Sample records for adenovirus vector encoding

  1. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  2. Immune Protection of Nonhuman Primates Against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    DTIC Science & Technology

    2006-06-01

    21. Geisbert TW, Hensley LE , Larsen T, Young HA, Reed DS, et al. (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: Evidence that...Shedlock DJ, Xu L, et al. (2006) Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT

  3. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    PubMed

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  4. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials.

    PubMed

    Kallel, Héla; Kamen, Amine A

    2015-05-01

    Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oral vaccination with an adenovirus-vectored vaccine protects against botulism

    PubMed Central

    Chen, Shan; Xu, Qingfu; Zeng, Mingtao

    2013-01-01

    We have previously shown that an adenovirus vectored vaccine delivered intramuscularly or intranasally was effective in protection against botulism in a mouse model. The adenoviral vector encodes a human codon-optimized heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). Here, we evaluate the same vaccine candidate as an oral vaccine against BoNT/C in a mouse model. To elicit protective immunity, the mice were orally vaccinated with a single dose of 1×104 to 1×107 plaque forming units (pfu) of the adenoviral vector. The immune sera, collected six weeks after oral vaccination with 2×107 pfu adenovirus, has shown an ability to neutralize the biological activity of BoNT/C in vitro. Additionally, animals receiving a single dose of 2×106 pfu adenovirus or greater were completely protected against challenge with 100×MLD50 of BoNT/C. The data demonstrated the feasibility to develop an adenovirus-based oral vaccine against botulism. PMID:23295065

  6. Progress on adenovirus-vectored universal influenza vaccines.

    PubMed

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  7. Protection of Chickens against Avian Influenza with Non-Replicating Adenovirus-Vectored Vaccine

    PubMed Central

    Toro, Haroldo; Tang, De-chu C.; Suarez, David L.; Shi, Z.

    2009-01-01

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding an H7 AI hemagglutinin (AdChNY94.H7). Chickens vaccinated in ovo with an Ad vector encoding an AI H5 (AdTW68.H5) previously described, which were subsequently vaccinated intramuscularly with AdChNY94.H7 post-hatch, responded with robust antibody titers against both the H5 and H7 AI proteins. Antibody responses to Ad vector in ovo vaccination follow a dose-response kinetic. The use of a synthetic AI H5 gene codon optimized to match the chicken cell tRNA pool was more potent than the cognate H5 gene. The use of Ad-vectored vaccines to increase resistance of chicken populations against multiple AI strains could reduce the risk of an avian-originating influenza pandemic in humans. PMID:18384919

  8. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    PubMed Central

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; Borducchi, Erica N.; Iampietro, M. Justin; Bricault, Christine A.; Teigler, Jeffrey E.; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A.; Zhao, Guoyan; Virgin, Herbert W.; Korber, Bette

    2014-01-01

    ABSTRACT Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. PMID:25410856

  9. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    PubMed

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE PAGES

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; ...

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  11. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  12. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    PubMed

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  13. An acute toxicology study with INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian hamsters; comparisons with wild-type Ad5 and a replication-defective adenovirus vector

    PubMed Central

    Lichtenstein, DL; Spencer, JF; Doronin, K; Patra, D; Meyer, JM; Shashkova, EV; Kuppuswamy, M; Dhar, D; Thomas, MA; Tollefson, AE; Zumstein, LA; Wold, WSM; Toth, K

    2012-01-01

    Oncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls. A parallel study investigating the biodistribution of these viruses is described elsewhere in this issue. The toxicology experiments were conducted in two species, the Syrian hamster, which is permissive for INGN 007 and Ad5 replication and the poorly permissive mouse. The studies demonstrated that the safety profile of INGN 007 is similar to Ad5. Both viruses caused transient liver damage upon intravenous injection that resolved by 28 days post-infection. The No-Observable-Adverse-Effect-Level (NOAEL) for INGN 007 in hamsters was 3 × 1010 viral particles per kg. In hamsters, the replication-defective vector caused less toxicity, indicating that replication of Ad vectors in the host is an important factor in pathogenesis. With mice, INGN 007 and Ad5 caused toxicity comparable to the replication-defective adenovirus vector. Partially based on these results, the FDA granted permission to enter into a Phase I clinical trial with INGN 007. PMID:19197324

  14. An acute toxicology study with INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian hamsters; comparisons with wild-type Ad5 and a replication-defective adenovirus vector.

    PubMed

    Lichtenstein, D L; Spencer, J F; Doronin, K; Patra, D; Meyer, J M; Shashkova, E V; Kuppuswamy, M; Dhar, D; Thomas, M A; Tollefson, A E; Zumstein, L A; Wold, W S M; Toth, K

    2009-08-01

    Oncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls. A parallel study investigating the biodistribution of these viruses is described elsewhere in this issue. The toxicology experiments were conducted in two species, the Syrian hamster, which is permissive for INGN 007 and Ad5 replication and the poorly permissive mouse. The studies demonstrated that the safety profile of INGN 007 is similar to Ad5. Both viruses caused transient liver damage upon intravenous injection that resolved by 28 days post-infection. The No-Observable-Adverse-Effect-Level (NOAEL) for INGN 007 in hamsters was 3 x 10(10) viral particles per kg. In hamsters, the replication-defective vector caused less toxicity, indicating that replication of Ad vectors in the host is an important factor in pathogenesis. With mice, INGN 007 and Ad5 caused toxicity comparable to the replication-defective adenovirus vector. Partially based on these results, the FDA granted permission to enter into a Phase I clinical trial with INGN 007.

  15. An adenovirus-vectored nasal vaccine confers rapid and sustained protection against anthrax in a single-dose regimen.

    PubMed

    Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S; Baillie, Leslie W; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine.

  16. An Adenovirus-Vectored Nasal Vaccine Confers Rapid and Sustained Protection against Anthrax in a Single-Dose Regimen

    PubMed Central

    Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R.; Tang, De-chu C.

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine. PMID:23100479

  17. Hexons from adenovirus serotypes 5 and 48 differentially protect adenovirus vectors from neutralization by mouse and human serum

    PubMed Central

    Harmon, Andrew W.; Moitra, Rituparna; Xu, Zhili

    2018-01-01

    Adenovirus vectors are widely used in gene therapy clinical trials, and preclinical studies with these vectors are often conducted in mice. It is therefore critical to understand whether mouse studies adequately predict the behavior of adenovirus vectors in humans. The most commonly-used adenovirus vectors are derived from adenovirus serotype 5 (Ad5). The Ad5 hexon protein can bind coagulation factor X (FX), and binding of FX has a major impact on vector interactions with other blood proteins. In mouse serum, FX protects Ad5 vectors from neutralization by natural antibodies and complement. In the current study, we similarly find that human FX inhibits neutralization of Ad5 vectors by human serum, and this finding is consistent among individual human sera. We show that human IgM and human IgG can each induce complement-mediated neutralization when Ad5 vectors are not protected by FX. Although mouse and human serum had similar effects on Ad5 vectors, we found that this was not true for a chimeric Ad5 vector that incorporated hexon regions from adenovirus serotype 48. Interestingly, this hexon-chimeric vector was neutralized by human serum, but not by mouse serum. These findings indicate that studies in mouse serum accurately predict the behavior of Ad5 vectors in human serum, but mouse serum is not an accurate model system for all adenovirus vectors. PMID:29401488

  18. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein.

    PubMed Central

    Stevenson, S C; Rollence, M; Marshall-Neff, J; McClelland, A

    1997-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange

  19. Recent advances in genetic modification of adenovirus vectors for cancer treatment.

    PubMed

    Yamamoto, Yuki; Nagasato, Masaki; Yoshida, Teruhiko; Aoki, Kazunori

    2017-05-01

    Adenoviruses are widely used to deliver genes to a variety of cell types and have been used in a number of clinical trials for gene therapy and oncolytic virotherapy. However, several concerns must be addressed for the clinical use of adenovirus vectors. Selective delivery of a therapeutic gene by adenovirus vectors to target cancer is precluded by the widespread distribution of the primary cellular receptors. The systemic administration of adenoviruses results in hepatic tropism independent of the primary receptors. Adenoviruses induce strong innate and acquired immunity in vivo. Furthermore, several modifications to these vectors are necessary to enhance their oncolytic activity and ensure patient safety. As such, the adenovirus genome has been engineered to overcome these problems. The first part of the present review outlines recent progress in the genetic modification of adenovirus vectors for cancer treatment. In addition, several groups have recently developed cancer-targeting adenovirus vectors by using libraries that display random peptides on a fiber knob. Pancreatic cancer-targeting sequences have been isolated, and these oncolytic vectors have been shown by our group to be associated with a higher gene transduction efficiency and more potent oncolytic activity in cell lines, murine models, and surgical specimens of pancreatic cancer. In the second part of this review, we explain that combining cancer-targeting strategies can be a promising approach to increase the clinical usefulness of oncolytic adenovirus vectors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.

    PubMed

    Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G

    2008-12-01

    With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.

  1. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

    PubMed Central

    Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.

    2018-01-01

    To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380

  2. Evaluation of fiber-modified adenovirus vector-vaccine against foot-and-mouth diseaes in cattle

    USDA-ARS?s Scientific Manuscript database

    Novel vaccination approaches against foot-and-mouth-disease (FMD) include the use of a replication-defective human adenovirus type 5 vector (Ad5) that contains the capsid encoding regions of FMD virus (FMDV). An Ad5.A24 has proven effective as a vaccine against FMD in swine and cattle. However, ther...

  3. Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses.

    PubMed

    Crosby, Catherine M; Matchett, William E; Anguiano-Zarate, Stephanie S; Parks, Christopher A; Weaver, Eric A; Pease, Larry R; Webby, Richard J; Barry, Michael A

    2017-01-15

    Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent

  4. Getting genetic access to natural adenovirus genomes to explore vector diversity.

    PubMed

    Zhang, Wenli; Ehrhardt, Anja

    2017-10-01

    Recombinant vectors based on the human adenovirus type 5 (HAdV5) have been developed and extensively used in preclinical and clinical studies for over 30 years. However, certain restrictions of HAdV5-based vectors have limited their clinical applications because they are rather inefficient in specifically transducing cells of therapeutic interest that lack the coxsackievirus and adenovirus receptor (CAR). Moreover, enhanced vector-associated toxicity and widespread preexisting immunity have been shown to significantly hamper the effectiveness of HAdV-5-mediated gene transfer. However, evolution of adenoviruses in the natural host is driving the generation of novel types with altered virulence, enhanced transmission, and altered tissue tropism. As a consequence, an increasing number of alternative adenovirus types were identified, which may represent a valuable resource for the development of novel vector types. Thus, researchers are focusing on the other naturally occurring adenovirus types, which are structurally similar but functionally different from HAdV5. To this end, several strategies have been devised for getting genetic access to adenovirus genomes, resulting in a new panel of adenoviral vectors. Importantly, these vectors were shown to have a host range different from HAdV5 and to escape the anti-HAdV5 immune response, thus underlining the great potential of this approach. In summary, this review provides a state-of-the-art overview of one essential step in adenoviral vector development.

  5. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  6. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  7. An Update on Canine Adenovirus Type 2 and Its Vectors

    PubMed Central

    Bru, Thierry; Salinas, Sara; Kremer, Eric J.

    2010-01-01

    Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors. PMID:21994722

  8. A Novel Vaccine Approach for Chagas Disease Using Rare Adenovirus Serotype 48 Vectors

    PubMed Central

    Farrow, Anitra L.; Peng, Binghao J.; Gu, Linlin; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2016-01-01

    Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy. In this study, we modified Ad5 and Ad48 vectors to contain T. cruzi’s amastigote surface protein 2 (ASP-2) in the adenoviral early gene. We also modified Ad5 and Ad48 vectors to utilize the “Antigen Capsid-Incorporation” strategy by adding T. cruzi epitopes to protein IX (pIX). Mice that were immunized with the modified vectors were able to elicit T. cruzi-specific humoral and cellular responses. This study indicates that Ad48-modified vectors function comparable to or even premium to Ad5-modified vectors. This study provides novel data demonstrating that Ad48 can be used as a potential adenovirus vaccine vector against Chagas disease. PMID:26978385

  9. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  10. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  11. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  12. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    PubMed Central

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  13. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    PubMed

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-12-03

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.

  14. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-α-glucosidase

    PubMed Central

    Amalfitano, A.; McVie-Wylie, A. J.; Hu, H.; Dawson, T. L.; Raben, N.; Plotz, P.; Chen, Y. T.

    1999-01-01

    This report demonstrates that a single intravenous administration of a gene therapy vector can potentially result in the correction of all affected muscles in a mouse model of a human genetic muscle disease. These results were achieved by capitalizing both on the positive attributes of modified adenovirus-based vectoring systems and receptor-mediated lysosomal targeting of enzymes. The muscle disease treated, glycogen storage disease type II, is a lysosomal storage disorder that manifests as a progressive myopathy, secondary to massive glycogen accumulations in the skeletal and/or cardiac muscles of affected individuals. We demonstrated that a single intravenous administration of a modified Ad vector encoding human acid α-glucosidase (GAA) resulted in efficient hepatic transduction and secretion of high levels of the precursor GAA proenzyme into the plasma of treated animals. Subsequently, systemic distribution and uptake of the proenzyme into the skeletal and cardiac muscles of the GAA-knockout mouse was confirmed. As a result, systemic decreases (and correction) of the glycogen accumulations in a variety of muscle tissues was demonstrated. This model can potentially be expanded to include the treatment of other lysosomal enzyme disorders. Lessons learned from systemic genetic therapy of muscle disorders also should have implications for other muscle diseases, such as the muscular dystrophies. PMID:10430861

  15. "Triplet" polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors.

    PubMed

    Mathison, Megumi; Singh, Vivek P; Gersch, Robert P; Ramirez, Maricela O; Cooney, Austin; Kaminsky, Stephen M; Chiuchiolo, Maria J; Nasser, Ahmed; Yang, Jianchang; Crystal, Ronald G; Rosengart, Todd K

    2014-10-01

    The in situ reprogramming of cardiac fibroblasts into induced cardiomyocytes by the administration of gene transfer vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) has been shown to improve ventricular function in myocardial infarction models. The efficacy of this strategy could, however, be limited by the need for fibroblast targets to be infected 3 times--once by each of the 3 transgene vectors. We hypothesized that a polycistronic "triplet" vector encoding all 3 transgenes would enhance postinfarct ventricular function compared with use of "singlet" vectors. After validation of the polycistronic vector expression in vitro, adult male Fischer 344 rats (n=6) underwent coronary ligation with or without intramyocardial administration of an adenovirus encoding all 3 major vascular endothelial growth factor (VEGF) isoforms (AdVEGF-All6A positive), followed 3 weeks later by the administration to AdVEGF-All6A-positive treated rats of singlet lentivirus encoding G, M, or T (1×10(5) transducing units each) or the same total dose of a GMT "triplet" lentivirus vector. Western blots demonstrated that triplet and singlet vectors yielded equivalent GMT transgene expression, and fluorescence activated cell sorting demonstrated that triplet vectors were nearly twice as potent as singlet vectors in generating induced cardiomyocytes from cardiac fibroblasts. Echocardiography demonstrated that GMT triplet vectors were more effective than the 3 combined singlet vectors in enhancing ventricular function from postinfarct baselines (triplet, 37%±10%; singlet, 13%±7%; negative control, 9%±5%; P<.05). These data have confirmed that the in situ administration of G, M, and T induces postinfarct ventricular functional improvement and that GMT polycistronic vectors enhance the efficacy of this strategy. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  16. Adenovirus-based genetic vaccines for biodefense.

    PubMed

    Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G

    2005-02-01

    The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.

  17. Homologous and heterologous recombination between adenovirus vector DNA and chromosomal DNA.

    PubMed

    Stephen, Sam Laurel; Sivanandam, Vijayshankar Ganesh; Kochanek, Stefan

    2008-11-01

    Adenovirus vector DNA is perceived to remain as episome following gene transfer. We quantitatively and qualitatively analysed recombination between high capacity adenoviral vector (HC-AdV) and chromosomal DNA following gene transfer in vitro. We studied homologous and heterologous recombination with a single HC-AdV carrying (i) a large genomic HPRT fragment with the HPRT CHICAGO mutation causing translational stop upon homologous recombination with the HPRT locus and (ii) a selection marker to allow for clonal selection in the event of heterologous recombination. We analysed the sequences at the junctions between vector and chromosomal DNA. In primary cells and in cell lines, the frequency of homologous recombination ranged from 2 x 10(-5) to 1.6 x 10(-6). Heterologous recombination occurred at rates between 5.5 x 10(-3) and 1.1 x 10(-4). HC-AdV DNA integrated via the termini mostly as intact molecules. Analysis of the junction sequences indicated vector integration in a relatively random manner without an obvious preference for particular chromosomal regions, but with a preference for integration into genes. Integration into protooncogenes or tumor suppressor genes was not observed. Patchy homologies between vector termini and chromosomal DNA were found at the site of integration. Although the majority of integrations had occurred without causing mutations in the chromosomal DNA, cases of nucleotide substitutions and insertions were observed. In several cases, deletions of even relative large chromosomal regions were likely. These results extend previous information on the integration patterns of adenovirus vector DNA and contribute to a risk-benefit assessment of adenovirus-mediated gene transfer.

  18. Increasing the Efficacy of Oncolytic Adenovirus Vectors

    PubMed Central

    Toth, Karoly; Wold, William S. M.

    2010-01-01

    Oncolytic adenovirus (Ad) vectors present a new modality to treat cancer. These vectors attack tumors via replicating in and killing cancer cells. Upon completion of the vector replication cycle, the infected tumor cell lyses and releases progeny virions that are capable of infecting neighboring tumor cells. Repeated cycles of vector replication and cell lysis can destroy the tumor. Numerous Ad vectors have been generated and tested, some of them reaching human clinical trials. In 2005, the first oncolytic Ad was approved for the treatment of head-and-neck cancer by the Chinese FDA. Oncolytic Ads have been proven to be safe, with no serious adverse effects reported even when high doses of the vector were injected intravenously. The vectors demonstrated modest anti-tumor effect when applied as a single agent; their efficacy improved when they were combined with another modality. The efficacy of oncolytic Ads can be improved using various approaches, including vector design, delivery techniques, and ancillary treatment, which will be discussed in this review. PMID:21994711

  19. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy.

    PubMed

    Doronin, K; Kuppuswamy, M; Toth, K; Tollefson, A E; Krajcsi, P; Krougliak, V; Wold, W S

    2001-04-01

    We have previously described two replication-competent adenovirus vectors, named KD1 and KD3, for potential use in cancer gene therapy. KD1 and KD3 have two small deletions in the E1A gene that restrict efficient replication of these vectors to human cancer cell lines. These vectors also have increased capacity to lyse cells and spread from cell to cell because they overexpress the adenovirus death protein, an adenovirus protein required for efficient cell lysis and release of adenovirus from the cell. We now describe a new vector, named KD1-SPB, which is the KD1 vector with the E4 promoter replaced by the promoter for surfactant protein B (SPB). SPB promoter activity is restricted in the adult to type II alveolar epithelial cells and bronchial epithelial cells. Because KD1-SPB has the E1A mutations, it should replicate within and destroy only alveolar and bronchial cancer cells. We show that KD1-SPB replicates, lyses cells, and spreads from cell to cell as well as does KD1 in H441 cells, a human cancer cell line where the SPB promoter is active. KD1-SPB replicates, lyses cells, and spreads only poorly in Hep3B liver cancer cells. Replication was determined by expression of the E4ORF3 protein, viral DNA accumulation, fiber synthesis, and virus yield. Cell lysis and vector spread were measured by lactate dehydrogenase release and a "vector spread" assay. In addition to Hep3B cells, KD1-SPB also did not express E4ORF3 in HT29.14S (colon), HeLa (cervix), KB (nasopharynx), or LNCaP (prostate) cancer cell lines, in which the SPB promoter is not expected to be active. Following injection into H441 or Hep3B tumors growing in nude mice, KD1-SPB caused a three- to fourfold suppression of growth of H441 tumors, similar to that seen with KD1. KD1-SPB had only a minimal effect on the growth of Hep3B tumors, whereas KD1 again caused a three- to fourfold suppression. These results establish that the adenovirus E4 promoter can be replaced by a tissue-specific promoter in a

  20. Protection of Nonhuman Primates Against Two Species of Ebola Virus Infection With a Single Complex Adenovirus Vector

    DTIC Science & Technology

    2010-04-01

    glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus -based vector (CAdVax). We evaluated our vaccine ...recombinant complex adenovirus vaccine (CAdVax) system, which provides multivalent protection of NHPs against multiple species of filoviruses (33). The...CAdVax vaccine platform is based on a complex, replication-defective adenovirus 5 (Ad5) vector (28–30, 37, 38) that allows for the incorporation of

  1. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results

    PubMed Central

    Gallaher, Sean D.; Berk, Arnold J.

    2013-01-01

    Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118

  2. Akt/protein kinase B activation by adenovirus vectors contributes to NFkappaB-dependent CXCL10 expression.

    PubMed

    Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A

    2005-12-01

    In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.

  3. Single-cycle adenovirus vectors in the current vaccine landscape.

    PubMed

    Barry, Michael

    2018-02-01

    Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.

  4. Immunogenicity and protective efficacy of a replication-defective infectious bronchitis virus vaccine using an adenovirus vector and administered in ovo.

    PubMed

    Zeshan, Basit; Zhang, Lili; Bai, Juan; Wang, Xinglong; Xu, Jiarong; Jiang, Ping

    2010-06-01

    In ovo vaccination remains an attractive option for a cost effective, uniform and mass application of vaccines for commercial poultry. However, the vaccines which can be delivered safely by this method are limited and there is no currently licensed embryo-safe vaccine against infectious bronchitis virus (IBV). In this study, a recombinant adenovirus expressing the S1 gene of nephropathogenic IBV (rAd-S1) was constructed and the immune responses and protective efficacy against homologous challenge were evaluated after in ovo vaccination. The results showed that the rAd-S1 led to dramatic augmentation of humoral and cellular responses in birds vaccinated in ovo followed by an intramuscular inoculation. Both IFN-gamma and IL-4 in chicken's lymphocytes were produced by this strategy. Following challenge with IBV, the chickens vaccinated with recombinant adenovirus showed fewer nephropathic lesions and less severe clinical signs as compared to those receiving wild-type adenovirus or PBS. The construction of non-replicating human adenovirus vector encoding S1 gene of IBV and its in ovo delivery demonstrated the potential of an alternative vaccination strategy against IBV. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy.

    PubMed Central

    Mittereder, N; March, K L; Trapnell, B C

    1996-01-01

    Development of adenovirus vectors as potential therapeutic agents for multiple applications of in vivo human gene therapy has resulted in numerous preclinical and clinical studies. However, lack of standardization of the methods for quantifying the physical concentration and functionally active fraction of virions in these studies has often made comparison between various studies difficult or impossible. This study was therefore carried out to define the variables for quantification of the concentration of adenovirus vectors. The methods for evaluation of total virion concentration included electron microscopy and optical absorbance. The methods for evaluation of the concentration of functional virions included detection of gene transfer (transgene transfer and expression) and the plaque assay on 293 cells. Enumeration of total virion concentration by optical absorbance was found to be a precise procedure, but accuracy was dependent on physical disruption of the virion to eliminate artifacts from light scattering and also on a correct value for the extinction coefficient. Both biological assays for enumerating functional virions were highly dependent on the assay conditions and in particular the time of virion adsorption and adsorption volume. Under optimal conditions, the bioactivity of the vector, defined as the fraction of total virions which leads to detected target cell infection, was determined to be 0.10 in the plaque assay and 0.29 in the gene transfer assay. This difference is most likely due to the fact that detection by gene transfer requires only measurement of levels of transgene expression in the infected cell whereas plaque formation is dependent on a series of biological events of much greater complexity. These results show that the exact conditions for determination of infectious virion concentration and bioactivity of recombinant adenovirus vectors are critical and must be standardized for comparability. These observations may be very useful in

  6. A rapid generation of adenovirus vector with a genetic modification in hexon protein.

    PubMed

    Di, Bingyan; Mao, Qinwen; Zhao, Junli; Li, Xing; Wang, Dongyang; Xia, Haibin

    2012-02-10

    The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Immunizing Patients With Metastatic Melanoma Using Recombinant Adenoviruses Encoding MART-1 or gp100 Melanoma Antigens

    PubMed Central

    Rosenberg, Steven A.; Zhai, Yifan; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Seipp, Claudia A.; Einhorn, Jan H.; Roberts, Bruce; White, Donald E.

    2008-01-01

    Background: The characterization of the genes encoding melanoma-associated antigens MART-1 or gp100, recognized by T cells, has opened new possibilities for the development of immunization strategies for patients with metastatic melanoma. With the use of recombinant adenoviruses expressing either MART-1 or gp100 to immunize patients with metastatic melanoma, we evaluated the safety, immunologic, and potential therapeutic aspects of these immunizations. Methods: In phase I studies, 54 patients received escalating doses (between 107 and 1011 plaque-forming units) of recombinant adenovirus encoding either MART-1 or gp100 melanoma antigen administered either alone or followed by the administration of interleukin 2 (IL-2). The immunologic impact of these immunizations on the development of cellular and antibody reactivity was assayed. Results: Recombinant adenoviruses expressing MART-1 or gp100 were safely administered. One of 16 patients with metastatic melanoma receiving the recombinant adenovirus MART-1 alone experienced a complete response. Other patients achieved objective responses, but they had received IL-2 along with an adenovirus, and their responses could be attributed to the cytokine. Immunologic assays showed no consistent immunization to the MART-1 or gp100 transgenes expressed by the recombinant adenoviruses. High levels of neutralizing antibody were found in the pretreatment sera of the patients. Conclusions: High doses of recombinant adenoviruses could be safely administered to cancer patients. High levels of neutralizing antibody present in patients' sera prior to treatment may have impaired the ability of these viruses to immunize patients against melanoma antigens. PMID:9862627

  8. An adenovirus vectored mucosal adjuvant augments protection of mice immunized intranasally with an adenovirus-vectored foot-and-mouth disease virus subunit vaccine.

    PubMed

    Alejo, Diana M; Moraes, Mauro P; Liao, Xiaofen; Dias, Camila C; Tulman, Edan R; Diaz-San Segundo, Fayna; Rood, Debra; Grubman, Marvin J; Silbart, Lawrence K

    2013-04-26

    Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E. coli heat-labile enterotoxin (LT) has been described as one of the few molecules that have adjuvant activity at mucosal surfaces. The objective of this study was to evaluate the efficacy of replication-defective adenovirus 5 (Ad5) vectors encoding either of two LT-based mucosal adjuvants, LTB or LTR72. These vectored adjuvants were delivered intranasally to mice concurrent with an Ad5-FMDV vaccine (Ad5-A24) to assess their ability to augment mucosal and systemic humoral immune responses to Ad5-A24 and protection against FMDV. Mice receiving Ad5-A24 plus Ad5-LTR72 had higher levels of mucosal and systemic neutralizing antibodies than those receiving Ad5-A24 alone or Ad5-A24 plus Ad5-LTB. The vaccine plus Ad5-LTR72 group also demonstrated 100% survival after intradermal challenge with a lethal dose of homologous FMDV serotype A24. These results suggest that Ad5-LTR72 could be used as an important tool to enhance mucosal and systemic immunity against FMDV and potentially other pathogens with a common route of entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Development of Peritoneal Tumor-Targeting Vector by In Vivo Screening with a Random Peptide-Displaying Adenovirus Library

    PubMed Central

    Yoshida, Kimiko; Goto, Naoko; Ohnami, Shumpei; Aoki, Kazunori

    2012-01-01

    The targeting of gene transfer at the cell-entry level is one of the most attractive challenges in vector development. However, attempts to redirect adenovirus vectors to alternative receptors by engineering the capsid-coding region have shown limited success, because the proper targeting ligands on the cells of interest are generally unknown. To overcome this limitation, we have constructed a random peptide library displayed on the adenoviral fiber knob, and have successfully selected targeted vectors by screening the library on cancer cell lines in vitro. The infection of targeted vectors was considered to be mediated by specific receptors on target cells. However, the expression levels and kinds of cell surface receptors may be substantially different between in vitro culture and in vivo tumor tissue. Here, we screened the peptide display-adenovirus library in the peritoneal dissemination model of AsPC-1 pancreatic cancer cells. The vector displaying a selected peptide (PFWSGAV) showed higher infectivity in the AsPC-1 peritoneal tumors but not in organs and other peritoneal tumors as compared with a non-targeted vector. Furthermore, the infectivity of the PFWSGAV-displaying vector for AsPC-1 peritoneal tumors was significantly higher than that of a vector displaying a peptide selected by in vitro screening, indicating the usefulness of in vivo screening in exploring the targeting vectors. This vector-screening system can facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:23029088

  10. LY294002 enhances expression of proteins encoded by recombinant replication-defective adenoviruses via mTOR- and non-mTOR-dependent mechanisms.

    PubMed

    Shepelev, Mikhail V; Korobko, Elena V; Vinogradova, Tatiana V; Kopantsev, Eugene P; Korobko, Igor V

    2013-03-04

    Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.

  11. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  12. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy.

    PubMed Central

    Gorziglia, M I; Kadan, M J; Yei, S; Lim, J; Lee, G M; Luthra, R; Trapnell, B C

    1996-01-01

    A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy. PMID:8648763

  13. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    PubMed

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  14. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    PubMed

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  15. [Construction, identification and expression of three kinds of shuttle plasmids of adenovirus expression vector of hepatitis C virus structure gene].

    PubMed

    Cao, Yi-zhan; Hao, Chun-qiu; Feng, Zhi-hua; Zhou, Yong-xing; Li, Jin-ge; Jia, Zhan-sheng; Wang, Ping-zhong

    2003-02-01

    To construct three recombinant shuttle plasmids of adenovirus expression vector which can express hepatitis C virus(HCV) different structure genes(C, C+E1, C+E1+E2) in order to pack adenovirus expression vectors which can express HCV different structure gene effectively. The different HCV structure genes derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) were inserted into the backward position of cytomegalovirus(CMV) immediate early promotor element of shuttle plasmid(pAd.CMV-Link.1) of adenovirus expression vector respectively, then the three recombinant plasmids (pAd.HCV-C, pAd.HCV-CE1, pAd.HCV-S) were obtained. The recombinant plasmids were identified by endonuclease, PCR and sequencing. HCV structure genes were expressed transiently with Lipofectamine 2000 coated in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. Insert DNAs of the three recombinant plasmids' were confirmed to be HCV different structure genes by endonuclease, PCR and sequencing. The three recombinant plasmids can express HCV structure gene (C, C+E1, C+E1+E2) transiently in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. The three recombinant shuttle plasmids of adenovirus expression vector can express HCV structure gene(C, C+E1, C+E1+E2) transiently. This should be useful to pack adenovirus expression vector which can express HCV structure genes.

  16. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization

    PubMed Central

    Maxfield, Lori F.; Abbink, Peter; Stephenson, Kathryn E.; Borducchi, Erica N.; Ng'ang'a, David; Kirilova, Marinela M.; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank

    2015-01-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. PMID:26376928

  17. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L; Hassan, Wisam S; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.

  18. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L.; Hassan, Wisam S.; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy. PMID:28481911

  19. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  20. Recent Advances in Preclinical Developments Using Adenovirus Hybrid Vectors.

    PubMed

    Ehrke-Schulz, Eric; Zhang, Wenli; Gao, Jian; Ehrhardt, Anja

    2017-10-01

    Adenovirus (Ad)-based vectors are efficient gene-transfer vehicles to deliver foreign DNA into living organisms, offering large cargo capacity and low immunogenicity and genotoxicity. As Ad shows low integration rates of their genomes into host chromosomes, vector-derived gene expression decreases due to continuous cell cycling in regenerating tissues and dividing cell populations. To overcome this hurdle, adenoviral delivery can be combined with mechanisms leading to maintenance of therapeutic DNA and long-term effects of the desired treatment. Several hybrid Ad vectors (AdV) exploiting various strategies for long-term treatment have been developed and characterized. This review summarizes recent developments of preclinical approaches using hybrid AdVs utilizing either the Sleeping Beauty transposase system for somatic integration into host chromosomes or designer nucleases, including transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease for permanent gene editing. Further options on how to optimize these vectors further are discussed, which may lead to future clinical applications of these versatile gene-therapy tools.

  1. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization.

    PubMed

    Maxfield, Lori F; Abbink, Peter; Stephenson, Kathryn E; Borducchi, Erica N; Ng'ang'a, David; Kirilova, Marinela M; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank; Barouch, Dan H

    2015-11-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. Copyright © 2015, Maxfield et al.

  2. Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43.

    PubMed

    Belousova, Natalya; Mikheeva, Galina; Xiong, Chiyi; Stagg, Loren J; Gagea, Mihai; Fox, Patricia S; Bassett, Roland L; Ladbury, John E; Braun, Michael B; Stehle, Thilo; Li, Chun; Krasnykh, Victor

    2016-08-16

    Unique molecular properties of species D adenoviruses (Ads)-the most diverse yet underexplored group of Ads-have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies.

  3. Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43

    PubMed Central

    Belousova, Natalya; Mikheeva, Galina; Xiong, Chiyi; Stagg, Loren J.; Gagea, Mihai; Fox, Patricia S.; Bassett, Roland L.; Ladbury, John E.; Braun, Michael B.; Stehle, Thilo; Li, Chun; Krasnykh, Victor

    2016-01-01

    Unique molecular properties of species D adenoviruses (Ads)—the most diverse yet underexplored group of Ads—have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies. PMID:27462785

  4. Contrasting Effects of Human, Canine, and Hybrid Adenovirus Vectors on the Phenotypical and Functional Maturation of Human Dendritic Cells: Implications for Clinical Efficacy▿

    PubMed Central

    Perreau, Matthieu; Mennechet, Franck; Serratrice, Nicolas; Glasgow, Joel N.; Curiel, David T.; Wodrich, Harald; Kremer, Eric J.

    2007-01-01

    Antipathogen immune responses create a balance between immunity, tolerance, and immune evasion. However, during gene therapy most viral vectors are delivered in substantial doses and are incapable of expressing gene products that reduce the host's ability to detect transduced cells. Gene transfer efficacy is also modified by the in vivo transduction of dendritic cells (DC), which notably increases the immunogenicity of virions and vector-encoded genes. In this study, we evaluated parameters that are relevant to the use of canine adenovirus serotype 2 (CAV-2) vectors in the clinical setting by assaying their effect on human monocyte-derived DC (hMoDC). We compared CAV-2 to human adenovirus (HAd) vectors containing the wild-type virion, functional deletions in the penton base RGD motif, and the CAV-2 fiber knob. In contrast to the HAd type 5 (HAd5)-based vectors, CAV-2 poorly transduced hMoDC, provoked minimal upregulation of major histocompatibility complex class I/II and costimulatory molecules (CD40, CD80, and CD86), and induced negligible morphological changes indicative of DC maturation. Functional maturation assay results (e.g., reduced antigen uptake; tumor necrosis factor alpha, interleukin-1β [IL-1β], gamma interferon [IFN-γ], IL-10, IL-12, and IFN-α/β secretion; and stimulation of heterologous T-cell proliferation) were also significantly lower for CAV-2. Our data suggested that this was due, in part, to the use of an alternative receptor and a block in vesicular escape. Additionally, HAd5 vector-induced hMoDC maturation was independent of the aforementioned cytokines. Paradoxically, an HAd5/CAV-2 hybrid vector induced the greatest phenotypical and functional maturation of hMoDC. Our data suggest that CAV-2 and the HAd5/CAV-2 vector may be the antithesis of Adenoviridae immunogenicity and that each may have specific clinical advantages. PMID:17229706

  5. Rescue administration of a helper-dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia.

    PubMed

    Crane, B; Luo, X; Demaster, A; Williams, K D; Kozink, D M; Zhang, P; Brown, T T; Pinto, C R; Oka, K; Sun, F; Jackson, M W; Chan, L; Koeberl, D D

    2012-04-01

    Glycogen storage disease type Ia (GSD-Ia) stems from glucose-6-phosphatase (G6Pase) deficiency and causes hypoglycemia, hepatomegaly, hypercholesterolemia and lactic acidemia. Three dogs with GSD-Ia were initially treated with a helper-dependent adenovirus encoding a human G6Pase transgene (HDAd-cG6Pase serotype 5) on postnatal day 3. Unlike untreated dogs with GSD-Ia, all three dogs initially maintained normal blood glucose levels. After 6-22 months, vector-treated dogs developed hypoglycemia, anorexia and lethargy, suggesting that the HDAd-cG6Pase serotype 5 vector had lost efficacy. Liver biopsies collected at this time revealed significantly elevated hepatic G6Pase activity and reduced glycogen content, when compared with affected dogs treated only by frequent feeding. Subsequently, the HDAd-cG6Pase serotype 2 vector was administered to two dogs, and hypoglycemia was reversed; however, renal dysfunction and recurrent hypoglycemia complicated their management. Administration of a serotype 2 HDAd vector prolonged survival in one GSD-Ia dog to 12 months of age and 36 months of age in the other, but the persistence of long-term complications limited HDAd vectors in the canine model for GSD-Ia.

  6. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.

    PubMed

    Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2016-03-23

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.

  7. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter.

    PubMed

    Li, Hua-Jung; Everts, Maaike; Pereboeva, Larisa; Komarova, Svetlana; Idan, Anat; Curiel, David T; Herschman, Harvey R

    2007-06-01

    Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.

  8. Core labeling of adenovirus with EGFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Long P.; Le, Helen N.; Nelson, Amy R.

    2006-08-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expressionmore » vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.« less

  9. Adenovirus Vector Pseudotyping in Fiber-Expressing Cell Lines: Improved Transduction of Epstein-Barr Virus-Transformed B Cells

    PubMed Central

    Von Seggern, Dan J.; Huang, Shuang; Fleck, Shonna Kaye; Stevenson, Susan C.; Nemerow, Glen R.

    2000-01-01

    While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.βgal.ΔF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.βgal.ΔF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types. PMID:10590124

  10. Adeno-associated virus vectors can be efficiently produced without helper virus.

    PubMed

    Matsushita, T; Elliger, S; Elliger, C; Podsakoff, G; Villarreal, L; Kurtzman, G J; Iwaki, Y; Colosi, P

    1998-07-01

    The purpose of this work was to develop an efficient method for the production of adeno-associated virus (AAV) vectors in the absence of helper virus. The adenovirus regions that mediate AAV vector replication were identified and assembled into a helper plasmid. These included the VA, E2A and E4 regions. When this helper plasmid was cotransfected into 293 cells, along with plasmids encoding the AAV vector, and rep and cap genes, AAV vector was produced as efficiently as when using adenovirus infection as a source of help. CMV-driven constructs expressing the E4orf6 and the 72-M(r), E2A proteins were able to functionally replace the E4 and E2A regions, respectively. Therefore the minimum set of genes required to produce AAV helper activity equivalent to that provided by adenovirus infection consists of, or is a subset of, the following genes: the E4orf6 gene, the 72-M(r), E2A protein gene, the VA RNA genes and the E1 region. AAV vector preparations made with adenovirus and by the helper virus-free method were essentially indistinguishable with respect to particle density, particle to infectivity ratio, capsimer ratio and efficiency of muscle transduction in vivo. Only AAV vector preparations made by the helper virus-free method were not reactive with anti-adenovirus sera.

  11. Use of adenoviral vectors as veterinary vaccines.

    PubMed

    Ferreira, T B; Alves, P M; Aunins, J G; Carrondo, M J T

    2005-10-01

    Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.

  12. Ebola virus vaccine: benefit and risks of adenovirus-based vectors.

    PubMed

    Mennechet, Franck J D; Tran, Thi Thu Phuong; Eichholz, Karsten; van de Perre, Philippe; Kremer, Eric J

    2015-01-01

    In 2014, an outbreak of Ebola virus spread rapidly in West Africa. The epidemic killed more than 10,000 people and resulted in transmissions outside the endemic countries. WHO hopes for effective vaccines by the end of 2015. Numerous vaccine candidates have been proposed, and several are currently being evaluated in humans. Among the vaccine candidates are vectors derived from adenovirus (Ad). Despite previous encouraging preclinical and Phase I/II trials, Ad vectors used in three Phase II trials targeting HIV were prematurely interrupted because of the lack of demonstrated efficacy. The vaccine was not only ineffective but also led to a higher rate of HIV acquisition. In this context, the authors discuss the potential benefits, risks and impact of using Ad-derived vaccines to control Ebola virus disease.

  13. Cell transformation by human adenoviruses.

    PubMed

    Endter, C; Dobner, T

    2004-01-01

    The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.

  14. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  15. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  16. Integration Profile and Safety of an Adenovirus Hybrid-Vector Utilizing Hyperactive Sleeping Beauty Transposase for Somatic Integration

    PubMed Central

    Zhang, Wenli; Muck-Hausl, Martin; Wang, Jichang; Sun, Chuanbo; Gebbing, Maren; Miskey, Csaba; Ivics, Zoltan; Izsvak, Zsuzsanna; Ehrhardt, Anja

    2013-01-01

    We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models. PMID:24124483

  17. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2007-01-02

    Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

  18. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge.

    PubMed

    Stanley, Daphne A; Honko, Anna N; Asiedu, Clement; Trefry, John C; Lau-Kilby, Annie W; Johnson, Joshua C; Hensley, Lisa; Ammendola, Virginia; Abbate, Adele; Grazioli, Fabiana; Foulds, Kathryn E; Cheng, Cheng; Wang, Lingshu; Donaldson, Mitzi M; Colloca, Stefano; Folgori, Antonella; Roederer, Mario; Nabel, Gary J; Mascola, John; Nicosia, Alfredo; Cortese, Riccardo; Koup, Richard A; Sullivan, Nancy J

    2014-10-01

    Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.

  19. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    PubMed

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Development of replication-deficient adenovirus malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  1. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNAmore » expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.« less

  2. Virucidal effects of rodent cage-cleaning practices on the viability of adenovirus vectors.

    PubMed

    Porter, Jacqueline D; Lyons, Russette M

    2002-09-01

    Human adenoviruses and adenoviral vectors are classified as Risk Group 2 agents and require BSL2 containment and practices. An additional consideration in using adenoviruses and viral vectors in laboratory animal studies is the possible transmission of these agents to other animals and/or personnel as a result of viral shedding in animal urine and feces. When handling BSL2 agents, cage-wash staff are required to wear appropriate personnel protective equipment, including scrubs, Tyvek suit, hair covering, dust mask, shoes covers, and gloves. Current decontamination procedures are to bag and autoclave soiled rodent cages containing bedding prior to washing in the cage washer to prevent possible adenoviral transmission. However, the practice of autoclaving softens the polycarbonate-based rodent cages, allowing damaging agents or conditions to affect the integrity of the plastic and degrade the cages. The objective of this study was to determine whether current rodent cage-cleaning practices produced virucidal effects for use in lieu of or prior to autoclaving the cages. We found that heating an Av3GFP vector in a test tube to a temperature of 74 degrees C (165 degrees F) for 6 min conditions equivalent to those of the cage washer resulted in greater than an 11-log reduction in infectivity of the vector as evaluated by its cytopathic effect on cells. The combination of heating and a liquid, phosphate-free alkaline detergent produced the same reduction in vector infectivity. However, common cage-cleaning solutions alone possessed no virucidal activity. The high temperatures used in cage-washing procedures alone or in combination with a cleaning solution reduced or eliminated the risk of transmission from viral shedding through urine and feces even at vector concentrations far greater than would ever be expected to be present. Autoclaving cages diminishes the stability and integrity of the polycarbonate cages without providing a further reduction in the risk of virus or

  3. Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens.

    PubMed

    Tatsis, Nia; Lasaro, Marcio O; Lin, Shih-Wen; Haut, Larissa H; Xiang, Zhi Q; Zhou, Dongming; Dimenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J; Silvestri, Guido; Ertl, Hildegund C; Betts, Michael R

    2009-05-15

    In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with preexisting neutralizing Abs against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here, we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee-derived Ad vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the chimpanzee-derived Ad vectors induced higher T and B cell responses than did repeated immunizations with the AdHu5 vector, especially in AdHu5-preexposed macaques.

  4. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    PubMed

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  5. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model

    PubMed Central

    Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.

    2017-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626

  6. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model.

    PubMed

    Simão, D; Pinto, C; Fernandes, P; Peddie, C J; Piersanti, S; Collinson, L M; Salinas, S; Saggio, I; Schiavo, G; Kremer, E J; Brito, C; Alves, P M

    2016-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in preclinical tests. For clinical translation, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, whereas human adenovirus type 5 (HAdV5) showed increased tropism toward glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity.

  7. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    PubMed

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  8. Chimpanzee Adenovirus Vector Ebola Vaccine.

    PubMed

    Ledgerwood, Julie E; DeZure, Adam D; Stanley, Daphne A; Coates, Emily E; Novik, Laura; Enama, Mary E; Berkowitz, Nina M; Hu, Zonghui; Joshi, Gyan; Ploquin, Aurélie; Sitar, Sandra; Gordon, Ingelise J; Plummer, Sarah A; Holman, LaSonji A; Hendel, Cynthia S; Yamshchikov, Galina; Roman, Francois; Nicosia, Alfredo; Colloca, Stefano; Cortese, Riccardo; Bailer, Robert T; Schwartz, Richard M; Roederer, Mario; Mascola, John R; Koup, Richard A; Sullivan, Nancy J; Graham, Barney S

    2017-03-09

    The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×10 10 particle units or 2×10 11 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×10 11 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×10 11 particle-unit dose than in the group that received the 2×10 10 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×10 11 particle-unit dose than among those who received the 2×10 10 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×10 11 particle-unit dose. Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At

  9. Method and system for efficiently searching an encoded vector index

    DOEpatents

    Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James

    2001-09-04

    Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.

  10. Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm

    PubMed Central

    Aldhamen, Yasser Ali; Seregin, Sergey S.; Amalfitano, Andrea

    2011-01-01

    Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general. PMID:22566830

  11. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FM...

  12. Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens1

    PubMed Central

    Tatsis, Nia; Lasaro, Marcio O.; Lin, Shih-Wen; Xiang, Zhi Q.; Zhou, Dongming; DiMenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J.; Silvestri, Guido; Ertl, Hildegund C.; Betts, Michael R.

    2009-01-01

    In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with pre-existing neutralizing antibodies against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee derived Ad (AdC) vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the AdC vectors induced higher T and B cell responses than repeated immunizations with the AdHu5 vector especially in AdHu5-pre-exposed macaques. PMID:19414814

  13. Corrective GUSB transfer to the canine mucopolysaccharidosis VII cornea using a helper-dependent canine adenovirus vector

    PubMed Central

    Serratrice, Nicolas; Cubizolle, Aurelie; Ibanes, Sandy; Mestre-Francés, Nadine; Bayo-Puxan, Neus; Creyssels, Sophie; Gennetier, Aurelie; Bernex, Florence; Verdier, Jean-Michel; Haskins, Mark E.; Couderc, Guilhem; Malecaze, Francois; Kalatzis, Vasiliki; Kremer, Eric J.

    2015-01-01

    Corneal transparency is maintained, in part, by specialized fibroblasts called keratocytes, which reside in the fibrous lamellae of the stroma. Corneal clouding, a condition that impairs visual acuity, is associated with numerous diseases, including mucopolysaccharidosis (MPS) type VII. MPS VII is due to deficiency in β-glucuronidase (β-glu) enzymatic activity, which leads to accumulation of glycosaminoglycans (GAGs), and secondary accumulation of gangliosides. Here, we tested the efficacy of canine adenovirus type 2 (CAV-2) vectors to transduce keratocyte in vivo in mice and nonhuman primates, and ex vivo in dog and human corneal explants. Following efficacy studies, we asked if we could treat corneal clouding by the injection a helper-dependent (HD) CAV-2 vector (HD-RIGIE) harboring the human cDNA coding for β-glu (GUSB) in the canine MPS VII cornea. β-Glu activity, GAG content, and lysosome morphology and physiopathology were analyzed. We found that HD-RIGIE injections efficiently transduced coxsackievirus adenovirus receptor-expressing keratocytes in the four species and, compared to mock-injected controls, improved the pathology in the canine MPS VII cornea. The key criterion to corrective therapy was the steady controlled release of β-glu and its diffusion throughout the collagen-dense stroma. These data support the continued evaluation of HD CAV-2 vectors to treat diseases affecting corneal keratocytes. PMID:24607662

  14. Perfluorochemical (PFC) liquid enhances recombinant adenovirus vector-mediated viral interleukin-10 (AdvIL-10) expression in rodent lung.

    PubMed

    Li, John T; Bonneau, Laura A; Zimmerman, Jerry J; Weiss, Daniel J

    2007-05-01

    Adenovirus and cationic liposome mediated transfer of Interleukin-10 (IL-10), a potent anti-inflammatory cytokine, has been shown to decrease pro-inflammatory cytokine levels and overall lung inflammation in models of lung transplantation and injury. Limitations to current approaches of IL-10 gene therapy include poor vector delivery methods and pro-inflammatory properties of human IL-10 under certain conditions. We hypothesize that using perfluorochemical (PFC) liquid to deliver the highly homologous viral IL-10 (vIL-10), which is predominantly anti-inflammatory with minimal pro-inflammatory activities, can potentially be a more effective strategy to combat inflammatory lung diseases. In this study, we compare the use of PFC liquid versus aerosolized method to deliver adenovirus encoding the vIL-10 gene (AdvIL-10) in C57Bl6 mice. Detectable vIL-10 levels were measured from bronchoalveolar lavage fluid and lung homogenates at one, four, ten and thirty days after AdvIL-10. Furthermore, we determined if use of PFC liquid could allow for the use of a lower dose of AdvIL-10 by comparing the levels of detectable vIL-10 at different doses of AdvIL-10 delivered +/- PFC liquid. Results showed that PFC liquid enhanced detectable vIL-10 by up to ten fold and that PFC liquid allowed the use of ten-fold less vector. PFC liquid increased detectable vIL-10 in lung homogenates at all time points; however, the increase in detectable vIL-10 in BAL fluid peaked at four days and was no longer evident by thirty days after intratracheal instillation. In summary, this is the first report utilizing PFC liquid to enhance the delivery of a potentially therapeutic molecule, vIL-10. We believe this strategy can be used to perform future studies on the use of the predominantly anti-inflammatory vIL-10 to treat inflammatory lung diseases.

  15. The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors.

    PubMed

    Young, B A; Spencer, J F; Ying, B; Tollefson, A E; Toth, K; Wold, W S M

    2013-09-01

    We have previously reported that intratumoral injection of VRX-007--an Ad5 (a species C adenovirus)-based vector overexpressing adenovirus death protein--can suppress the growth of subcutaneous HaK (hamster renal cancer) tumors. VRX-007 replication and tumor growth inhibition are enhanced when the hamsters are immunosuppressed by a high dose of cyclophosphamide (CP), an immunosuppressive and chemotherapeutic agent. Here, we report that continuous immunosuppression with CP was not required for increased oncolytic activity of VRX-007 because short-term dosing or continuous dosing with the drug yielded similar antitumor results. Prolonged viral replication was found only in animals on continuous CP treatment. We used 007-Luc, a replication-competent, luciferase-expressing vector similar to VRX-007, to investigate the replication of the vector over time. Tumor growth inhibition was similar in hamsters given CP treatment either 1 week before or 1 week after 007-Luc injection, which suggests that CP exerts its antitumor efficacy independently of vector therapy. 007-Luc did not spread far from the inoculation site, even in immunosuppressed, CP-treated animals. Our results indicate that the enhanced effectiveness that is produced by the combination of VRX-007 and CP therapies is due to their two independent mechanisms and that they do not have to be given simultaneously for the improved outcome.

  16. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  17. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines.

    PubMed

    See, Raymond H; Petric, Martin; Lawrence, David J; Mok, Catherine P Y; Rowe, Thomas; Zitzow, Lois A; Karunakaran, Karuna P; Voss, Thomas G; Brunham, Robert C; Gauldie, Jack; Finlay, B Brett; Roper, Rachel L

    2008-09-01

    Although the 2003 severe acute respiratory syndrome (SARS) outbreak was controlled, repeated transmission of SARS coronavirus (CoV) over several years makes the development of a SARS vaccine desirable. We performed a comparative evaluation of two SARS vaccines for their ability to protect against live SARS-CoV intranasal challenge in ferrets. Both the whole killed SARS-CoV vaccine (with and without alum) and adenovirus-based vectors encoding the nucleocapsid (N) and spike (S) protein induced neutralizing antibody responses and reduced viral replication and shedding in the upper respiratory tract and progression of virus to the lower respiratory tract. The vaccines also diminished haemorrhage in the thymus and reduced the severity and extent of pneumonia and damage to lung epithelium. However, despite high neutralizing antibody titres, protection was incomplete for all vaccine preparations and administration routes. Our data suggest that a combination of vaccine strategies may be required for effective protection from this pathogen. The ferret may be a good model for SARS-CoV infection because it is the only model that replicates the fever seen in human patients, as well as replicating other SARS disease features including infection by the respiratory route, clinical signs, viral replication in upper and lower respiratory tract and lung damage.

  18. Complete replication-competent adenovirus 11p vectors with E1 or E3 insertions show improved heat stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se

    2016-10-15

    Conventional adenovirus vectors harboring E1 or E3 deletions followed by the insertion of an exogenous gene show considerably reduced virion stability. Here, we report strategies to generate complete replication-competent Ad11p(RCAd11p) vectors that overcome the above disadvantage. A GFP cassette was successfully introduced either upstream of E1A or in the E3A region. The resulting vectors showed high expression levels of the hexon and E1genes and also strongly induced the cytopathic effect in targeted cells. When harboring oversized genomes, the RCAd11pE1 and RCAd11pE3 vectors showed significantly improved heat stability in comparison to Ad11pwt;of the three, RCAd11pE3 was the most tolerant to heatmore » treatment. Electron microscopy showed that RCAd11pE3, RCAd11pE1, Ad11pwt, and Ad11pE1 Delmanifested dominant, moderate, minimum, or no full virus particles after heat treatment at 47 °C for 5 h. Our results demonstrated that both genome size and the insertion site in the viral genome affect virion stability. -- Highlights: •Replicating adenovirus 11p GFP vectors at the E1 or E3 region were generated. •RCAd11pE3 and RCAd11pE1 vectors manifested significantly improved heat stability. •RCAd11pE3 and RCAd11pE1 showed more full viral particles than Ad11pwt after heating. •We demonstrated that both genome size and the insertion site affect virion stability.« less

  19. Radiation increases the activity of oncolytic adenovirus cancer gene therapy vectors that overexpress the ADP (E3-11.6K) protein.

    PubMed

    Toth, Karoly; Tarakanova, Vera; Doronin, Konstantin; Ward, Peter; Kuppuswamy, Mohan; Locke, Jacob E; Dawson, Julie E; Kim, Han J; Wold, William S M

    2003-03-01

    We have described three potential adenovirus type 5 (Ad5)-based replication-competent cancer gene therapy vectors named KD1, KD3, and VRX-007. All three vectors overexpress an Ad5 protein named Adenovirus Death Protein (ADP, also named E3-11.6 K protein). ADP is required for efficient lysis of Ad5-infected cells and spread of virus from cell to cell, and thus its overexpression increases the oncolytic activity of the vectors. KD1 and KD3 contain mutations in the Ad5 E1A gene that knock out binding of the E1A proteins to cellular p300/CBP and pRB; these mutations allow KD1 and KD3 to grow well in cancer cells but not in normal cells. VRX-007 has wild-type E1A. Here we report that radiation increases the oncolytic activity of KD1, KD3, and VRX-007. This increased activity was observed in cultured cells, and it was not because of radiation-induced replication of the vectors. The combination of radiation plus KD3 suppressed the growth of A549 lung adenocarcinoma xenografts in nude mice more efficiently than radiation alone or KD3 alone. The combination of ADP-overexpressing vectors and radiation may have potential in treating cancer.

  20. Protective immunity against tularemia provided by an adenovirus-vectored vaccine expressing Tul4 of Francisella tularensis.

    PubMed

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-03-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.

  1. Immune Response to Recombinant Adenovirus in Humans: Capsid Components from Viral Input Are Targets for Vector-Specific Cytotoxic T Lymphocytes

    PubMed Central

    Molinier-Frenkel, Valérie; Gahery-Segard, Hanne; Mehtali, Majid; Le Boulaire, Christophe; Ribault, Sébastien; Boulanger, Pierre; Tursz, Thomas; Guillet, Jean-Gérard; Farace, Françoise

    2000-01-01

    We previously demonstrated that a single injection of 109 PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218–2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8+ CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225

  2. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents.

    PubMed

    Fooks, A R; Jeevarajah, D; Lee, J; Warnes, A; Niewiesk, S; ter Meulen, V; Stephenson, J R; Clegg, J C

    1998-05-01

    The genes encoding the measles virus (MV) haemagglutinin (H) and fusion (F) proteins were placed under the control of the human cytomegalovirus immediate early promoter in a replication-deficient adenovirus vector. Immunofluorescence and radioimmune precipitation demonstrated the synthesis of each protein and biological activity was confirmed by the detection of haemadsorption and fusion activities in infected cells. Oral as well as parenteral administration of the H-expressing recombinant adenovirus elicited a significant protective response in mice challenged with MV. While the F-expressing adenovirus failed to protect mice, cotton rats immunized with either the H- or F-expressing recombinant showed reduced MV replication in the lungs. Antibodies elicited in mice following immunization with either recombinant had no in vitro neutralizing activity, suggesting a protective mechanism involving a cell-mediated immune response. This study demonstrates the feasibility of using oral administration of adenovirus recombinants to induce protective responses to heterologous proteins.

  3. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA

    PubMed Central

    Machitani, Mitsuhiro; Sakurai, Fuminori; Wakabayashi, Keisaku; Tomita, Kyoko; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-01-01

    In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells. PMID:27273616

  4. Intranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice.

    PubMed

    Kim, Eun Hye; Park, Hae-Jung; Han, Gye-Yeong; Song, Man-Ki; Pereboev, Alexander; Hong, Jeong S; Chang, Jun; Byun, Young-Ho; Seong, Baik Lin; Nguyen, Huan H

    2014-09-01

    Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus

  5. Bovine adenovirus-3 as a vaccine delivery vehicle.

    PubMed

    Ayalew, Lisanework E; Kumar, Pankaj; Gaba, Amit; Makadiya, Niraj; Tikoo, Suresh K

    2015-01-15

    The use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases. Although genetic engineering has provided new ways of producing effective vaccines, the cost of production for veterinary use is a critical criterion for selecting the method of production and delivery of vaccines. The cost effective production and intrinsic ability to enter cells has made adenovirus vectors a highly efficient tool for delivery of vaccine antigens. Moreover, adenoviruses induce both humoral and cellular immune responses to expressed vaccine antigens. Since nonhuman adenoviruses are species specific, the development of animal specific adenoviruses as vaccine delivery vectors is being evaluated. This review summarizes the work related to the development of bovine adenovirus-3 as a vaccine delivery vehicle in animals, particularly cattle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. In Vivo Stable Transduction of Humanized Liver Tissue in Chimeric Mice via High-Capacity Adenovirus–Lentivirus Hybrid Vector

    PubMed Central

    Kataoka, Miho; Tateno, Chise; Yoshizato, Katsutoshi; Kawasaki, Yoshiko; Kimura, Takahiro; Faure-Kumar, Emmanuelle; Palmer, Donna J.; Ng, Philip; Okamura, Haruki; Kasahara, Noriyuki

    2010-01-01

    Abstract We developed hybrid vectors employing high-capacity adenovirus as a first-stage carrier encoding all the components required for in situ production of a second-stage lentivirus, thereby achieving stable transgene expression in secondary target cells. Such vectors have never previously been tested in normal tissues, because of the scarcity of suitable in vivo systems permissive for second-stage lentivirus assembly. Here we employed a novel murine model in which endogenous liver tissue is extensively reconstituted with engrafted human hepatocytes, and successfully achieved stable transduction by the second-stage lentivirus produced in situ from first-stage adenovirus. This represents the first demonstration of the functionality of adenoviral-lentiviral hybrid vectors in a normal parenchymal organ in vivo. PMID:19725756

  7. Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells.

    PubMed

    Prill, Jan-Michael; Espenlaub, Sigrid; Samen, Ulrike; Engler, Tatjana; Schmidt, Erika; Vetrini, Francesco; Rosewell, Amanda; Grove, Nathan; Palmer, Donna; Ng, Philip; Kochanek, Stefan; Kreppel, Florian

    2011-01-01

    In vivo gene transfer with adenovirus vectors would significantly benefit from a tight control of the adenovirus-inherent liver tropism. For efficient hepatocyte transduction, adenovirus vectors need to evade from Kupffer cell scavenging while delivery to peripheral tissues or tumors could be improved if both scavenging by Kupffer cells and uptake by hepatocytes were blocked. Here, we provide evidence that a single point mutation in the hexon capsomere designed to enable defined chemical capsid modifications may permit both detargeting from and targeting to hepatocytes with evasion from Kupffer cell scavenging. Vector particles modified with small polyethylene glycol (PEG) moieties specifically on hexon exhibited decreased transduction of hepatocytes by shielding from blood coagulation factor binding. Vector particles modified with transferrin or, surprisingly, 5,000 Da PEG or dextran increased hepatocyte transduction up to 18-fold independent of the presence of Kupffer cells. We further show that our strategy can be used to target high-capacity adenovirus vectors to hepatocytes emphasizing the potential for therapeutic liver-directed gene transfer. Our approach may lead to a detailed understanding of the interactions between adenovirus vectors and Kupffer cells, one of the most important barriers for adenovirus-mediated gene delivery.

  8. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine

    USDA-ARS?s Scientific Manuscript database

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) sero-type O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa empty capsids. Swine inoculated with Ad5-O1Man developed an FMDV-specific neutralizing antibody response as compared to animals inoculated wi...

  9. Adenovirus Type 5 Viral Particles Pseudotyped with Mutagenized Fiber Proteins Show Diminished Infectivity of Coxsackie B-Adenovirus Receptor-Bearing Cells

    PubMed Central

    Jakubczak, John L.; Rollence, Michele L.; Stewart, David A.; Jafari, Jonathon D.; Von Seggern, Dan J.; Nemerow, Glen R.; Stevenson, Susan C.; Hallenbeck, Paul L.

    2001-01-01

    A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.βgal.ΔF, an E1-, E3-, and fiber-deleted adenoviral vector encoding β-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector. PMID:11222722

  10. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    PubMed

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  11. Cancer gene therapy with targeted adenoviruses.

    PubMed

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  12. Adenovirus-vectored Ebola vaccines.

    PubMed

    Gilbert, Sarah C

    2015-01-01

    The 2014 outbreak of Ebola virus disease in West Africa has highlighted the need for the availability of effective vaccines against outbreak pathogens that are suitable for use in frontline workers who risk their own health in the course of caring for those with the disease, and also for members of the community in the affected area. Along with effective contact tracing and quarantine, use of a vaccine as soon as an outbreak is identified could greatly facilitate rapid control and prevent the outbreak from spreading. This review describes the progress that has been made in producing and testing adenovirus-based Ebola vaccines in both pre-clinical and clinical studies, and considers the likely future use of these vaccines.

  13. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    PubMed Central

    Geisbert, Joan B; Shedlock, Devon J; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V; Popernack, Paul M; Yang, Zhi-Yong; Pau, Maria G; Roederer, Mario; Koup, Richard A; Goudsmit, Jaap; Jahrling, Peter B; Nabel, Gary J

    2006-01-01

    Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate. PMID:16683867

  14. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications.

    PubMed

    Hartman, Zachary C; Appledorn, Daniel M; Amalfitano, Andrea

    2008-03-01

    Extensively characterized, modified, and employed for a variety of purposes, adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility (i.e., Ad-based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad-based vaccines are regarded as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane-bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray-based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well as highlight areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications.

  15. Adenovirus vector induced Innate Immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications

    PubMed Central

    Hartman, Zachary C.; Appledorn, Daniel M.; Amalfitano, Andrea

    2013-01-01

    Extensively characterized, modified, and employed for a variety of purposes, Adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility, (i.e.: Ad based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad based vaccines are highly acknowledged as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well point areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications. PMID:18036698

  16. Innate Functions of Immunoglobulin M Lessen Liver Gene Transfer with Helper-Dependent Adenovirus

    PubMed Central

    Unzu, Carmen; Morales-Kastresana, Aizea; Sampedro, Ana; Serrano-Mendioroz, Irantzu; Azpilikueta, Arantza; Ochoa, María Carmen; Dubrot, Juan; Martínez-Ansó, Eduardo

    2014-01-01

    The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors. PMID:24465560

  17. Prospects for Oral Replicating Adenovirus-Vectored Vaccines

    PubMed Central

    Deal, Cailin; Pekosz, Andrew; Ketner, Gary

    2013-01-01

    Orally delivered replicating adenovirus (Ad) vaccines have been used for decades to prevent adenovirus serotype 4 and 7 respiratory illness in military recruits, demonstrating exemplary safety and high efficacy. That experience suggests that oral administration of live recombinant Ads (rAds) holds promise for immunization against other infectious diseases, including those that have been refractory to traditional vaccination methods. Live rAds can express intact antigens from free-standing transgenes during replication in infected cells. Alternatively, antigenic epitopes can be displayed on the rAd capsid itself, allowing presentation of the epitope to the immune system both prior to and during replication of the virus. Such capsid-display rAds offer a novel vaccine approach that could be used either independently of or in combination with transgene expression strategies to provide a new tool in the search for protection from infectious disease. PMID:23707160

  18. Modification to the Capsid of the Adenovirus Vector That Enhances Dendritic Cell Infection and Transgene-Specific Cellular Immune Responses

    PubMed Central

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Bruder, Joseph T.; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.

    2004-01-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the β-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing β-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to β-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-β-galactosidase antibody levels following vector administration. However, cellular responses to β-galactosidase were significantly enhanced, with the frequency of CD4+ as well as the CD8+ β-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing β-galactosidase: BALB/c mice implanted with the CT26 syngeneic β-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These

  19. Establishment and validation of new complementing cells for production of E1-deleted adenovirus vectors in serum-free suspension culture.

    PubMed

    Gilbert, Rénald; Guilbault, Claire; Gagnon, David; Bernier, Alice; Bourget, Lucie; Elahi, Seyyed Mehdy; Kamen, Amine; Massie, Bernard

    2014-11-01

    E1-deleted adenovirus vectors (AdV) are important gene transfer vehicles for gene therapy and vaccination. Amplification of AdV must take place in cells that express the adenovirus E1A and E1B genes. Sequence homology between AdV and the E1 genes integrated within the complementing cells should be minimal to reduce the odds of generating replication-competent adenovirus (RCA). The present study describes the establishment of AdV complementing cells constructed by stable transfection of the minimal E1A and E1B genes into human lung carcinoma (A549). Because some transgene products can be cytotoxic, the cells were engineered to stably express the repressor of the cumate-switch (CymR) to silence transgene transcription during vector growth. For regulatory compliance and to facilitate the scale-up, the resulting complementing cells (SF-BMAdR) were adapted to serum-free suspension culture. The best clone of SF-BMAdR produced AdV carrying an innocuous transgene to the same level as 293 cells, but titers were better for AdV carrying transgene for a cytotoxic product. Elevated titers were maintained for at least two months in suspension culture in the absence of selective agent and the cells did not produce RCA. Because of their advantageous properties, SF-BMAdR cells should become an important tool for developing large-scale production processes of AdV for research and clinical applications. Copyright © 2014. Published by Elsevier B.V.

  20. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors.

    PubMed

    Crosby, Catherine M; Barry, Michael A

    2017-02-18

    Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed "single cycle" Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC

  1. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was

  2. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    USDA-ARS?s Scientific Manuscript database

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  3. Efficacy of severe acute respiratory syndrome vaccine based on a nonhuman primate adenovirus in the presence of immunity against human adenovirus.

    PubMed

    Zhi, Yan; Figueredo, Joanita; Kobinger, Gary P; Hagan, Heather; Calcedo, Roberto; Miller, James R; Gao, Guangping; Wilson, James M

    2006-05-01

    Replication-deficient human adenovirus type 5 (AdH5) vectors can induce strong transgene product-specific cellular and humoral responses. However, many adult humans have neutralizing antibodies (NAbs) against AdH5 as a result of natural infection with this virus. Therefore, a chimpanzee adenovirus C7 (AdC7) vector was developed to circumvent interference by preexisting immunity to AdH5. This study evaluated the impact of preexisting immunity to human adenovirus on the efficacy of adenovirus-based vaccines against the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). Efficacy was assessed after intramuscular injection of the vector into mice and was measured as the frequency of SARS-CoV-specific T cells and NAbs against SARS-CoV. Immunogenicity of the AdH5-based vaccine was significantly attenuated or completely abolished when the preexisting anti-AdH5 NAb titer was higher than 40. Because 27% of human serum samples from the United States tested so far have an anti-AdH5 NAb titer higher than 40, our results suggested that a significant percentage of humans with preexisting anti-AdH5 immunity would not be candidates for vaccination with an AdH5-based genetic vaccine. In contrast, preexisting anti-AdH5 NAbs have a minimal effect on the potency of the AdC7-based genetic vaccine. Taken together, our studies warrant the further development of AdC7 as a vaccine carrier for human trials.

  4. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  5. Isolation and Characterization of Adenoviruses Persistently Shed from the Gastrointestinal Tract of Non-Human Primates

    PubMed Central

    Kryazhimskiy, Sergey; Grant, Rebecca; Calcedo, Roberto; Yuan, Xin; Keough, Martin; Sandhu, Arbans; Wang, Qiang; Medina-Jaszek, C. Angelica; Plotkin, Joshua B.; Wilson, James M.

    2009-01-01

    Adenoviruses are important human pathogens that have been developed as vectors for gene therapies and genetic vaccines. Previous studies indicated that human infections with adenoviruses are self-limiting in immunocompetent hosts with evidence of some persistence in adenoid tissue. We sought to better understand the natural history of adenovirus infections in various non-human primates and discovered that healthy populations of great apes (chimpanzees, bonobos, gorillas, and orangutans) and macaques shed substantial quantities of infectious adenoviruses in stool. Shedding in stools from asymptomatic humans was found to be much less frequent, comparable to frequencies reported before. We purified and fully sequenced 30 novel adenoviruses from apes and 3 novel adenoviruses from macaques. Analyses of the new ape adenovirus sequences (as well as the 4 chimpanzee adenovirus sequences we have previously reported) together with 22 complete adenovirus genomes available from GenBank revealed that (a) the ape adenoviruses could clearly be classified into species corresponding to human adenovirus species B, C, and E, (b) there was evidence for intraspecies recombination between adenoviruses, and (c) the high degree of phylogenetic relatedness of adenoviruses across their various primate hosts provided evidence for cross species transmission events to have occurred in the natural history of B and E viruses. The high degree of asymptomatic shedding of live adenovirus in non-human primates and evidence for zoonotic transmissions warrants caution for primate handling and housing. Furthermore, the presence of persistent and/or latent adenovirus infections in the gut should be considered in the design and interpretation of human and non-human primate studies with adenovirus vectors. PMID:19578438

  6. [Construction and expression of a recombinant adenovirus with LZP3].

    PubMed

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  7. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D.

    PubMed

    Abbink, Peter; Lemckert, Angelique A C; Ewald, Bonnie A; Lynch, Diana M; Denholtz, Matthew; Smits, Shirley; Holterman, Lennart; Damen, Irma; Vogels, Ronald; Thorner, Anna R; O'Brien, Kara L; Carville, Angela; Mansfield, Keith G; Goudsmit, Jaap; Havenga, Menzo J E; Barouch, Dan H

    2007-05-01

    Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.

  8. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3.

    PubMed

    Sirena, Dominique; Ruzsics, Zsolt; Schaffner, Walter; Greber, Urs F; Hemmi, Silvio

    2005-12-20

    Human adenovirus (Ad) serotype 3 causes respiratory infections. It is considered highly virulent, accounting for about 13% of all Ad isolates. We report here the complete Ad3 DNA sequence of 35,343 base pairs (GenBank accession DQ086466). Ad3 shares 96.43% nucleotide identity with Ad7, another virulent subspecies B1 serotype, and 82.56 and 62.75% identity with the less virulent species B2 Ad11 and species C Ad5, respectively. The genomic organization of Ad3 is similar to the other human Ads comprising five early transcription units, E1A, E1B, E2, E3, and E4, two delayed early units IX and IVa2, and the major late unit, in total 39 putative and 7 hypothetical open reading frames. A recombinant E1-deleted Ad3 was generated on a bacterial artificial chromosome. This prototypic virus efficiently transduced CD46-positive rodent and human cells. Our results will help in clarifying the biology and pathology of adenoviruses and enhance therapeutic applications of viral vectors in clinical settings.

  9. Genetic Targeting of an Adenovirus Vector via Replacement of the Fiber Protein with the Phage T4 Fibritin

    PubMed Central

    Krasnykh, Victor; Belousova, Natalya; Korokhov, Nikolay; Mikheeva, Galina; Curiel, David T.

    2001-01-01

    The utility of adenovirus (Ad) vectors for gene therapy is restricted by their inability to selectively transduce disease-affected tissues. This limitation may be overcome by the derivation of vectors capable of interacting with receptors specifically expressed in the target tissue. Previous attempts to alter Ad tropism by genetic modification of the Ad fiber have had limited success due to structural conflicts between the fiber and the targeting ligand. Here we present a strategy to derive an Ad vector with enhanced targeting potential by a radical replacement of the fiber protein in the Ad capsid with a chimeric molecule containing a heterologous trimerization motif and a receptor-binding ligand. Our approach, which capitalized upon the overall structural similarity between the human Ad type 5 (Ad5) fiber and bacteriophage T4 fibritin proteins, has resulted in the generation of a genetically modified Ad5 incorporating chimeric fiber-fibritin proteins targeted to artificial receptor molecules. Gene transfer studies employing this novel viral vector have demonstrated its capacity to efficiently deliver a transgene payload to the target cells in a receptor-specific manner. PMID:11287567

  10. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    PubMed

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  11. The effects of radiation on antitumor efficacy of an oncolytic adenovirus vector in the Syrian hamster model

    PubMed Central

    Young, Brittany A.; Spencer, Jacqueline F.; Ying, Baoling; Toth, Karoly; Wold, William S. M.

    2013-01-01

    We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared to those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either one week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors. PMID:23928730

  12. The effects of radiation on antitumor efficacy of an oncolytic adenovirus vector in the Syrian hamster model.

    PubMed

    Young, B A; Spencer, J F; Ying, B; Toth, K; Wold, W S M

    2013-09-01

    We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared with those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either 1 week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors.

  13. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis

    PubMed Central

    Wang, Danher; Suhrbier, Andreas; Penn-Nicholson, Adam; Woraratanadharm, Jan; Gardner, Joy; Luo, Min; Le, Thuy T.; Anraku, Itaru; Sakalian, Michael; Einfeld, David; Dong, John Y.

    2011-01-01

    Chikungunya virus, a mosquito-borne alphavirus, recently caused the largest epidemic ever seen for this virus. Chikungunya disease primarily manifests as a painful and debilitating arthralgia/arthritis, and no effective drug or vaccine is currently available. Here we describe a recombinant chikungunya virus vaccine comprising a non-replicating complex adenovirus vector encoding the structural polyprotein cassette of chikungunya virus. A single immunisation with this vaccine consistently induced high titres of anti-chikungunya virus antibodies that neutralised both an old Asian isolate and a Réunion Island isolate from the recent epidemic. The vaccine also completely protected mice against viraemia and arthritic disease caused by both virus isolates. PMID:21320541

  14. INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies

    PubMed Central

    Ying, B; Toth, K; Spencer, JF; Meyer, J; Tollefson, AE; Patra, D; Dhar, D; Shashkova, EV; Kuppuswamy, M; Doronin, K; Thomas, MA; Zumstein, LA; Wold, WSM; Lichtenstein, DL

    2012-01-01

    Preclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus. INGN 007 (VRX-007), wild-type Ad5 and AdCMVpA (an RD vector) were compared in the hamster model, whereas only INGN 007 was examined in mice. DNA of all vectors was widely disseminated early after injection, but decayed rapidly in most organs. In the hamster model, DNA of INGN 007 and Ad5 was more abundant than that of the RD vector AdCMVpA at early times after injection, but similar levels were seen later. An increased level of INGN 007 and Ad5 DNA but not AdCMVpA DNA in certain organs early after injection, and the presence of infectious INGN 007 and Ad5 in lung and liver samples at early times after injection, strongly suggests that replication of INGN 007 and Ad5 occurred in several Syrian hamster organs. There was no evidence of INGN 007 replication in mice. In addition to providing important information about INGN 007, the results underscore the utility of the Syrian hamster as a permissive immunocompetent model for Ad5 pathogenesis and oncolytic Ad vectors. PMID:19197322

  15. INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies.

    PubMed

    Ying, B; Toth, K; Spencer, J F; Meyer, J; Tollefson, A E; Patra, D; Dhar, D; Shashkova, E V; Kuppuswamy, M; Doronin, K; Thomas, M A; Zumstein, L A; Wold, W S M; Lichtenstein, D L

    2009-08-01

    Preclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus. INGN 007 (VRX-007), wild-type Ad5 and AdCMVpA (an RD vector) were compared in the hamster model, whereas only INGN 007 was examined in mice. DNA of all vectors was widely disseminated early after injection, but decayed rapidly in most organs. In the hamster model, DNA of INGN 007 and Ad5 was more abundant than that of the RD vector AdCMVpA at early times after injection, but similar levels were seen later. An increased level of INGN 007 and Ad5 DNA but not AdCMVpA DNA in certain organs early after injection, and the presence of infectious INGN 007 and Ad5 in lung and liver samples at early times after injection, strongly suggests that replication of INGN 007 and Ad5 occurred in several Syrian hamster organs. There was no evidence of INGN 007 replication in mice. In addition to providing important information about INGN 007, the results underscore the utility of the Syrian hamster as a permissive immunocompetent model for Ad5 pathogenesis and oncolytic Ad vectors.

  16. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  17. Immunization with a Novel Human type 5 Adenovirus-Vectored Vaccine Expressing the Premembrane and Envelope Proteins of Zika Virus Provides Consistent and Sterilizing Protection in Multiple Immunocompetent and Immunocompromised Animal Models.

    PubMed

    Guo, Qiang; Chan, Jasper Fuk-Woo; Poon, Vincent Kwok-Man; Wu, Shipo; Chan, Chris Chung-Sing; Hou, Lihua; Yip, Cyril Chik-Yan; Ren, Changpeng; Cai, Jian-Piao; Zhao, Mengsu; Zhang, Anna Jinxia; Song, Xiaohong; Chan, Kwok-Hung; Wang, Busen; Kok, Kin-Hang; Wen, Yanbo; Yuen, Kwok-Yung; Chen, Wei

    2018-03-29

    Zika virus (ZIKV) infection may be associated with severe complications and disseminated via both vector-borne and non-vector-borne routes. Adenovirus-vectored vaccines represent a favorable controlling measure for the ZIKV epidemic as they have been shown to be safe, immunogenic, and rapidly generable for other emerging viral infections. Evaluations of two previously reported adenovirus-vectored ZIKV vaccines were performed using non-lethal animal models and/or non-epidemic ZIKV strain. We constructed and evaluated two human adenovirus-5-vectored vaccines containing the ZIKV premembrane-envelope(Ad5-Sig-prM-Env) and envelope(Ad5-Env) proteins, respectively, in multiple non-lethal and lethal animal models using epidemic ZIKV strains. Both vaccines elicited robust humoral and cellular immune responses in immunocompetent BALB/c mice. Dexamethasone-immunosuppressed mice vaccinated with either vaccine demonstrated robust and durable antibody responses and significantly lower blood/tissue viral loads than controls(P<0.05). Similar findings were also observed in interferon-α/β-receptor-deficient A129 mice. In both these immunocompromised animal models, Ad5-Sig-prM-Env-vaccinated mice had significantly(P<0.05) higher titers of anti-ZIKV-specific neutralizing antibody titers and lower(undetectable) viral loads than Ad5-Env-vaccinated mice. The close correlation between the neutralizing antibody titer and viral load helped to explain the better protective effect of Ad5-Sig-prM-Env than Ad5-Env. Anamnestic response was absent in Ad5-Sig-prM-Env-vaccinated A129 mice. Ad5-Sig-prM-Env provided sterilizing protection against ZIKV infection in mice.

  18. Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin.

    PubMed

    Skog, Johan; Mei, Ya-Fang; Wadell, Göran

    2002-06-01

    Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.

  19. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts.

    PubMed

    Huang, Jing Li; LaRocca, Christopher J; Yamamoto, Masato

    2016-09-19

    Oncolytic adenoviruses (OAds) are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor), interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  20. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    PubMed

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  1. Direct adenovirus-mediated gene delivery to the temporomandibular joint in guinea-pigs.

    PubMed

    Kuboki, T; Nakanishi, T; Kanyama, M; Sonoyama, W; Fujisawa, T; Kobayashi, K; Ikeda, T; Kubo, T; Yamashita, A; Takigawa, M

    1999-09-01

    Adenovirus vector system is expected to be useful for direct gene therapy for joint disease. This study first sought to confirm that foreign genes can be transferred to articular chondrocytes in primary culture. Next, recombinant adenovirus vectors harbouring beta-galactosidase gene (LacZ) was injected directly into the temporomandibular joints of Hartley guinea-pigs to clarify the in vivo transfer availability of the adenovirus vectors. Specifically, recombinant adenovirus harbouring LacZ gene (AxlCALacZ) was injected into the upper joint cavities of both mandibular joints of four male 6-week-old Hartley guinea-pigs. Either the same amount of recombinant adenovirus without LacZ gene (Axlw) suspension (placebo) or the same amount of phosphate-buffered saline solution (control) were injected into the upper joint cavities of both joints of another four male guinea-pigs. At 1, 2, 3 and 4 weeks after injection, the joints were dissected and the expression of delivered LacZ was examined by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining and reverse transcriptase-polymerase chain reaction (RT-PCR). To investigate the expression of transferred gene in other organs, total RNA was extracted from liver, kidney, heart and brain and the expression of LacZ mRNA and 18 S ribosomal RNA were analysed by RT-PCR. Clear expression of LacZ was observed in the articular surfaces of the temporal tubercle, articular disc and synovium of the temporomandibular joints even 4 weeks after injection in the AxlCALacZ-injected group, while no expression was detected in placebo and control groups. Histological examination confirmed that LacZ activity was clearly detected in a few cell layers of the articular surface tissues, which is much more efficient than in a previously study of the knee joint. In the other organs, expression of the delivered transgene was not observed. Based on these findings, direct gene delivery into the articular surface of the temporomandibular joint

  2. Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines.

    PubMed

    Crosby, Catherine M; Nehete, Pramod; Sastry, K Jagannadha; Barry, Michael A

    2015-01-01

    Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered "single-cycle" adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase than SC-Ad6, it does not

  3. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    USDA-ARS?s Scientific Manuscript database

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  4. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the studymore » of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.« less

  6. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. Whenmore » wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.« less

  7. Induction of Shock After Intravenous Injection of Adenovirus Vectors: A Critical Role for Platelet-activating Factor

    PubMed Central

    Xu, Zhili; Smith, Jeffrey S.; Tian, Jie; Byrnes, Andrew P.

    2009-01-01

    Innate immune responses are a major barrier to safe systemic gene therapy with adenovirus (Ad) vectors. We show that intravenous (IV) injection of rats with Ad5 vectors causes a novel rapid shock reaction that involves hypotension, hemoconcentration, tissue edema, and vasocongestion, with notable pathology in the pancreas and the gastrointestinal system. We show for the first time that this reaction is dependent on platelet-activating factor (PAF), a lipid signaling molecule that is a known shock inducer. Ad upregulated PAF within 5 minutes in vivo, and antagonists of the PAF receptor were able to prevent Ad-induced shock. Ad upregulated PAF via the reticuloendothelial system (RES), because splenectomy or depletion of phagocytes blocked the ability of Ad to induce both PAF and shock. Rats were considerably more sensitive to Ad-induced shock than were mice, but PAF mediated shock in both species. Other Ad-induced innate immune responses such as cytokine induction and thrombocytopenia were not mediated by PAF. In summary, systemic IV injection of Ad stimulates the RES to upregulate PAF within a matter of minutes, which results in shock. The identification of this novel pathway suggests strategies to improve the safety of systemic gene therapy with Ad vectors. PMID:19953082

  8. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord

    PubMed Central

    Kamada, Takahito; Hashimoto, Masayuki; Murakami, Masazumi; Shirasawa, Hiroshi; Sakao, Seiichiro; Ino, Hidetoshi; Yoshinaga, Katsunori; Koshizuka, Shuhei; Moriya, Hideshige; Yamazaki, Masashi

    2007-01-01

    The aim of this study was to evaluate the efficacy in adult rat completely transected spinal cord of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to bone marrow stromal cells (BMSC). BMSC were infected with adenovirus vectors carrying β-galactosidase (AxCALacZ) or BDNF (AxCABDNF) genes. The T8 segment of spinal cord was removed and replaced by graft containing Matrigel alone (MG group) or Matrigel and BMSC infected by AxCALacZ (BMSC-LacZ group) or AxCABDNF (BMSC-BDNF group). Axons in the graft were evaluated by immunohistochemistry and functional recovery was assessed with BBB locomotor scale. In the BMSC-BDNF group, the number of fibers positive for growth associated protein-43, tyrosine hydroxylase, and calcitonin gene-related peptide was significantly larger than numbers found for the MG and BMSC-LacZ groups. Rats from BMSC-BDNF and BMSC-LacZ groups showed significant recovery of hind limb function compared with MG rats; however, there was no significant difference between groups in degree of functional recovery. These findings demonstrate that adenovirus vector-mediated ex vivo gene transfer of BDNF enhances the capacity of BMSC to promote axonal regeneration in this completely transected spinal cord model; however, BDNF failed to enhance hind limb functional recovery. Further investigation is needed to establish an optimal combination of cell therapy and neurotrophin gene transfer for cases of spinal cord injury. PMID:17885772

  9. Cycles of Transient High-Dose Cyclophosphamide Administration and Oncolytic Adenovirus Vector Intratumoral Injection for Long Term Tumor Suppression in Syrian Hamsters

    PubMed Central

    Dhar, Debanjan; Toth, Karoly; Wold, William S.M.

    2014-01-01

    Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. In Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long term cyclophosphamide treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here we employed three cycles of transient high-dose cyclophosphamide administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal from cyclophosphamide. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment. PMID:24722357

  10. Cycles of transient high-dose cyclophosphamide administration and intratumoral oncolytic adenovirus vector injection for long-term tumor suppression in Syrian hamsters.

    PubMed

    Dhar, D; Toth, K; Wold, W S M

    2014-04-01

    Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. With Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide (CP) to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long-term CP treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here, we employed three cycles of transient high-dose CP administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal of CP. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long-term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment.

  11. Development of nonhuman adenoviruses as vaccine vectors

    PubMed Central

    Bangari, Dinesh S.; Mittal, Suresh K.

    2006-01-01

    Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination. PMID:16297508

  12. Adenovirus small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells.

    PubMed

    Tao, Zhi-Wei; Zou, Ping-An

    2018-06-13

    Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent year. This study attempts to explore the effect of adenovirus-mediated small interfering RNA (siRNA) targeting ezrin on the proliferation, migration, invasion and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targeting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targeting ezrin elevated expression levels of Bax, P21, P53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2, and MMP-9. Furthermore, adenovirus-mediated siRNA targeting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targeting ezrin can induce apoptosis and inhibit the proliferation, migration and invasion of human osteosarcoma MG-63 cells. ©2018 The Author(s).

  13. Localized gene delivery using antibody tethered adenovirus from polyurethane heart valve cusps and intra-aortic implants.

    PubMed

    Stachelek, S J; Song, C; Alferiev, I; Defelice, S; Cui, X; Connolly, J M; Bianco, R W; Levy, R J

    2004-01-01

    The present study investigated a novel approach for gene therapy of heart valve disease and vascular disorders. We formulated and characterized implantable polyurethane films that could also function as gene delivery systems through the surface attachment of replication defective adenoviruses using an anti-adenovirus antibody tethering mechanism. Our hypothesis was that we could achieve site-specific gene delivery to cells interacting with these polyurethane implants, and thereby demonstrate the potential for intravascular devices that could also function as gene delivery platforms for therapeutic vectors. Previous research by our group has demonstrated that polyurethane elastomers can be derivatized post-polymerization through a series of chemical reactions activating the hard segment amide groups with alkyl bromine residues, which can enable a wide variety of subsequent chemical modifications. Furthermore, prior research by our group investigating gene delivery intravascular stents has shown that collagen-coated balloon expandable stents can be configured with anti-adenovirus antibodies via thiol-based chemistry, and can then tether adenoviral vectors at doses that lead to high levels of localized arterial neointima expression, but with virtually no distal spread of vector. Thus, we sought to create two-device configurations for our investigations building on this previous research. (1) Polyurethane films coated with Type I collagen were thiol activated to permit covalent attachment of anti-adenovirus antibodies to enable gene delivery via vector tethering. (2) We also formulated polyurethane films with direct covalent attachment of anti-adenovirus antibodies to polyurethane hard segments derivatized with alkyl-thiol groups, thereby also enabling tethering of replication-defective adenoviruses. Both formulations demonstrated highly localized and efficient transduction in cell culture studies with rat arterial smooth muscle cells. In vivo experiments with collagen

  14. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    USDA-ARS?s Scientific Manuscript database

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  15. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  16. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  17. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  18. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  19. Tumor Necrosis Factor α‐Gene Therapy for an Established Murine Melanoma Using RGB (Arg‐Gly‐Asp) Fiber‐mutant Adenovirus Vectors

    PubMed Central

    Okada, Yuka; Nakagawa, Shinsaku; Mizuguchi, Hiroyuki; Takahashi, Koichi; Mizuno, Nobuyasu; Fujita, Takuya; Yamamoto, Akira; Hayakawa, Takao; Mayumi, Tadanori

    2002-01-01

    Although adenovirus vectors (Ad) provide high‐level transduction efficacy to many cell types, extremely high doses of Ad are required for sufficient gene transduction into several tumors, including melanoma. Here, we demonstrated that the expression of coxsackie‐adenovirus receptor, a primitive Ad‐receptor, was very low in murine and human melanoma cells. We also found that fiber‐mutant Ad containing the Arg‐Gly‐Asp (RGD) sequence in the fiber knob remarkably augmented gene transduction efficacy in melanoma cells by targeting αv‐integrins. In addition, intratumoral injection of RGD fiber‐mutant Ad containing the tumor necrosis factor α gene (AdRGD‐TNFα) revealed dramatic anti‐tumor efficacy through hemolytic necrosis in an established murine B16 BL6 melanoma model. Ad‐RGD‐TNFα required one‐tenth the dosage of Ad‐TNFα to induce an equal therapeutic effect. These results suggest that αv‐integrin‐targeted Ad will be a very powerful tool for the advancement of melanoma gene therapy. PMID:11985794

  20. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C., E-mail: ertl@wistar.upenn.edu

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protectsmore » against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.« less

  1. Applying Genomic and Bioinformatic Resources to Human Adenovirus Genomes for Use in Vaccine Development and for Applications in Vector Development for Gene Delivery

    PubMed Central

    Seto, Jason; Walsh, Michael P.; Mahadevan, Padmanabhan; Zhang, Qiwei; Seto, Donald

    2010-01-01

    Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented. PMID:21994597

  2. “Stealth” Adenoviruses Blunt Cell-Mediated and Humoral Immune Responses against the Virus and Allow for Significant Gene Expression upon Readministration in the Lung

    PubMed Central

    Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.

    2001-01-01

    Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351

  3. Therapeutic Effect of Recombinant Adenovirus Encoding Interferon-γ in a Murine Model of Progressive Pulmonary Tuberculosis.

    PubMed

    Mata-Espinosa, Dulce A; Mendoza-Rodríguez, Valentin; Aguilar-León, Diana; Rosales, Ricardo; López-Casillas, Fernando; Hernández-Pando, Rogelio

    2008-06-01

    We constructed recombinant adenoviruses encoding murine interferon-γ (AdIFNγ) and tested its therapeutic efficiency in a well characterized model of progressive pulmonary tuberculosis (TB) in Balb/c mice, infected through the trachea with the laboratory drug-susceptible H37Rv strain or multidrug-resistant (MDR) clinical isolate. When the disease was in a late phase, 2 months after infection, we administered by intratracheal cannulation a single dose [1.7 × 10 9 plaque forming units (pfu)] of AdIFNγ or the control adenovirus. Groups of mice were killed at different time-points and the lungs were examined to determine bacilli colony forming units (CFU), cytokine/chemokine gene expression, and CD4/CD8 subpopulations, and also subjected to automated histomorphometry. In comparison with the control group, after 2 weeks of treatment and during the next 6 months, AdIFNγ-treated animals infected with either the H37Rv strain or the MDR strain showed significantly lower bacilli loads and tissue damage (pneumonia), higher expressions of IFN-γ, tumor necrosis factor (TNF), and inducible nitric oxide synthase (iNOS), and bigger granulomas. When compared with the results from conventional chemotherapy or AdIFNγ treatment alone, the combined treatment with AdIFNγ plus conventional chemotherapy shortened the time taken for reduction of bacillary load. This shows that gene therapy with AdIFNγ efficiently reconstituted the protective immune response and controlled the progress of pulmonary TB produced by MDR or non-MDR strains. Copyright © 2008 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

  4. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  5. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    PubMed

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  6. Production of adenovirus vectors and their use as a delivery system for influenza vaccines

    PubMed Central

    Vemula, Sai V.; Mittal, Suresh K.

    2010-01-01

    IMPORTANCE OF THE FIELD With the emergence of highly pathogenic avian influenza H5N1 viruses that have crossed species barriers and are responsible for lethal infections in humans in many countries, there is an urgent need for the development of effective vaccines which can be produced in large quantities at a short notice and confer broad protection against these H5N1 variants. In order to meet the potential global vaccine demand in a pandemic scenario, new vaccine-production strategies must be explored in addition to the currently used egg-based technology for seasonal influenza. AREAS COVERED IN THIS REVIEW Adenovirus (Ad) based influenza vaccines represent an attractive alternative/supplement to the currently licensed egg-based influenza vaccines. Ad-based vaccines are relatively inexpensive to manufacture, and their production process does not require either chicken eggs or labor intensive and time-consuming processes necessitating enhanced biosafety facilities. Most importantly, in a pandemic situation, this vaccine strategy could offer a stockpiling option to reduce the response time before a strain-matched vaccine could be developed. WHAT THE READER WILL GAIN This review discusses Ad-vector technology and the current progress in the development of Ad-based influenza vaccines. TAKE HOME MESSAGE Ad vector-based influenza vaccines for pandemic preparedness are under development to meet the global vaccine demand. PMID:20822477

  7. The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors

    PubMed Central

    Young, Brittany A.; Spencer, Jacqueline F.; Ying, Baoling; Tollefson, Ann E.; Toth, Karoly; Wold, William S. M.

    2013-01-01

    We have previously reported that intratumoral injection of VRX-007—an Ad5-based vector overexpressing ADP (Adenovirus Death Protein)—can suppress the growth of subcutaneous HaK (hamster renal cancer) tumors. VRX-007 replication and tumor growth inhibition are enhanced when the hamsters are immunosuppressed by a high dose of cyclophosphamide (CP), an immunosuppressive and chemotherapeutic agent. Here we report that continuous immunosuppression with CP was not required for increased oncolytic activity of VRX-007 because short-term dosing or continuous dosing with the drug yielded similar antitumor results. Prolonged viral replication was found only in animals on continuous CP treatment. We used 007-Luc, a replication-competent, luciferase-expressing vector similar to VRX-007 to investigate the replication of the vector over time. Tumor growth inhibition was similar in hamsters given CP treatment either one week before or one week after 007-Luc injection, which suggests that CP exerts its antitumor efficacy independently of vector therapy. 007-Luc did not spread far from the inoculation site, even in immunosuppressed, CP-treated animals. Our results indicate that the enhanced effectiveness that is produced by the combination of VRX-007 and CP therapies is due to their two independent mechanisms and that they do not have to be given simultaneously for the improved outcome shown. PMID:23928731

  8. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway.

    PubMed

    Guzman, Efrain; Taylor, Geraldine; Hope, Jayne; Herbert, Rebecca; Cubillos-Zapata, Carolina; Charleston, Bryan

    2016-10-01

    Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B-Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B-Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.

  9. Biodistribution Analysis of Oncolytic Adenoviruses in Patient Autopsy Samples Reveals Vascular Transduction of Noninjected Tumors and Tissues.

    PubMed

    Koski, Anniina; Bramante, Simona; Kipar, Anja; Oksanen, Minna; Juhila, Juuso; Vassilev, Lotta; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli

    2015-10-01

    In clinical trials with oncolytic adenoviruses, there has been no mortality associated with treatment vectors. Likewise, in the Advanced Therapy Access Program (ATAP), where 290 patients were treated with 10 different viruses, no vector-related mortality was observed. However, as the patient population who received adenovirus treatments in ATAP represented heavily pretreated patients, often with very advanced disease, some patients died relatively soon after receiving their virus treatment mandating autopsy to investigate cause of death. Eleven such autopsies were performed and confirmed disease progression as the cause of death in each case. The regulatory requirement for investigating the safety of advanced therapy medical products presented a unique opportunity to study tissue samples collected as a routine part of the autopsies. Oncolytic adenoviral DNA was recovered in a wide range of tissues, including injected and noninjected tumors and various normal tissues, demonstrating the ability of the vector to disseminate through the vascular route. Furthermore, we recovered and cultured viable virus from samples of noninjected brain metastases of an intravenously treated patient, confirming that oncolytic adenovirus can reach tumors through the intravascular route. Data presented here give mechanistic insight into mode of action and biodistribution of oncolytic adenoviruses in cancer patients.

  10. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  11. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    PubMed

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  12. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes.

    PubMed

    Khanam, Saima; Rajendra, Pilankatta; Khanna, Navin; Swaminathan, Sathyamangalam

    2007-02-15

    Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. This work stems from the emergence of (i) the DEN virus envelope (E) domain III (EDIII) as the most important region of the molecule from a vaccine perspective and (ii) the adenovirus (Ad) as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd) vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has implications for the development of safe and effective

  13. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    PubMed

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  14. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  15. Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puntel, Mariana; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689; Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048

    2013-05-01

    Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, andmore » can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression “on” or “off” according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1 × 10{sup 8}, 1 × 10{sup 9}, or 1 × 10{sup 10} viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1 × 10{sup 9} vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma. - Highlights: ► High capacity Ad vectors elicit sustained therapeutic gene expression in the brain. ► HC-Ad-TK/TetOn-Flt3L encodes two therapeutic genes and a transcriptional switch. ► We performed a dose escalation

  16. Local Delivery of Gene Vectors From Bare-Metal Stents by Use of a Biodegradable Synthetic Complex Inhibits In-Stent Restenosis in Rat Carotid Arteries

    PubMed Central

    Fishbein, Ilia; Alferiev, Ivan; Bakay, Marina; Stachelek, Stanley J.; Sobolewski, Peter; Lai, Meizan; Choi, Hoon; Chen, I.-W.; Levy, Robert J.

    2012-01-01

    Background Local drug delivery from polymer-coated stents has demonstrated efficacy for preventing in-stent restenosis; however, both the inflammatory effects of polymer coatings and concerns about late outcomes of drug-eluting stent use indicate the need to investigate innovative approaches, such as combining localized gene therapy with stent angioplasty. Thus, we investigated the hypothesis that adenoviral vectors (Ad) could be delivered from the bare-metal surfaces of stents with a synthetic complex for reversible vector binding. Methods and Results We synthesized the 3 components of a gene vector binding complex: (1) A polyallylamine bisphosphonate with latent thiol groups (PABT), (2) a polyethyleneimine (PEI) with pyridyldithio groups for amplification of attachment sites [PEI(PDT)], and (3) a bifunctional (amine- and thiol-reactive) cross-linker with a labile ester bond (HL). HL-modified Ad attached to PABT/PEI(PDT)-treated steel surfaces demonstrated both sustained release in vitro over 30 days and localized green fluorescent protein expression in rat arterial smooth muscle cell cultures, which were not sensitive to either inhibition by neutralizing anti-Ad antibodies or inactivation after storage at 37°C. In rat carotid studies, deployment of steel stents configured with PABT/PEI(PDT)/HL-tethered adenoviral vectors demonstrated both site-specific arterial AdGFP expression and adenovirus-luciferase transgene activity per optical imaging. Rat carotid stent delivery of adenovirus encoding inducible nitric oxide synthase resulted in significant inhibition of restenosis. Conclusions Reversible immobilization of adenovirus vectors on the bare-metal surfaces of endovascular stents via a synthetic complex represents an efficient, tunable method for sustained release of gene vectors to the vasculature. PMID:18413497

  17. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    PubMed

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    PubMed

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  19. Inhibition of TRAIL-Induced Apoptosis and Forced Internalization of TRAIL Receptor 1 by Adenovirus Proteins

    PubMed Central

    Tollefson, Ann E.; Toth, Karoly; Doronin, Konstantin; Kuppuswamy, Mohan; Doronina, Oksana A.; Lichtenstein, Drew L.; Hermiston, Terry W.; Smith, Craig A.; Wold, William S. M.

    2001-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  20. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    PubMed

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  1. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges.

    PubMed

    Wang, Danher; Hevey, Michael; Juompan, Laure Y; Trubey, Charles M; Raja, Nicholas U; Deitz, Stephen B; Woraratanadharm, Jan; Luo, Min; Yu, Hong; Swain, Benjamin M; Moore, Kevin M; Dong, John Y

    2006-09-30

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10(7) pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV.

  2. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Danher; Hevey, Michael; Juompan, Laure Y.

    2006-09-30

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guineamore » pigs. Significantly, guinea pigs vaccinated with at least 5 x 10{sup 7} pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV.« less

  3. Increased tumor localization and reduced immune response to adenoviral vector formulated with the liposome DDAB/DOPE.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Abu-Asab, Mones S; Tsokos, Maria; Morris, John C; Kalle, Wouter H J

    2007-04-01

    We aimed to increase the efficiency of adenoviral vectors by limiting adenoviral spread from the target site and reducing unwanted host immune responses to the vector. We complexed adenoviral vectors with DDAB-DOPE liposomes to form adenovirus-liposomal (AL) complexes. AL complexes were delivered by intratumoral injection in an immunocompetent subcutaneous rat tumor model and the immunogenicity of the AL complexes and the expression efficiency in the tumor and other organs was examined. Animals treated with the AL complexes had significantly lower levels of beta-galactosidase expression in systemic tissues compared to animals treated with the naked adenovirus (NA) (P<0.05). The tumor to non-tumor ratio of beta-galactosidase marker expression was significantly higher for the AL complex treated animals. NA induced significantly higher titers of adenoviral-specific antibodies compared to the AL complexes (P<0.05). The AL complexes provided protection (immunoshielding) to the adenovirus from neutralizing antibody. Forty-seven percent more beta-galactosidase expression was detected following intratumoral injection with AL complexes compared to the NA in animals pre-immunized with adenovirus. Complexing of adenovirus with liposomes provides a simple method to enhance tumor localization of the vector, decrease the immunogenicity of adenovirus, and provide protection of the virus from pre-existing neutralizing antibodies.

  4. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    PubMed

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  5. Effects of the Deletion of Early Region 4 (E4) Open Reading Frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on Virus-Host Cell Interaction, Transgene Expression, and Immunogenicity of Replicating Adenovirus HIV Vaccine Vectors

    PubMed Central

    Thomas, Michael A.; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A.; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  6. Chemical Modification with High Molecular Weight Polyethylene Glycol Reduces Transduction of Hepatocytes and Increases Efficacy of Intravenously Delivered Oncolytic Adenovirus

    PubMed Central

    Doronin, Konstantin; Shashkova, Elena V.; May, Shannon M.; Hofherr, Sean E.

    2009-01-01

    Abstract Oncolytic adenoviruses are anticancer agents that replicate within tumors and spread to uninfected tumor cells, amplifying the anticancer effect of initial transduction. We tested whether coating the viral particle with polyethylene glycol (PEG) could reduce transduction of hepatocytes and hepatotoxicity after systemic (intravenous) administration of oncolytic adenovirus serotype 5 (Ad5). Conjugating Ad5 with high molecular weight 20-kDa PEG but not with 5-kDa PEG reduced hepatocyte transduction and hepatotoxicity after intravenous injection. PEGylation with 20-kDa PEG was as efficient at detargeting adenovirus from Kupffer cells and hepatocytes as virus predosing and warfarin. Bioluminescence imaging of virus distribution in two xenograft tumor models in nude mice demonstrated that PEGylation with 20-kDa PEG reduced liver infection 19- to 90-fold. Tumor transduction levels were similar for vectors PEGylated with 20-kDa PEG and unPEGylated vectors. Anticancer efficacy after a single intravenous injection was retained at the level of unmodified vector in large established prostate carcinoma xenografts, resulting in complete elimination of tumors in all animals and long-term tumor-free survival. Anticancer efficacy after a single intravenous injection was increased in large established hepatocellular carcinoma xenografts, resulting in significant prolongation of survival as compared with unmodified vector. The increase in efficacy was comparable to that obtained with predosing and warfarin pretreatment, significantly extending the median of survival. Shielding adenovirus with 20-kDa PEG may be a useful approach to improve the therapeutic window of oncolytic adenovirus after systemic delivery to primary and metastatic tumor sites. PMID:19469693

  7. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  8. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA.

    PubMed

    Gupta, A; Jha, S; Engel, D A; Ornelles, D A; Dutta, A

    2013-10-17

    Adenoviruses are linear double-stranded DNA viruses that infect human and rodent cell lines, occasionally transform them and cause tumors in animal models. The host cell challenges the virus in multifaceted ways to restrain viral gene expression and DNA replication, and sometimes even eliminates the infected cells by programmed cell death. To combat these challenges, adenoviruses abrogate the cellular DNA damage response pathway. Tip60 is a lysine acetyltransferase that acetylates histones and other proteins to regulate gene expression, DNA damage response, apoptosis and cell cycle regulation. Tip60 is a bona fide tumor suppressor as mice that are haploid for Tip60 are predisposed to tumors. We have discovered that Tip60 is degraded by adenovirus oncoproteins EIB55K and E4orf6 by a proteasome-mediated pathway. Tip60 binds to the immediate early adenovirus promoter and suppresses adenovirus EIA gene expression, which is a master regulator of adenovirus transcription, at least partly through retention of the virally encoded repressor pVII on this promoter. Thus, degradation of Tip60 by the adenoviral early proteins is important for efficient viral early gene transcription and for changes in expression of cellular genes.

  9. Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence.

    PubMed

    Freimuth, P; Anderson, C W

    1993-03-01

    The sequence of a 1158-base pair fragment of the human adenovirus serotype 12 (Ad12) genome was determined. This segment encodes the precursors for virion components Mu and VI. Both Ad12 precursors contain two sequences that conform to a consensus sequence motif for cleavage by the endoproteinase of adenovirus 2 (Ad2). Analysis of the amino terminus of VI and of the peptide fragments found in Ad12 virions demonstrated that these sites are cleaved during Ad12 maturation. This observation suggests that the recognition motif for adenovirus endoproteinases is highly conserved among human serotypes. The adenovirus 2 endoproteinase polypeptide requires additional co-factors for activity (C. W. Anderson, Protein Expression Purif., 1993, 4, 8-15). Synthetic Ad12 or Ad2 pVI carboxy-terminal peptides each permitted efficient cleavage of an artificial endoproteinase substrate by recombinant Ad2 endoproteinase polypeptide.

  10. Stereotactic delivery of a recombinant adenovirus into a C6 glioma cell line in a rat brain tumor model.

    PubMed

    Badie, B; Hunt, K; Economou, J S; Black, K L

    1994-11-01

    The dismal results of conventional therapy for primary malignant brain tumors has justified exploring gene therapy approaches for this disease. Transduction of animal brain tumor models in vivo has been reported previously with retroviruses and herpes viruses. Because adenoviruses have the advantage of transducing quiescent and actively dividing tumor cells, they may prove to be more effective in such therapy. We used a replication-deficient recombinant adenovirus bearing the Escherichia coli beta-galactosidase gene in a rat C6 glioma tumor model. Transduced cells were detected by X-5-bromo-4-chloro-3-indolyl beta-D-galactoside staining to reveal beta-galactosidase activity. Initial experiments in vitro showed 50% and 90% transduction at vector titers of approximately 10(7) and 10(8) plaque-forming units/ml, respectively. Although no cytopathic effects were seen at 10(7) plaque-forming units/ml, more than 50% reduction in tumor cell growth was noted at 10(8) plaque-forming units/ml both in vitro and in vivo. Stereotactic delivery of the recombinant adenovirus into the frontal lobe of normal rat brains resulted in intense staining of all cell types, that is, neurons, astrocytes, and ependymal cells. Stereotactic injection into C6 glioma brain tumors in rats stained 25 to 30% of the tumor cells. We conclude that adenovirus vectors can be used to transfer genes to central nervous system tumors in vivo. Using stereotactic delivery, adenovirus vectors can transfer genes into the central nervous system intended for tumor therapy.

  11. Microsphere-liposome complexes protect adenoviral vectors from neutralising antibody without losses in transfection efficiency, in-vitro.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Kalle, Wouter H J

    2004-11-01

    Adenoviral vectors have been commonly used in gene therapy protocols but the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced, which limits further administration. This study examines the effectiveness of a novel combination of microspheres and liposomes for the shielding of adenovirus from neutralising antibodies in an in-vitro setting. We show that liposomes are effective in the protection of adenovirus from neutralising antibody and that the conjugation of these complexes to microspheres augments the level of protection. This study further reveals that previously neutralised adenovirus may still be transported into the cell via liposome-cell interactions and is still capable of expressing its genes, making this vector an effective tool for circumvention of the humoral immune response. We also looked at possible side effects of using the complexes, namely increases in cytotoxicity and reductions in transfection efficiency. Our results showed that varying the liposome:adenovirus ratio can reduce the cytotoxicity of the vector as well as increase the transfection efficiency. In addition, in cell lines that are adenoviral competent, transfection efficiencies on par with uncomplexed adenoviral vectors were achievable with the combination vector.

  12. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    PubMed

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  13. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    PubMed Central

    Gao, Peng

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  14. Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.

    PubMed

    Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M

    2015-12-29

    Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene).

  15. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  16. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  17. Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector.

    PubMed

    Pratt, William D; Wang, Danher; Nichols, Donald K; Luo, Min; Woraratanadharm, Jan; Dye, John M; Holman, David H; Dong, John Y

    2010-04-01

    Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.

  18. Evaluation of Biodistribution and Safety of Adenovirus Vectors Containing Group B Fibers after Intravenous Injection into Baboons

    PubMed Central

    NI, SHAOHENG; BERNT, KATHRIN; GAGGAR, ANUJ; LI, ZONG-YI; KIEM, HANS-PETER; LIEBER, ANDRÉ

    2005-01-01

    Vectors containing group B adenovirus (Ad) fibers are able to efficiently transduce gene therapy targets that are refractory to infection with standard Ad serotype 5 (Ad5) vectors, including malignant tumor cells, hematopoietic stem cells, and dendritic cells. Preliminary studies in mice indicate that, after intravenous injection, B-group fiber-containing Ads do not efficiently transduce most organs and cause less acute toxicity than Ad5 vectors. However, biodistribution and safety studies in mice are of limited value because the mouse analog of the B-group Ad receptor, CD46, is expressed only in the testis, whereas in humans, CD46 is expressed on all nucleated cells. Unlike mice, baboons have CD46 expression patterns and levels that closely mimic those in humans. We conducted a biodistribution and toxicity study of group B Ad fiber-containing vectors in baboons. Animals received phosphate-buffered saline, Ad5-bGal (a first-generation Ad5 vector), or B-group fiber-containing Ads (Ad5/35-bGal and Ad5/11-bGal) at a dose of 2 × 1012 VP/kg, and vector biodistribution and safety was analyzed over 3 days. The amount of Ad5/35-bGal and Ad5/11-bGal vector genomes was in most tissues one to three orders of magnitude below that of Ad5. Significant Ad5/35- and Ad5/11-mediated transgene (β-galactosidase) expression was seen only in the marginal zone of splenic follicles. Compared with the animal that received Ad5-bGal, all animals injected with B-group fiber-containing Ad vectors had lower elevations in serum proinflammatory cytokine levels. Gross and histopathology were normal in animals that received B-group Ad fiber-containing Ads, in contrast to the Ad5-infused animal, which showed widespread endothelial damage and inflammation. In a further study, a chimeric Ad5/35 vector carrying proapoptotic TRAIL and Ad E1A genes under tumor-specific regulation was well tolerated in a 30-day toxicity study. No major clinical, serologic, or pathologic abnormalities were noticed in

  19. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo.

    PubMed

    Sapet, Cédric; Pellegrino, Christophe; Laurent, Nicolas; Sicard, Flavie; Zelphati, Olivier

    2012-05-01

    Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

  20. Production of recombinant adenovirus containing human interlukin-4 gene.

    PubMed

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-11-01

    Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics.

  1. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges

    PubMed Central

    Lakhashe, Samir K.; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B.; DiPasquale, Janet M.; Hemashettar, Girish; Yoon, John K.; Rasmussen, Robert A.; Yang, Feng; Lee, Sandra J.; Montefiori, David C.; Novembre, Francis J.; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R.; Robert-Guroff, Marjorie; Johnson, Welkin E.; Lieberman, Judy; Ruprecht, Ruth M.

    2011-01-01

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus >90%; these RM also had strong SIV Gag-specific proliferation of CD8+ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4+ T cells; the latter have been implicated as preferential virus targets in-vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. PMID:21693155

  2. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges.

    PubMed

    Lakhashe, Samir K; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B; Dipasquale, Janet M; Hemashettar, Girish; Yoon, John K; Rasmussen, Robert A; Yang, Feng; Lee, Sandra J; Montefiori, David C; Novembre, Francis J; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R; Robert-Guroff, Marjorie; Johnson, Welkin E; Lieberman, Judy; Ruprecht, Ruth M

    2011-08-05

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma

    PubMed Central

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P.; Al-Hendy, Ayman

    2016-01-01

    Background: Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. Study design: An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Materials and methods: Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. Results: In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Conclusion: Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. PMID:26884457

  4. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival

    PubMed Central

    Miller, Daniel L; Myers, Chad L; Rickards, Brenden; Coller, Hilary A; Flint, S Jane

    2007-01-01

    Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors. PMID:17430596

  5. E1A promoter of bovine adenovirus type 3.

    PubMed

    Xing, Li; Tikoo, Suresh Kumar

    2006-12-01

    Conserved motifs of eukaryotic gene promoters, such as TATA box and CAAT box sequences, of E1A of human adenoviruses (e.g human adenovirus 5) lie between the left inverted terminal repeat (ITR) and the ATG of E1A. However, analysis of the left end of the bovine adenovirus 3 (BAdV-3) genome revealed that the conserved sequences of the E1A promoter are present only in the ITR. As such, the promoter activity of ITR was tested in the context of a BAdV-3 vector or a plasmid-based system. Different regions of the left end of the BAdV-3 genome initiated transcription of the red fluorescent protein gene in a plasmid-based system. Moreover, BAdV-3 mutants in which the open reading frame of E1A was placed immediately downstream of the ITR produced E1A transcript and could be propagated in non-E1A-complementing Madin-Darby bovine kidney cells. These results suggest that the left ITR contains the sole BAdV-3 E1A promoter.

  6. Single dose of an adenovirus vectored mouse interferon-α protects mice from lethal EV71 challenge.

    PubMed

    Sun, Jialei; Ennis, Jane; Turner, Jeffrey D; Chu, Justin Jang Hann

    2016-10-01

    Enterovirus 71 (EV71) causes hand-foot-and-mouth diseases as well as neurological complications in young children. Interferon (IFN) can inhibit the replication of many viruses with low cytotoxic effects. Previously, an adenovirus vectored mouse interferon-α (DEF201), subtype 5, was generated by Wu et al, 2007. In this study, the antiviral effects of DEF201 against EV71 were evaluated in a murine model. 6-day-old BALB/c mice were administered a single dose of DEF201 before or after infection with lethal dose of EV71. The survival rate, clinical symptoms, tissue viral loads and histology pathogenesis were evaluated. IFN gene expression following a single dose of DEF201 maintained high concentrations of 100-9000 pg/mL for more than 7 days in mice serum. Pre-infection administration of a single dose of 10 6  PFU of DEF201 offered full protection of the mice against EV71 infection compared with the empty Ad5 vector control. In addition, virus load in DEF201-treated mice muscle tissue was significantly decreased as compared with empty vector control. Histopathology analysis revealed that DEF201 significantly prevented the development of severe tissue damage with reduction of viral antigen in the murine muscle tissue. Post-infection treatment at 6 h offered full protection and partial protection at 12 h, indicating that DEF201 could be used as an anti-EV71 therapeutic agent in early stage of EV71 infection. In addition, our study showed that DEF201 enhanced the neutralization ability of serum in EV71-vaccinated mice, implying that DEF201 could promote the production of specific anti-EV71 antibodies. In conclusion, single dose of DEF201 is highly efficacious as a prophylactic agent against EV71 infection in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    PubMed

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    PubMed Central

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. Materials and Methods In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Results Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. Conclusion This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics. PMID:23493491

  9. A defective retroviral vector encoding human interferon-alpha2 can transduce human leukemic cell lines.

    PubMed

    Austruy, E; Bagnis, C; Carbuccia, N; Maroc, C; Birg, F; Dubreuil, P; Mannoni, P; Chabannon, C

    1998-01-01

    Using the LXSN backbone, a defective retroviral vector (LISN) was constructed that encodes the human interferon (IFN)-alpha2 (hIFN-alpha2) gene and the neomycin resistance gene; the hIFN-alpha2 gene was cloned from human placental genomic DNA. High titers of the LISN retrovirus were produced by the amphotropic packaging cell line GP+envAM12. LISN is able to infect three human hematopoietic and leukemic cell lines: K562, LAMA-84, and TF-1. G418-resistant cells were detected in a similar proportion after infection with either the LISN retroviral vector or the LnLSN retroviral vector (encoding the nlsLacZ gene instead of hIFN-alpha2), suggesting that hIFN-alpha2 does not inhibit (or only partially inhibits) the production of retroviral particles by the packaging cell line and the infection of human cells. LISN-infected cells express and secrete hIFN-alpha2 as demonstrated by Northern blot analysis of poly(A)+ RNA, detection of the intracellular protein by fluorescence-activated cell sorter analysis, and detection of secreted hIFN-alpha in cell supernatants using an enzyme-linked immunosorbent assay. Retrovirally produced hIFN-alpha2 is biologically active, as demonstrated by the partial inhibition of the growth of K562 and TF-1, the modulation of the expression of cell surface antigens, the induction of the (2'-5') oligoadenylate synthetase, and, for LAMA-84, the down-modulation of the BCR-ABL protein. We conclude that the infection of human leukemic cell lines with a retroviral vector encoding hIFN-alpha2 is feasible and induces the expected biological effects. This experimental model will be useful in investigating the possibility of transducing normal and leukemic cells and hematopoietic progenitors and in determining the consequences of the autocrine production of hIFN-alpha2 on the behavior of these cells.

  10. Traceless Bioresponsive Shielding of Adenovirus Hexon with HPMA Copolymers Maintains Transduction Capacity In Vitro and In Vivo

    PubMed Central

    Prill, Jan-Michael; Šubr, Vladimír; Pasquarelli, Noemi; Engler, Tatjana; Hoffmeister, Andrea; Kochanek, Stefan; Ulbrich, Karel; Kreppel, Florian

    2014-01-01

    Capsid surface shielding of adenovirus vectors with synthetic polymers is an emerging technology to reduce unwanted interactions of the vector particles with cellular and non-cellular host components. While it has been shown that attachment of shielding polymers allows prevention of undesired interactions, it has become evident that a shield which is covalently attached to the vector surface can negatively affect gene transfer efficiency. Reasons are not only a limited receptor-binding ability of the shielded vectors but also a disturbance of intracellular trafficking processes, the latter depending on the interaction of the vector surface with the cellular transport machinery. A solution might be the development of bioresponsive shields that are stably maintained outside the host cell but released upon cell entry to allow for efficient gene delivery to the nucleus. Here we provide a systematic comparison of irreversible versus bioresponsive shields based on synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. In addition, the chemical strategy used for generation of the shield allowed for a traceless bioresponsive shielding, i.e., polymers could be released from the vector particles without leaving residual linker residues. Our data demonstrated that only a bioresponsive shield maintained the high gene transfer efficiency of adenovirus vectors both in vitro and in vivo. As an example for bioresponsive HPMA copolymer release, we analyzed the in vivo gene transfer in the liver. We demonstrated that both the copolymer's charge and the mode of shielding (irreversible versus traceless bioresponsive) profoundly affected liver gene transfer and that traceless bioresponsive shielding with positively charged HPMA copolymers mediated FX independent transduction of hepatocytes. In addition, we demonstrated that shielding with HPMA copolymers can mediate a prolonged blood circulation of vector particles in mice. Our results have significant implications for the

  11. Lentiviral vectors encoding shRNAs efficiently transduce and knockdown LINGO-1 but induce an interferon response and cytotoxicity in CNS neurons

    PubMed Central

    Hutson, Thomas H.; Foster, Edmund; Dawes, John M.; Hindges, Robert; Yáñez-Muñoz, Rafael J.; Moon, Lawrence D.F.

    2017-01-01

    Background Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the CNS. Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. Methods CNS neurons were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using qRT-PCR and northern blots were used to assess shRNA production. Results Integration-deficient lentiviral vectors efficiently transduced CNS neurons and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon stimulated genes (OAS1 and PKR) and a down-regulation of off- target genes (including p75NTR and NgR1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate after transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. Conclusions These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation. PMID:22499506

  12. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine.

    PubMed

    Fernandez-Sainz, Ignacio; Medina, Gisselle N; Ramirez-Medina, Elizabeth; Koster, Marla J; Grubman, Marvin J; de Los Santos, Teresa

    2017-02-01

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 10 7 pfu/animal while a dose of 4×10 7 pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine. Published by Elsevier Inc.

  13. Modification of liposomal concentration in liposome/adenoviral complexes allows significant protection of adenoviral vectors from neutralising antibody, in vitro.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel J; Kalle, Wouter H J

    2005-06-01

    Adenoviral vectors have been commonly used in gene therapy protocols, however the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced which limits further administration. This study examines the efficacy of complexing liposomes to adenovirus for the protection of the adenovirus from neutralising antibodies in an in vitro setting. Dimethyldioctadecylammonium bromide (DDAB)-dioleoyl-l-phosphatidylethanolamine (DOPE) liposomes were bound at varying concentrations to adenovirus to form AL complexes and tested these complexes' ability to prevent adenoviral neutralisation. It is shown that by increasing the concentration of liposomes in the adenoviral-liposome (AL) complexes we can increase the level of immuno-shielding afforded the adenovirus. It is also shown that the increase in liposomal concentration may lead to drawbacks such as increased cytotoxicity and reductions in expression levels.

  14. Viral Vectors for Use in the Development of Biodefense Vaccines

    DTIC Science & Technology

    2005-06-17

    vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine vectors has enabled researchers to develop effective means for countering the...biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine -vectors has enabled researchers to... vaccines . . . . . . . . . . . . . . . . . . . 1298 2.1.3. Vaccinia virus-vectored Venezuelan equine encephalitis vaccines

  15. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte–macrophage colony-stimulating factor in experimental pulmonary tuberculosis

    PubMed Central

    Francisco-Cruz, A.; Mata-Espinosa, D.; Estrada-Parra, S.; Xing, Z.; Hernández-Pando, R.

    2013-01-01

    Summary BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte–macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. PMID:23379435

  16. Guinea pig adenovirus infection does not inhibit cochlear transfection with human adenoviral vectors in a model of hearing loss.

    PubMed

    Hankenson, F Claire; Wathen, Asheley B; Eaton, Kathryn A; Miyazawa, Toru; Swiderski, Donald L; Raphael, Yehoash

    2010-04-01

    Routine surveillance of guinea pigs maintained within a barrier facility detected guinea pig adenovirus (GPAdV) in sentinel animals. These guinea pigs served as models of induced hearing loss followed by regeneration of cochlear sensory (hair) cells through transdifferentiation of nonsensory cells by using human adenoviral (hAV) gene therapy. To determine whether natural GPAdV infection affected the ability of hAV vectors to transfect inner ear cells, adult male pigmented guinea pigs (n = 7) were enrolled in this study because of their prolonged exposure to GPAdV-seropositive conspecifics. Animals were deafened chemically (n = 2), received an hAV vector carrying the gene for green fluorescent protein (hAV-GFP) surgically without prior deafening (n = 2), or were deafened chemically with subsequent surgical inoculation of hAV-GFP (n = 3). Cochleae were evaluated by using fluorescence microscopy, and GFP expression in supporting cells indicated that the hAV-GFP vector was able to transfect inner ears in GPAdV-seropositive guinea pigs that had been chemically deafened. Animals had histologic evidence of interstitial pneumonia, attributable to prior infection with GPAdV. These findings confirmed that the described guinea pigs were less robust animal models with diminished utility for the overall studies. Serology tests confirmed that 5 of 7 animals (71%) were positive for antibodies against GPAdV at necropsy, approximately 7 mo after initial detection of sentinel infection. Control animals (n = 5) were confirmed to be seronegative for GPAdV with clinically normal pulmonary tissue. This study is the first to demonstrate that natural GPAdV infection does not negatively affect transfection with hAV vectors into guinea pig inner ear cells, despite the presence of other health complications attributed to the viral infection.

  17. Anti-tumor function of double-promoter regulated adenovirus carrying SEA gene, in the treatment of bladder cancer.

    PubMed

    Hu, Jianpeng; Xuan, Xujun; Han, Conghui; Hao, Lin; Zhang, Peiying; Chen, Meng; He, Houguang; Fan, Tao; Dong, Binzheng

    2012-03-01

    To construct an adenovirus carrying SEA gene and regulated by telomerase reverse transcriptase (hTERT) and hypoxia-inducible factor (HIF) promoters and investigate its anti-tumor function in vitro, as well as its role in lymphocyte production. hTERT and HIF genes were cloned into adenovirus E1A and E1B shuttle plasmids. The control vector for SEA gene expression is under the regulation of CMV and SV40 promoters. Double regulation was obtained through homologous recombination. The positive clones of replicable adenovirus H2-SEA-Ad were selected by plaque assay. The adenovirus was purified, titrated, and DNA was verified by PCR. The obtained virus was used to infect EJ bladder tumor cells and the SEA Mrna, and protein expression was measured by RT-PCR, western blot, and immunofluorescence microscopy, respectively. Co-culture of lymphocytes and tumor cells was observed dynamically under microscope. The construction of shuttle plasmid p315-CSS-SEA was confirmed by PCR and DNA sequencing. Insertion of superantigen SEA gene in adenovirus (H2-SEA-Ad.SEA) was obtained by homologous recombination. In lymphocytes and tumor cell co-culture, the number of viable tumor cells in test groups was significantly lower than that in control group after 12, 24, and 48 h of treatment. Production of interleukin-2, interleukin-4, and tumor necrosis factor were higher in test groups than in control group. Expression of SEA gene in bladder tumor cells by adenoviral vector caused reduced tumor cell proliferation, as well as stimulation of inflammatory cytokine productions in co-cultures with lymphocytes.

  18. Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis.

    PubMed

    Yao, X; Yoshioka, Y; Morishige, T; Eto, Y; Watanabe, H; Okada, Y; Mizuguchi, H; Mukai, Y; Okada, N; Nakagawa, S

    2009-12-01

    Cancer gene therapy by adenovirus vectors (Advs) for metastatic cancer is limited because systemic administration of Adv produces low therapeutic effect and severe side effects. In this study, we generated a dual cancer-specific targeting vector system by using PEGylation and the telomere reverse transcriptase (TERT) promoter and attempted to treat experimental metastases through systemic administration of the vectors. We first optimized the molecular size of PEG and modification ratios used to create PEG-Ads. Systemic administration of PEG-Ad with 20-kDa PEG at a 45% modification ratio (PEG[20K/45%]-Ad) resulted in higher tumor-selective transgene expression than unmodified Adv. Next, we examined the effectiveness against metastases and side effects of a TERT promoter-driven PEG[20K/45%]-Ad containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk). Systemic administration of PEG-Ad-TERT/HSVtk showed superior antitumor effects against metastases with negligible side effects. A cytomegalovirus (CMV) promoter-driven PEG[20K/45%]-Ad also produced antimetastatic effects, but these were accompanied by side effects. Combining PEG-Ad-TERT/HSVtk with etoposide or 5-fluorouracil enhanced the therapeutic effects with negligible side effects. These results suggest that modification with 20-kDa PEG at a 45% modification ratio is the optimal condition for PEGylation of Adv, and PEG-Ad-TERT/HSVtk is a prototype Adv for systemic cancer gene therapy against metastases.

  19. Non-replicating adenovirus vectors expressing avian influenza virus hemagglutinin and nucleocapsid proteins induce chicken specific effector, memory and effector memory CD8+ T lymphocytes

    PubMed Central

    Singh, Shailbala; Toro, Haroldo; Tang, De-Chu; Briles, Worthie E.; Yates, Linda M.; Kopulos, Renee T.; Collisson, Ellen W.

    2010-01-01

    Avian influenza virus (AIV) specific CD8+ T lymphocyte responses stimulated by intramuscular administration of an adenovirus (Ad) vector expressing either HA or NP were evaluated in chickens following ex vivo stimulation by non-professional antigen presenting cells. The CD8+ T lymphocyte responses were AIV specific, MHC-I restricted, and cross-reacted with heterologousH7N2 AIV strain. Specific effector responses, at 10 days post-inoculation (p.i.), were undetectable at 2 weeks p.i., and memory responses were detected from 3 to 8 weeks p.i. Effector memory responses, detected 1 week following a booster inoculation, were significantly greater than the primary responses and, within 7 days, declined to undetectable levels. Inoculation of an Ad-vector expressing human NP resulted in significantly greater MHC restricted, activation of CD8+ T cell responses specific for AIV. Decreases in all responses with time were most dramatic with maximum activation of T cells as observed following effector and effector memory responses. PMID:20557918

  20. The Adenovirus Genome Contributes to the Structural Stability of the Virion

    PubMed Central

    Saha, Bratati; Wong, Carmen M.; Parks, Robin J.

    2014-01-01

    Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design. PMID:25254384

  1. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  2. Adenoviral vector tethering to metal surfaces via hydrolysable cross-linkers for the modulation of vector release and transduction

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Chorny, Michael; Connolly, Jeanne M.; Adamo, Richard F.; Corrales, Ricardo; Alferiev, Ivan S.; Levy, Robert J.

    2013-01-01

    The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolysable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37°C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolysable cross-linkers with structure-specific release kinetics. PMID:23777912

  3. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  4. Adenovirus E1B 19-Kilodalton Protein Modulates Innate Immunity through Apoptotic Mimicry

    PubMed Central

    Grigera, Fernando; Ucker, David S.; Cook, James L.

    2014-01-01

    ABSTRACT Cells that undergo apoptosis in response to chemical or physical stimuli repress inflammatory reactions, but cells that undergo nonapoptotic death in response to such stimuli lack this activity. Whether cells dying from viral infection exhibit a cell death-type modulatory effect on inflammatory reactions is unknown. We compared the effects on macrophage inflammatory responses of cells dying an apoptotic or a nonapoptotic death as a result of adenoviral infection. The results were exactly opposite to the predictions from the conventional paradigm. Cells dying by apoptosis induced by infection with an adenovirus type 5 (Ad5) E1B 19-kilodalton (E1B 19K) gene deletion mutant did not repress macrophage NF-κB activation or cytokine responses to proinflammatory stimuli, whereas cells dying a nonapoptotic death from infection with E1B 19K-competent, wild-type Ad5 repressed these macrophage inflammatory responses as well as cells undergoing classical apoptosis in response to chemical injury. The immunorepressive, E1B 19K-related cell death activity depended upon direct contact of the virally infected corpses with responder macrophages. Replacement of the viral E1B 19K gene with the mammalian Bcl-2 gene in cis restored the nonapoptotic, immunorepressive cell death activity of virally infected cells. These results define a novel function of the antiapoptotic, adenoviral E1B 19K protein that may limit local host innate immune inflammation during accumulation of virally infected cells at sites of infection and suggest that E1B 19K-deleted, replicating adenoviral vectors might induce greater inflammatory responses to virally infected cells than E1B 19K-positive vectors, because of the net effect of their loss-of-function mutation. IMPORTANCE We observed that cells dying a nonapoptotic cell death induced by adenovirus infection repressed macrophage proinflammatory responses while cells dying by apoptosis induced by infection with an E1B 19K deletion mutant virus did not

  5. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  6. In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors

    PubMed Central

    Richter, Maximilian; Saydaminova, Kamola; Yumul, Roma; Krishnan, Rohini; Liu, Jing; Nagy, Eniko-Eva; Singh, Manvendra; Izsvák, Zsuzsanna; Cattaneo, Roberto; Uckert, Wolfgang; Palmer, Donna; Ng, Philip; Haworth, Kevin G.; Kiem, Hans-Peter; Ehrhardt, Anja; Papayannopoulou, Thalia

    2016-01-01

    Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin−Sca1+Kit− cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy. PMID:27554082

  7. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    PubMed Central

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  8. Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels.

    PubMed

    Buggio, Maurizio; Towe, Christopher; Annan, Anand; Kaliberov, Sergey; Lu, Zhi Hong; Stephens, Calvin; Arbeit, Jeffrey M; Curiel, David T

    2016-01-01

    Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    PubMed Central

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  10. Inhibition of HBV replication in vivo using helper-dependent adenovirus vectors to deliver antiviral RNA interference expression cassettes.

    PubMed

    Crowther, Carol; Mowa, Mohube B; Ely, Abdullah; Arbuthnot, Patrick B

    2014-01-01

    HBV is hyperendemic to southern Africa and parts of Asia, but licensed antivirals have little effect on limiting life-threatening complications of the infection. Although RNA interference (RNAi)-based gene silencing has shown therapeutic potential, difficulties with delivery of anti-HBV RNAi effectors remain an obstacle to their clinical use. To address concerns about the transient nature of transgene expression and toxicity resulting from immunostimulation by recombinant adenovirus vectors (Ads), utility of RNAi-activating anti-HBV helper-dependent (HD) Ads were assessed in this study. Following intravenous administration of 5×10(9) unmodified or pegylated HD Ad infectious particles to HBV transgenic mice, HBV viral loads and serum HBV surface antigen levels were monitored for 12 weeks. Immunostimulation of HD Ads was assessed by measuring inflammatory cytokines, hepatic function and immune response to the co-delivered LacZ reporter gene. Unmodified and pegylated HD Ads transduced 80-90% of hepatocytes and expressed short hairpin RNAs (shRNAs) were processed to generate intended HBV-targeting guides. Markers of HBV replication were decreased by approximately 95% and silencing was sustained for 8 weeks. Unmodified HD Ads induced release of proinflammatory cytokines and there was evidence of an adaptive immune response to β-galactosidase. However the HD Ad-induced innate immune response was minimal in preparations that were enriched with infectious particles. HD Ads have potential utility for delivery of therapeutic HBV-silencing sequences and alterations of these vectors to attenuate their immune responses may further improve their efficacy.

  11. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis.

    PubMed

    Francisco-Cruz, A; Mata-Espinosa, D; Estrada-Parra, S; Xing, Z; Hernández-Pando, R

    2013-03-01

    BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte-macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. © 2012 British Society for Immunology.

  12. Generation of an Adenovirus-Parvovirus Chimera with Enhanced Oncolytic Potential

    PubMed Central

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K.; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M.; Rommelaere, Jean

    2012-01-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells. PMID:22787235

  13. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    PubMed

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  14. Antibody responses to prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140.

    PubMed

    Emmer, Kristel L; Wieczorek, Lindsay; Tuyishime, Steven; Molnar, Sebastian; Polonis, Victoria R; Ertl, Hildegund C J

    2016-10-23

    Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.

  15. [Construction and identification of recombinant human platelet-derived growth factor-B adenoviral vector and transfection into periodontal ligament stem cells].

    PubMed

    Shang, Shu-huan; Zhang, Yu-feng; Shi, Bin; Cheng, Xiang-rong

    2008-10-01

    To construct a recombinant human platelet-derived growth factor-B (PDGF-B) adenoviral vector and to transfect it into human periodontal ligament stem cells (PDLSC). The recombinant plasmid pAd-PDGF-B was constructed by homologous recombination and confirmed by restriction endonucleases digestion. Recombinant adenovirus was packaged in HEK293 cells. PDLSC were transfected with recombinant adenovirus and PDGF-B expression was confirmed. Expression of collagen type I gene was determined by quantitative analysis of the products of RT-PCR. The cell proliferation was determined with MTT colorimetric assay. The recombinant plasmid pAd-PDGF-B was confirmed by restriction endonucleases digestion. EGFP expression was observed on the third day after transfecting, and the expression of PDGF-B was detected. Immunohistochemical methods revealed that PDGF-B was expressed in PDLSC. Levels of expression of collagen type I gene were increased significantly by transfer of the exogenous PDGF-B gene to PDLSC. At the same time, findings indicated that Ad-PDGF-B stimulated PDLSC proliferation. MTT assay indicated the absorbance of PDLSC by stimulating with Ad-PDGF-B was (0.68 +/- 0.02), P < 0.01. Using the AdEasy system, the human PDGF-B recombinant adenovirus can be rapidly obtained. These results indicate that recombinant adenoviruses encoding PDGF-B transgenes could modulate proliferative activity of PDLSC, enhance the high expression of collagen type I and lay the foundation for periodontal tissue regeneration and dental implant gene therapy.

  16. Recombinase-Mediated Cassette Exchange Using Adenoviral Vectors.

    PubMed

    Kolb, Andreas F; Knowles, Christopher; Pultinevicius, Patrikas; Harbottle, Jennifer A; Petrie, Linda; Robinson, Claire; Sorrell, David A

    2017-01-01

    Site-specific recombinases are important tools for the modification of mammalian genomes. In conjunction with viral vectors, they can be utilized to mediate site-specific gene insertions in animals and in cell lines which are difficult to transfect. Here we describe a method for the generation and analysis of an adenovirus vector supporting a recombinase-mediated cassette exchange reaction and discuss the advantages and limitations of this approach.

  17. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    PubMed Central

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome

  18. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    PubMed

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior

  19. Broad-spectrum anti-tumor and anti-metastatic DNA vaccine based on p62-encoding vector

    PubMed Central

    Sherman, Michael Y.; Gabai, Vladimir; Kiselev, Oleg; Komissarov, Andrey; Grudinin, Mikhail; Shartukova, Maria; Romanovskaya-Romanko, Ekaterina A.; Kudryavets, Yuri; Bezdenezhnykh, Natalya; Lykhova, Oleksandra; Semesyuk, Nadiia; Concetti, Antonio; Tsyb, Anatoly; Filimonova, Marina; Makarchuk, Victoria; Yakubovsky, Raisa; Chursov, Andrey; Shcherbinina, Vita; Shneider, Alexander

    2013-01-01

    Autophagy plays an important role in neoplastic transformation of cells and in resistance of cancer cells to radio- and chemotherapy. p62 (SQSTM1) is a key component of autophagic machinery which is also involved in signal transduction. Although recent empirical observations demonstrated that p62 is overexpressed in variety of human tumors, a mechanism of p62 overexpression is not known. Here we report that the transformation of normal human mammary epithelial cells with diverse oncogenes (RAS, PIK3CA and Her2) causes marked accumulation of p62. Based on this result, we hypothesized that p62 may be a feasible candidate to be an anti-cancer DNA vaccine. Here we performed a preclinical study of a novel DNA vaccine encoding p62. Intramuscularly administered p62-encoding plasmid induced anti-p62 antibodies and exhibited strong antitumor activity in four models of allogeneic mouse tumors – B16 melanoma, Lewis lung carcinoma (LLC), S37 sarcoma, and Ca755 breast carcinoma. In mice challenged with Ca755 cells, p62 treatment had dual effect: inhibited tumor growth in some mice and prolonged life in those mice which developed tumor size similar to control. P62-encoding plasmid has demonstrated its potency both as a preventive and therapeutic vaccine. Importantly, p62 vaccination drastically suppressed metastasis formation: in B16 melanoma where tumor cells where injected intravenously, and in LLC and S37 sarcoma with spontaneous metastasis. Overall, we conclude that a p62-encoding vector(s) constitute(s) a novel, effective broad-spectrum antitumor and anti-metastatic vaccine feasible for further development and clinical trials. PMID:24121124

  20. Disrupted adenovirus-based vaccines against small addictive molecules circumvent anti-adenovirus immunity.

    PubMed

    De, Bishnu P; Pagovich, Odelya E; Hicks, Martin J; Rosenberg, Jonathan B; Moreno, Amira Y; Janda, Kim D; Koob, George F; Worgall, Stefan; Kaminsky, Stephen M; Sondhi, Dolan; Crystal, Ronald G

    2013-01-01

    Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1(-)E3(-) Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines.

  1. Disrupted Adenovirus-Based Vaccines Against Small Addictive Molecules Circumvent Anti-Adenovirus Immunity

    PubMed Central

    De, Bishnu P.; Pagovich, Odelya E.; Hicks, Martin J.; Rosenberg, Jonathan B.; Moreno, Amira Y.; Janda, Kim D.; Koob, George F.; Worgall, Stefan; Kaminsky, Stephen M.; Sondhi, Dolan

    2013-01-01

    Abstract Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1−E3− Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines. PMID:23140508

  2. Germinal Center B Cell and T Follicular Helper Cell Responses to Viral Vector and Protein-in-Adjuvant Vaccines

    PubMed Central

    Wang, Chuan; Hart, Matthew; Chui, Cecilia; Ajuogu, Augustine; Brian, Iona J.; de Cassan, Simone C.; Borrow, Persephone; Draper, Simon J.

    2016-01-01

    There is great interest in the development of Ab-inducing subunit vaccines targeting infections, including HIV, malaria, and Ebola. We previously reported that adenovirus vectored vaccines are potent in priming Ab responses, but uncertainty remains regarding the optimal approach for induction of humoral immune responses. In this study, using OVA as a model Ag, we assessed the magnitude of the primary and anamnestic Ag–specific IgG responses of mice to four clinically relevant vaccine formulations: replication-deficient adenovirus; modified vaccinia Ankara (a poxvirus); protein with alum; and protein in the squalene oil-in-water adjuvant Addavax. We then used flow cytometric assays capable of measuring total and Ag-specific germinal center (GC) B cell and follicular Th cell responses to compare the induction of these responses by the different formulations. We report that adenovirus vectored vaccines induce Ag insert–specific GC B cell and Ab responses of a magnitude comparable to those induced by a potent protein/squalene oil-in-water formulation whereas—despite a robust overall GC response—the insert-specific GC B cell and Ab responses induced by modified vaccinia Ankara were extremely weak. Ag-specific follicular Th cell responses to adenovirus vectored vaccines exceeded those induced by other platforms at day 7 after immunization. We found little evidence that innate immune activation by adenovirus may act as an adjuvant in such a manner that the humoral response to a recombinant protein may be enhanced by coadministering with an adenovirus lacking a transgene of interest. Overall, these studies provide further support for the use of replication-deficient adenoviruses to induce humoral responses. PMID:27412417

  3. Single-Dose Intranasal Treatment with DEF201 (Adenovirus Vectored Consensus Interferon) Prevents Lethal Disease Due to Rift Valley Fever Virus Challenge

    PubMed Central

    Gowen, Brian B.; Ennis, Jane; Bailey, Kevin W.; Vest, Zachary; Scharton, Dionna; Sefing, Eric J.; Turner, Jeffrey D.

    2014-01-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and ungulates. The virus can be transmitted by mosquitoes, direct contact with infected tissues or fluids, or aerosol, making it a significant biological threat for which there is no approved vaccine or therapeutic. Herein we describe the evaluation of DEF201, an adenovirus-vectored interferon alpha which addresses the limitations of recombinant interferon alpha protein (cost, short half-life), as a pre- and post-exposure treatment in a lethal hamster RVFV challenge model. DEF201 was delivered intranasally to stimulate mucosal immunity and effectively bypass any pre-existing immunity to the vector. Complete protection against RVFV infection was observed from a single dose of DEF201 administered one or seven days prior to challenge while all control animals succumbed within three days of infection. Efficacy of treatment administered two weeks prior to challenge was limited. Post‑exposure, DEF201 was able to confer significant protection when dosed at 30 min or 6 h, but not at 24 h post-RVFV challenge. Protection was associated with reductions in serum and tissue viral loads. Our findings suggest that DEF201 may be a useful countermeasure against RVFV infection and further demonstrates its broad-spectrum capacity to stimulate single dose protective immunity. PMID:24662673

  4. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn; Zhou, Ling; Zhang, Yan-ling

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endomore » via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.« less

  5. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-900 series system

    NASA Technical Reports Server (NTRS)

    Raphael, David

    1995-01-01

    This handbook explicates the hardware and software properties of a time division multiplex system. This system is used to sample analog and digital data. The data is then merged with frame synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information in this handbook is required by users to design congruous interface and attest effective utilization of this encoder system. Aydin Vector provides all of the components for these systems to Goddard Space Flight Center/Wallops Flight Facility.

  6. Adenovirus-Vectored Broadly Neutralizing Antibodies Directed Against gp120 Prevent Human Immunodeficiency Virus Type 1 Acquisition in Humanized Mice.

    PubMed

    Liu, Shan; Jackson, Andrew; Beloor, Jagadish; Kumar, Priti; Sutton, Richard E

    2015-09-01

    Despite nearly three decades of research, a safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) has yet to be achieved. More recently, the discovery of highly potent anti-gp160 broadly neutralizing antibodies (bNAbs) has garnered renewed interest in using antibody-based prophylactic and therapeutic approaches. Here, we encoded bNAbs in first-generation adenoviral (ADV) vectors, which have the distinctive features of a large coding capacity and ease of propagation. A single intramuscular injection of ADV-vectorized bNAbs in humanized mice generated high serum levels of bNAbs that provided protection against multiple repeated challenges with a high dose of HIV-1, prevented depletion of peripheral CD4(+) T cells, and reduced plasma viral loads to below detection limits. Our results suggest that ADV vectors may be a viable option for the prophylactic and perhaps therapeutic use of bNAbs in humans.

  7. Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects.

    PubMed

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-04-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with (3)H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>10(5)) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited 'extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction.

  8. Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX.

    PubMed

    Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J

    2010-10-01

    Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.

  9. Impact of novel histone deacetylase inhibitors, CHAP31 and FR901228 (FK228), on adenovirus-mediated transgene expression.

    PubMed

    Taura, Kojiro; Yamamoto, Yuzo; Nakajima, Akio; Hata, Koichiro; Uchinami, Hiroshi; Yonezawa, Kei; Hatano, Etsuro; Nishino, Norikazu; Yamaoka, Yoshio

    2004-05-01

    Histone deacetylase inhibitors (HDIs) are known to enhance adenovirus (Ad)-mediated transgene expression. Recently, novel HDIs, including cyclic hydroxamic-acid-containing peptide 31 (CHAP31) and FR901228 (FK228), have been developed. The effects of these two novel HDIs on Ad-transduced or endogenous gene expression were investigated. Acetylation of core histones and the expression of the coxsackie and adenovirus receptor (CAR) in HDI-treated cells were examined using Western blot and a quantitative reverse transcription polymerase chain reaction (TaqMan RT-PCR), respectively. Their in vivo effect on adenoviral gene expression was investigated in BALB/c mice. Both compounds enhanced and prolonged Ad-mediated beta-galactosidase expression more effectively than did trichostatin A, a classic HDI. The same effect was observed in Ad-transduced heat shock protein 72 (HSP72), but not in hyperthermia-induced endogenous expression of HSP72, suggesting that the effect is specific for transduced gene expression. Hyperacetylation of core histones induced by HDIs was considered responsible for the augmentative effects of gene expression. Intravenous administration of either CHAP31 or FR901228 enhanced beta-galactosidase expression in mice infected with AdLacZ. CHAP31 and FR901228 amplified Ad-mediated transgene expression. The enhancement of transgene expression by HDIs may result in fewer vector doses for necessary gene expression, helping to alleviate disadvantages caused by Ad vectors. This could be a useful tool in overcoming current limitations of gene therapy using adenovirus vectors. Copyright 2004 John Wiley & Sons, Ltd.

  10. Adenovirus type 5 intrinsic adsorption rates measured by surface plasmon resonance.

    PubMed

    Roper, D Keith; Nakra, Shamit

    2006-01-01

    Intrinsic adsorption rates of whole adenovirus type 5 (Ad5) onto a diethylaminoethyl (DEAE) anion exchange surface are measured for the first time by surface plasmon resonance (SPR). Fitting SPR sensorgrams to a two-compartment mass transport reaction model distinguishes intrinsic adsorption rates from slow diffusive Ad5 mass transport. Ad5 is a widely used viral vector for gene therapy that binds electrostatically to surfaces of cells and synthetics such as membranes, chromatographic resins, and glass. Increasing NaCl concentration from 4.8 to 14.4mM shifts binding of whole Ad5 from diffusion control to a regime where both sorption and diffusion affect binding. Intrinsic adsorption rates for Ad5-DEAE interaction are 16 times faster than intrinsic adsorption rates for Ad5 fiber knob interacting with soluble extracellular domain of coxsackievirus adenovirus receptors (s-CAR).

  11. Efficacy of gene-therapy based on adenovirus encoding granulocyte-macrophage colony-stimulating factor in drug-sensitive and drug-resistant experimental pulmonary tuberculosis.

    PubMed

    Francisco-Cruz, Alejandro; Mata-Espinosa, Dulce; Ramos-Espinosa, Octavio; Marquina-Castillo, Brenda; Estrada-Parra, Sergio; Xing, Zhou; Hernández-Pando, Rogelio

    2016-09-01

    Tuberculosis (TB), although a curable disease, remains a major cause of morbidity and mortality worldwide. It is necessary to develop a short-term therapy with reduced drug toxicity in order to improve adherence rate and control disease burden. Granulocyte-macrophage colony-stimulating factor (GM-CSF) may be a key cytokine in the treatment of pulmonary TB since it primes the activation and differentiation of myeloid and non-myeloid precursor cells, inducing the release of protective Th1 cytokines. In this work, we administrated by intratracheal route recombinant adenoviruses encoding GM-CSF (AdGM-CSF). This treatment produced significant bacterial elimination when administered in a single dose at 60 days of infection with drug sensitive or drug resistant Mtb strains in a murine model of progressive disease. Moreover, AdGM-CSF combined with primary antibiotics produced more rapid elimination of pulmonary bacterial burdens than conventional chemotherapy suggesting that this form of treatment could shorten the conventional treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Purification of infectious adenovirus in two hours by ultracentrifugation and tangential flow filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugai, Hideyo; Yamasaki, Takahito; Hirose, Megumi

    2005-06-17

    Adenoviruses are excellent vectors for gene transfer and are used extensively for high-level expression of the products of transgenes in living cells. The development of simple and rapid methods for the purification of stable infectious recombinant adenoviruses (rAds) remains a challenge. We report here a method for the purification of infectious adenovirus type 5 (Ad5) that involves ultracentrifugation on a cesium chloride gradient at 604,000g for 15 min at 4 deg C and tangential flow filtration. The entire procedure requires less than two hours and infectious Ad5 can be recovered at levels higher than 64% of the number of plaque-formingmore » units (pfu) in the initial crude preparation of viruses. We have obtained titers of infectious purified Ad5 of 1.35 x 10{sup 10} pfu/ml and a ratio of particle titer to infectious titer of seven. The method described here allows the rapid purification of rAds for studies of gene function in vivo and in vitro, as well as the rapid purification of Ad5.« less

  13. Interferon-α Silencing by Small Interference RNA Increases Adenovirus Transduction and Transgene Expression in Huh7 Cells.

    PubMed

    Sobrevilla-Navarro, Ana Alondra; Sandoval-Rodríguez, Ana; García-Bañuelos, Jesús Javier; Armendariz-Borunda, Juan; Salazar-Montes, Adriana María

    2018-04-01

    Adenoviruses are the most common vectors used in clinical trials of gene therapy. In 2017, 21.2% of clinical trials used rAds as vectors. Systemic administration of rAds results in high tropism in the liver. Interferon types α and β are the major antiviral cytokines which orchestrate the host's immune response against rAd, limiting therapeutic gene expression and preventing subsequent vector administration. siRNA is small double-strand RNAs that temporally inhibit the expression of a specific gene. The aim is to evaluate the effect of IFN-α blocking by a specific siRNA on Ad-GFP transduction and on transgene expression in Huh7 cells in culture. Huh7 cells were cultured in DMEM and transfected with 70 nM of siRNA-IFN-α. Six hours later, the cells were exposed to 1 × 10 9  vp/ml of rAd-GFP for 24 h. Expression of IFN-α, TNF-α and the PKR gene was determined by RT-qPCR. Percentage of transduction was analyzed by flow cytometry and by qPCR. GFP expression was determined by western blot. 70 nM of siRNA-IFN-α inhibited 96% of IFN-α and 65% of TNF-α gene expression compared to an irrelevant siRNA. Percentage of transduction and transgene expression increased in these cells compared to an irrelevant siRNA. Inhibition of IFN-α expression by siRNA-IFN-α enabled a higher level of transduction and transgene expression GFP, highlighting the role of IFN-α in the elimination of adenovirus in transduced cells and thus suggesting that its inhibition could be an important strategy for gene therapy in clinical trials using adenovirus as a vector directed to liver diseases.

  14. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats.

    PubMed

    Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radošević, Katarina; Schuitemaker, Hanneke

    2015-10-05

    RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Lack of Humoral Immune Response to the Tetracycline (Tet) Activator in Rats Injected Intracranially with Tet-off rAAV Vectors

    PubMed Central

    Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.

    2010-01-01

    The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859

  16. Pre-Clinical Development of a Recombinant, Replication-Competent Adenovirus Serotype 4 Vector Vaccine Expressing HIV-1 Envelope 1086 Clade C

    PubMed Central

    Alexander, Jeff; Mendy, Jason; Vang, Lo; Avanzini, Jenny B.; Garduno, Fermin; Manayani, Darly J.; Ishioka, Glenn; Farness, Peggy; Ping, Li-Hua; Swanstrom, Ronald; Parks, Robert; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; LaBranche, Celia; Smith, Jonathan; Gurwith, Marc; Mayall, Tim

    2013-01-01

    Background There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. Methods The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. Results Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. Conclusions The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical

  17. Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-600 series system

    NASA Technical Reports Server (NTRS)

    Currier, S. F.; Powell, W. R.

    1986-01-01

    The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems.

  18. Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control.

    PubMed

    Work, L M; Ritchie, N; Nicklin, S A; Reynolds, P N; Baker, A H

    2004-08-01

    Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a approximately 1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced alphav integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.

  19. Novel Cocaine Vaccine Linked to a Disrupted Adenovirus Gene Transfer Vector Blocks Cocaine Psychostimulant and Reinforcing Effects

    PubMed Central

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-01-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with 3H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>105) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited ‘extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction. PMID:21918504

  20. Immunogenicity and protective efficacy of heterologous prime-boost regimens with mycobacterial vaccines and recombinant adenovirus- and poxvirus-vectored vaccines against murine tuberculosis.

    PubMed

    You, Qingrui; Wu, Yongge; Wu, Yang; Wei, Wei; Wang, Changyong; Jiang, Dehua; Yu, Xianghui; Zhang, Xizhen; Wang, Yong; Tang, Zhijiao; Jiang, Chunlai; Kong, Wei

    2012-11-01

    To evaluate regimens using bacillus Calmette-Guérin (BCG) or recombinant BCG (rBCG) overexpressing Ag85B for priming, followed by boosting with a modified vaccinia virus Ankara strain (MVA) and/or adenovirus vector (AD) expressing an Ag85B-ESAT6 fusion protein. Cellular and humoral immune responses were determined after subcutaneous vaccination, which was employed to trigger systemic immunity against intravenous infection in a mouse model of tuberculosis (TB). Bacterial loads and lung histology were evaluated. The relative IgG2a and IgG1 antibody levels indicated that the viral-vectored vaccines generated a T-helper type 1 (Th1)-biased response after two doses of viral boost vaccinations. Boosting BCG-primed mice with viral vaccines induced a Th1 immune response that included both CD4 and CD8 T-cells generating antigen-specific interferon-gamma (IFN-γ) and CD8 T cytotoxic activity. Only mice vaccinated with two different viral boosters after BCG priming exhibited a significant reduction in bacterial burden in the lung after challenge. Histology examinations confirmed the attenuation of lung damage and more compact granulomas. After mycobacteria priming, boosting with AD85B-E6 followed by MVA85B-E6 afforded better protection than the reverse order of administration of the viral vectors. This study demonstrates the potential of multiple heterologous viral booster vaccines, although the exact correlates of protection and optimal regimens should be further investigated for the rational design of future vaccine strategies. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/more » (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.« less

  2. Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation.

    PubMed

    Kuball, Jürgen; Wen, Shu Fen; Leissner, Joachim; Atkins, Derek; Meinhardt, Patricia; Quijano, Erlinda; Engler, Heidrun; Hutchins, Beth; Maneval, Daniel C; Grace, Michael J; Fritz, Mary Ann; Störkel, Stefan; Thüroff, Joachim W; Huber, Christoph; Schuler, Martin

    2002-02-15

    To study safety, feasibility, and biologic activity of adenovirus-mediated p53 gene transfer in patients with bladder cancer. Twelve patients with histologically confirmed bladder cancer scheduled for cystectomy were treated on day 1 with a single intratumoral injection of SCH 58500 (rAd/p53) at cystoscopy at one dose level (7.5 x 10(11) particles) or a single intravesical instillation of SCH 58500 with a transduction-enhancing agent (Big CHAP) at three dose levels (7.5 x 10(11) to 7.5 x 10(13) particles). Cystectomies were performed in 11 patients on day 3, and transgene expression, vector distribution, and biologic markers of transgene activity were assessed by molecular and immunohistochemical methods in tumors and normal bladder samples. Specific transgene expression was detected in tissues from seven of eight assessable patients treated with intravesical instillation of SCH 58500 but in none of three assessable patients treated with intratumoral injection of SCH 58500. Induction of RNA and protein expression of the p53 target gene p21/WAF1 was demonstrated in samples from patients treated with SCH 58500 instillation at higher dose levels. Distribution studies after intravesical instillation of SCH 58500 revealed both high transduction efficacy and vector penetration throughout the whole urothelium and into submucosal tumor cells. No dose-limiting toxicity was observed, and side effects were local and of transient nature. Intravesical instillation of SCH 58500 combined with a transduction-enhancing agent is safe, feasible, and biologically active in patients with bladder cancer. Studies to evaluate the clinical efficacy of this treatment in patients with localized high-risk bladder cancer are warranted.

  3. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo.

    PubMed Central

    Kass-Eisler, A; Falck-Pedersen, E; Alvira, M; Rivera, J; Buttrick, P M; Wittenberg, B A; Cipriani, L; Leinwand, L A

    1993-01-01

    To optimize the use of modified adenoviruses as vectors for gene delivery to the myocardium, we have characterized infection of cultured fetal and adult rat cardiac myocytes in vitro and of adult cardiac myocytes in vivo by using a replication-defective adenovirus carrying the chloramphenicol acetyltransferase (CAT) reporter gene driven by the cytomegalovirus promoter (AdCMVCATgD). In vitro, virtually all fetal or adult cardiocytes express the CAT gene when infected with 1 plaque-forming unit of virus per cell. CAT enzymatic activity can be detected in these cells as early as 4 hr after infection, reaching near-maximal levels at 48 hr. In fetal cells, CAT expression was maintained without a loss in activity for at least 1 week. Using in vitro studies as a guide, we introduced the AdCMVCATgD virus directly into adult rat myocardium and compared the expression results obtained from virus injection with those obtained by direct injection of pAdCMVCATgD plasmid DNA. The amount of CAT activity resulting from adenovirus infection of the myocardium was orders of magnitude higher than that seen from DNA injection and was proportional to the amount of input virus. Immunostaining for CAT protein in cardiac tissue sections following adenovirus injection demonstrated large numbers of positive cells, reaching nearly 100% of the myocytes in many regions of the heart. Expression of genes introduced by adenovirus peaked at 5 days but was still detectable 55 days following infection. Adenoviruses are therefore a very useful tool for high-efficiency gene transfer into the cardiovascular system. Images Fig. 1 Fig. 5 PMID:8265580

  4. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Optimizing cardiovascular gene therapy: increased vascular gene transfer with modified adenoviral vectors.

    PubMed

    Kibbe, M R; Murdock, A; Wickham, T; Lizonova, A; Kovesdi, I; Nie, S; Shears, L; Billiar, T R; Tzeng, E

    2000-02-01

    Adenovirus is widely used as a vector for gene transfer to the vasculature. However, the efficiency of these vectors can be limited by ineffective viral-target cell interactions. Viral attachment, which largely determines adenoviral tropism, is mediated through binding of the adenoviral fiber coat protein to the Coxsackievirus and adenovirus receptor, while internalization follows binding of the adenoviral RGD motif to alpha(v)-integrin receptors. Modifications of the fiber coat protein sequence have been successful for targeting the adenovirus to more prevalent receptors in the vasculature, including heparan sulfate-containing receptors and alpha(v)-integrin receptors. Modified adenoviral vectors targeted to receptors more prevalent in the vasculature result in an increased transfer efficiency of the virus in vitro and in vivo even in the presence of clinically relevant doses of heparin. We tested 2 modified E1- and E3-deleted Ad5 type adenoviral vectors containing the beta-galactosidase gene. AdZ.F(pK7) contains multiple positively charged lysines in the fiber coat protein that target the adenovirus to heparan sulfate receptors, while AdZ.F(RGD) contains an RGD integrin-binding sequence in the fiber coat protein that allows binding to alpha(v)-integrin receptors. The gene transfer efficiency of these modified viruses was compared in rat aortic smooth muscle cells in vitro and in an in vivo porcine model of balloon-induced arterial injury. Because of the use of heparin during most vascular surgical procedures and the concern that heparin might interfere with the binding of AdZ.F(pK7) to heparan sulfate receptors, the effect of heparin on the in vitro and in vivo transfer efficiency of these 2 modified adenoviruses was evaluated. In vitro infection of rat aortic smooth muscle cells with AdZ.F(pK7) and AdZ.F(RGD) resulted in significantly higher levels of beta-galactosidase expression compared with the unmodified adenovirus (mean +/- SEM, 1766.3 +/- 89.1 and 44

  6. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    PubMed

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and

  7. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens

    PubMed Central

    Mahairas, Gregory G.; Shaw, Carolyn E.; Huang, Meei-Li; Koelle, David M.; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M.

    2015-01-01

    ABSTRACT We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4+ and CD8+ T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of

  8. Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer.

    PubMed

    Khare, Reeti; May, Shannon M; Vetrini, Francesco; Weaver, Eric A; Palmer, Donna; Rosewell, Amanda; Grove, Nathan; Ng, Philip; Barry, Michael A

    2011-07-01

    As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated >10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies.

  9. Requirement of Sur2 for Efficient Replication of Mouse Adenovirus Type 1

    PubMed Central

    Fang, Lei; Stevens, Jennitte L.; Berk, Arnold J.; Spindler, Katherine R.

    2004-01-01

    Mouse adenovirus type 1 (MAV-1) early region 1A (E1A) encodes a virulence gene in viral infection of mice. To broaden our understanding of the functions of E1A in MAV-1 pathogenesis, an unbiased experimental approach, glutathione S-transferase (GST) pulldown, was used to screen for cellular proteins that interact with E1A protein. We identified mouse Sur2, a subunit of Mediator complex, as a protein that binds to MAV-1 E1A. The interaction between Sur2 and MAV-1 E1A was confirmed in virus-infected cells. Conserved region 3 (CR3) of MAV-1 E1A was mapped as the region required for Sur2-E1A interaction, as is the case for human adenovirus E1A. Although it has been proposed that human adenovirus E1A recruits the Mediator complex to transactivate transcription of viral early genes, Sur2 function in adenovirus replication has not been directly tested previously. Studies on the functions of Sur2 with mouse embryonic fibroblasts (MEFs) showed that there was a multiplicity-dependent growth defect of MAV-1 in Sur2−/− MEFs compared to Sur2+/+ MEFs. Comparison of the viral DNA and viral mRNA levels in Sur2+/+ and Sur2−/− MEFs confirmed that Sur2 was important for efficient viral replication. The viral replication defects in Sur2−/− MEFs appeared to be due at least in part to a defect in viral early gene transcription. PMID:15542641

  10. Adenovirus-mediated gene delivery to hypothalamic magnocellular neurons in mice

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Beltz, T. G.; Meyrelles, S. S.; Johnson, A. K.

    1999-01-01

    Vasopressin is synthesized by magnocellular neurons in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei and released by their axon terminals in the neurohypophysis (NH). With its actions as an antidiuretic hormone and vasoactive agent, vasopressin plays a pivotal role in the control of body fluids and cardiovascular homeostasis. Because of its well-defined neurobiology and functional importance, the SON/PVN-NH system is ideal to establish methods for gene transfer of genetic material into specific pathways in the mouse central nervous system. In these studies, we compared the efficiency of transferring the gene lacZ, encoding for beta-galactosidase (beta-gal), versus a gene encoding for green fluorescent protein by using replication-deficient adenovirus (Ad) vectors in adult mice. Transfection with viral concentrations up to 2 x 10(7) plaque-forming units per coverslip of NH, PVN, and SON in dissociated, cultured cells caused efficient transfection without cytotoxicity. However, over an extended period of time, higher levels (50% to 75% of the cells) of beta-gal expression were detected in comparison with green fluorescent protein (5% to 50% of the cells). With the use of a stereotaxic approach, the pituitary glands of mice were injected with Ad (4 x 10(6) plaque-forming units). In material from these animals, we were able to visualize the expression of the beta-gal gene in the NH and in magnocellular neurons of both the PVN and SON. The results of these experiments indicate that Ad-Rous sarcoma virus promoter-beta-gal is taken up by nerve terminals at the injection site (NH) and retrogradely transported to the soma of the neurons projecting to the NH. We conclude that the application of these experimental approaches will provide powerful tools for physiological studies and potential approaches to deliver therapeutic genes to treat diseases.

  11. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  12. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays.

    PubMed

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D; Chorro, Laurent; Carlin, Leo M; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S

    2013-02-19

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.

  13. Selective eradication of cancer cells by delivery of adenovirus-based toxins

    PubMed Central

    Shapira, Shiran; Shapira, Assaf; Kazanov, Diana; Hevroni, Gil; Kraus, Sarah; Arber, Nadir

    2017-01-01

    Background and objective KRAS mutation is an early event in colorectal cancer carcinogenesis. We previously reported that a recombinant adenovirus, carrying a pro-apoptotic gene (PUMA) under the regulation of Ets/AP1 (RAS-responsive elements) suppressed the growth of cancer cells harboring hyperactive KRAS. We propose to exploit the hyperactive RAS pathway, rather than to inhibit it as was previously tried and failed repeatedly. We aim to improve efficacy by substituting PUMA with a more potent toxin, the bacterial MazF-MazE toxin-antitoxin system, under a very tight regulation. Results A massive cell death, in a dose-dependent manner, reaching 73% at MOI 10 was seen in KRAS cells as compared to 22% in WT cells. Increase expression of MazE (the anti-toxin) protected normal cells from any possible internal or external leakage of the system and confirmed the selectivity, specificity and safety of the targeting system. Considerable tumor shrinkage (61%) was demonstrated in vivo following MazEF-encoding adenovirus treatment without any side effects. Design Efficient vectors for cancer-directed gene delivery were constructed; “pAdEasy-Py4-SV40mP-mCherry-MazF”“pAdEasy-Py4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP“,“pAdEasy-ΔPy4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP “and “pAdEasy-mCherry”. Virus particles were produced and their potency was tested. Cell death was measured qualitatively by using the fluorescent microscopy and colony formation assay, and was quantified by MTT. FACS analysis using annexin V and RedDot2 dyes was performed for measuring apoptotic and dead cells, respectively. In vivo tumor formation was measured in a xenograft model. Conclusions A proof of concept for a novel cancer safe and effective gene therapy exploiting an aberrant hyperactive pathway is achievable. PMID:28445136

  14. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    PubMed

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Adenovirus E1a prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor.

    PubMed Central

    Zamanian, M; La Thangue, N B

    1992-01-01

    The retinoblastoma (Rb) gene product forms a complex with the cellular transcription factor DRTF1, a property assumed to be important for mediating negative growth control because certain viral oncogenes, such as adenovirus E1a, prevent this interaction and mutant Rb alleles, which have lost the capacity to regulate growth, encode proteins that fail to associate with DRTF1. In this study, we show that the wild-type Rb protein can specifically repress transcription from promoters driven by DRTF1 whereas a naturally occurring mutant Rb protein cannot. Furthermore, Rb-mediated transcriptional repression can be overridden by adenovirus E1a; this requires regions in E1a necessary for cellular transformation. The Rb protein therefore acts in trans to repress the transcriptional activity of DRTF1 whereas adenovirus E1a prevents this interaction and thus maintains DRTF1 in a constitutively active state. The Rb protein and adenovirus E1a therefore have opposite effects on the activity of a common molecular target. Transcriptional repression mediated by the Rb protein and inactivation of repression by the E1a protein are likely to play an important role in mediating their biological effects. Images PMID:1385776

  16. Gene Transduction and Cell Entry Pathway of Fiber-Modified Adenovirus Type 5 Vectors Carrying Novel Endocytic Peptide Ligands Selected on Human Tracheal Glandular Cells

    PubMed Central

    Gaden, Florence; Franqueville, Laure; Magnusson, Maria K.; Hong, Saw See; Merten, Marc D.; Lindholm, Leif; Boulanger, Pierre

    2004-01-01

    Monolayers of cystic fibrosis transmembrane conductance regulator (CFTR)-deficient human tracheal glandular cells (CF-KM4) were subjected to phage biopanning, and cell-internalized phages were isolated and sequenced, in order to identify CF-KM4-specific peptide ligands that would confer upon adenovirus type 5 (Ad5) vector a novel cell target specificity and/or higher efficiency of gene delivery into airway cells of patients with cystic fibrosis (CF). Three different ligands, corresponding to prototypes of the most represented families of phagotopes recovered from intracellular phages, were designed and individually inserted into Ad5-green fluorescent protein (GFP) (AdGFP) vectors at the extremities of short fiber shafts (seven repeats [R7]) terminated by scissile knobs. Only one vector, carrying the decapeptide GHPRQMSHVY (abbreviated as QM10), showed an enhanced gene transduction of CF-KM4 cells compared to control nonliganded vector with fibers of the same length (AdGFP-R7-knob). The enhancement in gene transfer efficiency was not specific to CF-KM4 cells but was observed in other mammalian cell lines tested. The QM10-liganded vector was referred to as AdGFP-QM10-knob in its knobbed version and as AdGFP-QM10 in its proteolytically deknobbed version. AdGFP-QM10 was found to transduce cells with a higher efficiency than its knob-bearing version, AdGFP-QM10-knob. Consistent with this, competition experiments indicated that the presence of knob domains was not an absolute requirement for cell attachment of the QM10-liganded vector and that the knobless AdGFP-QM10 used alternative cell-binding domains on its capsid, including penton base capsomer, via a site(s) different from its RGD motifs. The QM10-mediated effect on gene transduction seemed to take place at the step of endocytosis in both quantitative and qualitative manners. Virions of AdGFP-QM10 were endocytosed in higher numbers than virions of the control vector and were directed to a compartment different from

  17. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  18. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer

    PubMed Central

    Zhu, Wei; Zhang, Hongwei; Shi, Yi; Song, Mangen; Zhu, Bijun; Wei, Lai

    2013-01-01

    Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising cancer therapeutic target due to its selective apoptosis-inducing effect in cancer cells. To efficiently deliver TRAIL to the tumor cells, an oncolytic adenovirus (p55-hTERT-HRE-TRAIL) carrying the TRAIL coding sequence was constructed. In the present study, we aimed to investigate the effect of p55-hTERT-HRE-TRAIL on the growth and metastasis of triple-negative breast cancer (TNBC). We observed that infection of the recombinant adenovirus resulted in expression of TRAIL and massive cell death in a TNBC cell line MDA-MB-231. This effect is much weaker in MCF-10A, which is a normal breast cell line. Administration of P55-HTERT-HRE-TRAIL significantly reduced orthotopic breast tumor growth and extended survival in a metastatic model. Our results suggest the oncolytic adenovirus armed with P55-HTERT-HRE-TRAIL, which exhibited enhanced anti-tumor activity and improved survival, is a promising candidate for virotherapy of TNBC. PMID:24025362

  19. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice.

    PubMed

    Zinn, Kurt R; Chaudhuri, Tandra R; Krasnykh, Victor N; Buchsbaum, Donald J; Belousova, Natalya; Grizzle, William E; Curiel, David T; Rogers, Buck E

    2002-05-01

    To compare two systems for assessing gene transfer to cancer cells and xenograft tumors with noninvasive gamma camera imaging. A replication-incompetent adenovirus encoding the human type 2 somatostatin receptor (hSSTr2) and the herpes simplex virus thymidine kinase (TK) enzyme (Ad-hSSTr2-TK) was constructed. A-427 human lung cancer cells were infected in vitro and mixed with uninfected cells at different ratios. A-427 tumors in nude mice (n = 23) were injected with 1 x 10(6) to 5 x 10(8) plaque-forming units (pfu) of Ad-hSSTr2-TK. The expressed hSSTr2 and TK proteins were imaged owing to internally bound, or trapped, technetium 99m ((99m)Tc)-labeled hSSTr2-binding peptide (P2045) and radioiodinated 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodouracil (FIAU), respectively. Iodine 125 ((125)I)-labeled FIAU was used in vitro and iodine 131 ((131)I)-labeled FIAU, in vivo. The (99m)Tc-labeled P2045 and (125)I- or (131)I-labeled FIAU were imaged simultaneously with different window settings with an Anger gamma camera. Treatment effects were tested with analysis of variance. Infected cells in culture trapped (125)I-labeled FIAU and (99m)Tc-labeled P2045; uptake correlated with the percentage of Ad-hSSTr2-TK-positive cells. For 100% of infected cells, 24% +/- 0.4 (mean +/- SD) of the added (99m)Tc-labeled P2045 was trapped, which is significantly lower (P <.05) than the 40% +/- 2 of (125)I-labeled FIAU that was trapped. For the highest Ad-hSSTr2-TK tumor dose (5 x 10(8) pfu), the uptake of (99m)Tc-labeled P2045 was 11.1% +/- 2.9 of injected dose per gram of tumor (thereafter, dose per gram), significantly higher (P <.05) than the uptake of (131)I-labeled FIAU at 1.6% +/- 0.4 dose per gram. (99m)Tc-labeled P2045 imaging consistently depicted hSSTr2 gene transfer in tumors at all adenovirus doses. Tumor uptake of (99m)Tc-labeled P2045 positively correlated with Ad-hSSTr2-TK dose; (131)I-labeled FIAU tumor uptake did not correlate with vector dose. The hSSTr2 and TK

  20. Therapeutic effect of targeted Fas-expressing adenoviruses method combining γδ T cells in a mouse model of human ovarian carcinoma.

    PubMed

    Zeng, Dingyuan; Lin, Jiajing; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2018-02-01

    The present study aimed to investigate the therapeutic effect and safety of targeted use of Fas-expressing adenoviruses combined with γδ T cell-mediated killing to treat human ovarian cancer xenografts in BALB/c mice. Shuttle plasmids containing control elements of human telomerase reverse transcriptase promoter and two-step transcriptional amplification system were constructed and packaged into adenovirus-5 vectors to generate expression of an exogenous Fas gene. A mouse xenograft model of human ovarian carcinoma was constructed. A total of 35 BALB/c mice were randomly divided into five groups, which were injected with PBS, γδ T cells, Fas-expressing adenoviruses, taxol, or Fas-expressing adenovirus and γδ T cells. The weight and volume of tumors in mice in each group was monitored. Tissue sections of the various tissues of mice in the Fas-expressing adenovirus and γδ T cells group was compared with those in the PBS group to evaluate the safety of Fas-expressing adenovirus and γδ T cells in the treatment of human ovarian cancer xenograft tumors. The results of the present study indicated that mice in all treatment groups were alive at the end of the treatment course. Tumor weight and volume was the highest in the PBS group, followed successively by the adenovirus group, the γδ T cell group, the adenovirus and γδ T cell group, and the taxol group. The weight and volume inhibition rate in adenovirus and γδ T cell group were significantly higher compared with in the PBS group (P<0.05). Pathological observation of tissue samples revealed that none of vital organs in the adenovirus and γδ T cell group developed any evident morphological changes during treatment, when compared with healthy controls. In conclusion, the combined therapy with Fas-expressing adenoviruses and γδ T cells is efficient and safe for the treatment of mouse human ovarian carcinoma xenografts.

  1. Vector-based genetically modified vaccines: Exploiting Jenner's legacy.

    PubMed

    Ramezanpour, Bahar; Haan, Ingrid; Osterhaus, Ab; Claassen, Eric

    2016-12-07

    The global vaccine market is diverse while facing a plethora of novel developments. Genetic modification (GM) techniques facilitate the design of 'smarter' vaccines. For many of the major infectious diseases of humans, like AIDS and malaria, but also for most human neoplastic disorders, still no vaccines are available. It may be speculated that novel GM technologies will significantly contribute to their development. While a promising number of studies is conducted on GM vaccines and GM vaccine technologies, the contribution of GM technology to newly introduced vaccines on the market is disappointingly limited. In this study, the field of vector-based GM vaccines is explored. Data on currently available, actually applied, and newly developed vectors is retrieved from various sources, synthesised and analysed, in order to provide an overview on the use of vector-based technology in the field of GM vaccine development. While still there are only two vector-based vaccines on the human vaccine market, there is ample activity in the fields of patenting, preclinical research, and different stages of clinical research. Results of this study revealed that vector-based vaccines comprise a significant part of all GM vaccines in the pipeline. This study further highlights that poxviruses and adenoviruses are among the most prominent vectors in GM vaccine development. After the approval of the first vectored human vaccine, based on a flavivirus vector, vaccine vector technology, especially based on poxviruses and adenoviruses, holds great promise for future vaccine development. It may lead to cheaper methods for the production of safe vaccines against diseases for which no or less perfect vaccines exist today, thus catering for an unmet medical need. After the introduction of Jenner's vaccinia virus as the first vaccine more than two centuries ago, which eventually led to the recent eradication of smallpox, this and other viruses may now be the basis for constructing vectors

  2. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression.

    PubMed

    Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A

    2009-12-30

    Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements

  3. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression

    PubMed Central

    2009-01-01

    Background Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. Methods A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Results Vectors that contained the ADA LCR were preferentially expressed in T

  4. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    PubMed

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  5. Incidence of adenoviruses in raw and treated water.

    PubMed

    Van Heerden, Juanita; Ehlers, Marthie M; Van Zyl, Walda B; Grabow, Wilhelm O K

    2003-09-01

    Adenoviruses are of major public health importance and are associated with a variety of clinical manifestations, i.e. gastroenteritis, eye infections and respiratory infections. The importance of water in the epidemiology of adenoviruses and the potential health risks constituted by adenoviruses in water sources and supplies are widely recognised. This study was conducted to assess the incidence of human adenoviruses in raw and treated water systems. Various raw and treated water were routinely monitored for the presence of adenoviruses, over a 1-year period (July 2000-June 2001). The supplies were derived from acceptable quality surface water sources using treatment processes, which conform to international standards for the production of safe drinking water. Adenoviruses were detected by firstly amplifying the viruses in cell cultures and then amplifying the extracted nucleic acids of these viruses using molecular techniques (nested PCR). The results indicated human adenoviruses present in 13 (12.75%) of the raw and 9 (4.41%) of the treated water samples tested. The combination of cell culture and nested PCR has proved to be a quick and reliable method for the detection of adenoviruses in water environments.

  6. S1 of distinct IBV population expressed from recombinant adenovirus confers protection against challenge.

    PubMed

    Toro, H; Zhang, J F; Gallardo, R A; van Santen, V L; van Ginkel, F W; Joiner, K S; Breedlove, C

    2014-06-01

    Protective properties of three distinct infectious bronchitis virus (IBV) Ark Delmarva poultry industry (ArkDPI) S1 proteins encoded from replication-defective recombinant adenovirus vectors were investigated. Using a suboptimal dose of each recombinant virus, we demonstrated that IBV S1 amino acid sequences showing > or = 95.8% amino acid identity to the S1 of the challenge strain differed in their ability at conferring protection. Indeed, the S1 sequence of the IBV population previously designated C4 (AdIBVS1.C4), which protected the most poorly, differs from the S1 sequence of population C2 (AdIBVS1.C2), which provided the highest protection, only at amino acid position 56. The fact that a change in one amino acid in this region significantly altered the induction of a protective immune response against this protein provides evidence that the first portion of S1 displays relevant immunoprotective epitopes. Use of an optimal dose of AdIBVS1.C2 effectively protected chickens from clinical signs and significantly reduced viral load after IBV Ark virulent challenge. Moreover, increased numbers of both IgA and IgG IBV-specific antibody secreting lymphocytes were detected in the spleen after challenge. The increased response detected for both IgA and IgG lymphocytes after challenge might be explained by vaccine-induced B memory cells. The fact that a single vaccination with Ad/IBVS1.C2 provides protection against IBV challenge is promising, because Ad-vectored vaccines can be mass delivered by in ovo inoculation using automated in ovo injectors.

  7. Generation of a Kupffer Cell-evading Adenovirus for Systemic and Liver-directed Gene Transfer

    PubMed Central

    Khare, Reeti; May, Shannon M; Vetrini, Francesco; Weaver, Eric A; Palmer, Donna; Rosewell, Amanda; Grove, Nathan; Ng, Philip; Barry, Michael A

    2011-01-01

    As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated >10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies. PMID:21505422

  8. Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity.

    PubMed

    Hwang, Kyung-Sun; Cho, Won-Kyung; Yoo, Jinsang; Seong, Young Rim; Kim, Bum-Kyeng; Kim, Samyong; Im, Dong-Soo

    2004-06-01

    We report here that gene transfer using recombinant adenoviruses encoding interleukin (IL)-18 mutants induces potent antitumor activity in vivo. The precursor form of IL-18 (ProIL-18) is processed by caspase-1 to produce bioactive IL-18, but its cleavage by caspase-3 (CPP32) produces an inactive form. To prepare IL-18 molecules with an effective antitumor activity, a murine IL-18 mutant with the signal sequence of murine granulocyte-macrophage (GM)- colony stimulating factor (CSF) at the 5'-end of mature IL-18 cDNA (GMmIL-18) and human IL-18 mutant with the prepro leader sequence of trypsin (PPT), which is not cleaved by caspase-3 (PPThIL-18CPP32-), respectively, were constructed. Adenovirus vectors carrying GMmIL-18 or PPThIL-18CPP32- produced bioactive IL-18. Ad.GMmIL-18 had a more potent antitumor effect than Ad.mProIL-18 encoding immature IL-18 in renal cell adenocarcinoma (Renca) tumor-bearing mice. Tumor-specific cytotoxic T lymphocytes, the induction of Th1 cytokines, and an augmented natural killer (NK) cell activity were detected in Renca tumor-bearing mice treated with Ad.GMmIL-18. An immunohistological analysis revealed that CD4+ and CD8+ T cells abundantly infiltrated into tumors of mice treated with Ad.GMmIL-18. Huh-7 human hepatoma tumor growth in nude mice with a defect of T cell function was significantly inhibited by Ad.PPThIL-18CPP32- compared with Ad.hProIL-18 encoding immature IL-18. Nude mice treated with Ad.PPThIL-18CPP32- contained NK cells with increased cytotoxicity. The results suggest that the release of mature IL-18 in tumors is required for achieving an antitumor effect including tumor-specific cellular immunity and augmented NK cell-mediated cytotoxicity. These optimally designed IL-18 mutants could be useful for improving the antitumor effectiveness of wild-type IL-18. Copyright 2004 Nature Publishing Group

  9. Human Papillomavirus E6E7-Mediated Adenovirus Cell Killing: Selectivity of Mutant Adenovirus Replication in Organotypic Cultures of Human Keratinocytes

    PubMed Central

    Balagué, Cristina; Noya, Francisco; Alemany, Ramon; Chow, Louise T.; Curiel, David T.

    2001-01-01

    Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells. PMID:11462032

  10. Method and system for efficient video compression with low-complexity encoder

    NASA Technical Reports Server (NTRS)

    Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)

    2012-01-01

    Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.

  11. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice.

    PubMed

    Pearson, Frances E; McNeilly, Celia L; Crichton, Michael L; Primiero, Clare A; Yukiko, Sally R; Fernando, Germain J P; Chen, Xianfeng; Gilbert, Sarah C; Hill, Adrian V S; Kendall, Mark A F

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.

  12. Specific Retrograde Transduction of Spinal Motor Neurons Using Lentiviral Vectors Targeted to Presynaptic NMJ Receptors

    PubMed Central

    Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND

    2014-01-01

    To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531

  13. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  14. Specific in vivo labeling with GFP retroviruses, lentiviruses, and adenoviruses for imaging

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.; Kishimoto, Hiroyuki; Fujiwara, Toshiyoshi

    2008-02-01

    Fluorescent proteins have revolutionized the field of imaging. Our laboratory pioneered in vivo imaging with fluorescent proteins. Fluorescent proteins have enabled imaging at the subcellular level in mice. We review here the use of different vectors carrying fluorescent proteins to selectively label normal and tumor tissue in vivo. We show that a GFP retrovirus and telomerase-driven GFP adenovirus can selectively label tumors in mice. We also show that a GFP lentivirus can selectively label the liver in mice. The practical application of these results are discussed.

  15. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients.

    PubMed

    Zhao, Hua; Xu, Can; Luo, Xiaoli; Wei, Feng; Wang, Ning; Shi, Huiying; Ren, Xiubao

    2018-01-01

    Since the preclinical results about chimpanzee adenovirus serotype-68 (AdC68)-based vaccine showed an encouraging results, it reminded us that AdC68 may be a suitable cancer vaccine vector. Previous study indicated that the seroprevalence of neutralizing antibodies (NAbs) against adenovirus was different between cancer patients and healthy volunteers. Knowledge regarding the prevalence rates of AdC68 NAbs for cancer patients is lacking. Therefore, assessing the preexistence of NAbs against AdC68 in cancer patients could provide useful insights for developing future AdC68-based cancer vaccines. In this study, 440 patients with different pathological types of tumors and 204 healthy adult volunteers were enrolled to evaluate the NAbs against AdC68 and human adenovirus serotype-5 (AdHu5). The seroprevalence of NAbs against AdC68 was much lower than that against AdHu5 in cancer subjects (43.64 vs. 67.05%, P  < 0.01). The seroprevalence rates of NAbs to AdC68 in the cancer subjects were statistically higher than those detected in the healthy adult volunteers (43.64 vs. 23.53%, P  = 0.000). The seroprevalence rates of AdC68 NAbs were much lower in lung, laryngeal, esophageal, and cervical cancer patients compared with oropharyngeal, colon, and rectal cancer patients. Furthermore, the seroprevalence rates of AdC68 NAbs were much lower in lung adenocarcinoma patients than in lung squamous cell carcinoma patients (35.00 vs. 70.00%, P  < 0.05). No significant difference in the AdC68 NAbs among patients with different clinical stages of cancer was detected. The percentage of NAbs against AdC68 was significantly lower than that against AdHu5 ( P  < 0.05) in stage-I, -II, and -III cancer patients. No significant difference between the percentage of NAbs against AdC68 and AdHu5 in the subjects with stage-IV cancer was detected. The study also demonstrated the distribution of AdHu5 and AdC68 NAb titers for the positive samples. It showed that very low NAb titers

  16. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients

    PubMed Central

    Zhao, Hua; Xu, Can; Luo, Xiaoli; Wei, Feng; Wang, Ning; Shi, Huiying; Ren, Xiubao

    2018-01-01

    Since the preclinical results about chimpanzee adenovirus serotype-68 (AdC68)-based vaccine showed an encouraging results, it reminded us that AdC68 may be a suitable cancer vaccine vector. Previous study indicated that the seroprevalence of neutralizing antibodies (NAbs) against adenovirus was different between cancer patients and healthy volunteers. Knowledge regarding the prevalence rates of AdC68 NAbs for cancer patients is lacking. Therefore, assessing the preexistence of NAbs against AdC68 in cancer patients could provide useful insights for developing future AdC68-based cancer vaccines. In this study, 440 patients with different pathological types of tumors and 204 healthy adult volunteers were enrolled to evaluate the NAbs against AdC68 and human adenovirus serotype-5 (AdHu5). The seroprevalence of NAbs against AdC68 was much lower than that against AdHu5 in cancer subjects (43.64 vs. 67.05%, P < 0.01). The seroprevalence rates of NAbs to AdC68 in the cancer subjects were statistically higher than those detected in the healthy adult volunteers (43.64 vs. 23.53%, P = 0.000). The seroprevalence rates of AdC68 NAbs were much lower in lung, laryngeal, esophageal, and cervical cancer patients compared with oropharyngeal, colon, and rectal cancer patients. Furthermore, the seroprevalence rates of AdC68 NAbs were much lower in lung adenocarcinoma patients than in lung squamous cell carcinoma patients (35.00 vs. 70.00%, P < 0.05). No significant difference in the AdC68 NAbs among patients with different clinical stages of cancer was detected. The percentage of NAbs against AdC68 was significantly lower than that against AdHu5 (P < 0.05) in stage-I, -II, and -III cancer patients. No significant difference between the percentage of NAbs against AdC68 and AdHu5 in the subjects with stage-IV cancer was detected. The study also demonstrated the distribution of AdHu5 and AdC68 NAb titers for the positive samples. It showed that very low NAb titers against

  17. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields

    PubMed Central

    Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian

    2017-01-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469

  18. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields.

    PubMed

    Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen

    2017-06-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.

  19. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    PubMed

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  20. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    PubMed Central

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 108 infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD50) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax. PMID:24307239

  1. Chromosomal integration of adenoviral vector DNA in vivo.

    PubMed

    Stephen, Sam Laurel; Montini, Eugenio; Sivanandam, Vijayshankar Ganesh; Al-Dhalimy, Muhseen; Kestler, Hans A; Finegold, Milton; Grompe, Markus; Kochanek, Stefan

    2010-10-01

    So far there has been no report of any clinical or preclinical evidence for chromosomal vector integration following adenovirus (Ad) vector-mediated gene transfer in vivo. We used liver gene transfer with high-capacity Ad vectors in the FAH(Deltaexon5) mouse model to analyze homologous and heterologous recombination events between vector and chromosomal DNA. Intravenous injection of Ad vectors either expressing a fumarylacetoacetate hydrolase (FAH) cDNA or carrying part of the FAH genomic locus resulted in liver nodules of FAH-expressing hepatocytes, demonstrating chromosomal vector integration. Analysis of junctions between vector and chromosomal DNA following heterologous recombination indicated integration of the vector genome through its termini. Heterologous recombination occurred with a median frequency of 6.72 x 10(-5) per transduced hepatocyte, while homologous recombination occurred more rarely with a median frequency of 3.88 x 10(-7). This study has established quantitative and qualitative data on recombination of adenoviral vector DNA with genomic DNA in vivo, contributing to a risk-benefit assessment of the biosafety of Ad vector-mediated gene transfer.

  2. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    PubMed

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-02-05

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.

  3. Adenovirus sequences required for replication in vivo.

    PubMed Central

    Wang, K; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occupies the first 18 to 21 bp and includes sequences conserved between all adenovirus serotypes. The adjacent auxillary region extends past nucleotide 36 but not past nucleotide 67 and contains the binding site for nuclear factor I. Images PMID:2991857

  4. The evolution of heart gene delivery vectors

    PubMed Central

    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng

    2012-01-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689

  5. In vitro transcription of adenovirus.

    PubMed Central

    Fire, A; Baker, C C; Manley, J L; Ziff, E B; Sharp, P A

    1981-01-01

    A series of recombinants of adenovirus DNA fragments and pBR322 was used to test the transcriptional activity of the nine known adenovirus promoters in a cell-free extract. Specific initiation was seen at all five early promoters as well as at the major late promotor and at the intermediate promoter for polypeptide IX. The system failed to recognize the two other adenovirus promoters, which were prominent in vivo only at intermediate and late stages in infection. Microheterogeneity of 5' termini at several adenovirus promoters, previously shown in vivo, was reproduced in the in vitro reaction and indeed appeared to result from heterogeneous initiation rather than 5' processing. To test for the presence of soluble factors involved in regulation of nRNA synthesis, the activity of extracts prepared from early and late stages of infection was compared on an assortment of viral promoter sites. Although mock and early extracts showed identical transcription patterns, extracts prepared from late stages gave 5- to 10-fold relative enhancement of the late and polypeptide IX promoters as compared with early promoters. Images PMID:7321101

  6. Treatment of collagenase-induced osteoarthritis with a viral vector encoding TSG-6 results in ectopic bone formation.

    PubMed

    Broeren, Mathijs G A; Di Ceglie, Irene; Bennink, Miranda B; van Lent, Peter L E M; van den Berg, Wim B; Koenders, Marije I; Blaney Davidson, Esmeralda N; van der Kraan, Peter M; van de Loo, Fons A J

    2018-01-01

    Tumor necrosis factor-inducible gene 6 (TSG-6) has anti-inflammatory and chondroprotective effects in mouse models of inflammatory arthritis. Because cartilage damage and inflammation are also observed in osteoarthritis (OA), we determined the effect of viral overexpression of TSG-6 in experimental osteoarthritis. Bone marrow-derived cells were differentiated to multinucleated osteoclasts in the presence of recombinant TSG-6 or after transduction with a lentiviral TSG-6 expression vector. Multi-nucleated osteoclasts were analyzed after tartrate resistant acid phosphatase staining and resorption activity was determined on dentin slices. Collagenase-induced osteoarthritis (CIOA) was induced in C57BL/6 mice after intra-articular injection of an adenoviral TSG-6 or control luciferase expression vector. Inflammation-related protease activity was measured using bioluminescent Prosense probes. After a second adenovirus injection, cartilage damage was assessed in histological sections stained with Safranin-O. Ectopic bone formation was scored in X-ray images of the affected knees. TSG-6 did not inhibit the formation of multi-nucleated osteoclasts, but caused a significant reduction in the resorption activity on dentin slices. Adenoviral TSG-6 gene therapy in CIOA could not reduce the cartilage damage compared to the luciferase control virus and no significant difference in inflammation-related protease activity was noted between the TSG-6 and control treated group. Instead, X-ray analysis and histological analysis revealed the presence of ectopic bone formation in the TSG-6 treated group. Gene therapy based on the expression of TSG-6 could not provide cartilage protection in experimental osteoarthritis, but instead resulted in increased ectopic bone formation.

  7. Cocaine Analog Coupled to Disrupted Adenovirus: A Vaccine Strategy to Evoke High-titer Immunity Against Addictive Drugs

    PubMed Central

    Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Davidson, Jesse T; Moreno, Amira Y; Janda, Kim D; Wee, Sunmee; Koob, George F; Hackett, Neil R; Kaminsky, Stephen M; Worgall, Stefan; Toth, Miklos; Mezey, Jason G; Crystal, Ronald G

    2011-01-01

    Based on the concept that anticocaine antibodies could prevent inhaled cocaine from reaching its target receptors in the brain, an effective anticocaine vaccine could help reverse cocaine addiction. Leveraging the knowledge that E1−E3− adenovirus (Ad) gene transfer vectors are potent immunogens, we have developed a novel vaccine platform for addictive drugs by covalently linking a cocaine analog to the capsid proteins of noninfectious, disrupted Ad vector. The Ad-based anticocaine vaccine evokes high-titer anticocaine antibodies in mice sufficient to completely reverse, on a persistent basis, the hyperlocomotor activity induced by intravenous administration of cocaine. PMID:21206484

  8. Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain.

    PubMed Central

    Muldoon, L. L.; Nilaver, G.; Kroll, R. A.; Pagel, M. A.; Breakefield, X. O.; Chiocca, E. A.; Davidson, B. L.; Weissleder, R.; Neuwelt, E. A.

    1995-01-01

    Delivery of adenovirus, herpes simplex virus (HSV), and paramagnetic monocrystalline iron oxide nanoparticles (MION) to rat brain (n = 64) was assessed after intracerebral inoculation or osmotic disruption of the blood-brain barrier (BBB). After intracerebral inoculation, the area of distribution was 7.93 +/- 0.43 mm2 (n = 9) for MION and 9.17 +/- 1.27 mm2 (n = 9) for replication-defective adenovirus. The replication-compromised HSV RH105 spread to 14.00 +/- 0.87 mm2 (n = 8), but also had a large necrotic center (3.54 +/- 0.47 mm2). No infection was detected when virus was administered intra-arterially without hyperosmotic mannitol. After osmotic BBB disruption, delivery of the viruses and MIONs was detected throughout the disrupted cerebral cortex. Positive staining was found in 4 to 845 cells/100 microns thick coronal brain section (n = 7) after adenovirus administration, and in 13 to 197 cells/section (n = 8) after HSV administration. Cells of glial morphology were more frequently stained after administration of adenovirus, whereas neuronal cells were preferentially stained after delivery of both HSV vectors and MION. In a preliminary test of vector delivery in the feline, MION was detected throughout the white matter tracts after inoculation into normal cat brain. Thus MION may be a tool for use in vivo, to monitor the delivery of virus to the central nervous system. Additionally, BBB disruption may be an effective method to globally deliver recombinant viruses to the CNS. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7495307

  9. Avidin-Based Targeting and Purification of a Protein IX-Modified, Metabolically Biotinylated Adenoviral Vector

    PubMed Central

    Campos, Samuel K.; Parrott, M. Brandon; Barry, Michael A.

    2014-01-01

    While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (Kd = 10−15 M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (Kd = 10−7 M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors. PMID:15194061

  10. Immunologic and Genetic Selection of Adenovirus Vaccine Strains: Synthesis and Characterization of Adenovirus Antigens.

    DTIC Science & Technology

    1984-08-01

    exhibited strikingly different chromatographic characteristics. 2. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble...antigens. The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine , an acridine dye...chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis

  11. Safety profile of a replication-deficient human adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle.

    PubMed

    Barrera, J; Brake, D A; Kamicker, B J; Purcell, C; Kaptur, R; Schieber, T; Lechtenberg, K; Miller, T D; Ettyreddy, D; Brough, D E; Butman, B T; Colby, M; Neilan, J G

    2018-04-01

    The safety of a replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was evaluated in five independent safety studies. The target animal safety studies were designed in compliance with United States (U.S.) regulatory requirements (Title 9, U.S. Code of Federal Regulation [9CFR]) and international standard guidelines (VICH Topic GL-44) for veterinary live vaccines. The first three studies were conducted in a total of 22 vaccinees and demonstrated that the AdtA24 master seed virus (MSV) was safe, did not revert to virulence and was not shed or spread from vaccinees to susceptible cattle or pigs. The fourth safety study conducted in 10 lactating cows using an AdtA24 vaccine serial showed that the vaccine was completely absent from milk. The fifth safety study was conducted under typical U.S. production field conditions in 500 healthy beef and dairy cattle using two AdtA24 vaccine serials. These results demonstrated that the vaccine was safe when used per the product label recommendations. Additional data collected during these five studies confirmed that AdtA24 vaccinees developed FMDV A24 and the HAd5 vaccine vector serum neutralization antibodies that test negative in a FMDV non-structural protein antibody test, confirming AdtA24 vaccine's capability to differentiate infected from vaccinated animals (DIVA). In conclusion, results from this comprehensive set of cattle studies demonstrated the safety of the replication-deficient AdtA24 vaccine and fulfilled safety-related requirements for U.S. regulatory requirements. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  12. Functional characterization of adenoviral/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines.

    PubMed

    Duisit, G; Salvetti, A; Moullier, P; Cosset, F L

    1999-01-20

    We have generated three different E1-deleted replication-defective adenoviral vectors expressing either Moloney murine leukemia virus (Mo-MuLV) Gag-Pol core particle proteins, gibbon ape leukemia virus (GALV) envelope glycoproteins, or an MuLV-derived retroviral vector genome encoding mCD2 antigen, a murine cell surface marker easily detectable by flow cytometry. Each of the three vectors was first characterized individually by infection of cells providing the complementary retroviral function(s) and able to induce the production of retroviral vectors with an efficiency similar to or higher than that of FLY stable retroviral packaging cells [Cosset, F.-L., Takeuchi, Y., Battini, J.-L., Weiss, R.A., and Collins, M.K.L., (1995). J. Virol. 69, 7430-7436]. In small-scale pilot experiments, TE671 cells simultaneously coinfected with the three adenoviral vectors efficiently released helper-free retroviral vectors in their supernatant, with titers greater than 10(6) infectious particles per milliliter by end-point titrations. Our results also indicated that in contrast to retroviral vector-packageable RNAs, the adenovirus-mediated overexpression of both Gag-Pol and Env packaging functions had limited impact on retroviral titers. The primary mechanism suspected is the premature intracellular cleavage of the Pr65gag precursor that we found in gag-pol-expressing cells, which in turn may impair the normal incorporation of high loads of functional Env. Last, the characterization of the adenoviral/retroviral chimeric vectors allowed the screening of various primate cells for retroviral production and we found that three hepatocyte-derived cell lines were highly efficient in the assembly and release of infectious retroviral particles.

  13. Joint capsule treatment with enkephalin-encoding HSV-1 recombinant vector reduces inflammatory damage and behavioural sequelae in rat CFA monoarthritis.

    PubMed

    Lu, Ying; McNearney, Terry A; Wilson, Steven P; Yeomans, David C; Westlund, Karin N

    2008-03-01

    This study assessed enkephalin expression induced by intra-articular application of recombinant, enkephalin-encoding herpes virus (HSV-1) and the impact of expression on nociceptive behaviours and synovial lining inflammation in arthritic rats. Replication-conditional HSV-1 recombinant vectors with cDNA encoding preproenkephalin (HSV-ENK), or control transgene beta-galactosidase cDNA (HSV-beta-gal; control) were injected into knee joints with complete Freund's adjuvant (CFA). Joint temperatures, circumferences and nociceptive behaviours were monitored on days 0, 7, 14 and 21 post CFA and vector treatments. Lumbar (L4-6) dorsal root ganglia (DRG) and spinal cords were immunostained for met-enkephalin (met-ENK), beta-gal, HSV-1 proteins and Fos. Joint tissues were immunostained for met-ENK, HSV-1 proteins, and inflammatory mediators Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) and cyclo-oxygenase-2, or stained with haematoxylin and eosin for histopathology. Compared to exuberant synovial hypertrophy and inflammatory cell infiltration seen in arthritic rats treated with CFA only or CFA and HSV-beta-gal, the CFA- and HSV-ENK-treated arthritic rats had: (i) striking preservation of synovial membrane cytoarchitecture with minimal inflammatory cell infiltrates; (ii) significantly improved nociceptive behavioural responses to mechanical and thermal stimuli; (iii) normalized Fos staining in lumbar dorsal horn; and (iv) significantly increased met-ENK staining in ipsilateral synovial tissue, lumbar DRG and spinal cord. The HSV-1 and transgene product expression were confined to ipsilateral lumbar DRG (HSV-1, met-ENK, beta-gal). Only transgene product (met-ENK and beta-gal) was seen in lumbar spinal cord sections. Targeted delivery of enkephalin-encoding HSV-1 vector generated safe, sustained opioid-induced analgesia with protective anti-inflammatory blunting in rat inflammatory arthritis.

  14. Treatment of yellow fever virus with an adenovirus-vectored interferon, DEF201, in a hamster model.

    PubMed

    Julander, Justin G; Ennis, Jane; Turner, Jeffrey; Morrey, John D

    2011-05-01

    Interferon (IFN) is an innate immune response protein that is involved in the antiviral response during viral infection. Treatment of acute viral infections with exogenous interferon may be effective but is generally not feasible for clinical use due to many factors, including cost, stability, and availability. To overcome these limitations, an adenovirus type 5-vectored consensus alpha IFN, termed DEF201, was constructed as a potential way to deliver sustained therapeutic levels of systemic IFN. To demonstrate the efficacy of DEF201 against acute flaviviral disease, various concentrations of the construct were administered as a single intranasal dose prior to virus infection, which resulted in a dose-responsive, protective effect in a hamster model of yellow fever virus (YFV) disease. A DEF201 dose of 5×10(7) PFU/animal administered intranasally just prior to YFV challenge protected 100% of the animals, while a 10-fold lower DEF201 dose exhibited lower, although significant, levels of protection. Virus titers in the liver and serum and levels of serum alanine aminotransferase were all significantly reduced as a result of DEF201 administration at all doses tested. No toxicity, as indicated by weight loss or gross morbidity, was observed in non-YFV-infected animals treated with DEF201. Protection of YFV-infected animals was observed when DEF201 was delivered as early as 7 days prior to virus challenge and as late as 2 days after virus challenge, demonstrating effective prophylaxis and therapy in a hamster model of disease. Overall, it appears that DEF201 is effective in the treatment of YFV in a hamster model.

  15. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    PubMed Central

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  16. The evolution of heart gene delivery vectors.

    PubMed

    Wasala, Nalinda B; Shin, Jin-Hong; Duan, Dongsheng

    2011-10-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. Copyright © 2011 John Wiley & Sons, Ltd.

  17. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    PubMed

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  18. A Novel Adenovirus in Chinstrap Penguins (Pygoscelis antarctica) in Antarctica

    PubMed Central

    Lee, Sook-Young; Kim, Jeong-Hoon; Park, Yon Mi; Shin, Ok Sarah; Kim, Hankyeom; Choi, Han-Gu; Song, Jin-Won

    2014-01-01

    Adenoviruses (family Adenoviridae) infect various organ systems and cause diseases in a wide range of host species. In this study, we examined multiple tissues from Chinstrap penguins (Pygoscelis antarctica), collected in Antarctica during 2009 and 2010, for the presence of novel adenoviruses by PCR. Analysis of a 855-bp region of the hexon gene of a newly identified adenovirus, designated Chinstrap penguin adenovirus 1 (CSPAdV-1), showed nucleotide (amino acid) sequence identity of 71.8% (65.5%) with South Polar skua 1 (SPSAdV-1), 71% (70%) with raptor adenovirus 1 (RAdV-1), 71.4% (67.6%) with turkey adenovirus 3 (TAdV-3) and 61% (61.6%) with frog adenovirus 1 (FrAdV-1). Based on the genetic and phylogenetic analyses, CSPAdV-1 was classified as a member of the genus, Siadenovirus. Virus isolation attempts from kidney homogenates in the MDTC-RP19 (ATCC® CRL-8135™) cell line were unsuccessful. In conclusion, this study provides the first evidence of new adenovirus species in Antarctic penguins. PMID:24811321

  19. Dry-Coated Live Viral Vector Vaccines Delivered by Nanopatch Microprojections Retain Long-Term Thermostability and Induce Transgene-Specific T Cell Responses in Mice

    PubMed Central

    Pearson, Frances E.; McNeilly, Celia L.; Crichton, Michael L.; Primiero, Clare A.; Yukiko, Sally R.; Fernando, Germain J. P.; Chen, Xianfeng; Gilbert, Sarah C.; Hill, Adrian V. S.; Kendall, Mark A. F.

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara – two vectors under evaluation for the delivery of malaria antigens to humans – were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates. PMID:23874462

  20. Full genome sequence analysis of a novel adenovirus of rhesus macaque origin indicates a new simian adenovirus type and species.

    PubMed

    Malouli, Daniel; Howell, Grant L; Legasse, Alfred W; Kahl, Christoph; Axthelm, Michael K; Hansen, Scott G; Früh, Klaus

    2014-09-01

    Multiple novel simian adenoviruses have been isolated over the past years and their potential to cross the species barrier and infect the human population is an ever present threat. Here we describe the isolation and full genome sequencing of a novel simian adenovirus (SAdV) isolated from the urine of two independent, never co-housed, late stage simian immunodeficiency virus (SIV)-infected rhesus macaques. The viral genome sequences revealed a novel type with a unique genome length, GC content, E3 region and DNA polymerase amino acid sequence that is sufficiently distinct from all currently known human- or simian adenovirus species to warrant classifying these isolates as a novel species of simian adenovirus. This new species, termed Simian mastadenovirus D (SAdV-D), displays the standard genome organization for the genus Mastadenovirus containing only one copy of the fiber gene which sets it apart from the old world monkey adenovirus species HAdV-G, SAdV-B and SAdV-C.

  1. Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome

    PubMed Central

    Avgousti, Daphne C.; Della Fera, Ashley N.; Otter, Clayton J.; Herrmann, Christin; Pancholi, Neha J.

    2017-01-01

    ABSTRACT Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier to successful infection. The adenovirus genome is packaged with protein VII, a virally encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by the cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to abrogate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin. IMPORTANCE The DNA damage response (DDR) is a cellular network that is crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that

  2. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure representsmore » a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.« less

  3. Adenoviral vector gene delivery via the round window membrane in guinea pigs.

    PubMed

    Suzuki, Mitsuya; Yamasoba, Tatsuya; Suzukawa, Keigo; Kaga, Kimitaka

    2003-10-27

    We have found that damage from a local anesthetic solution containing phenol permitted beta-galactosidase (beta-gal) gene delivery to the guinea pig inner ear via the round window membrane (RWM). RWM damage was evident as degeneration of the outer epithelium. After adenovirus lacZ vector was applied to the damaged RWM, immunohistochemistry showed strong beta-gal expression in the RWM, mesothelial cells, organ of Corti, spiral limbus, spiral ligament and spiral ganglion. In the vestibular labyrinth, expression was seen in the sensory and supporting cells, transitional cells, and the dark-cell area. Thus, adenovirus can transfect a variety of inner ear cells in the guinea pig through a damaged RWM.

  4. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  5. Pre-existing immunity against vaccine vectors – friend or foe?

    PubMed Central

    Saxena, Manvendra; Van, Thi Thu Hao; Baird, Fiona J.; Coloe, Peter J.

    2013-01-01

    Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses. PMID:23175507

  6. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate.

    PubMed

    Shen, Chun Fang; Jacob, Danielle; Zhu, Tao; Bernier, Alice; Shao, Zhongqi; Yu, Xuefeng; Patel, Mehul; Lanthier, Stephane; Kamen, Amine

    2016-06-17

    Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials. Crown Copyright © 2016. Published by Elsevier Ltd. All rights

  7. [The preparation of recombinant adenovirus Ad-Rad50-GFP and detection of the optimal multiplicity of infection in CNE1 transfected hv Ad-Rad50-GFP].

    PubMed

    Yan, Ruicheng; Huang, Jiancong; Zhu, Ling; Chang, Lihong; Li, Jingjia; Wu, Xifu; Ye, Jin; Zhang, Gehua

    2015-12-01

    The optimal multiplicity of infection (MOI) of the recombinant adenovirus Ad-Rad50-GFP carrying a mutant Rad50 gene expression region on the cell growth of nasopharyngeal carcinoma and the viral amplification efficiency of CNE1 cell infected by this adenovirus were studied. The biological titer of Ad-Rad50-GFP was measured by end point dilution method. The impact of recombinant adenoviral vector transfection on the growth of CNE1 cells was observed by cell growth curve. Transfection efficacy of recombinant adenoviral vector was observed and calculated through fluorescence microscope. The expression f mutant Rad50 in the Ad-Rad50-GFP transfected CNE1 cells with optimal MOI was detected by Western Blot after transfection. The biological titer of Ad-Rad50-GFP was 1.26 x 10¹¹ pfu/ml. CNE1 cell growth was not influenced significantly as they were transfected by recombinant adenoviral vector with MOI less than 50. Transfection efficacy of recombinant adenoviral vector was most salient at 24 hours after transfection, with the high expression of mutant Rad50, and the efficiency still remained about 70% after 72 hours. Recombinant adenoviral vector Ad-Rad50-GFP could transfect CNE1 cells as well as result in the expression of mutant Rad50 in CNE1 cells effectively. MOI = 50 was the optimal multiplicity of infection of CNE1 cells transfected by recombinant adenoviral vector Ad-Rad50-GFP.

  8. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias

    PubMed Central

    Scala, Stefania; Portella, Giuseppe; Fedele, Monica; Chiappetta, Gennaro; Fusco, Alfredo

    2000-01-01

    High mobility group I (HMGI) proteins are overexpressed in several human malignant tumors. We previously demonstrated that inhibition of HMGI synthesis prevents thyroid cell transformation. Here, we report that an adenovirus carrying the HMGI(Y) gene in an antisense orientation (Ad-Yas) induced programmed cell death of two human thyroid anaplastic carcinoma cell lines (ARO and FB-1), but not normal thyroid cells. The Ad-Yas virus led to death of lung, colon, and breast carcinoma cells. A control adenovirus carrying the lacZ gene did not inhibit the growth of either normal or neoplastic cells. Ad-Yas treatment of tumors induced in athymic mice by ARO cells caused a drastic reduction in tumor size. Therefore, suppression of HMGI(Y) protein synthesis by an HMGI(Y) antisense adenoviral vector may be a useful treatment strategy in a variety of human malignant neoplasias, in which HMGI(Y) gene overexpression is a general event. PMID:10759549

  9. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    USDA-ARS?s Scientific Manuscript database

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  10. An oncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling.

    PubMed

    Toth, Karoly; Djeha, Hakim; Ying, Baoling; Tollefson, Ann E; Kuppuswamy, Mohan; Doronin, Konstantin; Krajcsi, Peter; Lipinski, Kai; Wrighton, Christopher J; Wold, William S M

    2004-05-15

    We have constructed a novel oncolytic adenovirus (Ad) vector named VRX-009 that combines enhanced cell spread with tumor-specific replication. Enhanced spread, which could significantly increase antitumor efficacy, is mediated by overexpression of the Ad cytolytic protein named ADP (also known as E3-11.6K). Replication of VRX-009 is restricted to cells with a deregulated wnt signal transduction pathway by replacement of the wild-type Ad E4 promoter with a synthetic promoter consisting of five consensus binding sites for the T-cell factor transcription factor. Tumor-selective replication is indicated by several lines of evidence. VRX-009 expresses E4ORF3, a representative Ad E4 protein, only in colon cancer cell lines. Furthermore, VRX-009 replicates preferentially in colon cancer cell lines as evidenced by virus productivity 2 orders of magnitude higher in SW480 colon cancer cells than in A549 lung cancer cells. Replication in primary human bronchial epithelial cells and human umbilical vein endothelial cells was also significantly lower than in SW480 cells. When tested in human tumor xenografts in nude mice, VRX-009 effectively suppressed the growth of SW480 colon tumors but not of A549 lung tumors. VRX-009 may provide greater level of antitumor efficacy than standard oncolytic Ad vectors in tumors in which a defect in wnt signaling increases the level of nuclear beta-catenin.

  11. Characteristics of Minimally Oversized Adeno-Associated Virus Vectors Encoding Human Factor VIII Generated Using Producer Cell Lines and Triple Transfection.

    PubMed

    Nambiar, Bindu; Cornell Sookdeo, Cathleen; Berthelette, Patricia; Jackson, Robert; Piraino, Susan; Burnham, Brenda; Nass, Shelley; Souza, David; O'Riordan, Catherine R; Vincent, Karen A; Cheng, Seng H; Armentano, Donna; Kyostio-Moore, Sirkka

    2017-02-01

    Several ongoing clinical studies are evaluating recombinant adeno-associated virus (rAAV) vectors as gene delivery vehicles for a variety of diseases. However, the production of vectors with genomes >4.7 kb is challenging, with vector preparations frequently containing truncated genomes. To determine whether the generation of oversized rAAVs can be improved using a producer cell-line (PCL) process, HeLaS3-cell lines harboring either a 5.1 or 5.4 kb rAAV vector genome encoding codon-optimized cDNA for human B-domain deleted Factor VIII (FVIII) were isolated. High-producing "masterwells" (MWs), defined as producing >50,000 vg/cell, were identified for each oversized vector. These MWs provided stable vector production for >20 passages. The quality and potency of the AAVrh8R/FVIII-5.1 and AAVrh8R/FVIII-5.4 vectors generated by the PCL method were then compared to those prepared via transient transfection (TXN). Southern and dot blot analyses demonstrated that both production methods resulted in packaging of heterogeneously sized genomes. However, the PCL-derived rAAV vector preparations contained some genomes >4.7 kb, whereas the majority of genomes generated by the TXN method were ≤4.7 kb. The PCL process reduced packaging of non-vector DNA for both the AAVrh8R/FVIII-5.1 and the AAVrh8R/FVIII-5.4 kb vector preparations. Furthermore, more DNA-containing viral particles were obtained for the AAVrh8R/FVIII-5.1 vector. In a mouse model of hemophilia A, animals administered a PCL-derived rAAV vector exhibited twofold higher plasma FVIII activity and increased levels of vector genomes in the liver than mice treated with vector produced via TXN did. Hence, the quality of oversized vectors prepared using the PCL method is greater than that of vectors generated using the TXN process, and importantly this improvement translates to enhanced performance in vivo.

  12. Adenovirus-mediated gene transfer of pathogen-associated molecular patterns for cancer immunotherapy.

    PubMed

    Tosch, C; Geist, M; Ledoux, C; Ziller-Remi, C; Paul, S; Erbs, P; Corvaia, N; Von Hoegen, P; Balloul, J-M; Haegel, H

    2009-04-01

    The delivery of stimulatory signals to dendritic cells (DCs) in the tumor microenvironment could be an effective means to break tumor-induced tolerance. The work presented here evaluates the immunostimulatory properties of pathogen-associated molecular patterns (PAMPs), microbial molecules which bind Toll-like receptors and deliver activating signals to immune cells, when expressed in tumor cells using adenoviral (Ad) vectors. In vitro, transduction of A549 tumor cells with Ad vectors expressing either flagellin from Listeria monocytogenes or P40 protein from Klebsiella pneumoniae induced the maturation of human monocyte-derived DCs in co-cultures. In mixed lymphocyte reactions (MLRs), Ad-flagellin and Ad-P40 transduction of tumor cells stimulated lymphocyte proliferation and the secretion of IFN-gamma. In vivo, these vectors were used either as stand-alone immunoadjuvants injected intratumorally or as vaccine adjuvants combined with a tumor antigen-expressing vector. When Ad-PAMPs were administered intratumorally to mice bearing subcutaneous syngeneic B16F0-CAR (cocksackie-adenovirus receptor) melanomas, tumor progression was transiently inhibited by Ad-P40. In a therapeutic vaccine setting, the combination of Ad-MUC1 and Ad-PAMP vectors injected subcutaneously delayed the growth of implanted RenCa-MUC1 tumors and improved tumor rejection when compared with vaccination with Ad-MUC1 alone. These results suggest that Ad-PAMPs could be effective immunoadjuvants for cancer immunotherapy.

  13. Characterization of a new adenovirus isolated from black-tailed deer in California.

    PubMed

    Lehmkuhl, H D; Hobbs, L A; Woods, L W

    2001-01-01

    An adenovirus associated with systemic and localized vascular damage was demonstrated by transmission electron microscopy and immunohistochemistry in a newly recognized epizootic hemorrhagic disease in California black-tailed deer. In this study, we describe the cultural, physicochemical and serological characteristics of a virus isolated from lung using neonatal white-tail deer lung and turbinate cell cultures. The virus had the cultural, morphological and physicochemical characteristics of members of the Adenoviridae family. The virus would not replicate in low passage fetal bovine, caprine or ovine cells. Antiserum to the deer adenovirus, strain D94-2569, neutralized bovine adenovirus type-6 (BAdV-6), BAdV-7, and caprine adenovirus type-1 (GAdV-1). Antiserum to BAdV-6 did not neutralize the deer adenovirus but antiserum to BAdV-7 and GAdV-1 neutralized the deer adenovirus. Cross-neutralization with the other bovine, caprine and ovine adenovirus species was not observed. Restriction endonuclease patterns generated for the deer adenovirus were unique compared to those for the currently recognized bovine, caprine and ovine adenovirus types. Amino acid sequence alignments of the hexon gene from the deer adenovirus strain D94-2569 indicate that it is a member of the proposed new genus (Atadenovirus) of the Adenoviridae family. While closely related antigenically to BAdV-7 and GAdV-1, the deer adenovirus appears sufficiently distinct culturally and molecularly to justify consideration as a new adenovirus type.

  14. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  15. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  16. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  17. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  18. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus...

  19. Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells

    PubMed Central

    Lam, Yun W.; Evans, Vanessa C.; Heesom, Kate J.; Lamond, Angus I.; Matthews, David A.

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined. PMID:19812395

  20. Proteomics analysis of the nucleolus in adenovirus-infected cells.

    PubMed

    Lam, Yun W; Evans, Vanessa C; Heesom, Kate J; Lamond, Angus I; Matthews, David A

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined.

  1. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis.

    PubMed

    Xing, Zhou; McFarland, Christine T; Sallenave, Jean-Michel; Izzo, Angelo; Wang, Jun; McMurray, David N

    2009-06-10

    Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n), AdAg85A intramuscularly (i.m), BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb). At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.

  2. Histone deacetylase inhibition rescues gene knockout levels achieved with integrase-defective lentiviral vectors encoding zinc-finger nucleases.

    PubMed

    Pelascini, Laetitia P L; Maggio, Ignazio; Liu, Jin; Holkers, Maarten; Cathomen, Toni; Gonçalves, Manuel A F V

    2013-12-01

    Zinc-finger nucleases (ZFNs) work as dimers to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. In doing so, they constitute powerful triggers to edit and to interrogate the function of genomic sequences in higher eukaryotes. A preferred route to introduce ZFNs into somatic cells relies on their cotransduction with two integrase-defective lentiviral vectors (IDLVs) each encoding a monomer of a functional heterodimeric pair. The episomal nature of IDLVs diminishes the risk of genotoxicity and ensures the strict transient expression profile necessary to minimize deleterious effects associated with long-term ZFN activity. However, by deploying IDLVs and conventional lentiviral vectors encoding HPRT1- or eGFP-specific ZFNs, we report that DSB formation at target alleles is limited after IDLV-mediated ZFN transfer. This IDLV-specific underperformance stems, to a great extent, from the activity of chromatin-remodeling histone deacetylases (HDACs). Importantly, the prototypic and U.S. Food and Drug Administration-approved inhibitors of metal-dependent HDACs, trichostatin A and vorinostat, respectively, did not hinder illegitimate recombination-mediated repair of targeted chromosomal DSBs. This allowed rescuing IDLV-mediated site-directed mutagenesis to levels approaching those achieved by using their isogenic chromosomally integrating counterparts. Hence, HDAC inhibition constitutes an efficacious expedient to incorporate in genome-editing strategies based on transient IDLV-mediated ZFN expression. Finally, we compared two of the most commonly used readout systems to measure targeted gene knockout activities based on restriction and mismatch-sensitive endonucleases. These experiments indicate that these enzymatic assays display a similar performance.

  3. Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands.

    PubMed

    O'Connell, B C; Xu, T; Walsh, T J; Sein, T; Mastrangeli, A; Crystal, R G; Oppenheim, F G; Baum, B J

    1996-12-01

    Mucosal candidiasis, the most common opportunistic fungal infection in human immunodeficiency virus (HIV)-infected patients, is an early sign of clinically overt acquired immunodeficiency syndrome (AIDS) and an important cause of morbidity, particularly in HIV-infected children. The appearance of azole-resistant strains of Candida albicans had made clinical management of candidiasis increasingly difficult. We propose a novel approach to the management of candidal infections that involves the use of naturally occurring antifungal proteins, such as the histatins. Histatins are a family of small proteins that are secreted in human saliva. We have constructed recombinant adenovirus vectors that contain the histatin 3 cDNA. These vectors are capable of directing the expression of histatin 3 in the saliva of rats at up to 1,045 micrograms/ml, well above the levels found in normal human saliva. The adenovirus-directed histatin demonstrated a 90% candidacidal effect in the timed-kill assay against both fluconazole-susceptible and fluconazole-resistant strains of C. albicans and inhibited germination by 45% in the same strains. These studies suggest that a gene transfer approach to overexpress naturally occurring antifungal proteins may be useful in the management of mucosal candidiasis.

  4. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?.

    PubMed

    Fausther-Bovendo, Hugues; Kobinger, Gary P

    2014-01-01

    Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.

  5. Vasculature-Specific Adenovirus Vectors for Gene Therapy of Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    reporter gene. To this end, a recombinant replication-deficient retrovirus vector containing an open reading frame of Renilla luciferase (hRLuc...dual-mode reporter gene ( Renilla luciferase and green fluorescent protein) has been designed and produced in a pan- tropic configuration. • Dual

  6. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain.

    PubMed Central

    Stevenson, S C; Rollence, M; White, B; Weaver, L; McClelland, A

    1995-01-01

    head domain with novel ligands may permit adenovirus vectors with new receptor specificities which could be useful for targeted gene delivery in vivo to be engineered. PMID:7707507

  7. Immunogenicity and efficacy in mice of an adenovirus-based bicistronic rotavirus vaccine expressing NSP4 and VP7.

    PubMed

    Xie, Li; Yan, Min; Wang, Xiaonan; Ye, Jing; Mi, Kai; Yan, Shanshan; Niu, Xianglian; Li, Hongjun; Sun, Maosheng

    2015-12-02

    NSP4 and VP7 are important functional proteins of rotavirus. Proper combination of viral gene expression is favorable to improving the protection effect of subunit vaccine. In the present study, We evaluated the immunogenicity and efficacy of the bicistronic recombinant adenovirus (rAd-NSP4-VP7) and two single-gene expressing adenoviruses (rAd-NSP4, rAd-VP7). The three adenovirus vaccines were used to immunize mice by intramuscular or intranasal administration. The data showed significant increases in serum antibodies, T lymphocyte subpopulations proliferation, and cytokine secretions of splenocyte in all immunized groups. However, the serum IgA and neutralizing antibody levels of the rAd-NSP4-VP7 or rAd-VP7 groups were significantly higher than those of the rAd-NSP4, while the splenocyte numbers of IFN-γ secretion in the rAd-NSP4-VP7 or rAd-NSP4 groups was greater than that of the rAd-VP7. Furthermore, the efficacy evaluation in a suckling mice model indicated that only rAd-NSP4-VP7 conferred significant protection against rotavirus shedding challenge. These results suggest that the co-expression of NSP4 and VP7 in an adenovirus vector induce both humoral and cell-mediated immune responses efficiently, and provide potential efficacy for protection against rotavirus disease. It is possible to represent an efficacious subunits vaccine strategy for control of rotavirus infection and transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Selective Modification of Adenovirus Replication Can Be Achieved through Rational Mutagenesis of the Adenovirus Type 5 DNA Polymerase

    PubMed Central

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek

    2012-01-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates. PMID:22811532

  9. Germline incorporation of a replication-defective adenoviral vector in mice does not alter immune responses to adenoviral vectors.

    PubMed

    Camargo, F D; Huey-Louie, D A; Finn, A V; Sassani, A B; Cozen, A E; Moriwaki, H; Schneider, D B; Agah, R; Dichek, D A

    2000-11-01

    The utility of adenoviral vectors is limited by immune responses to adenoviral antigens. We sought to develop immune-competent mice in which the immune response to adenoviral antigens was selectively absent. To do so, we generated mice that were transgenic for a replication-defective vector. Adenoviral antigens might be seen as self-antigens by these mice, and the mice could exhibit immunologic tolerance after postnatal exposure to adenoviral vectors. In addition, characterization of these mice could reveal potential consequences of germline transmission of an adenoviral vector, as might occur in a gene therapy trial. Injection of a "null" (not containing a transgene) E1, E3-deleted vector genome into mouse zygotes yielded five founders that were capable of transmitting the vector genome. Among offspring of these mice, transgenic pups were significantly underrepresented: 108 of 255 pups (42%) were transgenic (P<0.02 versus expected frequency of 50%). Postnatal transgenic mice, however, had no apparent abnormalities. Persistence of an adenoviral vector after intravenous injection was equivalent in livers of transgenic mice and their nontransgenic littermates. Transgenic and nontransgenic mice also had equivalent humoral and cellular immune responses to adenoviral vector injection. Mice that are transgenic for an E1, E3-deleted adenoviral genome can be easily generated; however, they are not tolerant of adenovirus. Moreover, germline transmission of an adenoviral vector genome does not prevent generation of a robust immune response after exposure to adenoviral antigens.

  10. Adenovirus vector covalently conjugated to polyethylene glycol with a cancer-specific promoter suppresses the tumor growth through systemic administration.

    PubMed

    Yao, Xinglei; Yoshioka, Yasuo; Morishige, Tomohiro; Eto, Yusuke; Narimatsu, Shogo; Mizuguchi, Hiroyuki; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku

    2010-01-01

    Cancer gene therapy with adenovirus vectors (Adv) is limited to local administration because systemic administration of Adv produces a weak therapeutic effect and severe side effects. Previously, we generated a dual cancer-specific Adv system by using Adv covalently conjugated to polyethylene glycol (PEG) for transductional targeting and the telomere reverse transcriptase (TERT) promoter as a cancer-specific promoter for transcriptional targeting (PEG-Ad-TERT). We demonstrated that systemic administration of PEG-Ad-TERT showed superior antitumor effects against lung metastatic cancer with negligible side effects. Here, we investigated the therapeutic efficacy of systemic administration of PEG-Ad-TERT for the treatment of primary tumors. We first evaluated the transgene expression of PEG-Ad-TERT containing the luciferase gene (PEG-Ad-TERT/Luc) in primary tumors. Systemic administration of PEG-Ad-TERT/Luc resulted high transgene expression, similar to that observed in tumors for the conventional cytomegalovirus (CMV) promoter-driven Adv containing the luciferase gene (Ad-CMV/Luc). By comparison, transgene expression was 2500-fold lower than that of Ad-CMV/Luc in liver. We then examined the therapeutic effect of systemic administration of PEG-Ad-TERT containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk) for the treatment of primary tumors. We showed that PEG-Ad-TERT/HSVtk produced a notable antitumor effect against primary tumors with negligible side effects. These results demonstrated that PEG-Ad-TERT can be regarded as a prototype Adv with suitable efficacy and safety for systemic cancer gene therapy against both metastatic and primary tumors.

  11. Adenovirus-vectored shRNAs targeted to the highly conserved regions of VP1 and 2B in tandem inhibits replication of foot-and-mouth disease virus both in vitro and in vivo.

    PubMed

    Xu, Yan-Fang; Shen, Hai-Yan; Zhao, Ming-Qiu; Chen, Li-Jun; Li, Yin-Guang; Liao, Ming; Jia, Jun-Tao; Lv, Ying-Ran; Yi, Lin; Chen, Jin-Ding

    2012-04-01

    Foot-and-mouth disease is a highly contagious and economically important disease of cloven-hoofed animals. RNA interference (RNAi) can be used as a rapid and specific antiviral approach. It was shown that treatment with recombinant adenovirus (Ad(VP1-2B)) carrying shRNAs targeted to the VP1 and 2B genes of FMDV expressed in tandem had marked antiviral effects against FMDV both in IBRS-2 cells and guinea pigs. Treatment with Ad(VP1-2B) both before and after FMDV infection was most effective in IBRS-2 cells, as the FMDV RNA transcripts could not be detected within 48 h post-challenge (hpc), and the viral RNA copy number at 72 hpc was only 0.02% of that in the positive control group. Delivery of Ad(VP1-2B) reduced significantly the susceptibility of guinea pigs to FMDV infection. All guinea pigs were protected within 3 days post challenge (dpc) when they were injected twice with the same dose of Ad(VP1-2B), and a third treatment with the same dose of Ad(VP1-2B) at 3 dpc was necessary to confer longer lasting protection (up to 6 dpc). In conclusion, application of such a adenovirus vector to inhibit more than one viral gene may be an advantageous method for prevention and therapy of FMDV infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. History of the restoration of adenovirus type 4 and type 7 vaccine, live oral (Adenovirus Vaccine) in the context of the Department of Defense acquisition system.

    PubMed

    Hoke, Charles H; Snyder, Clifford E

    2013-03-15

    Respiratory pathogens cause morbidity and mortality in US military basic trainees. Following the influenza pandemic of 1918, and stimulated by WWII, the need to protect military personnel against epidemic respiratory disease was evident. Over several decades, the US military elucidated etiologies of acute respiratory diseases and invented and deployed vaccines to prevent disease caused by influenza, meningococcus, and adenoviruses. In 1994, the Adenovirus Vaccine manufacturer stopped its production. By 1999, supplies were exhausted and adenovirus-associated disease, especially serotype 4-associated febrile respiratory illness, returned to basic training installations. Advisory bodies persuaded Department of Defense leaders to initiate restoration of Adenovirus Vaccine. In 2011, after 10 years of effort by government and contractor personnel and at a cost of about $100 million, the Adenovirus Vaccine was restored to use at all military basic training installations. Disease and adenovirus serotype 4 isolation rates have fallen dramatically since vaccinations resumed in October 2011 and remain very low. Mindful of the adage that "The more successful a vaccine is, the more quickly the need for it will be forgotten.", sustainment of the supply of the Adenovirus Vaccine may be a challenge, and careful management will be required for such sustainment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Immunogenicity of adenovirus vaccines expressing the PCV2 capsid protein in pigs.

    PubMed

    Li, Delong; Du, Qian; Wu, Bin; Li, Juejun; Chang, Lingling; Zhao, Xiaomin; Huang, Yong; Tong, Dewen

    2017-08-24

    Porcine circovirus type 2 (PCV2) is the main pathogen of porcine circovirus associated disease (PCVAD), causing great economic losses in pig industry. In previous study, we constructed adenovirus vector vaccines expressing PCV2 Cap either modified with Intron A and WPRE, or CD40L and GMCSF, and evaluated all of these vaccines in mice and in pigs. Although Ad-A-C-W and Ad-CD40L-Cap-GMCSF could induce stronger immune responses than Ad-Cap, neither of them was better than commercial inactivated vaccine PCV2 SH-strain. In this study, secretory recombinant adenoviruses (Ad-A-spCap-W and Ad-A-spCD40L-spCap-spGMCSF-W) and non-secretory recombinant adenovirus Ad-A-CD40L-Cap-GMCSF-W were constructed, and identified by western blot and confocal laser microscope observation. The results of ELISA and VN showed that humoral immune responses induced by Ad-A-spCap-W and Ad-A-CD40L-Cap-GMCSF-W were not significantly different from SH-strain, but Ad-A-spCD40L-spCap-spGMCSF-W could induce significantly higher humoral immune response than SH-strain. Lymphocytes proliferative and cytokines releasing levels of Ad-A-spCap-W and Ad-A-CD40L-Cap-GMCSF-W were not significantly different from SH-strain, but Ad-A-spCD40L-spCap-spGMCSF-W was significantly higher than SH-strain. PCV2-challenge experiment showed that virus loads were significantly reduced in Ad-A-spCD40L-spCap-spGMCSF-W vaccinated group, and no obviously clinical and microscopic lesions were observed in Ad-A-spCD40L-spCap-spGMCSF-W vaccinated group. Altogether, these results demonstrate that recombinant adenovirus vaccine Ad-A-spCD40L-spCap-spGMCSF-W induces stronger immune responses and provides better protection than commercial inactivated vaccine PCV2 SH-strain, and suggest that Ad-A-spCD40L-spCap-spGMCSF-W could be a potential vaccine candidate against PCVAD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pancreatic Transduction by Helper-Dependent Adenoviral Vectors via Intraductal Delivery

    PubMed Central

    Morró, Meritxell; Teichenne, Joan; Jimenez, Veronica; Kratzer, Ramona; Marletta, Serena; Maggioni, Luca; Mallol, Cristina; Ruberte, Jesus; Kochanek, Stefan; Bosch, Fatima

    2014-01-01

    Abstract Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue. PMID:25046147

  15. Detection of Bovine and Porcine Adenoviruses for Tracing the Source of Fecal Contamination

    PubMed Central

    Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina

    2004-01-01

    In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies. PMID:15006765

  16. Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination.

    PubMed

    Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina

    2004-03-01

    In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies.

  17. Phylogenetic Analyses of Novel Squamate Adenovirus Sequences in Wild-Caught Anolis Lizards

    PubMed Central

    Ascher, Jill M.; Geneva, Anthony J.; Ng, Julienne; Wyatt, Jeffrey D.; Glor, Richard E.

    2013-01-01

    Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity. PMID:23593364

  18. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy.

    PubMed

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L

    2016-01-01

    Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. Copyright © 2015. Published by Elsevier Inc.

  19. Avian Influenza Vaccination in Chickens and Pigs with Replication-Competent Adenovirus–Free Human Recombinant Adenovirus 5

    PubMed Central

    Toro, Haroldo; van Ginkel, Frederik W.; Tang, De-chu C.; Schemera, Bettina; Rodning, Soren; Newton, Joseph

    2010-01-01

    SUMMARY Protective immunity to avian influenza (AI) virus can be elicited in chickens by in ovo or intramuscular vaccination with replication-competent adenovirus (RCA)-free human recombinant adenovirus serotype 5 (Ad5) encoding AI virus H5 (AdTW68.H5) or H7 (AdCN94.H7) hemagglutinins. We evaluated bivalent in ovo vaccination with AdTW68.H5 and AdCN94.H7 and determined that vaccinated chickens developed robust hemagglutination inhibition (HI) antibody levels to both H5 and H7 AI strains. Additionally, we evaluated immune responses of 1-day-old chickens vaccinated via spray with AdCN94.H7. These birds showed increased immunoglobulin A responses in lachrymal fluids and increased interleukin-6 expression in Harderian gland–derived lymphocytes. However, specific HI antibodies were not detected in the sera of these birds. Because pigs might play a role as a “mixing vessel” for the generation of pandemic influenza viruses we explored the use of RCA-free adenovirus technology to immunize pigs against AI virus. Weanling piglets vaccinated intramuscularly with a single dose of RCA-free AdTW68.H5 developed strong systemic antibody responses 3 wk postvaccination. Intranasal application of AdTW68.H5 in piglets resulted in reduced vaccine coverage, i.e., 33% of pigs (2/6) developed an antibody response, but serum antibody levels in those successfully immunized animals were similar to intramuscularly vaccinated animals. PMID:20521636

  20. Determination of the transforming activities of adenovirus oncogenes.

    PubMed

    Nevels, Michael; Dobner, Thomas

    2007-01-01

    The last 50 yr of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells and athymic nude mice.

  1. Determination of the transforming activities of adenovirus oncogenes.

    PubMed

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  2. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    PubMed

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-05

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. Published by Elsevier Ltd.

  3. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    PubMed

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M

  4. Vector adaptive predictive coder for speech and audio

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey (Inventor); Gersho, Allen (Inventor)

    1990-01-01

    A real-time vector adaptive predictive coder which approximates each vector of K speech samples by using each of M fixed vectors in a first codebook to excite a time-varying synthesis filter and picking the vector that minimizes distortion. Predictive analysis for each frame determines parameters used for computing from vectors in the first codebook zero-state response vectors that are stored at the same address (index) in a second codebook. Encoding of input speech vectors s.sub.n is then carried out using the second codebook. When the vector that minimizes distortion is found, its index is transmitted to a decoder which has a codebook identical to the first codebook of the decoder. There the index is used to read out a vector that is used to synthesize an output speech vector s.sub.n. The parameters used in the encoder are quantized, for example by using a table, and the indices are transmitted to the decoder where they are decoded to specify transfer characteristics of filters used in producing the vector s.sub.n from the receiver codebook vector selected by the vector index transmitted.

  5. Pertussis-like syndrome associated with adenovirus presenting with hyperleukocytosis: Case report

    PubMed Central

    Sarbay, Hakan; Polat, Aziz; Mete, Emin; Balci, Yasemin Isik; Akin, Mehmet

    2016-01-01

    Adenovirus is an infectious viral agent that causes variety of clinical presentations such as respiratory disease, conjunctivitis, and gastroenteritis. Hepatitis, pancreatitis, myocarditis, encephalitis, and disseminated infection are primarily seen in immunocompromised patients. Rarely, adenovirus infection can present with pertussis-like syndrome. Described here is case of pertussis-like syndrome associated with adenovirus presenting with hyperleukocytosis. PMID:28058402

  6. Structure and Uncoating of Immature Adenovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Berna, A.J.; Mangel, W.; Marabini, R.

    2009-09-18

    Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particlesmore » as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.« less

  7. Inhalation of Nebulized Perfluorochemical Enhances Recombinant Adenovirus and Adeno-Associated Virus-Mediated Gene Expression in Lung Epithelium

    PubMed Central

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny

    2012-01-01

    Abstract Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (p<0.05). However, vector administration 1 hr, 1 day, or 3 days after perflubron exposure was not different from either nebulized saline with vector or vector alone and a 60-min exposure to nebulized perflubron is required. In parallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression. PMID:22568624

  8. Vector assembly of colloids on monolayer substrates

    NASA Astrophysics Data System (ADS)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  9. Phylogenetic and pathogenic characterization of novel adenoviruses from long-tailed ducks (Clangula hyemalis)

    USGS Publications Warehouse

    Counihan, Katrina; Skerratt, Lee; Franson, J. Christian; Hollmen, Tuula E.

    2015-01-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections.

  10. Transmission dynamics and prospective environmental sampling of adenovirus in a military recruit setting.

    PubMed

    Russell, Kevin L; Broderick, Michael P; Franklin, Suzanne E; Blyn, Lawrence B; Freed, Nikki E; Moradi, Emily; Ecker, David J; Kammerer, Peter E; Osuna, Miguel A; Kajon, Adriana E; Morn, Cassandra B; Ryan, Margaret A K

    2006-10-01

    High levels of morbidity caused by adenovirus among US military recruits have returned since the loss of adenovirus vaccines in 1999. The transmission dynamics of adenovirus have never been well understood, which complicates prevention efforts. Enrollment and end-of-study samples were obtained and active surveillance for febrile respiratory illnesses (FRIs) was performed for 341 recruits and support personnel. Environmental samples were collected simultaneously. Classic and advanced diagnostic techniques were used. Seventy-nine percent (213/271) of new recruits were seronegative for either adenovirus serotype 4 (Ad-4) or adenovirus serotype 7 (Ad-7). FRI caused by Ad-4 was observed in 25% (67/271) of enrolled recruits, with 100% of them occurring in individuals with enrollment titers <1 : 4. The percentage of recruits seropositive for Ad-4 increased from 34% at enrollment to 97% by the end of the study. Adenovirus was most commonly detected in the environment on pillows, lockers, and rifles. Potential sources of adenovirus transmission among US military recruits included the presence of adenovirus on surfaces in living quarters and extended pharyngeal viral shedding over the course of several days. The introduction of new recruits, who were still shedding adenovirus, into new training groups was documented. Serological screening could identify susceptible recruits for the optimal use of available vaccines. New high-throughput technologies show promise in providing valuable data for clinical and research applications.

  11. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Martin, Cameron L.; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R.; Mwangi, Duncan; Dominowski, Paul J.; Foss, Dennis L.; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John

    2016-01-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ+) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. PMID:27628166

  12. Adenovirus infection and cytotoxicity of primary mantle cell lymphoma cells.

    PubMed

    Medina, Daniel J; Sheay, Wendy; Osman, Mona; Goodell, Lauri; Martin, John; Rabson, Arnold B; Strair, Roger K

    2005-11-01

    Mantle cell lymphoma (MCL) is a distinct form of non-Hodgkin's lymphoma (NHL) derived from CD5+ B cells. MCL cells overexpress cyclin D1 as a consequence of translocation of the gene into the immunoglobulin heavy-chain gene locus. MCL is an aggressive form of NHL with frequent relapses after standard-dose chemotherapy. In this context, a variety of novel therapies for patients with MCL have been investigated. In this study, we use an expanded panel of attenuated adenoviruses to study adenovirus-mediated cytotoxicity of MCL cells. Our results demonstrate: 1) adenovirus infection of MCL cells despite the absence of receptor/coreceptor molecules known to be important for adenovirus infection of other cells types; 2) cytotoxicity of MCL cells after infection with specific adenovirus mutants; 3) a high degree of cytotoxicity after infection of some patient samples with viruses lacking the E1B 19k "antiapoptotic" gene; and 4) cytotoxicity after infection with viruses containing mutations in E1A pRb or p300 binding. The extent of cytotoxicity with the panel of viruses demonstrated interpatient variability, but 100% cytotoxicity, as determined by molecular analysis, was detected in some samples. These studies provide the foundation for: 1) the development of adenoviruses as cytotoxic agents for MCL and 2) analyses of key regulatory pathways operative in MCL cells.

  13. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  15. A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP142 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-04-01

    Malaria is caused by parasites of the genus Plasmodium , which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum , it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1 42 ) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP1 42 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP1 42 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development. Copyright © 2017 American Society for Microbiology.

  16. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication.

    PubMed

    Xu, Huanbin; Andersson, Anne-Marie; Ragonnaud, Emeline; Boilesen, Ditte; Tolver, Anders; Jensen, Benjamin Anderschou Holbech; Blanchard, James L; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard; Veazey, Ronald S; Holst, Peter Johannes

    2017-04-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat, vif, rev and vpr antigens fused to the MHC class II associated invariant chain. Immunizations induced broad T cell responses in all vaccinees. Following up to 10 repeated low-dose intrarectal challenges, vaccinees suppressed early viral replication (P=0.01) and prevented the peak viremia in 5/6 animals. Despite consistently undetectable viremia in 2 out of 6 vaccinees, all animals showed evidence of infection induced immune responses indicating that infection had taken place. Vaccinees, with and without detectable viremia better preserved their rectal CD4+ T cell population and had reduced immune hyperactivation as measured by naïve T cell depletion, Ki-67 and PD-1 expression on T cells. These results indicate that vaccination towards SIV accessory antigens vaccine can provide a level of acute control of SIV replication with a suggestion of beneficial immunological consequences in infected animals of unknown long-term significance. In conclusion, our studies demonstrate that a vaccine encoding subdominant antigens not normally associated with virus control can exert a significant impact on acute peak viremia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats.

    PubMed

    Badie, B; Drazan, K E; Kramar, M H; Shaked, A; Black, K L

    1995-06-01

    Adenoviral vectors have recently been shown to effectively deliver genes into a variety of tissues. Since these vectors have some advantages over the more extensively investigated retroviruses, we studied the effect of two replication-defective adenovectors bearing human wild type tumor suppressor gene p53 (Adp53) and Escherichia coli beta-galactosidase gene (AdLacZ) on 9L glioma cells. Successful in vitro gene transfer was shown by DNA polymerase chain reaction (PCR), and expression was confirmed by reverse transcriptase RNA PCR and Western blot analyses. Transduction of 9L cells with the Adp53 inhibited cell growth and induced phenotypic changes consistent with cell death at low titers, while AdLacZ caused cytopathic changes only at high titers. Stereotactic injection of AdLacZ (10(7) plaque forming units) into tumor bed stained 25 to 30% of tumor cells at the site of vector delivery. Injection of Adp53 (10(7) plaque forming units), but not AdLacZ (controls), into established 4-day old 9L glioma brain tumors decreased tumor volume by 40% after 14 days. As a step toward gene therapy of brain tumors using replication-defective adenoviruses, these data support the use of tumor suppressor gene transfer for in vivo treatment of whole animal brain tumor models.

  19. Weaving Knotted Vector Fields with Tunable Helicity.

    PubMed

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  20. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  1. Viruses and interstitial cystitis: adenovirus genomes cannot be demonstrated in urinary bladder biopsies.

    PubMed

    Hukkanen, V; Haarala, M; Nurmi, M; Klemi, P; Kiilholma, P

    1996-01-01

    Microbes may be involved in the pathogenesis of interstitial cystitis (IC). Adenoviruses and BK virus (BKV) can infect epithelial cells in urinary bladder and they are causative agents for hemorrhagic cystitis. We therefore studied the presence of adenovirus and BKV genomes in urinary bladder tissue specimens of patients with IC using polymerase chain reaction (PCR) and in situ hybridization (ISH). Controls were specimens from cases with transitional cell carcinoma of the bladder. Nucleic acids were extracted from paraffin sections of the bladder tissue for PCR. Primers detecting all adenovirus types were used. In situ hybridization was carried out for the paraffin sections using digoxigenin-labeled DNA probes for adenovirus and BKV. The adenovirus DNA PCR was able to detect one to two infected cells/specimen. All the seven IC cases studied and six controls were negative for adenovirus DNA by PCR and ISH. The ISH test for BKV genomes was also considered negative in IC cases and controls. The specimens which were negative in PCR tests yielded a signal with beta-globin primers, thus being amplifiable. We conclude that adenovirus and BKV do not play a major pathogenetic role in interstitial cystitis.

  2. Viral Vectors for Gene Delivery to the Central Nervous System

    PubMed Central

    Lentz, Thomas B.; Gray, Steven J.; Samulski, R. Jude

    2011-01-01

    The potential benefits of gene therapy for neurological diseases such as Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer’s are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features. PMID:22001604

  3. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Martin, Cameron L; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R; Mwangi, Duncan; Dominowski, Paul J; Foss, Dennis L; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2016-11-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ + ) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    PubMed

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5–based Constructs

    PubMed Central

    Alonso-Padilla, Julio; Papp, Tibor; Kaján, Győző L; Benkő, Mária; Havenga, Menzo; Lemckert, Angelique; Harrach, Balázs; Baker, Andrew H

    2016-01-01

    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes. PMID:26478249

  6. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  7. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.

    PubMed

    Zhou, Yan; Sullivan, Nancy J

    2015-08-01

    The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. Published by Elsevier Ltd.

  8. An adaptive vector quantization scheme

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.

    1990-01-01

    Vector quantization is known to be an effective compression scheme to achieve a low bit rate so as to minimize communication channel bandwidth and also to reduce digital memory storage while maintaining the necessary fidelity of the data. However, the large number of computations required in vector quantizers has been a handicap in using vector quantization for low-rate source coding. An adaptive vector quantization algorithm is introduced that is inherently suitable for simple hardware implementation because it has a simple architecture. It allows fast encoding and decoding because it requires only addition and subtraction operations.

  9. Capsule-Like Safe Genetic Vectors - Cell-Penetrating Core-Shell Particles Selectively Release Functional Small RNA and Entrap its Encoding DNA.

    PubMed

    Yu, Han; Pan, Houwen Matthew; Evalin, Fnu; Trau, Dieter Wilhelm; Patzel, Volker

    2018-06-05

    The breakthrough of genetic therapy is set back by the lack of suitable genetic vector systems. We present the development of permeability-tunable, capsule-like, polymeric, micron-sized, core-shell particles for delivery of recombinant nucleic acids into target cells. These particles were demonstrated to effectively release rod-shaped small hairpin RNA and to selectively retain the RNA-encoding DNA template which was designed to form a bulky tripartite structure. Thus, they can serve as delivery vectors preloaded with cargo RNA or alternatively as RNA producing micro-bioreactors. The internalization of particles by human tissue culture cells inversely correlated with particle size and with the cell to particle ratio, though at a higher than stoichiometric excess of particles over cells, cell viability was impaired. Among primary human peripheral blood mononuclear cells, up to 50% of the monocytes displayed positive uptake of particles. Finally, these particles efficiently delivered siRNA into HEK293T cells triggering functional knockdown of the target gene lamin A/C. Particle-mediated knockdown was superior to that observed after conventional siRNA delivery via lipofection. Core-shell particles protect encapsulated nucleic acids from degradation and target cell genomes from direct contact with recombinant DNA, thus representing a promising delivery vector system that can be explored for genetic therapy and vaccination.

  10. Pre-Transplant Screening for Latent Adenovirus in Donors and Recipients

    PubMed Central

    Piatti, Gabriella

    2016-01-01

    Human adenoviruses are frequent cause of slight self-limiting infections in immune competent subjects, while causing life-threatening and disseminated diseases in immunocompromised patients, particularly in the subjects affected by acquired immunodeficiency syndrome and in bone marrow and organ transplant recipients. Here, infections interest lungs, liver, encephalon, heart, kidney and gastro enteric tract. To date, human adenoviruses comprise 51 serotypes grouped into seven species, among which species C especially possesses the capability to persist in infected tissues. From numerous works, it emerges that in the recipient, because of loss of immune-competence, both primary infection, via the graft or from the environment, and reactivated endogenous viruses can be responsible for transplantation related adenovirus disease. The transplants management should include the evaluation of anti-adenovirus pre-transplant screening similar to that concerning cytomegalovirus. The serological screening on cytomegalovirus immunity is currently performed to prevent viral reactivation from grafts and recipient, the viral spread and dissemination to different organs and apparatus, and potentially lethal outcome. PMID:27006724

  11. Species-Specific Identification of Human Adenoviruses in Sewage.

    PubMed

    Wieczorek, Magdalena; Krzysztoszek, Arleta; Witek, Agnieszka

    2015-01-01

    Human adenovirus (HAdV) diversity in sewage was assessed by species-specific molecular methods. Samples of raw sewage were collected in 14 sewage disposal systems from January to December 2011, in Poland. HAdVs were detected in 92.1% of the analysed sewage samples and was significantly higher at cities of over 100 000 inhabitants. HAdV DNA was detected in sewage during all seasons. The most abundant species identified were HAdV-F (average 89.6%) and -A (average 19.6%), which are associated with intestine infections. Adenoviruses from B species were not detected. The result of the present study demonstrate that human adenoviruses are consistently present in sewage in Poland, demonstrating the importance of an adequate treatment before the disposal in the environment. Multiple HAdV species identified in raw sewage provide new information about HAdV circulation in the Polish population.

  12. Central Nervous System Delivery of Helper-Dependent Canine Adenovirus Corrects Neuropathology and Behavior in Mucopolysaccharidosis Type VII Mice

    PubMed Central

    Ariza, Lorena; Giménez-Llort, Lydia; Cubizolle, Aurélie; Pagès, Gemma; García-Lareu, Belén; Serratrice, Nicolas; Cots, Dan; Thwaite, Rosemary; Chillón, Miguel; Kremer, Eric J.

    2014-01-01

    Abstract Canine adenovirus type 2 vectors (CAV-2) are promising tools to treat global central nervous system (CNS) disorders because of their preferential transduction of neurons and efficient retrograde axonal transport. Here we tested the potential of a helper-dependent CAV-2 vector expressing β-glucuronidase (HD-RIGIE) in a mouse model of mucopolysaccharidosis type VII (MPS VII), a lysosomal storage disease caused by deficiency in β-glucuronidase activity. MPS VII leads to glycosaminoglycan accumulation into enlarged vesicles in peripheral tissues and the CNS, resulting in peripheral and neuronal dysfunction. After intracranial administration of HD-RIGIE, we show long-term expression of β-glucuronidase that led to correction of neuropathology around the injection site and in distal areas. This phenotypic correction correlated with a decrease in secondary-elevated lysosomal enzyme activity and glycosaminoglycan levels, consistent with global biochemical correction. Moreover, HD-RIGIE-treated mice show significant cognitive improvement. Thus, injections of HD-CAV-2 vectors in the brain allow a global and sustained expression and may have implications for brain therapy in patients with lysosomal storage disease. PMID:24299455

  13. Suppression of RNA Interference by Adenovirus Virus-Associated RNA†

    PubMed Central

    Andersson, M. Gunnar; Haasnoot, P. C. Joost; Xu, Ning; Berenjian, Saideh; Berkhout, Ben; Akusjärvi, Göran

    2005-01-01

    We show that human adenovirus inhibits RNA interference (RNAi) at late times of infection by suppressing the activity of two key enzyme systems involved, Dicer and RNA-induced silencing complex (RISC). To define the mechanisms by which adenovirus blocks RNAi, we used a panel of mutant adenoviruses defective in virus-associated (VA) RNA expression. The results show that the virus-associated RNAs, VA RNAI and VA RNAII, function as suppressors of RNAi by interfering with the activity of Dicer. The VA RNAs bind Dicer and function as competitive substrates squelching Dicer. Further, we show that VA RNAI and VA RNAII are processed by Dicer, both in vitro and during a lytic infection, and that the resulting short interfering RNAs (siRNAs) are incorporated into active RISC. Dicer cleaves the terminal stem of both VA RNAI and VA RNAII. However, whereas both strands of the VA RNAI-specific siRNA are incorporated into RISC, the 3′ strand of the VA RNAII-specific siRNA is selectively incorporated during a lytic infection. In summary, our work shows that adenovirus suppresses RNAi during a lytic infection and gives insight into the mechanisms of RNAi suppression by VA RNA. PMID:16014917

  14. Cellobiohydrolase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  15. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons

    PubMed Central

    Morral, Núria; O’Neal, Wanda; Rice, Karen; Leland, Michele; Kaplan, Johanne; Piedra, Pedro A.; Zhou, Heshan; Parks, Robin J.; Velji, Rizwan; Aguilar-Córdova, Estuardo; Wadsworth, Samuel; Graham, Frank L.; Kochanek, Stefan; Carey, K. Dee; Beaudet, Arthur L.

    1999-01-01

    The efficiency of first-generation adenoviral vectors as gene delivery tools is often limited by the short duration of transgene expression, which can be related to immune responses and to toxic effects of viral proteins. In addition, readministration is usually ineffective unless the animals are immunocompromised or a different adenovirus serotype is used. Recently, adenoviral vectors devoid of all viral coding sequences (helper-dependent or gutless vectors) have been developed to avoid expression of viral proteins. In mice, liver-directed gene transfer with AdSTK109, a helper-dependent adenoviral (Ad) vector containing the human α1-antitrypsin (hAAT) gene, resulted in sustained expression for longer than 10 months with negligible toxicity to the liver. In the present report, we have examined the duration of expression of AdSTK109 in the liver of baboons and compared it to first-generation vectors expressing hAAT. Transgene expression was limited to approximately 3–5 months with the first-generation vectors. In contrast, administration of AdSTK109 resulted in transgene expression for longer than a year in two of three baboons. We have also investigated the feasibility of circumventing the humoral response to the virus by sequential administration of vectors of different serotypes. We found that the ineffectiveness of readministration due to the humoral response to an Ad5 first-generation vector was overcome by use of an Ad2-based vector expressing hAAT. These data suggest that long-term expression of transgenes should be possible by combining the reduced immunogenicity and toxicity of helper-dependent vectors with sequential delivery of vectors of different serotypes. PMID:10536005

  17. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    PubMed

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  18. Cre-lox Univector acceptor vectors for functional screening in protoplasts: analysis of Arabidopsis donor cDNAs encoding ABSCISIC ACID INSENSITIVE1-Like protein phosphatases

    PubMed Central

    Jia, Fan; Gampala, Srinivas S.L.; Mittal, Amandeep; Luo, Qingjun; Rock, Christopher D.

    2009-01-01

    The 14,200 available full length Arabidopsis thaliana cDNAs in the Universal Plasmid System (UPS) donor vector pUNI51 should be applied broadly and efficiently to leverage a “functional map-space” of homologous plant genes. We have engineered Cre-lox UPS host acceptor vectors (pCR701- 705) with N-terminal epitope tags in frame with the loxH site and downstream from the maize Ubiquitin promoter for use in transient protoplast expression assays and particle bombardment transformation of monocots. As an example of the utility of these vectors, we recombined them with several Arabidopsis cDNAs encoding Ser/Thr protein phosphatase type 2C (PP2Cs) known from genetic studies or predicted by hierarchical clustering meta-analysis to be involved in ABA and stress responses. Our functional results in Zea mays mesophyll protoplasts on ABA-inducible expression effects on the Late Embryogenesis Abundant promoter ProEm:GUS reporter were consistent with predictions and resulted in identification of novel activities of some PP2Cs. Deployment of these vectors can facilitate functional genomics and proteomics and identification of novel gene activities. PMID:19499346

  19. Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction In Vitro in the Presence of Mouse Serum

    PubMed Central

    Lopez-Gordo, Estrella; Doszpoly, Andor; Duffy, Margaret R.; Coughlan, Lynda; Bradshaw, Angela C.; White, Katie M.; Denby, Laura; Nicklin, Stuart A.

    2017-01-01

    ABSTRACT Human adenoviral serotype 5 (HAdV-5) vectors have predominantly hepatic tropism when delivered intravascularly, resulting in immune activation and toxicity. Coagulation factor X (FX) binding to HAdV-5 mediates liver transduction and provides protection from virion neutralization in mice. FX is dispensable for liver transduction in mice lacking IgM antibodies or complement, suggesting that alternative transduction pathways exist. To identify novel factor(s) mediating HAdV-5 FX-independent entry, we investigated HAdV-5 transduction in vitro in the presence of serum from immunocompetent C57BL/6 or immunocompromised mice lacking IgM antibodies (Rag 2−/− and NOD-scid-gamma [NSG]). Sera from all three mouse strains enhanced HAdV-5 transduction of A549 cells. While inhibition of HAdV-5–FX interaction with FX-binding protein (X-bp) inhibited transduction in the presence of C57BL/6 serum, it had negligible effect on the enhanced transduction observed in the presence of Rag 2−/− or NSG serum. Rag 2−/− serum also enhanced transduction of the FX binding-deficient HAdV-5HVR5*HVR7*E451Q (AdT*). Interestingly, Rag 2−/− serum enhanced HAdV-5 transduction in a FX-independent manner in CHO-CAR and SKOV3-CAR cells (CHO or SKOV3 cells transfected to stably express human coxsackievirus and adenovirus receptor [CAR]). Additionally, blockade of CAR with soluble HAdV-5 fiber knob inhibited mouse serum-enhanced transduction in A549 cells, suggesting a potential role for CAR. Transduction of HAdV-5 KO1 and HAdV-5/F35 (CAR binding deficient) in the presence of Rag 2−/− serum was equivalent to that of HAdV-5, indicating that direct interaction between HAdV-5 and CAR is not required. These data suggest that FX may protect HAdV-5 from neutralization but has minimal contribution to HAdV-5 transduction in the presence of immunocompromised mouse serum. Alternatively, transduction occurs via an unidentified mouse serum protein capable of bridging HAdV-5 to CAR

  20. Poxvirus-vectored vaccines for rabies--a review.

    PubMed

    Weyer, Jacqueline; Rupprecht, Charles E; Nel, Louis H

    2009-11-27

    Oral rabies vaccination of target reservoir species has proved to be one of the pillars of successful rabies elimination programs. The use of live attenuated rabies virus vaccines has been extensive but several limitations hamper its future use. A recombinant vaccinia-rabies vaccine has also been successfully used for the oral vaccination of several species. Nevertheless, its lack of efficacy in certain important rabies reservoirs and concerns on the use of this potent live virus as vaccine carrier (vector) impair the expansion of its use for new target species and new areas. Several attenuated and host-restricted poxvirus alternatives, which supposedly offer enhanced safety, have been investigated. Once again, efficacy in certain target species and innocuity through the oral route remain major limitations of these vaccines. Alternative recombinant vaccines using adenovirus as an antigen delivery vector have been extensively investigated and may provide an important addition to the currently available oral rabies vaccine repertoire, but are not the primary subject of this review.

  1. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma.

    PubMed

    Kim, Julius W; Kane, J Robert; Young, Jacob S; Chang, Alan L; Kanojia, Deepak; Morshed, Ramin A; Miska, Jason; Ahmed, Atique U; Balyasnikova, Irina V; Han, Yu; Zhang, Lingjiao; Curiel, David T; Lesniak, Maciej S

    2015-09-01

    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy.

  2. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine

    PubMed Central

    Lee, Cody S.; Bishop, Elliot S.; Zhang, Ruyi; Yu, Xinyi; Farina, Evan M.; Yan, Shujuan; Zhao, Chen; Zheng, Zongyue; Shu, Yi; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; Ho, Sherwin; Athiviraham, Aravind; Lee, Michael J.; Wolf, Jennifer Moriatis; Reid, Russell R.; He, Tong-Chuan

    2017-01-01

    With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine. PMID:28944281

  3. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in

  4. Adenovirus Vector E4 Gene Regulates Connexin 40 and 43 Expression in Endothelial Cells via PKA and PI3K Signal Pathways

    PubMed Central

    Zhang, Fan; Cheng, Joseph; Lam, George; Jin, David K.; Vincent, Loïc; Hackett, Neil R.; Wang, Shiyang; Young, Lauren M.; Hempstead, Barbara; Crystal, Ronald G.; Rafii, Shahin

    2010-01-01

    Connexins (Cxs) provide a means for intercellular communication and play important roles in the pathophysiology of vascular cardiac diseases. Infection of endothelial cells (ECs) with first-generation E1/E3-deleted E4+ adenovirus (AdE4+) selectively modulates the survival and angiogenic potential of ECs by as of yet unrecognized mechanisms. We show here that AdE4+ vectors potentiate Cx expression in ECs in vitro and in mouse heart tissue. Infection of ECs with AdE4+, but not AdE4−, resulted in a time- and dose-dependent induction of junctional Cx40 expression and suppression of Cx43 protein and mRNA expression. Treatment of ECs with PKA inhibitor H89 or PI3K inhibitor LY294002 prevented the AdE4+-mediated regulation of Cx40 and Cx43 that was associated with diminished AdE4+-mediated survival of ECs. Moreover, both PKA activity and cAMP-response element (CRE)-binding activity were enhanced by treatment of ECs with AdE4+. However, there is no causal evidence of a cross-talk between the 2 modulatory pathways, PKA and PI3K. Remarkably, Cx40 immunostaining was markedly increased and Cx43 was decreased in the heart tissue of mice treated with intratracheal AdE4+. Taken together, these results suggest that AdE4+ may play an important role in the regulation of Cx expression in ECs, and that these effects are mediated by both the PKA/CREB and PI3K signaling pathways. PMID:15831817

  5. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    PubMed

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Molecular Epidemiology Survey of Respiratory Adenoviruses Circulating in Children Residing in Southern Palestine

    PubMed Central

    Qurei, Lina; Seto, Donald; Salah, Zaidoun; Azzeh, Maysa

    2012-01-01

    A molecular epidemiology survey was performed in order to establish and document the respiratory adenovirus pathogen profiles among children in Southern Palestine. Three hundred and thirty-eight hospitalized pediatric cases with adenovirus-associated respiratory tract infections were analyzed. Forty four cases out of the 338 were evaluated in more detail for the adenoviruses types present. All of the children resided in Southern Palestine, that is, in city, village and refugee camp environments within the districts of Hebron and Bethlehem. Human adenoviruses circulated throughout 2005–2010, with major outbreaks occurring in the spring months. A larger percent of the children diagnosed with adenoviral infections were male infants. DNA sequence analysis of the hexon genes from 44 samples revealed that several distinct adenovirus types circulated in the region; these were HAdV-C1, HAdV-C2, HAdV-B3 and HAdV-C5. However, not all of these types were detected within each year. This is the first study ever conducted in Palestine of the genetic epidemiology of respiratory adenovirus infections. PMID:22880092

  7. p53-dependent cell death/apoptosis is required for a productive adenovirus infection.

    PubMed

    Hall, A R; Dix, B R; O'Carroll, S J; Braithwaite, A W

    1998-09-01

    The p53 tumor suppressor protein binds to both cellular and viral proteins, which influence its biological activity. One such protein is the large E1b tumor antigen (E1b58kDa) from adenoviruses (Ads), which abrogates the ability of p53 to transactivate various promoters. This inactivation of p53 function is believed to be the mechanism by which E1b58kDa contributes to the cell transformation process. Although the p53-E1b58kDa complex occurs during infection and is conserved among different serotypes, there are limited data demonstrating that it has a role in virus replication. However, loss of p53 expression occurs after adenovirus infection of human cells and an E1b58kDa deletion mutant (Onyx-015, also called dl 1520) selectively replicates in p53-defective cells. These (and other) data indicate a plausible hypothesis is that loss of p53 function may be conducive to efficient adenovirus replication. However, wild-type (wt) Ad5 grows more efficiently in cells expressing a wt p53 protein. These studies indicate that the hypothesis may be an oversimplification. Here, we show that cells expressing wt p53, as well as p53-defective cells, allow adenovirus replication, but only cells expressing wt p53 show evidence of virus-induced cytopathic effect. This correlates with the ability of adenovirus to induce cell death. Our data indicate that p53 plays a necessary part in mediating cellular destruction to allow a productive adenovirus infection. In contrast, p53-deficient cells are less sensitive to the cytolytic effects of adenovirus and as such raise questions about the use of E1b58kDa-deficient adenoviruses in tumor therapy.

  8. The Use of Adenovirus Dodecahedron in the Delivery of an Enzymatic Activity in the Cell

    PubMed Central

    Sumarheni; Gallet, Benoit; Fender, Pascal

    2016-01-01

    Penton-dodecahedron (Pt-Dd) derived from adenovirus type 3 is a symmetric complex of pentameric penton base plus fiber which can be produced in the baculovirus system at a high concentration. The size of Pt-Dd is smaller than the virus, but this virus-like particle (VLP) has the major proteins recognized by specific receptors on the surface of almost all types of cell. In this study, by direct observation with fluorescence microscopy on a fixed and living cell, the intracellular trafficking and localization of Pt-Dd labeled with fluorescence dyes in the cytoplasm of HeLa Tub-GFP showed a rapid internalization characteristic. Subsequently, the linkage of horseradish peroxidase (HRP) with Pt-Dd as the vector demonstrated an efficient system to deliver this enzyme into the cell without interfering its enzymatic activity as shown by biochemical and cellular experiments. These results were supported by additional studies using Bs-Dd or free form of the HRP used as the control. Overall, this study strengthens the potential role of Pt-Dd as an alternative vector for delivering therapeutic agents. PMID:27242929

  9. Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response.

    PubMed

    Alvarez, E; Moga, E; Barquinero, J; Sierra, J; Briones, J

    2010-04-01

    Fusion of dendritic cells and tumor cells (FCs) constitutes a promising tool for generating an antitumor response because of their capacity to present tumor antigens and provide appropriate costimulatory signals. CD40-CD40L interaction has an important role in the maturation and survival of dendritic cells and provides critical help for T-cell priming. In this study, we sought to improve the effectiveness of FC vaccines in a murine model of B-cell lymphoma by engineering FCs to express CD40L by means of an adenovirus encoding CD40L (Adv-CD40L). Before transduction with Adv-CD40L, no CD40L expression was detected in FCs, DCs or tumor cells. The surface expression of CD40L in FC transduced with Adv-CD40L (FC-CD40L) ranged between 50 and 60%. FC-CD40L showed an enhanced expression of CD80, CD86, CD54 and MHC class II molecules and elicited a strong in vitro immune response in a syngeneic mixed lymphocyte reaction. Furthermore, FC-CD40L showed enhanced migration to secondary lymphoid organs. Splenocytes from mice treated with FC-CD40L had a dramatic increase in the production of IL-17, IL-6 and IFN-gamma, compared with controls. Treatment with the FC-CD40L vaccine induced regression of established tumors and increased survival. Our data demonstrate that FC transduced with Adv-CD40L enhances the antitumor effect of FC vaccines in a murine lymphoma model and this is associated with an increased Th17-type immune response.

  10. Adenovirus type 5 induces progression of quiescent rat cells into S phase without polyamine accumulation.

    PubMed Central

    Cheetham, B F; Shaw, D C; Bellett, A J

    1982-01-01

    Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation. PMID:7177112

  11. Prevalence and Quantitation of Species C Adenovirus DNA in Human Mucosal Lymphocytes

    PubMed Central

    Garnett, C. T.; Erdman, D.; Xu, W.; Gooding, Linda R.

    2002-01-01

    The common species C adenoviruses (serotypes Ad1, Ad2, Ad5, and Ad6) infect more than 80% of the human population early in life. Following primary infection, the virus can establish an asymptomatic persistent infection in which infectious virions are shed in feces for several years. The probable source of persistent virus is mucosa-associated lymphoid tissue, although the molecular details of persistence or latency of adenovirus are currently unknown. In this study, a sensitive real-time PCR assay was developed to quantitate species C adenovirus DNA in human tissues removed for routine tonsillectomy or adenoidectomy. Using this assay, species C DNA was detected in Ficoll-purified lymphocytes from 33 of 42 tissue specimens tested (79%). The levels varied from fewer than 10 to greater than 2 × 106 copies of the adenovirus genome/107 cells, depending on the donor. DNA from serotypes Ad1, Ad2, and Ad5 was detected, while the rarer serotype Ad6 was not. When analyzed as a function of donor age, the highest levels of adenovirus genomes were found among the youngest donors. Antibody-coated magnetic beads were used to purify lymphocytes into subpopulations and determine whether viral DNA could be enriched within any purified subpopulations. Separation of T cells (CD4/8- expressing and/or CD3-expressing cells) enriched viral DNA in each of nine donors tested. In contrast, B-cell purification (CD19-expressing cells) invariably depleted or eliminated viral DNA. Despite the frequent finding of significant quantities of adenovirus DNA in tonsil and adenoid tissues, infectious virus was rarely present, as measured by coculture with permissive cells. These findings suggest that human mucosal T lymphocytes may harbor species C adenoviruses in a quiescent, perhaps latent form. PMID:12368303

  12. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents

    DTIC Science & Technology

    2016-04-12

    economy. Vaccine development is an important strategy to thwart the threat of these viral biothreat agents. There is an urgent need to improve...Alberta, Tl A 8K6. Canada E-mail: josh. wu@drdc-rddc.gc.ca .• 78 JoshQ.H. Wu existing vaccines against these agents and to develop new ones. Gene...of vaccines against viral biothreat agents. Genes encoding protective antigens of viral biothreat agents can be carried by these viral vectors and

  13. Silencing GIRK4 expression in human atrial myocytes by adenovirus-delivered small hairpin RNA.

    PubMed

    Liu, Xiongtao; Yang, Jian; Shang, Fujun; Hong, Changming; Guo, Wangang; Wang, Bing; Zheng, Qiangsun

    2009-07-01

    GIRK4 has been shown to be a subunit of I(KACh), and the use of GIRK4 in human atrial myocytes to treat arrhythmia remains an important research pursuit. Adenovirus-delivered small hairpin RNA (shRNA) has been used to mediate gene knockdown in mouse cardiocytes, yet there is no information on the successful application of this technique in human cardiocytes. In the current study, we used a siRNA validation system to select the most efficient sequence for silencing GIRK4. To this end, adenovirus-delivered shRNA, which expresses this sequence, was used to silence GIRK4 expression in human atrial myocytes. Finally, the feasibility, challenges, and results of silencing GIRK4 expression were evaluated by RT-PCR, western blotting, and the voltage-clamp technique. The levels of mRNA and protein were depressed significantly in cells infected by adenovirus-delivered shRNA against GIRK4, approximately 86.3% and 51.1% lower than those cells infected by adenovirus-delivered nonsense shRNA, respectively. At the same time, I(KACh) densities were decreased 53% by adenovirus-delivered shRNA against GIRK4. In summary, adenovirus-delivered shRNA against GIRK4 mediated efficient GIRK4 knockdown in human atrial myocytes and decreased I(KACh) densities. As such, these data indicated that adenovirus-delivered shRNA against GIRK4 is a potential tool for treating arrhythmia.

  14. EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    PubMed Central

    Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine

    2013-01-01

    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032

  15. Molecular detection of two adenoviruses associated with disease in Australian lizards.

    PubMed

    Hyndman, T; Shilton, C M

    2011-06-01

    We give the first published description of the pathology and molecular findings associated with adenovirus infection in lizards in Australia. A central netted dragon (Ctenophorus nuchalis) exhibited severe necrotising hepatitis with abundant intranuclear inclusion bodies within hepatocytes and rarely within intestinal epithelial cells. Polymerase chain reaction (PCR) using pooled tissues yielded an amplicon that shared strong nucleotide identity with an agamid adenovirus (EU914203). PCR on the liver of a bearded dragon (Pogona minor minor) with illthrift, coccidiosis, nematodiasis and hepatic lipidosis yielded an amplicon with strong nucleotide identity to a helodermatid adenovirus (EU914207). © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.

  16. Detection of a putative novel adenovirus by PCR amplification, sequencing and phylogenetic characterisation of two gene fragments from formalin-fixed paraffin-embedded tissues of a cat diagnosed with disseminated adenovirus disease.

    PubMed

    Lakatos, Béla; Hornyák, Ákos; Demeter, Zoltán; Forgách, Petra; Kennedy, Frances; Rusvai, Miklós

    2017-12-01

    Adenoviral nucleic acid was detected by polymerase chain reaction (PCR) in formalin-fixed paraffin-embedded tissue samples of a cat that had suffered from disseminated adenovirus infection. The identity of the amplified products from the hexon and DNA-dependent DNA polymerase genes was confirmed by DNA sequencing. The sequences were clearly distinguishable from corresponding hexon and polymerase sequences of other mastadenoviruses, including human adenoviruses. These results suggest the possible existence of a distinct feline adenovirus.

  17. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  18. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs

    PubMed Central

    Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne

    2015-01-01

    Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses. PMID:25668122

  19. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs.

    PubMed

    Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne

    2015-01-01

    Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.

  20. Molecular Characterization of a Lizard Adenovirus Reveals the First Atadenovirus with Two Fiber Genes and the First Adenovirus with Either One Short or Three Long Fibers per Penton

    PubMed Central

    Pénzes, Judit J.; Menéndez-Conejero, Rosa; Condezo, Gabriela N.; Ball, Inna; Papp, Tibor; Doszpoly, Andor; Paradela, Alberto; Pérez-Berná, Ana J.; López-Sanz, María; Nguyen, Thanh H.; van Raaij, Mark J.; Marschang, Rachel E.; Harrach, Balázs; Benkő, Mária

    2014-01-01

    ABSTRACT Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins—one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton

  1. The search for adenovirus 14 in children in Houston, Texas.

    PubMed

    Laham, Federico R; Jewell, Alan M; Schoonover, Shauna L; Demmler, Gail J; Piedra, Pedro A

    2008-07-01

    Adenovirus (Ad)14 has recently emerged in the United States causing outbreaks of severe respiratory disease. To determine if Ad14 circulated in Houston, Texas, during the same time as an outbreak in military recruits in nearby San Antonio, 215 pediatric adenovirus isolates were serotyped using microneutralization. None were Ad14; Ad1, Ad2, and Ad3 were the most common identified serotypes.

  2. Non-transmissible Sendai virus vector encoding c-myc suppressor FBP-interacting repressor for cancer therapy

    PubMed Central

    Matsushita, Kazuyuki; Shimada, Hideaki; Ueda, Yasuji; Inoue, Makoto; Hasegawa, Mamoru; Tomonaga, Takeshi; Matsubara, Hisahiro; Nomura, Fumio

    2014-01-01

    AIM: To investigate a novel therapeutic strategy to target and suppress c-myc in human cancers using far up stream element (FUSE)-binding protein-interacting repressor (FIR). METHODS: Endogenous c-Myc suppression and apoptosis induction by a transient FIR-expressing vector was examined in vivo via a HA-tagged FIR (HA-FIR) expression vector. A fusion gene-deficient, non-transmissible, Sendai virus (SeV) vector encoding FIR cDNA, SeV/dF/FIR, was prepared. SeV/dF/FIR was examined for its gene transduction efficiency, viral dose dependency of antitumor effect and apoptosis induction in HeLa (cervical squamous cell carcinoma) cells and SW480 (colon adenocarcinoma) cells. Antitumor efficacy in a mouse xenograft model was also examined. The molecular mechanism of the anti-tumor effect and c-Myc suppression by SeV/dF/FIR was examined using Spliceostatin A (SSA), a SAP155 inhibitor, or SAP155 siRNA which induce c-Myc by increasing FIR∆exon2 in HeLa cells. RESULTS: FIR was found to repress c-myc transcription and in turn the overexpression of FIR drove apoptosis through c-myc suppression. Thus, FIR expressing vectors are potentially applicable for cancer therapy. FIR is alternatively spliced by SAP155 in cancer cells lacking the transcriptional repression domain within exon 2 (FIR∆exon2), counteracting FIR for c-Myc protein expression. Furthermore, FIR forms a complex with SAP155 and inhibits mutual well-established functions. Thus, both the valuable effects and side effects of exogenous FIR stimuli should be tested for future clinical application. SeV/dF/FIR, a cytoplasmic RNA virus, was successfully prepared and showed highly efficient gene transduction in in vivo experiments. Furthermore, in nude mouse tumor xenograft models, SeV/dF/FIR displayed high antitumor efficiency against human cancer cells. SeV/dF/FIR suppressed SSA-activated c-Myc. SAP155 siRNA, potentially produces FIR∆exon2, and led to c-Myc overexpression with phosphorylation at Ser62. HA-FIR suppressed

  3. Adenovirus-Associated Virus Vector–Mediated Gene Transfer in Hemophilia B

    PubMed Central

    Nathwani, Amit C.; Tuddenham, Edward G.D.; Rangarajan, Savita; Rosales, Cecilia; McIntosh, Jenny; Linch, David C.; Chowdary, Pratima; Riddell, Anne; Pie, Arnulfo Jaquilmac; Harrington, Chris; O’Beirne, James; Smith, Keith; Pasi, John; Glader, Bertil; Rustagi, Pradip; Ng, Catherine Y.C.; Kay, Mark A.; Zhou, Junfang; Spence, Yunyu; Morton, Christopher L.; Allay, James; Coleman, John; Sleep, Susan; Cunningham, John M.; Srivastava, Deokumar; Basner-Tschakarjan, Etiena; Mingozzi, Federico; High, Katherine A.; Gray, John T.; Reiss, Ulrike M.; Nienhuis, Arthur W.; Davidoff, Andrew M.

    2012-01-01

    BACKGROUND Hemophilia B, an X-linked disorder, is ideally suited for gene therapy. We investigated the use of a new gene therapy in patients with the disorder. METHODS We infused a single dose of a serotype-8–pseudotyped, self-complementary adenovirus-associated virus (AAV) vector expressing a codon-optimized human factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco) in a peripheral vein in six patients with severe hemophilia B (FIX activity, <1% of normal values). Study participants were enrolled sequentially in one of three cohorts (given a high, intermediate, or low dose of vector), with two participants in each group. Vector was administered without immunosuppressive therapy, and participants were followed for 6 to 16 months. RESULTS AAV-mediated expression of FIX at 2 to 11% of normal levels was observed in all participants. Four of the six discontinued FIX prophylaxis and remained free of spontaneous hemorrhage; in the other two, the interval between prophylactic injections was increased. Of the two participants who received the high dose of vector, one had a transient, asymptomatic elevation of serum aminotransferase levels, which was associated with the detection of AAV8-capsid–specific T cells in the peripheral blood; the other had a slight increase in liver-enzyme levels, the cause of which was less clear. Each of these two participants received a short course of glucocorticoid therapy, which rapidly normalized aminotransferase levels and maintained FIX levels in the range of 3 to 11% of normal values. CONCLUSIONS Peripheral-vein infusion of scAAV2/8-LP1-hFIXco resulted in FIX transgene expression at levels sufficient to improve the bleeding phenotype, with few side effects. Although immune-mediated clearance of AAV-transduced hepatocytes remains a concern, this process may be controlled with a short course of glucocorticoids without loss of transgene expression. (Funded by the Medical Research Council and others; ClinicalTrials.gov number, NCT00979238

  4. Respiratory adenovirus-like infection in a rose-ringed parakeet (Psittacula krameri).

    PubMed

    Desmidt, M; Ducatelle, R; Uyttebroek, E; Charlier, G; Hoorens, J

    1991-01-01

    Intranuclear inclusions were observed under light microscopy in the bronchial epithelial cells of a recently purchased female rose-ringed parakeet that died of chlamydiosis. Transmission electron microscopy revealed the presence of numerous particles of adenovirus morphology. A latent adenovirus infection may have become more severe following chlamydiosis and the stress of handling.

  5. Phase I study of adenovirus p53 administered by bronchoalveolar lavage in patients with bronchioloalveolar cell lung carcinoma: ECOG 6597.

    PubMed

    Keedy, Vicki; Wang, Wei; Schiller, Joan; Chada, Sunil; Slovis, Bonnie; Coffee, Keith; Worrell, John; Thet, Lyn A; Johnson, David H; Carbone, David P

    2008-09-01

    This pilot phase I trial evaluated the safety and maximum-tolerated dose of p53 gene transfer using an adenovirus vector (Ad-p53) delivered via bronchoalveolar lavage (BAL) to patients with bronchioloalveolar lung carcinoma (BAC). Patients were initially administered two treatments of Ad-p53 to a single involved lobe, beginning at 2 x 10(9) viral particles (vp) per dose and escalated to a maximum of 2 x 10(12) vp. If a clinical benefit was seen and the treatment was well tolerated, additional doses could be administered to additional lobes. Twenty-five patients were treated at doses between 2 x 10(9) and 2 x 10(12) vp. At 2 x 10(12) vp, one patient experienced grade 4 pulmonary toxicity, and one patient died 25 days after his second cycle; therefore, a cohort of 10 patients was treated at the recommended phase II dose of 5 x 10(11) vp, with no grade 4 toxicity observed. The most frequent toxicities included low-grade fever, hypoxia, and dyspnea. Of the 23 assessable patients, 16 had stable disease as their best response. Subjective improvement in breathing was noted in eight patients. Limited distribution of vector was observed, with transient detection in patient sputum for 1 to 2 days after administration. Ad-p53 can be administered safely by BAL at 5 x 10(11) vp with repeated dosing. Stabilization of disease and symptomatic improvement may warrant further studies of Ad-p53 or other adenoviruses administered by BAL in patients with BAC.

  6. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  7. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  8. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5more » (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).« less

  9. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.

  10. A double-regulated oncolytic adenovirus with improved safety for adenocarcinoma therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Na; Fan, Jun Kai; Gu, Jin Fa

    2009-10-16

    Safety and efficiency are equally important to be considered in developing oncolytic adenovirus. Previously, we have reported that ZD55, an oncolytic adenovirus with the deletion of E1B-55K gene, exhibited potent antitumor activity. In this study, to improve the safety of ZD55, we utilized MUC1 promoter to replace the native promoter of E1A on the basis of ZD55, and generated a double-regulated adenovirus, named MUD55. Our data demonstrated that the expression of early and late genes of MUD55 was both reduced in MUC1-negative cells, resulting in its stricter glandular-tumor selective progeny production. The cytopathic effect of MUD55 was about 10-fold lowermore » than mono-regulated adenovirus ZD55 or Ad.MUC1 in normal cells and not obviously attenuated in glandular tumor cells. Moreover, MUD55 showed the least liver toxicity when administrated by intravenous injection in nude mice. These results indicate that MUD55 could be a promising candidate for the treatment of adenocarcinoma.« less

  11. Viral Vectors for In Vivo Gene Transfer in Parkinson’s disease: Properties and Clinical Grade Production

    PubMed Central

    Burger, Corinna; Snyder, Richard O.

    2009-01-01

    Because Parkinson’s disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson’s disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration. PMID:17916354

  12. Gene encoding herbicide safener binding protein

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  13. Genetic and Molecular Epidemiological Characterization of a Novel Adenovirus in Antarctic Penguins Collected between 2008 and 2013

    PubMed Central

    Lee, Sook-Young; Kim, Jeong-Hoon; Seo, Tae-Kun; No, Jin Sun; Kim, Hankyeom; Kim, Won-keun; Choi, Han-Gu; Kang, Sung-Ho; Song, Jin-Won

    2016-01-01

    Antarctica is considered a relatively uncontaminated region with regard to the infectious diseases because of its extreme environment, and isolated geography. For the genetic characterization and molecular epidemiology of the newly found penguin adenovirus in Antarctica, entire genome sequencing and annual survey of penguin adenovirus were conducted. The entire genome sequences of penguin adenoviruses were completed for two Chinstrap penguins (Pygoscelis antarctica) and two Gentoo penguins (Pygoscelis papua). The whole genome lengths and G+C content of penguin adenoviruses were found to be 24,630–24,662 bp and 35.5–35.6%, respectively. Notably, the presence of putative sialidase gene was not identified in penguin adenoviruses by Rapid Amplification of cDNA Ends (RACE-PCR) as well as consensus specific PCR. The penguin adenoviruses were demonstrated to be a new species within the genus Siadenovirus, with a distance of 29.9–39.3% (amino acid, 32.1–47.9%) in DNA polymerase gene, and showed the closest relationship with turkey adenovirus 3 (TAdV-3) in phylogenetic analysis. During the 2008–2013 study period, the penguin adenoviruses were annually detected in 22 of 78 penguins (28.2%), and the molecular epidemiological study of the penguin adenovirus indicates a predominant infection in Chinstrap penguin population (12/30, 40%). Interestingly, the genome of penguin adenovirus could be detected in several internal samples, except the lymph node and brain. In conclusion, an analysis of the entire adenoviral genomes from Antarctic penguins was conducted, and the penguin adenoviruses, containing unique genetic character, were identified as a new species within the genus Siadenovirus. Moreover, it was annually detected in Antarctic penguins, suggesting its circulation within the penguin population. PMID:27309961

  14. Serotype-Specific Neutralizing Antibody Epitopes of Human Adenovirus Type 3 (HAdV-3) and HAdV-7 Reside in Multiple Hexon Hypervariable Regions

    PubMed Central

    Qiu, Hongling; Li, Xiao; Tian, Xingui; Zhou, Zhichao; Xing, Ke; Li, Haitao; Tang, Ni; Liu, Wenkuan; Bai, Peisheng

    2012-01-01

    Human adenovirus types 3 and 7 (HAdV-3 and HAdV-7) occur epidemically and contribute greatly to respiratory diseases, but there is no currently available licensed recombinant HAdV-3/HAdV-7 bivalent vaccine. Identification of serotype-specific neutralizing antibody (NAb) epitopes for HAdV-3 and HAdV-7 will be beneficial for development of recombinant HAdV-3/HAdV-7 bivalent vaccines. In this study, four NAb epitopes within hexon hypervariable regions (HVRs) were predicted for HAdV-3 and HAdV-7, respectively, by using bioinformatics. Eight hexon chimeric adenovirus vectors with the alternation of only one predicted neutralizing epitope were constructed. Further in vitro and in vivo neutralization assays indicated that E2 (residing in HVR2) and E3 (residing in HVR5) are NAb epitopes for HAdV-7, and E3 plays a more important role in generating NAb responses. Cross-neutralization assays indicated that all four predicted epitopes, R1 to R4, are NAb epitopes for HAdV-3, and R1 (residing in HVR1) plays the most important role in generating NAb responses. Humoral immune responses elicited by the recombinant rAdH7R1 (containing the R1 epitope) were significantly and durably suppressed by HAdV-3-specific NAbs. Surprisingly, the rAdΔE3GFP-specific neutralizing epitope responses induced by rAdMHE3 (R3 replaced by E3) and rAdMHE4 (R4 replaced by E4) were weaker than those of rAdMHE1 (R1 replaced by E1) or rAdMHE2 (R2 relaced by E2) in vitro and in vivo. Furthermore, rAdMHE4 replicated more slowly in HEp-2 cells, and the final yield was about 10-fold lower than that of rAdΔE3GFP. The current findings contribute not only to the development of new adenovirus vaccine candidates, but also to the construction of new gene delivery vectors. PMID:22623776

  15. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory.

    PubMed

    Becker, Pablo D; Hervouet, Catherine; Mason, Gavin M; Kwon, Sung-Yun; Klavinskis, Linda S

    2015-09-08

    A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. DNA encoding for plant digalactosyldiacylglycerol galactosyltransferase and methods of use

    DOEpatents

    Benning, Christoph; Doermann, Peter

    2003-11-04

    The cDNA encoding digalactosyldiacylglycerol galactosyltransferase (DGD1) is provided. The deduced amino acid sequence is also provided. Methods of making and using DGD1 to screen for new herbicides and alter a plant's leaf lipid composition are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors.

  17. A recombinant chimeric Ad5/3 vector expressing a multi-stage Plasmodium antigen induces protective immunity in mice using heterologous prime-boost immunization regimens1

    PubMed Central

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Zhao, Chunxia; Makarova, Natalia; Dmitriev, Igor; Curiel, David T.; Blackwell, Jerry; Moreno, Alberto

    2016-01-01

    An ideal malaria vaccine should target several stages of the parasite life cycle and induce anti-parasite and anti-disease immunity. We have reported a Plasmodium yoelii chimeric multi-stage recombinant protein (PyLPC/RMC), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1). This chimeric protein elicits protective immunity, mediated by CD4+ T cells and neutralizing antibodies. However, experimental evidence from pre-erythrocytic vaccine candidates and irradiated sporozoites has shown that CD8+ T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8+ T cell responses. The human adenovirus serotype 5 (Ad5) has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing antibodies in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing antibodies. Furthermore, we implemented heterologous adenovirus/protein immunization regimens which include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrate that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development. PMID:27574299

  18. Polypeptides having catalase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  20. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  1. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  2. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  3. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    USDA-ARS?s Scientific Manuscript database

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  4. Identification and Application of Neutralizing Epitopes of Human Adenovirus Type 55 Hexon Protein

    PubMed Central

    Tian, Xingui; Ma, Qiang; Jiang, Zaixue; Huang, Junfeng; Liu, Qian; Lu, Xiaomei; Luo, Qingming; Zhou, Rong

    2015-01-01

    Human adenovirus type 55 (HAdV55) is a newly identified re-emergent acute respiratory disease (ARD) pathogen with a proposed recombination of hexon gene between HAdV11 and HAdV14 strains. The identification of the neutralizing epitopes is important for the surveillance and vaccine development against HAdV55 infection. In this study, four type-specific epitope peptides of HAdV55 hexon protein, A55R1 (residues 138 to 152), A55R2 (residues 179 to 187), A55R4 (residues 247 to 259) and A55R7 (residues 429 to 443), were predicted by multiple sequence alignment and homology modeling methods, and then confirmed with synthetic peptides by enzyme-linked immunosorbent assay (ELISA) and neutralization tests (NT). Finally, the A55R2 was incorporated into human adenoviruses 3 (HAdV3) and a chimeric adenovirus rAd3A55R2 was successfully obtained. The chimeric rAd3A55R2 could induce neutralizing antibodies against both HAdV3 and HAdV55. This current study will contribute to the development of novel adenovirus vaccine candidate and adenovirus structural analysis. PMID:26516903

  5. Killing effect of TNF-mediated by conditionally replicating adenovirus on esophageal cancer and lung cancer cell lines.

    PubMed

    Jiang, Yue-Quan; Zhang, Zhi; Cai, Hua-Rong; Zhou, Hong

    2015-01-01

    The killing effect of TNF mediated by conditionally replicating adenovirus SG502 on human cancer cell lines was assessed by in vivo and in vitro experiments. The recombinant adenovirus SG502-TNF was used to infect human lung cancer cell line A549 and human esophageal cancer cell line TE-1. The expression of the exogenous gene and its inhibitory effect on the tumor cell lines were thus detected. Tumor transplantation experiment was performed in mice with the purpose of assessing the inhibitory effect of the adenovirus on tumor cells and tumor formation. The targeting of the adenovirus and the mechanism of tumor inhibition were discussed by in vivo imaging technology, HE staining and TUNEL assay. Recombinant adenovirus SG502-TNF targeted the tumor cells specifically with stable expression of TNF, which produced a killing effect on tumor cells by regulating the apoptotic signaling pathway. Recombinant adenovirus SG502-TNF possessed significant killing effect on TE-1 cells either in vivo or in vitro. This finding demonstrated the potential clinical application of adenovirus SG502.

  6. Polynucleotides encoding polypeptides having beta-glucosidase activity

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  7. Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component

    DTIC Science & Technology

    2011-10-01

    receiving the vaccine (Figure 3). Within 14 days after the first immunization, Grade 1 neutropenia was recorded in one of 15 volunteers and Grade 2 in...one of 15 volunteers; within 14 days after the second immunization, Grade 1 neutropenia was recorded in two of 14 volunteers and Grade 2 in two of 14...range of doses was administered [62,64]. Neutropenia was the only apparent vaccine-related laboratory abnormality. Serotype 5 adenoviruses are thought

  8. The Ad5 [E1-, E2b-]-based vector: a new and versatile gene delivery platform

    NASA Astrophysics Data System (ADS)

    Jones, Frank R.; Gabitzsch, Elizabeth S.; Balint, Joseph P.

    2015-05-01

    Based upon advances in gene sequencing and construction, it is now possible to identify specific genes or sequences thereof for gene delivery applications. Recombinant adenovirus serotype-5 (Ad5) viral vectors have been utilized in the settings of gene therapy, vaccination, and immunotherapy but have encountered clinical challenges because they are recognized as foreign entities to the host. This recognition leads to an immunologic clearance of the vector that contains the inserted gene of interest and prevents effective immunization(s). We have reported on a new Ad5-based viral vector technology that can be utilized as an immunization modality to induce immune responses even in the presence of Ad5 vector immunity. We have reported successful immunization and immunotherapy results to infectious diseases and cancers. This improved recombinant viral platform (Ad5 [E1-, E2b-]) can now be utilized in the development of multiple vaccines and immunotherapies.

  9. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    Provided are isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. More About Vector Adaptive/Predictive Coding Of Speech

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Gersho, Allen

    1992-01-01

    Report presents additional information about digital speech-encoding and -decoding system described in "Vector Adaptive/Predictive Encoding of Speech" (NPO-17230). Summarizes development of vector adaptive/predictive coding (VAPC) system and describes basic functions of algorithm. Describes refinements introduced enabling receiver to cope with errors. VAPC algorithm implemented in integrated-circuit coding/decoding processors (codecs). VAPC and other codecs tested under variety of operating conditions. Tests designed to reveal effects of various background quiet and noisy environments and of poor telephone equipment. VAPC found competitive with and, in some respects, superior to other 4.8-kb/s codecs and other codecs of similar complexity.

  11. Predication-based semantic indexing: permutations as a means to encode predications in semantic space.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C

    2009-11-14

    Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.

  12. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP

    PubMed Central

    Rampling, Tommy; Ewer, Katie J.; Bowyer, Georgina; Bliss, Carly M.; Edwards, Nick J.; Wright, Danny; Payne, Ruth O.; Venkatraman, Navin; de Barra, Eoghan; Snudden, Claudia M.; Poulton, Ian D.; de Graaf, Hans; Sukhtankar, Priya; Roberts, Rachel; Ivinson, Karen; Weltzin, Rich; Rajkumar, Bebi-Yassin; Wille-Reece, Ulrike; Lee, Cynthia K.; Ockenhouse, Christian F.; Sinden, Robert E.; Gerry, Stephen; Lawrie, Alison M.; Vekemans, Johan; Morelle, Danielle; Lievens, Marc; Ballou, Ripley W.; Cooke, Graham S.; Faust, Saul N.; Gilbert, Sarah; Hill, Adrian V. S.

    2016-01-01

    Background. The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Method. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara–vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. Results. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. Conclusions. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. Clinical Trials Registration. NCT01883609. PMID:27307573

  13. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP.

    PubMed

    Rampling, Tommy; Ewer, Katie J; Bowyer, Georgina; Bliss, Carly M; Edwards, Nick J; Wright, Danny; Payne, Ruth O; Venkatraman, Navin; de Barra, Eoghan; Snudden, Claudia M; Poulton, Ian D; de Graaf, Hans; Sukhtankar, Priya; Roberts, Rachel; Ivinson, Karen; Weltzin, Rich; Rajkumar, Bebi-Yassin; Wille-Reece, Ulrike; Lee, Cynthia K; Ockenhouse, Christian F; Sinden, Robert E; Gerry, Stephen; Lawrie, Alison M; Vekemans, Johan; Morelle, Danielle; Lievens, Marc; Ballou, Ripley W; Cooke, Graham S; Faust, Saul N; Gilbert, Sarah; Hill, Adrian V S

    2016-09-01

    The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. NCT01883609. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  14. Novel adenoviruses detected in British mustelids, including a unique Aviadenovirus in the tissues of pine martens (Martes martes)

    PubMed Central

    Gregory, William F.; Turnbull, Dylan; Rocchi, Mara; Meredith, Anna L.; Philbey, Adrian W.; Sharp, Colin P.

    2017-01-01

    Several adenoviruses are known to cause severe disease in veterinary species. Recent evidence suggests that canine adenovirus type 1 (CAV-1) persists in the tissues of healthy red foxes (Vulpes vulpes), which may be a source of infection for susceptible species. It was hypothesized that mustelids native to the UK, including pine martens (Martes martes) and Eurasian otters (Lutra lutra), may also be persistently infected with adenoviruses. Based on high-throughput sequencing and additional Sanger sequencing, a novel Aviadenovirus, tentatively named marten adenovirus type 1 (MAdV-1), was detected in pine marten tissues. The detection of an Aviadenovirus in mammalian tissue has not been reported previously. Two mastadenoviruses, tentatively designated marten adenovirus type 2 (MAdV-2) and lutrine adenovirus type 1 (LAdV-1), were also detected in tissues of pine martens and Eurasian otters, respectively. Apparently healthy free-ranging animals may be infected with uncharacterized adenoviruses with possible implications for translocation of wildlife. PMID:28749327

  15. Structure, function and dynamics in adenovirus maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangel, Walter F.; San Martín, Carmen

    2014-11-21

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core ismore » more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.« less

  16. Adenovirus Death Protein (ADP) Is Required for Lytic Infection of Human Lymphocytes

    PubMed Central

    Murali, V. K.; Ornelles, D. A.; Gooding, L. R.; Wilms, H. T.; Huang, W.; Tollefson, A. E.; Wold, W. S. M.

    2014-01-01

    The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection. PMID:24198418

  17. Screening for adenoviruses in haematological neoplasia: High prevalence in mantle cell lymphoma.

    PubMed

    Kosulin, Karin; Rauch, Margit; Ambros, Peter F; Pötschger, Ulrike; Chott, Andreas; Jäger, Ulrich; Drach, Johannes; Nader, Alexander; Lion, Thomas

    2014-02-01

    Human adenoviruses possess oncogenic capacity which is well documented in mammalian animal models, but their possible implication in human malignancy has remained enigmatic. Following primary infection, adenoviruses can persist in a latent state in lymphocytes where the virus is apparently able to evade immune surveillance. In the present study, we have employed a broad-spectrum adenovirus polymerase chain reaction (PCR) assay to systematically screen more than 200 diagnostic specimens of different lymphoid malignancies including acute lymphocytic leukaemia (n=50), chronic lymphocytic leukaemia (n=50), various types of malignant lymphoma (n=100) and multiple myeloma (n=11) for the presence of adenoviral sequences. While most entities analysed revealed negative findings in virtually all specimens tested, adenoviral DNA was detected in 15/36 (42%) mantle cell lymphomas investigated. The most prevalent adenoviral species detected was C, and less commonly B. Adenovirus-positive findings in patients with mantle cell lymphoma were made at different sites including bone marrow (n=7), intestine (n=5), lymph nodes (n=2) and tonsillar tissue (n=1). The presence of adenoviral sequences identified by PCR was confirmed in individual cells by fluorescence in-situ hybridisation (FISH). The frequent observation of adenoviruses in mantle cell lymphoma is intriguings, and raises questions about their possible involvement in the pathogenesis of this lymphoid malignancy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Genetic Retargeting of Adenovirus: Novel Strategy Employing “Deknobbing” of the Fiber

    PubMed Central

    Magnusson, Maria K.; Hong, Saw See; Boulanger, Pierre; Lindholm, Leif

    2001-01-01

    For efficient and versatile use of adenovirus (Ad) as an in vivo gene therapy vector, modulation of the viral tropism is highly desirable. In this study, a novel method to genetically alter the Ad fiber tropism is described. The knob and the last 15 shaft repeats of the fiber gene were deleted and replaced with an external trimerization motif and a new cell-binding ligand, in this case the integrin-binding motif RGD. The corresponding recombinant fiber retained the basic biological functions of the natural fiber, i.e., trimerization, nuclear import, penton formation, and ligand binding. The recombinant fiber bound to integrins but failed to react with antiknob antibody. For virus production, the recombinant fiber gene was rescued into the Ad genome at the exact position of the wild-type (WT) fiber to make use of the native regulation of fiber expression. The recombinant virus Ad5/FibR7-RGD yielded plaques on 293 cells, but the spread through the monolayer was two to three times delayed compared to WT, and the ratio of infectious to physical particles was 20 times lower. Studies on virus tropism showed that Ad5/FibR7-RGD was able to infect cells which did not express the coxsackie-adenovirus receptor (CAR), but did express integrins. Ad5/FibR7-RGD virus infectivity was unchanged in the presence of antiknob antibody, which neutralized the WT virus. Ad5/FibR7-RGD virus showed an expanded tropism, which is useful when gene transfer to cells not expressing CAR is needed. The described method should also make possible the construction of Ad genetically retargeted via ligands other than RGD. PMID:11462000

  19. Experimental Cross-Species Infection of Common Marmosets by Titi Monkey Adenovirus

    PubMed Central

    Chen, Eunice C.; Liu, Maria; Brasky, Kathleen M.; Lanford, Robert E.; Kelly, Kristi R.; Bales, Karen L.; Schnurr, David P.; Canfield, Don R.; Patterson, Jean L.; Chiu, Charles Y.

    2013-01-01

    Adenoviruses are DNA viruses that infect a number of vertebrate hosts and are associated with both sporadic and epidemic disease in humans. We previously identified a novel adenovirus, titi monkey adenovirus (TMAdV), as the cause of a fulminant pneumonia outbreak in a colony of titi monkeys (Callicebus cupreus) at a national primate center in 2009. Serological evidence of infection by TMAdV was also found in a human researcher at the facility and household family member, raising concerns for potential cross-species transmission of the virus. Here we present experimental evidence of cross-species TMAdV infection in common marmosets (Callithrix jacchus). Nasal inoculation of a cell cultured-adapted TMAdV strain into three marmosets produced an acute, mild respiratory illness characterized by low-grade fever, reduced activity, anorexia, and sneezing. An increase in virus-specific neutralization antibody titers accompanied the development of clinical signs. Although serially collected nasal swabs were positive for TMAdV for at least 8 days, all 3 infected marmosets spontaneously recovered by day 12 post-inoculation, and persistence of the virus in tissues could not be established. Thus, the pathogenesis of experimental inoculation of TMAdV in common marmosets resembled the mild, self-limiting respiratory infection typically seen in immunocompetent human hosts rather than the rapidly progressive, fatal pneumonia observed in 19 of 23 titi monkeys during the prior 2009 outbreak. These findings further establish the potential for adenovirus cross-species transmission and provide the basis for development of a monkey model useful for assessing the zoonotic potential of adenoviruses. PMID:23894316

  20. The Role of Capsid Maturation on Adenovirus Priming for Sequential Uncoating*

    PubMed Central

    Pérez-Berná, Ana J.; Ortega-Esteban, Alvaro; Menéndez-Conejero, Rosa; Winkler, Dennis C.; Menéndez, Margarita; Steven, Alasdair C.; Flint, S. Jane; de Pablo, Pedro J.; San Martín, Carmen

    2012-01-01

    Adenovirus assembly concludes with proteolytic processing of several capsid and core proteins. Immature virions containing precursor proteins lack infectivity because they cannot properly uncoat, becoming trapped in early endosomes. Structural studies have shown that precursors increase the network of interactions maintaining virion integrity. Using different biophysical techniques to analyze capsid disruption in vitro, we show that immature virions are more stable than the mature ones under a variety of stress conditions and that maturation primes adenovirus for highly cooperative DNA release. Cryoelectron tomography reveals that under mildly acidic conditions mimicking the early endosome, mature virions release pentons and peripheral core contents. At higher stress levels, both mature and immature capsids crack open. The virus core is completely released from cracked capsids in mature virions, but it remains connected to shell fragments in the immature particle. The extra stability of immature adenovirus does not equate with greater rigidity, because in nanoindentation assays immature virions exhibit greater elasticity than the mature particles. Our results have implications for the role of proteolytic maturation in adenovirus assembly and uncoating. Precursor proteins favor assembly by establishing stable interactions with the appropriate curvature and preventing premature ejection of contents by tightly sealing the capsid vertices. Upon maturation, core organization is looser, particularly at the periphery, and interactions preserving capsid curvature are weakened. The capsid becomes brittle, and pentons are more easily released. Based on these results, we hypothesize that changes in core compaction during maturation may increase capsid internal pressure to trigger proper uncoating of adenovirus. PMID:22791715

  1. Immune responses in macaques to a prototype recombinant adenovirus live oral human papillomavirus 16 vaccine.

    PubMed

    Berg, Michael G; Adams, Robert J; Gambhira, Ratish; Siracusa, Mark C; Scott, Alan L; Roden, Richard B S; Ketner, Gary

    2014-09-01

    Immunization with human papillomavirus (HPV) L1 virus-like particles (VLPs) prevents infection with HPV. However, the expense and logistical demands of current VLP vaccines will limit their widespread use in resource-limited settings, where most HPV-induced cervical cancer occurs. Live oral adenovirus vaccines have properties that are well-suited for use in such settings. We have described a live recombinant adenovirus vaccine prototype that produces abundant HPV16 L1 protein from the adenovirus major late transcriptional unit and directs the assembly of HPV16 VLPs in tissue culture. Recombinant-derived VLPs potently elicit neutralizing antibodies in mice. Here, we characterize the immune response to the recombinant after dual oral and intranasal immunization of pigtail macaques, in which the virus replicates as it would in immunized humans. The immunization of macaques induced vigorous humoral responses to adenovirus capsid and nonstructural proteins, although, surprisingly, not against HPV L1. In contrast, immunization elicited strong T-cell responses to HPV VLPs as well as adenovirus virions. T-cell responses arose immediately after the primary immunization and were boosted by a second immunization with recombinant virus. T-cell immunity contributes to protection against a wide variety of pathogens, including many viruses. The induction of a strong cellular response by the recombinant indicates that live adenovirus recombinants have potential as vaccines for those agents. These studies encourage and will inform the continued development of viable recombinant adenovirus vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Security authentication using phase-encoded nanoparticle structures and polarized light.

    PubMed

    Carnicer, Artur; Hassanfiroozi, Amir; Latorre-Carmona, Pedro; Huang, Yi-Pai; Javidi, Bahram

    2015-01-15

    Phase-encoded nanostructures such as quick response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase-encoded QR codes. The system is illuminated using polarized light, and the QR code is encoded using a phase-only random mask. Using classification algorithms, it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase-encoded QR codes using polarimetric signatures.

  3. Structure of a Reptilian Adenovirus Reveals a Phage Tailspike Fold Stabilizing a Vertebrate Virus Capsid.

    PubMed

    Menéndez-Conejero, Rosa; Nguyen, Thanh H; Singh, Abhimanyu K; Condezo, Gabriela N; Marschang, Rachel E; van Raaij, Mark J; San Martín, Carmen

    2017-10-03

    Although non-human adenoviruses (AdVs) might offer solutions to problems posed by human AdVs as therapeutic vectors, little is known about their basic biology. In particular, there are no structural studies on the complete virion of any AdV with a non-mammalian host. We combine mass spectrometry, cryo-electron microscopy, and protein crystallography to characterize the composition and structure of a snake AdV (SnAdV-1, Atadenovirus genus). SnAdV-1 particles contain the genus-specific proteins LH3, p32k, and LH2, a previously unrecognized structural component. Remarkably, the cementing protein LH3 has a trimeric β helix fold typical of bacteriophage host attachment proteins. The organization of minor coat proteins differs from that in human AdVs, correlating with higher thermostability in SnAdV-1. These findings add a new piece to the intriguing puzzle of virus evolution, hint at the use of cell entry pathways different from those in human AdVs, and will help development of new, thermostable SnAdV-1-based vectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Gene therapy in the inner ear using adenovirus vectors.

    PubMed

    Husseman, Jacob; Raphael, Yehoash

    2009-01-01

    Therapies for the protection and regeneration of auditory hair cells are of great interest given the significant monetary and lifestyle impact of hearing loss. The past decade has seen tremendous advances in the use of adenoviral vectors to achieve these aims. Preliminary data demonstrated the functional capacity of this technique as adenoviral-induced expression of neurotrophic and growth factors protected hair cells and spiral ganglion neurons from ototoxic insults. Subsequent efforts confirmed the feasibility of adenoviral transfection of cells in the auditory neuroepithelium via cochleostomy into the scala media. Most recently, efforts have focused on regeneration of depleted hair cells. Mammalian hearing loss is generally considered a permanent insult as the auditory epithelium lacks a basal layer capable of producing new hair cells. Recently, the transcription factor Atoh1 has been found to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo have shown the ability to regenerate auditory and vestibular hair cells by causing transdifferentiation of neighboring epithelial-supporting cells. Functional recovery of both the auditory and vestibular systems has been documented following adenoviral induced Atoh1 overexpression. Copyright (c) 2009 S. Karger AG, Basel.

  5. Co-infection with human polyomavirus BK enhances gene expression and replication of human adenovirus.

    PubMed

    Bil-Lula, Iwona; Woźniak, Mieczysław

    2018-03-26

    Immunocompromised patients are susceptible to multiple viral infections. Relevant interactions between co-infecting viruses might result from viral regulatory genes which trans-activate or repress the expression of host cell genes as well as the genes of any co-infecting virus. The aim of the current study was to show that the replication of human adenovirus 5 is enhanced by co-infection with BK polyomavirus and is associated with increased expression of proteins including early region 4 open reading frame 1 and both the large tumor antigen and small tumor antigen. Clinical samples of whole blood and urine from 156 hematopoietic stem cell transplant recipients were tested. We also inoculated adenocarcinomic human alveolar basal epithelial cells with both human adenovirus 5 and BK polyomavirus to evaluate if co-infection of viruses affected their replication. Data showed that adenovirus load was significantly higher in the plasma (mean 7.5 x 10 3  ± 8.5 x 10 2 copies/ml) and urine (mean 1.9 x 10 3  ± 8.0 x 10 2 copies/ml) of samples from patients with co-infections, in comparison to samples from patients with isolated adenovirus infection. In vitro co-infection led to an increased (8.6 times) expression of the adenovirus early region 4 open reading frame gene 48 hours post-inoculation. The expression of the early region 4 open reading frame gene positively correlated with the expression of BK polyomavirus large tumor antigen (r = 0.90, p < 0.0001) and small tumor antigen (r = 0.83, p < 0.001) genes. The enhanced expression of the early region 4 open reading frame gene due to co-infection with BK polyomavirus was associated with enhanced adenovirus, but not BK polyomavirus, replication. The current study provides evidence that co-infection of adenovirus and BK polyomavirus contributes to enhanced adenovirus replication. Data obtained from this study may have significant importance in the clinical setting.

  6. An oncolytic adenovirus regulated by a radiation-inducible promoter selectively mediates hSulf-1 gene expression and mutually reinforces antitumor activity of I131-metuximab in hepatocellular carcinoma.

    PubMed

    Zhang, Yan; Fang, Lin; Zhang, Quan'an; Zheng, Qin; Tong, Jinlong; Fu, Xiaohui; Jiang, Xiaoqing; Su, Changqing; Zheng, Junnian

    2013-06-01

    Gene therapy and antibody approaches are crucial auxiliary strategies for hepatocellular carcinoma (HCC) treatment. Previously, we established a survivin promoter-regulated oncolytic adenovirus that has inhibitory effect on HCC growth. The human sulfatase-1 (hSulf-1) gene can suppress the growth factor signaling pathways, then inhibit the proliferation of cancer cells and enhance cellular sensitivity to radiotherapy and chemotherapy. I(131)-metuximab (I(131)-mab) is a monoclonal anti-HCC antibody that conjugated to I(131) and specifically recognizes the HAb18G/CD147 antigen on HCC cells. To integrate the oncolytic adenovirus-based gene therapy and the I(131)-mab-based radioimmunotherapy, this study combined the CArG element of early growth response-l (Egr-l) gene with the survivin promoter to construct a radiation-inducible enhanced promoter, which was used to recombine a radiation-inducible oncolytic adenovirus as hSulf-1 gene vector. When I(131)-mab was incorporated into the treatment regimen, not only could the antibody produce radioimmunotherapeutic effect, but the I(131) radiation was able to further boost adenoviral proliferation. We demonstrated that the CArG-enhanced survivin promoter markedly improved the proliferative activity of the oncolytic adenovirus in HCC cells, thereby augmenting hSulf-1 expression and inducing cancer cell apoptosis. This novel strategy that involved multiple, synergistic mechanisms, including oncolytic therapy, gene therapy and radioimmunotherapy, was demonstrated to exert an excellent anti-cancer outcome, which will be a promising approach in HCC treatment. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle.

    PubMed

    Dulal, Pawan; Wright, Daniel; Ashfield, Rebecca; Hill, Adrian V S; Charleston, Bryan; Warimwe, George M

    2016-04-29

    Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 ° C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the 'cold chain' vaccine (stored at -80 ° C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates

    PubMed Central

    Kirtley, Michelle L.; Klages, Curtis; Erova, Tatiana E.; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C.; Baze, Wallace B.; Sivasubramani, Satheesh K.; Lawrence, William S.; Patrikeev, Igor; Peel, Jennifer E.; Andersson, Jourdan A.; Kozlova, Elena V.; Tiner, Bethany L.; Peterson, Johnny W.; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L.

    2016-01-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis. We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  9. [Research advance on role of Coxsackie and adenovirus receptor (CAR) in tumor progression].

    PubMed

    Fan, Liang-Sheng; Chen, Gang; Ma, Ding

    2009-03-01

    Coxsackie and adenovirus receptor (CAR) is originally identified as the cellular receptor of 2-and 5-type adenoviruses. Many researches have suggested that CAR can affect the growth, adhesive ability and cytoskeleton of tumor cells, and has complicated functions in metastasis and invasion of tumors. Moreover, the expression of CAR has close relationship with tumor prognosis and cytoreduction mediated by adenoviruses. CAR has become a new hotspot in the research on mechanism of tumor progression and gene therapy. Our review focuses on the structure and function of CAR and its role in mediating occurrence and progression of tumor.

  10. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Duan, Junxin; Tang, Lan

    2015-09-22

    The present invention provides isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cell comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having cellobiohydrolase activitiy and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Duan, Junxin

    2015-12-15

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-07-14

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Conditionally replicative adenovirus for gastrointestinal cancers.

    PubMed

    Yamamoto, Masato

    2004-08-01

    The clinical outcome of advanced gastrointestinal (GI) cancers (especially pancreatic and oesophageal cancers) is dismal, despite the advance of conventional therapeutic strategies. Cancer gene therapy is a category of new therapeutics, among which conditionally replicative adenovirus (CRAd) is one promising strategy to overcome existing obstacles of cancer gene therapy. Various CRAds have been developed for GI cancer treatment by taking advantage of the replication biology of adenovirus. Some CRAds have already been tested in clinical trials, but have fallen short of initial expectations. Concerns for clinical applicability include therapeutic potency, replication selectivity and interval end points in clinical trials. In addition, improvement of experimental animal models is needed for a deeper understanding of CRAd biology. Despite these obstacles, CRAds continue to be an exciting area of investigation with great potential for clinical utility. Further virological and oncological research will eventually lead to full realisation of the therapeutic potential of CRAds in the field of GI cancers.

  14. Widespread and highly persistent gene transfer to the CNS by retrovirus vector in utero: implication for gene therapy to Krabbe disease.

    PubMed

    Shen, Jin-Song; Meng, Xing-Li; Yokoo, Takashi; Sakurai, Ken; Watabe, Kazuhiko; Ohashi, Toya; Eto, Yoshikatsu

    2005-05-01

    Brain-directed prenatal gene therapy may benefit some lysosomal storage diseases that affect the central nervous system (CNS) before birth. Our previous study showed that intrauterine introduction of recombinant adenoviruses into cerebral ventricles results in efficient gene transfer to the CNS in the mouse. However, transgene expression decreased with time due to the non-integrative property of adenoviral vectors. In this study, in order to obtain permanent gene transduction, we investigated the feasibility of retrovirus-mediated in utero gene transduction. Concentrated retrovirus encoding the LacZ gene was injected into the cerebral ventricles of the embryos of normal and twitcher mice (a murine model of Krabbe disease) at embryonic day 12. The distribution and maintenance of the transgene expression in the recipient brain were analyzed histochemically, biochemically and by the quantitative polymerase chain reaction method pre- and postnatally. Efficient and highly persistent gene transduction to the brain was achieved both in normal and the twitcher mouse. Transduced neurons, astrocytes and oligodendrocytes were distributed throughout the brain. The transduced LacZ gene, its transcript and protein expression in the brain were maintained for 14 months without decrement. In addition, gene transduction to multiple tissues other than the brain was also detected at low levels. This study suggests that brain-directed in utero gene transfer using retrovirus vector may be beneficial to the treatment of lysosomal storage diseases with severe brain damage early in life, such as Krabbe disease. Copyright (c) 2005 John Wiley & Sons, Ltd.

  15. Optimization and evaluation of a method to detect adenoviruses in river water

    EPA Pesticide Factsheets

    This dataset includes the recoveries of spiked adenovirus through various stages of experimental optimization procedures. This dataset is associated with the following publication:McMinn , B., A. Korajkic, and A. Grimm. Optimization and evaluation of a method to detect adenoviruses in river water. JOURNAL OF VIROLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 231(1): 8-13, (2016).

  16. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    PubMed Central

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world. PMID:21199707

  17. Comparison of different approaches to quantitative adenovirus detection in stool specimens of hematopoietic stem cell transplant recipients.

    PubMed

    Kosulin, K; Dworzak, S; Lawitschka, A; Matthes-Leodolter, S; Lion, T

    2016-12-01

    Adenoviruses almost invariably proliferate in the gastrointestinal tract prior to dissemination, and critical threshold concentrations in stool correlate with the risk of viremia. Monitoring of adenovirus loads in stool may therefore be important for timely initiation of treatment in order to prevent invasive infection. Comparison of a manual DNA extraction kit in combination with a validated in-house PCR assay with automated extraction on the NucliSENS-EasyMAG device coupled with the Adenovirus R-gene kit (bioMérieux) for quantitative adenovirus analysis in stool samples. Stool specimens spiked with adenovirus concentrations in a range from 10E2-10E11 copies/g and 32 adenovirus-positive clinical stool specimens from pediatric stem cell transplant recipients were tested along with appropriate negative controls. Quantitative analysis of viral load in adenovirus-positive stool specimens revealed a median difference of 0.5 logs (range 0.1-2.2) between the detection systems tested and a difference of 0.3 logs (range 0.0-1.7) when the comparison was restricted to the PCR assays only. Spiking experiments showed a detection limit of 10 2 -10 3 adenovirus copies/g stool revealing a somewhat higher sensitivity offered by the automated extraction. The dynamic range of accurate quantitative analysis by both systems investigated was between 10 3 and 10 8 virus copies/g. The differences in quantitative analysis of adenovirus copy numbers between the systems tested were primarily attributable to the DNA extraction method used, while the qPCR assays revealed a high level of concordance. Both systems showed adequate performance for detection and monitoring of adenoviral load in stool specimens. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez de Leon, Alfredo; Rey, Michael

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2012-09-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2010-12-14

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Lopez de Leon, Alfredo [Davis, CA; Rey, Micheal [Davis, CA; Ding, Hanshu [Davis, CA; Vlasenko, Elena [Davis, CA

    2012-02-21

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  6. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-06-28

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2016-05-31

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-02-10

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-02-23

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Ding, Hanshu

    2013-04-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Hanshu, Ding

    2012-10-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-11-20

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-01-27

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-21

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-03-10

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2017-05-02

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-03-31

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Brown, Kimberly [Elk Grove, CA; Harris, Paul [Carnation, WA; Lopez De Leon, Alfredo [Davis, CA; Merino, Sandra [West Sacremento, CA

    2007-05-22

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Harris, Paul; Tang, Lan; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.