striatum, hippocampus, and cerebellum. In group 2, tracer uptake was strongly suppressed and regional differences were abolished. The treatment of group 3 resulted in an unexpected 40%-45% increase of the cerebral uptake of radioactivity as indicated by increases of PET standardized uptake value, distribution volume from Logan plot, nondisplaceable binding potential from 2-tissue-compartment model fit, and standardized uptake value from a biodistribution study performed after the PET scan. The partition coefficient of the tracer (K(1)/k(2) from the model fit) was not altered under the study conditions. (11)C-MPDX shows a regional distribution in rat brain consistent with binding to A(1)R. Tracer binding is blocked by the selective A

  17. Regulation of renal adenosine A(1) receptors: effect of dietary sodium chloride.

    PubMed

    Smith, J A; Whitaker, E M; Yaktubay, N; Morton, M J; Bowmer, C J; Yates, M S

    1999-11-12

    The influence of dietary NaCl on the regulation of renal adenosine A(1) receptors was investigated in the rat. Renal membranes from rats fed on a diet low (0.04%) in NaCl showed a 46% increase in B(max) for the binding of [3H]-1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX), a selective adenosine A(1) receptor antagonist, compared to membranes from rats fed on a normal diet (0.4% NaCl). Conversely, a high NaCl diet (4.0%) resulted in a 37% decrease in B(max). Levels of renal adenosine A(1) receptor mRNA were 65% lower in rats on a high salt diet. Autoradiographic studies showed that, for the inner medullary collecting ducts, a low NaCl diet resulted in a 30% increase in [3H]DPCPX binding with a 39% decrease noted in rats maintained on a high salt diet. The results indicate that changes in adenosine A(1) receptor density may represent a novel mechanism whereby the kidneys adapt to changes in salt load.

  18. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    PubMed Central

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  19. Limitation of Infarct Size and No-Reflow by Intracoronary Adenosine Depends Critically on Dose and Duration.

    PubMed

    Yetgin, Tuncay; Uitterdijk, André; Te Lintel Hekkert, Maaike; Merkus, Daphne; Krabbendam-Peters, Ilona; van Beusekom, Heleen M M; Falotico, Robert; Serruys, Patrick W; Manintveld, Olivier C; van Geuns, Robert-Jan M; Zijlstra, Felix; Duncker, Dirk J

    2015-12-28

    In the absence of effective clinical pharmacotherapy for prevention of reperfusion-mediated injury, this study re-evaluated the effects of intracoronary adenosine on infarct size and no-reflow in a porcine model of acute myocardial infarction using clinical bolus and experimental high-dose infusion regimens. Despite the clear cardioprotective effects of adenosine, when administered prior to ischemia, studies on cardioprotection by adenosine when administered at reperfusion have yielded contradictory results in both pre-clinical and clinical settings. Swine (54 ± 1 kg) were subjected to a 45-min mid-left anterior descending artery occlusion followed by 2 h of reperfusion. In protocol A, an intracoronary bolus of 3 mg adenosine injected over 1 min (n = 5) or saline (n = 10) was administered at reperfusion. In protocol B, an intracoronary infusion of 50 μg/kg/min adenosine (n = 15) or saline (n = 21) was administered starting 5 min prior to reperfusion and continued throughout the 2-h reperfusion period. In protocol A, area-at-risk, infarct size, and no-reflow were similar between groups. In protocol B, risk zones were similar, but administration of adenosine resulted in significant reductions in infarct size from 59 ± 3% of the area-at-risk in control swine to 46 ± 4% (p = 0.02), and no-reflow from 49 ± 6% of the infarct area to 26 ± 6% (p = 0.03). During reperfusion, intracoronary adenosine can limit infarct size and no-reflow in a porcine model of acute myocardial infarction. However, protection was only observed when adenosine was administered via prolonged high-dose infusion, and not via short-acting bolus injection. These findings warrant reconsideration of adenosine as an adjuvant therapy during early reperfusion. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Intrinsic A(1) adenosine receptor activation during ischemia or reperfusion improves recovery in mouse hearts.

    PubMed

    Peart, J; Headrick, J P

    2000-11-01

    We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.

  1. Microbial Group Specific Uptake Kinetics of Inorganic Phosphate and Adenosine-5′-Triphosphate (ATP) in the North Pacific Subtropical Gyre

    PubMed Central

    Björkman, Karin; Duhamel, Solange; Karl, David M.

    2012-01-01

    We investigated the concentration dependent uptake of inorganic phosphate (Pi) and adenosine-5′-triphosphate (ATP) in microbial populations in the North Pacific Subtropical Gyre (NPSG). We used radiotracers to measure substrate uptake into whole water communities, differentiated microbial size classes, and two flow sorted groups; Prochlorococcus (PRO) and non-pigmented bacteria (NPB). The Pi concentrations, uptake rates, and Pi pool turnover times (Tt) were (mean, ±SD); 54.9 ± 35.0 nmol L−1 (n = 22), 4.8 ± 1.9 nmol L−1 day−1 (n = 19), and 14.7 ± 10.2 days (n = 19), respectively. Pi uptake into >2 μm cells was on average 12 ± 7% (n = 15) of the total uptake. The kinetic response to Pi (10–500 nmol L−1) was small, indicating that the microorganisms were close to their maximum uptake velocity (Vmax). Vmax averaged 8.0 ± 3.6 nmol L−1 day−1 (n = 19) in the >0.2 μm group, with half saturation constants (Km) of 40 ± 28 nmol L−1 (n = 19). PRO had three times the cell specific Pi uptake rate of NPB, at ambient concentrations, but when adjusted to cells L−1 the rates were similar, and these two groups were equally competitive for Pi. The Tt of γ-P-ATP in the >0.2 μm group were shorter than for the Pi pool (4.4 ± 1.0 days; n = 6), but this difference diminished in the larger size classes. The kinetic response to ATP was large in the >0.2 μm class with Vmax exceeding the rates at ambient concentrations (mean 62 ± 27 times; n = 6) with a mean Vmax for γ-P-ATP of 2.8 ± 1.0 nmol L−1 day−1, and Km at 11.5 ± 5.4 nmol L−1 (n = 6). The NPB contribution to γ-P-ATP uptake was high (95 ± 3%, n = 4) at ambient concentrations but decreased to ∼50% at the highest ATP amendment. PRO had Km values 5–10 times greater than NPB. The above indicates that PRO and NPB were in close competition in terms of Pi acquisition

  2. Enhancement of low light level images using color-plus-mono dual camera.

    PubMed

    Jung, Yong Ju

    2017-05-15

    In digital photography, the improvement of imaging quality in low light shooting is one of the users' needs. Unfortunately, conventional smartphone cameras that use a single, small image sensor cannot provide satisfactory quality in low light level images. A color-plus-mono dual camera that consists of two horizontally separate image sensors, which simultaneously captures both a color and mono image pair of the same scene, could be useful for improving the quality of low light level images. However, an incorrect image fusion between the color and mono image pair could also have negative effects, such as the introduction of severe visual artifacts in the fused images. This paper proposes a selective image fusion technique that applies an adaptive guided filter-based denoising and selective detail transfer to only those pixels deemed reliable with respect to binocular image fusion. We employ a dissimilarity measure and binocular just-noticeable-difference (BJND) analysis to identify unreliable pixels that are likely to cause visual artifacts during image fusion via joint color image denoising and detail transfer from the mono image. By constructing an experimental system of color-plus-mono camera, we demonstrate that the BJND-aware denoising and selective detail transfer is helpful in improving the image quality during low light shooting.

  3. Rapid adenosine release in the nucleus tractus solitarii during defence response in rats: real-time measurement in vivo

    PubMed Central

    Dale, Nicholas; Gourine, Alexander V; Llaudet, Enrique; Bulmer, David; Thomas, Teresa; Spyer, K Michael

    2002-01-01

    We have measured the release of adenosine and inosine from the dorsal surface of the brainstem and from within the nucleus tractus solitarii (NTS) during the defence response evoked by hypothalamic stimulation in the anaesthetised rat. At the surface of the brainstem, only release of inosine was detected on hypothalamic defence area stimulation. This inosine signal was greatly reduced by addition of the ecto-5′-nucleotidase inhibitor α,β-methylene ADP (200 μM), suggesting that the inosine arose from adenosine that was produced in the extracellular space by the prior release of ATP. By placing a microelectrode biosensor into the NTS under stereotaxic control we have recorded release of adenosine within this nucleus. By contrast to the brainstem surface, a fast increase in adenosine, accompanied only by a much smaller change in inosine levels, was seen following stimulation of the hypothalamic defence area. The release of adenosine following hypothalamic stimulation was mainly confined to a narrow region of the NTS some 500 μm in length around the level of the obex. Interestingly the release of adenosine was depletable: when the defence reaction was evoked at short time intervals, much less adenosine was released on the second stimulus. Our novel techniques have given unprecedented real-time measurement and localisation of adenosine release in vivo and demonstrate that adenosine is released at the right time and in sufficient quantities to contribute to the cardiovascular components of the defence reaction. PMID:12356888

  4. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    PubMed

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  5. Synthesis of the coenzymes adenosine diphosphate glucose, guanosine diphosphate glucose, and cytidine diphosphoethanolamine under primitive Earth conditions

    NASA Technical Reports Server (NTRS)

    Mar, A.; Oro, J.

    1991-01-01

    The nonenzymatic synthesis of the coenzymes adenosine diphosphate glucose (ADPG), guanosine diphosphate glucose (GDPG), and cytidine diphosphoethanolamine (CDP-ethanolamine) has been carried out under conditions considered to have been prevalent on the early Earth. The production of these compounds was performed by allowing simple precursor molecules to react under aqueous solutions, at moderate temperatures and short periods of time, with mediation by cyanamide or urea. These two condensing agents are considered to have been present in significant amounts on the primitive Earth and have been previously used in the nonenzymatic synthesis of several other important biochemical compounds. In our experiments, ADPG was obtained by heating glucose-1-phosphate (G1P) and ATP in the presence of cyanamide for 24 h at 70 degrees C. The reaction of G1P and GTP under the same conditions yielded GDPG. The cyanamide-mediated production of CDP-ethanolamine was carried out by reacting a mixture of ethanolamine phosphate and CTP for 24 h at 70 degrees C. The separation and identification of the reaction products was carried out by paper chromatography, thin-layer chromatography, high performance thin-layer chromatography, high performance liquid chromatography, both normal and reverse-phase, UV spectroscopy, enzymatic assays, and acid hydrolysis. Due to the mild conditions employed, and to the relative ease of these reactions, these studies offer a simple attractive system for the nonenzymatic synthesis of phosphorylated high-energy metabolic intermediates under conditions considered to have been prevalent on the ancient Earth.

  6. Tandem dye-ligand chromatography and biospecific elution applied to the purification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides.

    PubMed Central

    Hey, Y; Dean, P D

    1983-01-01

    1. A total of 65 immobilized triazine dyes were screened for their ability to purify the dual-nucleotide-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. From this screen a 'negative' (Matrex Gel Purple A) and a 'positive' (Matrex Gel Orange B) adsorbent were found to be the best in terms of overall purification and yield and were therefore combined to give the best purification. 2. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was purified approx. 56-fold in a two-step tandem chromatographic system using Matrex Gel Purple A followed by Matrex Gel Orange B chromatography to a specific activity of 228 units/mg of protein in a final yield of 73%. 3. A study of the elution characteristics of glucose-6-phosphate dehydrogenase bound to Matrex Gel Orange B by KCl (pulse and gradient) and biospecific eluents (pulse) was carried out. NADP+, NADPH and adenosine 2',5'-bisphosphate were found to be the only effective biospecific eluents. A pulse of 50 microM-NADP+ (1/2 column vol.) was found to give a better purification than a 0-1 M-KCl gradient and therefore was the preferred method of elution. 4. Presaturation of the enzyme with various nucleotides was carried out to determine the effect on the subsequent binding of glucose-6-phosphate dehydrogenase to Matrex Gel Orange B. The results of these and biospecific-elution studies lead us to propose two possible schemes to explain the mechanism of the dye-protein interaction. 5. Reusability, capacity of the adsorbent and effect of varying the ligand concentration were also studied in the purification of glucose-6-phosphate dehydrogenase on Matrex Gel Orange B. Images Fig. 1. PMID:6847623

  7. Tandem dye-ligand chromatography and biospecific elution applied to the purification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides.

    PubMed

    Hey, Y; Dean, P D

    1983-02-01

    1. A total of 65 immobilized triazine dyes were screened for their ability to purify the dual-nucleotide-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. From this screen a 'negative' (Matrex Gel Purple A) and a 'positive' (Matrex Gel Orange B) adsorbent were found to be the best in terms of overall purification and yield and were therefore combined to give the best purification. 2. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was purified approx. 56-fold in a two-step tandem chromatographic system using Matrex Gel Purple A followed by Matrex Gel Orange B chromatography to a specific activity of 228 units/mg of protein in a final yield of 73%. 3. A study of the elution characteristics of glucose-6-phosphate dehydrogenase bound to Matrex Gel Orange B by KCl (pulse and gradient) and biospecific eluents (pulse) was carried out. NADP+, NADPH and adenosine 2',5'-bisphosphate were found to be the only effective biospecific eluents. A pulse of 50 microM-NADP+ (1/2 column vol.) was found to give a better purification than a 0-1 M-KCl gradient and therefore was the preferred method of elution. 4. Presaturation of the enzyme with various nucleotides was carried out to determine the effect on the subsequent binding of glucose-6-phosphate dehydrogenase to Matrex Gel Orange B. The results of these and biospecific-elution studies lead us to propose two possible schemes to explain the mechanism of the dye-protein interaction. 5. Reusability, capacity of the adsorbent and effect of varying the ligand concentration were also studied in the purification of glucose-6-phosphate dehydrogenase on Matrex Gel Orange B.

  8. Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury

    PubMed Central

    MÓDIS, KATALIN; GERŐ, DOMOKOS; STANGL, RITA; ROSERO, OLIVÉR; SZIJÁRTÓ, ATTILA; LOTZ, GÁBOR; MOHÁCSIK, PETRA; SZOLECZKY, PETRA; COLETTA, CIRO; SZABÓ, CSABA

    2013-01-01

    Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300–1,000 μM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 μM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 μM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor

  9. Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury.

    PubMed

    Módis, Katalin; Gerő, Domokos; Stangl, Rita; Rosero, Olivér; Szijártó, Attila; Lotz, Gábor; Mohácsik, Petra; Szoleczky, Petra; Coletta, Ciro; Szabó, Csaba

    2013-02-01

    Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300-1,000 µM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 µM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6‑morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 µM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor

  10. Finite Element Analysis Of Structural And Magmatic Interactions At Mono Basin (California)

    NASA Astrophysics Data System (ADS)

    La Marra, D.; Manconi, A.; Battaglia, M.

    2010-12-01

    Mono Basin is a northward trending graben situated east of the Sierra Nevada and west of Cowtrack Mountains, extending from the northern edge of Long Valley Caldera towards the Bodie Hills. From a hydrographic perspective, the Mono Basin is defined by all streams that drain into Mono Lake. The Mono-Inyo Craters forms a prominent 25-km-long volcanic complex from the NW corner of Long Valley caldera to the southern edge of Mono Lake. The late Quaternary Hartley Springs fault occurs along the Sierran range front between June Lake and the northern border of Long Valley Caldera. Recently it has been proposed that the manifestation of the volcanic and of the tectonic activity in this area is likely interrelated. According to Bursik et al (2003), stratigraphic data suggest that during the North Mono-Inyo eruption sequence of ~1350 A.D., a series of strong earthquakes occurred across the end of the North Mono explosive phase and the beginning of the Inyo explosive phase. Moreover, geological and geomorphic features of the Hartley Springs fault are consistent with rupture of the fault during the eruption sequence. We use the Finite Element Method (FEM) to simulate a three-dimensional model and investigate the feedback mechanism between dike intrusion and slip along the Hartley Springs fault. We first validate our numerical model against the Okada (1985) analytical solution for a homogeneous and elastic flat half-space. Subsequently, we evaluate the distribution of local stress changes to study the influence of the Inyo Dike intrusion in ~1350 A.D. on Hartley Springs fault, and how the fault slip may encourage the propagation of dikes towards the surface. To this end, we considered the standard Coulomb stress change as failure criterion. Finally, we analyze the effects of the topography and of vertical and lateral heterogeneities of the crust on the distribution of local and regional stress changes. In this presentation, we highlight the preliminary results of our analysis

  11. Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic Plasticity.

    PubMed

    Sandau, Ursula S; Colino-Oliveira, Mariana; Jones, Abbie; Saleumvong, Bounmy; Coffman, Shayla Q; Liu, Long; Miranda-Lourenço, Catarina; Palminha, Cátia; Batalha, Vânia L; Xu, Yiming; Huo, Yuqing; Diógenes, Maria J; Sebastião, Ana M; Boison, Detlev

    2016-11-30

    Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adk fl/fl mice. These Adk Δbrain mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A 1 receptor (A 1 R)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A 2A receptor (A 2A R) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A 2A receptor activity in Adk Δbrain mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking A 2A R activity therapeutically can attenuate neurological symptoms in ADK deficiency. A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy

  12. Immune monitoring with a lymphocyte adenosine triphosphate assay in kidney transplant recipients treated with a calcineurin inhibitor.

    PubMed

    Sugiyama, Kentaro; Tsukaguchi, Mahoto; Toyama, Akira; Satoh, Hiroshi; Saito, Kazuhide; Nakagawa, Yuki; Takahashi, Kota; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko

    2014-06-01

    The adenosine triphosphate assay using peripheral lymphocytes may be useful to evaluate the risks of acute rejection and infection in kidney transplant patients. We used the adenosine triphosphate assay to evaluate differences between recipients who were treated with cyclosporine- or tacrolimus-based immunosuppressive therapy. Adenosine triphosphate levels were measured in peripheral CD4+ cells before and after transplant and were correlated with clinical outcomes in 45 kidney transplant recipients. These recipients received immunosuppressive therapy with either cyclosporine (23 patients) or tacrolimus (22 patients). Adenosine triphosphate levels were significantly lower in the cyclosporine- than tacrolimus-based therapy groups from 2 to 6 weeks after transplant. Adenosine triphosphate levels were similar between these groups before and 1 week after transplant. The frequency of cytomegalovirus infection was greater in the recipients who received cyclosporine (17 patients [74%]) than tacrolimus (6 patients [27%]; P ≦ .003). The frequency of acute rejection episodes was similar between the cyclosporine and tacrolimus groups. These observations suggest that cyclosporine-based immunosuppressive therapy causes excessive immunosuppression compared with tacrolimus-based therapy, evidenced by the lymphocyte adenosine triphosphate levels. The adenosine triphosphate assay using peripheral CD4+ cells may be a useful method for predicting the occurrence of cytomegalovirus infections in kidney transplant recipients.

  13. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  14. Coronary effects of diadenosine tetraphosphate resemble those of adenosine in anesthetized pigs: involvement of ATP-sensitive potassium channels.

    PubMed

    Nakae, I; Takahashi, M; Takaoka, A; Liu, Q; Matsumoto, T; Amano, M; Sekine, A; Nakajima, H; Kinoshita, M

    1996-07-01

    Diadenosine tetraphosphate (Ap4A) is an adenine nucleotide with vasodilatory properties. We examined the effects of Ap4A on coronary circulation in comparison with those of adenosine, its metabolite, in anesthetized pigs. Left atrial (LA) infusion of Ap4A at increasing doses of 100, 200, and 300 micrograms/kg/min increased coronary blood flow (CBF) and decreased systemic blood pressure (BP) and coronary vascular resistance (CVR). Ap4A had no effect on large epicardial coronary artery diameter (CoD). Likewise, LA infusion of adenosine at doses of 150 and 300 micrograms/kg/min increased CBF and decreased BP and coronary vascular resistance (CVR) but did not affect CoD. Therefore, the vasodilatory effects of Ap4A and adenosine were predominant in small coronary resistance vessels and negligible in large coronary arteries. Pretreatment with glibenclamide (2 mg/kg, intravenously, i.v.), a specific blocker of ATP-sensitive potassium channels (KATP), attenuated alterations of CBF, BP, and CVR induced by Ap4A and by adenosine. In contrast, treatment with cromakalim (0.5 microgram/kg/min i.v.), an activator of KATP, enhanced the coronary effects of Ap4A and adenosine. Therefore, the opening of KATP in the pig coronary circulation is involved in the in vivo vasodilatory effects of Ap4A and adenosine. Treatment with 8-phenyltheophylline (8-PT, 4 mg/kg i.v.), an adenosine receptor antagonist, suppressed CBF increases induced by Ap4A (20 micrograms/kg/min, intracoronarily, i.c.) and adenosine (5 micrograms/kg/min i.c.) by 68 and 90%, respectively. These findings suggest that the in vivo coronary effects of Ap4A are largely caused by the opening of KATP through rapid degradation to adenosine to activate adenosine receptors.

  15. Prospective Study of Adenosine on Atrioventricular Nodal Conduction in Pediatric and Young Adult Patients After Heart Transplantation.

    PubMed

    Flyer, Jonathan N; Zuckerman, Warren A; Richmond, Marc E; Anderson, Brett R; Mendelsberg, Tamar G; McAllister, Jennie M; Liberman, Leonardo; Addonizio, Linda J; Silver, Eric S

    2017-06-20

    Supraventricular tachycardia is common after heart transplantation. Adenosine, the standard therapy for treating supraventricular tachycardia in children and adults without transplantation, is relatively contraindicated after transplantation because of a presumed risk of prolonged atrioventricular block in denervated hearts. This study tested whether adenosine caused prolonged asystole after transplantation and if it was effective in blocking atrioventricular nodal conduction in these patients. This was a single-center prospective clinical study including healthy heart transplant recipients 6 months to 25 years of age presenting for routine cardiac catheterization during 2015 to 2016. After catheterization, a transvenous pacing catheter was placed and adenosine was given following a dose-escalation protocol until atrioventricular block was achieved. The incidence of clinically significant asystole (≥12 seconds after adenosine) was quantified. The effects of patient characteristics on adenosine dose required to produce atrioventricular block and duration of effect were also measured. Eighty patients completed adenosine testing. No patient (0%; 95% confidence interval, 0-3) required rescue ventricular pacing. Atrioventricular block was observed in 77 patients (96%; 95% confidence interval, 89-99). The median longest atrioventricular block was 1.9 seconds (interquartile range, 1.4-3.2 seconds), with a mean duration of adenosine effect of 4.3±2.0 seconds. No patient characteristic significantly predicted the adenosine dose to produce atrioventricular block or duration of effect. Results were similar across patient weight categories. Adenosine induces atrioventricular block in healthy pediatric and young adult heart transplant recipients with minimal risk when low initial doses are used (25 μg/kg; 1.5 mg if ≥60 kg) and therapy is gradually escalated. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02462941. © 2017 American Heart Association, Inc.

  16. PCNA mono-ubiquitination and activation of translesion DNA polymerases by DNA polymerase {alpha}.

    PubMed

    Suzuki, Motoshi; Niimi, Atsuko; Limsirichaikul, Siripan; Tomida, Shuta; Miao Huang, Qin; Izuta, Shunji; Usukura, Jiro; Itoh, Yasutomo; Hishida, Takashi; Akashi, Tomohiro; Nakagawa, Yoshiyuki; Kikuchi, Akihiko; Pavlov, Youri; Murate, Takashi; Takahashi, Takashi

    2009-07-01

    Translesion DNA synthesis (TLS) involves PCNA mono-ubiquitination and TLS DNA polymerases (pols). Recent evidence has shown that the mono-ubiquitination is induced not only by DNA damage but also by other factors that induce stalling of the DNA replication fork. We studied the effect of spontaneous DNA replication errors on PCNA mono-ubiquitination and TLS induction. In the pol1L868F strain, which expressed an error-prone pol alpha, PCNA was spontaneously mono-ubiquitinated. Pol alpha L868F had a rate-limiting step at the extension from mismatched primer termini. Electron microscopic observation showed the accumulation of a single-stranded region at the DNA replication fork in yeast cells. For pol alpha errors, pol zeta participated in a generation of +1 frameshifts. Furthermore, in the pol1L868F strain, UV-induced mutations were lower than in the wild-type and a pol delta mutant strain (pol3-5DV), and deletion of the RAD30 gene (pol eta) suppressed this defect. These data suggest that nucleotide misincorporation by pol alpha induces exposure of single-stranded DNA, PCNA mono-ubiquitination and activates TLS pols.

  17. Use of Antibody to Membrane Adenosine Triphosphatase in the Study of Bacterial Relationships1

    PubMed Central

    Whiteside, Theresa L.; De Siervo, August J.; Salton, Milton R. J.

    1971-01-01

    An antiserum to Ca2+-activated adenosine triphosphatase from membranes of Micrococcus lysodeikticus cross-reacted in agar gels with membrane adenosine triphosphatases from other pigmented micrococci and related species. Species of Micrococcus and Sarcina showed different levels of inhibition of adenosine triphosphatase activities in heterologous reactions with antiserum. Inter- and intraspecific relationships based on the inhibition reaction were compared with an independent parameter, namely the quantitative and qualitative composition of the bacterial membrane phospholipids and fatty acids. The guanine plus cytosine contents in the deoxyribonucleic acid of the species studied correlated well with the serological cross-reactivity of adenosine triphosphatases from their membranes. The types of cross-bridges found in the peptidoglycans of these cocci were also compared with the other properties. The results suggest that an antiserum specific for a major membrane protein may be a reliable and most useful adjunct in studying bacterial serotaxonomy. Images PMID:4323299

  18. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    PubMed Central

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of

  19. A comparison of N-methyl-D-aspartate-evoked release of adenosine and ( sup 3 H)norepinephrine from rat cortical slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoehn, K.; Craig, C.G.; White, T.D.

    1990-10-01

    Tetrodotoxin reduced N-methyl-D-aspartate (NMDA)-evoked release of adenosine by 35% but virtually abolished (3H)norepinephrine release. Although (3H)norepinephrine release from rat cortical slices evoked by 500 microM NMDA was abolished by 1.2 mM Mg++, which produces a voltage-sensitive, uncompetitive block of NMDA-channels, adenosine release was increased in the presence of Mg++. Partial depolarization with 12 mM K+ relieved the Mg++ block of 500 microM NMDA-evoked (3H)norepinephrine release but did not affect adenosine release, indicating that a Mg++ requirement for the adenosine release process per se cannot account for this discrepancy. NMDA was 33 times more potent in releasing adenosine than (3H)norepinephrine. Atmore » submaximal concentrations of NMDA (10 and 20 microM), adenosine release was augmented in Mg+(+)-free medium. Although a high concentration of the uncompetitive NMDA antagonist MK-801 ((+)-5-methyl-10,11,dihydro-5H-dibenzo(a,d)cyclohepten-5-10-imine maleate) (3 microM) blocked NMDA-evoked release of (3H)norepinephrine and adenosine, a lower concentration (300 nM) decreased NMDA-evoked (3H)norepinephrine release by 66% without affecting adenosine release. These findings suggest that maximal adenosine release occurs when relatively few NMDA receptors are activated, raising the possibility that spare receptors exist for NMDA-evoked adenosine release. Rather than acting as a protectant against excessive NMDA excitation, released adenosine might provide an inhibitory threshold which must be overcome for NMDA-mediated neurotransmission to proceed.« less

  20. CD73-Generated Adenosine Is Critical for Immune Regulation during Toxoplasma gondii Infection

    PubMed Central

    Mahamed, Deeqa A.; Toussaint, Leon E.

    2014-01-01

    As an obligate intracellular pathogen, the apicomplexan parasite Toxoplasma gondii evades immune system-mediated clearance by undergoing stage differentiation to persist indefinitely in susceptible hosts. Previously, we found that mice deficient in the ectoenzyme CD73, which generates adenosine in the extracellular matrix, were resistant to chronic toxoplasmosis after oral infection with T. gondii. Resistance in CD73 knockout mice was due to a delay in parasite differentiation in the central nervous system (CNS). To further clarify the role of CD73 and extracellular adenosine in T. gondii pathogenesis, we infected wild-type (WT) and CD73−/− mice with T. gondii cysts systemically by the intraperitoneal (i.p.) route. In contrast to oral infection, i.p. infected CD73−/− mice were highly susceptible to immune-mediated pathology, with significantly increased infiltration of neutrophils and T cells into the peritoneal cavity. Administration of the broad-spectrum adenosine receptor agonist 5′-N-ethylcarboxamidoadenosine (NECA) protected CD73−/− mice against T. gondii-induced immunopathology, suggesting that the absence of CD73-generated adenosine led to the increased susceptibility in these mice. Peritoneal exudate cells from infected CD73−/− mice produced higher levels of the inflammatory mediators nitric oxide, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β), without enhanced parasite killing or clearance. Bone marrow chimeras established that CD73 expression in both hematopoietic and nonhematopoietic compartments contributes to limiting T. gondii-induced immunopathology. In addition, mice deficient in the adenosine receptor A2A were more susceptible to immunopathology during intraperitoneal infection with T. gondii than WT mice. Thus, extracellular adenosine is a key immune regulator that limits collateral tissue damage due to an intracellular pathogen and promotes host survival. PMID:25452548

  1. Comparison between mono-bloc and bi-bloc mandibular advancement devices for obstructive sleep apnea.

    PubMed

    Lee, Woo Hyun; Wee, Jee Hye; Lee, Chul Hee; Kim, Min-Su; Rhee, Chae-Seo; Yun, Pil-Young; Yoon, In-Young; Kim, Jeong-Whun

    2013-11-01

    Although mandibular advancement device (MAD) is widely used, there are a few papers comparing the efficacy and compliance at the same time according to the type of MAD. The aim of this study is to compare the efficacy and compliance between mono-bloc and bi-bloc MAD in the treatment of obstructive sleep apnea (OSA). Ninety-three patients who treated with mono-bloc MAD and 60 patients with bi-bloc MAD from January 2007 through September 2011 were retrospectively enrolled. All the patients underwent full-night polysomnography(PSG) before and 3 months after MAD was applied. The response rate was significantly higher in the patients using mono-bloc than those using bi-bloc MAD (77.4 vs. 58.3 %; P = 0.012). In contrast, the compliance rate of MAD use was significantly higher in the patients using bi-bloc than those using mono-bloc MAD (68.8 vs. 83.3 %; P = 0.044) at 1 year. According to the severity of OSA, the response rate was significantly higher in severe OSA than in mild to moderate OSA (P = 0.033 for mono-bloc MAD and P = 0.048 for bi-bloc MAD). However, there was no difference in the compliance between mild to moderate OSA and severe OSA. Our study showed that mono-bloc MAD was superior to bi-bloc MAD in efficacy while bi-bloc MAD is superior to mono-bloc MAD in compliance. We propose that both the efficacy and compliance should be considered in using MAD for treatment of OSA.

  2. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-02-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. © 2014 The Authors. Journal of Cellular and

  3. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ‡

    PubMed Central

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1–20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8–14 days post-immunization, shortly before EAU expression, but ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses and this effect was γδ T cell-dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help improve the design of ADA- and AR-targeted therapies. PMID:26856700

  4. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise

    PubMed Central

    Madery, Brandon D.; Pike, Tasha L.; Eisenach, John H.; Dietz, Niki M.; Joyner, Michael J.; Wilkins, Brad W.

    2009-01-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (α-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml·min−1·100 mmHg−1) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (ΔFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 ± 29 and 314 ± 34 ml·min−1·100 mmHg−1 (10% and 20%, respectively). Aminophylline administration did not affect ΔFVC during hypoxic exercise at 10% (190 ± 29 ml·min−1·100 mmHg−1, P = 0.4) or 20% (287 ± 48 ml·min−1·100 mmHg−1, P = 0.3). In protocol 2, ΔFVC due to hypoxic exercise with phentolamine infusion was 313 ± 30 and 453 ± 41 ml·min−1·100 mmHg−1 (10% and 20% respectively). ΔFVC was similar at 10% (352 ± 39 ml·min−1·100 mmHg−1, P = 0.8) and 20% (528 ± 45 ml·min−1·100 mmHg−1, P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, ΔFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans. PMID:19661449

  5. Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate.

    PubMed

    Zeng, Qingwei; Wu, Xiaoqin; Wang, Jiangchuan; Ding, Xiaolei

    2017-04-28

    Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.

  6. TOXICOLOGY OF MONO- AND DI-ALKYLTIN CHLORIDES

    EPA Science Inventory

    Mono- and di-alkyltin chlorides are reactive compounds used in the production of stabilizers for polyvinyl chloride (PVC) plastics, primarily used for water distribution pipes. Health effects data were compiled or developed by the manufacturers for the EPA's HPV Challenge progra...

  7. TOXICOLOGY OF MONO- AND DI-ALKYLTIN CHLORIDES.

    EPA Science Inventory

    Mono- and di-alkyltin chlorides are reactive compounds used in the production of stabilizers for polyvinyl chloride (PVC) plastics, primarily used for water distribution pipes. Health effects data were compiled or developed by the manufacturers for the EPA's HPV Challenge progra...

  8. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite

    PubMed Central

    Jost, Ricarda; Pharmawati, Made; Lapis-Gaza, Hazel R.; Rossig, Claudia; Berkowitz, Oliver; Lambers, Hans; Finnegan, Patrick M.

    2015-01-01

    Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the ‘PHO regulon’ in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate. PMID:25697796

  9. Elevated synovial fluid concentration of adenosine triphosphate in dogs with osteoarthritis or sodium urate-induced synovitis of the stifle.

    PubMed

    Torres, Bryan T; Jimenez, David A; Budsberg, Steven C

    2016-07-19

    Adenosine triphosphate has been shown to stimulate nociceptive nerve terminals in joints. Elevated synovial fluid adenosine triphosphate concentrations as well as a correlation between synovial fluid adenosine triphosphate concentrations and osteoarthritic knee pain has been demonstrated in humans, but not yet in dogs. This study documented elevated synovial fluid adenosine triphosphate concentrations in the stifles of dogs with secondary osteoarthritis and urate-induced synovitis, as compared to normal stifles.

  10. Prebiotic synthesis and reactions of nucleosides and nucleotides

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1983-01-01

    The potential of diiminosuccinonitrile (DISN) as a prebiotic phosphorylating agent is studied. This compound is formed readily by the oxidation of diaminomaleonitrile, a tetramer of HCN. DISN is shown to produce the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 40 percent yield. The DISN-mediated phosphorylation of uridine to uridine monophosphate is determined not to proceed efficiently in aqueous solution. The reaction of DISN and BrCN with uridine-5'-phosphate and uridine is found to result in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides, respectively, and other reaction products resulting from an initial reaction at the 2' and 3'-hydroxyl groups. Homoionic montmorillonites were employed to study the clay mineral catalysis of the cyclization of adenosine-3'-phosphate.

  11. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    PubMed

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis

    PubMed Central

    Liddicoat, Brian J.; Hartner, Jochen C.; Piskol, Robert; Ramaswami, Gokul; Chalk, Alistair M.; Kingsley, Paul D.; Sankaran, Vijay G.; Wall, Meaghan; Purton, Louise E.; Seeburg, Peter H.; Palis, James; Orkin, Stuart H.; Lu, Jun; Li, Jin Billy; Walkley, Carl R.

    2016-01-01

    Adenosine deaminases that act on RNA (ADARs) convert adenosine residues to inosine in double-stranded RNA. In vivo, ADAR1 is essential for the maintenance of hematopoietic stem/progenitors. Whether other hematopoietic cell types also require ADAR1 has not been assessed. Using erythroid- and myeloid-restricted deletion of Adar1, we demonstrate that ADAR1 is dispensable for myelopoiesis but is essential for normal erythropoiesis. Adar1-deficient erythroid cells display a profound activation of innate immune signaling and high levels of cell death. No changes in microRNA levels were found in ADAR1-deficient erythroid cells. Using an editing-deficient allele, we demonstrate that RNA editing is the essential function of ADAR1 during erythropoiesis. Mapping of adenosine-to-inosine editing in purified erythroid cells identified clusters of hyperedited adenosines located in long 3’-untranslated regions of erythroid-specific transcripts and these are ADAR1-specific editing events. ADAR1-mediated RNA editing is essential for normal erythropoiesis. PMID:27373493

  13. Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiang-Wei, E-mail: xwjiang@semi.ac.cn; Li, Shu-Shen; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2014-05-12

    Performance limits of tunnel field-effect transistors based on mono-layer transition metal dichalcogenides are investigated through numerical quantum mechanical simulations. The atomic mono-layer nature of the devices results in a much smaller natural length λ, leading to much larger electric field inside the tunneling diodes. As a result, the inter-band tunneling currents are found to be very high as long as ultra-thin high-k gate dielectric is possible. The highest on-state driving current is found to be close to 600 μA/μm at V{sub g} = V{sub d} = 0.5 V when 2 nm thin HfO{sub 2} layer is used for gate dielectric, outperforming most of the conventional semiconductor tunnelmore » transistors. In the five simulated transition-metal dichalcogenides, mono-layer WSe{sub 2} based tunnel field-effect transistor shows the best potential. Deep analysis reveals that there is plenty room to further enhance the device performance by either geometry, alloy, or strain engineering on these mono-layer materials.« less

  14. Suitability of the adenosine antagonist istradefylline for the treatment of Parkinson's disease: pharmacokinetic and clinical considerations.

    PubMed

    Müller, Thomas

    2013-08-01

    Recent experimental and clinical research has shown that A2A adenosine receptor antagonism can bring about an improvement in the motor behavior of patients with Parkinson's disease. Istradefylline , a xanthine derivative, has the longest half-life of all the currently available A2A adenosine receptor antagonists; it can successfully permeate through the blood-brain barrier and has a high human A2A adenosine receptor affinity. In this article, the author discusses the potential role of A2A adenosine receptor antagonists in the treatment of Parkinson's disease through the evaluation of istradefylline. Specifically, the article reviews the clinical and pharmacokinetic information available to elucidate its therapeutic potential. A2A adenosine receptor antagonists are efficacious in combination with l-dopa. l-dopa has a complex pharmacokinetic behavior and causes long-term behavioral and metabolic side effects. Future research on A2A adenosine receptor antagonism should consider compounds like istradefylline as l-dopa and/or dopamine agonist-sparing treatment alternatives, since their clinical handling, safety and side-effect profile are superior to l-dopa and/or dopamine agonists. The current focus to demonstrate a specific dyskinesia-ameliorating efficacy of A2A adenosine receptor antagonism in clinical trials is risky, since the presentation of dyskinesia varies on a day-to-day basis and is considerably influenced by peripheral l-dopa metabolism. The demonstration of an antidyskinetic effect may convince authorities, but this is far less relevant in clinical practice as patients generally better tolerate dyskinesia than other phenomena and dopaminergic side effects.

  15. A metabolomic, geographic, and seasonal analysis of the contribution of pollen-derived adenosine to allergic sensitization.

    PubMed

    Mueller, Geoffrey A; Thompson, Peter M; DeRose, Eugene F; O'Connell, Thomas M; London, Robert E

    2016-12-01

    Studies on ragweed and birch pollen extracts suggested that the adenosine content is an important factor in allergic sensitization. However, exposure levels from other pollens and considerations of geographic and seasonal factors have not been evaluated. This study compared the metabolite profile of pollen species important for allergic disease, specifically measured the adenosine content, and evaluated exposure to pollen-derived adenosine. An NMR metabolomics approach was used to measure metabolite concentrations in twenty-six pollen extracts. Pollen count data was analyzed from five cities to model exposure. A principal component analysis of the various metabolites identified by NMR showed that pollen extracts could be differentiated primarily by sugar content: glucose, fructose, sucrose, and myo-inositol. In extracts of 10 mg of pollen/ml, the adenosine was highest for grasses (45 μM) followed by trees (23 μM) and weeds (19 μM). Pollen count data showed that tree pollen was typically 5-10 times the amount of other pollens. At the daily peaks of tree, grass, and weed season the pollen-derived adenosine exposure per day is likely to only be 1.1, 0.11, and 0.12 μg, respectively. Seasonal models of pollen exposure and respiration suggest that it would be a rare event limited to tree pollen season for concentrations of pollen-derived adenosine to approach physiological levels. Sugar content and other metabolites may be useful in classifying pollens. Unless other factors create localized exposures that are very different from these models, pollen-derived adenosine is unlikely to be a major factor in allergic sensitization.

  16. Three-Dimensional Analysis of dike/fault interaction at Mono Basin (California) using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    La Marra, D.; Battaglia, M.

    2013-12-01

    Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.

  17. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics.

    PubMed

    Urry, Emily; Landolt, Hans-Peter

    2015-01-01

    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention in rested and sleep-deprived states. Caffeine--the most often consumed stimulant in the world--blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction.

  18. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    PubMed Central

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  19. Adenosine A2A receptors and depression.

    PubMed

    El Yacoubi, Malika; Costentin, Jean; Vaugeois, Jean-Marie

    2003-12-09

    Adenosine and its analogues have been shown to induce "behavioral despair" in animal models believed to be relevant to depression. Recent data have shown that selective adenosine A2A receptor antagonists (e.g., SCH 58261, ZM241385, and KW6002) or genetic inactivation of the receptor was effective in reversing signs of behavioral despair in the tail suspension and forced swim tests, two screening procedures predictive of antidepressant activity. A2A antagonists were active in the tail suspension test using either mice previously screened for having high immobility scores or mice that were selectively bred for their spontaneous "helplessness" in this test. At stimulant doses, caffeine, a nonselective A1/A2A receptor antagonist, was effective in the forced swim test. The authors have hypothesized that the antidepressant-like effect of selective A2A antagonists is linked to an interaction with dopaminergic transmission, possibly in the frontal cortex. In support of this idea, administration of the dopamine D2 receptor antagonist haloperidol prevented antidepressant-like effects elicited by SCH 58261 in the forced swim test (putatively involving cortex), whereas it had no effect on stimulant motor effects of SCH 58261 (putatively linked to ventral striatum). The interaction profile of caffeine with haloperidol differed markedly from that of SCH 58261 in the forced swim and motor activity tests. Therefore, a clear-cut antidepressant-like effect could not be ascribed to caffeine. In conclusion, available data support the proposition that a selective blockade of the adenosine A2A receptor may be an interesting target for the development of effective antidepressant agents.

  20. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    PubMed

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  1. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds

    PubMed Central

    Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.

    2017-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060

  2. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE PAGES

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.; ...

    2017-06-30

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  3. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  4. Drainage reversals in Mono Basin during the late pliocene and Pleistocene

    USGS Publications Warehouse

    Reheis, M.C.; Stine, S.; Sarna-Wojcicki, A. M.

    2002-01-01

    Mono Basin, on the eastern flank of the central Sierra Nevada, is the highest of the large hydrographically closed basins in the Basin and Range province. We use geomorphic features, shoreline deposits, and basalt-filled paleochannels to reconstruct an early to middle Pleistocene record of shorelines and changing spillways of Lake Russell in Mono Basin. During this period of time, Lake Russell repeatedly attained altitudes between 2205 and 2280 m-levels far above the present surface of Mono Lake (~1950 m) and above its last overflow level (2188 m). The spill point of Lake Russell shifted through time owing to late Tertiary and Quaternary faulting and volcanism. During the early Pleistocene, the lake periodically discharged through the Mount Hicks spillway on the northeastern rim of Mono Basin and flowed northward into the Walker Lake drainage basin via the East Walker River. Paleochannels recording such discharge were incised prior to 1.6 Ma, possibly between 1.6 and 1.3 Ma, and again after 1.3 Ma (ages of basaltic flows that plugged the paleochannels). Faulting in the Adobe Hills on the southeastern margin of the basin eventually lowered the rim in this area to below the altitude of the Mount Hicks spillway. Twice after 0.76 Ma, and possibly as late as after 0.1 Ma, Lake Russell discharged southward through the Adobe Hills spillway into the Owens-Death Valley system of lakes. This study supports a pre-Pleistocene aquatic connection through Mono Basin between the hydrologically distinct Lahontan and Owens-Death Valley systems, as long postulated by biologists, and also confirms a probable link during the Pleistocene for species adapted to travel upstream in fast-flowing water.

  5. Mono Lake sediments preserve a record of recent environmental change

    NASA Astrophysics Data System (ADS)

    Meixnerova, J.; Betts, M.; Westacott, S.; Ingalls, M.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    Modern Mono Lake is a geochemically unique closed-basin, hypersaline soda lake. Since 1941, anthropogenic water diversions have decreased the lake's volume and water level, driving changes in water chemistry and ecology. Mono Lake sediments offer an opportunity to investigate the nature and extent of these changes. We analyzed a 70 cm sediment core from the center of Mono Lake recording the past 116 years of deposition. At the time of recovery, the entire core was dark green. 16S rRNA gene analysis indicated a sedimentary bacterial community dominated by Cyanobacteria. SEM imaging revealed abundant, well-preserved diatom frustules below 10 cm core depth, in contrast they are nearly absent above 10 cm depth. Fatty acid (FAME) biomarkers for diatoms and algal sterols were present throughout the core in varying concentrations. Phytol was exceptionally abundant in the core; ratios of phytol/C-18 FAME were commonly >200. The δ13Corg ranged between -17.5 and -20‰ in the lower 52 cm of the core while the upper part shows significant decrease of δ13Corg to -28‰. We interpret the shift in δ13Corg as an ecological transition from mainly diatoms in the lower core towards the green alga Picocystis, which is the main primary producer today and has a δ13Corg value of -32.5‰. The onset of this change dates back 23 years, which roughly coincides with the highest reported salinity, 88 g/L in 1995. We hypothesize that diatoms gradually became marginalized as a result of hypersaline conditions. We also observed a variety of trends that may be characterized as unique fingerprints of Mono Lake. The unusually high abundance of phytol was consistent with the core's pervasive green coloring and could potentially indicate a higher preservation potential of phytol under alkaline conditions. Throughout the core, δ15Norg fluctuated between +10 and +13‰. Such atypical enrichment in δ15Norg could be explained by NH4 dissociation and subsequent NH3 volatilization under high p

  6. The adenosine-triphosphatase system responsible for cation transport in electric organ: exclusion of phospholipids as intermediates

    PubMed Central

    Glynn, I. M.; Slayman, Carolyn W.; Eichberg, J.; Dawson, R. M. C.

    1965-01-01

    1. Subcellular fractions were prepared from the electric organs of Electrophorus and Torpedo and assayed for adenosine-triphosphatase activity. 2. Treatment of the `low-speed' fraction from Torpedo with m-urea gave an adenosine-triphosphatase preparation that was almost completely (98%) inhibited by ouabain (0·1mg./ml.) and dependent on the simultaneous presence of Na+ and K+. 3. The adenosine-triphosphatase preparations were exposed to [γ-32P]ATP for 30sec. in the presence of (i) Na+, (ii) K+, (iii) Na++K+ and (iv) Na++K++ouabain. No significant labelling of phosphatidic acid, triphosphoinositide or any other phospholipid was observed. 4. The results suggest that phospholipids do not act as phosphorylated intermediates in the `transport adenosine-triphosphatase' system of electric organ. PMID:14340060

  7. Adenosine inhibits activity of hypocretin/orexin neurons via A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect

    PubMed Central

    Liu, Zhong-Wu; Gao, Xiao-Bing

    2006-01-01

    Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition is due to depression of excitatory synaptic transmission to hypocretin/orexin neurons, since adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose-dependent, pertussis toxin-sensitive and mediated via A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH via inhibition of hypocretin/orexin neurons. PMID:17093123

  8. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart.

    PubMed

    Liu, G S; Richards, S C; Olsson, R A; Mullane, K; Walsh, R S; Downey, J M

    1994-07-01

    Agonists selective for the A1 adenosine receptor mimic the protective effect of ischaemic preconditioning against infarction in the rabbit heart. Unselective adenosine antagonists block this protection but, paradoxically, the A1 adenosine receptor selective antagonist 8-cyclopentyl- 1,3-dipropylxanthine (DPCPX) does not. The aim of this study was to test the hypothesis that the newly described A3 adenosine receptor, which has an agonist profile similar to the A1 receptor but is insensitive to DPCPX, might mediate preconditioning. Isolated rabbit hearts perfused with Krebs buffer experienced 30 min of regional ischaemia followed by 120 min of reperfusion. Infarct size was measured by tetrazolium staining. In control hearts infarction was 32.2(SEM 1.5)% of the risk zone. Preconditioning by 5 min ischaemia and 10 min reperfusion reduced infarct size to 8.8(2.3)%. Replacing the regional ischaemia with 5 min perfusion with 10 microM adenosine or 65 nM N6-[2-(4-aminophenyl)ethyl]adenosine (APNEA), an adenosine A3 receptor agonist, was equally protective. The unselective antagonist 8-p-sulphophenyl theophylline at 100 microM abolished protection by preconditioning, adenosine, and APNEA, but 200 nM DPCPX did not block protection by any of the interventions. Likewise the potent but unselective A3 receptor antagonist 8-(4-carboxyethenylphenyl)-1,3-dipropylxanthine (BW A1433) completely blocked protection from ischaemic preconditioning. Because protection against infarction afforded by ischaemic preconditioning, adenosine, or the A3 receptor agonist APNEA could not be blocked by DPCPX and because the potent A3 receptor antagonist BW A1433 blocked protection from ischaemic preconditioning, these data indicate that the protection of preconditioning is not exclusively mediated by the adenosine A1 receptor in rabbit heart and could involve the A3 receptor.

  9. Effects of nucleotides adenosine monophosphate and adenosine triphosphate in combination with L-arginine on male rabbit corpus cavernosum tissue.

    PubMed

    Hupertan, V; Neuzillet, Y; Stücker, O; Pons, C; Leammel, E; Lebret, T

    2012-12-01

    Purines and more specifically adenosine monophosphate (AMP) and adenosine triphosphate (ATP) have a strong relaxant effect on smooth muscle cells of the dog, rabbit and human corpus cavernosum, to approximately the same degree as nitric oxide (NO). However, purines are considered as modulators of erectile function rather than key mediators. This suggests that the use of purines combined with NO donors could be effective to treat some specific erectile disorders. The relaxation induced by the combination of l-arginine (Arg), a natural substrate for NO synthase, was assessed with a purine-nucleotide (AMP, ATP) on a rabbit corpus cavernosum model, to determine if these substances could potentiate each other's effect. When a pre-contraction was induced by phenylephrine, AMP alone induced a 43% CC relaxation rate and ATP alone a 26% rate. The relaxation rate induced by Arg was lower in comparison (8% at 5.10(-4) m vs. 25% at AMP 5.10(-4) m and 15% at ATP 5.10(-4) m). NO synthase inhibitor n-nitro-l-arginine did not modify the relaxing effect provoked by AMP suggesting that the mechanism of action of this nucleotide does not involve the NO pathway. The combination of Arg at 5.10(-4) m with either AMP or ATP at different doses ranging from 5.10(-4) to 10(-3) m significantly enhanced the relaxing response reaching rates of 62 and 80% respectively, leading to a synergistic effect. The present data indicate that a 'NO donor' combined with an 'adenosine donor' could be an effective therapeutic approach. © 2012 The Authors. International Journal of Andrology © 2012 European Academy of Andrology.

  10. Impaired cerebral microcirculation induced by ammonium chloride in rats is due to cortical adenosine release.

    PubMed

    Bjerring, Peter Nissen; Bjerrum, Esben Jannik; Larsen, Fin Stolze

    2018-06-01

    Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy, and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topically applied ammonium significantly increases periarteriolar adenosine tone on the brain surface of healthy rats and is associated with a disturbed microcirculation. Cranial windows were prepared in anaesthetized Wistar rats. The flow velocities were measured by speckle contrast imaging and compared before and after 30 min of exposure to 10 mM ammonium chloride applied on the brain surface. These flow velocities were compared with those for control groups exposed to artificial cerebrospinal fluid or ammonium plus an adenosine receptor antagonist. A flow preservation curve was obtained by analysis of flow responses to a haemorrhagic hypotensive challenge and during stepwise exsanguination. The periarteriolar adenosine concentration was measured with enzymatic biosensors inserted in the cortex. After ammonium exposure the arteriolar flow velocity increased by a median (interquartile range) of 21.7% (23.4%) vs. 7.2% (10.2%) in controls (n = 10 and n = 6, respectively, p <0.05), and the arteriolar surface area increased. There was a profound rise in the periarteriolar adenosine concentration. During the hypotensive challenge the flow decreased by 27.8% (14.9%) vs. 9.2% (14.9%) in controls (p <0.05). The lower limit of flow preservation remained unaffected, 27.7 (3.9) mmHg vs. 27.6 (6.4) mmHg, whereas the autoregulatory index increased, 0.29 (0.33) flow units per millimetre of mercury vs. 0.03 (0.21) flow units per millimetre of mercury (p <0.05). When ammonium exposure was combined with topical application of an adenosine receptor antagonist, the autoregulatory index was normalized. Vasodilation of the cerebral microcirculation during exposure to ammonium chloride is associated with an increase in the adenosine tone

  11. 40 CFR 721.10398 - Poly(oxy-1,2-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). 721.10398 Section 721.10398 Protection of...-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). (a) Chemical substance... poly(oxy-1,2-ethanediyl), .alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (PMN P-10-495) is...

  12. 40 CFR 721.10398 - Poly(oxy-1,2-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). 721.10398 Section 721.10398 Protection of...-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). (a) Chemical substance... poly(oxy-1,2-ethanediyl), .alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (PMN P-10-495) is...

  13. 40 CFR 721.10398 - Poly(oxy-1,2-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). 721.10398 Section 721.10398 Protection of...-ethanediyl),. alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (generic). (a) Chemical substance... poly(oxy-1,2-ethanediyl), .alpha., -monoalkyl ethers-.omega.-mono (hydrogen maleate)- (PMN P-10-495) is...

  14. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    NASA Astrophysics Data System (ADS)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  15. The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study

    PubMed Central

    Paul, Soumen; Zhang, Dali; Mzengeza, Shadreck; Ko, Ji Hyun

    2016-01-01

    ABSTRACT 2–18F‐fluorodeoxy‐D‐glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8‐cyclopentyl‐1,3‐dipropyl‐xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT‐702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole‐brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX‐ and ABT‐702 treated rats, relative to vehicle‐treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. PMID:27082948

  16. Valerian extract Ze 911 inhibits postsynaptic potentials by activation of adenosine A1 receptors in rat cortical neurons.

    PubMed

    Vissiennon, Z; Sichardt, K; Koetter, U; Brattström, A; Nieber, K

    2006-06-01

    In this study we evaluated the adenosine A1 receptor-mediated effect of valerian extract (Ze 911) on postsynaptic potentials (PSPs) in pyramidal cells of the rat cingulate cortex in a slice preparation. We first observed that N6-cyclopentyladenosine (CPA, 0.01 - 10 microM), an adenosine A1 receptor agonist, inhibited PSPs in a concentration-dependent manner. The CPA (10 microM)-induced inhibition was antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM), an adenosine A1 receptor antagonist. Ze 911 concentration dependently (0.1 - 15 mg/mL) inhibited PSPs in the presence of the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC, 0.2 microM) and adenosine deaminase (1 U/mL). The maximal inhibition induced by 10 mg/mL was completely antagonised by DPCPX (0.1 microM), an A1 receptor blocker. The data suggest that activation of adenosine A1 receptors is involved in the pharmacological effects of the valerian extract Ze 911.

  17. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2014-01-01

    Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  19. Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans.

    PubMed

    Polska, Elzbieta; Ehrlich, Paulina; Luksch, Alexandra; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold

    2003-07-01

    There is evidence from a variety of animal studies that the adenosine system plays a role in the control of intraocular pressure (IOP) and ocular blood flow. However, human data on the effect of adenosine on IOP and choroidal and optic nerve blood flow are not available. The effect of stepwise increases in doses of adenosine (10, 20, and 40 micro g/kg per minute, 30 minutes per infusion step) on optic nerve head blood flow, choroidal blood flow, and IOP was determined in a placebo-controlled double-masked clinical trial in 12 healthy male volunteers. Blood flow in the optic nerve head and choroid was measured with laser Doppler flowmetry. In addition, fundus pulsation amplitude in the macula (FPAM) and the optic nerve head (FPAO) were assessed with laser interferometry. Adenosine induced a small but significant decrease in IOP (at 40 microg/kg per minute: 12% +/- 13%), which was significant versus placebo (P = 0.046). In addition, adenosine induced a significant increase in choroidal blood flow (P < 0.001) and optic nerve head blood flow (P = 0.037), and FPAM (P = 0.0014) and tended to increase FPAO (P = 0.057). At the highest administered dose, the effect on choroidal hemodynamic parameters between 14% and 17%, whereas the effect on optic nerve hemodynamic parameters was between 3% and 11%. These data are consistent with adenosine inducing choroidal and optic nerve head vasodilatation and reducing IOP in healthy humans. Considering the neuroprotective properties of adenosine described in previous animal experiments the adenosine system is an attractive target system for therapeutic approaches in glaucoma.

  20. Benzodiazepines modulate the A2 adenosine binding sites on 108CC15 neuroblastoma X glioma hybrid cells.

    PubMed Central

    Snell, C. R.; Snell, P. H.

    1984-01-01

    We have demonstrated high affinity diazepam binding sites of the Ro5-4864 benzodiazepine receptor subtype on 108CC15 neuroblastoma X glioma hybrid cells. These cells were previously shown to have purinoceptors of the A2 adenosine subtype and we have now found that [3H]-adenosine can be displaced from this binding site by the benzodiazepines and related compounds that can also bind to the Ro5-4864 site. Diazepam was found to have no intrinsic activity at the A2-receptor as measured by the stimulation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production in this cell line. At concentrations sufficient to compete for the A2-receptor, diazepam was shown to facilitate, by approximately 2 fold, the stimulation of cyclic AMP by adenosine. These effects are not due to inhibition of adenosine uptake or phosphodiesterase activity, but are probably a consequence of modulation of the coupling of the A2-receptor to cyclic AMP production in this hybrid cell line. PMID:6150742

  1. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    PubMed

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  2. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  3. Vasodilatory responsiveness to adenosine triphosphate in ageing humans.

    PubMed

    Kirby, Brett S; Crecelius, Anne R; Voyles, Wyatt F; Dinenno, Frank A

    2010-10-15

    Endothelium-dependent vasodilatation is reduced with advancing age in humans, as evidenced by blunted vasodilator responsiveness to acetylcholine (ACh). Circulating adenosine triphosphate (ATP) has been implicated in the control of skeletal muscle vascular tone during mismatches in oxygen delivery and demand (e.g. exercise) via binding to purinergic receptors (P2Y) on the endothelium evoking subsequent vasodilatation, and ageing is typically associated with reductions in muscle blood flow under such conditions. Therefore, we tested the hypothesis that ATP-mediated vasodilatation is impaired with age in healthy humans. We measured forearm blood flow (venous occlusion plethysmography) and calculated vascular conductance (FVC) responses to local intra-arterial infusions of ACh, ATP, and sodium nitroprusside (SNP) before and during ascorbic acid (AA) infusion in 13 young and 13 older adults. The peak increase in FVC to ACh was significantly impaired in older compared with young adults (262 ± 71% vs. 618 ± 97%; P < 0.05), and this difference was abolished during AA infusion (510 ± 82% vs. 556 ± 71%; not significant, NS). In contrast, peak FVC responses were not different between older and young adults to either ATP (675 ± 105% vs. 734 ± 126%) or SNP (1116 ± 111% vs. 1138 ± 148%) and AA infusion did not alter these responses in either age group (both NS). In another group of six young and six older adults, we determined whether vasodilator responses to adenosine and ATP were influenced by P1-receptor blockade via aminophylline. The peak FVC responses to adenosine were not different in young (350 ± 65%) versus older adults (360 ± 80%), and aminophylline blunted these responses by ∼50% in both groups. The peak FVC responses to ATP were again not different in young and older adults, and aminophylline did not impact the vasodilatation in either group. Thus, in contrast to the observed impairments in ACh responses, the vasodilatory response to exogenous ATP is not

  4. Phosphatidic acid and phosphatidylinositol labelling in adipose tissue. The role of endogenously formed adenosine.

    PubMed

    Schimmel, R J; Honeyman, T W; McMahon, K K

    1983-05-15

    Incorporation of [32P]Pi into phosphatidic acid and phosphatidylinositol of hamster epididymal adipocytes was partially inhibited by 3-isobutyl-1-methylxanthine. This effect of 3-isobutyl-1-methylxanthine was antagonized by isopropyl-N6-phenyladenosine but not by 2',5'-dideoxyadenosine, prostaglandin E1 or clonidine. N6-Phenylisopropyladenosine did not affect incorporation of [32P]Pi into phosphatidic acid or phosphatidylinositol when 3-isobutyl-1-methylxanthine was not present. In contrast with 3-isobutyl-1-methylxanthine inhibition of [32P]Pi incorporation into phospholipids, which was blocked only by N6-phenylisopropyladenosine, accelerated lipolysis was blocked by prostaglandin E1, clonidine and 2',5'-dideoxyadenosine as well as by N6-phenylisopropyladenosine. Phospholipid labelling was also decreased in the presence of adenosine deaminase, but not in the presence of isoprenaline (isoproterenol). The stimulatory effect of N6-phenylisopropyladenosine on [32P]Pi incorporation into phospholipids in cells exposed to 3-isobutyl-1-methylxanthine was evident as soon as 3 min after addition of the adenosine analogue and maximum 10 min after its addition. As observed by others, [32P]Pi incorporation into phospholipids was increased by the alpha 1-selective agonist methoxamine. The stimulatory effect of methoxamine occurred with a time course similar to that of N6-phenylisopropyladenosine and was present at nearly equal magnitude in the absence or presence of 3-isobutyl-1-methylxanthine. The inhibitory effects of 3-isobutyl-1-methylxanthine and adenosine deaminase on phospholipid labelling are attributed to blockade of the action, or to the enzymic removal, of adenosine formed in and released from the fat-cells during their incubation. Supporting this view is the selective reversal of the actions of 3-isobutyl-1-methylxanthine and of adenosine deaminase by N6-phenylisopropyladenosine. These findings suggest an important role for endogenous adenosine in regulation of

  5. Anandamide enhances extracellular levels of adenosine and induces sleep: an in vivo microdialysis study.

    PubMed

    Murillo-Rodriguez, Eric; Blanco-Centurion, Carlos; Sanchez, Cristina; Piomelli, Daniele; Shiromani, Priyattam J

    2003-12-15

    The principal component of marijuana, delta-9-tetrahydrocannabinol increases sleep in humans. Endogenous cannabinoids, such as N-arachidonoylethanolamine (anandamide), also increase sleep. However, the mechanism by which these molecules promote sleep is not known but might involve a sleep-inducing molecule such as adenosine. Microdialysis samples were collected from the basal forebrain in order to detect levels of adenosine before and after injection of anandamide. Rats were implanted for sleep studies, and a cannula was placed in the basal forebrain to collect microdialysis samples. Samples were analyzed using high-performance liquid chromatography. Basic neuroscience research laboratory. Three-month-old male F344 rats. At the start of the lights-on period, animals received systemic injections of dimethyl sulfoxide (vehicle), anandamide, SR141716A (cannabinoid receptor 1 [CB1] antagonist), or SR141716A and anandamide. One hour after injections, microdialysis samples were collected (5 microL) from the basal forebrain every hour over a 20-minute period for 5 hours. The samples were immediately analyzed via high-performance liquid chromatography for adenosine levels. Sleep was also recorded continuously over the same period. Anandamide increased adenosine levels compared to vehicle controls with the peak levels being reached during the third hour after drug injection. There was a significant increase in slow-wave sleep during the third hour. The induction in sleep and the rise in adenosine were blocked by the CB1-receptor antagonist, SR141716A. Anandamide increased adenosine levels in the basal forebrain and also increased sleep. The soporific effects of anandamide were mediated by the CB1 receptor, since the effects were blocked by the CB1-receptor antagonist. These findings identify a potential therapeutic use of endocannabinoids to induce sleep in conditions where sleep may be severely attenuated.

  6. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  7. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  8. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  9. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  10. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  11. Modification and performance evaluation of a mono-valve engine

    NASA Astrophysics Data System (ADS)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  12. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells

    PubMed Central

    Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia

    2014-01-01

    In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2×7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2×7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2×7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling—p53 increase, AMPK activation, and PARP cleavage—as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. PMID:25103241

  13. An enzyme-free strategy for ultrasensitive detection of adenosine using a multipurpose aptamer probe and malachite green.

    PubMed

    Zhao, Hui; Wang, Yong-Sheng; Tang, Xian; Zhou, Bin; Xue, Jin-Hua; Liu, Hui; Liu, Shan-Du; Cao, Jin-Xiu; Li, Ming-Hui; Chen, Si-Han

    2015-08-05

    We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 21 CFR 184.1505 - Mono- and diglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in the... fatty acids, and free glycerin that contains at least 90 percent-by-weight glycerides. (b) The...

  15. 21 CFR 184.1505 - Mono- and diglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Mono- and diglycerides. 184.1505 Section 184.1505 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE...

  16. Characterization of the swine adipocyte A1 adenosine receptor using an optimized assay system.

    PubMed

    Dong, Q; Schuchman, J; Carey, G B

    1994-07-01

    The radioligand binding assay of A1 adenosine receptors in adipocyte crude plasma membrane from Yucatan miniature swine was optimized by evaluating 17 factors involved in the assay. Significant effects of CHAPS, adenosine deaminase, EDTA, pre-rinsing glass fiber filters and pH were found for the binding measurements. Using the optimized procedure, [3H]8-cyclopentyl-1,3-dipropylxanthine, ([3H]-DPCPX) binding to A1 adenosine receptors in swine subcutaneous adipocyte crude plasma membrane was measured; Bmax and Kd values were 479 +/- 77 fmol/mg protein and 0.87 +/- 0.10 nM, respectively. Values for mesenteric adipose tissue from sedentary swine and subcutaneous adipose tissue from exercise-trained swine were also measured.

  17. Development of a human-specific B. thetaiotaomicron IMS/ATP assay for measuring viable human contamination in surface waters in Baja California, Mexico

    EPA Science Inventory

    Immunomagnetic separation/adenosine triphosphate (IMS/ATP) assays utilize paramagnetic beads and target-specific antibodies to isolate target organisms. Following isolation, adenosine tri-phosphate (ATP) is extracted from the target population and quantified. An inversely-couple...

  18. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    PubMed

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  19. Adenosine A3 receptors regulate heart rate, motor activity and body temperature

    PubMed Central

    Yang, Jiangning; Wang, Yingqing; Garcia-Roves, Pablo; Björnholm, Marie; Fredholm, Bertil B.

    2010-01-01

    Aim We wanted to examine the phenotype of mice that lack the adenosine A3 receptor (A3R). Methods We examined the heart rate, body temperature and locomotion continuously by telemetry over several days. In addition the effect of the adenosine analogue R - N6- phenylisopropyl-adenosine (R-PIA) was examined. In addition, we examined heat production and food intake. Results We found that the marked diurnal variation in activity, heart rate and body temperature, with markedly higher values at night than during day time, was reduced in the A3R knockout mice. Surprisingly, the reduction in heart rate, activity and body temperature seen after injection of R-PIA in wild type mice was virtually eliminated in the A3R knock-out mice. The marked reduction in activity was associated with a decreased heat production, as expected. However, the A3R knock-out mice, surprisingly, had a higher food intake but no difference in body weight compared to wild type mice. Conclusions The mice lacking adenosine A3 receptors exhibit a surprisingly clear phenotype with changes in e.g. diurnal rhythm and temperature regulation. Whether these effects are due to a physiological role of A3 receptors in these processes or if they represent a role in development remains to be elucidated. PMID:20121716

  20. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  1. Isolated adrenal cells: adrenocorticotropic hormone, calcium, steroidogenesis, and cyclic adenosine monophosphate.

    PubMed

    Sayers, G; Beall, R J; Seelig, S

    1972-03-10

    Corticosterone production by isolated adrenal cells in response to adrenocorticotropic hormone is reduced when the cells are incubated in a medium that contains no calcium. This reduction is associated with an equal reduction of accumulation of cyclic adenosine monophosphate. Production of corticosterone and accumulation of cyclic adenosine monophosphate are increased when the calcium concentration in the medium is increased (from zero to 7.65 millimolar). This is in contrast to the situation in "subcellular membrane fragments" of adrenal tissue where high calcium in the medium (> 1.0 millimolar) inhibits cyclic adenosine monophosphate accumulation. We propose that adenyl cyclase in the intact plasma membrane is located in a compartment wherein calcium concentration is low and remains unaffected by the concentration of calcium in the extracellular space. It is proposed that, as the concentration of calcium in the incubation medium is increased from zero to 7.65 millimolar, the strength of the signal generated by the interaction of adrenocorticotropic hormone with its receptor and transmitted to the adenyl cyclase compartment is proportionately increased.

  2. Mono-hydroxy methoxychlor alters levels of key sex steroids and steroidogenic enzymes in cultured mouse antral follicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Zelieann R., E-mail: zelieann@gmail.co; Leslie, Traci C., E-mail: traci.leslie@gmail.co; Hatfield, Kimberly P., E-mail: kpm9786@yahoo.co

    Methoxychlor (MXC) is an organochlorine pesticide that reduces fertility in female rodents by decreasing antral follicle numbers and increasing follicular death. MXC is metabolized in the body to mono-hydroxy MXC (mono-OH). Little is known about the effects of mono-OH on the ovary. Thus, this work tested the hypothesis that mono-OH exposure decreases production of 17{beta}-estradiol (E{sub 2}) by cultured mouse antral follicles. Antral follicles were isolated from CD-1 mice (age 35-39 days) and exposed to dimethylsulfoxide (DMSO), or mono-OH (0.1-10 {mu}g/mL) for 96 h. Media and follicles were collected for analysis of sex steroid levels and mRNA expression, respectively. Mono-OHmore » treatment (10 {mu}g/mL) decreased E{sub 2} (DMSO: 3009.72 {+-} 744.99 ng/mL; mono-OH 0.1 {mu}g/mL: 1679.66 {+-} 461.99 ng/mL; 1 {mu}g/mL: 1752.72 {+-} 532.41 ng/mL; 10 {mu}g/mL: 45.89 {+-} 33.83 ng/mL), testosterone (DMSO: 15.43 {+-} 2.86 ng/mL; mono-OH 0.1 {mu}g/mL: 17.17 {+-} 4.71 ng/mL; 1 {mu}g/mL: 13.64 {+-} 3.53 ng/mL; 10 {mu}g/mL: 1.29 {+-} 0.23 ng/mL), androstenedione (DMSO: 1.92 {+-} 0.34 ng/mL; mono-OH 0.1 {mu}g/mL: 1.49 {+-} 0.43 ng/mL; 1 {mu}g/mL: 0.64 {+-} 0.31 ng/mL; 10 {mu}g/mL: 0.12 {+-} 0.06 ng/mL) and progesterone (DMSO: 24.11 {+-} 4.21 ng/mL; mono-OH 0.1 {mu}g/mL: 26.77 {+-} 4.41 ng/mL; 1 {mu}g/mL: 20.90 {+-} 3.75 ng/mL; 10 {mu}g/mL: 9.44 {+-} 2.97 ng/mL) levels. Mono-OH did not alter expression of Star, Hsd3b1, Hsd17b1 and Cyp1b1, but it did reduce levels of Cyp11a1, Cyp17a1 and Cyp19a1 mRNA. Collectively, these data suggest that mono-OH significantly decreases levels of key sex steroid hormones and the expression of enzymes required for steroidogenesis.« less

  3. Adenosine A1-Dopamine D1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron.

    PubMed

    Rivera-Oliver, Marla; Moreno, Estefanía; Álvarez-Bagnarol, Yocasta; Ayala-Santiago, Christian; Cruz-Reyes, Nicole; Molina-Castro, Gian Carlo; Clemens, Stefan; Canela, Enric I; Ferré, Sergi; Casadó, Vicent; Díaz-Ríos, Manuel

    2018-05-24

    While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A 1 -dopamine D 1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D 1 receptor-mediated signaling. A 1 -D 1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.

  4. Age of the Mono Lake excursion and associated tephra

    USGS Publications Warehouse

    Benson, L.; Liddicoat, J.; Smoot, J.; Sarna-Wojcicki, A.; Negrini, R.; Lund, S.

    2003-01-01

    The Mono Lake excursion (MLE) is an important time marker that has been found in lake and marine sediments across much of the Northern Hemisphere. Dating of this event at its type locality, the Mono Basin of California, has yielded controversial results with the most recent effort concluding that the MLE may actually be the Laschamp excursion (Earth Planet. Sci. Lett. 197 (2002) 151). We show that a volcanic tephra (Ash #15) that occurs near the midpoint of the MLE has a date (not corrected for reservoir effect) of 28,620 ?? 300 14C yr BP (??? 32,400 GISP2 yr BP) in the Pyramid Lake Basin of Nevada. Given the location of Ash #15 and the duration of the MLE in the Mono Basin, the event occurred between 31,500 and 33,300 GISP2 yr BP, an age range consistent with the position and age of the uppermost of two paleointensity minima in the NAPIS-75 stack that has been associated with the MLE (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009). The lower paleointensity minimum in the NAPIS-75 stack is considered to be the Laschamp excursion (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009).

  5. Bacterial oxidation of methyl bromide in Mono Lake, California

    USGS Publications Warehouse

    Connell, T.L.; Joye, S.B.; Miller, L.G.; Oremland, R.S.

    1997-01-01

    The oxidation of methyl bromide (MeBr) in the water column of Mono Lake, CA, was studied by measuring the formation of H14CO3 from [14C]MeBr. Potential oxidation was detected throughout the water column, with highest rates occurring in the epilimnion (5-12 m depth). The oxidation of MeBr was eliminated by filter-sterilization, thereby demonstrating the involvement of bacteria. Vertical profiles of MeBr activity differed from those obtained for nitrification and methane oxidation, indicating that MeBr oxidation is not simply a co-oxidation process by either nitrifiers or methanotrophs. Furthermore, specific inhibitors of methane oxidation and/or nitrification (e.g., methyl fluoride, acetylene, allyl sulfide) had no effect upon the rate of MeBr oxidation in live samples. Of a variety of potential electron donors added to Mono Lake water, only trimethylamine resulted in the stimulation of MeBr oxidation. Cumulatively, these results suggest that the oxidation of MeBr in Mono Lake waters is attributable to trimethylamine-degrading methylotrophs. Neither methyl chloride nor methanol inhibited the oxidation of [14C]MeBr in live samples, indicating that these bacteria directly oxidized MeBr rather than the products of MeBr nucleophilic substitution reactions.

  6. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats.

    PubMed

    Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O

    2012-01-10

    Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.

  7. Lung injury pathways: Adenosine receptor 2B signaling limits development of ischemic bronchiolitis obliterans organizing pneumonia.

    PubMed

    Densmore, John C; Schaid, Terry R; Jeziorczak, Paul M; Medhora, Meetha; Audi, Said; Nayak, Shraddha; Auchampach, John; Dwinell, Melinda R; Geurts, Aron M; Jacobs, Elizabeth R

    2017-02-01

    Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague-Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A 2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A 2A (A 2A AR) and A 2B adenosine receptor (A 2B AR) mRNA and protein were quantified. Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A 2B AR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A 2A AR mRNA and protein concentrations remained unchanged following ischemia. A 2B AR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. Increased A 2B AR and adenosine following unilateral lung ischemia as well as more BOOP in A 2B AR mutant rats implicate a protective role for A 2B AR signaling in countering ischemic lung injury.

  8. Lung Injury Pathways: Adenosine Receptor 2B Signaling Limits Development of Ischemic Bronchiolitis Obliterans Organizing Pneumonia

    PubMed Central

    Densmore, John C.; Schaid, Terry R.; Jeziorczak, Paul M.; Medhora, Meetha; Audi, Said; Nayak, Shraddha; Auchampach, John; Dwinell, Melinda R.; Geurts, Aron M.; Jacobs, Elizabeth R.

    2018-01-01

    Purpose/Aim of the study Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. Materials and Methods Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strain containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. Results 24h after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7d, and 4h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. Conclusions Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury. PMID:28266889

  9. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    PubMed

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  10. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression

    PubMed Central

    López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2018-01-01

    Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression. PMID:29910727

  11. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.

    PubMed

    Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga

    2011-04-01

    Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.

  12. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  13. Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium.

    PubMed

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-06-01

    To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.

  14. Tubes, Mono Jets, Squeeze Out and CME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longacre, R.

    Glasma Flux Tubes, Mono Jets with squeeze out flow around them plus the Chiral Magnetic Effect(CME) are physical phenomenon that generate two particle correlation with respect to the reaction plane in mid-central 20% to 30% Au-Au collision √sNN = 200.0 GeV measured at RHIC.

  15. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev

    2016-01-01

    Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered

  16. Strenuous running exacerbates knee cartilage erosion induced by low amount of mono-iodoacetate in rats.

    PubMed

    Saito, Ryusuke; Muneta, Takeshi; Ozeki, Nobutake; Nakagawa, Yusuke; Udo, Mio; Yanagisawa, Katsuaki; Tsuji, Kunikazu; Tomita, Makoto; Koga, Hideyuki; Sekiya, Ichiro

    2017-01-25

    It is still debated whether strenuous running in the inflammatory phase produces beneficial or harmful effect in rat knees. We examined (1) the dropout rate of rats during a 30-km running protocol, (2) influences of strenuous running and/or low amounts of mono-iodoacetate injection on cartilage, and (3) the effect of strenuous running on synovitis. Rats were forced to run 30 km over 6 weeks and the dropout rate was examined. One week after 0.1 mg mono-iodoacetate was injected into the right knee, rats were forced to run either 15 km or not run at all over 3 weeks, after which knee cartilage was evaluated. Synovium at the infrapatellar fat pad was also examined histologically. Even though all 12 rats run up to 15 km, only 6 rats completed 30 km of running. Macroscopically, 0.1 mg mono-iodoacetate induced erosion at the tibial cartilage irrespective of 15 km of running. Histologically, 0.1 mg mono-iodoacetate induced loss of cartilage matrix in the tibial cartilage, and an additional 15 km of strenuous running significantly exacerbated the loss. Synovitis caused by mono-iodoacetate improved after running. Only 50% of rats completed 30 km of running because of foot problems. Strenuous running further exacerbated tibial cartilage erosion but did not influence synovitis induced by mono-iodoacetate.

  17. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine

    PubMed Central

    Zylka, Mark J.; Sowa, Nathaniel A.; Taylor-Blake, Bonnie; Twomey, Margaret A.; Herrala, Annakaisa; Voikar, Vootele; Vihko, Pirkko

    2008-01-01

    SUMMARY Thiamine monophosphatase (TMPase, also known as Fluoride-Resistant Acid Phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of Prostatic Acid Phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent anti-nociceptive, anti-hyperalgesic and anti-allodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5’-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain. PMID:18940592

  18. Design, synthesis and biological evaluation of a bivalent micro opiate and adenosine A1 receptor antagonist.

    PubMed

    Mathew, Smitha C; Ghosh, Nandita; By, Youlet; Berthault, Aurélie; Virolleaud, Marie-Alice; Carrega, Louis; Chouraqui, Gaëlle; Commeiras, Laurent; Condo, Jocelyne; Attolini, Mireille; Gaudel-Siri, Anouk; Ruf, Jean; Parrain, Jean-Luc; Rodriguez, Jean; Guieu, Régis

    2009-12-01

    The cross talk between different membrane receptors is the source of increasing research. We designed and synthesized a new hetero-bivalent ligand that has antagonist properties on both A(1) adenosine and mu opiate receptors with a K(i) of 0.8+/-0.05 and 0.7+/-0.03 microM, respectively. This hybrid molecule increases cAMP production in cells that over express the mu receptor as well as those over expressing the A(1) adenosine receptor and reverses the antalgic effects of mu and A(1) adenosine receptor agonists in animals.

  19. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    NASA Astrophysics Data System (ADS)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it

  20. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  1. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  2. [Technique of complex mammary irradiation: Mono-isocentric 3D conformational radiotherapy and helical tomotherapy].

    PubMed

    Vandendorpe, B; Guilbert, P; Champagne, C; Antoni, T; Nguyen, T D; Gaillot-Petit, N; Servagi Vernat, S

    2017-12-01

    To evaluate the dosimetric contribution of helical tomotherapy for breast cancers compared with conformal radiotherapy in mono-isocentric technique. For 23 patients, the dosimetric results in mono-isocentric 3D conformational radiotherapy did not satisfy the constraints either of target volumes nor organs at risk. A prospective dosimetric comparison between mono-isocentric 3D conformational radiotherapy and helical tomotherapy was therefore carried out. The use of helical tomotherapy showed a benefit in these 23 patients, with either an improvement in the conformity index or homogeneity, but with an increase in low doses. Of the 23 patients, two had pectus excavatum, five had past thoracic irradiation and two required bilateral irradiation. The other 14 patients had a combination of morphology and/or indication of lymph node irradiation. For these patients, helical tomotherapy was therefore preferred to mono-isocentric 3D conformational radiotherapy. Tomotherapy appears to provide better homogeneity and tumour coverage. This technique of irradiation may be justified in the case of morphological situations such as pectus exavatum and in complex clinical situations. In other cases, conformal radiotherapy in mono-isocentric technique remains to be favoured. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  3. Roles of the Adenosine Receptor and CD73 in the Regulatory Effect of γδ T Cells

    PubMed Central

    Liang, Dongchun; Zuo, Aijun; Shao, Hui; Chen, Mingjiazi; Kaplan, Henry J.; Sun, Deming

    2014-01-01

    The adenosine A2A receptor (A2AR), the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses. PMID:25268760

  4. Prevalence of ECG changes during adenosine stress and its association with perfusion defect on myocardial perfusion scintigraphy.

    PubMed

    Taywade, Sameer K; Ramaiah, Vijayaraghavan L; Basavaraja, Harish; Venkatasubramaniam, Parameswaran R; Selvakumar, Job

    2017-04-01

    Myocardial perfusion scintigraphy (MPS) is a valuable, noninvasive imaging modality in the evaluation of patients with coronary artery disease. Adenosine stress may occasionally be associated with ECG changes. This study evaluated the strength of association between adenosine stress-related ECG changes and perfusion defects on Tc-MPS. 117 (mean age: 61.25±9.27 years; sex: men 87, women 30) patients with known/suspected coronary artery disease underwent adenosine stress MPS. ECG was monitored continuously during adenosine stress for ST-depression. On the basis of the summed difference score, reversible perfusion defects were categorized as follows: normal: less than 4, mild: 4-8, moderate: 9-13, and severe: more than 13. ST-depression was observed in 27/117 (23.1%) and reversible perfusion defects were observed in 18/27 (66.66%) patients. 2/27, 6/27, and 10/27 patients had mild, moderate, and severe ischemia, respectively. 9/27 patients had normal perfusion. ECG changes and perfusion defects showed a moderate strength of association (correlation coefficient r=0.35, P=0.006). The sensitivity, specificity, positive predictive value, and negative predictive value of ECG findings for prediction of ischemia were 35.29, 86.36, 67.67, and 63.33%, respectively. ECG changes during adenosine stress are not uncommon. It shows a moderate strength of association with reversible perfusion defects. ECG changes during adenosine merit critical evaluation of MPS findings.

  5. Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.

    PubMed

    Tune, J D; Richmond, K N; Gorman, M W; Feigl, E O

    2000-06-27

    Inhibition of nitric oxide (NO) synthesis results in very little change in coronary blood flow, but this is thought to be because cardiac adenosine concentration increases to compensate for the loss of NO vasodilation. Accordingly, in the present study, adenosine measurements were made before and during NO synthesis inhibition during exercise. Experiments were performed in chronically instrumented dogs at rest and during graded treadmill exercise before and during inhibition of NO synthesis with N(omega)-nitro-L-arginine (L-NNA, 35 mg/kg IV). Before inhibition of NO synthesis, myocardial oxygen consumption increased approximately 3.7-fold, and coronary blood flow increased approximately 3.2-fold from rest to the highest level of exercise, and this was not changed by NO synthesis inhibition. Coronary venous oxygen tension was modestly reduced by L-NNA at all levels of myocardial oxygen consumption. However, the slope of the relationship between myocardial oxygen consumption and coronary venous oxygen tension was not altered by L-NNA. Inhibition of NO synthesis did not increase coronary venous plasma or estimated interstitial adenosine concentration. During exercise, estimated interstitial adenosine remained well below the threshold concentration necessary for coronary vasodilation before or after L-NNA. NO causes a modest coronary vasodilation at rest and during exercise but does not act as a local metabolic vasodilator. Adenosine does not mediate a compensatory local metabolic coronary vasodilation when NO synthesis is inhibited.

  6. 21 CFR 582.4505 - Mono- and diglycerides of edible fats or oils, or edible fat-forming acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Mono- and diglycerides of edible fats or oils, or... GENERALLY RECOGNIZED AS SAFE Emulsifying Agents § 582.4505 Mono- and diglycerides of edible fats or oils, or edible fat-forming acids. (a) Product. Mono- and diglycerides of edible fats or oils, or edible fat...

  7. Emotions in freely varying and mono-pitched vowels, acoustic and EGG analyses.

    PubMed

    Waaramaa, Teija; Palo, Pertti; Kankare, Elina

    2015-12-01

    Vocal emotions are expressed either by speech or singing. The difference is that in singing the pitch is predetermined while in speech it may vary freely. It was of interest to study whether there were voice quality differences between freely varying and mono-pitched vowels expressed by professional actors. Given their profession, actors have to be able to express emotions both by speech and singing. Electroglottogram and acoustic analyses of emotional utterances embedded in expressions of freely varying vowels [a:], [i:], [u:] (96 samples) and mono-pitched protracted vowels (96 samples) were studied. Contact quotient (CQEGG) was calculated using 35%, 55%, and 80% threshold levels. Three different threshold levels were used in order to evaluate their effects on emotions. Genders were studied separately. The results suggested significant gender differences for CQEGG 80% threshold level. SPL, CQEGG, and F4 were used to convey emotions, but to a lesser degree, when F0 was predetermined. Moreover, females showed fewer significant variations than males. Both genders used more hypofunctional phonation type in mono-pitched utterances than in the expressions with freely varying pitch. The present material warrants further study of the interplay between CQEGG threshold levels and formant frequencies, and listening tests to investigate the perceptual value of the mono-pitched vowels in the communication of emotions.

  8. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor.

    PubMed Central

    MacGregor, D. G.; Miller, W. J.; Stone, T. W.

    1993-01-01

    1. Systemic injections of kainic acid, 10 mg kg-1, into adult rats resulted in lesions in the hippocampus, as assessed by peripheral benzodiazepine ligand binding. Co-administration of clonazepam at 1 mg kg-1 or 0.2 mg kg-1 prevented major seizures associated with kainate injections, but did not alter significantly the production of hippocampal damage. 2. The co-administration of the adenosine A1 agonist R-phenylisopropyladenosine (R-PIA, 25 micrograms kg-1, i.p.) abolished the lesions induced by kainic acid. 3. The presence of the selective A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (250 or 50 micrograms kg-1, i.p.) abolished the R-PIA neuroprotective action. 4. The A1/A2 antagonist, 8-(p-sulphophenyl)theophylline (20 mg kg-1, i.p.) which cannot cross the blood brain barrier, did not alter significantly the neuroprotective action of R-PIA, indicating that the neuroprotective action of the purine may be predominantly central. 5. The time course of the neuroprotection was also examined. R-PIA was effective when administered 2 h before or after kainate administration. 6. The results emphasise the potential utility of systemically active adenosine A1 receptor ligands in reducing CNS gliosis induced by the activation of excitatory amino acid receptors. PMID:8220909

  9. Self-association and base pairing of guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide solution measured by 15N nuclear magnetic resonance spectroscopy.

    PubMed Central

    Dyllick-Brenzinger, C; Sullivan, G R; Pang, P P; Roberts, J D

    1980-01-01

    The self-association of guanosine, cytidine, and adenosine and base pairing between guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide have been investigated by the variation of their 15N NMR chemical shifts with concentration and temperature. Guanosine, cytidine, and adenosine all showed evidence of self-association by hydrogen bonding. In guanosine/cytidine mixtures, a hydrogen-bonded dimer is formed; however, no base pairing could be detected with adenosine/cytidine or adenosine/uridine mixtures. PMID:6932658

  10. Eight hours of cold static storage with adenosine and lidocaine (Adenocaine) heart preservation solutions: toward therapeutic suspended animation.

    PubMed

    Rudd, Donna M; Dobson, Geoffrey P

    2011-12-01

    Most cardiac preservation solutions provide safe cold ischemic storage times for 4 to 5 hours. Our aim was to investigate the effects of 8 hours of cold static storage (4°C) using 2 normokalemic, polarizing adenosine-lidocaine (Adenocaine; Hibernation Therapeutics Global Ltd, Kilquade, Ireland) solutions and to compare their functional recovery with hearts preserved in gold standard histidine-tryptophan-ketoglutarate (Custodiol-HTK; Essential Pharma, Newtown, Pa) and Celsior (Genzyme, Cambridge, Mass) solutions. Male Sprague-Dawley rats (350-450 g) were randomly assigned to 1 of 4 groups (n = 8): (1) adenosine-lidocaine cardioplegia with low Ca(2+)/high Mg(2+); (2) 2× adenosine-lidocaine cardioplegia, low Ca(2+)/high Mg(2+), melatonin, and insulin (2× adenosine, lidocaine, melatonin, and insulin); (3) histidine-tryptophan-ketoglutarate solution; or (4) Celsior. Hearts were perfused in working mode, arrested (37°C), removed, stored for 8 hours at 4°C, reattached in Langendorff mode and rewarmed for 5 minutes (37°C), and switched to working mode for 60 minutes. Myocardial oxygen consumption, effluent lactates, and troponin T levels were measured. Hearts preserved for 8 hours in adenosine-lidocaine and 2× adenosine, lidocaine, melatonin, and insulin returned 50% and 76% of aortic flow and 70% and 86% of coronary flow, respectively, at 60 minutes of reperfusion. In contrast, Custodiol-HTK and Celsior hearts returned 2% and 17% of aortic flow and 11% and 48% of coronary flow, respectively, at 60 minutes of reperfusion. Hearts preserved in adenosine-lidocaine and 2× adenosine, lidocaine, melatonin, and insulin returned 90% and 100% of developed pressures and 101% and 104% of heart rate, respectively. Hearts preserved in histidine-tryptophan-ketoglutarate failed to increase systolic pressure greater than 14 mm Hg (11% baseline) and diastolic pressure greater than 10 mm Hg (17% baseline), and recovered only 16% of heart rate. Hearts preserved in Celsior developed

  11. The semisynthetic flavonoid monoHER sensitises human soft tissue sarcoma cells to doxorubicin-induced apoptosis via inhibition of nuclear factor-κB

    PubMed Central

    Jacobs, H; Bast, A; Peters, G J; van der Vijgh, W J F; Haenen, G R M M

    2011-01-01

    Background: Despite therapeutic advances, the prognosis of patients with metastatic soft tissue sarcoma (STS) remains extremely poor. The results of a recent clinical phase II study, evaluating the protective effects of the semisynthetic flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside (monoHER) on doxorubicin-induced cardiotoxicity, suggest that monoHER enhances the antitumour activity of doxorubicin in STSs. Methods: To molecularly explain this unexpected finding, we investigated the effect of monoHER on the cytotoxicity of doxorubicin, and the potential involvement of glutathione (GSH) depletion and nuclear factor-κB (NF-κB) inactivation in the chemosensitising effect of monoHER. Results: MonoHER potentiated the antitumour activity of doxorubicin in the human liposarcoma cell line WLS-160. Moreover, the combination of monoHER with doxorubicin induced more apoptosis in WLS-160 cells compared with doxorubicin alone. MonoHER did not reduce intracellular GSH levels. On the other hand, monoHER pretreatment significantly reduced doxorubicin-induced NF-κB activation. Conclusion: These results suggest that reduction of doxorubicin-induced NF-κB activation by monoHER, which sensitises cancer cells to apoptosis, is involved in the chemosensitising effect of monoHER in human liposarcoma cells. PMID:21245867

  12. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil.

    PubMed

    Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S

    2001-12-01

    The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in

  13. Dynamics of biogeochemical sulfur cycling in Mono Lake

    NASA Astrophysics Data System (ADS)

    Phillips, A. A.; Fairbanks, D.; Wells, M.; Fullerton, K. M.; Bao, R.; Johnson, H.; Speth, D. R.; Stamps, B. W.; Miller, L.; Sessions, A. L.

    2017-12-01

    Mono Lake, California is a closed-basin soda lake (pH 9.8) with high sulfate (120mM), and is an ideal natural laboratory for studying microbial sulfur cycling. Mono Lake is typically thermally stratified in summer while mixing completely in winter. However, large snowmelt inputs may induce salinity stratification that persists for up to five years, causing meromixis. During the California drought of 2014-16, the lake has mixed thoroughly each winter, but the abundant 2017 snowmelt may usher in a multi-year stratification. This natural experiment provides an opportunity to investigate the temporal relationship between microbial sulfur cycling and lake biogeochemistry. We analyzed water samples from five depths at two stations in May of 2017, before the onset of meromixis. Water column sulfate isotope values were generally constant with depth, centering at a δ34SVCDT of 17.39 ± 0.06‰. Organic sulfur isotopes were consistently lighter than lake sulfate, with a δ34SVCDT of 15.59 ± 0.56‰. This significant offset between organic and inorganic sulfur contradicts the minimal isotope effect associated with sulfate assimilation. Sediment push core organic values were further depleted, ranging between δ34SVCDT of -8.94‰ and +0.23‰, implying rapid turnover of Mono Lake sulfur pools. Both lipid biomarkers and 16S rRNA gene amplicons identify Picocystis salinarum, a unicellular green alga, as the dominant member of the microbial community. However, bacterial biomarkers and 16S rRNA genes point to microbes capable of sulfur cycling. We found that dsrA increased with depth (R2 = 0.9008, p < 0.05). Phylogenetic analysis clustered dsrA with reversible dissimilatory sulfite reductases, suggesting sulfide oxidation rather than sulfate reduction. These findings are only partially consistent with a previous observation of Mono Lake from 2012, which identified a zoned assemblage of sulfate reducers and sulfide oxidizers after >1 year of stratification. We saw no evidence in

  14. Moonlighting adenosine deaminase: a target protein for drug development.

    PubMed

    Cortés, Antoni; Gracia, Eduard; Moreno, Estefania; Mallol, Josefa; Lluís, Carme; Canela, Enric I; Casadó, Vicent

    2015-01-01

    Interest in adenosine deaminase (ADA) in the context of medicine has mainly focused on its enzymatic activity. This is justified by the importance of the reaction catalyzed by ADA not only for the intracellular purine metabolism, but also for the extracellular purine metabolism as well, because of its capacity as a regulator of the concentration of extracellular adenosine that is able to activate adenosine receptors (ARs). In recent years, other important roles have been described for ADA. One of these, with special relevance in immunology, is the capacity of ADA to act as a costimulator, promoting T-cell proliferation and differentiation mainly by interacting with the differentiation cluster CD26. Another role is the ability of ADA to act as an allosteric modulator of ARs. These receptors have very general physiological implications, particularly in the neurological system where they play an important role. Thus, ADA, being a single chain protein, performs more than one function, consistent with the definition of a moonlighting protein. Although ADA has never been associated with moonlighting proteins, here we consider ADA as an example of this family of multifunctional proteins. In this review, we discuss the different roles of ADA and their pathological implications. We propose a mechanism by which some of their moonlighting functions can be coordinated. We also suggest that drugs modulating ADA properties may act as modulators of the moonlighting functions of ADA, giving them additional potential medical interest. © 2014 Wiley Periodicals, Inc.

  15. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example ofmore » this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.« less

  16. Air quality in bedded mono-slope beef barns

    USDA-ARS?s Scientific Manuscript database

    Bedded mono-slope barns are becoming more common in the upper Midwest. Because these are new facilities, little research has been published regarding environmental quality, building management and animal performance in these facilities. A team of researchers from South Dakota State University, USDA ...

  17. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol.

    PubMed

    Sharma, Rishi; Sahota, Pradeep; Thakkar, Mahesh M

    2014-03-01

    Strong clinical and preclinical evidence suggests that acute ethanol promotes sleep. However, very little is known about how and where ethanol acts to promote sleep. We hypothesized that ethanol may induce sleep by increasing extracellular levels of adenosine and inhibiting orexin neurons in the perifornical hypothalamus. Experiments 1 and 2: Within-Subject Design; Experiment 3: Between-Subject Design. N/A. N/A. N/A. Using adult male Sprague-Dawley rats as our animal model, we performed three experiments to test our hypothesis. Our first experiment examined the effect of A1 receptor blockade in the orexinergic perifornical hypothalamus on sleep- promoting effects of ethanol. Bilateral microinjection of the selective A1 receptor antagonist 1,3-dipropyl-8-phenylxanthine (500 μM; 250 nL/side) into orexinergic perifornical hypothalamus significantly reduced nonrapid eye movement sleep with a concomitant increase in wakefulness, suggesting that blockade of adenosine A1 receptor attenuates ethanol-induced sleep promotion. Our second experiment examined adenosine release in the orexinergic perifornical hypothalamus during local ethanol infusion. Local infusion of pharmacologically relevant doses of ethanol significantly and dose-dependently increased adenosine release. Our final experiment used c-Fos immunohistochemistry to examine the effects of ethanol on the activation of orexin neurons. Acute ethanol exposure significantly reduced the number of orexin neurons containing c-Fos, suggesting an inhibition of orexin neurons after ethanol intake. Based on our results, we believe that ethanol promotes sleep by increasing adenosine in the orexinergic perifornical hypothalamus, resulting in A1 receptor-mediated inhibition of orexin neurons.

  18. Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones

    NASA Astrophysics Data System (ADS)

    Abegão, Luis M. G.; Fonseca, Ruben D.; Santos, Francisco A.; Souza, Gabriela B.; Barreiros, André Luis B. S.; Barreiros, Marizeth L.; Alencar, M. A. R. C.; Mendonça, Cleber R.; Silva, Daniel L.; De Boni, Leonardo; Rodrigues, J. J.

    2016-03-01

    This work describes the second and third orders of nonlinear optics properties of unsubstituted chalcone (C15H12O) and mono-substituted chalcone (C16H14O2) in solution, using hyper-Rayleigh scattering and Z-Scan techniques to determine the first molecular hyperpolarizability (β) and the two-photon absorption (2PA) cross section respectively. β Values of 25.4 × 10-30 esu and 31.6 × 10-30 esu, for unsubstituted and mono-substituted chalcone, respectively, dissolved in methanol have been obtained. The highest values of 2PA cross-sections obtained were 9 GM and 14 GM for unsubstituted and mono-substituted chalcone, respectively. The experimental 2PA cross sections obtained for each chalcone are in good agreement with theoretical results.

  19. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway.

    PubMed

    Zhai, Weiwei; Chen, Dongdong; Shen, Haitao; Chen, Zhouqing; Li, Haiying; Yu, Zhengquan; Chen, Gang

    2016-06-14

    This study was designed to determine the role of the A1 adenosine receptors in intracerebral hemorrhage (ICH)-induced secondary brain injury and the underlying mechanisms. A collagenase-induced ICH model was established in Sprague-Dawley rats, and cultured primary rat cortical neurons were exposed to oxyhemoglobin at a concentration of 10 μM to mimic ICH in vitro. The A1 adenosine receptor agonist N(6)-cyclohexyladenosine and antagonist 8-phenyl-1,3-dipropylxanthine were used to study the role of A1 adenosine receptor in ICH-induced secondary brain injury, and antagonists of P38 and Hsp27 were used to study the underlying mechanisms of A1 adenosine receptor actions. The protein level of A1 adenosine receptor was significantly increased by ICH, while there was no significant change in protein levels of the other 3 adenosine receptors. In addition, the A1 adenosine receptor expression could be increased by N(6)-cyclohexyladenosine and decreased by 8-phenyl-1,3-dipropylxanthine under ICH conditions. Activation of the A1 adenosine receptor attenuated neuronal apoptosis in the subcortex, which was associated with increased phosphorylation of P38, MAPK, MAPKAP2, and Hsp27. Inhibition of the A1 adenosine receptor resulted in opposite effects. Finally, the neuroprotective effect of the A1 adenosine receptor agonist N(6)-cyclohexyladenosine was inhibited by antagonists of P38 and Hsp27. This study demonstrates that activation of the A1 adenosine receptor by N(6)-cyclohexyladenosine could prevent ICH-induced secondary brain injury via the P38-MAPKAP2-Hsp27 pathway.

  20. Effects of omeprazole treatment on nucleoside transporter expression and adenosine uptake in rat gastric mucosa.

    PubMed

    Redzic, Zoran B; Hasan, Fuad A; Al-Sarraf, Hameed

    2009-05-01

    Increased adenosine concentration inhibits gastric acid secretion in rat via adenosine A1 and A2A receptors, whereas achlorhydria suppresses A1 and A2A receptor gene expression. This study aimed to examine the effects of omeprazole-induced achlorhydria on the expression and functional activity of nucleoside transporters in rat gastric mucosa. Wistar rats were treated for either 1 or 3 days with 0.4 mmol/kg omeprazole via gavage; controls were treated with vehicle. The expression of nucleoside transporters at the transcript level was explored by quantitative real-time polymerase chain reaction assays; the functional activity of nucleoside transporters in gastric mucosa was explored by observing [3H]adenosine uptake in vitro. Gastric mucosa expressed rat equilibrative nucleoside transporter (rENT) 1 and 2, and rat concentrative nucleoside transporter (rCNT) 1, 2, and 3 at the transcript level, and the estimated values for the threshold cycles for target amplification (Ct) were 31.5 +/- 2, 28.5 +/- 2.1, 32.9 +/- 2.2, 29.1 +/- 2, and 28.9 +/- 2.5, respectively (n = 3 or 4). The Ct value for rat beta-actin was 21.9 +/- 1.8 (n = 4). In vitro uptake of [3H]adenosine by gastric mucosa samples consisted of Na+-dependent and Na+-independent components. One-day omeprazole treatment caused no change in nucleoside transporter mRNA levels or in [3H]adenosine uptake. Three-day omeprazole treatments, however, led to a 12-fold and 17-fold increase in rENT2 and rCNT1 mRNA levels, respectively. Samples taken after 3 days of treatment also took up significantly more [3H]adenosine than did samples from the corresponding control. In conclusion, the possible modification of nucleoside transport activities by changes in intraluminal acidity may have significance as part of a purinergic regulatory feedback mechanism in the control of gastric acid secretion.