Science.gov

Sample records for adenylyl cyclase activity

  1. Prenatal exposure to cocaine decreases adenylyl cyclase activity in embryonic mouse striatum.

    PubMed

    Unterwald, Ellen M; Ivkovic, Sanja; Cuntapay, Marie; Stroppolo, Antonella; Guinea, Barbara; Ehrlich, Michelle E

    2003-12-30

    Adenylyl cyclase activity was measured in the striatum of naive mice as a function of age and in mice exposed in utero to cocaine. In naive Swiss-Webster mice, basal and forskolin-stimulated adenylyl cyclase activity increased gradually from embryonic day 13 (E13) until 2-3 weeks of age when activity peaked before decreasing slightly to adult levels. The ability of the dopamine D1 receptor agonist, SKF 82958, to stimulate adenylyl cyclase activity also increased in magnitude until P15. In a separate study, pregnant Swiss-Webster mice were injected twice daily with cocaine (15 mg/kg, s.c.) or an equal volume of saline from E10 to E17. Adenylyl cyclase activity was measured in the striatum of E18 embryos. Basal adenylyl cyclase activity was significantly reduced following prenatal exposure to cocaine. Likewise, the ability of forskolin or SKF 82958 to stimulate adenylyl cyclase was attenuated following cocaine exposure. DeltaFosB was not induced, contrary to what is seen in adult mice. These results demonstrate a functional change in a critical signal transduction pathway following chronic in utero exposure to cocaine that might have profound effects of the development of the brain. Alterations in the cAMP system may underlie some of the deficits seen in humans exposed in utero to cocaine. PMID:14741752

  2. Nerve growth factor-induced differentiation of PC12 cells is accompanied by elevated adenylyl cyclase activity.

    PubMed

    Yung, H S; Lai, K H; Chow, K B S; Ip, N Y; Tsim, K W K; Wong, Y H; Wu, Z; Wise, H

    2010-01-01

    Rat pheochromocytoma (PC12) cells characteristically undergo differentiation when cultured with nerve growth factor (NGF). Here we show that NGF dramatically increased the adenylyl cyclase-activating property of forskolin in PC12 cells. This effect of NGF was well maintained even when NGF was removed after 4 days, even though the morphological features of neuronal differentiation were rapidly lost on removal of NGF. The enhanced cAMP production in response to forskolin could be due to a synergistic interaction between forskolin and endogenously released agonists acting on G(s)-coupled receptors. However, responses to forskolin were not attenuated by antagonists of adenosine A2 receptors or pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, suggesting that adenosine and PACAP were not involved. Adenylyl cyclases 3, 6 and 9 were the predominant isoforms expressed in PC12 cells, but we found no evidence for NGF-induced changes in expression levels of any of the 9 adenylyl cyclase isoforms, nor in the expression of Gα(s). These findings highlight that NGF has a subtle influence on adenylyl cyclase activity in PC12 cells which may influence more than the neurite extension process classically associated with neuronal differentiation. PMID:20389133

  3. Soluble Adenylyl Cyclase in Health and Disease

    PubMed Central

    Schmid, Andreas; Meili, Dimirela; Salathe, Matthias

    2014-01-01

    The second messenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was recently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary, structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases (tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by HCO3-, Ca2+ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC in different human tissues with a major focus on the lung. PMID:25064591

  4. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus.

    PubMed

    Hurwitz, N; Segal, M; Marbach, I; Levitzki, A

    1995-11-21

    Although both Ras1 and Ras2 activate adenylyl cyclase in yeast, a number of differences can be observed regarding their function in the cAMP pathway. To explore the relative contribution of conserved and variable domains in determining these differences, chimeric RAS1-RAS2 or RAS2-RAS1 genes were constructed by swapping the sequences encoding the variable C-terminal domains. These constructs were expressed in a cdc25ts ras1 ras2 strain. Biochemical data show that the difference in efficacy of adenylyl cyclase activation between the two Ras proteins resides in the highly conserved N-terminal domain. This finding is supported by the observation that Ras2 delta, in which the C-terminal domain of Ras2 has been deleted, is a more potent activator of the yeast adenylyl cyclase than Ras1 delta, in which the C-terminal domain of Ras1 has been deleted. These observations suggest that amino acid residues other than the highly conserved residues of the effector domain within the N terminus may determine the efficiency of functional interaction with adenylyl cyclase. Similar levels of intracellular cAMP were found in Ras1, Ras1-Ras2, Ras1 delta, Ras2, and Ras2-Ras1 strains throughout the growth curve. This was found to result from the higher expression of Ras1 and Ras1-Ras2, which compensate for their lower efficacy in activating adenylyl cyclase. These results suggest that the difference between the Ras1 and the Ras2 phenotype is not due to their different efficacy in activating the cAMP pathway and that the divergent C-terminal domains are responsible for these differences, through interaction with other regulatory elements. PMID:7479926

  5. Efficacy of inverse agonists in cells overexpressing a constitutively active β2-adrenoceptor and type II adenylyl cyclase

    PubMed Central

    Stevens, Patricia A; Milligan, Graeme

    1998-01-01

    Maximal stimulant output from the adenylyl cyclase cascade in neuroblastoma × glioma hybrid, NG108-15, cells is limited by the levels of expression of isoforms of adenylyl cyclase. Stable expression in these cells of a constitutively active mutant (CAM) version of the human β2-adrenoceptor resulted in higher basal adenylyl cyclase activity than following expression of the human wild type β2-adrenoceptor. Isoprenaline acted as a full agonist in membranes from both wild type and CAM β2-adrenoceptor expressing clones.Expression of type II adenylyl cyclase resulted in a substantially elevated capacity of isoprenaline to stimulate [3H]-forskolin binding, whereas in CAM β2-adrenoceptor expressing cells the basal high affinity [3H]-forskolin binding represented a markedly greater % of the maximal effect which could be produced by addition of isoprenaline, and the EC50 for isoprenaline was some 10 fold lower than in cells expressing the wild type β2-adrenoceptor.Further transfection of the CAM β2-adrenoceptor expressing cells with type II adenylyl cyclase greatly increased both absolute basal and agonist-stimulated levels of adenylyl cyclase activity.Betaxolol, ICI 118,551, sotalol and timolol acted as inverse agonists with varying degrees of efficacy, whereas propranolol functioned as a neutral antagonist and alprenolol as a partial agonist.Pretreatment of the CAM β2-adrenoceptor and type II adenylyl cyclase expressing clones with the irreversible alkylating agent BAAM (1 μM) did not reduce the efficacy of isoprenaline but eliminated efficacy from all the inverse agonist ligands. This effect was dependent upon the concentration of BAAM employed, with half-maximal effects being produced between 10 nM and 100 nM of the alkylating agent, which is similar to the concentrations required to prevent subsequent ligand access to some 50% of the CAM β2-adrenoceptor population.These data demonstrate that inverse agonist efficacy can be modulated by receptor

  6. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  7. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  8. Persistent Electrical Activity in Primary Nociceptors after Spinal Cord Injury Is Maintained by Scaffolded Adenylyl Cyclase and Protein Kinase A and Is Associated with Altered Adenylyl Cyclase Regulation

    PubMed Central

    Bavencoffe, Alexis; Li, Yong; Wu, Zizhen; Yang, Qing; Herrera, Juan; Kennedy, Eileen J.

    2016-01-01

    Little is known about intracellular signaling mechanisms that persistently excite neurons in pain pathways. Persistent spontaneous activity (SA) generated in the cell bodies of primary nociceptors within dorsal root ganglia (DRG) has been found to make major contributions to chronic pain in a rat model of spinal cord injury (SCI) (Bedi et al., 2010; Yang et al., 2014). The occurrence of SCI-induced SA in a large fraction of DRG neurons and the persistence of this SA long after dissociation of the neurons provide an opportunity to define intrinsic cell signaling mechanisms that chronically drive SA in pain pathways. The present study demonstrates that SCI-induced SA requires continuing activity of adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA), as well as a scaffolded complex containing AC5/6, A-kinase anchoring protein 150 (AKAP150), and PKA. SCI caused a small but significant increase in the expression of AKAP150 but not other AKAPs. DRG membranes isolated from SCI animals revealed a novel alteration in the regulation of AC. AC activity stimulated by Ca2+-calmodulin increased, while the inhibition of AC activity by Gαi showed an unexpected and dramatic decrease after SCI. Localized enhancement of the activity of AC within scaffolded complexes containing PKA is likely to contribute to chronic pathophysiological consequences of SCI, including pain, that are promoted by persistent hyperactivity in DRG neurons. SIGNIFICANCE STATEMENT Chronic neuropathic pain is a major clinical problem with poorly understood mechanisms and inadequate treatments. Recent findings indicate that chronic pain in a rat SCI model depends upon hyperactivity in dorsal root ganglia (DRG) neurons. Although cAMP signaling is involved in many forms of neural plasticity, including hypersensitivity of nociceptors in the presence of inflammatory mediators, our finding that continuing cAMP-PKA signaling is required for persistent SA months after SCI and long after isolation of

  9. Correlation between Activity and Domain Complementation in Adenylyl Cyclase Demonstrated with a Novel Fluorescence Resonance Energy Transfer Sensor.

    PubMed

    Ritt, Michael; Sivaramakrishnan, Sivaraj

    2016-04-01

    Adenylyl cyclase (AC) activity relies on multiple effectors acting through distinct binding sites. Crystal structures have revealed the location of these sites, and biochemical studies have explored the kinetics of ACs, but the interplay between conformation and activity remains incompletely understood. Here, we describe a novel fluorescence resonance energy transfer (FRET) sensor that functions both as a soluble cyclase and a reporter of complementation within the catalytic domain. We report a strong linear correlation between catalytic domain complementation and cyclase activity upon stimulation with forskolin and Gαs. Exploiting this, we dissect the mechanism of action of a series of forskolin analogs and a P-site inhibitor, 2'-d3'-AMP. Finally, we demonstrate that this sensor is functional in live cells, wherein it reports forskolin-stimulated activity of AC. PMID:26801393

  10. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site.

    PubMed

    Kleinboelting, Silke; Ramos-Espiritu, Lavoisier; Buck, Hannes; Colis, Laureen; van den Heuvel, Joop; Glickman, J Fraser; Levin, Lonny R; Buck, Jochen; Steegborn, Clemens

    2016-04-29

    The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs. PMID:26961873

  11. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene

    PubMed Central

    Rodriguez-Centeno, Javier; Sastre, Leandro

    2016-01-01

    Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation. PMID:26840347

  12. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene.

    PubMed

    Rodriguez-Centeno, Javier; Sastre, Leandro

    2016-01-01

    Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation. PMID:26840347

  13. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    Gallagher, D.T.; Robinson, H.; Kim, S.-K.; Reddy, P. T.

    2011-01-21

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV)-two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  14. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    D Gallagher; S Kim; H Robinson; P Reddy

    2011-12-31

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV) - two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  15. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role.

    PubMed

    Barott, K L; Helman, Y; Haramaty, L; Barron, M E; Hess, K C; Buck, J; Levin, L R; Tresguerres, M

    2013-01-01

    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had >1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels. PMID:23459251

  16. Transmembrane adenylyl cyclase regulates amphibian sperm motility through Protein Kinase A activation

    PubMed Central

    O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.

    2014-01-01

    Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515

  17. Regulation and organization of adenylyl cyclases and cAMP.

    PubMed Central

    Cooper, Dermot M F

    2003-01-01

    Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments. PMID:12940771

  18. Requirements for the adenylyl cyclases in the development of Dictyostelium.

    PubMed

    Anjard, C; Söderbom, F; Loomis, W F

    2001-09-01

    It has been suggested that all intracellular signaling by cAMP during development of Dictyostelium is mediated by the cAMP-dependent protein kinase, PKA, since cells carrying null mutations in the acaA gene that encodes adenylyl cyclase can develop so as to form fruiting bodies under some conditions if PKA is made constitutive by overexpressing the catalytic subunit. However, a second adenylyl cyclase encoded by acrA has recently been found that functions in a cell autonomous fashion during late development. We have found that expression of a modified acaA gene rescues acrA- mutant cells indicating that the only role played by ACR is to produce cAMP. To determine whether cells lacking both adenylyl cyclase genes can develop when PKA is constitutive we disrupted acrA in a acaA- PKA-C(over) strain. When developed at high cell densities, acrA- acaA- PKA-C(over) cells form mounds, express cell type-specific genes at reduced levels and secrete cellulose coats but do not form fruiting bodies or significant numbers of viable spores. Thus, it appears that synthesis of cAMP is required for spore differentiation in Dictyostelium even if PKA activity is high. PMID:11566867

  19. Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate

    PubMed Central

    Kleinboelting, Silke; Diaz, Ana; Moniot, Sebastien; van den Heuvel, Joop; Weyand, Michael; Levin, Lonny R.; Buck, Jochen; Steegborn, Clemens

    2014-01-01

    cAMP is an evolutionary conserved, prototypic second messenger regulating numerous cellular functions. In mammals, cAMP is synthesized by one of 10 homologous adenylyl cyclases (ACs): nine transmembrane enzymes and one soluble AC (sAC). Among these, only sAC is directly activated by bicarbonate (HCO3−); it thereby serves as a cellular sensor for HCO3−, carbon dioxide (CO2), and pH in physiological functions, such as sperm activation, aqueous humor formation, and metabolic regulation. Here, we describe crystal structures of human sAC catalytic domains in the apo state and in complex with substrate analog, products, and regulators. The activator HCO3− binds adjacent to Arg176, which acts as a switch that enables formation of the catalytic cation sites. An anionic inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, inhibits sAC through binding to the active site entrance, which blocks HCO3− activation through steric hindrance and trapping of the Arg176 side chain. Finally, product complexes reveal small, local rearrangements that facilitate catalysis. Our results provide a molecular mechanism for sAC catalysis and cellular HCO3− sensing and a basis for targeting this system with drugs. PMID:24567411

  20. Retigeric Acid B Attenuates the Virulence of Candida albicans via Inhibiting Adenylyl Cyclase Activity Targeted by Enhanced Farnesol Production

    PubMed Central

    Chang, Wenqiang; Li, Ying; Zhang, Li; Cheng, Aixia; Lou, Hongxiang

    2012-01-01

    Candida albicans, the most prevalent fungal pathogen, undergoes yeast-to-hyphal switch which has long been identified as a key fungal virulence factor. We showed here that the lichen-derived small molecule retigeric acid B (RAB) acted as an inhibitor that significantly inhibited the filamentation of C. albicans, leading to the prolonged survival of nematodes infected by C. albicans. Quantitative real-time PCR analysis and intracellular cAMP measurement revealed RAB regulated the Ras1-cAMP-Efg1 pathway by reducing cAMP level to inhibit the hyphae formation. Confocal microscopic observation showed RAB induced the expression of Dpp3, synthesizing more farnesol, which was confirmed by gas chromatography-mass spectroscopy detection. An adenylyl cyclase activity assay demonstrated RAB could repress the activity of Cdc35 through stimulating farnesol synthesis, thus causing a decrease in cAMP synthesis, leading to retarded yeast-to-hyphal transition. Moreover, reduced levels of intracellular cAMP resulted in the inhibition of downstream adhesins. Together, these findings indicate that RAB stimulates farnesol production that directly inhibits the Cdc35 activity, reducing the synthesis of cAMP and thereby causing the disruption of the morphologic transition and attenuating the virulence of C. albicans. Our work illustrates the underlying mechanism of RAB-dependent inhibition of the yeast-to-hyphal switch and provides a potential application in treating the infection of C. albicans. PMID:22848547

  1. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  2. Functional non-nucleoside adenylyl cyclase inhibitors.

    PubMed

    Lelle, Marco; Hameed, Abdul; Ackermann, Lisa-Maria; Kaloyanova, Stefka; Wagner, Manfred; Berisha, Filip; Nikolaev, Viacheslav O; Peneva, Kalina

    2015-05-01

    In this study, we describe the synthesis of novel functional non-nucleoside adenylyl cyclase inhibitors, which can be easily modified with thiol containing biomolecules such as tumour targeting structures. The linkage between inhibitor and biomolecule contains cleavable bonds to enable efficient intracellular delivery in the reductive milieu of the cytosol as well as in the acidic environment within endosomes and lysosomes. The suitability of this synthetic approach was shown by the successful bioconjugation of a poor cell-permeable inhibitor with a cell-penetrating peptide. Additionally, we have demonstrated the excellent inhibitory effect of the compounds presented here in a live-cell Förster resonance energy transfer-based assay in human embryonic kidney cells. PMID:25319071

  3. Pituitary adenylyl cyclase-activating peptide: A pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock

    PubMed Central

    Chen, Dong; Buchanan, Gordon F.; Ding, Jian M.; Hannibal, Jens; Gillette, Martha U.

    1999-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus organizes behavioral rhythms, such as the sleep–wake cycle, on a near 24-h time base and synchronizes them to environmental day and night. Light information is transmitted to the SCN by direct retinal projections via the retinohypothalamic tract (RHT). Both glutamate (Glu) and pituitary adenylyl cyclase-activating peptide (PACAP) are localized within the RHT. Whereas Glu is an established mediator of light entrainment, the role of PACAP is unknown. To understand the functional significance of this colocalization, we assessed the effects of nocturnal Glu and PACAP on phasing of the circadian rhythm of neuronal firing in slices of rat SCN. When coadministered, PACAP blocked the phase advance normally induced by Glu during late night. Surprisingly, blocking PACAP neurotransmission, with either PACAP6–38, a specific PACAP receptor antagonist, or anti-PACAP antibodies, augmented the Glu-induced phase advance. Blocking PACAP in vivo also potentiated the light-induced phase advance of the rhythm of hamster wheel-running activity. Conversely, PACAP enhanced the Glu-induced delay in the early night, whereas PACAP6–38 inhibited it. These results reveal that PACAP is a significant component of the Glu-mediated light-entrainment pathway. When Glu activates the system, PACAP receptor-mediated processes can provide gain control that generates graded phase shifts. The relative strengths of the Glu and PACAP signals together may encode the amplitude of adaptive circadian behavioral responses to the natural range of intensities of nocturnal light. PMID:10557344

  4. Cloning, chromosomal mapping, and expression of human fetal brain type I adenylyl cyclase

    SciTech Connect

    Villacres, E.C.; Xia, Z.; Bookbinder, L.H.; Edelhoff, S.; Disteche, C.M.; Storm, D.R.

    1993-05-01

    The neural-specific calmodulin-sensitive adenylyl cyclase (type I), which was first cloned from bovine brain, has been implicated in learning and memory. The objective of this study was to clone and determine the chromosomal localization of human fetal brain type I adenylyl cyclase. A 3.8-kb cDNA clone was isolated that contained sequence coinciding with the 3{prime} end 2553 nucleotides of the bovine open reading frame. This clone shows 87% nucleotide and 92% translated amino acid sequence identity to the bovine clone. The most significant sequence differences were in the carboxy-terminal 100 amino acid residues. This region contains one of several possible calmodulin binding domains and the only putative cAMP-dependent protein kinase A phosphorylation site. A chimera was constructed that contained the 5{prime} half of the bovine type I adenylyl cyclase and the 3{prime} half of the human type I adenylyl cyclase. The activity of the chimeric gene product and its sensitivity to calmodulin and calcium were indistinguishable from those of the bovine type I adenylyl cyclase. In situ hybridization was used to localize the human type I adenylyl cyclase gene to the proximal portion of the short arm of chromosome 7. 36 refs., 4 figs.

  5. Pituitary adenylyl cyclase-activating polypeptide is an intrinsic regulator of Treg abundance and protects against experimental autoimmune encephalomyelitis.

    PubMed

    Tan, Yossan-Var; Abad, Catalina; Lopez, Robert; Dong, Hongmei; Liu, Shen; Lee, Alice; Gomariz, Rosa P; Leceta, Javier; Waschek, James A

    2009-02-10

    Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a widely expressed neuropeptide originally discovered in the hypothalamus. It closely resembles vasoactive intestinal peptide (VIP), a neuropeptide well known to inhibit macrophage activity, promote Th2-type responses, and enhance regulatory T cell (Treg) production. Recent studies have shown that administration of PACAP, like VIP, can attenuate dramatically the clinical and pathological features of murine models of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis. However, specific roles (if any) of endogenous VIP and PACAP in the protection against autoimmune diseases have not been explored. Here, we subjected PACAP-deficient mice to myelin oligodendrocyte glycoprotein (MOG(35-55))-induced EAE. MOG immunization of PACAP-deficient mice triggered heightened clinical and pathological manifestations of EAE compared to wild-type mice. The increased sensitivity was accompanied by enhanced mRNA expression of proinflammatory cytokines (TNFalpha, IL-6, IFN-gamma, IL-12p35, IL-23p19, and IL-17), chemokines (MCP-1/CCL2, MIP-1alpha/CCL3, and RANTES/CCL5), and chemotactic factor receptors (CCR1, CCR2, and CCR5), but downregulation of the anti-inflammatory cytokines (IL-4, IL-10, and TGF-beta) in the spinal cord. Moreover, the abundance of CD4(+)CD25(+)FoxP3(+) Tregs in lymph nodes and levels of FoxP3 mRNA in the spinal cord were also diminished. The reduction in Tregs was associated with increased proliferation and decreased TGF-beta secretion in lymph node cultures stimulated with MOG. These results demonstrate that endogenous PACAP provides protection in EAE and identify PACAP as an intrinsic regulator of Treg abundance after inflammation. PMID:19190179

  6. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    SciTech Connect

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  7. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    SciTech Connect

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  8. Differential effects of ceramides upon adenylyl cyclase subtypes.

    PubMed

    Bösel, A; Pfeuffer, T

    1998-01-30

    Ceramides are reported to stimulate different effector systems, among them atypical protein kinases C (PKCs). When HEK 293 cells, stably expressing adenylyl cyclase type II (AC II), were treated with various ceramide derivatives, adenylyl cyclase activity was enhanced 8-15-fold. The stimulation by the most potent analog, C18/C24 ceramide, was comparable to that by the phorbolester TPA. The stimulatory effect of ceramide was not restricted to AC II, although the type I and type V enzymes were affected less dramatically. Unexpectedly, the dihydro derivatives of ceramides, generally serving as non-activating controls, exhibited only slightly lower stimulation than ceramides, whereas short-chain ceramides (e.g. C2) were without effect. The action of ceramides was at least partially inhibited by okadaic acid, suggesting involvement of a phosphatase. Furthermore, ceramides and TPA operated synergistically. While the PKC inhibitor staurosporine counteracted the action of phorbol-esters, it significantly (2.5x) enhanced the effect of ceramides. PMID:9490008

  9. A HCO3−-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca2+ currents in locus coeruleus neurons

    PubMed Central

    Imber, Ann N.; Santin, Joseph M.; Graham, Cathy D.; Putnam, Robert W.

    2014-01-01

    Hypercapnic acidosis activates Ca2+ channels and increases intracellular Ca2+ levels in neurons of the locus coeruleus (LC), a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca2+-activated K+ channels (BK), in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in LC neurons. Here, we present evidence that the Ca2+ current is activated by a HCO3−-sensitive pathway. The increase in HCO3− associated with hypercapnia activates HCO3−-sensitive adenylyl cyclase (sAC). This results in an increase in cAMP levels and activation of Ca2+ channels via cAMP-activated protein kinase A (PKA). We also show the presence of sAC in the cytoplasm of LC neurons, and that the cAMP analogue db-cAMP increases Ca2+i. Disrupting this pathway by decreasing HCO3− levels during acidification or inhibiting either sAC or PKA, but not transmembrane adenylyl cyclase (tmAC), can increase the magnitude of the firing rate response to hypercapnia in LC neurons from older neonates to the same extent as inhibition of BK channels. PMID:25092170

  10. Role of soluble adenylyl cyclase in the heart

    PubMed Central

    Chen, Jonathan; Levin, Lonny R.

    2012-01-01

    This review discusses the potential place of soluble adenylyl cyclase (sAC) in the framework of signaling in the cardiovascular system. cAMP has been studied as a critical and pleiotropic second messenger in cardiomyocytes, endothelial cells, and smooth muscle vascular cells for many years. It is involved in the transduction of signaling by catecholamines, prostaglandins, adenosine, and glucagon, just to name a few. These hormones can act via cAMP by binding to a G protein-coupled receptor on the plasma membrane with subsequent activation of a heterotrimeric G protein and its downstream effector, transmembrane adenylyl cyclase. This has long been the canonical standard for cAMP production in a cell. However, the relatively recent discovery of a unique source of cAMP, sAC, creates the potential for a shift in this signaling paradigm. In fact, sAC has been shown to play a role in apoptosis in coronary endothelial cells and cardiomyocytes. Additionally, it links nutrient utilization with ATP production in the liver and brain, which suggests one of many potential roles for sAC in cardiac function. The possibility of producing cAMP from a source distal to the plasma membrane provides a critical new building block for reconstructing the cellular signaling infrastructure. PMID:22058150

  11. Molecular identification and functional characterization of an adenylyl cyclase from the honeybee.

    PubMed

    Wachten, Sebastian; Schlenstedt, Jana; Gauss, Renate; Baumann, Arnd

    2006-03-01

    Cyclic AMP (cAMP) serves as an important messenger in virtually all organisms. In the honeybee (Apis mellifera), cAMP-dependent signal transduction has been implicated in behavioural processes as well as in learning and memory. Key components of cAMP-signalling cascades are adenylyl cyclases. However, the molecular identities and biochemical properties of adenylyl cyclases are completely unknown in the honeybee. We have cloned a cDNA (Amac3) from honeybee brain that encodes a membrane-bound adenylyl cyclase. The Amac3 gene is an orthologue of the Drosophila ac39E gene. The corresponding proteins share an overall amino acid similarity of approximately 62%. Phylogenetically, AmAC3 belongs to group 1 adenylyl cyclases. Heterologously expressed AmAC3 displays basal enzymatic activity and efficient coupling to endogenous G protein signalling pathways. Stimulation of beta-adrenergic receptors induces AmAC3 activity with an EC(50) of about 3.1 microm. Enzymatic activity is also increased by forskolin (EC(50) approximately 15 microm), a specific agonist of membrane-bound adenylyl cyclases. Similar to certain biogenic amine receptor genes of the honeybee, Amac3 transcripts are expressed in many somata of the brain, especially in mushroom body neurones. These results suggest that the enzyme serves in biogenic amine signal transduction cascades and in higher brain functions that contribute to learning and memory of the bee. PMID:16464235

  12. Regulation of adenylyl cyclase from Blastocladiella emersonii by guanine nucleotides.

    PubMed

    Terenzi, H; Maia, J C

    1993-11-01

    GTP gamma S stimulates adenylyl cyclase in particulate fractions of Blastocladiella emersonii zoospores. Cholera toxin catalyses the ADP-ribosylation of a membrane protein of a molecular weight (46,000) similar to that of the alpha subunit of Gs found in vertebrate cells. A membrane protein of 46 kDa can also be recognized in Western blots by an antipeptide antiserum (RM/1) raised against the C-terminus of G alpha 2-subunits. These results suggest that a G-protein mediates the regulation of Blastocladiella adenylyl cyclase by guanine nucleotides. PMID:8224237

  13. Catalytic Mechanism of Mammalian Adenylyl Cyclase: A Computational Investigation.

    PubMed

    Hahn, David K; Tusell, Jose R; Sprang, Stephen R; Chu, Xi

    2015-10-13

    Adenylyl cyclase (AC) catalyzes the synthesis of cyclic AMP, an important intracellular regulatory molecule, from ATP. We propose a catalytic mechanism for class III mammalian AC based on density functional theory calculations. We employ a model of the AC active site derived from a crystal structure of mammalian AC activated by Gα·GTP and forskolin at separate allosteric sites. We compared the calculated activation free energies for 13 possible reaction sequences involving proton transfer, nucleophilic attack, and elimination of pyrophosphate. The proposed most probable mechanism is initiated by deprotonation of 3'OH and water-mediated transfer of the 3'H to the γ-phosphate. Proton transfer is followed by changes in coordination of the two magnesium ion cofactors and changes in the conformation of ATP to enhance the role of 3'O as a nucleophile and to bring 3'O close to Pα. The subsequent phosphoryl transfer step is concerted and rate-limiting. Comparison of the enzyme-catalyzed and nonenzymatic reactions reveals that the active site residues lower the free energy barrier for both phosphoryl transfer and proton transfer and significantly shift the proton transfer equilibrium. Calculations for mutants K1065A and R1029A demonstrate that K1065 plays a significant role in shifting the proton transfer equilibrium, whereas R1029 is important for making the transition state of concerted phosphoryl transfer tight rather than loose. PMID:26393535

  14. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  15. Crystallization of the class IV adenylyl cyclase from Yersinia pestis

    SciTech Connect

    Smith, Natasha; Kim, Sook-Kyung; Reddy, Prasad T.; Gallagher, D. Travis

    2006-03-01

    The class IV adenylyl cyclase from Y. pestis has been crystallized in an orthorhombic form suitable for structure determination. The class IV adenylyl cyclase from Yersinia pestis has been cloned and crystallized in both a triclinic and an orthorhombic form. An amino-terminal His-tagged construct, from which the tag was removed by thrombin, crystallized in a triclinic form diffracting to 1.9 Å, with one dimer per asymmetric unit and unit-cell parameters a = 33.5, b = 35.5, c = 71.8 Å, α = 88.7, β = 82.5, γ = 65.5°. Several mutants of this construct crystallized but diffracted poorly. A non-His-tagged native construct (179 amino acids, MW = 20.5 kDa) was purified by conventional chromatography and crystallized in space group P2{sub 1}2{sub 1}2{sub 1}. These crystals have unit-cell parameters a = 56.8, b = 118.6, c = 144.5 Å, diffract to 3 Å and probably have two dimers per asymmetric unit and V{sub M} = 3.0 Å{sup 3} Da{sup −1}. Both crystal forms appear to require pH below 5, complicating attempts to incorporate nucleotide ligands into the structure. The native construct has been produced as a selenomethionine derivative and crystallized for phasing and structure determination.

  16. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    PubMed

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. PMID:22426196

  17. H2S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway.

    PubMed

    Li, Sen; Ping, Na-Na; Cao, Lei; Mi, Yan-Ni; Cao, Yong-Xiao

    2015-12-15

    Hydrogen sulfide (H2S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H2S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H2S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-type Ca(2+) channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H2S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway. PMID:26524654

  18. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light. PMID:24201148

  19. Adenylyl cyclase 6 mediates the action of cyclic AMP-dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation

    PubMed Central

    Sabbatini, Maria E; D’Alecy, Louis; Lentz, Stephen I; Tang, Tong; Williams, John A

    2013-01-01

    Both secretin and vasoactive intestinal polypeptide (VIP) receptors are responsible for the activation of adenylyl cyclases (ACs), which increase intracellular cyclic AMP (cAMP) levels in the exocrine pancreas. There are nine membrane-associated isoforms, each with its own pattern of expression and regulation. In this study we sought to establish which AC isoforms play a regulatory role in pancreatic exocrine cells. Using RT-PCR, AC3, AC4, AC6, AC7 and AC9 were found to be expressed in the pancreas. AC3, AC4, AC6 and AC9 were expressed in both pancreatic acini and ducts, whereas AC7 was expressed only in pancreatic ducts. Based on known regulation by intracellular signals, selective inhibitors and stimulators were used to suggest which isoforms play an important role in the induction of cAMP formation. AC6 appeared to be an important isoform because protein kinase A (PKA), PKC and calcium all inhibited VIP-induced cAMP formation, whereas calcineurin or calmodulin did not modify the response to VIP. Mice with genetically deleted AC6 were studied and showed reduced cAMP formation and PKA activation in both isolated pancreatic acini and duct fragments. The absence of AC6 reduced cAMP-dependent secretagogue-stimulated amylase secretion, and abolished fluid secretion in both in vivo and isolated duct fragments. In conclusion, several AC isoforms are expressed in pancreatic acini and ducts. AC6 mediates a significant part of pancreatic amylase and fluid secretion in response to secretin, VIP and forskolin through cAMP/PKA pathway activation. PMID:23753526

  20. A Soluble Adenylyl Cyclase Form Targets to Axonemes and Rescues Beat Regulation in Soluble Adenylyl Cyclase Knockout Mice

    PubMed Central

    Chen, Xi; Baumlin, Nathalie; Buck, Jochen; Levin, Lonny R.; Fregien, Nevis

    2014-01-01

    Ciliary beating is important for effective mucociliary clearance. Soluble adenylyl cyclase (sAC) regulates ciliary beating, and a roughly 50-kD sAC variant is expressed in axonemes. Normal human bronchial epithelial (NHBE) cells express multiple sAC splice variants: full-length sAC; variants with catalytic domain 1 (C1) deletions; and variants with partial C1. One variant, sACex5v2-ex12v2, contains two alternative splices creating new exons 5 (ex5v2) and 12 (ex12v2), encoding a roughly 45-kD protein. It is therefore similar in size to ciliary sAC. The variant increases in expression upon ciliogenesis during differentiation at the air–liquid interface. When expressed in NHBE cells, this variant was targeted to cilia. Exons 5v2–7 were important for ciliary targeting, whereas exons 2–4 prevented it. In vitro, cytoplasmic sACex2-ex12v2 (containing C1 and C2) was the only variant producing cAMP. Ciliary sACex5v2-ex12v2 was not catalytically active. Airway epithelial cells isolated from wild-type mice revealed sAC-dependent ciliary beat frequency (CBF) regulation, analogous to NHBE cells: CBF rescue from HCO3−/CO2–mediated intracellular acidification was sensitive to the sAC inhibitor, KH7. Compared with wild type, sAC C2 knockout (KO) mice revealed lower CBF baseline, and the HCO3−/CO2–mediated CBF decrease was not inhibited by KH7, confirming lack of functional sAC. Human sACex5v2-ex12v2 was targeted to cilia and sACex2-ex12v2 to the cytoplasm in these KO mice. Introduction of the ciliary sACex5v2-ex12v2 variant, but not the cytoplasmic sACex2-ex12v2, restored functional sAC activity in C2 KO mice. Thus, we show, for the first time, a mammalian axonemal targeting sequence that localizes a sAC variant to cilia to regulate CBF. PMID:24874272

  1. HAMP domain-mediated signal transduction probed with a mycobacterial adenylyl cyclase as a reporter.

    PubMed

    Mondéjar, Laura García; Lupas, Andrei; Schultz, Anita; Schultz, Joachim E

    2012-01-01

    HAMP domains, ∼55 amino acid motifs first identified in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases, operate as signal mediators in two-component signal transduction proteins. A bioinformatics study identified a coevolving signal-accepting network of 10 amino acids in membrane-delimited HAMP proteins. To probe the functionality of this network we used a HAMP containing mycobacterial adenylyl cyclase, Rv3645, as a reporter enzyme in which the membrane anchor was substituted by the Escherichia coli chemotaxis receptor for serine (Tsr receptor) and the HAMP domain alternately with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor. In a construct with the Tsr-HAMP, cyclase activity was inhibited by serine, whereas in a construct with the HAMP domain from A. fulgidus, enzyme activity was not responsive to serine. Amino acids of the signal-accepting network were mutually swapped between both HAMP domains, and serine signaling was examined. The data biochemically tentatively established the functionality of the signal-accepting network. Based on a two-state gearbox model of rotation in HAMP domain-mediated signal propagation, we characterized the interaction between permanent and transient core residues in a coiled coil HAMP structure. The data are compatible with HAMP rotation in signal propagation but do not exclude alternative models for HAMP signaling. Finally, we present data indicating that the connector, which links the α-helices of HAMP domains, plays an important structural role in HAMP function. PMID:22094466

  2. Phorbol ester-induced sensitisation of adenylyl cyclase type II is related to phosphorylation of threonine 1057.

    PubMed

    Böl, G F; Gros, C; Hülster, A; Bösel, A; Pfeuffer, T

    1997-08-18

    Following up the results from previous studies on chemical fragmentation of TPA-treated, [32P]phosphate labeled adenylyl cyclase type II (AC II) (Böl, G. F., Hülster, A., and Pfeuffer, T. in press) we have replaced serine 871 or threonine 1057 by alanine using site directed mutagenesis. Both mutants had unimpaired catalytic activity, however enhancement by phorbolester TPA was reduced by 60-80 % in the T1057A mutant, but not in the S871A mutant. The stimulation of adenylyl cyclase type II by betagamma subunits of heterotrimeric G-pro teins and that by PKC have been previously shown to be mutually exclusive (Zimmermann and Taussig (1996), J. Biol. Chem. 271, 27161-27166). This is in line with the present findings that AC II expressed in COS-1 cells was only barely stimulated (10%) by coexpressed betagamma-subunits in presence of TPA. Mutation of threonine 1057 to alanine however caused partial regain of betagamma-stimulation in the presence of TPA by 40%, as compared to that of WT adenylyl cyclase type II which was 70% in the absence of TPA. These data strongly implicate the importance of threonine 1057 as phosphate acceptor following PKC-mediated sensitisation of adenylyl cyclase type II. PMID:9268695

  3. The YHS-Domain of an Adenylyl Cyclase from Mycobacterium phlei Is a Probable Copper-Sensor Module

    PubMed Central

    Linder, Jürgen Ulrich

    2015-01-01

    YHS-domains are small protein modules which have been proposed to bind transition-metal ions like the related TRASH-domains. They are found in a variety of enzymes including copper-transporting ATPases and adenylyl cyclases. Here we investigate a class IIIc adenylyl cyclase from Mycobacterium phlei which contains a C-terminal YHS-domain linked to the catalytic domain by a peptide of 8 amino acids. We expressed the isolated catalytic domain and the full-length enzyme in E. coli. The catalytic domain requires millimolar Mn2+ as a cofactor for efficient production of cAMP, is unaffected by low micromolar concentrations of Cu2+ and inhibited by concentrations higher than 10 μM. The full-length enzyme also requires Mn2+ in the absence of an activator. However, 1–10 μM Cu2+ stimulate the M. phlei adenylyl cyclase sixfold when assayed with Mn2+. With Mg2+ as the probable physiological cofactor of the adenylyl cyclase Cu2+ specifically switches the enzyme from an inactive to an active state. Other transition-metal ions do not elicit activity with Mg2+. We favor the view that the YHS-domain of M. phlei adenylyl cyclase acts as a sensor for copper ions and signals elevated levels of the transition-metal via cAMP. By analogy to TRASH-domains binding of Cu2+ probably occurs via one conserved aspartate and three conserved cysteine-residues in the YHS-domain. PMID:26512893

  4. Expression of soluble adenylyl cyclase in acral melanomas.

    PubMed

    Li, H; Kim, S M; Savkovic, V; Jin, S A; Choi, Y D; Yun, S J

    2016-06-01

    Soluble adenylyl cyclase (sAC) regulates melanocytic cells, and is a diagnostic marker for pigmented skin lesions. Because only a few studies on sAC expression in acral melanomas have been performed, we investigated the histopathological significance of sAC expression in 33 cases of acral melanoma, and assessed its diagnostic value in distinguishing melanoma in situ (MIS, n = 17) from acral invasive melanomas (n = 16) and melanocytic naevi (n = 11). Acral melanomas exhibited more marked nuclear immunopositivity compared with acral melanocytic naevi. sAC expression significantly correlated with the nuclear morphology of melanocytes and melanoma cells, namely, hyperchromatic nuclei and prominent nucleoli within vesicular nuclei. sAC expression was predominantly observed in the hyperchromatic nuclei of MIS and the prominent nucleoli invasive melanomas, respectively. In vitro culture models of melanocytes and melanoma cell lines exhibited sAC staining patterns similar to those of acral melanomas. Differentiation induction showed that nuclear and nucleolar expression varied depending on cell morphology. sAC immunostaining may be useful for the differential diagnosis of acral melanocytic lesions, and sAC expressed in the nucleus and nucleolus might be related to cytological and nuclear changes associated with invasion and progression of acral melanomas. PMID:26290224

  5. Role of adenylyl cyclase in reduced β-adrenoceptor-mediated vasorelaxation during maturation

    PubMed Central

    López-Canales, O.A.; Castillo-Hernandez, M.C.; Vargas-Robles, H.; Rios, A.; López-Canales, J.S.; Escalante, B.

    2016-01-01

    Beta-adrenergic receptor (βAR)-dependent blood vessel relaxation is impaired in older animals and G protein activation has been suggested as the causative mechanism. Here, we investigated the role of βAR subtypes (β1AR, β2AR, and β3AR) and cAMP in maturation-dependent vasorelaxation impairment. Aortic rings from 15 Sprague-Dawley male rats (3 or 9 weeks old) were harvested and left intact or denuded of the endothelium. Vascular relaxation in aortic rings from younger and older groups was compared in the presence of βAR subtype agonists and antagonists along with cAMP and cGMP antagonists. Isolated aortic rings were used to evaluate relaxation responses, protein expression was evaluated by western blot or real time PCR, and metabolites were measured by ELISA. Expression of βAR subtypes and adenylyl cyclase was assessed, and cAMP activity was measured in vascular tissue from both groups. Isoproterenol- and BRL744-dependent relaxation in aortic rings with and without endothelium from 9-week-old rats was impaired compared with younger rats. The β1AR antagonist CGP20712A (10-7 M) did not affect isoproterenol or BRL744-dependent relaxation in arteries from either group. The β2AR antagonist ICI-118,551 (10-7 M) inhibited isoproterenol-dependent aortic relaxation in both groups. The β3AR antagonist SR59230A (10-7 M) inhibited isoproterenol- and BRL744-dependent aortic ring relaxation in younger but not in older rats. All βAR subtypes were expressed in both groups, although β3AR expression was lower in the older group. Adenylyl cyclase (SQ 22536) or protein kinase A (H89) inhibitors prevented isoproterenol-induced relaxation in younger but not in older rats. Production of cAMP was reduced in the older group. Adenylyl cyclase III and RyR3 protein expression was higher in the younger group. In conclusion, altered expression of β3AR and adenylyl cyclase III may be responsible for reduced cAMP production in the older group. PMID:27383122

  6. Role of adenylyl cyclase in reduced β-adrenoceptor-mediated vasorelaxation during maturation.

    PubMed

    López-Canales, O A; Castillo-Hernandez, M C; Vargas-Robles, H; Rios, A; López-Canales, J S; Escalante, B

    2016-07-01

    Beta-adrenergic receptor (βAR)-dependent blood vessel relaxation is impaired in older animals and G protein activation has been suggested as the causative mechanism. Here, we investigated the role of βAR subtypes (β1AR, β2AR, and β3AR) and cAMP in maturation-dependent vasorelaxation impairment. Aortic rings from 15 Sprague-Dawley male rats (3 or 9 weeks old) were harvested and left intact or denuded of the endothelium. Vascular relaxation in aortic rings from younger and older groups was compared in the presence of βAR subtype agonists and antagonists along with cAMP and cGMP antagonists. Isolated aortic rings were used to evaluate relaxation responses, protein expression was evaluated by western blot or real time PCR, and metabolites were measured by ELISA. Expression of βAR subtypes and adenylyl cyclase was assessed, and cAMP activity was measured in vascular tissue from both groups. Isoproterenol- and BRL744-dependent relaxation in aortic rings with and without endothelium from 9-week-old rats was impaired compared with younger rats. The β1AR antagonist CGP20712A (10-7 M) did not affect isoproterenol or BRL744-dependent relaxation in arteries from either group. The β2AR antagonist ICI-118,551 (10-7 M) inhibited isoproterenol-dependent aortic relaxation in both groups. The β3AR antagonist SR59230A (10-7 M) inhibited isoproterenol- and BRL744-dependent aortic ring relaxation in younger but not in older rats. All βAR subtypes were expressed in both groups, although β3AR expression was lower in the older group. Adenylyl cyclase (SQ 22536) or protein kinase A (H89) inhibitors prevented isoproterenol-induced relaxation in younger but not in older rats. Production of cAMP was reduced in the older group. Adenylyl cyclase III and RyR3 protein expression was higher in the younger group. In conclusion, altered expression of β3AR and adenylyl cyclase III may be responsible for reduced cAMP production in the older group. PMID:27383122

  7. Distinct PKC isoforms mediate the activation of cPLA2 and adenylyl cyclase by phorbol ester in RAW264.7 macrophages

    PubMed Central

    Lin, Wan-W; Chen, Bin C

    1998-01-01

    The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively.PMA at 1 μM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%.Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCβ) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA.Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%.Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production.The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane.Western blot analysis revealed the presence of eight PKC isoforms (α, βI, βII, δ, ε, μ λ and ξ) in RAW 264.7 cells and PMA was shown to induce the translocation of the α, βI, βII,

  8. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. PMID:27335168

  9. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    PubMed Central

    Badireddy, Suguna; Rajendran, Abinaya; Anand, Ganesh Srinivasan

    2015-01-01

    GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins. PMID:25922789

  10. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration

    PubMed Central

    Watson, Richard L.; Buck, Jochen; Levin, Lonny R.; Winger, Ryan C.; Wang, Jing; Arase, Hisashi

    2015-01-01

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM. PMID:26101266

  11. Development of a High-Throughput Screening Paradigm for the Discovery of Small-Molecule Modulators of Adenylyl Cyclase: Identification of an Adenylyl Cyclase 2 Inhibitor

    PubMed Central

    Conley, Jason M.; Brand, Cameron S.; Bogard, Amy S.; Pratt, Evan P. S.; Xu, Ruqiang; Hockerman, Gregory H.; Ostrom, Rennolds S.; Dessauer, Carmen W.

    2013-01-01

    Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the study of AC isoform function in vivo. Identification of chemical probes for AC2 is particularly important because there are no published genetic deletion studies and few small-molecule modulators. The present report describes the development and implementation of an intact-cell, small-molecule screening approach and subsequent validation paradigm for the discovery of AC2 inhibitors. The NIH clinical collections I and II were screened for inhibitors of AC2 activity using PMA-stimulated cAMP accumulation as a functional readout. Active compounds were subsequently confirmed and validated as direct AC2 inhibitors using orthogonal and counterscreening assays. The screening effort identified SKF-83566 [8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide] as a selective AC2 inhibitor with superior pharmacological properties for selective modulation of AC2 compared with currently available AC inhibitors. The utility of SKF-83566 as a small-molecule probe to study the function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle cells and human bronchial smooth muscle cells. PMID:24008337

  12. Central role of soluble adenylyl cyclase and cAMP in sperm physiology

    PubMed Central

    Buffone, Mariano G.; Wertheimer, Eva V.; Visconti, Pablo E.; Krapf, Dario

    2014-01-01

    Cyclic adenosine 3′,5′-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cylases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. PMID:25066614

  13. An Adenylyl Cyclase, CyaB, Acts as an Osmosensor in Myxococcus xanthus

    PubMed Central

    Kimura, Yoshio; Ohtani, Mika; Takegawa, Kaoru

    2005-01-01

    We have previously reported that a receptor-type adenylyl cyclase (CyaA) of Myxococcus xanthus undergoes an osmosensor mainly during spore germination (Y. Kimura et al., J. Bacteriol. 184:3578-3585, 2002). In the present study, we cloned another receptor-type adenylyl cyclase gene (cyaB) and characterized the function of the cyaB-encoded protein. Disruption of cyaB generates a mutant that showed growth retardation at high ionic (NaCl) or high nonionic (sucrose) osmolarity. When vegetative cells were stimulated with 0.15 M NaCl, the increases in intracellular cyclic AMP levels of cyaB mutant cells were lower than those of wild-type cells. Under nonionic osmostress, the cyaB mutant exhibited reduced spore germination; however, the germination rate of the cyaB mutant was significantly higher than that of the cyaA mutant. PMID:15866951

  14. Extracellular Regulation of Sperm Transmembrane Adenylyl Cyclase by a Forward Motility Stimulating Protein

    PubMed Central

    Dey, Souvik; Roy, Debarun; Majumder, Gopal C.; Bhattacharyya, Debdas

    2014-01-01

    Forward motility stimulating factor (FMSF), a glycoprotein isolated from buffalo serum, binds to the surface of the mature sperm cells to promote their progressive motility. This article reports the mode of signal transduction of this extracellular factor in goat sperm. The mechanism was investigated by assaying intracellular second messenger level and forward motility in presence of different pharmacological modulators. Mg++-dependent Forskolin responsive form of transmembrane adenylyl cyclase (tmAC) of goat spermatozoa was probed for its involvement in FMSF action. Dideoxyadenosine, a selective inhibitor of tmACs, was used to identify the role of this enzyme in the scheme of FMSF-signaling. Involvement of the α-subunit of G-protein in this regard has been inspected using GTPγS. Participation of protein kinase A (PKA) and tyrosine kinase was checked using IP20 and genistein, respectively. FMSF promotes tmAC activity in a dose-dependent manner through receptor/G-protein activation to enhance intracellular cAMP and forward motility. Motility boosting effects of this glycoprotein are almost lost in presence of dideoxyadenosine. But, FMSF displayed substantial motility promoting activity when movement of spermatozoa was inhibited with KH7, the specific inhibitor of soluble adenylyl cyclase indicating tmAC to be the primary target of FMSF action. Involvement of cAMP in mediating FMSF action was confirmed by the application of dibutyryl cAMP. Observed motility regulatory effects with IP20 and genistein indicate contribution of PKA and tyrosine kinase in FMSF activity; enhanced phosphorylation of a tyrosine containing ≈50 kDa protein was detected in this regard. FMSF initiates a novel signaling cascade to stimulate tmAC activity that augments intracellular cAMP, which through downstream crosstalk of phosphokinases leads to enhanced forward motility in mature spermatozoa. Thus, this article for the first time describes conventional tmAC-dependent profound activation

  15. Two members of a widely expressed subfamily of hormone-stimulated adenylyl cyclases.

    PubMed Central

    Premont, R T; Chen, J; Ma, H W; Ponnapalli, M; Iyengar, R

    1992-01-01

    cDNA encoding a hormone- and guanine nucleotide-stimulated adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] (type 6) from rat liver and kidney has been cloned and expressed. This enzyme is stimulated by forskolin, guanosine 5'-[gamma-thio]triphosphate, and isoproterenol plus GTP but is not stimulated by beta gamma subunits of guanine nucleotide-binding proteins. A second form (type 5), which is 75% similar to type 6, has also been cloned. Both types 5 and 6 cDNAs have multiple messages. PCR-based detection of the mRNA for the type 5 and 6 enzymes indicates that both are widely distributed. Homology analyses indicate at least four distinct subfamilies of guanine nucleotide stimulatory protein-regulated adenylyl cyclases. Types 5 and 6 enzymes define one distinct subfamily of mammalian adenylyl cyclases. Diversity of one guanine nucleotide-binding protein-regulated effector may allow different modes of regulation of cell-surface signal transmission. Images PMID:1409703

  16. An Adenylyl Cyclase, CyaA, of Myxococcus xanthus Functions in Signal Transduction during Osmotic Stress

    PubMed Central

    Kimura, Yoshio; Mishima, Yukako; Nakano, Hiromi; Takegawa, Kaoru

    2002-01-01

    An adenylyl cyclase gene (cyaA) present upstream of an osmosensor protein gene (mokA) was isolated from Myxococcus xanthus. cyaA encoded a polypeptide of 843 amino acids with a predicted molecular mass of 91,187 Da. The predicted cyaA gene product had structural similarity to the receptor-type adenylyl cyclases that are composed of an amino-terminal sensor domain and a carboxy-terminal catalytic domain of adenylyl cyclase. In reverse transcriptase PCR experiments, the transcript of the cyaA gene was detected mainly during development and spore germination. A cyaA mutant, generated by gene disruption, showed normal growth, development, and germination. However, a cyaA mutant placed under conditions of ionic (NaCl) or nonionic (sucrose) osmostress exhibited a marked reduction in spore formation and spore germination. When wild-type and cyaA mutant cells at developmental stages were stimulated with 0.2 M NaCl or sucrose, the mutant cells increased cyclic AMP accumulation at levels similar to those of the wild-type cells. In contrast, the mutant cells during spore germination had mainly lost the ability to respond to high-ionic osmolarity. In vegetative cells, the cyaA mutant responded normally to osmotic stress. These results suggested that M. xanthus CyaA functions mainly as an ionic osmosensor during spore germination and that CyaA is also required for osmotic tolerance in fruiting formation and sporulation. PMID:12057952

  17. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT(1A) receptor-adenylyl cyclase axis.

    PubMed

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M; Meng, Fantao; Wu, Qi; Wemmie, John A; Fisher, Rory A

    2014-04-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT(1A)Rs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT(1A)R-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT(1A)R-expressing cells implicated in mood disorders. RGS6(-/-) mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT(1A)R blockade. Effects of the SSRI fluvoxamine and 5-HT(1A)R agonist 8-OH-DPAT were also potentiated in RGS6(+/-) mice. The phenotype of RGS6(-/-) mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gα(i)-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6(-/-) animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents. PMID:24421401

  18. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  19. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

    PubMed

    Tresguerres, Martin; Barott, Katie L; Barron, Megan E; Roa, Jinae N

    2014-03-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  20. Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

    PubMed Central

    Choi, Hyun B.; Gordon, Grant R.J.; Zhou, Ning; Tai, Chao; Rungta, Ravi L.; Martinez, Jennifer; Milner, Teresa A.; Ryu, Jae K.; McLarnon, James G.; Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen; MacVicar, Brian A.

    2013-01-01

    SUMMARY Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3−) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO3− entry via the electrogenic NaHCO3 cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K+]ext and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. PMID:22998876

  1. Structure of the Class IV Adenylyl Cyclase Reveals a Novel Fold

    SciTech Connect

    Gallagher,D.; Smith, N.; Kim, S.; Heroux, A.; Robinson, H.; Reddy, P.

    2006-01-01

    The crystal structure of the class IV adenylyl cyclase (AC) from Yersinia pestis (Yp) is reported at 1.9 {angstrom} resolution. The class IV AC fold is distinct from the previously described folds for class II and class III ACs. The dimeric AC-IV folds into an antiparallel eight-stranded barrel whose connectivity has been seen in only three previous structures: yeast RNA triphosphatase and two proteins of unknown function from Pyrococcus furiosus and Vibrio parahaemolyticus. Eight highly conserved ionic residues E10, E12, K14, R63, K76, K111, D126, and E136 lie in the barrel core and form the likely binding sites for substrate and divalent cations. A phosphate ion is observed bound to R63, K76, K111, and R113 near the center of the conserved cluster. Unlike the AC-II and AC-III active sites that utilize two-Asp motifs for cation binding, the AC-IV active site is relatively enriched in glutamate and features an ExE motif as its most conserved element. Homologs of Y. pestis AC-IV, including human thiamine triphosphatase, span the three kingdoms of life and delineate an ancient family of phosphonucleotide processing enzymes.

  2. Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis

    PubMed Central

    Zhou, Zhiwen; Tanaka, Kenji F.; Matsunaga, Shigeru; Iseki, Mineo; Watanabe, Masakatsu; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta

    2016-01-01

    Spatiotemporal regulation of axonal branching and elongation is essential in the development of refined neural circuits. cAMP is a key regulator of axonal growth; however, whether and how intracellular cAMP regulates axonal branching and elongation remain unclear, mainly because tools to spatiotemporally manipulate intracellular cAMP levels have been lacking. To overcome this issue, we utilized photoactivated adenylyl cyclase (PAC), which produces cAMP in response to blue-light exposure. In primary cultures of dentate granule cells transfected with PAC, short-term elevation of intracellular cAMP levels induced axonal branching but not elongation, whereas long-term cAMP elevation induced both axonal branching and elongation. The temporal dynamics of intracellular cAMP levels regulated axonal branching and elongation through the activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), respectively. Thus, using PAC, our study for the first time reveals that temporal cAMP dynamics could regulate axonal branching and elongation via different signaling pathways. PMID:26795422

  3. Disruption of Epac1 protects the heart from adenylyl cyclase type 5-mediated cardiac dysfunction.

    PubMed

    Cai, Wenqian; Fujita, Takayuki; Hidaka, Yuko; Jin, Huiling; Suita, Kenji; Prajapati, Rajesh; Liang, Chen; Umemura, Masanari; Yokoyama, Utako; Sato, Motohiko; Okumura, Satoshi; Ishikawa, Yoshihiro

    2016-06-17

    Type 5 adenylyl cyclase (AC5) plays an important role in the development of chronic catecholamine stress-induced heart failure and arrhythmia in mice. Epac (exchange protein activated by cAMP), which is directly activated by cAMP independent of protein kinase A, has been recently identified as a novel mediator of cAMP signaling in the heart. However, the role of Epac in AC5-mediated cardiac dysfunction and arrhythmias remains poorly understood. We therefore generated AC5 transgenic mice (AC5TG) with selective disruption of the Epac1 gene (AC5TG-Epac1KO), and compared their phenotypes with those of AC5TG after chronic isoproterenol (ISO) infusion. Decreased cardiac function as well as increased susceptibility to pacing-induced atrial fibrillation (AF) in response to ISO were significantly attenuated in AC5TG-Epac1KO mice, compared to AC5TG mice. Increased cardiac apoptosis and cardiac fibrosis were also concomitantly attenuated in AC5TG-Epac1KO mice compared to AC5TG mice. These findings indicate that Epac1 plays an important role in AC5-mediated cardiac dysfunction and AF susceptibility. PMID:27117748

  4. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  5. Impairment of adenylyl cyclase-mediated glutamatergic synaptic plasticity in the periaqueductal grey in a rat model of neuropathic pain

    PubMed Central

    Ho, Yu-Cheng; Cheng, Jen-Kun; Chiou, Lih-Chu

    2015-01-01

    Key points Long-lasting neuropathic pain has been attributed to elevated neuronal plasticity changes in spinal, peripheral and cortical levels. Here, we found that reduced neuronal plasticity in the ventrolateral periaqueductal grey (vlPAG), a midbrain region important for initiating descending pain inhibition, may also contribute to neuropathic pain. Forskolin- and isoproterenol (isoprenaline)-elicited EPSC potentiation was impaired in the vlPAG of a rat model of neuropathic pain induced by spinal nerve injury. Down-regulation of adenylyl cyclase–cAMP– PKA signalling, due to impaired adenylyl cyclase, but not phosphodiesterase, in glutamatergic terminals may contribute to the hypofunction of excitatory synaptic plasticity in the vlPAG of neuropathic rats and the subsequent descending pain inhibition, ultimately leading to long-lasting neuropathic pain. Our results suggest that drugs that activate adenylyl cyclase in the vlPAG have the potential for relieving neuropathic pain. Abstract Neuropathic pain has been attributed to nerve injury-induced elevation of peripheral neuronal discharges and spinal excitatory synaptic plasticity while little is known about the contribution of neuroplasticity changes in the brainstem. Here, we examined synaptic plasticity changes in the ventrolateral (vl) periaqueductal grey (PAG), a crucial midbrain region for initiating descending pain inhibition, in spinal nerve ligation (SNL)-induced neuropathic rats. In vlPAG slices of sham-operated rats, forskolin, an adenylyl cyclase (AC) activator, produced long-lasting enhancement of EPSCs. This is a presynaptic effect since forskolin decreased the paired-pulse ratio and failure rate of EPSCs, and increased the frequency, but not the amplitude, of miniature EPSCs. Forskolin-induced EPSC potentiation was mimicked by a β-adrenergic agonist (isoproterenol (isoprenaline)), and prevented by an AC inhibitor (SQ 22536) and a cAMP-dependent protein kinase (PKA) inhibitor (H89), but not by a

  6. Adenylyl cyclase regulation in heart failure due to myocardial infarction in rats.

    PubMed

    Bräunig, Jörg H; Albrecht-Küpper, Barbara; Seifert, Roland

    2014-04-01

    Cardiac adenylyl cyclase (AC) activity was described to be differentially regulated in left and right ventricles (LVs and RVs) of rats with heart failure (HF) due to LV myocardial infarction (MI) (Sethi et al. Am J Physiol 272:H884-H893, 1997). AC activities in LVs and RVs were increased and decreased respectively in rats 8 and 16 weeks post MI under basal and stimulatory conditions including AC activation via β-adrenergic receptors (β-ARs), stimulatory G protein (Gs), and direct AC activation with forskolin (FS). The current study aimed to detect alterations in rat heart AC activities in a comparable model of HF 9 weeks post LV MI. Therefore, cardiac AC activities were measured under basal and β-AR-, Gs-, or FS-stimulated conditions as well as under inhibition with various MANT [2'(3')-O-(N-methylanthraniloyl)]-nucleotide AC inhibitors and the P-site AC inhibitors NKY80 [2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone] and vidarabine (9-β-D-arabinosyladenine, AraAde). Basal and stimulated AC activities along with AC inhibition experiments did not reveal evidence for changes in AC activity in LVs and RVs from MI group animals despite the presence of congestive HF. However, our study is indeterminate. Further studies are required to identify the factors responsible for previously described changes in cardiac AC activity in MI induced HF and to elucidate the role of altered AC regulation in the pathophysiology of HF. In order to detect small changes in AC regulation, larger group sizes than the ones used in our present study are required. PMID:24276219

  7. Distinct Mechanisms of Calmodulin Binding and Regulation of Adenylyl Cyclases 1 and 8

    PubMed Central

    2012-01-01

    Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca2+ signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca2+ signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca2+ ions. These two lobes have differing affinities for Ca2+, and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca2+]i. We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca2+-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca2+ binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca2+-CaM activation of AC1 and AC8, which may underpin their different physiological roles. PMID:22971080

  8. Measles virus modulates human T-cell somatostatin receptors and their coupling to adenylyl cyclase.

    PubMed Central

    Krantic, S; Enjalbert, A; Rabourdin-Combe, C

    1997-01-01

    The possible role of immunomodulatory peptide somatostatin (SRIF) in measles virus (MV)-induced immunopathology was addressed by analysis of SRIF receptors and their coupling to adenylyl cyclase in mitogen-stimulated Jurkat T cells and human peripheral blood mononuclear cells (PBMC). SRIF-specific receptors were assayed in semipurified membrane preparations by using SRIF14 containing iodinated tyrosine at the first position in the amino acid chain ([125I]Tyr1) as a radioligand. A determination of receptor number by saturation of radioligand binding at equilibrium showed that in Jurkat cells, MV infection led to a dramatic decrease in the total receptor number. The virus-associated disappearance of one (Ki2 = 12 +/- 4 nM [mean +/- standard error of the mean [SEM

  9. Phosphorylation of adenylyl cyclase III at serine1076 does not attenuate olfactory response in mice

    PubMed Central

    Cygnar, Katherine D; Collins, Sarah Ellen; Ferguson, Christopher H; Bodkin-Clarke, Chantal; Zhao, Haiqing

    2012-01-01

    Feedback inhibition of adenylyl cyclase III (ACIII) via Ca2+-induced phosphorylation has long been hypothesized to contribute to response termination and adaptation of olfactory sensory neurons (OSNs). To directly determine the functional significance of this feedback mechanism for olfaction in vivo, we genetically mutated serine1076 of ACIII, the only residue responsible for Ca2+-induced phosphorylation and inhibition of ACIII (Wei et al., 1996; Wei et al., 1998), to alanine in mice. Immunohistochemistry and Western blot analysis showed that the mutation affects neither the cilial localization nor the expression level of ACIII in OSNs. Electroolfactogram analysis showed no differences in the responses between wildtype and mutant mice to single-pulse odorant stimulations or in several stimulation paradigms for adaptation. These results suggest that phosphorylation of ACIII on serine1076 plays a far less important role in olfactory response attenuation than previously thought. PMID:23077041

  10. Phosphorylation of adenylyl cyclase III at serine1076 does not attenuate olfactory response in mice.

    PubMed

    Cygnar, Katherine D; Collins, Sarah Ellen; Ferguson, Christopher H; Bodkin-Clarke, Chantal; Zhao, Haiqing

    2012-10-17

    Feedback inhibition of adenylyl cyclase III (ACIII) via Ca(2+)-induced phosphorylation has long been hypothesized to contribute to response termination and adaptation of olfactory sensory neurons (OSNs). To directly determine the functional significance of this feedback mechanism for olfaction in vivo, we genetically mutated serine(1076) of ACIII, the only residue responsible for Ca(2+)-induced phosphorylation and inhibition of ACIII (Wei et al., 1996, 1998), to alanine in mice. Immunohistochemistry and Western blot analysis showed that the mutation affects neither the cilial localization nor the expression level of ACIII in OSNs. Electroolfactogram analysis showed no differences in the responses between wild-type and mutant mice to single-pulse odorant stimulations or in several stimulation paradigms for adaptation. These results suggest that phosphorylation of ACIII on serine(1076) plays a far less important role in olfactory response attenuation than previously thought. PMID:23077041

  11. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo

    PubMed Central

    Lee, Kristen L.; Hoey, David A.; Spasic, Milos; Tang, Tong; Hammond, H. Kirk; Jacobs, Christopher R.

    2014-01-01

    Primary cilia are single, nonmotile, antenna-like structures extending from the apical membrane of most mammalian cells. They may mediate mechanotransduction, the conversion of external mechanical stimuli into biochemical intracellular signals. Previously we demonstrated that adenylyl cyclase 6 (AC6), a membrane-bound enzyme enriched in primary cilia of MLO-Y4 osteocyte-like cells, may play a role in a primary cilium-dependent mechanism of osteocyte mechanotransduction in vitro. In this study, we determined whether AC6 deletion impairs loading-induced bone formation in vivo. Skeletally mature mice with a global knockout of AC6 exhibited normal bone morphology and responded to osteogenic chemical stimuli similar to wild-type mice. Following ulnar loading over 3 consecutive days, bone formation parameters were assessed using dynamic histomorphometry. Mice lacking AC6 formed significantly less bone than control animals (41% lower bone formation rate). Furthermore, there was an attenuated flow-induced increase in COX-2 mRNA expression levels in primary bone cells isolated from AC6 knockout mice compared to controls (1.3±0.1- vs. 2.6±0.2-fold increase). Collectively, these data indicate that AC6 plays a role in loading-induced bone adaptation, and these findings are consistent with our previous studies implicating primary cilia and AC6 in a novel mechanism of osteocyte mechanotransduction.—Lee, K. L., Hoey, D. A., Spasic, M., Tang, T., Hammond, H. K., Jacobs, C. R. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo. PMID:24277577

  12. Expression, purification, crystallization and preliminary X-ray diffraction analysis of a mammalian type 10 adenylyl cyclase

    PubMed Central

    Kleinboelting, Silke; van den Heuvel, Joop; Kambach, Christian; Weyand, Michael; Leipelt, Martina; Steegborn, Clemens

    2014-01-01

    The second messenger cAMP is synthesized in mammals by ten differently regulated adenylyl cyclases (AC1–10). These ACs are grouped into nucleotidyl cyclase class III based on homologies in their catalytic domains. The catalytic domain of AC10 is unique, however, in being activated through direct interaction with calcium and bicarbonate. Here, the production, crystallization and X-ray diffraction analysis of the catalytic domain of human AC10 are described as a basis for structural studies of regulator binding sites and mechanisms. The recombinant protein had high specific AC activity, and crystals of AC10 in space group P63 diffracted to ∼2.0 Å resolution on a synchrotron beamline. A complete diffraction data set revealed unit-cell parameters a = b = 99.65, c = 98.04 Å, indicating one AC10 catalytic domain per asymmetric unit, and confirmed that the obtained crystals are suitable for structure solution and mechanistic studies. PMID:24699740

  13. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice.

    PubMed

    Wong, S T; Trinh, K; Hacker, B; Chan, G C; Lowe, G; Gaggar, A; Xia, Z; Gold, G H; Storm, D R

    2000-09-01

    Cyclic nucleotide-gated ion channels in olfactory sensory neurons (OSNs) are hypothesized to play a critical role in olfaction. However, it has not been demonstrated that the cAMP signaling is required for olfactory-based behavioral responses, and the contributions of specific adenylyl cyclases to olfaction have not been defined. Here, we report the presence of adenylyl cyclases 2, 3, and 4 in olfactory cilia. To evaluate the role of AC3 in olfactory responses, we disrupted the gene for AC3 in mice. Interestingly, electroolfactogram (EOG) responses stimulated by either cAMP- or inositol 1,4,5-triphosphate- (IP3-) inducing odorants were completely ablated in AC3 mutants, despite the presence of AC2 and AC4 in olfactory cilia. Furthermore, AC3 mutants failed several olfaction-based behavioral tests, indicating that AC3 and cAMP signaling are critical for olfactory-dependent behavior. PMID:11055432

  14. delta-Opioid receptors are more efficiently coupled to adenylyl cyclase than to L-type Ca(2+) channels in transfected rat pituitary cells.

    PubMed

    Prather, P L; Song, L; Piros, E T; Law, P Y; Hales, T G

    2000-11-01

    Opioid receptors often couple to multiple effectors within the same cell. To examine potential mechanisms that contribute to the specificity by which delta-receptors couple to distinct intracellular effectors, we stably transfected rat pituitary GH(3) cells with cDNAs encoding for delta-opioid receptors. In cells transfected with a relatively low delta-receptor density of 0.55 pmol/mg of protein (GH(3)DOR), activation of delta-receptors produced inhibition of adenylyl cyclase activity but was unable to alter L-type Ca(2+) current. In contrast, activation of delta-receptors in a clone that contained a higher density of delta-receptors (2.45 pmol/mg of protein) and was also coexpressed with mu-opioid receptors (GH(3)MORDOR), resulted in not only the expected inhibition of adenylyl cyclase activity but also produced inhibition of L-type Ca(2+) current. The purpose of the present study was to determine whether these observations resulted from differences in delta-opioid receptor density between clones or interaction between delta- and mu-opioid receptors to allow the activation of different G proteins and signaling to Ca(2+) channels. Using the delta-opioid receptor alkylating agent SUPERFIT, reduction of available delta-opioid receptors in GH(3)MORDOR cells to a density similar to that of delta-opioid receptors in the GH(3)DOR clone resulted in abolishment of coupling to Ca(2+) channels, but not to adenylyl cyclase. Furthermore, although significantly greater amounts of all G proteins were activated by delta-opioid receptors in GH(3)MORDOR cells, delta-opioid receptor activation in GH(3)DOR cells resulted in coupling to the identical pattern of G proteins seen in GH(3)MORDOR cells. These findings suggest that different threshold densities of delta-opioid receptors are required to activate critical amounts of G proteins needed to produce coupling to specific effectors and that delta-opioid receptors couple more efficiently to adenylyl cyclase than to L-type Ca(2

  15. An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells.

    PubMed

    Drescher, M J; Cho, W J; Folbe, A J; Selvakumar, D; Kewson, D T; Abu-Hamdan, M D; Oh, C K; Ramakrishnan, N A; Hatfield, J S; Khan, K M; Anne, S; Harpool, E C; Drescher, D G

    2010-12-29

    Adenylyl cyclase (AC) signaling pathways have been identified in a model hair cell preparation from the trout saccule, for which the hair cell is the only intact cell type. The use of degenerate primers targeting cDNA sequence conserved across AC isoforms, and reverse transcription-polymerase chain reaction (RT-PCR), coupled with cloning of amplification products, indicated expression of AC9, AC7 and AC5/6, with cloning efficiencies of 11:5:2. AC9 and AC5/6 are inhibited by Ca(2+), the former in conjunction with calcineurin, and message for calcineurin has also been identified in the trout saccular hair cell layer. AC7 is independent of Ca(2+). Given the lack of detection of calcium/calmodulin-activated isoforms previously suggested to mediate AC activation in the absence of Gαs in mammalian cochlear hair cells, the issue of hair-cell Gαs mRNA expression was re-examined in the teleost vestibular hair cell model. Two full-length coding sequences were obtained for Gαs/olf in the vestibular type II-like hair cells of the trout saccule. Two messages for Gαi have also been detected in the hair cell layer, one with homology to Gαi1 and the second with homology to Gαi3 of higher vertebrates. Both Gαs/olf protein and Gαi1/Gαi3 protein were immunolocalized to stereocilia and to the base of the hair cell, the latter consistent with sites of efferent input. Although a signaling event coupling to Gαs/olf and Gαi1/Gαi3 in the stereocilia is currently unknown, signaling with Gαs/olf, Gαi3, and AC5/6 at the base of the hair cell would be consistent with transduction pathways activated by dopaminergic efferent input. mRNA for dopamine receptors D1A4 and five forms of dopamine D2 were found to be expressed in the teleost saccular hair cell layer, representing information on vestibular hair cell expression not directly available for higher vertebrates. Dopamine D1A receptor would couple to Gαolf and activation of AC5/6. Co-expression with dopamine D2 receptor, which

  16. Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity.

    PubMed

    Yan, Lin; Park, Ji Yeon; Dillinger, Jean-Guillaume; De Lorenzo, Mariana S; Yuan, Chujun; Lai, Lo; Wang, Chunbo; Ho, David; Tian, Bin; Stanley, William C; Auwerx, Johan; Vatner, Dorothy E; Vatner, Stephen F

    2012-12-01

    Adenylyl cyclase type 5 knockout mice (AC5 KO) live longer and are stress resistant, similar to calorie restriction (CR). AC5 KO mice eat more, but actually weigh less and accumulate less fat compared with WT mice. CR applied to AC5 KO results in rapid decrease in body weight, metabolic deterioration, and death. These data suggest that despite restricted food intake in CR, but augmented food intake in AC5 KO, the two models affect longevity and metabolism similarly. To determine shared molecular mechanisms, mRNA expression was examined genome-wide for brain, heart, skeletal muscle, and liver. Significantly more genes were regulated commonly rather than oppositely in all the tissues in both models, indicating commonality between AC5 KO and CR. Gene ontology analysis identified many significantly regulated, tissue-specific pathways shared by the two models, including sensory perception in heart and brain, muscle function in skeletal muscle, and lipid metabolism in liver. Moreover, when comparing gene expression changes in the heart under stress, the glutathione regulatory pathway was consistently upregulated in the longevity models but downregulated with stress. In addition, AC5 and CR shared changes in genes and proteins involved in the regulation of longevity and stress resistance, including Sirt1, ApoD, and olfactory receptors in both young- and intermediate-age mice. Thus, the similarly regulated genes and pathways in AC5 KO and CR mice, particularly related to the metabolic phenotype, suggest a unified theory for longevity and stress resistance. PMID:23020244

  17. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo.

    PubMed

    Lee, Kristen L; Hoey, David A; Spasic, Milos; Tang, Tong; Hammond, H Kirk; Jacobs, Christopher R

    2014-03-01

    Primary cilia are single, nonmotile, antenna-like structures extending from the apical membrane of most mammalian cells. They may mediate mechanotransduction, the conversion of external mechanical stimuli into biochemical intracellular signals. Previously we demonstrated that adenylyl cyclase 6 (AC6), a membrane-bound enzyme enriched in primary cilia of MLO-Y4 osteocyte-like cells, may play a role in a primary cilium-dependent mechanism of osteocyte mechanotransduction in vitro. In this study, we determined whether AC6 deletion impairs loading-induced bone formation in vivo. Skeletally mature mice with a global knockout of AC6 exhibited normal bone morphology and responded to osteogenic chemical stimuli similar to wild-type mice. Following ulnar loading over 3 consecutive days, bone formation parameters were assessed using dynamic histomorphometry. Mice lacking AC6 formed significantly less bone than control animals (41% lower bone formation rate). Furthermore, there was an attenuated flow-induced increase in COX-2 mRNA expression levels in primary bone cells isolated from AC6 knockout mice compared to controls (1.3±0.1- vs. 2.6±0.2-fold increase). Collectively, these data indicate that AC6 plays a role in loading-induced bone adaptation, and these findings are consistent with our previous studies implicating primary cilia and AC6 in a novel mechanism of osteocyte mechanotransduction. PMID:24277577

  18. In silico prediction of tyrosinase and adenylyl cyclase inhibitors from natural compounds.

    PubMed

    Fong, Pedro; Tong, Henry H Y; Chao, Chi M

    2014-02-01

    Although many herbal medicines are effective in the treatment of hyperpigmentation, the potency of different constituents remains unknown. In this work, more than 20,000 herbal ingredients from 453 herbs were docked into the crystal structures of adenylyl cyclase and a human homology tyrosinase model using Surflex-Dock. These two enzymes are responsible for melanin production and inhibition of them may attain a skin-whitening effect superior to currently available agents. The essential drug properties for topical formulation of the herbal ingredients, including skin permeability, sensitization, irritation, corrosive and carcinogenic properties were predicted by Dermwin, Skin Sensitization Alerts (SSA), Skin Irritation Corrosion Rules Estimation Tool (SICRET) and Benigni/Bossa rulebase module of Toxtree. Moreover, similarity ensemble and pharmacophore mapping approaches were used to forecast other potential targets for these herbal compounds by the software, SEArch and PharmMapper. Overall, this study predicted seven compounds to have advanced drug-like properties over the well-known effective tyrosinase inhibitors, arbutin and kojic acid. These seven compounds have the highest potential for further in vitro and in vivo investigation with the aim of developing safe and high-efficacy skin-whitening agents. PMID:24689287

  19. Adenylyl cyclase localization to the uropod of aggregating Dictyostelium cells requires RacC.

    PubMed

    Wang, C; Jung, D; Cao, Z; Chung, C Y

    2015-09-25

    The localization of adenylyl cyclase A (ACA) to uropod of cells is required for the stream formation during Dictyostelium development. RacC is a Dictyostelium orthologue of Cdc42. We identified a streaming defect of racC(-) cells as they are clearly less polarized and form smaller and fragmented streams. ACA-YFP is mainly associated with intracellular vesicular structures, but not with the plasma membrane in racC(-) cells. racC(-) cells have a slightly higher number of vesicles than Ax3 cells, suggesting that the defect of ACA trafficking is not simply due to the lack of vesicle formation. While the ACA-YFP vesicles traveled with an average velocity of 9.1 μm/min in Ax3 cells, a slow and diffusional movement without direction with an average velocity of 4 μm/min was maintained in racC(-) cells. Images acquired by using total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) analysis revealed that a significantly decreased number of ACA-YFP vesicles appeared near the cell membrane, indicating a defect in ACA-YFP vesicle trafficking. These results suggest an important role of RacC in the rapid and directional movements of ACA vesicles on microtubules to the plasma membrane, especially to the back of polarized cell. PMID:26315268

  20. Laboratory evolution of adenylyl cyclase independent learning in Drosophil and missing heritability

    PubMed Central

    Cressy, M.; Valente, D.; Altick, A; Kockenmeister, E.; Honegger, K.; Qin, H.; Mitra, P.P.; Dubnau, J

    2014-01-01

    Gene interactions are acknowledged to be a likely source of missing heritability in large-scale genetic studies of complex neurological phenotypes. However, involvement of rare variants, de novo mutations, genetic lesions that are not easily detected with commonly used methods and epigenetic factors also are possible explanations. We used a laboratory evolution study to investigate the modulatory effects of background genetic variation on the phenotypic effect size of a null mutation with known impact on olfactory learning. To accomplish this, we first established a population that contained variation at just 23 loci and used selection to evolve suppression of the learning defect seen with null mutations in the rutabaga adenylyl cyclase. We thus biased the system to favor relatively simplified outcomes by choosing a Mendelian trait and by restricting the genetic variation segregating in the population. This experimental design also assures that the causal effects are among the known 23 segregating loci. We observe a robust response to selection that requires the presence of the 23 variants. Analyses of the underlying genotypes showed that interactions between more than two loci are likely to be involved in explaining the selection response, with implications for the missing heritability problem. PMID:24888634

  1. Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase

    PubMed Central

    Cioffi, Donna L.; Moore, Timothy M.; Schaack, Jerry; Creighton, Judy R.; Cooper, Dermot M.F.; Stevens, Troy

    2002-01-01

    Acute transitions in cytosolic calcium ([Ca2+]i) through store-operated calcium entry channels catalyze interendothelial cell gap formation that increases permeability. However, the rise in [Ca2+]i only disrupts barrier function in the absence of a rise in cAMP. Discovery that type 6 adenylyl cyclase (AC6; EC 4.6.6.1) is inhibited by calcium entry through store-operated calcium entry pathways provided a plausible explanation for how inflammatory [Ca2+]i mediators may decrease cAMP necessary for endothelial cell gap formation. [Ca2+]i mediators only modestly decrease global cAMP concentrations and thus, to date, the physiological role of AC6 is unresolved. Present studies used an adenoviral construct that expresses the calcium-stimulated AC8 to convert normal calcium inhibition into stimulation of cAMP, within physiologically relevant concentration ranges. Thrombin stimulated a dose-dependent [Ca2+]i rise in both pulmonary artery (PAECs) and microvascular (PMVEC) endothelial cells, and promoted intercellular gap formation in both cell types. In PAECs, gap formation was progressive over 2 h, whereas in PMVECs, gap formation was rapid (within 10 min) and gaps resealed within 2 h. Expression of AC8 resulted in a modest calcium stimulation of cAMP, which virtually abolished thrombin-induced gap formation in PMVECs. Findings provide the first direct evidence that calcium inhibition of AC6 is essential for endothelial gap formation. PMID:12082084

  2. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573

  3. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9

    SciTech Connect

    Cauwe, Benedicte; Martens, Erik; Van den Steen, Philippe E.; Proost, Paul; Van Aelst, Ilse; Blockmans, Daniel; Opdenakker, Ghislain

    2008-09-10

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1 was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.

  4. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation

    PubMed Central

    Chang, Jung-Chin; Oude-Elferink, Ronald P. J.

    2014-01-01

    The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10) was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA), sAC constitutes an HCO−3/CO−2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H+-ATPase (VHA) in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment. PMID:24575049

  5. Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose

    PubMed Central

    Challis, Rosemary C.; Tian, Huikai; Yin, Wenbin; Ma, Minghong

    2016-01-01

    We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII), a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE) 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter) and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found), similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice) have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology. PMID:26942602

  6. Type VI adenylyl cyclase negatively regulates GluN2B-mediated LTD and spatial reversal learning

    PubMed Central

    Chang, Ching-Pang; Lee, Cheng-Ta; Hou, Wen-Hsien; Lin, Meng-Syuan; Lai, Hsing-Lin; Chien, Chen-Li; Chang, Chen; Cheng, Pei-Lin; Lien, Cheng-Chang; Chern, Yijuang

    2016-01-01

    The calcium-sensitive type VI adenylyl cyclase (AC6) is a membrane-bound adenylyl cyclase (AC) that converts ATP to cAMP under stimulation. It is a calcium-inhibited AC and integrates negative inputs from Ca2+ and multiple other signals to regulate the intracellular cAMP level. In the present study, we demonstrate that AC6 functions upstream of CREB and negatively controls neuronal plasticity in the hippocampus. Genetic removal of AC6 leads to cyclase-independent and N-terminus of AC6 (AC6N)-dependent elevation of CREB expression, and enhances the expression of GluN2B-containing NMDA receptors in hippocampal neurons. Consequently, GluN2B-dependent calcium signaling and excitatory postsynaptic current, long-term depression, and spatial reversal learning are enhanced in the hippocampus of AC6−/− mice without altering the gross anatomy of the brain. Together, our results suggest that AC6 negatively regulates neuronal plasticity by modulating the levels of CREB and GluN2B in the hippocampus. PMID:26932446

  7. Adenylyl cyclase regulates heavy metal sensitivity, bikaverin production and plant tissue colonization in Fusarium proliferatum.

    PubMed

    Kohut, Gábor; Oláh, Brigitta; Adám, Attila L; García-Martínez, Jorge; Hornok, László

    2010-02-01

    A homologue of the adenylyl cyclase (AC) gene of Neurospora crassa, named Fpacy1 was cloned from the genomic library of Fusarium proliferatum ITEM 2287 by screening the library with a DNA fragment amplified by using PCR primers designed from conserved sequences of the catalytic domain of AC genes from other fungi. The deduced FPACY1 protein had 53-77% identity with the AC proteins of other fungi. DeltaFpacy1 mutants obtained by targeted gene disruption showed retarded vegetative growth, increased conidiation and delayed conidial germination. Colonization capability of the mutants, assessed on maize seedlings and tomato fruits also was adversely affected. In sexual crosses the AC mutants retained full male fertility, but their female fertility decreased significantly. Disruption of Fpacy1 abolished vegetative self-incompatibility, suggesting that the AC gene is involved in multiple developmental processes related to vegetative growth, as well as sexual and parasexual events. The elevated thermo- and H(2)O(2)-tolerance of the DeltaFpacy1 mutants was coupled to an increased sensitivity towards Cd and Cu, indicating that the cAMP signaling pathway may have both negative and positive regulatory roles on the stress response mechanisms of fungal cells. When grown under nitrogen limitation conditions, the DeltaFpacy1 mutants produced an average of approximately 274 microg g(-1) bikaverin, whereas only traces of this metabolite was detected in the wild type. This finding provides further evidence of the role of the cAMP-PKA pathway in regulating bikaverin production. PMID:20082366

  8. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    PubMed Central

    Wang, Zhenshan; Zhou, Yanfen; Luo, Yingtao; Zhang, Jing; Zhai, Yunpeng; Yang, Dong; Zhang, Zhe; Li, Yongchao; Storm, Daniel R.; Ma, Runlin Z.

    2015-01-01

    Adenylyl Cyclase 3 (AC3) plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE). In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/−) and wild-type (AC3+/+) mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE. PMID:26633363

  9. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model

    PubMed Central

    Kang, Wen-bo; Yang, Qi; Guo, Yan-yan; Wang, Lu; Wang, Dong-sheng; Cheng, Qiang; Li, Xiao-ming; Tang, Jun; Zhao, Jian-ning; Liu, Gang; Zhuo, Min

    2016-01-01

    Background Cancer pain, especially the one caused by metastasis in bones, is a severe type of pain. Pain becomes chronic unless its causes and consequences are resolved. With improvements in cancer detection and survival among patients, pain has been considered as a great challenge because traditional therapies are partially effective in terms of providing relief. Cancer pain mechanisms are more poorly understood than neuropathic and inflammatory pain states. Chronic inflammatory pain and neuropathic pain are influenced by NB001, an adenylyl cyclase 1 (AC1)-specific inhibitor with analgesic effects. In this study, the analgesic effects of NB001 on cancer pain were evaluated. Results Pain was induced by injecting osteolytic murine sarcoma cell NCTC 2472 into the intramedullary cavity of the femur of mice. The mice injected with sarcoma cells for four weeks exhibited significant spontaneous pain behavior and mechanical allodynia. The continuous systemic application of NB001 (30 mg/kg, intraperitoneally, twice daily for three days) markedly decreased the number of spontaneous lifting but increased the mechanical paw withdrawal threshold. NB001 decreased the concentrations of cAMP and the levels of GluN2A, GluN2B, p-GluA1 (831), and p-GluA1 (845) in the anterior cingulate cortex, and inhibited the frequency of presynaptic neurotransmitter release in the anterior cingulate cortex of the mouse models. Conclusions NB001 may serve as a novel analgesic to treat bone cancer pain. Its analgesic effect is at least partially due to the inhibition of AC1 in anterior cingulate cortex. PMID:27612915

  10. Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu

    PubMed Central

    Ayling, Laura J.; Briddon, Stephen J.; Halls, Michelle L.; Hammond, Gerald R. V.; Vaca, Luis; Pacheco, Jonathan; Hill, Stephen J.; Cooper, Dermot M. F.

    2012-01-01

    The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub. PMID:22399809

  11. Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor

    PubMed Central

    Lübker, Carolin; Seifert, Roland

    2015-01-01

    Adenylyl cyclases (ACs) catalyze the conversion of ATP into the second messenger cAMP. Membranous AC1 (AC1) is involved in processes of memory and learning and in muscle pain. The AC toxin edema factor (EF) of Bacillus anthracis is involved in the development of anthrax. Both ACs are stimulated by the eukaryotic Ca2+-sensor calmodulin (CaM). The CaM-AC interaction could constitute a potential target to enhance or impair the AC activity of AC1 and EF to intervene in above (patho)physiological mechanisms. Thus, we analyzed the impact of 39 compounds including typical CaM-inhibitors, an anticonvulsant, an anticholinergic, antidepressants, antipsychotics and Ca2+-antagonists on CaM-stimulated catalytic activity of AC1 and EF. Compounds were tested at 10 μM, i.e., a concentration that can be reached therapeutically for certain antidepressants and antipsychotics. Calmidazolium chloride decreased CaM-stimulated AC1 activity moderately by about 30%. In contrast, CaM-stimulated EF activity was abrogated by calmidazolium chloride and additionally decreased by chlorpromazine, felodipine, penfluridol and trifluoperazine by about 20–40%. The activity of both ACs was decreased by calmidazolium chloride in the presence and absence of CaM. Thus, CaM-stimulated AC1 activity is more insensitive to inhibition by small molecules than CaM-stimulated EF activity. Inhibition of AC1 and EF by calmidazolium chloride is largely mediated via a CaM-independent allosteric mechanism. PMID:25946093

  12. β3GnT2 Maintains Adenylyl Cyclase-3 Signaling and Axon Guidance Molecule Expression in the Olfactory Epithelium

    PubMed Central

    Faden, Ashley A.; Knott, Thomas K.

    2011-01-01

    In the olfactory epithelium (OE), odorant receptor stimulation generates cAMP signals that function in both odor detection and the regulation of axon guidance molecule expression. The enzyme that synthesizes cAMP, adenylyl cyclase 3 (AC3), is coexpressed in olfactory sensory neurons (OSNs) with poly-N-acetyllactosamine (PLN) oligosaccharides determined by the glycosyltransferase β3GnT2. The loss of either enzyme results in similar defects in olfactory bulb (OB) innervation and OSN survival, suggesting that glycosylation may be important for AC3 function. We show here that AC3 is extensively modified with N-linked PLN, which is essential for AC3 activity and localization. On Western blots, AC3 from the wild-type OE migrates diffusely as a heavily glycosylated 200 kDa band that interacts with the PLN-binding lectin LEA. AC3 from the β3GnT2−/− OE loses these PLN modifications, migrating instead as a 140 kDa glycoprotein. Furthermore, basal and forskolin-stimulated cAMP production is reduced 80–90% in the β3GnT2−/− OE. Although AC3 traffics normally to null OSN cilia, it is absent from axon projections that aberrantly target the OB. The cAMP-dependent guidance receptor neuropilin-1 is also lost from β3GnT2−/− OSNs and axons, while semaphorin-3A ligand expression is upregulated. In addition, kirrel2, a mosaically expressed adhesion molecule that functions in axon sorting, is absent from β3GnT2−/− OB projections. These results demonstrate that PLN glycans are essential in OSNs for proper AC3 localization and function. We propose that the loss of cAMP-dependent guidance cues is also a critical factor in the severe axon guidance defects observed in β3GnT2−/− mice. PMID:21525298

  13. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    PubMed Central

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  14. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    ERIC Educational Resources Information Center

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  15. Differentiation of photocycle characteristics of flavin-binding BLUF domains of α- and β-subunits of photoactivated adenylyl cyclase of Euglena gracilis.

    PubMed

    Ito, Shinji; Murakami, Akio; Iseki, Mineo; Takahashi, Tetsuo; Higashi, Shoichi; Watanabe, Masakatsu

    2010-10-28

    Photoactivated adenylyl cyclase (PAC), an FAD-containing photoreceptor of Euglena gracilis, appears to be a heterotetrameric structure composed of 2 homologous subunits (PACα and PACβ), each with a pair of BLUF domains (F1 and F2). PAC promotes blue light-induced activation of adenylyl cyclase. In our previous report, we demonstrated that a recombinant version of the PACαF2 domain displays blue light-induced photocycle similar to those of prokaryotic BLUFs (Ito et al., Photochem. Photobiol. Sci., 2005, 4, 762-769). Here, we further examine the recombinant PACβF2 domain, which like PACαF2 exhibits a blue light-induced photocycle. The estimated quantum efficiency for the phototransformation of PACβF2 was 0.06-0.08, and the half-life for dark relaxation was 3-6 s while the corresponding values for the PACαF2 were 0.28-0.32 and 34-44 s. The remarkable differences between PACαF2 and PACβF2 may be related to the sensitivity of the photoactivation. In PACαF2, amino acid position 556, which is equivalent to Trp104 in the BLUF domain of the purple bacterial AppA protein, is occupied by a Leu residue, while in PACβF2 the equivalent BLUF domain site is conserved as Trp560. Amino acid substitution at this site in PACβF2-Trp560Leu markedly increased the estimated quantum efficiency (0.23) and accelerated the half-life of the dark-relaxation (2 s). These results indicate that Trp560 in PACβF2 plays a main role in suppressing the quantum efficiency. PMID:20842310

  16. Modulation of β-Adrenergic Receptor Signaling in Heart Failure and Longevity: Targeting Adenylyl Cyclase Type 5

    PubMed Central

    Ho, David; Yan, Lin; Iwatsubo, Kousaku; Vatner, Dorothy E.; Vatner, Stephen F.

    2011-01-01

    Despite remarkable advances in therapy, heart failure remains a leading cause of morbidity and mortality. Although enhanced β-adrenergic receptor stimulation is part of normal physiologic adaptation to either the increase in physiologic demand or decrease in cardiac function, chronic β-adrenergic stimulation has been associated with increased mortality and morbidity in both animal models and humans. For example, overexpression of cardiac Gsα or β-adrenergic receptors in transgenic mice results in enhanced cardiac function in young animals, but with prolonged overstimulation of this pathway, cardiomyopathy develops in these mice as they age. Similarly, chronic sympathomimetic amine therapy increases morbidity and mortality in patients with heart failure. Conversely, the use of β-blockade has proven to be of benefit and is currently part of the standard of care for heart failure. It is conceivable that interrupting distal mechanisms in the β-adrenergic receptor-G protein-adenylyl cyclase pathway may also provide targets for future therapeutic modalities for heart failure. Interestingly, there are two major isoforms of adenylyl cyclase (AC) in the heart (type 5 and type 6), which may exert opposite effects on the heart, i.e., cardiac overexpression of AC6 appears to be protective, whereas disruption of type 5 AC prolongs longevity and protects against cardiac stress. The goal of this review is to summarize the paradigm shift in the treatment of heart failure over the past 50 years from administering sympathomimetic amine agonists to administering β-adrenergic receptor antagonists, and to explore the basis for a novel therapy of inhibiting type 5 AC. PMID:20658186

  17. Soluble adenylyl cyclase is not required for axon guidance to netrin-1.

    PubMed

    Moore, Simon W; Lai Wing Sun, Karen; Xie, Fang; Barker, Philip A; Conti, Marco; Kennedy, Timothy E

    2008-04-01

    During development, axons are directed to their targets by extracellular guidance cues. The axonal response to the guidance cue netrin-1 is profoundly influenced by the concentration of cAMP within the growth cone. In some cases, cAMP affects the sensitivity of the growth cone to netrin-1, whereas in others it changes the response to netrin-1 from attraction to repulsion. The effects of cAMP on netrin-1 action are well accepted, but the critical issue of whether cAMP production is activated by a netrin-1 induced signaling cascade remains uncertain. A previous report has suggested that axon guidance in response to netrin-1 requires cAMP production mediated by soluble adenyl cyclase (sAC). We have used genetic, molecular and biochemical strategies to assess this issue. Surprisingly, we found only extremely weak expression of sAC in embryonic neurons and determined that, under conditions where netrin-1 directs axonal pathfinding, exposure to netrin-1 does not alter cAMP levels. Furthermore, although netrin-1-deficient mice exhibit major axon guidance defects, we show that pathfinding is normal in sAC-null mice. Therefore, although cAMP can alter the response of axons to netrin-1, we conclude that netrin-1 does not alter cAMP levels in axons attracted by this cue, and that sAC is not required for axon attraction to netrin-1. PMID:18400890

  18. [A change of hormonal regulation of adenylyl cyclase in the epididymal adipose tissue of rats with experimental models of diabetes mellitus].

    PubMed

    Derkach, K V; Chistyakova, O V; Shpakov, A O

    2014-01-01

    One of the key causes of diabetes mellitus (DM) and its complications are hormonal disturbances in functioning of hormonal signaling systems, including the adenylyl cyclase signaling system (ACSS). The goal of this work was to study the functional state and hormonal sensitivity of ACSS in the epididymal adipose tissue of male rats in the 7-month model of mild type 1 DM (DM1), in the 18-month neonatal model of type 2 DM (DM2), and in the taken for comparison model of the 30-day acute DM1. It is shown for the first time that in adipocytes from the epididymal fat of rats with the studied DM models the basal AC activity and its stimulation by forskolin were decreased, which indicates a weakening of the catalytic function of the enzyme adenylyl cyclase (AC). Stimulation of AC by guanine nucleotides in DM changed to the lesser extent, which speaks in favor of preservation of functions of heterotrimeric G(s)-proteins in the epididymal fat. In rats with DM1 the sensitivity of AC of adipocytes to agonists of β-adrenergic receptors (β-AR), activators of lipolysis, remained practically unchanged, while in animals with DM2 the AC stimulating effects of β-AR-agonists were reduced or completely blocked, like in the case of β3-AR-agonist BRL-37344 and CL-316243. In adipocytes of rats with DM1 the AC inhibitory effect of N6-cyclopentyladenosine, agonist of type 1 adenosine receptors (Aden1R), an inhibitor of lipolysis, was attenuated, whe- reas in DM2 this effect was completely preserved. Thus, in the epididymal adipose tissue of rats with DM1 the antilipolytic AC cascades including Aden1R were decreased and the stimulation of AC by β-AR-agonists was preserved, whereas in rats with DM2 the β-AR-mediated AC cascades activating lipolysis were reduced, but Aden1R-mediated AC cascades inhibiting lipolysis did not change. The changes of hormonal regulation of ACSS in adipocytes from the epididymal fat lead to disturbances of the metabolic status of animal with DM1 and DM2 and

  19. Sensing Positive versus Negative Reward Signals through Adenylyl Cyclase-Coupled GPCRs in Direct and Indirect Pathway Striatal Medium Spiny Neurons

    PubMed Central

    Nair, Anu G.; Eriksson, Olivia; Vincent, Pierre

    2015-01-01

    Transient changes in striatal dopamine (DA) concentration are considered to encode a reward prediction error (RPE) in reinforcement learning tasks. Often, a phasic DA change occurs concomitantly with a dip in striatal acetylcholine (ACh), whereas other neuromodulators, such as adenosine (Adn), change slowly. There are abundant adenylyl cyclase (AC) coupled GPCRs for these neuromodulators in striatal medium spiny neurons (MSNs), which play important roles in plasticity. However, little is known about the interaction between these neuromodulators via GPCRs. The interaction between these transient neuromodulator changes and the effect on cAMP/PKA signaling via Golf- and Gi/o-coupled GPCR are studied here using quantitative kinetic modeling. The simulations suggest that, under basal conditions, cAMP/PKA signaling could be significantly inhibited in D1R+ MSNs via ACh/M4R/Gi/o and an ACh dip is required to gate a subset of D1R/Golf-dependent PKA activation. Furthermore, the interaction between ACh dip and DA peak, via D1R and M4R, is synergistic. In a similar fashion, PKA signaling in D2+ MSNs is under basal inhibition via D2R/Gi/o and a DA dip leads to a PKA increase by disinhibiting A2aR/Golf, but D2+ MSNs could also respond to the DA peak via other intracellular pathways. This study highlights the similarity between the two types of MSNs in terms of high basal AC inhibition by Gi/o and the importance of interactions between Gi/o and Golf signaling, but at the same time predicts differences between them with regard to the sign of RPE responsible for PKA activation. SIGNIFICANCE STATEMENT Dopamine transients are considered to carry reward-related signal in reinforcement learning. An increase in dopamine concentration is associated with an unexpected reward or salient stimuli, whereas a decrease is produced by omission of an expected reward. Often dopamine transients are accompanied by other neuromodulatory signals, such as acetylcholine and adenosine. We highlight the

  20. Association of adenylyl cyclase 6 rs3730070 polymorphism and hemolytic level in patients with sickle cell anemia.

    PubMed

    Cita, Kizzy-Clara; Ferdinand, Séverine; Connes, Philippe; Brudey, Laura; Tressières, Benoit; Etienne-Julan, Maryse; Lemonne, Nathalie; Tarer, Vanessa; Elion, Jacques; Romana, Marc

    2016-05-01

    A recent study suggested that adenosine signaling pathway could promote hemolysis in patients with sickle cell anemia (SCA). This signaling pathway involves several gene coding enzymes for which variants have been described. In this study, we analyzed the genotype-phenotype relationships between functional polymorphisms or polymorphisms associated with altered expression of adenosine pathway genes, namely adenosine deaminase (ada; rs73598374), adenosine A2b receptor (adora2b; rs7208480), adenylyl cyclase6 (adcy6; rs3730071, rs3730070, rs7300155), and hemolytic rate in SCA patients. One hundred and fifty SCA patients were genotyped for adcy6, ada, and adora2b variants as well as alpha-globin gene, a genetic factor known to modulate hemolytic rate. Hematological and biochemical data were obtained at steady-state. Lactate dehydrogenase, aspartate aminotransferase, reticulocytes and total bilirubin were used to calculate a hemolytic index. Genotype-phenotype relationships were investigated using parametric tests and multivariate analysis. SCA patients carrying at least one allele of adcy6 rs3730070-G exhibited lower hemolytic rate than non-carriers in univariate analysis (p=0.006). The presence of adcy6 rs3730070-G variant was associated with a decreased hemolytic rate in adjusted model for age and alpha-thalassemia (p=0.032). Our results support a protective effect of adcy6 rs3730070-G variant on hemolysis in SCA patients. PMID:27067484

  1. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    PubMed Central

    Holubova, Jana; Jelinek, Jiri; Tomala, Jakub; Masin, Jiri; Kosova, Martina; Stanek, Ondrej; Bumba, Ladislav; Michalek, Jaroslav; Kovar, Marek; Sebo, Peter

    2012-01-01

    The Bordetella adenylate cyclase toxin-hemolysin (CyaA; also called ACT or AC-Hly) targets CD11b-expressing phagocytes and translocates into their cytosol an adenylyl cyclase (AC) that hijacks cellular signaling by conversion of ATP to cyclic AMP (cAMP). Intriguingly, insertion of large passenger peptides removes the enzymatic activity but not the cell-invasive capacity of the AC domain. This has repeatedly been exploited for delivery of heterologous antigens into the cytosolic pathway of CD11b-expressing dendritic cells by CyaA/AC− toxoids, thus enabling their processing and presentation on major histocompatibility complex (MHC) class I molecules to cytotoxic CD8+ T lymphocytes (CTLs). We produced a set of toxoids with overlapping deletions within the first 371 residues of CyaA and showed that the structure of the AC enzyme does not contain any sequences indispensable for its translocation across target cell membrane. Moreover, replacement of the AC domain (residues 1 to 371) with heterologous polypeptides of 40, 146, or 203 residues yielded CyaAΔAC constructs that delivered passenger CTL epitopes into antigen-presenting cells (APCs) and induced strong antigen-specific CD8+ CTL responses in vivo in mice and ex vivo in human peripheral blood mononuclear cell cultures. This shows that the RTX (repeats in toxin) hemolysin moiety, consisting of residues 374 to 1706 of CyaA, harbors all structural information involved in translocation of the N-terminal AC domain across target cell membranes. These results decipher the extraordinary capacity of the AC domain of CyaA to transport large heterologous cargo polypeptides into the cytosol of CD11b+ target cells and pave the way for the construction of CyaAΔAC-based polyvalent immunotherapeutic T cell vaccines. PMID:22215742

  2. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC)

    PubMed Central

    Wang, Dan; Hu, Jie; Bobulescu, I. Alexandru; Quill, Timothy A.; McLeroy, Paul; Moe, Orson W.; Garbers, David L.

    2007-01-01

    We previously identified a sperm-specific Na+/H+ exchanger (sNHE) principally localized to the flagellum. Disruption of the sNHE gene in mice resulted in absolute male infertility associated with a complete loss of sperm motility. Here, we show that the sNHE-null spermatozoa fail to develop the cAMP-dependent protein tyrosine phosphorylation that coincides with the functional maturation occurring upon incubation in capacitating conditions in vitro. Both the sperm motility defect and the lack of induced protein tyrosine phosphorylation are rescued by the addition of cell-permeable cAMP analogs, suggesting that cAMP metabolism is impaired in spermatozoa lacking sNHE. Our analyses of the bicarbonate-dependent soluble adenylyl cyclase (sAC) signaling pathway in sNHE-null sperm cells reveal that sNHE is required for the expression of full-length sAC, and that it is important for the bicarbonate stimulation of sAC activity in spermatozoa. Furthermore, both codependent expression and coimmunoprecipitation experiments indicate that sNHE and sAC associate with each other. Thus, these two proteins appear to be components of a signaling complex at the sperm flagellar plasma membrane. We propose that the formation of this complex efficiently modulates intracellular pH and bicarbonate levels through the rapid and effective control of sAC and sNHE activities to facilitate sperm motility regulation. PMID:17517652

  3. Inhibition of atrial natriuretic peptide (ANP) C receptor expression by antisense oligodeoxynucleotides in A10 vascular smooth-muscle cells is associated with attenuation of ANP-C-receptor-mediated inhibition of adenylyl cyclase.

    PubMed Central

    Palaparti, A; Li, Y; Anand-Srivastava, M B

    2000-01-01

    Atrial natriuretic peptide (ANP) mediates a variety of physiological effects through its interaction with ANP-A, ANP-B or ANP-C receptors. However, controversies exist regarding the involvement of ANP-C receptor and adenylyl cyclase/cAMP signal-transduction systems to which these receptors are coupled in mediating these responses. In the present studies, we have employed an antisense approach to eliminate the ANP-C receptor and to examine the effect of this elimination on adenylyl cyclase inhibition. An 18-mer antisense phosphorothioate oligodeoxynucleotide (OH-2) targeted at the initiation codon of the ANP-C receptor was used to examine its effects on the expression of the ANP-C receptor and ANP-C-receptor-mediated inhibition of adenylyl cyclase in vascular smooth-muscle cells (A10). Treatment of the cells with antisense oligonucleotide resulted in complete attenuation of C-ANP(4-23) [des(Gln(18), Ser(19), Gln(20), Leu(21), Gly(22))ANP(4-23)-NH(2)]-mediated inhibition of adenylyl cyclase, whereas sense and missense oligomers did not affect the inhibition of adenylyl cyclase by C-ANP(4-23). In addition, the stimulatory effects of guanine nucleotides, isoproterenol, sodium fluoride and forskolin as well as the inhibitory effects of angiotensin II on adenylyl cyclase were not affected by antisense-oligonucleotide treatment. The attenuation of C-ANP(4-23)-mediated inhibition of adenylyl cyclase by antisense oligonucleotide was dose- and time-dependent. A complete attenuation of ANP-C-receptor-mediated inhibition of adenylyl cyclase was observed at 2.5 microM. In addition, treatment of the cells with antisense oligonucleotide and not with sense or missense oligomers resulted in the inhibition of the levels of ANP-C-receptor protein and mRNA as determined by immunoblotting and Northern blotting using antisera against the ANP-C receptor and a cDNA probe of the ANP-C receptor respectively. On the other hand, ANP-A/B-receptor-mediated increases in cGMP levels were not

  4. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production.

    PubMed

    Blum, Ailisa; Benfield, Aurélie H; Stiller, Jiri; Kazan, Kemal; Batley, Jacqueline; Gardiner, Donald M

    2016-05-01

    Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes. PMID:26932301

  5. Effect of overexpressed adenylyl cyclase VI on β1- and β2-adrenoceptor responses in adult rat ventricular myocytes

    PubMed Central

    Stark, Joalice C C; Haydock, Stephen F; Foo, Roger; Brown, Morris J; Harding, Sian E

    2004-01-01

    Adenylyl cyclase VI (ACVI) is one of the most abundantly expressed β adrenergic receptor (βAR)-coupled cyclases responsible for cyclic AMP (cAMP) production within the mammalian myocardium. We investigated the role of ACVI in the regulation of cardiomyocyte contractility and whether it is functionally coupled with β1 adrenergic receptor (β1AR). Recombinant adenoviruses were generated for ACVI and for antisense to ACVI (AS). Adult rat ventricular myocytes were transfected with ACVI virus, AS or both (SAS). Adenovirus for green fluorescent protein (GFP) served as control. Myocyte contraction amplitudes (% shortening) and relaxation times (R50) were analysed. ACVI function was determined using cAMP assays. ACVI-transfected cells demonstrated a strong 139 kDa ACVI protein band compared to controls. ACVI myocytes had higher steady-state intracellular cAMP levels than GFP myocytes when unstimulated (GFP vs ACVI=6.60±0.98 vs 14.2±2.1 fmol cAMP/viable cell, n=4, P<0.05) and in the presence of 1 μM isoprenaline or 10 μM forskolin. ACVI myocytes had increased basal contraction (% shortening: GFP vs ACVI: 1.90±1.36 vs 3.91±2.29, P<0.0001) and decreased basal R50 (GFP vs ACVI: 62.6±24.2 ms (n=50) vs 45.0±17.2 ms (n=248), P<0.0001). ACVI myocyte responses were increased for forskolin (Emax: GFP=6.70±1.59 (n=6); ACVI=9.06±0.69 (n=14), P<0.01) but not isoprenaline. ACVI myocyte responses were increased (Emax: GFP vs ACVI=3.16±0.77 vs 5.10±0.60, P<0.0001) to xamoterol (a partial β1AR-selective agonist) under β2AR blockade (+50 nM ICI 118, 551). AS decreased both control and ACVI-stimulated xamoterol responses (Emax: AS=2.59±1.42, SAS=1.38±0.5). ACVI response was not mimicked by IBMX. Conversely, response through β2 adrenergic receptor (β2AR) was decreased in ACVI myocytes. In conclusion, ACVI overexpression constitutively increases myocyte contraction amplitudes by raising cAMP levels. Native ACVI did not contribute to basal cAMP production or contraction

  6. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    PubMed Central

    Guadiana, Sarah M.; Parker, Alexander K.; Filho, Gileno F.; Sequeira, Ashton; Semple-Rowland, Susan; Shaw, Gerry; Mandel, Ronald J.; Foster, Thomas C.; Kumar, Ashok; Sarkisian, Matthew R.

    2016-01-01

    The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain

  7. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration.

    PubMed

    Khan, Kainat; Pal, Subhashis; Yadav, Manisha; Maurya, Rakesh; Trivedi, Arun Kumar; Sanyal, Sabyasachi; Chattopadhyay, Naibedya

    2015-12-01

    Prunetin is found in red clover and fruit of Prunus avium (red cherry). The effect of prunetin on osteoblast function, its mode of action and bone regeneration in vivo were investigated. Cultures of primary osteoblasts, osteoblastic cell line and HEK293T cells were used for various in vitro studies. Adult female rats received drill-hole injury at the femur diaphysis to assess the bone regenerative effect of prunetin. Prunetin at 10nM significantly (a) increased proliferation and differentiation of primary cultures of osteoblasts harvested from rats and (b) promoted formation of mineralized nodules by bone marrow stromal/osteoprogenitor cells. At this concentration, prunetin did not activate any of the two nuclear estrogen receptors (α and β). However, prunetin triggered signaling via a G-protein-coupled receptor, GPR30/GPER1, and enhanced cAMP levels in osteoblasts. G15, a selective GPR30 antagonist, abolished prunetin-induced increases in osteoblast proliferation, differentiation and intracellular cAMP. In osteoblasts, prunetin up-regulated runt-related transcription factor 2 (Runx2) protein through cAMP-dependent Erk/MAP kinase activation that ultimately resulted in the up-regulation of GPR30. Administration of prunetin at 0.25mg/kg given to rats stimulated bone regeneration at the site of drill hole and up-regulated Runx2 expression in the fractured callus and the effect was comparable to human parathyroid hormone, the only clinically used osteogenic therapy. We conclude that prunetin promotes osteoinduction in vivo and the mechanism is defined by signaling through GPR30 resulting in the up-regulation of the key osteogenic gene Runx2 that in turn up-regulates GPR30. PMID:26345541

  8. Comparative involvement of cyclic nucleotide phosphodiesterases and adenylyl cyclase on adrenocorticotropin-induced increase of cyclic adenosine monophosphate in rat and human glomerulosa cells.

    PubMed

    Côté, M; Payet, M D; Rousseau, E; Guillon, G; Gallo-Payet, N

    1999-08-01

    The present study investigated the role and identity of cyclic nucleotide phosphodiesterases (PDEs) in the regulation of basal and ACTH-stimulated levels of intracellular cAMP in human and rat adrenal glomerulosa cells. Comparative dose-response curves indicated that maximal hormone-stimulated cAMP accumulation was 11- and 24-fold higher in human and rat cells, compared with cAMP production obtained in corresponding membranes, respectively. Similarly to 3-isobutyl-1-methyl-xanthine, 25 microM erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA, a specific PDE2 inhibitor), caused a large increase in ACTH-stimulated cAMP accumulation; by contrast, it did not change cAMP production in membranes. Moreover, in membrane fractions, addition of 10 microM cGMP inhibited ACTH-induced cAMP production, an effect completely reversed by addition of 25 microM EHNA. These results indicate that PDE2 activity is involved in the regulation of cAMP accumulation induced by ACTH, and suggest that ACTH inhibits this activity. Indeed, time-course studies indicated that ACTH induced a rapid decrease in cGMP production, resulting in PDE2 inhibition, which in turn, contributed [with adenylyl cyclase (AC) activation] to an accumulation in cAMP for 15 min. Thereafter, cAMP content decreased, because of cAMP-stimulated PDE2, as confirmed by measurement of PDE activity that was activated by ACTH, but only after a 10-min incubation. Hence, we demonstrate that the ACTH-induced increase in intracellular cAMP is the result of a balance between activation of AC and direct modulation of PDE2 activity, an effect mediated by cGMP content. Although similar results were observed in both models, PDE2 involvement is more important in rat than in human adrenal glomerulosa cells, whereas AC is more stimulated in human than in rat glomerulosa cells. PMID:10433216

  9. Separate Elements within a Single IQ-like Motif in Adenylyl Cyclase Type 8 Impart Ca2+/Calmodulin Binding and Autoinhibition*

    PubMed Central

    MacDougall, David A.; Wachten, Sebastian; Ciruela, Antonio; Sinz, Andrea; Cooper, Dermot M. F.

    2009-01-01

    The ubiquitous Ca2+-sensing protein calmodulin (CaM) fulfills its numerous signaling functions through a wide range of modular binding and activation mechanisms. By activating adenylyl cyclases (ACs) 1 and 8, Ca2+ acting via calmodulin impacts on the signaling of the other major cellular second messenger cAMP. In possessing two CaM-binding domains, a 1-5-8-14 motif at the N terminus and an IQ-like motif (IQlm) at the C terminus, AC8 offers particularly sophisticated regulatory possibilities. The IQlm has remained unexplored beyond the suggestion that it bound CaM, and the larger C2b region of which it is part was involved in the relief of autoinhibition of AC8. Here we attempt to distinguish the function of individual residues of the IQlm. From a complementary approach of in vitro and cell population AC activity assays, as well as CaM binding, we propose that the IQlm alone, and not the majority of the C2b, imparts CaM binding and autoinhibitory functions. Moreover, this duality of function is spatially separated and depends on amino acid side-chain character. Accordingly, residues critical for CaM binding are positively charged and clustered toward the C terminus, and those essential for the maintenance of autoinhibition are hydrophobic and more N-terminal. Secondary structure prediction of the IQlm supports this separation, with an ideally placed break in the α-helical nature of the sequence. We additionally find that the N and C termini of AC8 interact, which is an association specifically abrogated by fully Ca2+-bound, but not Ca2+-free, CaM. These data support a sophisticated activation mechanism of AC8 by CaM, in which the duality of the IQlm function is critical. PMID:19305019

  10. Pivotal role for aspartate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase.

    PubMed

    Neve, K A; Cox, B A; Henningsen, R A; Spanoyannis, A; Neve, R L

    1991-06-01

    An aspartate residue corresponding to aspartate-80 of dopamine D2 receptors is strictly conserved among receptors that couple to guanine nucleotide-binding proteins. Mutation of this residue alters the function of several classes of neurotransmitter receptors. Dopamine D2 receptors couple to the guanine nucleotide-binding protein Gi to inhibit adenylyl cyclase (ATP-pyrophosphate-lyase, cyclizing; EC 4.6.1.1). Like other Gi-coupled receptors, the binding of agonists and some antagonists to D2 receptors is sensitive to pH and sodium. In the present report, we demonstrate that substitution of an alanine or glutamate residue for aspartate-80 severely impairs inhibition of adenylyl cyclase by D2 receptors and also abolishes or decreases the regulation of the affinity of D2 receptors for agonists and substituted benzamide antagonists by sodium and pH. Our data support the hypothesis that the conformation of D2 receptors is maintained by interactions of monovalent cations with aspartate-80. The regulation of D2 receptors by this interaction has important consequences for the affinity of D2 receptors for ligands and for signal transduction by D2 receptors. PMID:1828858

  11. Identification of a human cDNA encoding a protein that is structurally and functionally related to the yeast adenylyl cyclase-associated CAP proteins

    SciTech Connect

    Matviw, Yu, G.; Young, D. )

    1992-11-01

    The adenylyl cyclases of both Saccharomyces cerevisiae and Schizosaccharomyces pombe are associated with related proteins named CAP. In S. cerevisiae, CAP is required for cellular responses mediated by the RAS/cyclic AMP pathway. Both yeast CAPs appear to be bifunctional proteins: The N-terminal domains are required for the proper function of adenylyl cyclase, while loss of the C-terminal domains results in morphological and nutritional defects that appear to be unrelated to the cAMP pathways. Expression of either yeast CAP in the heterologous yeast suppresses phenotypes associated with loss of the C-terminal domain of the endogenous CAP but does not suppress loss of the N-terminal domain. On the basis of the homology between the two yeast CAP proteins, we have designed degenerate oligonucleotides that we used to detect, by the polymerase chain reaction method, a human cDNA fragment encoding a CAP-related peptide. Using the polymerase chain reaction fragment as a probe, we isolated a human cDNA clone encoding a 475-amino-acid protein that is homologous to the yeast CAP proteins. Expressions of the human CAP protein in S. cerevisiae suppresses the phenotypes associated with loss of the C-terminal domain of CAP but does not suppress phenotypes associated with loss of the N-terminal domain. Thus, CAP proteins have been structurally and, to some extent, functionally conserved in evolution between yeasts and mammals. 42 refs., 5 figs.

  12. Critical periods for chlorpyrifos-induced developmental neurotoxicity: alterations in adenylyl cyclase signaling in adult rat brain regions after gestational or neonatal exposure.

    PubMed Central

    Meyer, Armando; Seidler, Frederic J; Aldridge, Justin E; Tate, Charlotte A; Cousins, Mandy M; Slotkin, Theodore A

    2004-01-01

    Developmental exposure to chlorpyrifos (CPF) alters the function of a wide variety of neural systems. In the present study we evaluated the effects in adulthood of CPF exposure of rats during different developmental windows, using the adenylyl cyclase (AC) signaling cascade, which mediates the cellular responses to numerous neurotransmitters. Animals were exposed on gestational days (GD) 9-12 or 17-20 or on postnatal days (PN) 1-4 or 11-14 and assessed at PN60. In addition to basal AC activity, we evaluated the responses to direct AC stimulants (forskolin, Mn2+) and to isoproterenol, which activates signaling through ss-adrenoceptors coupled to stimulatory G-proteins. CPF exposure in any of the four periods elicited significant changes in AC signaling in a wide variety of brain regions in adulthood. In general, GD9-12 was the least sensitive stage, requiring doses above the threshold for impaired maternal weight gain, whereas effects were obtained at subtoxic doses for all other regimens. Most of the effects were heterologous, involving signaling elements downstream from the receptors, and thus shared by multiple stimulants; superimposed on this basic pattern, there were also selective alterations in receptor-mediated responses, in G-protein function, and in AC expression and subtypes. Exposures conducted at GD17-20 and later all produced sex-selective alterations. These results suggest that developmental exposure to CPF elicits long-lasting alterations in cell-signaling cascades that are shared by multiple neurotransmitter and hormonal inputs; the resultant abnormalities of synaptic communication are thus likely to occur in widespread neural circuits and their corresponding behaviors. PMID:14998743

  13. Anti-Cdc25 antibodies inhibit guanyl nucleotide-dependent adenylyl cyclase of Saccharomyces cerevisiae and cross-react with a 150-kilodalton mammalian protein.

    PubMed Central

    Gross, E; Marbach, I; Engelberg, D; Segal, M; Simchen, G; Levitzki, A

    1992-01-01

    The CDC25 gene product of the yeast Saccharomyces cerevisiae has been shown to be a positive regulator of the Ras protein. The high degree of homology between yeast RAS and the mammalian proto-oncogene ras suggests a possible resemblance between the mammalian regulator of Ras and the regulator of the yeast Ras (Cdc25). On the basis of this assumption, we have raised antibodies against the conserved C-terminal domain of the Cdc25 protein in order to identify its mammalian homologs. Anti-Cdc25 antibodies raised against a beta-galactosidase-Cdc25 fusion protein were purified by immunoaffinity chromatography and were shown by immunoblotting to specifically recognize the Cdc25 portion of the antigen and a truncated Cdc25 protein, also expressed in bacteria. These antibodies were shown both by immunoblotting and by immunoprecipitation to recognize the CDC25 gene product in wild-type strains and in strains overexpressing Cdc25. The anti-Cdc25 antibodies potently inhibited the guanyl nucleotide-dependent and, approximately 3-fold less potently, the Mn(2+)-dependent adenylyl cyclase activity in S. cerevisiae. The anti-Cdc25 antibodies do not inhibit cyclase activity in a strain harboring RAS2Val-19 and lacking the CDC25 gene product. These results support the view that Cdc25, Ras2, and Cdc35/Cyr1 proteins are associated in a complex. Using these antibodies, we were able to define the conditions to completely solubilize the Cdc25 protein. The results suggest that the Cdc25 protein is tightly associated with the membrane but is not an intrinsic membrane protein, since only EDTA at pH 12 can solubilize the protein. The anti-Cdc25 antibodies strongly cross-reacted with the C-terminal domain of the Cdc25 yeast homolog, Sdc25. Most interestingly, these antibodies also cross-reacted with mammalian proteins of approximately 150 kDa from various tissues of several species of animals. These interactions were specifically blocked by the beta-galactosidase-Cdc25 fusion protein. Images

  14. Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and alpha 2-adrenergic receptors in Xenopus laevis melanophores.

    PubMed

    Zubare-Samuelov, Meirav; Peri, Irena; Tal, Michael; Tarshish, Mark; Spielman, Andrew I; Naim, Michael

    2003-11-01

    The sweeteners saccharin, D-tryptophan, and neohesperidin dihydrochalcone (NHD) and the bitter tastant cyclo(Leu-Trp) stimulated concentration-dependent pigment aggregation in a Xenopus laevis melanophore cell line similar to melatonin. Like melatonin, these tastants inhibited (by 45-92%) cAMP formation in melanophores; pertussis toxin pretreatment almost completely abolished the tastant-induced cAMP inhibition, suggesting the involvement of the inhibitory pathway (Gi) of adenylyl cyclase. The presence of luzindole (melatonin receptor antagonist) almost completely abolished the inhibition of cAMP formation induced by saccharin, D-tryptophan, and cyclo(Leu-Trp) but only slightly affected the inhibitory effect of NHD. In contrast, the presence of an alpha2-adrenergic receptor antagonist, yohimbine, almost completely abolished the inhibition of cAMP formation induced by NHD but had only a minor effect on that induced by the other tastants. Thus saccharin, D-tryptophan, and cyclo(Leu-Trp) are melatonin receptor agonists whereas NHD is an alpha2-adrenergic receptor agonist, but both pathways lead to the same transduction output and cellular response. Formation of D-myo-inositol 1,4,5-trisphosphate (IP3) in melanophores was reduced (15-58%, no concentration dependence) by saccharin, D-tryptophan, and cyclo(Leu-Trp) stimulation but increased by NHD stimulation. Tastant stimulation did not affect cGMP. Although some of the above tastants were found to be membrane permeant, their direct activation of downstream transduction components in this experimental system is questionable. MT1 and MT2 melatonin receptor mRNAs were identified in rat circumvallate papilla taste buds and nonsensory epithelium, suggesting the occurrence of MT1 and MT2 receptors in these tissues. Melatonin stimulation reduced the cellular content of cAMP in taste cells, which may or may not be related to taste sensation. PMID:12839835

  15. Cecal ligation and puncture sepsis is associated with attenuated expression of adenylyl cyclase 9 and increased miR142-3p.

    PubMed

    Risøe, Petter K; Ryg, Una; Wang, Yun Yong; Rutkovskiy, Arkady; Smedsrød, Bård; Valen, Guro; Dahle, Maria K

    2011-10-01

    The host inflammatory response in sepsis may be resolved by endogenous anti-inflammatory immune cell responses, avoiding fatal pathogenesis, organ injury, and death. The intracellular signaling mediator cyclic 3'5'-adenosine monophosphate is a potent modulator of inflammatory responses and initiates the polarization of immune cells in a direction that suppresses inflammatory activation. Cyclic 3'5'-adenosine monophosphate is enzymatically produced by adenylyl cyclases (ACs). The expression of ACs is previously shown to be reduced in rat organs after in vivo endotoxemia, concurrent with the progressing systemic inflammation. In the present study, tissue AC gene expression and regulation are explored in a rat model of cecal ligation and puncture (CLP) sepsis. Eighteen hours after CLP operation, expression of several AC isoforms in the liver, spleen, and kidney was reduced, significantly so for AC9 in all tissues. AC9 expression is regulated by the microRNA miR142-3p in T cells. When microRNA was extracted and amplified for miR142-3p expression, it was increasingly expressed 18 h after CLP. A correlation between increased miR142-3p and decreased AC9 expression was found in the liver, kidney, and spleen, and when hepatocytes, Kupffer cells (KCs), and liver sinusoidal endothelial cells were isolated after CLP, reduced AC expression and increased miR142-3p expression were found in KCs and liver sinusoidal endothelial cells. Transfecting a miR142-3p inhibitor probe in rat KCs abolished LPS-mediated AC9 inhibition in vitro. These results indicate that CLP leads to miR142-3p-mediated AC9 reduction in liver macrophages, which may further limit cyclic 3'5'-adenosine monophosphate signaling and the ability of macrophages to resolve the proinflammatory response. PMID:21701418

  16. The vasorelaxant effect of 8(17),12E,14-labdatrien-18-oic acid involves stimulation of adenylyl cyclase and cAMP/PKA pathway: Evidences by pharmacological and molecular docking studies.

    PubMed

    Ribeiro, Luciano A A; Alencar Filho, Edilson B; Coelho, Maisa C; Silva, Bagnólia A

    2015-10-01

    The relaxant effect of 8(17),12E,14-labdatrien-18-oic acid (LBD) was investigated on isolated aortic rings and compared with forskolin (FSK), a standard and potent activator of adenylyl cyclase (AC) with relaxing effect. The presence of potassium channel blockers, such as glibenclamide (ATP-blocker), apamin (SKCa-blocker), charybdotoxin (BKCa-blocker) did not significantly affect either the LBD or FSK concentration-response curves. However, in the presence of 4-aminopyridine (KV-blocker), the relaxant effect for both diterpenes was significantly attenuated, with reduction of its relative potencies. Moreover, the relaxation induced by 8-Br-cAMP, an analog of cAMP, was also significantly attenuated in the same conditions, i.e., in the presence of 4-aminopyridine. The presence of aminophylline, a nonselective phosphodiesterase inhibitor, caused a significant increasing in the potency for both LBD and FSK. On the other hand, the presence of Rp-cAMPS, a selective PKA-inhibitor, significantly attenuated the relaxant effect of LBD. In this work, in the same experimental conditions, both labdane-type diterpenes presented remarkably similar results; FSK, however, presented a higher potency (100-fold) than LBD. Thus, the hypothesis that LBD could be a novel AC-activator emerged. To assess that hypothesis, computational molecular docking studies were performed. Crystallographic structure of adenylyl cyclase/forskolin complex (1AB8) was obtained from RSCB Protein Data Bank and used to compare the modes of interaction of the native ligand and LBD. The computational data shows many similarities between LBD and FSK concerning the interaction with the regulatory site of AC. Taken together, the results presented here pointed to LBD as a novel AC-activator. PMID:26144373

  17. [Peptide 612-627 of thyrotropin receptor and its modified derivatives as the regulators of adenylyl cyclase in the rat thyroid gland].

    PubMed

    Shpakov, A O; Shpakova, E A; Tarasenko, I I; Derkach, K V

    2014-01-01

    The regulation of the specific activity of the thyroid gland is carried by thyroid-stimulating hormone (TSH) through TSH receptor (TSHR). This receptor is coupled to different types of G-proteins, including the G(s)-proteins, through which TSH stimulates the enzyme adenylyl cyclase (AC). As the application of TSH in medicine is limited, the development of selective regulators of TSHR with agonistic and antagonistic activity is carried out. One of the approaches to their creation is to develop the peptides corresponding to functionally important regions of TSHR which are located in its intracellular loops (ICL) and are involved in the binding and activation of G-proteins. We have synthesized peptide corresponding to the C-terminal region 612-627 of the third ICL of TSHR and its derivatives modified by palmitic acid residue (at the N- or the C-terminus) or by polylysine dendrimer (at the N-terminus), and studied their effect on the basal and TSH-stimulated AC activity in the membrane fraction isolated from the rat thyroid. The most active was peptide 612-627-K(Pal)A modified by palmitate at the C-terminus, where in TSHR the hydrophobic transmembrane region is located. At the micromolar concentrations the peptide increased AC activity and reduced the AC stimulating effect of TSH. The action of the 612-627-K(Pal)A has been directed onto TSHR homologous to it, as indicated by the following facts: 1) the inhibition of G(s)-protein, the downstream component of AC system, by treating the membranes with cholera toxin led to the blocking of peptide AC effect, 2) this effect was not detected in the tissues where no TSHR, 3) the peptide did not significantly affect the AC stimulating effects of hormones acting via other receptors. The unmodified peptide and the peptide with N-terminal dendrimer are far behind the 612-627-K(Pal)A in their ability to activate AC in the thyroid, while the peptide modified by palmitate at the N-terminus was inactive. At the same time, the peptide

  18. The Adenylyl Cyclase Plays a Regulatory Role in the Morphogenetic Switch from Vegetative to Pathogenic Lifestyle of Fusarium graminearum on Wheat

    PubMed Central

    Bormann, Jörg; Boenisch, Marike Johanne; Brückner, Elena; Firat, Demet; Schäfer, Wilhelm

    2014-01-01

    Cyclic 3′,5′-adenosine monophosphate (cAMP) is a nucleotide derived from adenosine triphosphate that acts as a second messenger throughout all kingdoms. Intracellular cAMP levels are synthesized by a membrane-bound protein, the adenylyl cyclase. In order to analyze the function of this gene and the importance of cAMP in the life cycle of the cereal pathogen Fusarium graminearum, the adenylyl cyclase gene (FGSG_01234) was deleted by gene replacement (ΔFgac1). The ΔFgac1 mutant displayed a drastically reduced growth on agar medium which could be rescued by a cAMP analogon. Furthermore, the ΔFgac1 mutant was unable to produce perithecia on detached wheat nodes. However, artificial conditions like carrot agar allowed perithecia development. Pathogenicity towards wheat was drastically reduced in ΔFgac1 compared to the wild type. Point-inoculated spikelets showed only small lesions but no typical head blight disease symptoms. Fluorescence microscopy using dsRed-expressing strains revealed that the ΔFgac1 strain was unable to develop any complex infection structures like lobate appressoria and infection cushions. Instead, hyphal anastomosis occurs frequently. Scanning electron microscopy demonstrated the lack of fungal penetration. Hence, the formation of compound appressoria seems to be essential for infection of wheat. Hyphae on flower leaves produced huge amounts of new conidia, thereby circumventing the infection cycle. This abundant sporulation on wheat epidermis was not observed in wild type. Intriguingly, the Fgac1 deletion mutant was able to infect maize cobs as wild type, indicating that cAMP signaling is not important for maize infection. The ΔFgac1 mutant was unable to produce the mycotoxin deoxynivalenol both in vitro and during wheat infection. In this study, we show that cAMP signaling controls important cellular processes such as development of infection structures, pathogenicity, secondary metabolite production and sexual reproduction. For the

  19. Identification of a CAP (adenylyl-cyclase-associated protein) homologous gene in Lentinus edodes and its functional complementation of yeast CAP mutants.

    PubMed

    Zhou, G L; Miyazaki, Y; Nakagawa, T; Tanaka, K; Shishido, K; Matsuda, H; Kawamukai, M

    1998-04-01

    The adenylyl-cyclase-associated protein, CAP, was originally identified in yeasts as a protein that functions in both signal transduction and cytoskeletal organization. This paper reports the identification of a cDNA and genomic DNA that encodes a CAP homologue from the mushroom Lentinus edodes. The L. edodes cap gene contains eight introns and an ORF encoding a 518 amino acid protein. The L. edodes CAP is 35.5% and 40.9% identical at the amino acid level with Saccharomyces cerevisiae CAP and Schizosaccharomyces pombe CAP, respectively. The C-terminal domain shows greater homology (39-46% identity) with yeast CAPs than does the N-terminal domain (27-35% identity). Southern blotting and Northern blotting results suggest that L. edodes cap is a single-copy gene and uniformly expressed. Expression of the L. edodes CAP in both Schiz. pombe and Sacch. cerevisiae complemented defects associated with the loss of the C-terminal domain function of the endogenous CAP. By using a yeast two-hybrid assay, an interaction was demonstrated between the L. edodes CAP and Schiz. pombe actin. This result and the functional complementation test indicate that CAP from L. edodes has a conserved C-terminal domain function. PMID:9579081

  20. Adenylyl cyclase-associated protein 1 in metastasis of squamous cell carcinoma of the head and neck and non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Zavyalov, A. A.; Shishkin, D. A.; Kondakova, I. V.; Choinzonov, E. L.

    2016-08-01

    Progression of tumors and metastasis in particular is one of the main reasons of the high mortality rate among cancer patients. The primary role in developing metastases plays cell locomotion which requires remodeling of the actin cytoskeleton. Form, dynamics, localization and mechanical properties of the actin cytoskeleton are regulated by a variety of actin-binding proteins, which include the adenylyl cyclase-associated protein 1 (CAP1). The study is devoted to the investigation of CAP1 level depending on the presence or absence of metastases in patients with squamous cell carcinoma of the head and neck (SCCHN) and non-small cell lung cancer (NSCLC). The results show the contribution of CAP1 to SCCHN and NSCLC progression. We detected the connection between the tissue protein CAP1 level and the stage of NSCLC and SCCHN disease. Also the levels of the CAP1 protein in tissues of primary tumors and metastases in lung cancer were different. Our data showed that CAP is important in the development of metastases, which suggests further perspectives in the study of this protein for projecting metastasis of NSCLC and SCCHN.

  1. Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice.

    PubMed

    Chen, Tao; O'Den, Gerile; Song, Qian; Koga, Kohei; Zhang, Ming-Ming; Zhuo, Min

    2014-01-01

    Long-term potentiation (LTP) is a key cellular mechanism for pathological pain in the central nervous system. LTP contains at least two different phases: early-phase LTP (E-LTP) and late-phase LTP (L-LTP). Among several major cortical areas, the anterior cingulate cortex (ACC) is a critical brain region for pain perception and its related emotional changes. Periphery tissue or nerve injuries cause LTP of excitatory synaptic transmission in the ACC. Our previous studies have demonstrated that genetic deletion of calcium-stimulated adenylyl cyclase 1 (AC1) or pharmacological application of a selective AC1 inhibitor NB001 blocked E-LTP in the ACC. However, the effect of AC1 on L-LTP, which requires new protein synthesis and is important for the process of chronic pain, has not been investigated. Here we tested the effects of NB001 on the ACC L-LTP and found that bath application of NB001 (0.1 μM) totally blocked the induction of L-LTP and recruitment of cortical circuitry without affecting basal excitatory transmission. In contrast, gabapentin, a widely used analgesic drug for neuropathic pain, did not block the induction of L-LTP and circuitry recruitment even at a high concentration (100 μM). Gabapentin non-selectively decreased basal synaptic transmission. Our results provide strong evidence that the selective AC1 inhibitor NB001 can be used to inhibit pain-related cortical L-LTP without affecting basal synaptic transmission. It also provides basic mechanisms for possible side effects of gabapentin in the central nervous system and its ineffectiveness in some patients with neuropathic pain. PMID:25304256

  2. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa).

    PubMed Central

    Carricarte, V C; Bianchini, G M; Muschietti, J P; Téllez-Iñón, M T; Perticari, A; Torres, N; Flawiá, M M

    1988-01-01

    An adenylate cyclase activity in Medicago sativa L. (alfalfa) roots was partially characterized. The enzyme activity remains in the supernatant fluid after centrifugation at 105,000 g and shows in crude extracts an apparent Mr of about 84,000. The enzyme is active with Mg2+ and Ca2+ as bivalent cations, and is inhibited by EGTA and by chlorpromazine. Calmodulin from bovine brain or spinach leaves activates this adenylate cyclase. PMID:3128270

  3. Glucagon and adenylate cyclase: binding studies and requirements for activation.

    PubMed

    Levey, G S; Fletcher, M A; Klein, I

    1975-01-01

    Solubilization of myocardial adenylate cyclase abolished responsiveness to glucagon and catecholamines, two of the hormones which activate the membrane-bound enzyme. Adenylate cyclase freed of detergent by DEAE-cellulose chromatography continues to remain unresponsive to hormone stimulation. However, adding purified bovine brain phospholipids--phosphotidylserine and monophosphatidylinositol--restored responsiveness to glucagon and catecholamines, respectively. 125-i-glucagon binding appeared to be independent of phospholipid, since equal binding was observed in the presence or absence of detergent and in the presence or absence of phospholipids. Chromatography of the solubilized preparation on Sephadex G-100 WAS CHARACTERIZED BY 125-I-glucagon binding and fluoride-stimulatable adenylate cyclase activity appearing in the fractions consistent with the void volume, suggesting a molecular weight greater than 100,000 for the receptor-adenylate cyclase complex. Prior incubation of the binding peak with 125-I-glucagon and rechromatography of the bound glucagon on Sephadex G-100 shifted its elution to a later fraction consistent with a smaller-molecular-weight peak. The molecular weight of this material was 24,000 to 28,000, as determined by SDS polyacrylamide gel electrophoresis. The latter findings are consistent with a dissociable receptor site for glucagon on myocardial adenylate cyclase. PMID:165684

  4. Stimulation of Hippocampal Adenylyl Cyclase Activity Dissociates Memory Consolidation Processes for Response and Place Learning

    ERIC Educational Resources Information Center

    Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis

    2006-01-01

    Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…

  5. Mechanism of activation of adenylate cyclase by Vibrio cholerae enterotoxin.

    PubMed

    Bennett, V; Cuatrecasas, P

    1975-06-01

    The kinetics and properties of the activation of adenylate cyclase by cholera enterotoxin have been examined primarily in toad erythrocytes, but also in avian erythrocytes, rat fat cells and cultured melanoma cells. When cholera toxin is incubated with intact cells it stimulates adenylate cyclase activity, as measured in the subsequently isolated plasma membranes, according to a triphasic time course. This consists of a true lag period of about 30 min, followed by a stage of exponentially increasing adenylate cyclase activity which continues for 110 to 130 min, and finally a period of slow activation which may extend as long as 30 hr in cultured melanoma cells. The progressive activation of adenylate cyclase activity by cholera toxin is interrupted by cell lysis; continued incubation of the isolated membranes under nearly identical conditions does not lead to further activation of the enzyme. The delay in the action of the toxin is not grossly dependent of the number of toxin-receptor (GM1 ganglioside) complexes, and is still seen upon adding a second dose of toxin to partially stimulated cells. Direct measurements indicate negligible intracellular levels of biologically active radioiodinated toxin in either a soluble or a nuclear-bound form. The effects are not prevented by Actinomycin D (20 mug/ml), uromycin (30 mug/ml), cycloheximide (30 mug/ml), sodium fluoride (10 mM) or sodium azide (1 mM); KCN, however, almost completely prevents the action of cholera toxin. The action of the toxin is temperature dependent, occurring at very slow or negligible rates below certain critical temperatures, the values of which depend on the specific animal species. Thetransition for toad erythrocytes occurs at 15 to 17 degrees C, while rat adipocytes and turkey erythrocytes demonstrate a discontinuity at 26 to 30 degrees C. The temperature effects are evident during the lag period as well as during the exponential phase of activation. The rate of decay of the stimulated adenylate

  6. Cyclic nucleotide–gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee

    PubMed Central

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upon multiple-trial conditioning: an early phase (e-LTM) which depends on translation from already available mRNA, and a late phase (l-LTM) which requires de novo transcription and translation. Here we combined olfactory PER conditioning and neuropharmacological inhibition and studied the involvement of the NO–cGMP pathway, and of specific molecules, such as cyclic nucleotide-gated channels (CNG), calmodulin (CaM), adenylyl cyclase (AC), and Ca2+/calmodulin-dependent protein kinase (CaMKII), in the formation of olfactory LTM in bees. We show that in addition to NO–cGMP and cAMP–PKA, CNG channels, CaM, AC, and CaMKII also participate in the formation of a l-LTM (72-h post-conditioning) that is specific for the learned odor. Importantly, the same molecules are dispensable for olfactory learning and for the formation of both MTM (in the minute and hour range) and e-LTM (24-h post-conditioning), thus suggesting that the signaling pathways leading to l-LTM or e-LTM involve different molecular actors. PMID:24741108

  7. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol.

    PubMed Central

    Neufeld, K L; Galarza, J M; Richards, O C; Summers, D F; Ehrenfeld, E

    1994-01-01

    A terminal adenylyl transferase (TATase) activity has been identified in preparations of purified poliovirus RNA-dependent RNA polymerase (3Dpol). Highly purified 3Dpol is capable of adding [32P]AMP to the 3' ends of chemically synthesized 12-nucleotide (nt)-long RNAs. The purified 52-kDa polypeptide, isolated after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured, retained the TATase activity. Two 3Dpol mutants, purified from Escherichia coli expression systems, displayed no detectable polymerase activity and were unable to catalyze TATase activity. Likewise, extracts from the parental E. coli strain that harbored no expression plasmid were unable to catalyze formation of the TATase products. With the RNA oligonucleotide 5'-CCUGCUUUUGCA-3' used as an acceptor, the products formed by wild-type 3Dpol were 9 and 18 nt longer than the 12-nt oligomer. GTP, CTP, and UTP did not serve as substrates for transfer to this RNA, either by themselves or when all deoxynucleoside triphosphates were present in the reaction. Results from kinetic and stoichiometric analyses suggest that the reaction is catalytic and shows substrate and enzyme dependence. The 3'-terminal 13 nt of poliovirus minus-strand RNA also served as an acceptor for TATase activity, raising the possibility that this activity functions in poliovirus RNA replication. The efficiency of utilization and the nature of the products formed during the reaction were dependent on the acceptor RNA. Images PMID:8057462

  8. Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis

    PubMed Central

    Luitz, Manuel P.; Bomblies, Rainer; Ramcke, Evelyn; Itzen, Aymelt; Zacharias, Martin

    2016-01-01

    The pathogenic pathway of Legionella pneumophila exploits the intercellular vesicle transport system via the posttranslational attachment of adenosine monophosphate (AMP) to the Tyr77 sidechain of human Ras like GTPase Rab1b. The modification, termed adenylylation, is performed by the bacterial enzyme DrrA/SidM, however the effect on conformational properties of the molecular switch mechanism of Rab1b remained unresolved. In this study we find that the adenylylation of Tyr77 stabilizes the active Rab1b state by locking the switch in the active signaling conformation independent of bound GTP or GDP and that electrostatic interactions due to the additional negative charge in the switch region make significant contributions. The stacking interaction between adenine and Phe45 however, seems to have only minor influence on this stabilisation. The results may also have implications for the mechanistic understanding of conformational switching in other signaling proteins. PMID:26818796

  9. Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Signal via Phospholipase C Pathway to Block Apoptosis in Newborn Rat Retina.

    PubMed

    Lakk, Monika; Denes, Viktoria; Gabriel, Robert

    2015-07-01

    Glutamate induced cell death mechanisms gained considerable attention lately as excessive release of extracellular glutamate was reported to cause neurodegeneration in brain areas including the retina. Conversely, pituitary adenylate cyclase-activating polypeptide (PACAP) was shown to provide neuroprotection through anti-apoptotic effects in the glutamate-model and also in other degeneration assays. Although PACAP is known to orchestrate complex intracellular signaling primarily through cAMP production, the mechanism that mediates the anti-apoptotic effect in glutamate excitotoxicity remains to be clarified. To study this mechanism we induced retinal neurodegeneration in newborn Wistar rats by subcutaneous monosodium-glutamate injection. 100 pmol PACAP and enzyme inhibitors were administered intravitreally. Levels of caspase 3, 9, and phospho-protein kinase A were assessed by Western blots. Changes in cAMP levels were detected employing a competitive immunoassay. We found that cAMP blockade by an adenylyl-cyclase inhibitor (2',4'-dideoxy-adenosine) did not abrogate the neuroprotective effect of PACAP1-38. We show that following intravitreal PACAP1-38 treatment cAMP was unaltered, consistent with the inhibitor results and phospho-protein kinase A, an effector of the cAMP pathway was also unaffected. On the other hand, blockade of the alternative phosphatidylcholine-specific PLC pathway using an inhibitor (D609CAS) abrogated the neuroprotective effects of PACAP1-38. Our results highlight PACAP1-38 ability in protecting retinal cells against apoptosis through diverse signaling cascades. It seems that at picomolar concentrations, PACAP does not trigger cAMP production, but nonetheless, exerts a significant anti-apoptotic effect through PLC activation. In conclusion, PACAP1-38 may signal via both AC and PLC activation producing the same protective outcome. PMID:25975365

  10. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells.

    PubMed

    Kudlacek, Oliver; Just, Herwig; Korkhov, Vladimir M; Vartian, Nina; Klinger, Markus; Pankevych, Halyna; Yang, Qiong; Nanoff, Christian; Freissmuth, Michael; Boehm, Stefan

    2003-07-01

    The adenosine A(2A) receptor and the dopamine D(2) receptor are prototypically coupled to G(s) and G(i)/G(o), respectively. In striatal intermediate spiny neurons, these receptors are colocalized in dendritic spines and act as mutual antagonists. This antagonism has been proposed to occur at the level of the receptors or of receptor-G protein coupling. We tested this model in PC12 cells which endogenously express A(2A) receptors. The human D(2) receptor was introduced into PC12 cells by stable transfection. A(2A)-agonist-mediated inhibition of D(2) agonist binding was absent in PC12 cell membranes but present in HEK293 cells transfected as a control. However, in the resulting PC12 cell lines, the action of the D(2) agonist quinpirole depended on the expression level of the D(2) receptor: at low and high receptor levels, the A(2A)-agonist-induced elevation of cAMP was enhanced and inhibited, respectively. Forskolin-stimulated cAMP formation was invariably inhibited by quinpirole. The effects of quinpirole were abolished by pretreatment with pertussis toxin. A(2A)-receptor-mediated cAMP formation was inhibited by other G(i)/G(o)-coupled receptors that were either endogenously present (P(2y12)-like receptor for ADP) or stably expressed after transfection (A(1) adenosine, metabotropic glutamate receptor-7A). Similarly, voltage activated Ca(2+) channels were inhibited by the endogenous P(2Y) receptor and by the heterologously expressed A(1) receptor but not by the D(2) receptor. These data indicate functional segregation of signaling components. Our observations are thus compatible with the proposed model that D(2) and A(2A) receptors are closely associated, but they highlight the fact that this interaction can also support synergism. PMID:12784121

  11. Stimulation of hormone-responsive adenylate cyclase activity by a factor present in the cell cytosol.

    PubMed Central

    MacNeil, S; Crawford, A; Amirrasooli, H; Johnson, S; Pollock, A; Ollis, C; Tomlinson, S

    1980-01-01

    1. Homogenates of whole tissues were shown to contain both intracellular and extracellular factors that affected particulate adenylate cyclase activity in vitro. Factors present in the extracellular fluids produced an inhibition of basal, hormone- and fluoride-stimulated enzyme activity but factors present in the cell cytosol increased hormone-stimulated activity with relatively little effect on basal or fluoride-stimulated enzyme activity. 2. The existence of this cytosol factor or factors was investigated using freshly isolated human platelets, freshly isolated rat hepatocytes, and cultured cells derived from rat osteogenic sarcoma, rat calvaria, mouse melanoma, pig aortic endothelium, human articular cartilage chondrocytes and human bronchial carcinoma (BEN) cells. 3. The stimulation of the hormone response by the cytosol factor ranged from 60 to 890% depending on the tissue of origin of the adenylate cyclase. 4. In each case the behaviour of the factor was similar to the action of GTP on that particular adenylate cyclase preparation. 5. No evidence of tissue or species specificity was found, as cytosols stimulated adenylate cyclase from their own and unrelated tissues to the same degree. 6. In the human platelet, the inclusion of the cytosol in the assay of adenylate cyclase increased the rate of enzyme activity in response to stimulation by prostaglandin E1 without affecting the amount of prostaglandin E1 required for half-maximal stimulation or the characteristics of enzyme activation by prostaglandin E. PMID:7396869

  12. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation

    PubMed Central

    Chen, Ying; Liu, Shiheng; Liu, Cuilan; Huang, Yan; Chi, Kaikai; Su, Tiantian; Zhu, Deyu; Peng, Jin; Xia, Zhijie; He, Jing; Xu, Sujuan; Hu, Wei; Gu, Lichuan

    2016-01-01

    C-di-GMP (3’,5’ -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop (protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, moving the protecting loop from the I-site and thereby turning off the enzymatic activity. PMID:27388857

  13. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation.

    PubMed

    Chen, Ying; Liu, Shiheng; Liu, Cuilan; Huang, Yan; Chi, Kaikai; Su, Tiantian; Zhu, Deyu; Peng, Jin; Xia, Zhijie; He, Jing; Xu, Sujuan; Hu, Wei; Gu, Lichuan

    2016-01-01

    C-di-GMP (3',5' -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop (protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, moving the protecting loop from the I-site and thereby turning off the enzymatic activity. PMID:27388857

  14. Mechanisms of nonhormonal activation of adenylate cyclase based on target analysis

    SciTech Connect

    Verkman, A.S.; Ausiello, D.A.; Jung, C.Y.; Skorecki, K.L.

    1986-08-12

    Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn/sup 2 +/), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously (Verkman, A. S., Skorecki, K. L., and Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123) and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.

  15. Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods.

    PubMed Central

    Gorczyca, W A; Gray-Keller, M P; Detwiler, P B; Palczewski, K

    1994-01-01

    In retinal rods light triggers a cascade of enzymatic reactions that increases cGMP hydrolysis and generates an electrical signal by causing closure of cGMP-gated ion channels in the photoreceptor outer segment. This leads to a decrease in internal Ca, which activates guanylate cyclase and promotes photoresponse recovery by stimulating the resynthesis of cGMP. We report here that the activation of guanylate cyclase by low Ca is mediated by an approximately 20-kDa protein purified from bovine rod outer segments by using DEAE-Sepharose, hydroxylapatite, and reverse-phase chromatographies. In a reconstituted system, this protein restores the Ca-sensitive regulation of guanylate cyclase and when dialyzed into functionally intact lizard rod outer segment decreases the sensitivity, time to peak, and recovery time of the flash response. Images PMID:7909609

  16. Mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase

    SciTech Connect

    Bitensky, M.W.; Yamazaki, A.; Wheeler, M.A.; George, J.S.; Rasenick, M.M.

    1983-01-01

    Light-activated cGMP phosphodiesterase (PDE) is one of the effector proteins in the rod outer segments in vertebrate retina. The hydrolysis of cGMP in rod occurs with a speed and light sensitivity which suggests a role for this hydrolysis in visual transduction. In fact, there is electrophysiological data which supports the possibility that cGMP could regulate rod membrane voltage. PDE shows very rapid activation in the presence of photons and GTP. We have called attention to the intriguing analogy between light activated rod phosphodiesterase and hormone activated adenylate cyclase. A number of studies have implicated the binding of GTP to a GTP binding protein as a factor in the hormone dependent activation of adenylate cyclase. Moreover, Cassel and Selinger have shown that hydrolysis of GTP is a component in the inactivation of the hormone dependent adenylate cyclase. We review here recent additional data which provide specific molecular details of the mechanism of light activation of rod PDE as well as demonstrate the exchange of components between light activated PDE and hormone activated cyclase.

  17. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    SciTech Connect

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. Univ. of California, Los Angeles )

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  18. Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR

    PubMed Central

    De, Nabanita; Navarro, Marcos V.A.S.; Raghavan, Rahul V.; Sondermann, Holger

    2009-01-01

    The bacterial second messenger c-di-GMP controls secretion, cell adhesion and motility leading to biofilm formation and increased cytotoxicity. Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL or HD-GYP domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding the molecular mechanisms governing regulation and signaling specificity. We recently determined a product-inhibition pathway for the diguanylate cyclase response regulator WspR from Pseudomonas, a potent molecular switch that controls biofilm formation. In WspR, catalytic activity is modulated by a helical stalk motif that connects its phospho-receiver (REC) and GGDEF domains. The stalks facilitate the formation of distinct oligomeric states that contribute to both activation and autoinhibition. Here, we provide novel insights into the regulation of diguanylate cyclase activity in WspR based on the crystal structures of full-length WspR, the isolated GGDEF domain, and an artificially dimerized catalytic domain. The structures highlight that inhibition is achieved by restricting the mobility of rigid GGDEF domains, mediated by c-di-GMP binding to an inhibitory site at the GGDEF domain. Kinetic measurements and biochemical characterization corroborate a model in which the activation of WspR requires the formation of a tetrameric species. Tetramerization occurs spontaneously at high protein concentration or upon addition of the phosphomimetic compound beryllium fluoride. Our analyses elucidate common and WspR-specific mechanisms for the fine-tuning of diguanylate cyclase activity. PMID:19695263

  19. Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin.

    PubMed

    Bouhss, A; Krin, E; Munier, H; Gilles, A M; Danchin, A; Glaser, P; Bârzu, O

    1993-01-25

    The catalytic domain of Bordetella pertussis adenylate cyclase located within the first 400 amino acids of the protein can be cleaved by trypsin in two subdomains (T25 and T18) corresponding to ATP-(T25) and calmodulin (CaM)-(T18) binding sites. Reassociation of subdomains by CaM is a cooperative process, which is a unique case among CaM-activated enzymes. To understand better the molecular basis of this phenomenon, we used several approaches such as partial deletions of the adenylate cyclase gene, isolation of peptides of various size, and site-directed mutagenesis experiments. We found that a stretch of 72 amino acid residues overlapping the carboxyl terminus of T25 and the amino terminus of T18 accounts for 90% of the binding energy of adenylate cyclase-CaM complex. The hydrophobic "side" of the helical region situated around Trp242 plays a major role in the interaction of adenylate cyclase with CaM, whereas basic residues that alternate with acidic residues in bacterial enzyme play a much less important role. The amino-terminal half of the catalytic domain of adenylate cyclase contributes only 10% to the binding energy of CaM, whereas the last 130 amino acid residues are not at all involved in binding. However, these segments of adenylate cyclase might affect protein/protein interaction and catalysis by propagating conformational changes to the CaM-binding sequence which is located in the middle of the catalytic domain of bacterial enzyme. PMID:8420945

  20. Multiple splice variants of the pituitary adenylate cyclase-activating polypeptide type 1 receptor detected by RT-PCR in single rat pituitary cells.

    PubMed

    Bresson-Bépoldin, L; Jacquot, M C; Schlegel, W; Rawlings, S R

    1998-10-01

    Alternative splicing of the rat type 1 pituitary adenylate cyclase-activating polypeptide (PACAP) receptor (PVR1) produces variants that couple either to both adenylyl cyclase (AC) and phospholipase C (PLC) (PVR1 short, PVR1 hop, PVR1 hiphop), or to AC alone (PVR1 hip). We have previously shown that populations of clonal alphaT3-1 gonadotrophs express PVR1 hop and PVR1 short mRNAs, whereas clonal GH4C1 somatotrophs do not. Here we have used the single cell RT-PCR technique to investigate whether normal rat gonadotrophs and somatotrophs express PVR1 mRNA, whether a single cell co-expresses multiple splice variant forms, and whether differential PVR1 mRNA expression correlates with differences in PACAP-stimulated Ca2+ signalling. We found that individual rat gonadotrophs expressed mRNA either for PVR1 hop, for PVR1 short, or co-expressed the two forms. Although we found no differences between the splice variant(s) expressed and the characteristics of PACAP-stimulated Ca2+ responses, the expression of PVR1 mRNA is consistent with the known PACAP stimulation of the PLC system in gonadotrophs. Individual rat somatotrophs also expressed PVR1 hop or PVR1 short (but not PVR1 hip) mRNAs although these forms were never co-expressed. The expression of PVR1 mRNA in somatotrophs can explain in part the activation by PACAP of the AC system in such cells. In conclusion, the single cell RT-PCR technique was used to demonstrate expression of multiple PVR1 splice variants in single identified pituitary cells. These findings open up important questions on the role of alternative splicing in cell biology. PMID:9801454

  1. NO-Mediated [Ca2+]cyt Increases Depend on ADP-Ribosyl Cyclase Activity in Arabidopsis1[OPEN

    PubMed Central

    Hotta, Carlos T.; Davey, Matthew P.; Dodd, Antony N.

    2016-01-01

    Cyclic ADP ribose (cADPR) is a Ca2+-mobilizing intracellular second messenger synthesized from NAD by ADP-ribosyl cyclases (ADPR cyclases). In animals, cADPR targets the ryanodine receptor present in the sarcoplasmic/endoplasmic reticulum to promote Ca2+ release from intracellular stores to increase the concentration of cytosolic free Ca2+ in Arabidopsis (Arabidopsis thaliana), and cADPR has been proposed to play a central role in signal transduction pathways evoked by the drought and stress hormone, abscisic acid, and the circadian clock. Despite evidence for the action of cADPR in Arabidopsis, no predicted proteins with significant similarity to the known ADPR cyclases have been reported in any plant genome database, suggesting either that there is a unique route for cADPR synthesis or that a homolog of ADPR cyclase with low similarity might exist in plants. We sought to determine whether the low levels of ADPR cyclase activity reported in Arabidopsis are indicative of a bona fide activity that can be associated with the regulation of Ca2+ signaling. We adapted two different fluorescence-based assays to measure ADPR cyclase activity in Arabidopsis and found that this activity has the characteristics of a nucleotide cyclase that is activated by nitric oxide to increase cADPR and mobilize Ca2+. PMID:26932235

  2. Cooperative substrate binding by a diguanylate cyclase.

    PubMed

    Oliveira, Maycon C; Teixeira, Raphael D; Andrade, Maxuel O; Pinheiro, Glaucia M S; Ramos, Carlos H I; Farah, Chuck S

    2015-01-30

    XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule. Analysis of a XacΔ0610 knockout strain revealed that XAC0610 plays a role in the regulation of Xac motility and resistance to H2O2. Site-directed mutagenesis of a conserved DGC lysine residue (Lys759 in XAC0610) resulted in a severe reduction in XAC0610 DGC activity. Furthermore, experimental and in silico analyses suggest that XAC0610 is not subject to allosteric product inhibition, a common regulatory mechanism for DGC activity control. Instead, steady-state kinetics of XAC0610 DGC activity revealed a positive cooperative effect of the GTP substrate with a dissociation constant for the binding of the first GTP molecule (K1) approximately 5× greater than the dissociation constant for the binding of the second GTP molecule (K2). We present a general kinetics scheme that should be used when analyzing DGC kinetics data and propose that cooperative GTP binding could be a common, though up to now overlooked, feature of these enzymes that may in some cases offer a physiologically relevant mechanism for regulation of DGC activity in vivo. PMID:25463434

  3. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    SciTech Connect

    Niles, L.P.; Hashemi, F. )

    1990-12-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.

  4. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride.

    PubMed Central

    Sternweis, P C; Gilman, A G

    1982-01-01

    Activation of the purified guanine nucleotide-binding regulatory component (G/F) of adenylate cyclase by F- requires the presence of Mg2+ and another factor. This factor, which contaminates commercial preparations of various nucleotides and disposable glass test tubes, has been identified as Al3+. In the presence of 10 mM Mg2+ and 5 mM F-, AlCl3 causes activation of G/F with an apparent activation constant of approximately 1-5 muM. The requirement for Al3+ is highly specific; of 28 other metals tested, only Be2+ promoted activation of G/F by F-. PMID:6289322

  5. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity.

    PubMed

    Israeli, Ma'ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  6. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  7. Effect of serum lipoproteins on the adenylate cyclase activity of rat liver plasma membranes.

    PubMed Central

    Ghiselli, G; Sirtori, C R; Nicosia, S

    1981-01-01

    Four rat lipoprotein classes [lymph chylomicrons, VLD (very-low-density), LD (low-density) and HD (high-density) lipoproteins] were tested for their ability to affect basal adenylate cyclase (EC 4.6.1.1) activity of rat liver plasma membranes. All the lipoproteins, with the exception of lymph chylomicrons, effectively increase the enzyme activity. VLD lipoproteins are the most active class (67% maximal increase), followed by HD lipoproteins (33%) and LD lipoproteins (23%). The effect of VLD lipoproteins is additive to that elicited by GTP or GTP plus glucagon (at least within a certain concentration range). VLD lipoproteins affect only the Vmax. of the enzyme, not the Km. PMID:7317023

  8. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Cyclic GMP is a ubiquitous second messenger that regulates a wide array of physiologic processes such as blood pressure, long bone growth, intestinal fluid secretion, phototransduction and lipolysis. Soluble and single-membrane-spanning enzymes called guanylyl cyclases (GC) synthesize cGMP. In humans, the latter group consists of GC-A, GC-B, GC-C, GC-E and GC-F, which are also known as NPR-A, NPR-B, StaR, Ret1-GC and Ret2-GC, respectively. Membrane GCs are activated by peptide ligands such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), guanylin, uroguanylin, heat stable enterotoxin and GC-activating proteins. Nesiritide and carperitide are clinically approved peptide-based drugs that activate GC-A. CD-NP is an experimental heart failure drug that primarily activates GC-B but also activates GC-A at high concentrations and is resistant to degradation. Inactivating mutations in GC-B cause acromesomelic dysplasia type Maroteaux dwarfism and chromosomal mutations that increase CNP concentrations are associated with Marfanoid-like skeletal overgrowth. Pump-based CNP infusions increase skeletal growth in a mouse model of the most common type of human dwarfism, which supports CNP/GC-B-based therapies for short stature diseases. Linaclotide is a peptide activator of GC-C that stimulates intestinal motility and is in late-stage clinical trials for the treatment of chronic constipation. This review discusses the discovery of cGMP, guanylyl cyclases, the general characteristics and therapeutic applications of GC-A, GC-B and GC-C, and emphasizes the regulation of transmembrane guanylyl cyclases by phosphorylation and ATP. PMID:21185863

  9. Activation of adenylate cyclase by dopamine, GTP, NaF and forskolin in striatal membranes of neonatal, adult and senescent rats.

    PubMed

    Nomura, Y; Makihata, J; Segawa, T

    1984-11-13

    Dopamine (DA) caused a significant activation of striatal adenylate cyclase in neonatal and adult but not in senescent rats. GTP activated cyclase at the adult stage but not at both neonatal and senescent stages. NaF and forskolin activated cyclase at every stage. The coupling mechanism between DA1 receptors and catalytic units of cyclase seems to become functional at the neonatal stage but GTP recognition and/or binding sites lack in stimulatory GTP binding protein in neonatal and senescent membranes. PMID:6543337

  10. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors

    PubMed Central

    Mendez, Ana; Burns, Marie E.; Sokal, Izabela; Dizhoor, Alexander M.; Baehr, Wolfgang; Palczewski, Krzysztof; Baylor, Denis A.; Chen, Jeannie

    2001-01-01

    The retina's photoreceptor cells adjust their sensitivity to allow photons to be transduced over a wide range of light intensities. One mechanism thought to participate in sensitivity adjustments is Ca2+ regulation of guanylate cyclase (GC) by guanylate cyclase-activating proteins (GCAPs). We evaluated the contribution of GCAPs to sensitivity regulation in rods by disrupting their expression in transgenic mice. The GC activity from GCAPs−/− retinas showed no Ca2+ dependence, indicating that Ca2+ regulation of GCs had indeed been abolished. Flash responses from dark-adapted GCAPs−/− rods were larger and slower than responses from wild-type rods. In addition, the incremental flash sensitivity of GCAPs−/− rods failed to be maintained at wild-type levels in bright steady light. GCAP2 expressed in GCAPs−/− rods restored maximal light-induced GC activity but did not restore normal flash response kinetics. We conclude that GCAPs strongly regulate GC activity in mouse rods, decreasing the flash sensitivity in darkness and increasing the incremental flash sensitivity in bright steady light, thereby extending the rod's operating range. PMID:11493703

  11. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential

    PubMed Central

    Evgenov, Oleg V.; Pacher, Pál; Schmidt, Peter M.; Haskó, György; Schmidt, Harald H. H. W.; Stasch, Johannes-Peter

    2008-01-01

    Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme activated by nitric oxide (NO). Impaired bioavailability and/or responsiveness to endogenous NO has been implicated in the pathogenesis of cardiovascular and other diseases. Current therapies that involve the use of organic nitrates and other NO donors have limitations, including non-specific interactions of NO with various biomolecules, lack of response and the development of tolerance following prolonged administration. Compounds that activate sGC in an NO-independent manner might therefore provide considerable therapeutic advantages. Here we review the discovery, biochemistry, pharmacology and clinical potential of haem-dependent sGC stimulators (including YC-1, BAY 41-2272, BAY 41-8543, CFM-1571 and A-350619) and haem-independent sGC activators (including BAY 58-2667 and HMR-1766). PMID:16955067

  12. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole Quinuclidine analogues

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.

    2014-01-01

    Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620

  13. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  14. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    SciTech Connect

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-03-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of (/sup 125/)Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10/sup -5/ M) suggesting predominate beta/sub 2/-type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta-/sub 2/-type BAR coupled to adenylate cyclase in rat brown fat.

  15. Tachyphylaxis to PACAP-27 after inhibition of NO synthesis: a loss of adenylate cyclase activation

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The vasodilator effects of pituitary adenylate cyclase activating polypeptide (PACAP-27) are subject to tachyphylaxis in rats treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). This study examined whether this tachyphylaxis is due to the loss of vasodilator potency of cAMP generated by activation of the G(s) protein-coupled PACAP receptors. Five successive treatments with PACAP-27 (2 nmol/kg iv) produced pronounced vasodilator responses in saline-treated rats that were not subject to tachyphylaxis. The first injection of PACAP-27 (2 nmol/kg iv) in L-NAME (50 micromol/kg iv)-treated rats produced vasodilator responses of similar magnitude to those in saline-treated rats, whereas four subsequent injections produced progressively and markedly smaller responses. The hemodynamic effects of the membrane-permeable cAMP analog 8-(4-chlorophenylthiol)-cAMP (8-CPT-cAMP; 5-15 micromol/kg iv) were similar in L-NAME-treated rats and in L-NAME-treated rats that had received the five injections of PACAP-27. In addition, five injections of 8-CPT-cAMP (10 micromol/kg iv) produced pronounced vasodilator responses in saline- and L-NAME-treated rats that were not subject to the development of tachyphylaxis. These results suggest that a loss of biological potency of cAMP is not responsible for tachyphylaxis to PACAP-27 in L-NAME-treated rats. This tachyphylaxis may be due to the inability of the G(s) protein-coupled PACAP receptor to activate adenylate cyclase.

  16. Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis

    PubMed Central

    Vagstad, Anna L; Hill, Eric A; Labonte, Jason W; Townsend, Craig A

    2012-01-01

    Summary Melanins are a broad class of darkly-pigmented macromolecules formed by oxidative polymerization of phenolic monomers. In fungi, melanins are known virulence factors that contribute to pathogenicity. Their biosynthesis generally involves polymerization of 1,8-dihydroxynaphthalene via a 1,3,6,8- tetrahydroxynaphthalene (THN) precursor assembled by multidomain, nonreducing polyketide synthases. Multiple, convergent routes to THN have evolved in fungi. Parallel heptaketide and hexaketide pathways exist that utilize conventional C-terminal thioesterase/Claisen cyclase domains and separate side-chain deacylases. Here, in vitro characterization of Pks1 from Colletotrichum lagenarium establishes a true THN synthase with a bifunctional thioesterase (TE) catalyzing both cyclization and deacetylation of an enzyme-bound hexaketide substrate. Chimeric TE domains were generated by swapping lid regions of active sites between classes of melanin TEs to gain insight into this unprecedented catalysis of carbon–carbon bond making and breaking by an α/β-hydrolase fold enzyme. PMID:23261597

  17. Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase.

    PubMed Central

    Roelofs, J; Snippe, H; Kleineidam, R G; Van Haastert, P J

    2001-01-01

    The core of adenylate and guanylate cyclases is formed by an intramolecular or intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a heterodimer and are activated by G-proteins. In contrast, membrane-bound guanylate cyclases have only one transmembrane spanning region and one cyclase domain, and are activated by extracellular ligands to form a homodimer. In the cellular slime mould, Dictyostelium discoideum, membrane-bound guanylate cyclase activity is induced after cAMP stimulation; a G-protein-coupled cAMP receptor and G-proteins are essential for this activation. We have cloned a Dictyostelium gene, DdGCA, encoding a protein with 12 transmembrane spanning regions and two cyclase domains. Sequence alignment demonstrates that the two cyclase domains are transposed, relative to these domains in adenylate cyclases. DdGCA expressed in Dictyostelium exhibits high guanylate cyclase activity and no detectable adenylate cyclase activity. Deletion of the gene indicates that DdGCA is not essential for chemotaxis or osmo-regulation. The knock-out strain still exhibits substantial guanylate cyclase activity, demonstrating that Dictyostelium contains at least one other guanylate cyclase. PMID:11237875

  18. Heme-Dependent and Independent Soluble Guanylate Cyclase Activators and Vasodilation

    PubMed Central

    Priviero, Fernanda B. M.; Webb, R. Clinton

    2010-01-01

    Since the discovery of nitric oxide (NO), which is released from endothelial cells as the main mediator of vasodilation, its target, the soluble guanylyl cyclase (sGC), has become a focus of interest for the treatment of diseases associated with endothelial dysfunction. NO donors were developed to suppress NO deficiency; however, tolerance to organic nitrates was reported. Non-NO-based drugs targeting sGC were developed to overcome the problem of tolerance. In this review, we briefly describe the process of sGC activation by its main physiological activator NO and the advances in the development of drugs capable of activating sGC in a NO-independent manner. sGC stimulators, as some of these drugs are called, require the integrity of the reduced heme moiety of the prosthetic group within the sGC and therefore are called heme-dependent stimulators. Other drugs are able to activate sGC independent of heme moiety and are hence called heme-independent activators. Because pathologic conditions modulate sGC and oxidize the heme moiety, the heme-independent sGC activators could potentially become drugs of choice because of their higher affinity to the oxidized enzyme. However, these drugs are still undergoing clinical trials and are not available for clinical use. PMID:20571429

  19. Synthesis and biological evaluation of novel pyrazoles and indazoles as activators of the nitric oxide receptor, soluble guanylate cyclase.

    PubMed

    Selwood, D L; Brummell, D G; Budworth, J; Burtin, G E; Campbell, R O; Chana, S S; Charles, I G; Fernandez, P A; Glen, R C; Goggin, M C; Hobbs, A J; Kling, M R; Liu, Q; Madge, D J; Meillerais, S; Powell, K L; Reynolds, K; Spacey, G D; Stables, J N; Tatlock, M A; Wheeler, K A; Wishart, G; Woo, C K

    2001-01-01

    Database searching and compound screening identified 1-benzyl-3-(3-dimethylaminopropyloxy)indazole (benzydamine, 3) as a potent activator of the nitric oxide receptor, soluble guanylate cyclase. A comprehensive structure-activity relationship study surrounding 3 clearly showed that the indazole C-3 dimethylaminopropyloxy substituent was critical for enzyme activity. However replacement of the indazole ring of 3 by appropriately substituted pyrazoles maintained enzyme activity. Compounds were evaluated for inhibition of platelet aggregation and showed a general lipophilicity requirement. Aryl-substituted pyrazoles 32, 34, and 43 demonstrated potent activation of soluble guanylate cyclase and potent inhibition of platelet aggregation. Pharmacokinetic studies in rats showed that compound 32 exhibits modest oral bioavailability (12%). Furthermore 32 has an excellent selectivity profile notably showing no significant inhibition of phosphodiesterases or nitric oxide synthases. PMID:11141091

  20. Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1

    PubMed Central

    Berger, Felicitas; Lau, Corinna; Ziegler, Mathias

    2007-01-01

    Nuclear NAD+ metabolism constitutes a major component of signaling pathways. It includes NAD+-dependent protein deacetylation by members of the Sir2 family and protein modification by poly(ADP-ribose) polymerase 1 (PARP-1). PARP-1 has emerged as an important mediator of processes involving DNA rearrangements. High-affinity binding to breaks in DNA activates PARP-1, which attaches poly(ADP-ribose) (PAR) to target proteins. NMN adenylyl transferases (NMNATs) catalyze the final step of NAD+ biosynthesis. We report here that the nuclear isoform NMNAT-1 stimulates PARP-1 activity and binds to PAR. Its overexpression in HeLa cells promotes the relocation of apoptosis-inducing factor from the mitochondria to the nucleus, a process known to depend on poly(ADP-ribosyl)ation. Moreover, NMNAT-1 is subject to phosphorylation by protein kinase C, resulting in reduced binding to PAR. Mimicking phosphorylation, substitution of the target serine residue by aspartate precludes PAR binding and stimulation of PARP-1. We conclude that, depending on its state of phosphorylation, NMNAT-1 binds to activated, automodifying PARP-1 and thereby amplifies poly(ADP-ribosyl)ation. PMID:17360427

  1. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members

    PubMed Central

    Otto, Markus; Naumann, Christin; Brandt, Wolfgang; Wasternack, Claus; Hause, Bettina

    2016-01-01

    Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles. PMID:27135223

  2. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members.

    PubMed

    Otto, Markus; Naumann, Christin; Brandt, Wolfgang; Wasternack, Claus; Hause, Bettina

    2016-01-01

    Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles. PMID:27135223

  3. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    SciTech Connect

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S.

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  4. Characterization of the thermoregulatory response to pituitary adenylate cyclase-activating polypeptide in rodents.

    PubMed

    Banki, Eszter; Pakai, Eszter; Gaszner, Balazs; Zsiboras, Csaba; Czett, Andras; Bhuddi, Paras Rahul Parkash; Hashimoto, Hitoshi; Toth, Gabor; Tamas, Andrea; Reglodi, Dora; Garami, Andras

    2014-11-01

    Administration of the long form (38 amino acids) of pituitary adenylate cyclase-activating polypeptide (PACAP38) into the central nervous system causes hyperthermia, suggesting that PACAP38 plays a role in the regulation of deep body temperature (T b). In this study, we investigated the thermoregulatory role of PACAP38 in details. First, we infused PACAP38 intracerebroventricularly to rats and measured their T b and autonomic thermoeffector responses. We found that central PACAP38 infusion caused dose-dependent hyperthermia, which was brought about by increased thermogenesis and tail skin vasoconstriction. Compared to intracerebroventricular administration, systemic (intravenous) infusion of the same dose of PACAP38 caused significantly smaller hyperthermia, indicating a central site of action. We then investigated the thermoregulatory phenotype of mice lacking the Pacap gene (Pacap (-/-)). Freely moving Pacap (-/-) mice had higher locomotor activity throughout the day and elevated deep T b during the light phase. When the Pacap (-/-) mice were loosely restrained, their metabolic rate and T b were lower compared to their wild-type littermates. We conclude that PACAP38 causes hyperthermia via activation of the autonomic cold-defense thermoeffectors through central targets. Pacap (-/-) mice express hyperkinesis, which is presumably a compensatory mechanism, because under restrained conditions, these mice are hypometabolic and hypothermic compared to controls. PMID:24994541

  5. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    PubMed Central

    Tlili, Mounira; Rouatbi, Sonia; Sriha, Badreddine; Ben Rhouma, Khémais; Sakly, Mohsen; Vaudry, David; Wurtz, Olivier; Tebourbi, Olfa

    2015-01-01

    The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP), we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h) for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM) for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC) and cytokines (IL-1α and TNF-α) in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders. PMID:26199679

  6. NO and CO Differentially Activate Soluble Guanylyl Cyclase via a Heme Pivot-bend Mechanism

    SciTech Connect

    Ma,X.; Sayed, N.; Beuve, A.; van den Akker, F.

    2007-01-01

    Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.

  7. Structure of a Diguanylate Cyclase from Thermotoga maritima: Insights into Activation, Feedback Inhibition and Thermostability

    PubMed Central

    Deepthi, Angeline; Liew, Chong Wai; Liang, Zhao-Xun; Swaminathan, Kunchithapadam; Lescar, Julien

    2014-01-01

    Large-scale production of bis-3′-5′-cyclic-di-GMP (c-di-GMP) would facilitate biological studies of numerous bacterial signaling pathways and phenotypes controlled by this second messenger molecule, such as virulence and biofilm formation. C-di-GMP constitutes also a potentially interesting molecule as a vaccine adjuvant. Even though chemical synthesis of c-di-GMP can be done, the yields are incompatible with mass-production. tDGC, a stand-alone diguanylate cyclase (DGC or GGDEF domain) from Thermotoga maritima, enables the robust enzymatic production of large quantities of c-di-GMP. To understand the structural correlates of tDGC thermostability, its catalytic mechanism and feedback inhibition, we determined structures of an active-like dimeric conformation with both active (A) sites facing each other and of an inactive dimeric conformation, locked by c-di-GMP bound at the inhibitory (I) site. We also report the structure of a single mutant of tDGC, with the R158A mutation at the I-site, abolishing product inhibition and unproductive dimerization. A comparison with structurally characterized DGC homologues from mesophiles reveals the presence of a higher number of salt bridges in the hyperthermophile enzyme tDGC. Denaturation experiments of mutants disrupting in turn each of the salt bridges unique to tDGC identified three salt-bridges critical to confer thermostability. PMID:25360685

  8. Effect of cyanide on nitrovasodilator-induced relaxation, cyclic GMP accumulation and guanylate cyclase activation in rat aorta.

    PubMed

    Rapoport, R M; Murad, F

    1984-09-01

    The effects of sodium cyanide on relaxation, increases in cyclic GMP accumulation and guanylate cyclase activation induced by sodium nitroprusside and other nitrovasodilators were examined in rat thoracic aorta. Cyanide abolished nitroprusside-induced relaxation and the associated increase in cyclic GMP levels. Basal levels of cyclic GMP and cyclic AMP were also depressed. Reversal of nitroprusside-induced relaxation by cyanide was independent of the tissue level of cyclic GMP prior to addition of cyanide. Incubation of nitroprusside with cyanide prior to addition to aortic strips did not alter the relaxant effect of nitroprusside. Sodium azide-, hydroxylamine-, N-methyl-N'-nitro-N-nitrosoguanide-, nitroglycerin- and acetylcholine-induced relaxations and increased levels of cyclic GMP were also inhibited by cyanide. Relaxations induced by nitric oxide were also inhibited by cyanide, although the relaxation with the low concentration of nitric oxide employed was not accompanied by detectable increases in cyclic GMP. Relaxation to 8-bromo-cyclic GMP was essentially unaltered by cyanide; however, isoproterenol-induced relaxation was inhibited. Guanylate cyclase in soluble and particulate fractions of aorta homogenates was activated by nitroprusside and the activation was prevented by cyanide. The present results suggest that cyanide inhibits nitrovasodilator-induced relaxation through inhibition of guanylate cyclase activation; however, cyanide may also have nonspecific effects which inhibit relaxation. PMID:6149944

  9. Activation of soluble guanylyl cyclase by the nitrovasodilator 3-morpholinosydnonimine involves formation of S-nitrosoglutathione.

    PubMed

    Schrammel, A; Pfeiffer, S; Schmidt, K; Koesling, D; Mayer, B

    1998-07-01

    Soluble guanylyl cyclase (sGC) is the major physiological target of sydnonimine-based vasodilators such as molsidomine. Decomposition of sydnonimines results in the stoichiometric formation of nitric oxide (NO) and superoxide (O2-), which rapidly react to form peroxynitrite. Inasmuch as sGC is activated by NO but not by peroxynitrite, we investigated the mechanisms underlying sGC activation by 3-morpholinosydnonimine (SIN-1). Stimulation of purified bovine lung sGC by SIN-1 was found to be strongly dependent on glutathione (GSH). By contrast, GSH did not affect sGC activation by NO released from 2,2-diethyl-1-nitroso-oxyhydrazine, indicating that NO/O2- released from SIN-1 converted GSH to an activator of sGC. High performance liquid chromatography identified this product as the thionitrite S-nitrosoglutathione. Further, the reaction product decomposed to release NO upon addition of Cu(NO3)2 in the presence of GSH. Activation of sGC was antagonized by the Cu(I)-specific chelator neocuproine, whereas the Cu(II)-selective drug cuprizone was less potent. Carbon dioxide (delivered as NaHCO3) antagonized S-nitrosation by peroxynitrite but not by SIN-1. Thus, NO/O2- released from SIN-1 mediates a CO2-insensitive conversion of GSH to S-nitrosoglutathione, a thionitrite that activates sGC via trace metal-catalyzed release of NO. These results may provide novel insights into the molecular mechanism underlying the nitrovasodilator action of SIN-1. PMID:9658207

  10. Homology modeling and molecular docking of human pituitary adenylate cyclase-activating polypeptide I receptor

    PubMed Central

    WU, LUSHENG; GUANG, WENHUA; CHEN, XIAOJIA; HONG, AN

    2014-01-01

    Pituitary adenylate cyclase-activating peptide I receptor (PAC1R) is member of the B class of G protein-coupled seven-transmembrane receptors, with molecular functions associated with neural cell differentiation, regeneration and the inhibition of apoptosis. However, the integrity of the protein structure is difficult to be determined in vitro. In the present study, the physicochemical properties of PAC1R were analyzed, the extracellular, transmembrane and intracellular regions were constructed and a three-dimensional structure model of PAC1R was produced using extracellular loop region optimization and the energy minimization homology modeling method. Preliminary studies on the PAC1R protein and ligand interactions used a molecular docking method. The results indicated that the interaction sites of PAC1R were at Ile63, Ser100 and Gln105. These were the sites where the PAC1R combined with a hydrazide small molecule inhibitor. This study provides a theoretical basis for further studies on the model for the development of PAC1R target drugs. PMID:25069645

  11. Posttraumatic administration of pituitary adenylate cyclase activating polypeptide in central fluid percussion injury in rats.

    PubMed

    Kövesdi, Erzsébet; Tamás, Andrea; Reglodi, Dóra; Farkas, Orsolya; Pál, József; Tóth, Gábor; Bukovics, Péter; Dóczi, Tamás; Büki, András

    2008-04-01

    Several in vitro and in vivo experiments have demonstrated the neuroprotective effects of pituitary adenylate cyclase activating polypeptide (PACAP) in focal cerebral ischemia, Parkinson's disease and traumatic brain injury (TBI). The aim of the present study was to analyze the effect of PACAP administration on diffuse axonal injury (DAI), an important contributor to morbidity and mortality associated with TBI, in a central fluid percussion (CFP) model of TBI. Rats were subjected to moderate (2 Atm) CFP injury. Thirty min after injury, 100 microg PACAP was administered intracerebroventricularly. DAI was assessed by immunohistochemical detection of beta-amyloid precursor protein, indicating impaired axoplasmic transport, and RMO-14 antibody, representing foci of cytoskeletal alterations (neurofilament compaction), both considered classical markers of axonal damage. Analysis of damaged, immunoreactive axonal profiles revealed significant axonal protection in the PACAP-treated versus vehicle-treated animals in the corticospinal tract, as far as traumatically induced disturbance of axoplasmic transport and cytoskeletal alteration were considered. Similarly to our former observations in an impact acceleration model of diffuse TBI, the present study demonstrated that PACAP also inhibits DAI in the CFP injury model. The finding indicates that PACAP and derivates can be considered potential candidates for further experimental studies, or purportedly for clinical trials in the therapy of TBI. PMID:18515209

  12. A Soluble Guanylate Cyclase Activator Inhibits the Progression of Diabetic Nephropathy in the ZSF1 Rat.

    PubMed

    Boustany-Kari, Carine M; Harrison, Paul C; Chen, Hongxing; Lincoln, Kathleen A; Qian, Hu Sheng; Clifford, Holly; Wang, Hong; Zhang, Xiaomei; Gueneva-Boucheva, Kristina; Bosanac, Todd; Wong, Diane; Fryer, Ryan M; Richman, Jeremy G; Sarko, Chris; Pullen, Steven S

    2016-03-01

    Therapies that restore renal cGMP levels are hypothesized to slow the progression of diabetic nephropathy. We investigated the effect of BI 703704, a soluble guanylate cyclase (sGC) activator, on disease progression in obese ZSF1 rats. BI 703704 was administered at doses of 0.3, 1, 3, and 10 mg/kg/d to male ZSF1 rats for 15 weeks, during which mean arterial pressure (MAP), heart rate (HR), and urinary protein excretion (UPE) were determined. Histologic assessment of glomerular and interstitial lesions was also performed. Renal cGMP levels were quantified as an indicator of target modulation. BI 703704 resulted in sGC activation, as evidenced by dose-dependent increases in renal cGMP levels. After 15 weeks of treatment, sGC activation resulted in dose-dependent decreases in UPE (from 463 ± 58 mg/d in vehicle controls to 328 ± 55, 348 ± 23, 283 ± 45, and 108 ± 23 mg/d in BI 703704-treated rats at 0.3, 1, 3, and 10 mg/kg, respectively). These effects were accompanied by a significant reduction in the incidence of glomerulosclerosis and interstitial lesions. Decreases in MAP and increases in HR were only observed at the high dose of BI 703704. These results are the first demonstration of renal protection with sGC activation in a nephropathy model induced by type 2 diabetes. Importantly, beneficial effects were observed at doses that did not significantly alter MAP and HR. PMID:26729306

  13. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.

  14. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu.

    PubMed

    Mansouri, Shiva; Lietzau, Grazyna; Lundberg, Mathias; Nathanson, David; Nyström, Thomas; Patrone, Cesare

    2016-01-01

    Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs) has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) and the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia. PMID:27305000

  15. A Bacterial Hemerythrin Domain Regulates Activity of a Vibrio cholerae Di-Guanylate Cyclase

    PubMed Central

    Schaller, Ruth A.; Ali, Syed Khalid; Klose, Karl E.; Kurtz, Donald M.

    2012-01-01

    The first demonstrated example of a regulatory function for a bacterial hemerythrin (Bhr) domain is reported. Bhrs have a characteristic sequence motif providing ligand residues for a type of non-heme diiron site that is known to bind O2 and undergo autoxidation. The amino acid sequence encoded by the gene, VC1216, from Vibrio cholerae O1 biovar El Tor str. N16961 contains an N-terminal Bhr domain connected to a C-terminal domain characteristic of bacterial di-guanylate cyclases (DGCs) that catalyze formation of cyclic di-(3′,5′)-guanosine monophosphate (c-di-GMP) from GTP. This protein, Vc Bhr-DGC, was found to contain two tightly bound non-heme iron atoms per protein monomer. The as-isolated protein showed the spectroscopic signatures of oxo/dicarboxylato-bridged non-heme diferric sites of previously characterized Bhr domains. The diiron site was capable of cycling between diferric and diferrous forms, the latter of which was stable only under anaerobic conditions, undergoing rapid autoxidation upon exposure to air. Vc Bhr-DGC showed approximately 10-times higher DGC activity in the diferrous relative to the diferric form. The level of intracellular c-di-GMP is known to regulate biofilm formation in Vibrio cholerae. The higher DGC activity of the diferrous Vc Bhr-DGC is consistent with induction of biofilm formation in low dioxygen environments. The non-heme diiron cofactor in the Bhr domain thus represents an alternative to heme or flavin for redox and/or diatomic gas sensing and regulation of DGC activity. PMID:23057727

  16. Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents

    PubMed Central

    Feng, Bin; Kiyatkin, Michael E.; La, Jun-Ho; Ge, Pei; Solinga, Robert; Silos-Santiago, Inmaculada; Gebhart, G.F.

    2013-01-01

    Irritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally-restricted 14-amino acid peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents. The distal 2 cm of mouse colorectum with attached pelvic nerve was harvested, pinned flat mucosal side up for in vitro single-fiber recordings and the encoding properties of mechanosensitive afferents (serosal, mucosal, muscular and muscular-mucosal) to probing and circumferential stretch studied. Both cGMP (10–300μM) and uroguanylin (1–1000nM) applied directly to colorectal receptive endings significantly reduced responses of muscular and muscular-mucosal afferents to stretch; serosal and mucosal afferents were not affected. Sensitized responses (i.e., increased responses to stretch) of muscular and muscular-mucosal afferents were reversed by cGMP, returning responses to stretch to control. Blocking the transport of cGMP from colorectal epithelia by probenecid, a mechanism validated by studies in cultured intestinal T84 cells, abolished the inhibitory effect of uroguanylin on muscular-mucosal afferents. These results suggest that GC-C agonists like linaclotide alleviate colorectal pain and hypersensitivity by dampening stretch-sensitive afferent mechanosensitivity and normalizing afferent sensitization. PMID:23739979

  17. The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA.

    PubMed

    Petrova, Olga E; Cherny, Kathryn E; Sauer, Karin

    2015-01-01

    Biofilm dispersion is a highly regulated process that allows biofilm bacteria to respond to changing environmental conditions and to disseminate to new locations. The dispersion of biofilms formed by the opportunistic pathogen Pseudomonas aeruginosa is known to require a number of cyclic di-GMP (c-di-GMP)-degrading phosphodiesterases (PDEs) and the chemosensory protein BdlA, with BdlA playing a pivotal role in regulating PDE activity and enabling dispersion in response to a wide array of cues. BdlA is activated during biofilm growth via posttranslational modifications and nonprocessive cleavage in a manner that is dependent on elevated c-di-GMP levels. Here, we provide evidence that the diguanylate cyclase (DGC) GcbA contributes to the regulation of BdlA cleavage shortly after initial cellular attachment to surfaces and, thus, plays an essential role in allowing biofilm cells to disperse in response to increasing concentrations of a variety of substances, including carbohydrates, heavy metals, and nitric oxide. DGC activity of GcbA was required for its function, as a catalytically inactive variant could not rescue impaired BdlA processing or the dispersion-deficient phenotype of gcbA mutant biofilms to wild-type levels. While modulating BdlA cleavage during biofilm growth, GcbA itself was found to be subject to c-di-GMP-dependent and growth-mode-specific regulation. GcbA production was suppressed in mature wild-type biofilms and could be induced by reducing c-di-GMP levels via overexpression of genes encoding PDEs. Taken together, the present findings demonstrate that the regulatory functions of c-di-GMP-synthesizing DGCs expand beyond surface attachment and biofilm formation and illustrate a novel role for DGCs in the regulation of the reverse sessile-motile transition of dispersion. PMID:25331436

  18. The Diguanylate Cyclase GcbA Facilitates Pseudomonas aeruginosa Biofilm Dispersion by Activating BdlA

    PubMed Central

    Petrova, Olga E.; Cherny, Kathryn E.

    2014-01-01

    Biofilm dispersion is a highly regulated process that allows biofilm bacteria to respond to changing environmental conditions and to disseminate to new locations. The dispersion of biofilms formed by the opportunistic pathogen Pseudomonas aeruginosa is known to require a number of cyclic di-GMP (c-di-GMP)-degrading phosphodiesterases (PDEs) and the chemosensory protein BdlA, with BdlA playing a pivotal role in regulating PDE activity and enabling dispersion in response to a wide array of cues. BdlA is activated during biofilm growth via posttranslational modifications and nonprocessive cleavage in a manner that is dependent on elevated c-di-GMP levels. Here, we provide evidence that the diguanylate cyclase (DGC) GcbA contributes to the regulation of BdlA cleavage shortly after initial cellular attachment to surfaces and, thus, plays an essential role in allowing biofilm cells to disperse in response to increasing concentrations of a variety of substances, including carbohydrates, heavy metals, and nitric oxide. DGC activity of GcbA was required for its function, as a catalytically inactive variant could not rescue impaired BdlA processing or the dispersion-deficient phenotype of gcbA mutant biofilms to wild-type levels. While modulating BdlA cleavage during biofilm growth, GcbA itself was found to be subject to c-di-GMP-dependent and growth-mode-specific regulation. GcbA production was suppressed in mature wild-type biofilms and could be induced by reducing c-di-GMP levels via overexpression of genes encoding PDEs. Taken together, the present findings demonstrate that the regulatory functions of c-di-GMP-synthesizing DGCs expand beyond surface attachment and biofilm formation and illustrate a novel role for DGCs in the regulation of the reverse sessile-motile transition of dispersion. PMID:25331436

  19. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu

    PubMed Central

    Mansouri, Shiva; Lietzau, Grazyna; Lundberg, Mathias; Nathanson, David; Nyström, Thomas; Patrone, Cesare

    2016-01-01

    Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs) has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) and the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia. PMID:27305000

  20. Hemodynamic actions of systemically injected pituitary adenylate cyclase activating polypeptide-27 in the rat

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aims of this study were (1) to characterize the hemodynamic mechanisms underlying the hypotensive effects of pituitary adenylate cyclase activating polypeptide-27 (PACAP-27 0.1-2.0 nmol/kg, i.v.) in pentobarbital-anesthetized rats, and (2) to determine the roles of the autonomic nervous system, adrenal catecholamines and endothelium-derived nitric oxide (NO) in the expression of PACAP-27-mediated effects on hemodynamic function. PACAP-27 produced dose-dependent decreases in mean arterial blood pressure and hindquarter and mesenteric vascular resistances in saline-treated rats. PACAP-27 also produced pronounced falls in mean arterial blood pressure in rats treated with the ganglion blocker, chlorisondamine (5 mg/kg, i.v.). The hypotensive and vasodilator actions of PACAP-27 were not attenuated by the beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.), or the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME 50 micromol/kg, i.v.). PACAP-27 produced dose-dependent increases in heart rate whereas the hypotensive response produced by the nitrovasodilator, sodium nitroprusside (10 microg/kg, i.v.), was associated with a minimal tachycardia. The PACAP-27-induced tachycardia was unaffected by chlorisondamine, but was virtually abolished by propranolol. These results suggest that the vasodilator effects of PACAP-27 are due to actions in the microcirculation rather than to the release of adrenal catecholamines and that this vasodilation may not involve the release of endothelium-derived NO. These results also suggest that PACAP-27 produces tachycardia by directly releasing norepinephrine from cardiac sympathetic nerve terminals rather than by direct or baroreceptor reflex-mediated increases in sympathetic nerve activity.

  1. Pituitary adenylate cyclase-activating polypeptide-like compounds could modulate the activity of coelomocytes in the earthworm.

    PubMed

    Somogyi, Ildiko; Boros, Akos; Engelmann, Peter; Varhalmi, Eszter; Nemeth, Jozsef; Lubics, Andrea; Tamas, Andrea; Kiss, Peter; Reglodi, Dora; Pollak, Edit; Molnar, Laszlo

    2009-04-01

    By means of radioimmunoassay, we studied the concentration of pituitary adenylate cyclase-activating polypeptide (PACAP)-like proteins in intact and regenerating earthworms. Transection of animals increased the concentration of PACAP-like compounds in coelomocytes, and a decreasing rostrocaudal gradient was detected in the regenerating animals. Western blot analysis revealed a range of PAC1-receptor proteins with molecular weights from 40 to 80 kDa. Electron microscopic immunocytochemistry showed that PAC1 receptors were located on distinct sets of coelomocytes (mainly on amebocytes and on some granulocytes). Based on our results we hypothesize a link between PACAP and coelomocytes, suggesting that PACAP modulates the function of amebocytes and certain granulocytes that play a role in tissue remodeling of regenerating earthworms. PMID:19456404

  2. Kinetic Evidence for the Presence of Two Postaglandin Receptor Sites Regulating the Activity of Intestinal Adenylate Cyclase Sensitive to Escherichia coli Enterotoxin

    PubMed Central

    Kantor, Harvey S.; Tao, Pearl; Kiefer, Helen Chilton

    1974-01-01

    Kinetic behavior most consistent with the presence of two independent, but simultaneously acting, regulatory effector sites for prostaglandins has been presented for adenylate cyclase (EC 4.6.1.1) of rabbit intestinal epithelial cells. One site regulates activation of the catalytic site, while the other site regulates inhibition. A synthetic prostaglandin analogue, 7-oxa-13-prostynoic acid, is recognized at both sites in a concentration-dependent manner. At concentrations of 7-oxa-13-prostynoic acid less than 45 μg/ml, activation is seen, while at higher concentrations, inhibition is seen. Different naturally occurring prostaglandins appear to be site-specific. Prostaglandin E1 gives only activation of the cyclase, while prostaglandin A1 gives only inhibition of the activated cyclase. When saturating concentrations of prostaglandin E1 are used to activate adenylate cyclase, no further activation by 7-oxa-13-prostynoic acid can be elicited, indicating that both molecules activate at the same site. The similarity of inhibition constants for both 7-oxa-13-prostynoic acid and prostaglandin A1 suggests that the mode of binding is the same for both compounds and that they probably inhibit by acting at the same site. The inhibition by 7-oxa-13-prostynoic acid and by prostaglandin A1 overrides enzyme activation produced by either Escherichia coli enterotoxin, prostaglandin E1, or sodium fluoride, suggesting that in intestinal adenylate cyclase this site is the primary regulatory site (i.e., primary allosteric effector site) for enzyme activity. These data suggest that sites exist on adenylate cyclase which would allow prostaglandins to serve as the intracellular messengers by which the cell controls its adenylate-cyclase-mediated response to extracellular stimulation, as with hormones. PMID:4208548

  3. Effects of hydroxyl radical scavengers KCN and CO on ultraviolet light-induced activation of crude soluble guanylate cyclase

    SciTech Connect

    Karlsson, J.O.; Axelsson, K.L.; Andersson, R.G.

    1985-01-01

    The crude soluble guanylate cyclase (GC) from bovine mesenteric artery was stimulated by ultraviolet (UV) light (366 nm). Addition of free radical scavengers, dimethylsulfoxide or superoxide dismutase and/or catalase to the GC assay did not abolish the stimulatory effect of UV light. On the contrary, the UV light-induced activation was enhanced in the presence of these scavengers. KCN (1 mM) did not affect the UV light-induced activation, while 0.1 mM of CO potentiated the activation. These results may indicate that UV light is operating through a direct interaction with the ferrous form of the GC-heme.

  4. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating.

    PubMed

    Hurley, Matthew M; Maunze, Brian; Block, Megan E; Frenkel, Mogen M; Reilly, Michael J; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  5. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating

    PubMed Central

    Hurley, Matthew M.; Maunze, Brian; Block, Megan E.; Frenkel, Mogen M.; Reilly, Michael J.; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A.; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  6. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    SciTech Connect

    El-Refai, M.; Chan, T.

    1986-05-01

    Adrenalectomy caused a large increase in the number of ..beta..-adrenergic binding sites on liver plasma membranes as measured by /sup 125/I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for /sup 3/H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in ..beta..-adrenergic mediated action was much less than what may be expected as a result of the increase in the ..beta..-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 ..mu..M) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory ..cap alpha../sub 2/-adrenergic receptors in adrenalectomy is responsible for the muted ..beta..-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 ..mu..M), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The ..cap alpha..-adrenergic antagonists had no significant effect on the ..beta..-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the ..beta..-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of ..cap alpha..-adrenergic receptors.

  7. Sensitization of olfactory guanylyl cyclase to a specific imprinted odorant in coho salmon.

    PubMed

    Dittman, A H; Quinn, T P; Nevitt, G A; Hacker, B; Storm, D R

    1997-08-01

    The role of cGMP in olfactory signaling is not fully understood, but it is believed to play a modulatory role in intracellular signaling in vertebrate olfactory receptor neurons (ORNs). Here, we present evidence that cGMP in ORNs may play an important role in recognition of biologically relevant odors and olfactory learning. Specifically, we investigated the cellular mechanisms underlying olfactory imprinting in salmon. Salmon learn odors associated with their natal site as juveniles and later use these odors to guide their homing migration. This imprinting is believed to involve sensitization of the peripheral olfactory system to specific homestream odorants. We imprinted juvenile salmon to the odorant beta-phenylethyl alcohol (PEA) and examined the sensitivity of olfactory adenylyl and guanylyl cyclases to PEA during development. Stimulation of guanylyl cyclase activity by PEA was significantly greater in olfactory cilia isolated from PEA-imprinted salmon compared with PEA-naive fish only at the time of the homing migration, 2 years after PEA exposure. These results suggest that sensitization of olfactory guanylyl cyclase may play an important role in olfactory imprinting by salmon. PMID:9292727

  8. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803.

    PubMed

    Hollingshead, Sarah; Kopecná, Jana; Jackson, Philip J; Canniffe, Daniel P; Davison, Paul A; Dickman, Mark J; Sobotka, Roman; Hunter, C Neil

    2012-08-10

    The cyclase step in chlorophyll (Chl) biosynthesis has not been characterized biochemically, although there are some plausible candidates for cyclase subunits. Two of these, Sll1214 and Sll1874 from the cyanobacterium Synechocystis 6803, were FLAG-tagged in vivo and used as bait in separate pulldown experiments. Mass spectrometry identified Ycf54 as an interaction partner in each case, and this interaction was confirmed by a reciprocal pulldown using FLAG-tagged Ycf54 as bait. Inactivation of the ycf54 gene (slr1780) in Synechocystis 6803 resulted in a strain that exhibited significantly reduced Chl levels. A detailed analysis of Chl precursors in the ycf54 mutant revealed accumulation of very high levels of Mg-protoporphyrin IX methyl ester and only traces of protochlorophyllide, the product of the cyclase, were detected. Western blotting demonstrated that levels of the cyclase component Sll1214 and the Chl biosynthesis enzymes Mg-protoporphyrin IX methyltransferase and protochlorophyllide reductase are significantly impaired in the ycf54 mutant. Ycf54 is, therefore, essential for the activity and stability of the oxidative cyclase. We discuss a possible role of Ycf54 as an auxiliary factor essential for the assembly of a cyclase complex or even a large multienzyme catalytic center. PMID:22711541

  9. Control of nitric oxide dynamics by guanylate cyclase in its activated state.

    PubMed

    Négrerie, M; Bouzhir, L; Martin, J L; Liebl, U

    2001-12-14

    Soluble guanylate cyclase (sGC) is the target of nitric oxide (NO) released by nitric-oxide synthase in endothelial cells, inducing an increase of cGMP synthesis in response. This heterodimeric protein possesses a regulatory subunit carrying a heme where NO binding occurs, while the second subunit harbors the catalytic site. The binding of NO and the subsequent breaking of the bond between the proximal histidine and the heme-Fe(2+) are assumed to induce conformational changes, which are the origin of the catalytic activation. At the molecular level, the activation and deactivation mechanisms are unknown, as is the dynamics of NO once in the heme pocket. Using ultrafast time-resolved absorption spectroscopy, we measured the kinetics of NO rebinding to sGC after photodissociation. The main spectral transient in the Soret band does not match the equilibrium difference spectrum of NO-liganded minus unliganded sGC, and the geminate rebinding was found to be monoexponential and ultrafast (tau = 7.5 ps), with a relative amplitude close to unity (0.97). These characteristics, so far not observed in other hemoproteins, indicate that NO encounters a high energy barrier for escaping from the heme pocket once the His-Fe(2+) bond has been cleaved; this bond does not reform before NO recombination. The deactivation of isolated sGC cannot occur by only simple diffusion of NO from the heme; therefore, several allosteric states may be inferred, including a desensitized one, to induce NO release. Thus, besides the structural change leading to activation, a consequence of the decoupling of the proximal histidine may also be to induce a change of the heme pocket distal geometry, which raises the energy barrier for NO escape, optimizing the efficiency of NO trapping. The non-single exponential character of the NO picosecond rebinding coexists only with the presence of the protein structure surrounding the heme, and the single exponential rate observed in sGC is very likely to be due to

  10. Calpain-Mediated Processing of Adenylate Cyclase Toxin Generates a Cytosolic Soluble Catalytically Active N-Terminal Domain

    PubMed Central

    Ostolaza, Helena

    2013-01-01

    Bordetella pertussis, the whooping cough pathogen, secretes several virulence factors among which adenylate cyclase toxin (ACT) is essential for establishment of the disease in the respiratory tract. ACT weakens host defenses by suppressing important bactericidal activities of the phagocytic cells. Up to now, it was believed that cell intoxication by ACT was a consequence of the accumulation of abnormally high levels of cAMP, generated exclusively beneath the host plasma membrane by the toxin N-terminal catalytic adenylate cyclase (AC) domain, upon its direct translocation across the lipid bilayer. Here we show that host calpain, a calcium-dependent Cys-protease, is activated into the phagocytes by a toxin-triggered calcium rise, resulting in the proteolytic cleavage of the toxin N-terminal domain that releases a catalytically active “soluble AC”. The calpain-mediated ACT processing allows trafficking of the “soluble AC” domain into subcellular organella. At least two strategic advantages arise from this singular toxin cleavage, enhancing the specificity of action, and simultaneously preventing an indiscriminate activation of cAMP effectors throughout the cell. The present study provides novel insights into the toxin mechanism of action, as the calpain-mediated toxin processing would confer ACT the capacity for a space- and time-coordinated production of different cAMP “pools”, which would play different roles in the cell pathophysiology. PMID:23840759

  11. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP)/PAC1HOP1 Receptor Activation Coordinates Multiple Neurotrophic Signaling Pathways

    PubMed Central

    May, Victor; Lutz, Eve; MacKenzie, Christopher; Schutz, Kristin C.; Dozark, Kate; Braas, Karen M.

    2010-01-01

    MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on Gαq/phosphatidylinositol 3-kinase γ activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase γ-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways. PMID:20093365

  12. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    PubMed Central

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  13. Adenylate cyclase 3: a new target for anti-obesity drug development.

    PubMed

    Wu, L; Shen, C; Seed Ahmed, M; Östenson, C-G; Gu, H F

    2016-09-01

    Obesity has become epidemic worldwide, and abdominal obesity has a negative impact on health. Current treatment options on obesity, however, still remain limited. It is then of importance to find a new target for anti-obesity drug development based upon recent molecular studies in obesity. Adenylate cyclase 3 (ADCY3) is the third member of adenylyl cyclase family and catalyses the synthesis of cAMP from ATP. Genetic studies with candidate gene and genome-wide association study approaches have demonstrated that ADCY3 genetic polymorphisms are associated with obesity in European and Chinese populations. Epigenetic studies have indicated that increased DNA methylation levels in the ADCY3 gene are involved in the pathogenesis of obesity. Furthermore, biological analyses with animal models have implicated that ADCY3 dysfunction resulted in increased body weight and fat mass, while reduction of body weight is partially explained by ADCY3 activation. In this review, we describe genomic and biological features of ADCY3, summarize genetic and epigenetic association studies of the ADCY3 gene with obesity and discuss dysfunction and activation of ADCY3. Based upon all data, we suggest that ADCY3 is a new target for anti-obesity drug development. Further investigation on the effectiveness of ADCY3 activator and its delivery approach to treat abdominal obesity has been taken into our consideration. PMID:27256589

  14. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity

    PubMed Central

    Galle, Jan; Zabel, Ulrike; Hübner, Ulrich; Hatzelmann, Armin; Wagner, Birgit; Wanner, Christoph; Schmidt, Harald H H W

    1999-01-01

    The vasomotor and cyclic GMP-elevating activity of YC-1, a novel NO-independent activator of soluble guanylyl cyclase (sGC), was studied in isolated rabbit aortic rings and compared to that of the NO donor compounds sodium nitroprusside (SNP) and NOC 18.Similarly to SNP and NOC 18, YC-1 (0.3–300 μM) caused a concentration-dependent, endothelium-independent relaxation that was greatly reduced by the sGC inhibitor 1-H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ 10 μM; 59% inhibition of dilation induced by 100 μM YC-1) suggesting the activation of sGC as one mechanism of action.Preincubation with YC-1 (3 and 30 μM) significantly increased the maximal dilator responses mediated by endogenous NO in aortic rings that was released upon exposure to acetylcholine, and enhanced the dilator response to the exogenous NO-donors, SNP and NOC 18, by almost two orders of magnitude.Vasoactivity induced by SNP and YC-1 displayed different kinetics as evidenced by a long-lasting inhibition by YC-1 (300 μM) on the phenylephrine (PE)-induced contractile response, which was not fully reversible even after extensive washout (150 min) of YC-1, and was accompanied by a long-lasting elevation of intracellular cyclic GMP content. In contrast, SNP (30 μM) had no effect on the vasoconstrictor potency of PE, and increases in intravascular cyclic GMP levels were readily reversed after washout of this NO donor compound.Surprisingly, YC-1 not only activated sGC, but also affected cyclic GMP metabolism, as it inhibited both cyclic GMP break down in aortic extracts and the activity of phosphodiesterase isoforms 1–5 in vitro.In conclusion, YC-1 caused persistent elevation of intravascular cyclic GMP levels in vivo by activating sGC and inhibiting cyclic GMP break down. Thus, YC-1 is a highly effective vasodilator compound with a prolonged duration of action, and mechanisms that are unprecedented for any previously known sGC activator. PMID:10369473

  15. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies

    PubMed Central

    May, Victor

    2014-01-01

    The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress- and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis (BNST) in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala (CeA) may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with post-traumatic stress disorder (PTSD) in humans. PMID:25636177

  16. Nicorandil stimulates a Na(+)/Ca(2+) exchanger by activating guanylate cyclase in guinea pig cardiac myocytes.

    PubMed

    Wei, Jiazhang; Watanabe, Yasuhide; Takeuchi, Kazuhiko; Yamashita, Kanna; Tashiro, Miyuki; Kita, Satomi; Iwamoto, Takahiro; Watanabe, Hiroshi; Kimura, Junko

    2016-04-01

    Nicorandil, a hybrid of an ATP-sensitive K(+) (KATP) channel opener and a nitrate generator, is used clinically for the treatment of angina pectoris. This agent has been reported to exert antiarrhythmic actions by abolishing both triggered activity and spontaneous automaticity in an in vitro study. It is well known that delayed afterdepolarizations (DADs) are caused by the Na(+)/Ca(2+) exchange current (I NCX). In this study, we investigated the effect of nicorandil on the cardiac Na(+)/Ca(2+) exchanger (NCX1). We used the whole-cell patch clamp technique and the Fura-2/AM (Ca(2+) indicator) method to investigate the effect of nicorandil on I NCX in isolated guinea pig ventricular myocytes and CCL39 fibroblast cells transfected with dog heart NCX1. Nicorandil enhanced I NCX in a concentration-dependent manner. The EC50 (half-maximum concentration for enhancement of the drug) values were 15.0 and 8.7 μM for the outward and inward components of I NCX, respectively. 8-Bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), a membrane-permeable analog of guanosine 3',5'-cyclic monophosphate (cGMP), enhanced I NCX. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor (10 μM), completely abolished the nicorandil-induced I NCX increase. Nicorandil increased I NCX in CCL39 cells expressing wild-type NCX1 but did not affect mutant NCX1 without a long intracellular loop between transmembrane segments (TMSs) 5 and 6. Nicorandil at 100 μM abolished DADs induced by electrical stimulation with ouabain. Nicorandil enhanced the function of NCX1 via guanylate cyclase and thus may accelerate Ca(2+) exit via NCX1. This may partially contribute to the cardioprotection by nicorandil in addition to shortening action potential duration (APD) by activating KATP channels. PMID:26631169

  17. YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components

    NASA Technical Reports Server (NTRS)

    Martin, E.; Lee, Y. C.; Murad, F.

    2001-01-01

    YC-1 [3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole] is an allosteric activator of soluble guanylyl cyclase (sGC). YC-1 increases the catalytic rate of the enzyme and sensitizes the enzyme toward its gaseous activators nitric oxide or carbon monoxide. In other studies the administration of YC-1 to experimental animals resulted in the inhibition of the platelet-rich thrombosis and a decrease of the mean arterial pressure, which correlated with increased cGMP levels. However, details of YC-1 interaction with sGC and enzyme activation are incomplete. Although evidence in the literature indicates that YC-1 activation of sGC is strictly heme-dependent, this report presents evidence for both heme-dependent and heme-independent activation of sGC by YC-1. The oxidation of the sGC heme by 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one completely inhibited the response to NO, but only partially attenuated activation by YC-1. We also observed activation by YC-1 of a mutant sGC, which lacks heme. These findings indicate that YC-1 activation of sGC can occur independently of heme, but that activation is substantially increased when the heme moiety is present in the enzyme.

  18. YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components

    PubMed Central

    Martin, Emil; Lee, Yu-Chen; Murad, Ferid

    2001-01-01

    YC-1 [3-(5′-hydroxymethyl-2′furyl)-1-benzyl indazole] is an allosteric activator of soluble guanylyl cyclase (sGC). YC-1 increases the catalytic rate of the enzyme and sensitizes the enzyme toward its gaseous activators nitric oxide or carbon monoxide. In other studies the administration of YC-1 to experimental animals resulted in the inhibition of the platelet-rich thrombosis and a decrease of the mean arterial pressure, which correlated with increased cGMP levels. However, details of YC-1 interaction with sGC and enzyme activation are incomplete. Although evidence in the literature indicates that YC-1 activation of sGC is strictly heme-dependent, this report presents evidence for both heme-dependent and heme-independent activation of sGC by YC-1. The oxidation of the sGC heme by 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one completely inhibited the response to NO, but only partially attenuated activation by YC-1. We also observed activation by YC-1 of a mutant sGC, which lacks heme. These findings indicate that YC-1 activation of sGC can occur independently of heme, but that activation is substantially increased when the heme moiety is present in the enzyme. PMID:11687640

  19. Overexpression of Guanylate Cyclase Activating Protein 2 in Rod Photoreceptors In Vivo Leads to Morphological Changes at the Synaptic Ribbon

    PubMed Central

    López-Begines, Santiago; Fernández-Sánchez, Laura; Cuenca, Nicolás; Llorens, Jordi; de la Villa, Pedro; Méndez, Ana

    2012-01-01

    Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic

  20. Guanylyl cyclase structure, function and regulation

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies. PMID:21914472

  1. Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation

    PubMed Central

    Williams, Kerstin J.; Bennett, Mark H.; Barton, Geraint R.; Jenkins, Victoria A.; Robertson, Brian D.

    2013-01-01

    Summary PII proteins are pivotal regulators of nitrogen metabolism in most prokaryotes, controlling the activities of many targets, including nitrogen assimilation enzymes, two component regulatory systems and ammonium transport proteins. Escherichia coli contains two PII-like proteins, PII (product of glnB) and GlnK, both of which are uridylylated under nitrogen limitation at a conserved Tyrosine-51 residue by GlnD (a uridylyl transferase). PII-uridylylation in E. coli controls glutamine synthetase (GS) adenylylation by GlnE and mediates the NtrB/C transcriptomic response. Mycobacteria contain only one PII protein (GlnK) which in environmental Actinomycetales is adenylylated by GlnD under nitrogen limitation. However in mycobacteria, neither the type of GlnK (PII) covalent modification nor its precise role under nitrogen limitation is known. In this study, we used LC-Tandem MS to analyse the modification state of mycobacterial GlnK (PII), and demonstrate that during nitrogen limitation GlnK from both non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis is adenylylated at the Tyrosine-51 residue; we also show that GlnD is the adenylyl transferase enzyme responsible. Further analysis shows that in contrast to E. coli, GlnK (PII) adenylylation in M. tuberculosis does not regulate GS adenylylation, nor does it mediate the transcriptomic response to nitrogen limitation. PMID:23352854

  2. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Lim, Sunghyuk; Ames, James B; Dizhoor, Alexander M

    2012-04-20

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity. PMID:22383530

  3. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. PMID:26980729

  4. A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor.

    PubMed

    Scott, Robert O; Thelin, William R; Milgram, Sharon L

    2002-06-21

    Secretory diarrhea is the leading cause of infectious diarrhea in humans. Secretory diarrhea may be caused by binding of heat-stable enterotoxins to the intestinal receptor guanylyl cyclase C (GCC). Activation of GCC catalyzes the formation of cGMP, initiating a signaling cascade that opens the cystic fibrosis transmembrane conductance regulator chloride channel at the apical cell surface. To identify proteins that regulate the trafficking or function of GCC, we used the unique COOH terminus of GCC as the "bait" to screen a human intestinal yeast two-hybrid library. We identified a novel protein, IKEPP (intestinal and kidney-enriched PDZ protein) that associates with the COOH terminus of GCC in biochemical assays and by co-immunoprecipitation. IKEPP is expressed in the intestinal epithelium, where it is preferentially accumulated at the apical surface. The GCC-IKEPP interaction is not required for the efficient targeting of GCC to the apical cell surface. Rather, the association with IKEPP significantly inhibits heat-stable enterotoxin-mediated activation of GCC. Our findings are the first to identify a regulatory protein that associates with GCC to modulate the catalytic activity of the enzyme and provides new insights in mechanisms that regulate GCC activity in response to bacterial toxin. PMID:11950846

  5. Cytidylate cyclase activity in mouse tissues: the enzymatic conversion of cytidine 5'-triphosphate to cytidine 3',5'-cyclic monophosphate (cyclic CMP).

    PubMed

    Yamamoto, I; Takai, T; Mori, S

    1989-12-01

    Cytidylate cyclase activity, which enzymatically converts cytidine 5'-triphosphate (CTP) to cytidine 3',5'-cyclic monophosphate (cyclic CMP), has been demonstrated in mouse tissue homogenates by use of a highly sensitive enzyme immunoassay (EIA) specific for cyclic CMP. Cyclic CMP formation is dependent on the amount of homogenate and on the incubation time. Although the enzyme activity was detected at wide ranges of pH from 6.8 to 11.5, the maximal activity was observed at around pH 9.4. The optimal temperature was 37 degrees C. Cytidylate cyclase activity was almost completely lost if the homogenates were heated at 90 degrees C for 3 min prior to use. The enzyme reaction exhibited typical Michaelis-Menten kinetics with an apparent Km for CTP of approx. 0.31 mM. Cyclic CMP formation was greatly enhanced with 4 mM Mn2+, Mg2+, Co2+; Mn2+ was the most effective. Fe2+ and Ca2+ were without effect. Cu2+ and Zn2+ at a concentration of 0.1 to 0.5 mM were inhibitory to Mn2+-dependent activity. Moreover, the enzyme activity was inhibited by several nucleotides including ATP, ADP, 5'-AMP, and GTP. Cytidylate cyclase activity was found to be present in all homogenates from a variety of mouse tissues examined except heart, with the highest level found in brain, and the lowest in liver. PMID:2557087

  6. Expression of guanylate cyclase-C, guanylin, and uroguanylin is downregulated proportionally to the ulcerative colitis disease activity index

    PubMed Central

    Lan, Danfeng; Niu, Junkun; Miao, Jiarong; Dong, Xiangqian; Wang, Hong; Yang, Gang; Wang, Kunhua; Miao, Yinglei

    2016-01-01

    The transmembrane receptor guanylate cyclase-C (GC-C) signaling pathway has been implicated in several gastrointestinal disorders. Activation of GC-C via guanylin (Gn) and uroguanylin (Ugn) regulates intestinal fluid and electrolyte homeostasis. However, how it regulates the pathogenesis of inflammatory bowel disease (IBD) is still unclear. Here, we investigated the activation of GC-C signaling in ulcerative colitis (UC) of different clinical severities. A total of 60 UC patients and 20 normal controls were recruited. Evaluation of the UC disease activity index (DAI) was performed using a modified Mayo scoring system. The expression of GC-C, Gn and Ugn in the colonic mucosa was measured by quantitative real-time PCR and Western blot. We found that the UC patients had significantly lower expression of GC-C, Gn and Ugn than the controls. Furthermore, there were significant differences for GC-C, Gn and Ugn expression for the UC groups of Grade 1, 2 and 3, and their expression levels were reduced with increases in their DAI. Taken together, our results demonstrate that GC-C, Gn and Ugn are downregulated in UC, and this downregulation is more significant with aggravation of the clinical condition. Therefore, the GC-C signaling pathway may be implicated in the progression of UC. PMID:27125248

  7. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies

    PubMed Central

    Sharina, I G; Sobolevsky, M; Papakyriakou, A; Rukoyatkina, N; Spyroulias, G A; Gambaryan, S; Martin, E

    2015-01-01

    Background and Purpose Fibrates are a class of drugs widely used to treat dyslipidaemias. They regulate lipid metabolism and act as PPARα agonists. Clinical trials demonstrate that besides changes in lipid profiles, fibrates decrease the incidence of cardiovascular events, with gemfibrozil exhibiting the most pronounced benefit. This study aims to characterize the effect of gemfibrozil on the activity and function of soluble guanylyl cyclase (sGC), the key mediator of NO signalling. Experimental Approach High-throughput screening of a drug library identified gemfibrozil as a direct sGC activator. Activation of sGC is unique to gemfibrozil and is not shared by other fibrates. Key Results Gemfibrozil activated purified sGC, induced endothelium-independent relaxation of aortic rings and inhibited platelet aggregation. Gemfibrozil-dependent activation was absent when the sGC haem domain was deleted, but was significantly enhanced when sGC haem was lacking or oxidized. Oxidation of sGC haem enhanced the vasoactive and anti-platelet effects of gemfibrozil. Gemfibrozil competed with the haem-independent sGC activators ataciguat and cinaciguat. Computational modelling predicted that gemfibrozil occupies the space of the haem group and interacts with residues crucial for haem stabilization. This is consistent with structure-activity data which revealed an absolute requirement for gemfibrozil's carboxyl group. Conclusions and Implications These data suggest that in addition to altered lipid and lipoprotein state, the cardiovascular preventive benefits of gemfibrozil may derive from direct activation and protection of sGC function. A sGC-directed action may explain the more pronounced cardiovascular benefit of gemfibrozil observed over other fibrates and some of the described side effects of gemfibrozil. PMID:25536881

  8. Soluble guanylate cyclase is activated differently by excess NO and by YC-1: Resonance Raman spectroscopic evidence†

    PubMed Central

    Ibrahim, Mohammed; Derbyshire, Emily R.; Soldatova, Alexandra V.; Marletta, Michael A.; Spiro, Thomas G.

    2010-01-01

    Modulation of soluble guanylate cyclase (sGC) activity by nitric oxide (NO) involves two distinct steps. Low level activation of sGC is achieved by the stoichiometric binding of NO (1-NO) to the heme cofactor, while much higher activation is achieved by the binding of additional NO (xsNO) at a non-heme site. Addition of the allosteric activator YC-1 to the 1-NO form leads to activity comparable to xsNO state. In this study the mechanisms of sGC activation were investigated using electronic absorption and resonance Raman (RR) spectroscopic methods. RR spectroscopy confirmed that the 1-NO form contains 5-coordinate NO-heme and showed that the addition of NO to the 1-NO form has no significant effect on the spectrum. In contrast, addition of YC-1 to either the 1-NO or xsNO forms alters the RR spectrum significantly, indicating a protein-induced change in the heme geometry. This change in the heme geometry was also observed when BAY 41-2272 was added to the xsNO form. Bands assigned to bending and stretching motions of the vinyl and propionate substituents change intensity in a pattern suggesting altered tilting of the pyrrole rings to which they are attached. In addition, the N-O stretching frequency increases, with no change in the Fe-NO frequency, an effect modeled via DFT calculations as resulting from a small opening of the Fe-N-O angle. These spectral differences demonstrate different mechanisms of activation by synthetic activators, such as YC-1 and BAY 41-2272, and excess NO. PMID:20459051

  9. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oil than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.

  10. Gastrointestinal pain: unraveling a novel endogenous pathway through uroguanylin/guanylate cyclase-C/cGMP activation.

    PubMed

    Silos-Santiago, Inmaculada; Hannig, Gerhard; Eutamene, Helene; Ustinova, Elena E; Bernier, Sylvie G; Ge, Pei; Graul, Christopher; Jacobson, Sarah; Jin, Hong; Liong, Elaine; Kessler, Marco M; Reza, Tammi; Rivers, Samuel; Shea, Courtney; Tchernychev, Boris; Bryant, Alexander P; Kurtz, Caroline B; Bueno, Lionel; Pezzone, Michael A; Currie, Mark G

    2013-09-01

    The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. In ex vivo Ussing chamber assays, uroguanylin stimulated cGMP secretion from the basolateral side of rat colonic epithelium into the submucosal space. In a rat model of trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, orally administered uroguanylin increased colonic thresholds required to elicit abdominal contractions in response to colorectal distension (CRD). Oral administration of cGMP mimicked the antihyperalgesic effects of uroguanylin, significantly decreasing TNBS- and restraint stress-induced visceromotor response to graded CRD in rats. The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS-sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC-C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC-C is the primary mediator in this process via modulation of sensory afferent activity. PMID:23748116

  11. Corticotropin-releasing factor binding to peripheral tissue and activation of the adenylate cyclase-adenosine 3',5'-monophosphate system

    SciTech Connect

    Dave, J.R.; Eiden, L.E.; Eskay, R.L.

    1985-06-01

    Specific binding sites for rat corticotropin-releasing factor (rCRF) are present in rat adrenal medulla, ventral prostate, spleen, liver, kidney, and testis and bovine chromaffin cells in culture. Maximal binding of (/sup 125/I)rCRF occurred within 25 min at 4 C and was saturable. Scatchard analysis of rCRF binding to rat adrenal membranes and bovine chromaffin cells revealed the existence of two classes of binding sites. One class had a relatively higher apparent affinity and lower number of binding sites, whereas the other class had a relatively lower affinity and higher number of binding sites. CRF induced a dose-related increase in rat adrenal membrane adenylate cyclase activity and cAMP levels in bovine chromaffin cells. Nanomolar concentrations of rCRF maximally stimulated adenylate cyclase activity in rat adrenal membranes and maximally increased cAMP levels in bovine chromaffin cells to 86% and 130% above control values, respectively. The demonstration of specific CRF-binding sites in a variety of peripheral tissues and the finding that activation of specific CRF-binding sites in adrenal tissue stimulates the adenylate cyclase-cAMP system suggest that CRF may have an important regulatory role in various peripheral tissues.

  12. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    PubMed Central

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  13. Studies of the cAMP mediated aggregation in Dictyostelium discoideum: receptor mediated activation of the adenylate cyclase

    SciTech Connect

    Theibert, W.E.A.B.

    1985-01-01

    Dictyostelium discoideum, a eukaryotic amoeba of the cellular slime mold family, provides an interesting paradigm in developmental biology. During development, hundreds of thousands of cells aggregate to form a multicellular aggregate. Aggregation is mediated by chemotaxis and chemical signaling. Waves of adenosine 3'-5' cyclic monophosphate (cAMP) propagate through the monolayer and provide transient gradients for chemotaxis. The author has used a reversible inhibitor of the cAMP signaling response to demonstrate that adaptation to cAMP is independent of the activation of the adenylate cyclase and therefore is not caused by the rise in intracellular cAMP. Next, it is shown that adenosine inhibits the cAMP signaling response. Inhibition is rapid, reversible, and depends on the cAMP stimulus concentration. Then the specificity of the cAMP receptors which mediates signaling is determined and compared with the receptors which mediate chemotaxis, the cGMP response, and cAMP binding antagonism. The cAMP surface receptor has been identified by photoaffinity labeling intact cells with (/sup 32/P)-8-N/sub 3/-cAMP using an ammonium sulfate binding stabilization technique. The photoactivated ligand specifically labels a polypeptide, localized to the membrane fraction, which migrates as a closely spaced doublet on SDS Page.

  14. Beta-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure.

    PubMed

    Chang, Huoy-Rou; Tsao, Der-An; Yu, Hsin-Su; Ho, Chi-Kung

    2005-01-01

    To understanding the reversible or irreversible harm to the beta-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain beta-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and beta-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of beta-adrenergic receptor using the ligand [125I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain beta-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the beta-adrenergic system of the brain is a partly reversible condition. PMID:15502967

  15. The biological role of pituitary adenylate cyclase-activating polypeptide (PACAP) in growth and feeding behavior in juvenile fish.

    PubMed

    Lugo, Juana Maria; Oliva, Aymé; Morales, Antonio; Reyes, Osvaldo; Garay, Hilda Elisa; Herrera, Fidel; Cabrales, Ania; Pérez, Ever; Estrada, Mario Pablo

    2010-11-01

    To date, many technologies have been developed to increase efficiency in aquaculture, but very few successful biotechnology molecules have arrived on the market. In this context, marine biotechnology has an opportunity to develop products to improve the output of fish in aquaculture. Published in vivo studies on the action of the pituitary adenylate cyclase-activating polypeptide (PACAP) in fish are scarce. Recently, our group, for the first time, demonstrated the biological role of this neuropeptide administrated by immersion baths in the growth and development of larval fish. In this work, we have evaluated the effects of recombinant Clarias gariepinus PACAP administration by intraperitoneal injection on growth performance and feeding behavior in juvenile fish. Our results showed the physiological role of this peptide for growth control in fish, including the juvenile stage, and confirm that its biological functions are well conserved in fish, since C. gariepinus PACAP stimulated growth in juvenile tilapia Oreochromis niloticus. In addition, we have observed that the growth-promoting effect of PACAP in juvenile tilapia was correlated with higher GH concentration in serum. With regard to the neuroendocrine regulation of growth control by PACAP, it was demonstrated that PACAP stimulates food intake in juvenile tilapia. In general, PACAP appears to act in the regulation of the growth control in juvenile fish. These findings propose that PACAP is a prominent target with the potential to stimulate fish growth in aquaculture. PMID:20853308

  16. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide.

    PubMed

    Gupte, Raeesa P; Kadunganattil, Suraj; Shepherd, Andrew J; Merrill, Ronald; Planer, William; Bruchas, Michael R; Strack, Stefan; Mohapatra, Durga P

    2016-02-01

    The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is secreted by both neuronal and non-neuronal cells in the brain and spinal cord, in response to pathological conditions such as stroke, seizures, chronic inflammatory and neuropathic pain. PACAP has been shown to exert various neuromodulatory and neuroprotective effects. However, direct influence of PACAP on the function of intrinsically excitable ion channels that are critical to both hyperexcitation as well as cell death, remain largely unexplored. The major dendritic K(+) channel Kv4.2 is a critical regulator of neuronal excitability, back-propagating action potentials in the dendrites, and modulation of synaptic inputs. We identified, cloned and characterized the downstream signaling originating from the activation of three PACAP receptor (PAC1) isoforms that are expressed in rodent hippocampal neurons that also exhibit abundant expression of Kv4.2 protein. Activation of PAC1 by PACAP leads to phosphorylation of Kv4.2 and downregulation of channel currents, which can be attenuated by inhibition of either PKA or ERK1/2 activity. Mechanistically, this dynamic downregulation of Kv4.2 function is a consequence of reduction in the density of surface channels, without any influence on the voltage-dependence of channel activation. Interestingly, PKA-induced effects on Kv4.2 were mediated by ERK1/2 phosphorylation of the channel at two critical residues, but not by direct channel phosphorylation by PKA, suggesting a convergent phosphomodulatory signaling cascade. Altogether, our findings suggest a novel GPCR-channel signaling crosstalk between PACAP/PAC1 and Kv4.2 channel in a manner that could lead to neuronal hyperexcitability. PMID:26456351

  17. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    PubMed

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity. PMID:26851652

  18. Chronic Activation of Heme Free Guanylate Cyclase Leads to Renal Protection in Dahl Salt-Sensitive Rats

    PubMed Central

    Hoffmann, Linda S.; Kretschmer, Axel; Lawrenz, Bettina; Hocher, Berthold; Stasch, Johannes-Peter

    2015-01-01

    The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl) containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and anti-inflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC. PMID:26717150

  19. Chronic Activation of Heme Free Guanylate Cyclase Leads to Renal Protection in Dahl Salt-Sensitive Rats.

    PubMed

    Hoffmann, Linda S; Kretschmer, Axel; Lawrenz, Bettina; Hocher, Berthold; Stasch, Johannes-Peter

    2015-01-01

    The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl) containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and anti-inflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC. PMID:26717150

  20. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Tanwar, M.; Veetil, S. K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-09-01

    The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr-Tyr cross-linking (o,o‧-ditysosine formation) and partial flavin cofactor reduction.

  1. Aldosterone Increases Oxidant Stress to Impair Guanylyl Cyclase Activity by Cysteinyl Thiol Oxidation in Vascular Smooth Muscle Cells*S⃞

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; Handy, Diane E.; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A.

    2009-01-01

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO·); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO· to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10-9-10-7 mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a β1-subunit cysteinyl residue demonstrated previously to modulate NO· sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC β1-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H2O2) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H2O2 did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO·-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC. PMID:19141618

  2. Activation of soluble guanylyl cyclase by BAY 58-2667 improves bladder function in cyclophosphamide-induced cystitis in mice.

    PubMed

    de Oliveira, Mariana G; Calmasini, Fabiano B; Alexandre, Eduardo C; De Nucci, Gilberto; Mónica, Fabíola Z; Antunes, Edson

    2016-07-01

    Activators of soluble guanylyl cyclase (sGC) interact directly with its prosthetic heme group, enhancing the enzyme responsiveness in pathological conditions. This study aimed to evaluate the effects of the sGC activator BAY 58-2667 on voiding dysfunction, protein expressions of α1 and β1 sGC subunits and cGMP levels in the bladder tissues after cyclophosphamide (CYP) exposure. Female C57BL/6 mice (20-25 g) were injected with CYP (300 mg/kg ip) to induce cystitis. Mice were pretreated or not with BAY 58-2667 (1 mg/kg, gavage), given 1 h before CYP injection. The micturition patterns and in vitro bladder contractions were evaluated at 24 h. In freely moving mice, the CYP injection produced reduced the micturition volume and increased the number of urine spots. Cystometric recordings in CYP-injected mice revealed significant increases in basal pressure, voiding frequency, and nonvoiding contractions (NVCs), along with decreases in bladder capacity, intercontraction interval, and compliance. BAY 58-2667 significantly prevented the micturition alterations observed in both freely moving mice and cystometry and normalized the reduced in vitro carbachol-induced contractions in the CYP group. Reduced protein expressions of α1 and β1 sGC subunits and of cGMP levels were observed in the CYP group, all of which were prevented by BAY 58-2667. CYP exposure significantly increased reactive-oxygen species (ROS) generation in both detrusor and urothelium, and this was normalized by BAY 58-2667. The increased myeloperoxidase and cyclooxygenase-2 activities in the bladders of the CYP group remained unchanged by BAY 58-2667. Activators of sGC may constitute a novel and promising therapeutic approach for management of interstitial cystitis. PMID:27122537

  3. Functional characterization of neural-restrictive silencer element in mouse pituitary adenylate cyclase-activating polypeptide (PACAP) gene expression.

    PubMed

    Sugawara, Hideki; Tominaga, Aiko; Inoue, Kazuhiko; Takeda, Yasuo; Yamada, Katsushi; Miyata, Atsuro

    2014-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is predominantly localized in the nervous system, but the underlying mechanism in its neuron-specific expression remains unclear. In addition to two neural-restrictive silencer-like element (NRSLE1 and 2), as reported previously, we have identified the third element in -1,601 to -1,581 bp from the translational initiation site of mouse PACAP gene and termed it as NRSLE3, of which, the sequence and location were highly conserved among mouse, rat, and human PACAP genes. In luciferase reporter assay, the deletion or site-directed mutagenesis of NRSLE3 in the reporter gene construct, driven by heterologous SV40 promoter, cancelled the repression of luciferase activity in non-neuronal Swiss-3T3 cells. Furthermore, its promoter activity was significantly repressed in Swiss-3T3 cells, but not in neuronal-differentiated PC12 cells. The electrophoretic mobility shift assay (EMSA) with nuclear extracts of Swiss-3T3 cells demonstrated a specific complex with NRSLE3 probe that exhibited the same migration with the neural-restrictive silencer element (NRSE) probe of rat type II sodium channel gene. During neuronal differentiation of PC12 cells, the increment of PACAP mRNA exhibited the correlation with that of REST4 mRNA, which is a neuron-specific variant form of neural-restrictive silencer factor (NRSF). In undifferentiated PC12 cells, trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which indirectly inhibits NRSF-mediated gene silencing, increased PACAP mRNA level and attenuated the repression of promoter activity of 5' flanking region of mouse PACAP gene containing NRSLEs. These suggest that the NRSE-NRSF system implicates in the regulatory mechanism of neuron-specific expression of PACAP gene. PMID:24939248

  4. Glutamine Synthetase Regulation, Adenylylation State, and Strain Specificity Analyzed by Polyacrylamide Gel Electrophoresis

    PubMed Central

    Bender, Robert A.; Streicher, Stanley L.

    1979-01-01

    We used polyacrylamide gel electrophoresis to examine the regulation and adenylylation states of glutamine synthetases (GSs) from Escherichia coli (GSE) and Klebsiella aerogenes (GSK). In gels containing sodium dodecyl sulfate (SDS), we found that GSK had a mobility which differed significantly from that of GSE. In addition, for both GSK and GSE, adenylylated subunits (GSK-adenosine 5′-monophosphate [AMP] and GSE-AMP) had lesser mobilities in SDS gels than did the corresponding non-adenylylated subunits. The order of mobilities was GSK-AMP < GSK < GSE-AMP < GSE. We were able to detect these mobility differences with purified and partially purified preparations of GS, crude cell extracts, and whole cell lysates. SDS gel electrophoresis thus provided a means of estimating the adenylylation state and the quantity of GS present independent of enzymatic activity measurements and of determining the strain origin. Using SDS gels, we showed that: (i) the constitutively produced GS in strains carrying the glnA4 allele was mostly adenylylated, (ii) the GS-like polypeptide produced by strains carrying the glnA51 allele was indistinguishable from wild-type GSK, and (iii) strains carrying the glnA10 allele contained no polypeptide having the mobility of GSK or GSK-AMP. Using native polyacrylamide gels, we detected the increased amount of dodecameric GS present in cells grown under nitrogen limitation compared with cells grown under conditions of nitrogen excess. In native gels there was neither a significant difference in the mobilities of adenylylated and non-adenylylated GSs nor a GS-like protein in cells carrying the glnA10 allele. Images PMID:33958

  5. Discovery of Pituitary Adenylate Cyclase-Activating Polypeptide-Regulated Genes through Microarray Analyses in Cell Culture and In Vivo

    PubMed Central

    Eiden, Lee E.; Samal, Babru; Gerdin, Matthew J.; Mustafa, Tomris; Vaudry, David; Stroth, Nikolas

    2010-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is an evolutionarily well conserved neuropeptide with multiple functions in the nervous, endocrine, and immune systems. PACAP provides neuroprotection from ischemia and toxin exposure, is anti-inflammatory in gastric inflammatory disease and sepsis, controls proliferative signaling pathways involved in neural cell transformation, and modulates glucohomeostasis. PACAP-based, disease-targeted therapeutics might thus be both effective and benign, enhancing homeostatic responses to behavioral, metabolic, oncogenic, and inflammatory stressors. PACAP signal transduction employs synergistic regulation of calcium and cyclic adenosine monophosphate (cAMP), and noncanonical activation of both calcium- and cAMP-dependent processes. Pharmacological activation of PACAP signaling should consequently have highly specific effects even in vivo. Here, a combined cellular biochemical, pharmacologic, transcriptomic, and bioinformatic approach to understanding PACAP signal transduction by identifying PACAP target genes with oligonucleotide- and cDNA-based microarray is described. Calcium- and cAMP-dependent PACAP signaling pathways for regulation of genes encoding proteins required for neuritogenesis, changes in cell morphology, and cell survival have been traced in PC12 cells. Pharmacological experiments have linked gene expression to cell physiological responses in this system, in which gene silencing can also be employed to confirm the functional significance of induction of specific transcripts. Differential transcriptional responses to metabolic, ischemic, and other stressors in wild type compared to PACAP-deficient mice establish in principle which PACAP-responsive transcripts in culture are PACAP-dependent in vivo. Bioinformatic approaches aid in creating a pipeline for identifying neuropeptide-regulated genes, validating their cellular functions, and defining their expression in the context of neuropeptide signaling

  6. Promoter activity of the 5'-flanking regions of medaka fish soluble guanylate cyclase alpha1 and beta1 subunit genes.

    PubMed Central

    Yamamoto, Takehiro; Suzuki, Norio

    2002-01-01

    We examined the spatial expression pattern of medaka fish (Oryzias latipes) soluble guanylate cyclase alpha(1) and beta(1) subunit genes, OlGCS-alpha(1) and OlGCS-beta(1), and characterized the 5'-flanking region required for expression of both genes by introducing various promoter-luciferase fusion-gene constructs into COS-1 cells and medaka fish embryos. The OlGCS-alpha(1) and OlGCS-beta(1) gene transcripts were detected in whole brain and kidney in 7-day and 9-day embryos. Primer-extension analysis demonstrated that there were no differences among various adult organs (brain, eye, kidney, ovary and testis) in the transcription start site of the OlGCS-alpha(1) and OlGCS-beta(1) genes. Neither gene contained the functional TATA box within its 5'-flanking region, and the basal promoter activity was found between nucleotides +33 and +42 in the OlGCS-alpha(1) gene and between nucleotides +146 and +155 in the OlGCS-beta(1) gene. In the assay of medaka fish embryos, the 5'-flanking region of the OlGCS-beta(1) gene exhibited lower promoter activity than that of the OlGCS-alpha(1) gene. In the experiments on dual-luciferase fusion-gene constructs, the 5'-flanking region of the OlGCS-alpha(1) gene connected to the 5'-flanking region of the OlGCS-beta(1) gene was introduced into medaka fish embryos, and the 5'-flanking regions of both subunit genes were shown to mutually influence each other's promoter activity. PMID:11772405

  7. Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats.

    PubMed

    Jabs, A; Oelze, M; Mikhed, Y; Stamm, P; Kröller-Schön, S; Welschof, P; Jansen, T; Hausding, M; Kopp, M; Steven, S; Schulz, E; Stasch, J-P; Münzel, T; Daiber, A

    2015-08-01

    Chronic nitroglycerin (GTN) anti-ischemic therapy induces side effects such as nitrate tolerance and endothelial dysfunction. Both phenomena could be based on a desensitization/oxidation of the soluble guanylyl cyclase (sGC). Therefore, the present study aims at investigating the effects of the therapy with the sGC activator BAY 60-2770 and the sGC stimulator BAY 41-8543 on side effects induced by chronic nitroglycerin treatment. Male Wistar rats were treated with nitroglycerin (100mg/kg/d for 3.5days, s.c. in ethanol) and BAY 60-2770 (0.5 or 2.5mg/kg/d) or BAY 41-8543 (1 and 5mg/kg/d) for 6days. Therapy with BAY 60-2770 but not with BAY 41-8543 improved nitroglycerin-triggered endothelial dysfunction and nitrate tolerance, corrected the decrease in aortic nitric oxide levels, improved the cGMP dependent activation of protein kinase I in aortic tissue and reduced vascular, cardiac and whole blood oxidative stress (fluorescence and chemiluminescence assays; 3-nitrotyrosine staining). In contrast to BAY 41-8543, the vasodilator potency of BAY 60-2770 was not impaired in isolated aortic ring segments from nitrate tolerant rats. sGC activator therapy improves partially the adverse effects of nitroglycerin therapy whereas sGC stimulation has only minor beneficial effects pointing to a nitroglycerin-dependent sGC oxidation/inactivation mechanism contributing to nitrate tolerance. PMID:25869522

  8. Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide

    PubMed Central

    Salloum, Fadi N.; Das, Anindita; Samidurai, Arun; Hoke, Nicholas N.; Chau, Vinh Q.; Ockaili, Ramzi A.; Stasch, Johannes-Peter

    2012-01-01

    Cinaciguat (BAY 58–2667) is a novel nitric oxide (NO)-independent activator of soluble guanylate cyclase (sGC), which induces cGMP-generation and vasodilation in diseased vessels. We tested the hypothesis that cinaciguat might trigger protection against ischemia/reperfusion (I/R) in the heart and adult cardiomyocytes through cGMP/protein kinase G (PKG)-dependent generation of hydrogen sulfide (H2S). Adult New Zealand White rabbits were pretreated with 1 or 10 μg/kg cinaciguat (iv) or 10% DMSO (vehicle) 15 min before I/R or with 10 μg/kg cinaciguat (iv) at reperfusion. Additionally, adult male ICR mice were treated with either cinaciguat (10 μg/kg ip) or vehicle 30 min before I/R or at the onset of reperfusion (10 μg/kg iv). The PKG inhibitor KT5283 (KT; 1 mg/kg ip) or dl-propargylglycine (PAG; 50 mg/kg ip) the inhibitor of the H2S-producing enzyme cystathionine-γ-lyase (CSE) were given 10 and 30 min before cinaciguat. Cardiac function and infarct size were assessed by echocardiography and tetrazolium staining, respectively. Primary adult mouse cardiomyocytes were isolated and treated with cinaciguat before simulated ischemia/reoxygenation. Cinaciguat caused 63 and 41% reduction of infarct size when given before I/R and at reperfusion in rabbits, respectively. In mice, cinaciguat pretreatment caused a more robust 80% reduction in infarct size vs. 63% reduction when given at reperfusion and preserved cardiac function following I/R, which were blocked by KT and PAG. Cinaciguat also caused an increase in myocardial PKG activity and CSE expression. In cardiomyocytes, cinaciguat (50 nM) reduced necrosis and apoptosis and increased H2S levels, which was abrogated by KT. Cinaciguat is a novel molecule to induce H2S generation and a powerful protection against I/R injury in heart. PMID:22268103

  9. Preconditioning with soluble guanylate cyclase activation prevents postischemic inflammation and reduces nitrate tolerance in heme oxygenase-1 knockout mice.

    PubMed

    Wang, Walter Z; Jones, Allan W; Wang, Meifang; Durante, William; Korthuis, Ronald J

    2013-08-15

    Previously we have shown that, unlike wild-type mice (WT), heme oxygenase-1 knockout (HO-1-/-) mice developed nitrate tolerance and were not protected from inflammation caused by ischemia-reperfusion (I/R) when preconditioned with a H2S donor. We hypothesized that stimulation (with BAY 41-2272) or activation (with BAY 60-2770) of soluble guanylate cyclase (sGC) would precondition HO-1-/- mice against an inflammatory effect of I/R and increase arterial nitrate responses. Intravital fluorescence microscopy was used to visualize leukocyte rolling and adhesion to postcapillary venules of the small intestine in anesthetized mice. Relaxation to ACh and BAY compounds was measured on superior mesenteric arteries isolated after I/R protocols. Preconditioning with either BAY compound 10 min (early phase) or 24 h (late phase) before I/R reduced postischemic leukocyte rolling and adhesion to sham control levels and increased superior mesenteric artery responses to ACh, sodium nitroprusside, and BAY 41-2272 in WT and HO-1-/- mice. Late-phase preconditioning with BAY 60-2770 was maintained in HO-1-/- and endothelial nitric oxide synthase knockout mice pretreated with an inhibitor (dl-propargylglycine) of enzymatically produced H2S. Pretreatment with BAY compounds also prevented the I/R increase in small intestinal TNF-α. We speculate that increasing sGC activity and related PKG acts downstream to H2S and disrupts signaling processes triggered by I/R in part by maintaining low cellular Ca²⁺. In addition, BAY preconditioning did not increase sGC levels, yet increased the response to agents that act on reduced heme-containing sGC. Collectively these actions would contribute to increased nitrate sensitivity and vascular function. PMID:23771693

  10. Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis

    PubMed Central

    Resch, Jon M.; Boisvert, Joanne P.; Hourigan, Allison E.; Mueller, Christopher R.; Yi, Sun Shin

    2011-01-01

    Numerous studies have demonstrated that the hypothalamic ventromedial nuclei (VMN) regulate energy homeostasis by integrating and utilizing behavioral and metabolic mechanisms. The VMN heavily express pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptors (PAC1R). Despite the receptor distribution, most PACAP experiments investigating affects on feeding have focused on intracerebroventricular administration or global knockout mice. To identify the specific contribution of PACAP signaling in the VMN, we injected PACAP directly into the VMN and measured feeding behavior and indices of energy expenditure. Following an acute injection of PACAP, nocturnal food intake was significantly reduced for 6 h after injections without evidence of malaise. In addition, PACAP-induced suppression of feeding also occurred following an overnight fast and could be blocked by a specific PAC1R antagonist. Metabolically, VMN-specific injections of PACAP significantly increased both core body temperature and spontaneous locomotor activity with a concurrent increase in brown adipose uncoupling protein 1 mRNA expression. To determine which signaling pathways were responsive to PACAP administration into the VMN, we measured mRNA expression of well-characterized hypothalamic neuropeptide regulators of feeding. One hour after PACAP administration, expression of pro-opiomelanocortin mRNA was significantly increased in the arcuate nuclei (ARC), with no changes in neuropeptide Y and agouti-related polypeptide mRNA levels. This suggests that PAC1R expressing VMN neurons projecting to pro-opiomelanocortin neurons contribute to hypophagia by involving melanocortin signaling. While the VMN also abundantly express PACAP protein, the present study demonstrates that PACAP input to the VMN can influence the control of energy homeostasis. PMID:21957159

  11. Biological activity of designed photolabile metal nitrosyls: light-dependent activation of soluble guanylate cyclase and vasorelaxant properties in rat aorta.

    PubMed

    Madhani, Melanie; Patra, Apurba K; Miller, Thomas W; Eroy-Reveles, Aura A; Hobbs, Adrian J; Fukuto, Jon M; Mascharak, Pradip K

    2006-12-14

    The biological and pharmacological utility of nitric oxide (NO) has led to the development of many classes of NO-donor compounds as both research tools and therapeutic agents. Many donors currently in use rely on thermal decomposition or bioactivation for the release of NO. We have developed several photolabile metal-nitrosyl donors that release NO when exposed to either visible or UV light. Herein, we show that these donors are capable of activating the primary "NO receptor", soluble guanylate cyclase (sGC), in a light-dependent fashion leading to increases in cGMP. Moreover, we demonstrate that these donors are capable of eliciting light-dependent increases of cGMP in smooth muscle cells and vasorelaxation of rat aortic smooth muscle tissue, all effects that are attributed to activation of sGC. The potential utility of these compounds as drugs and/or research tools is discussed. PMID:17149862

  12. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  13. The anti-diabetic drug repaglinide induces vasorelaxation via activation of PKA and PKG in aortic smooth muscle.

    PubMed

    Kim, Hye Won; Li, Hongliang; Kim, Han Sol; Shin, Sung Eun; Jung, Won-Kyo; Ha, Kwon-Soo; Han, Eun-Taek; Hong, Seok-Ho; Choi, Il-Whan; Firth, Amy L; Bang, Hyoweon; Park, Won Sun

    2016-09-01

    We investigated the vasorelaxant effect of repaglinide and its related signaling pathways using phenylephrine (Phe)-induced pre-contracted aortic rings. Repaglinide induced vasorelaxation in a concentration-dependent manner. The repaglinide-induced vasorelaxation was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor (L-NAME) and a small-conductance Ca(2+)-activated K(+) (SKCa) channel inhibitor (apamin) did not alter the vasorelaxant effect of repaglinide on endothelium-intact arteries. Pretreatment with an adenylyl cyclase inhibitor (SQ 22536) or a PKA inhibitor (KT 5720) effectively reduced repaglinide-induced vasorelaxation. Also, pretreatment with a guanylyl cyclase inhibitor (ODQ) or a PKG inhibitor (KT 5823) inhibited repaglinide-induced vasorelaxation. However, pretreatment with a voltage-dependent K(+) (Kv) channel inhibitor (4-AP), ATP-sensitive K(+) (KATP) channel inhibitor (glibenclamide), large-conductance Ca(2+)-activated K(+) (BKCa) channel inhibitor (paxilline), or the inwardly rectifying K(+) (Kir) channel inhibitor (Ba(2+)) did not affect the vasorelaxant effect of repaglinide. Furthermore, pretreatment with a Ca(2+) inhibitor (nifedipine) and a sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor (thapsigargin) did not affect the vasorelaxant effect of repaglinide. The vasorelaxant effect of repaglinide was not affected by elevated glucose (50mM). Based on these results, we conclude that repaglinide induces vasorelaxation via activation of adenylyl cyclase/PKA and guanylyl cyclase/PKG signaling pathways independently of the endothelium, K(+) channels, Ca(2+) channels, and intracellular Ca(2+) ([Ca(2+)]i). PMID:27435474

  14. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    SciTech Connect

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.

  15. 2,3-Oxidosqualene cyclase and cycloartenol-s-adenosylmethionine methyltransferase activities in vivo in the cotyledon and axis tissues of germinating pea seeds.

    PubMed Central

    Fang, T Y; Baisted, D J

    1975-01-01

    Axis tissues, root and shoot, of germinating pea seedlings actively synthesize sterol from [2-14C]mevalonate during the first 3 days of germination. In addition to the intermediates of sterol synthesis, cycloartenol and 24-methylenecycloartanol, these tissues also form the triterpene beta-amyrin. The cyclase catalysing the formation of cycloartenol from oxidosqualene is about four times as active as that for beta-amyrin synthesis. 2. Sterol synthesis in the cotyledon is negligible, but cycloartenol and 24-methylenecycloartanol, as well as beta-amyrin, are synthesized there. Oxidosqualene cyclase activity in this tissue is 2.6 times as active for beta-amyrin synthesis as for cycloartenol synthesis. 3. Comparison of the relative amounts of 14C in cycloartenol and 24-methylenecycloartanol in the axis tissues and cotyledons of 3-day-old seedlings point to relatively active cycloartenol-S-adenosylmethionine methyltransferase systems in both axis tissues and a poorly active system in the cotyledon. 4. The role of beta-amyrin synthesis in the germinating pea seedling is discussed. PMID:1212194

  16. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    PubMed

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  17. Renal adenylate cyclase assay for biologically active parathyroid hormone: clinical utility and physiological significance.

    PubMed

    Auf'mkolk, B; Hesch, R D

    1986-01-01

    The stimulation of cyclic AMP production by human renal cortical membranes in the presence of the GTP analogue 5'-guanylimidodiphosphate and a calcium chelator represents a homologous assay system for the evaluation of biologically active parathyroid hormone (bioPTH) in human serum. Bioactive PTH was raised above normal (normal range: undetectable to 4.6 pmol human PTH(1-34) per 1) in 13/17 (76%) patients with primary hyperparathyroidism, in 5/6 (83%) patients with surgically proven hyperparathyroidism secondary to chronic renal failure, in 4/5 (80%) patients with hyperparathyroidism secondary to hypocalcaemia, in all three patients with pseudohypoparathyroidism, in 5/17 (29%) patients with osteoporosis and in 1/9 (11%) patients with renal stones and/or hypercalciuria. Bioactive PTH correlated positively with immunoreactive PTH (iPTH) measured with a radioimmunoassay predominantly recognizing the middle- and carboxyl-terminal region of the PTH molecule (r = 0.503, P less than 0.001). A positive correlation (r = 0.572, P less than 0.05) was found between values of serum calcium and bioPTH in the group with primary hyperparathyroidism. Immunoreactive PTH did not correlate significantly with calcium in this group. In the other patients except those who had chronic renal failure, a negative correlation between serum calcium and both bioPTH and iPTH was observed (P less than 0.01). When alkaline phosphatase was compared with bioPTH in all patients, the correlation was positive (r = 0.390, P less than 0.01); no significant correlation existed between iPTH and alkaline phosphatase in the patients studied.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3944539

  18. Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson's disease.

    PubMed

    Lamine-Ajili, Asma; Fahmy, Ahmed M; Létourneau, Myriam; Chatenet, David; Labonté, Patrick; Vaudry, David; Fournier, Alain

    2016-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that leads to destruction of the midbrain dopaminergic (DA) neurons. This phenomenon is related to apoptosis and its activation can be blocked by the pituitary adenylate cyclase-activating polypeptide (PACAP). Growing evidence indicates that autophagy, a self-degradation activity that cleans up the cell, is induced during the course of neurodegenerative diseases. However, the role of autophagy in the pathogenesis of neuronal disorders is yet poorly understood and the potential ability of PACAP to modulate the related autophagic activation has never been significantly investigated. Hence, we explored the putative autophagy-modulating properties of PACAP in in vitro and in vivo models of PD, using the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), respectively, to trigger alterations of DA neurons. In both models, following the toxin exposure, PACAP reduced the autophagic activity as evaluated by the production of LC3 II, the modulation of the p62 protein levels, and the formation of autophagic vacuoles. The ability of PACAP to inhibit autophagy was also observed in an in vitro cell assay by the blocking of the p62-sequestration activity produced with the autophagy inducer rapamycin. Thus, the results demonstrated that autophagy is induced in PD experimental models and that PACAP exhibits not only anti-apoptotic but also anti-autophagic properties. PMID:26769362

  19. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus.

    PubMed Central

    Schoeffter, P.; Hoyer, D.

    1988-01-01

    1. A number of centrally acting hypotensive agents and other ligands with high affinity for 5-hydroxytryptamine1A (5-HT1A) recognition sites have been tested on forskolin-stimulated adenylate cyclase activity in calf hippocampus, a functional model for 5-HT1A-receptors. 2. Concentration-dependent inhibition of forskolin-stimulated adenylate cyclase activity was elicited by the reference 5-HT1-receptor agonists (mean EC50 value, nM): 5-HT (22), 5-carboxamidotryptamine (5-CT, 3.2), 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 8.6), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT, 2.3), 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine (PAPP or LY 165163, 20), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole (RU 24969, 20), buspirone (65) and ipsapirone (56). Emax amounted to 18-20% inhibition for all but the latter two agonists (14%). 3. The following hypotensive agents with high affinity for 5-HT1A sites were potent agonists in this system (mean EC50 value, nM): flesinoxan (24), indorenate (99), erythro-1-(1-[2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl]-4-piperidyl )- 2-benzimidazolinone (R 28935, 2.5), urapidil (390) and 5-methyl-urapidil (3.5). The first two agents were full agonists, whereas the latter three acted as partial agonists with 60-80% efficacy. 4. Metergoline and methysergide behaved as full agonists and cyanopindolol as a partial agonist with low efficacy. Spiroxatrine and 2-(2,6-dimethoxyphenoxyethyl)aminomethyl- 1,4-benzodioxane (WB 4101) which bind to 5-HT1A sites with nanomolar affinity, were agonists and inhibited potently forskolin-stimulated adenylate cyclase in calf hippocampus, showing mean EC50 values of 23 and 15 nM, respectively. Spiroxatrine and WB 4101 yielded 90% and 50% efficacy, respectively. 5. Spiperone and methiothepin (each 1 microM) caused rightward shifts of the concentration-effect curve to 8-OH-DPAT, without loss of the maximal effect, as did the partial agonist cyanopindolol (0.1 microM) and the

  20. Mechanisms of relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in rat tracheal smooth muscle.

    PubMed

    Toque, Haroldo A; Mónica, Fabíola Z T; Morganti, Rafael P; De Nucci, Gilberto; Antunes, Edson

    2010-10-25

    The soluble guanylyl cyclase is expressed in airway smooth muscle, and agents that stimulate this enzyme activity cause airway smooth muscle relaxation and bronchodilation. The compound 5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272) is a potent nitric oxide (NO)-independent soluble guanylyl cyclase stimulator, but little is known about its effects in airway smooth muscle. Therefore, this study aimed to investigate the mechanisms underlying the relaxations of rat tracheal smooth muscle induced by BAY 41-2272. Tracheal rings were mounted in 10-ml organ baths for isometric force recording. BAY 41-2272 concentration-dependently relaxed carbachol-precontracted tracheal rings (pEC(50)=6.68+/-0.14). Prior incubation with the NO synthesis inhibitor l-NAME (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (10 microM) caused significant rightward shifts in the concentration-response curves to BAY 41-2272. Sodium nitroprusside caused concentration-dependent relaxations, which were greatly potentiated by BAY 41-2272 and completely inhibited by ODQ. In addition, BAY 41-2272 shifted to the right the tracheal contractile responses to either carbachol (0.01-1 microM) or electrical field stimulation (EFS, 1-32 Hz). BAY 41-2272 (1 microM) also caused a marked rightward shift and decreased the maximal contractile responses to extracellular CaCl2, and such effect was not modified by pretreatment with ODQ. In addition, BAY 41-2272 (up to 1 microM) significantly increased the cGMP levels, and that was abolished by ODQ. Our results indicate that BAY 41-2272 causes cGMP-dependent rat tracheal smooth muscle relaxations in a synergistic fashion with exogenous NO. BAY 41-2272 has also an additional mechanism independently of soluble guanylyl cyclase activation possibly involving Ca(2+) entry blockade. PMID:20670622

  1. Receptors that couple to 2 classes of G proteins increase cAMP and activate CFTR expressed in Xenopus oocytes.

    PubMed

    Uezono, Y; Bradley, J; Min, C; McCarty, N A; Quick, M; Riordan, J R; Chavkin, C; Zinn, K; Lester, H A; Davidson, N

    1993-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), a Cl- channel activated by phosphorylation, was expressed in Xenopus oocytes along with various combinations of several other components of the cAMP signalling pathway. Activation of the coexpressed beta 2 adrenergic receptor increased cAMP and led to CFTR activation. The activation of CFTR (1) requires only short (15 s) exposure to isoproterenol, (2) occurs for agonist concentrations 100-1000 fold lower than those that produce cAMP increases detectable by a radioimmunoassay, (3) requires injection of only 5 pg of receptor cRNA per oocyte, and (4) can be increased further by coexpression of cRNA for adenylyl cyclase type II or III or for Gs alpha. In addition, CFTR activation and cAMP increases by beta 2 activation were enhanced by activation of the coexpressed 5HT1A receptor, which is thought to couple to Gi. The additional activation by the 5HT1A receptor was enhanced by coexpression of adenylyl cyclase type II but not with type III and may proceed via the beta gamma subunits of a G protein. The sensitivity of the assay system is also demonstrated by responses to vasoactive intestinal peptide and to pituitary adenylate cyclase-activating polypeptide in oocytes injected with cerebral cortex mRNA. PMID:7522902

  2. Luteinizing Hormone Reduces the Activity of the NPR2 Guanylyl Cyclase in Mouse Ovarian Follicles, Contributing to the Cyclic GMP Decrease that Promotes Resumption of Meiosis in Oocytes

    PubMed Central

    Robinson, Jerid W.; Zhang, Meijia; Shuhaibar, Leia C.; Norris, Rachael P.; Geerts, Andreas; Wunder, Frank; Eppig, John J.; Potter, Lincoln R.; Jaffe, Laurinda A.

    2012-01-01

    In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 minutes, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2 hours, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte. PMID:22546688

  3. A constitutively activated mutant of human soluble guanylyl cyclase (sGC): implication for the mechanism of sGC activation

    NASA Technical Reports Server (NTRS)

    Martin, Emil; Sharina, Iraida; Kots, Alexander; Murad, Ferid

    2003-01-01

    Heterodimeric alphabeta soluble guanylyl cyclase (sGC) is a recognized receptor for nitric oxide (NO) and mediates many of its physiological functions. Although it has been clear that the heme moiety coordinated by His-105 of the beta subunit is crucial for mediating the activation of the enzyme by NO, it is not understood whether the heme moiety plays any role in the function of the enzyme in the absence of NO. Here we analyze the effects of biochemical and genetic removal of heme and its reconstitution on the activity of the enzyme. Detergent-induced loss of heme from the wild-type alphabeta enzyme resulted in several-fold activation of the enzyme. This activation was inhibited after hemin reconstitution. A heme-deficient mutant alphabetaCys-105 with Cys substituted for His-105 was constitutively active with specific activity approaching the activity of the wild-type enzyme activated by NO. However, reconstitution of mutant enzyme with heme and/or DTT treatment significantly inhibited the enzyme. Mutant enzyme reconstituted with ferrous heme was activated by NO and CO alone and showed additive effects between gaseous effectors and the allosteric activator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrim idin-4-ylamine. We propose that the heme moiety through its coordination with His-105 of the beta subunit acts as an endogenous inhibitor of sGC. Disruption of the heme-coordinating bond induced by binding of NO releases the restrictions imposed by this bond and allows the formation of an optimally organized catalytic center in the heterodimer.

  4. A constitutively activated mutant of human soluble guanylyl cyclase (sGC): Implication for the mechanism of sGC activation

    PubMed Central

    Martin, Emil; Sharina, Iraida; Kots, Alexander; Murad, Ferid

    2003-01-01

    Heterodimeric αβ soluble guanylyl cyclase (sGC) is a recognized receptor for nitric oxide (NO) and mediates many of its physiological functions. Although it has been clear that the heme moiety coordinated by His-105 of the β subunit is crucial for mediating the activation of the enzyme by NO, it is not understood whether the heme moiety plays any role in the function of the enzyme in the absence of NO. Here we analyze the effects of biochemical and genetic removal of heme and its reconstitution on the activity of the enzyme. Detergent-induced loss of heme from the wild-type αβ enzyme resulted in several-fold activation of the enzyme. This activation was inhibited after hemin reconstitution. A heme-deficient mutant αβCys-105 with Cys substituted for His-105 was constitutively active with specific activity approaching the activity of the wild-type enzyme activated by NO. However, reconstitution of mutant enzyme with heme and/or DTT treatment significantly inhibited the enzyme. Mutant enzyme reconstituted with ferrous heme was activated by NO and CO alone and showed additive effects between gaseous effectors and the allosteric activator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine. We propose that the heme moiety through its coordination with His-105 of the β subunit acts as an endogenous inhibitor of sGC. Disruption of the heme-coordinating bond induced by binding of NO releases the restrictions imposed by this bond and allows the formation of an optimally organized catalytic center in the heterodimer. PMID:12883009

  5. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    PubMed Central

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  6. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures.

    PubMed

    Juhász, Tamás; Szentléleky, Eszter; Somogyi, Csilla Szűcs; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  7. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca2+ release, and activation of protein kinase C

    PubMed Central

    Pandey, Kailash N.

    2014-01-01

    Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol triphosphate (IP3) have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+, and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca2+, and IP3 in different cells and tissue systems. PMID:25202235

  8. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin.

    PubMed

    Wald, Tomas; Osickova, Adriana; Masin, Jiri; Liskova, Petra M; Petry-Podgorska, Inga; Matousek, Tomas; Sebo, Peter; Osicka, Radim

    2016-04-01

    Adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) of the whooping cough agent Bordetella pertussis penetrates phagocytes expressing the integrin complement receptor 3 (CR3, CD11b/CD18, α(M)β(2) or Mac-1). CyaA translocates its adenylate cyclase (AC) enzyme domain into cell cytosol and catalyzes unregulated conversion of ATP to cAMP, thereby subverting cellular signaling. In parallel, CyaA forms small cation-selective membrane pores that permeabilize cells for potassium efflux, contributing to cytotoxicity of CyaA and eventually provoking colloid-osmotic cell lysis. To investigate whether the single-pass α-helical transmembrane segments of CR3 subunits CD11b and CD18 do directly participate in AC domain translocation and/or pore formation by the toxin, we expressed in CHO cells variants of CR3 that contained artificial transmembrane segments, or lacked the transmembrane segment(s) at all. The results demonstrate that the transmembrane segments of CR3 are not directly involved in the cytotoxic activities of CyaA but serve for maintaining CR3 in a conformation that is required for efficient toxin binding and action. PMID:26802078

  9. Bacterial terpene cyclases.

    PubMed

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  10. Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1

    PubMed Central

    Baxter, Paul S; Martel, Marc-Andre; McMahon, Aoife; Kind, Peter C; Hardingham, Giles E

    2011-01-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca2+ transients, which are essential for the anti-apoptotic actions of PACAP. Transient exposure to PACAP induces long-lasting neuroprotection in the face of apoptotic insults which is reliant on AP firing and the activation of cAMP response element (CRE) binding protein (CREB)-mediated gene expression. Although direct, activity-independent PKA signaling is sufficient to trigger phosphorylation on CREB’s activating serine-133 site, this is insufficient for activation of CREB-mediated gene expression. Full activation is dependent on CREB-regulated transcription co-activator 1 (CRTC1), whose PACAP-induced nuclear import is dependent on firing activity-dependent calcineurin signaling. Over-expression of CRTC1 is sufficient to rescue PACAP-induced CRE-mediated gene expression in the face of activity-blockade, while dominant negative CRTC1 interferes with PACAP-induced, CREB-mediated neuroprotection. Thus, the enhancement of AP firing may play a significant role in the neuroprotective actions of PACAP and other adenylate cyclase-coupled ligands. PMID:21623792