Sample records for adequate oxygen delivery

  1. Oxygen Therapy in the Delivery Room: What Is the Right Dose?

    PubMed

    Kapadia, Vishal; Wyckoff, Myra H

    2018-06-01

    Oxygen is the most commonly used medicine used during neonatal resuscitation in the delivery room. Oxygen therapy in delivery room should be used judiciously to avoid oxygen toxicity while delivering sufficient oxygen to prevent hypoxia. Measurement of appropriate oxygenation relies on pulse oximetry, but adequate ventilation and perfusion are equally important for oxygen delivery. In this article, we review oxygenation while transitioning from fetal to neonatal life, the importance of appropriate oxygen therapy, its measurement in the delivery room, and current recommendations for oxygen therapy and its limitations. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Oxygen-Releasing Antioxidant Cryogel Scaffolds with Sustained Oxygen Delivery for Tissue Engineering Applications.

    PubMed

    Shiekh, Parvaiz A; Singh, Anamika; Kumar, Ashok

    2018-06-06

    With the advancement in biomaterial sciences, tissue-engineered scaffolds are developing as a promising strategy for the regeneration of damaged tissues. However, only a few of these scaffolds have been translated into clinical applications. One of the primary drawbacks of the existing scaffolds is the lack of adequate oxygen supply within the scaffolds. Oxygen-producing biomaterials have been developed as an alternate strategy but are faced with two major concerns. One is the control of the rate of oxygen generation, and the other is the production of reactive oxygen species (ROS). To address these concerns, here, we report the development of an oxygen-releasing antioxidant polymeric cryogel scaffold (PUAO-CPO) for sustained oxygen delivery. PUAO-CPO scaffold was fabricated using the cryogelation technique by the incorporation of calcium peroxide (CPO) in the antioxidant polyurethane (PUAO) scaffolds. The PUAO-CPO cryogels attenuated the ROS and showed a sustained release of oxygen over a period of 10 days. An in vitro analysis of the PUAO-CPO cryogels showed their ability to sustain H9C2 cardiomyoblast cells under hypoxic conditions, with cell viability being significantly better than the normal polyurethane (PU) scaffolds. Furthermore, in vivo studies using an ischemic flap model showed the ability of the oxygen-releasing cryogel scaffolds to prevent tissue necrosis upto 9 days. Histological examination indicated the maintenance of tissue architecture and collagen content, whereas immunostaining for proliferating cell nuclear antigen confirmed the viability of the ischemic tissue with oxygen delivery. Our study demonstrated an advanced approach for the development of oxygen-releasing biomaterials with sustained oxygen delivery as well as attenuated production of residual ROS and free radicals because of ischemia or oxygen generation. Hence, the oxygen-releasing PUAO-CPO cryogel scaffolds may be used with cell-based therapeutic approaches for the regeneration of

  3. Assessment of the adequacy of oxygen delivery.

    PubMed

    Mayer, Katherine; Trzeciak, Stephen; Puri, Nitin K

    2016-10-01

    This article reviews the recent literature pertaining to assessment of the adequacy of oxygen delivery in critically ill patients with circulatory shock. The assessment of the adequacy of oxygen delivery has traditionally involved measurement of lactate, central (or mixed) venous oxygen saturation (ScvO2), and global hemodynamic markers such as mean arterial pressure and cardiac index. The search for noninvasive, reliable, and sensitive methods to detect derangements in oxygen delivery and utilization continues. Recent studies focus on near-infrared spectroscopy (NIRS) to assess regional tissue oxygenation, as well as bedside ultrasound techniques to assess the macrovascular hemodynamic factors in oxygen delivery. In this article, we review physiologic principles of global oxygen delivery, and discuss the bedside approach to assessing the adequacy of oxygen delivery in critically ill patients. Although there have been technological advances in the assessment of oxygen delivery, we revisit and emphasize the importance of a 'tried and true' method - the physical examination. Also potentially important in the evaluation of oxygen delivery is the utilization of biomarkers (e.g., lactate, ScvO2, NIRS). In complementary fashion, bedside ultrasound for hemodynamic assessment may augment the physical examination and biomarkers, and represents a potentially important adjunct for assessing the adequacy of oxygen delivery.

  4. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    DTIC Science & Technology

    2017-08-01

    AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER

  5. Carbon dioxide narcosis due to inappropriate oxygen delivery: a case report.

    PubMed

    Herren, Thomas; Achermann, Eva; Hegi, Thomas; Reber, Adrian; Stäubli, Max

    2017-07-28

    Oxygen delivery to patients with chronic obstructive pulmonary disease may be challenging because of their potential hypoxic ventilatory drive. However, some oxygen delivery systems such as non-rebreathing face masks with an oxygen reservoir bag require high oxygen flow for adequate oxygenation and to avoid carbon dioxide rebreathing. A 72-year-old Caucasian man with severe chronic obstructive pulmonary disease was admitted to the emergency department because of worsening dyspnea and an oxygen saturation of 81% measured by pulse oximetry. Oxygen was administered using a non-rebreathing mask with an oxygen reservoir bag attached. For fear of removing the hypoxic stimulus to respiration the oxygen flow was inappropriately limited to 4L/minute. The patient developed carbon dioxide narcosis and had to be intubated and mechanically ventilated. Non-rebreathing masks with oxygen reservoir bags must be fed with an oxygen flow exceeding the patient's minute ventilation (>6-10 L/minute.). If not, the amount of oxygen delivered will be too small to effectively increase the arterial oxygen saturation. Moreover, the risk of carbon dioxide rebreathing dramatically increases if the flow of oxygen to a non-rebreathing mask is lower than the minute ventilation, especially in patients with chronic obstructive pulmonary disease and low tidal volumes. Non-rebreathing masks (with oxygen reservoir bags) must be used cautiously by experienced medical staff and with an appropriately high oxygen flow of 10-15 L/minute. Nevertheless, arterial blood gases must be analyzed regularly for early detection of a rise in partial pressure of carbon dioxide in arterial blood in patients with chronic obstructive pulmonary disease and a hypoxic ventilatory drive. These patients are more safely managed using a nasal cannula with an oxygen flow of 1-2L/minute or a simple face mask with an oxygen flow of 5L/minute.

  6. Oxygen delivery using engineered microparticles

    PubMed Central

    Seekell, Raymond P.; Lock, Andrew T.; Peng, Yifeng; Cole, Alexis R.; Perry, Dorothy A.; Kheir, John N.; Polizzotti, Brian D.

    2016-01-01

    A continuous supply of oxygen to tissues is vital to life and interruptions in its delivery are poorly tolerated. The treatment of low-blood oxygen tensions requires restoration of functional airways and lungs. Unfortunately, severe oxygen deprivation carries a high mortality rate and can make otherwise-survivable illnesses unsurvivable. Thus, an effective and rapid treatment for hypoxemia would be revolutionary. The i.v. injection of oxygen bubbles has recently emerged as a potential strategy to rapidly raise arterial oxygen tensions. In this report, we describe the fabrication of a polymer-based intravascular oxygen delivery agent. Polymer hollow microparticles (PHMs) are thin-walled, hollow polymer microcapsules with tunable nanoporous shells. We show that PHMs are easily charged with oxygen gas and that they release their oxygen payload only when exposed to desaturated blood. We demonstrate that oxygen release from PHMs is diffusion-controlled, that they deliver approximately five times more oxygen gas than human red blood cells (per gram), and that they are safe and effective when injected in vivo. Finally, we show that PHMs can be stored at room temperature under dry ambient conditions for at least 2 mo without any effect on particle size distribution or gas carrying capacity. PMID:27791101

  7. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.

    PubMed

    Bucci, Enrico

    2009-06-01

    Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.

  8. Supplemental oxygen: ensuring its safe delivery during facial surgery.

    PubMed

    Reyes, R J; Smith, A A; Mascaro, J R; Windle, B H

    1995-04-01

    Electrosurgical coagulation in the presence of blow-by oxygen is a potential source of fire in facial surgery. A case report of a patient sustaining partial-thickness facial burns secondary to such a flash fire is presented. A fiberglass facial model is then used to study the variables involved in providing supplemental oxygen when an electrosurgical unit is employed. Oxygen flow, oxygen delivery systems, distance from the oxygen source, and coagulation current levels were varied. A nasal cannula and an adapted suction tubing provided the oxygen delivery systems on the model. Both the "displaced" nasal cannula and the adapted suction tubing ignited at a minimum coagulation level of 30 W, an oxygen flow of 2 liters/minute, and a linear distance of 5 cm from the oxygen source. The properly placed nasal cannula did not ignite at any combination of oxygen flow, coagulation current level, or distance from the oxygen source. Facial cutaneous surgery in patients provided supplemental oxygen should be practiced with caution when an electrosurgical unit is used for coagulation. The oxygen delivery systems adapted for use are hazardous and should not be used until their safety has been demonstrated.

  9. Ultrasound-mediated oxygen delivery from chitosan nanobubbles.

    PubMed

    Cavalli, Roberta; Bisazza, Agnese; Rolfo, Alessandro; Balbis, Sonia; Madonnaripa, Daniele; Caniggia, Isabella; Guiot, Caterina

    2009-08-13

    Ultrasound (US) energy combined with gas-filled microbubbles has been used for several years in medical imaging. This study investigated the ability of oxygen-loaded chitosan bubbles to exchange oxygen in the presence or in the absence of US. Oxygen delivery is enhanced by sonication and both frequency and time duration of US affected the exchange kinetics.

  10. Solar-powered oxygen delivery: proof of concept.

    PubMed

    Turnbull, H; Conroy, A; Opoka, R O; Namasopo, S; Kain, K C; Hawkes, M

    2016-05-01

    A resource-limited paediatric hospital in Uganda. Pneumonia is a leading cause of child mortality worldwide. Access to life-saving oxygen therapy is limited in many areas. We designed and implemented a solar-powered oxygen delivery system for the treatment of paediatric pneumonia. Proof-of-concept pilot study. A solar-powered oxygen delivery system was designed and piloted in a cohort of children with hypoxaemic illness. The system consisted of 25 × 80 W photovoltaic solar panels (daily output 7.5 kWh [range 3.8-9.7kWh]), 8 × 220 Ah batteries and a 300 W oxygen concentrator (output up to 5 l/min oxygen at 88% [±2%] purity). A series of 28 patients with hypoxaemia were treated with solar-powered oxygen. Immediate improvement in peripheral blood oxygen saturation was documented (median change +12% [range 5-15%], P < 0.0001). Tachypnoea, tachycardia and composite illness severity score improved over the first 24 h of hospitalisation (P < 0.01 for all comparisons). The case fatality rate was 6/28 (21%). The median recovery times to sit, eat, wean oxygen and hospital discharge were respectively 7.5 h, 9.8 h, 44 h and 4 days. Solar energy can be used to concentrate oxygen from ambient air and oxygenate children with respiratory distress and hypoxaemia in a resource-limited setting.

  11. Topical oxygen therapy & micro/nanobubbles: a new modality for tissue oxygen delivery.

    PubMed

    Sayadi, Lohrasb R; Banyard, Derek A; Ziegler, Mary E; Obagi, Zaidal; Prussak, Jordyne; Klopfer, Michael J; Evans, Gregory Rd; Widgerow, Alan D

    2018-06-01

    Up to 15 billion dollars of US health care expenditure each year is consumed by treatment of poorly healing wounds whose etiologies are often associated with aberrancies in tissue oxygenation. To address this issue, several modes of tissue oxygen delivery systems exist, including Hyperbaric Oxygen Therapy (HBOT) and Topical Oxygen Therapy (TOT), but their efficacies have yet to be fully substantiated. Micro/nanobubbles (MNBs), which range anywhere from 100 μm to <1 μm in diameter and are relatively stable for hours, offer a new mode of oxygen delivery to wounds. The aim of this article is to systematically review literature examining the use of TOT for wound healing and use of MNBs for tissue oxygenation using the MEDLINE database. The search yielded 87 articles (12 MNB articles and 75 TOT articles), of which 52 met the inclusion criteria for this literature review (12 MNB articles and 40 TOT articles). Additionally, we present an analysis on the efficacy of our MNB generating technology and propose its use as a wound healing agent. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  12. Oxygen concentrators for the delivery of supplemental oxygen in remote high-altitude areas.

    PubMed

    Litch, J A; Bishop, R A

    2000-01-01

    Oxygen concentrators are a relatively new technology for the delivery of supplemental oxygen. Readily available for domicile use in modern countries, these machines have proved reliable. The application of oxygen concentrators for the supply of medical oxygen in remote high-altitude settings has important cost-saving and supply implications. In our experience at a remote hospital at 3,900 m in the Nepal Himalayas, oxygen concentrators constitute an effective and affordable means to supply medical oxygen. Using an air compressor and 2 zeolite chambers, the machine traps nitrogen from room air compressed to 4 atm, thus concentrating oxygen in the expressed gas. At delivery flow rates of 2 to 5 liters per minute, oxygen concentrations greater than 80% can be maintained. An electric power requirement of less than 400 W can be provided from a variety of sources, including a small gasoline generator, a solar or wind power system with battery store, or a domestic or commercial power source. At our facility, a cost savings of 75% for supplemental oxygen was found in favor of the oxygen concentrator over cylinders (0.17 US cents per liter vs 0.79 US cents per liter).

  13. Myocardial oxygen delivery after experimental hemorrhagic shock.

    PubMed Central

    Archie, J P; Mertz, W R

    1978-01-01

    The two components of myocardial oxygen delivery, coronary blood flow to capillaries and diffusion from capillaries to mitochondria, were studied in six dogs, (1) prior to shock, (2) after three hours of hemorrhage shock at a mean systemic arterial pressure of 40 torr, (3) after reinfusion of shed blood, and (4) during the irreversible late posttransfusion stage. There was a maldistribution of left ventricular coronary flow during late shock consistent with subendocardial ischemia. Cardiac performance was significantly impaired after resuscitation and all dogs became irreversible. Total and regional left ventricular coronary blood flow and myocardial oxygen delivery to capillaries were significantly greater than preshock values in (3) but not different from preshock values in (4). However, the myocardial oxygen diffusion area to distance ratio was significantly lower than preshock values in (3), and slightly lower in (4). These data suggest that myocardial oxygen diffusion may be impaired in the early post transfusion period, (3). Accordingly, the probable etiology of left ventricular dysfunction and possibly irreversibility after resuscitation from hemorrhagic shock is subendocardial ischemia during shock with either post-resuscitation impairment of myocardial oxygen diffusion, or in cellular oxygen utilization, or both. PMID:629622

  14. Does cerebral oxygen delivery limit incremental exercise performance?

    PubMed Central

    Olin, J. Tod; Dimmen, Andrew C.; Polaner, David M.; Kayser, Bengt; Roach, Robert C.

    2011-01-01

    Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco2 (PetCO2) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (Wpeak). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which PetCO2 was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower PetCO2 (40 Torr) from ∼75 to 100% Wpeak to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping PetCO2 at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping PetCO2 at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased Wpeak (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited Wpeak (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO2-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis. PMID:21921244

  15. Oxygen Delivery from Hyperbarically Loaded Microtanks Extends Cell Viability in Anoxic Environments

    PubMed Central

    Cook, Colin A.; Hahn, Kathryn C.; Morrissette-McAlmon, Justin B.F.; Grayson, Warren L.

    2016-01-01

    Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo. PMID:25818444

  16. Low Oxygen Delivery as a Predictor of Acute Kidney Injury during Cardiopulmonary Bypass.

    PubMed

    Newland, Richard F; Baker, Robert A

    2017-12-01

    Low indexed oxygen delivery (DO 2 i) during cardiopulmonary bypass (CPB) has been associated with an increase in the likelihood of acute kidney injury (AKI), with critical thresholds for oxygen delivery reported to be 260-270 mL/min/m 2 . This study aims to explore whether a relationship exists for oxygen delivery during CPB, in which the integral of amount and time below a critical threshold, is associated with the incidence of postoperative AKI. The area under the curve (AUC) with DO 2 i during CPB above or below 270 mL/min/m 2 was calculated as a metric of oxygen delivery in 210 patients undergoing CPB. To determine the influence of low oxygen delivery on AKI, a multivariate logistic regression model was developed including AUC < 0, Euroscore II to provide preoperative risk factor adjustment, and incidence of red blood cell transfusion to adjust for the influence of transfusion. Having an AUC < 0 for an oxygen delivery threshold of 270 mL/min/m 2 during CPB was an independent predictor of AKI, after adjustment for Euroscore II and transfusion [OR 2.74, CI {1.01-7.41}, p = .047]. These results support that a relationship exists for oxygen delivery during CPB, in which the integral of amount and time below a critical threshold is associated with the incidence of postoperative AKI.

  17. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury.

    PubMed

    Rosenthal, Guy; Hemphill, J Claude; Sorani, Marco; Martin, Christine; Morabito, Diane; Obrist, Walter D; Manley, Geoffrey T

    2008-06-01

    Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. Prospective observational study. Level I trauma center. Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. None. P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.

  18. Rectal cancer delivery of radiotherapy in adequate time and with adequate dose is influenced by treatment center, treatment schedule, and gender and is prognostic parameter for local control: Results of study CAO/ARO/AIO-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fietkau, Rainer; Roedel, Claus; Hohenberger, Werner

    2007-03-15

    Purpose: The impact of the delivery of radiotherapy (RT) on treatment results in rectal cancer patients is unknown. Methods and Materials: The data from 788 patients with rectal cancer treated within the German CAO/AIO/ARO-94 phase III trial were analyzed concerning the impact of the delivery of RT (adequate RT: minimal radiation RT dose delivered, 4300 cGy for neoadjuvant RT or 4700 cGy for adjuvant RT; completion of RT in <44 days for neoadjuvant RT or <49 days for adjuvant RT) in different centers on the locoregional recurrence rate (LRR) and disease-free survival (DFS) at 5 years. The LRR, DFS, andmore » delivery of RT were analyzed as endpoints in multivariate analysis. Results: A significant difference was found between the centers and the delivery of RT. The overall delivery of RT was a prognostic factor for the LRR (no RT, 29.6% {+-} 7.8%; inadequate RT, 21.2% {+-} 5.6%; adequate RT, 6.8% {+-} 1.4%; p = 0.0001) and DFS (no RT, 55.1% {+-} 9.1%; inadequate RT, 57.4% {+-} 6.3%; adequate RT, 69.1% {+-} 2.3%; p = 0.02). Postoperatively, delivery of RT was a prognostic factor for LRR on multivariate analysis (together with pathologic stage) but not for DFS (independent parameters, pathologic stage and age). Preoperatively, on multivariate analysis, pathologic stage, but not delivery of RT, was an independent prognostic parameter for LRR and DFS (together with adequate chemotherapy). On multivariate analysis, the treatment center, treatment schedule (neoadjuvant vs. adjuvant RT), and gender were prognostic parameters for adequate RT. Conclusion: Delivery of RT should be regarded as a prognostic factor for LRR in rectal cancer and is influenced by the treatment center, treatment schedule, and patient gender.« less

  19. A Micro-delivery Approach for Studying Microvascular Responses to Localized Oxygen Delivery

    PubMed Central

    Ghonaim, Nour W.; Lau, Leo W. M.; Goldman, Daniel; Ellis, Christopher G.; Yang, Jun

    2011-01-01

    In vivo video microscopy has been used to study blood flow regulation as a function of varying oxygen concentration in microcirculatory networks. However, previous studies have measured the collective response of stimulating large areas of the microvascular network at the tissue surface. Objective We aim to limit the area being stimulated by controlling oxygen availability to highly localized regions of the microvascular bed within intact muscle. Design and Method Gas of varying O2 levels was delivered to specific locations on the surface of the Extensor Digitorum Longus muscle of rat through a set of micro-outlets (100 μm diameter) patterned in ultrathin glass using state-of-the-art microfabrication techniques. O2 levels were oscillated and digitized video sequences were processed for changes in capillary hemodynamics and erythrocyte O2 saturation. Results and Conclusions Oxygen saturations in capillaries positioned directly above the micro-outlets were closely associated with the controlled local O2 oscillations. Radial diffusion from the micro-outlet is limited to ~75 μm from the center as predicted by computational modelling and as measured in vivo. These results delineate a key step in the design of a novel micro-delivery device for controlled oxygen delivery to the microvasculature to understand fundamental mechanisms of microvascular regulation of O2 supply. PMID:21914035

  20. Perioperative oxygen supplementation and surgical site infection after cesarean delivery: a randomized trial.

    PubMed

    Duggal, Neena; Poddatoori, Vineela; Poddatorri, Vineela; Noroozkhani, Sara; Siddik-Ahmad, R Iram; Caughey, Aaron B

    2013-07-01

    To evaluate whether supplemental perioperative oxygen decreases surgical site wound infections or endometritis. This was a prospective, randomized trial. Patients who were to undergo cesarean delivery were recruited and randomly allocated to either 30% or 80% oxygen during the cesarean delivery and for 1 hour after surgery. The obstetricians and patients were blinded to the concentration of oxygen used. Patients were evaluated for wound infection or endometritis during their hospital stay and by 6 weeks postpartum. The primary end point was a composite of either surgical site infection or endometritis. Eight hundred thirty-one patients were recruited. Of these, 415 participants received 30% oxygen perioperatively and 416 received 80% oxygen. The groups were well matched for age, race, parity, diabetes, number of previous cesarean deliveries, and scheduled compared with unscheduled cesarean deliveries. An intention-to-treat analysis was used. There was no difference in the primary composite outcome (8.2% in women who received 30% oxygen compared with 8.2% in women who received 80% oxygen, P=.89), no difference in surgical site infection in the two groups (5.5% compared with 5.8%, P=.98), and no significant difference in endometritis in the two groups (2.7% compared with 2.4%, P=.66), respectively. Women who received 80% supplemental oxygen perioperatively did not have a lower rate of a surgical site infection or endometritis as compared with women who received 30% supplemental oxygen concentration. ClinicalTrials.gov, www.clincaltrials.gov, NCT00876005. I.

  1. Benefits of 21% Oxygen Compared with 100% Oxygen for Delivery of Isoflurane to Mice (Mus musculus) and Rats (Rattus norvegicus)

    PubMed Central

    Wilding, Laura A; Hampel, Joe A; Khoury, Basma M; Kang, Stacey; Machado‑Aranda, David; Raghavendran, Krishnan; Nemzek, Jean A

    2017-01-01

    At research institutions, isoflurane delivered by precision vaporizer to a face mask is the standard for rodent surgery and for procedures with durations that exceed a few minutes. Pure oxygen is often used as the carrier gas for isoflurane anesthesia, despite documented complications from long-term 100% oxygen use in humans and known occupational safety risks. We therefore examined the effect of anesthetic delivery gas on physiologic variables in mice and rats. Rodents were anesthetized for 60 min with isoflurane delivered in either 21% or 100% oxygen by means of a nose cone. We noted no difference between carrier gasses in physiologic variables in mice, including body temperature, respiratory rate, mean arterial pressure, surgical recovery time, pH, or PaCO2.However, blood gas analysis revealed evidence of a ventilation–perfusion mismatch in the 100% oxygen group. Pressure–volume hysteresis and histomorphometric analyses confirmed the presence of increased atelectasis in mice that received 100% oxygen. Unlike mice, rats that received isoflurane in 100% oxygen had acute respiratory acidosis and elevated mean arterial pressure, but atelectasis was similar between carrier gasses. Our data suggest that both 100% and 21% oxygen are acceptable for the delivery of isoflurane to mice. However, mice anesthetized for studies focused on lung physiology or architecture would benefit from the delivery of isoflurane in 21% oxygen to reduce absorption atelectasis and the potential associated downstream inflammatory effects. For rats, delivery of isoflurane in 21% and 100% oxygen both caused perturbations in physiologic variables, and choosing a carrier gas is not straightforward. PMID:28315643

  2. Pulsed Dose Delivery of Oxygen in Mechanically Ventilated Pigs with Acute Lung Injury

    DTIC Science & Technology

    2013-03-01

    collapse or arrhythmia were encountered after administration of oleic acid, chest compressions, electrical defibrillation , and epinephrine (0.1-1 mg/kg...endotracheal tube to continuously measure the oxygen content of the gas in the circuit. We designed the study as a crossover trial, so each animal served as... designed to prove that a pulsed dose delivery system would be a better method of oxygen delivery, it is interesting to note that pulsed dose delivery did

  3. Cerebral oxygen delivery is reduced in newborns with congenital heart disease.

    PubMed

    Lim, Jessie Mei; Kingdom, Theodore; Saini, Brahmdeep; Chau, Vann; Post, Martin; Blaser, Susan; Macgowan, Christopher; Miller, Steven P; Seed, Mike

    2016-10-01

    To investigate preoperative cerebral hemodynamics in newborns with congenital heart disease. We hypothesized that cerebral blood flow and oxygen delivery would be decreased in newborns with congenital heart disease compared with controls. Using a "feed-and-sleep" approach to performing neonatal magnetic resonance imaging, we measured cerebral blood flow by using a slice prescription perpendicular to the right and left internal carotid arteries and basilar artery at the level of the clivus. We calculated brain volume by segmenting a 3-dimensional steady-state free procession acquisition of the whole brain, allowing quantification of cerebral blood flow indexed to brain volume. Cerebral oxygen delivery was calculated as the product of cerebral blood flow and preductal systemic arterial oxygen content obtained via a combination of conventional pulse oximetry and laboratory analysis of venous blood samples for hemoglobin concentration. A complete set of measurements were obtained in 32 newborns with heart disease and 31 controls. There was no difference in gestational age between the heart disease and control groups. There was no difference in cerebral blood flow compared with controls (103.5 ± 34.0 vs 119.7 ± 40.4 mL/min), whereas cerebral oxygen delivery was significantly lower in the congenital heart disease subjects (1881 ± 625.7 vs 2712 ± 915.7 mLO2/min). Ten newborns with congenital heart disease had diffuse excessive high signal intensity in their white matter and 2 had white matter injury whereas another 5 had both. Newborns with unrepaired cyanotic congenital heart disease have decreased cerebral oxygen delivery due to arterial desaturation. If brain growth and development are adversely affected through oxygen conformance, our findings could have clinical implications in terms of timing of surgical repair. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  4. Mechanisms That Modulate Peripheral Oxygen Delivery during Exercise in Heart Failure.

    PubMed

    Kisaka, Tomohiko; Stringer, William W; Koike, Akira; Agostoni, Piergiuseppe; Wasserman, Karlman

    2017-07-01

    Oxygen uptake ([Formula: see text]o 2 ) measured at the mouth, which is equal to the cardiac output (CO) times the arterial-venous oxygen content difference [C(a-v)O 2 ], increases more than 10- to 20-fold in normal subjects during exercise. To achieve this substantial increase in oxygen uptake [[Formula: see text]o 2  = CO × C(a-v)O 2 ] both CO and the arterial-venous difference must simultaneously increase. Although this occurs in normal subjects, patients with heart failure cannot achieve significant increases in cardiac output and must rely primarily on changes in the arterial-venous difference to increase [Formula: see text]o 2 during exercise. Inadequate oxygen delivery to the tissue during exercise in heart failure results in tissue anaerobiosis, lactic acid accumulation, and reduction in exercise tolerance. H + is an important regulatory and feedback mechanism to facilitate additional oxygen delivery to the tissue (Bohr effect) and further aerobic production of ATP when tissue anaerobic metabolism increases the production of lactate (anaerobic threshold). This H + production in the muscle capillary promotes the continued unloading of oxygen (oxyhemoglobin desaturation) while maintaining the muscle capillary Po 2 (Fick principle) at a sufficient level to facilitate aerobic metabolism and overcome the diffusion barriers from capillary to mitochondria ("critical capillary Po 2 ," 15-20 mm Hg). This mechanism is especially important during exercise in heart failure where cardiac output increase is severely constrained. Several compensatory mechanisms facilitate peripheral oxygen delivery during exercise in both normal persons and patients with heart failure.

  5. Theranostic Oxygen Delivery Using Ultrasound and Microbubbles

    PubMed Central

    Kwan, James J.; Kaya, Mehmet; Borden, Mark A.; Dayton, Paul A.

    2012-01-01

    Means to overcome tumor hypoxia have been the subject of clinical investigations since the 1960's; however these studies have yet to find a treatment which is widely accepted. It has been known for nearly a century that hypoxic cells are more resistant to radiotherapy than aerobic cells, and tumor hypoxia is a major factor leading to the resistance of tumors to radiation treatment as well as several cytotoxic agents. In this manuscript, the application of ultrasound combined with oxygen-carrier microbubbles is demonstrated as a method to locally increase dissolved oxygen. Microbubbles can also be imaged by ultrasound, thus providing the opportunity for image-guided oxygen delivery. Simulations of gas diffusion and microbubble gas exchange show that small amounts (down to 5 vol%) of a low-solubility osmotic gas can substantially increase microbubble persistence and therefore production rates and stability of oxygen-carrier microbubbles. Simulations also indicate that the lipid shell can be engineered with long-chain lipids to increase oxygen payload during in vivo transit. Experimental results demonstrate that the application of ultrasound to destroy the microbubbles significantly enhances the local oxygen release. We propose this technology as an application for ultrasound image-guided release of oxygen directly to hypoxic tissue, such as tumor sites to enhance radiotherapy. PMID:23382774

  6. Enhancement of C2C12 differentiation by perfluorocarbon-mediated oxygen delivery.

    PubMed

    Fujita, Hideaki; Shimizu, Kazunori; Morioka, Yuki; Nagamori, Eiji

    2010-09-01

    We have studied the effect of enhanced oxygen delivery by perfluorocarbons on the differentiation of C2C12 cells. The extent of differentiation was assessed by means of phase contrast/fluorescence microscopy, active tension measurement and the glucose consumption/lactate production rates. We found that enhanced oxygen delivery is suitable for full differentiation of C2C12 cells. Copyright 2010 The Society for Biotechnology, Japan. All rights reserved.

  7. Leisure Service Delivery Systems: Are They Adequate

    Treesearch

    Rene Fukuhara Dahl

    1992-01-01

    This presentation explores a model of service delivery ranging from direct service provision to advocacy and reports findings on the delivery mode most prevalent in park and recreation departments that serve Asian groups in their community. The implications of the role of the professional, the range of service delivery, and the manner in which ethnic groups are...

  8. Intravenous oxygen: a novel method of oxygen delivery in hypoxemic respiratory failure?

    PubMed

    Gehlbach, Jonathan A; Rehder, Kyle J; Gentile, Michael A; Turner, David A; Grady, Daniel J; Cheifetz, Ira M

    2017-01-01

    Hypoxemic respiratory failure is a common problem in critical care. Current management strategies, including mechanical ventilation and extracorporeal membranous oxygenation, can be efficacious but these therapies put patients at risk for toxicities associated with invasive forms of support. Areas covered: In this manuscript, we discuss intravenous oxygen (IVO 2 ), a novel method to improve oxygen delivery that involves intravenous administration of a physiologic solution containing dissolved oxygen at hyperbaric concentrations. After a brief review of the physiology behind supersaturated fluids, we summarize the current evidence surrounding IVO 2 . Expert commentary: Although not yet at the stage of clinical testing in the United States and Europe, IVO 2 has been used safely in Asia. Furthermore, preliminary laboratory data have been encouraging, suggesting that IVO 2 may play a role in the management of patients with hypoxemic respiratory failure in years to come. However, significantly more work needs to be done, including definitive evidence that such a therapy is safe, before it can be included in an intensivist's arsenal for hypoxemic respiratory failure.

  9. HYDRAULIC FRACTURING TO IMPROVE NUTRIENT AND OXYGEN DELIVERY FOR IN SITU BIORECLAMATION

    EPA Science Inventory

    The in situ delivery of nutrients and oxygen in soil is a serious problem in implementing in situ biodegradation. Current technology requires ideal site conditions to provide the remediating organisms with the nutrients and oxygen required for their metabolism, but...

  10. The nursing perspective on monitoring hemodynamics and oxygen transport.

    PubMed

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  11. Does oxygen delivery explain interindividual variation in forearm critical impulse?

    PubMed

    Kellawan, J Mikhail; Bentley, Robert F; Bravo, Michael F; Moynes, Jackie S; Tschakovsky, Michael E

    2014-11-01

    Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction-2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP(-1)) were calculated. There was a wide range in O2 delivery (59.98-121.15 O2 mL·min(-1)) and critical impulse (381.5-584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r(2) = 0.85, P < 0.01). Both vasodilation (r(2) = 0.64, P < 0.001) and the exercise pressor response (r(2) = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Does oxygen delivery explain interindividual variation in forearm critical impulse?

    PubMed Central

    Kellawan, J. Mikhail; Bentley, Robert F.; Bravo, Michael F.; Moynes, Jackie S.; Tschakovsky, Michael E.

    2014-01-01

    Abstract Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction‐2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP−1) were calculated. There was a wide range in O2 delivery (59.98–121.15 O2 mL·min−1) and critical impulse (381.5–584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r2 = 0.85, P < 0.01). Both vasodilation (r2 = 0.64, P < 0.001) and the exercise pressor response (r2 = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. PMID:25413323

  13. Optical fiber-mediated photosynthesis for enhanced subsurface oxygen delivery.

    PubMed

    Lanzarini-Lopes, Mariana; Delgado, Anca G; Guo, Yuanming; Dahlen, Paul; Westerhoff, Paul

    2018-03-01

    Remediation of polluted groundwater often requires oxygen delivery into subsurface to sustain aerobic bacteria. Air sparging or injection of oxygen containing solutions (e.g., hydrogen peroxide) into the subsurface are common. In this study visible light was delivered into the subsurface using radially emitting optical fibers. Phototrophic organisms grew near the optical fiber in a saturated sand column. When applying light in on-off cycles, dissolved oxygen (DO) varied from super saturation levels of >15 mg DO/L in presence of light to under-saturation (<5 mg DO/L) in absence of light. Non-photosynthetic bacteria dominated at longer radial distances from the fiber, presumably supported by soluble microbial products produced by the photosynthetic microorganisms. The dissolved oxygen variations alter redox condition changes in response to light demonstrate the potential to biologically deliver oxygen into the subsurface and support a diverse microbial community. The ability to deliver oxygen and modulate redox conditions on diurnal cycles using solar light may provide a sustainable, long term strategy for increasing dissolved oxygen levels in subsurface environments and maintaining diverse biological communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    been established, linking post- traumatic ischemia to axonal dysfunction.8 Decreased oxygen level in severe traumatic injuries appears to be implicated...rodent weight drop traumatic spinal cord injury model; ( 2 ) determine if enhanced oxygen delivery in spinal cord injury spares cellular elements, white...shown that ischemia /hypoxia play crucial role in the devastating effects of the secondary injury following SCI which translates into worse neurological

  15. Increased capillaries in mitochondrial myopathy: implications for the regulation of oxygen delivery.

    PubMed

    Taivassalo, Tanja; Ayyad, Karen; Haller, Ronald G

    2012-01-01

    Human skeletal muscle respiratory chain defects restrict the ability of working muscle to extract oxygen from blood, and result in a hyperkinetic circulation during exercise in which oxygen delivery is excessive relative to oxygen uptake and oxygen levels within contracting muscle are abnormally high. To investigate the role of the muscle microcirculation in this anomalous circulatory response and possible implications for the regulation of muscle angiogenesis, we assessed muscle oxidative capacity during cycle exercise and determined capillary levels and distribution and vascular endothelial growth factor expression in quadriceps muscle biopsies in patients with mitochondrial myopathy attributable to heteroplasmic mitochondrial DNA mutations. We found that in patients with mitochondrial myopathy, muscle capillary levels were twice that of sedentary healthy subjects (3.0 ± 0.9% compared with 1.4 ± 0.3%, P < 0.001) despite the fact that oxygen utilization during peak cycle exercise was half that of control subjects (11.1 ± 4.0 ml/kg/min compared with 20.7 ± 7.9 ml/kg/min, P < 0.01); that capillary area was greatest in patients with the most severe muscle oxidative defects and was more than two times higher around muscle fibre segments with defective (i.e. cytochrome oxidase negative/succinic dehydrogenase-positive or 'ragged-red' fibres) compared with more preserved respiratory chain function; and that vascular endothelial growth factor expression paralleled capillary distribution. The increased muscle capillary levels in patients correlated directly (r(2) = 0.68, P < 0.05) with the severity of the mismatch between systemic oxygen delivery (cardiac output) and oxygen utilization during cycle exercise. Our results suggest that capillary growth is increased as a result of impaired muscle oxidative phosphorylation in mitochondrial myopathy, thus promoting increased blood flow to respiration-incompetent muscle fibres and a

  16. Balancing the Risks and Benefits of Oxygen Therapy in Critically III Adults

    PubMed Central

    Mutlu, Gökhan M.

    2013-01-01

    Oxygen therapy is an integral part of the treatment of critically ill patients. Maintenance of adequate oxygen delivery to vital organs often requires the administration of supplemental oxygen, sometimes at high concentrations. Although oxygen therapy is lifesaving, it may be associated with deleterious effects when administered for prolonged periods at high concentrations. Here, we review the recent advances in our understanding of the molecular responses to hypoxia and high levels of oxygen and review the current guidelines for oxygen therapy in critically ill patients. PMID:23546490

  17. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    PubMed Central

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  18. Oxygen delivery during cardiopulmonary bypass (and renal outcome) using two systems of extracorporeal circulation: a retrospective review.

    PubMed

    Bennett, Mark J; Rajakaruna, Cha; Bazerbashi, Samer; Webb, Gerry; Gomez-Cano, Mayam; Lloyd, Clinton

    2013-06-01

    To investigate the combined influence of blood flow and haemodilution with either a miniaturized (Mini-CPB) or a conventional cardiopulmonary bypass (C-CPB) circuit on average oxygen delivery during bypass. The influence of this on clinical outcome, particularly renal dysfunction after routine coronary artery bypass surgery (CABG), was measured. Retrospective analysis in two groups of 160 patients based on the surgeon's preference for bypass circuit. We compared consecutive patients undergoing isolated CABG surgery by two surgeons using Mini-CPB with a matched cohort of patients, from the same period, undergoing isolated CABG surgery by four other surgeons using a C-CPB. No trial-related intervention occurred. Data on bypass circuit parameters and clinical outcomes were acquired from routinely collected data sources. Average cardiopulmonary bypass pump flow was significantly lower with Mini-CPB compared with C-CPB. Mini-CPB resulted in significantly less haemodilution. The resultant calculated average oxygen delivery provided by the two systems was the same. Percentage change in plasma creatinine was significantly and inversely related to the oxygen delivery during CPB. There was no difference in percentage change in plasma creatinine between groups. The risk of having Acute Kidney Injury Network (AKIN) score ≥ 1 increased 1% for every 1 ml min(-1) m(-2) decrease in oxygen delivery (P = 0.0001, OR 0.990, 95% CI 0.984-0.995). Despite aiming for the same target pump flow, periodic limitations of venous return to the pump resulted in a significant reduction in average flow delivered to the patient by Mini-CPB. Less haemodilution compensated for this reduction, so that the average oxygen delivery was the same. The association between oxygen delivery and postoperative change in plasma creatinine was evident in both groups. Further work to understand whether there is a particular cohort of patients who benefit (or are put at risk) by one method of CPB vs the other is

  19. Numerical simulation of oxygen delivery to muscle tissue in the presence of hemoglobin-based oxygen carriers.

    PubMed

    Patton, Jaqunda N; Palmer, Andre F

    2006-01-01

    This work represents a culmination of research on oxygen transport to muscle tissue, which takes into account oxygen transport due to convection, diffusion, and the kinetics of simultaneous reactions between oxygen and hemoglobin and myoglobin. The effect of adding hemoglobin-based oxygen carriers (HBOCs) to the plasma layer of blood in a single capillary surrounded by muscle tissue based on the geometry of the Krogh tissue cylinder is examined for a range of HBOC oxygen affinity, HBOC concentration, capillary inlet oxygen tension (pO(2)), and hematocrit. The full capillary length of the hamster retractor muscle was modeled under resting (V(max) = 1.57 x 10(-4) mLO(2) mL(-1) s(-1), cell velocity (v(c)) = 0.015 cm/s) and working (V(max) = 1.57 x 10(-3) mLO(2) mL(-1) s(-1), v(c) = 0.075 cm/s) conditions. Two spacings between the red blood cell (RBC) and the capillary wall were examined, corresponding to a capillary with and without an endothelial surface layer. Simulations led to the following conclusions, which lend physiological insight into oxygen transport to muscle tissue in the presence of HBOCs: (1) The reaction kinetics between oxygen and myoglobin in the tissue region, oxygen and HBOCs in the plasma, and oxygen and RBCs in the capillary lumen should not be neglected. (2) Simulation results yielded new insight into possible mechanisms of oxygen transport in the presence of HBOCs. (3) HBOCs may act as a source or sink for oxygen in the capillary and may compete with RBCs for oxygen. (4) HBOCs return oxygen delivery to muscle tissue to normal for varying degrees of hypoxia (inlet capillary pO(2) < 30 mmHg) and anemia (hematocrit < 46%) for the hamster model.

  20. Fuzzy logic assisted control of inspired oxygen in ventilated newborn infants.

    PubMed Central

    Sun, Y.; Kohane, I.; Stark, A. R.

    1994-01-01

    The control of oxygen delivery to mechanically ventilated newborn infants is a time intensive process that must balance adequate tissue oxygenation against possible toxic effects of oxygen exposure. Investigation in computer assisted control of mechanical ventilation is increasing, although very few studies involve newborn infants. We have implemented a fuzzy controller for the adjustment of inspired oxygen concentration (FIO2) in ventilated newborns. The controller utilizes rules produced by neonatologists, and operates in real-time. A clinical trial of this controller is currently taking place in the neonatal intensive care unit (NICU) of Children's Hospital, Boston, MA. PMID:7950026

  1. Acute oxygen therapy: a review of prescribing and delivery practices

    PubMed Central

    Cousins, Joyce L; Wark, Peter AB; McDonald, Vanessa M

    2016-01-01

    Oxygen is a commonly used drug in the clinical setting and like other drugs its use must be considered carefully. This is particularly true for those patients who are at risk of type II respiratory failure in whom the risk of hypercapnia is well established. In recent times, several international bodies have advocated for the prescription of oxygen therapy in an attempt to reduce this risk in vulnerable patient groups. Despite this guidance, published data have demonstrated that there has been poor uptake of these recommendations. Multiple interventions have been tested to improve concordance, and while some of these interventions show promise, the sustainability of these interventions are less convincing. In this review, we summarize data that have been published on the prevalence of oxygen prescription and the accurate and appropriate administration of this drug therapy. We also identify strategies that have shown promise in facilitating changes to oxygen prescription and delivery practice. There is a clear need to investigate the barriers, facilitators, and attitudes of clinicians in relation to the prescription of oxygen therapy in acute care. Interventions based on these findings then need to be designed and tested to facilitate the application of evidence-based guidelines to support sustained changes in practice, and ultimately improve patient care. PMID:27307722

  2. The ideal oxygen/nitrous oxide fresh gas flow sequence with the Anesthesia Delivery Unit machine.

    PubMed

    Hendrickx, Jan F A; Cardinael, Sara; Carette, Rik; Lemmens, Hendrikus J M; De Wolf, Andre M

    2007-06-01

    To determine whether early reduction of oxygen and nitrous oxide fresh gas flow from 6 L/min to 0.7 L/min could be accomplished while maintaining end-expired nitrous oxide concentration > or =50% with an Anesthesia Delivery Unit anesthesia machine. Prospective, randomized clinical study. Large teaching hospital in Belgium. 53 ASA physical status I and II patients requiring general endotracheal anesthesia and controlled mechanical ventilation. Patients were randomly assigned to one of 4 groups depending on the duration of high oxygen/nitrous oxide fresh gas flow (two and 4 L/min, respectively) before lowering total fresh gas flow to 0.7 L/min (0.3 and 0.4 L/min oxygen and nitrous oxide, respectively): one, two, three, or 5 minutes (1-minute group, 2-minute group, 3-minute group, and 5-minute group), with n = 10, 12, 13, and 8, respectively. The course of the end-expired nitrous oxide concentration and bellows volume deficit at end-expiration was compared among the 4 groups during the first 30 minutes. At the end of the high-flow period the end-expired nitrous oxide concentration was 35.6 +/- 6.2%, 48.4 +/- 4.8%, 53.7 +/- 8.7%, and 57.3 +/- 1.6% in the 4 groups, respectively. Thereafter, the end-expired nitrous oxide concentration decreased to a nadir of 36.1 +/- 4.5%, 45.4 +/- 3.8%, 50.9 +/- 6.1%, and 55.4 +/- 2.8% after three, 4, 6, and 8 minutes after flows were lowered in the 1- to 5-minute groups, respectively. A decrease in bellows volume was observed in most patients, but was most pronounced in the 2-minute group. The bellows volume deficit gradually faded within 15 to 20 minutes in all 4 groups. A 3-minute high-flow period (oxygen and nitrous oxide fresh gas flow of 2 and 4 L/min, respectively) suffices to attain and maintain end-expired nitrous oxide concentration > or =50% and ensures an adequate bellows volume during the ensuing low-flow period.

  3. [Delivery room resuscitation with room air and oxygen in newborns. State of art, recommendations].

    PubMed

    Lauterbach, Ryszard; Musialik-Swietlińska, Ewa; Swietliński, Janusz; Pawlik, Dorota; Bober, Klaudiusz

    2008-01-01

    The authors present and discuss the current data, concerning delivery room resuscitation with oxygen and room air in neonates. On the ground of the results obtained from literature and the Polish National Survey on Paediatric and Neonatal Intensive Care, 2007/2008 issue, the authors give the following proposals regarding optimal oxygen treatment: 1. there is a need for optimizing tissue oxygenation in order to prevent injury caused by radical oxygen species; 2. newborn resuscitation should be monitored by measuring the haemoglobin saturation - the values above 90%, found in resuscitated newborn within the first minutes of life may be dangerous and cause tissue injury; 3. starting the resuscitation with oxygen concentration lower than 40% and adjusting it according to the effects of the procedure - the less mature infant the lower oxygen concentration at the beginning of resuscitation; 4. heart rate >100/min and SatO2Hb between 70-80% within the first minutes of life should not be an indication for increasing oxygen concentration.

  4. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to

  5. Children’s Oxygen Administration Strategies Trial (COAST):  A randomised controlled trial of high flow versus oxygen versus control in African children with severe pneumonia

    PubMed Central

    Maitland, Kathryn; Kiguli, Sarah; Opoka, Robert O.; Olupot-Olupot, Peter; Engoru, Charles; Njuguna, Patricia; Bandika, Victor; Mpoya, Ayub; Bush, Andrew; Williams, Thomas N.; Grieve, Richard; Sadique, Zia; Fraser, John; Harrison, David; Rowan, Kathy

    2018-01-01

    Background: In Africa, the clinical syndrome of pneumonia remains the leading cause of morbidity and mortality in children in the post-neonatal period. This represents a significant burden on in-patient services. The targeted use of oxygen and simple, non-invasive methods of respiratory support may be a highly cost-effective means of improving outcome, but the optimal oxygen saturation threshold that results in benefit and the best strategy for delivery are yet to be tested in adequately powered randomised controlled trials. There is, however, an accumulating literature about the harms of oxygen therapy across a range of acute and emergency situations that have stimulated a number of trials investigating permissive hypoxia. Methods: In 4200 African children, aged 2 months to 12 years, presenting to 5 hospitals in East Africa with respiratory distress and hypoxia (oxygen saturation < 92%), the COAST trial will simultaneously evaluate two related interventions (targeted use of oxygen with respect to the optimal oxygen saturation threshold for treatment and mode of delivery) to reduce shorter-term mortality at 48-hours (primary endpoint), and longer-term morbidity and mortality to 28 days in a fractional factorial design, that compares: Liberal oxygenation (recommended care) compared with a strategy that permits hypoxia to SpO 2 > or = 80% (permissive hypoxia); andHigh flow using AIrVO 2 TM compared with low flow delivery (routine care). Discussion: The overarching objective is to address the key research gaps in the therapeutic use of oxygen in resource-limited setting in order to provide a better evidence base for future management guidelines. The trial has been designed to address the poor outcomes of children in sub-Saharan Africa, which are associated with high rates of in-hospital mortality, 9-10% (for those with oxygen saturations of 80-92%) and 26-30% case fatality for those with oxygen saturations <80%. Clinical trial registration: ISRCTN15622505 Trial status

  6. High Oxygen Delivery to Preserve Exercise Capacity in Patients with Idiopathic Pulmonary Fibrosis Treated with Nintedanib. Methodology of the HOPE-IPF Study.

    PubMed

    Ryerson, Christopher J; Camp, Pat G; Eves, Neil D; Schaeffer, Michele; Syed, Nafeez; Dhillon, Satvir; Jensen, Dennis; Maltais, Francois; O'Donnell, Denis E; Raghavan, Natya; Roman, Michael; Stickland, Michael K; Assayag, Deborah; Bourbeau, Jean; Dion, Genevieve; Fell, Charlene D; Hambly, Nathan; Johannson, Kerri A; Kalluri, Meena; Khalil, Nasreen; Kolb, Martin; Manganas, Helene; Morán-Mendoza, Onofre; Provencher, Steve; Ramesh, Warren; Rolf, J Douglass; Wilcox, Pearce G; Guenette, Jordan A

    2016-09-01

    Pulmonary rehabilitation improves dyspnea and exercise capacity in idiopathic pulmonary fibrosis (IPF); however, it is unknown whether breathing high amounts of oxygen during exercise training leads to further benefits. Herein, we describe the design of the High Oxygen Delivery to Preserve Exercise Capacity in IPF Patients Treated with Nintedanib study (the HOPE-IPF study). The primary objective of this study is to determine the physiological and perceptual impact of breathing high levels of oxygen during exercise training in patients with IPF who are receiving antifibrotic therapy. HOPE-IPF is a two-arm double-blind multicenter randomized placebo-controlled trial of 88 patients with IPF treated with nintedanib. Patients will undergo 8 weeks of three times weekly aerobic cycle exercise training, breathing a hyperoxic gas mixture with a constant fraction of 60% inhaled oxygen, or breathing up to 40% oxygen as required to maintain an oxygen saturation level of at least 88%. End points will be assessed at baseline, postintervention (Week 8), and follow-up (Week 26). The primary analysis will compare the between-group baseline with post-training change in endurance time during constant work rate cycle exercise tests. Additional analyses will evaluate the impact of training with high oxygen delivery on 6-minute walk distance, dyspnea, physical activity, and quality of life. The HOPE-IPF study will lead to a comprehensive understanding of IPF exercise physiology, with the potential to change clinical practice by indicating the need for increased delivery of supplemental oxygen during pulmonary rehabilitation in patients with IPF. Clinical trial registered with www.clinicaltrials.gov (NCT02551068).

  7. An ultrasonically powered implantable micro-oxygen generator (IMOG).

    PubMed

    Maleki, Teimour; Cao, Ning; Song, Seung Hyun; Kao, Chinghai; Ko, Song-Chu Arthur; Ziaie, Babak

    2011-11-01

    In this paper, we present an ultrasonically powered implantable micro-oxygen generator (IMOG) that is capable of in situ tumor oxygenation through water electrolysis. Such active mode of oxygen generation is not affected by increased interstitial pressure or abnormal blood vessels that typically limit the systemic delivery of oxygen to hypoxic regions of solid tumors. Wireless ultrasonic powering (2.15 MHz) was employed to increase the penetration depth and eliminate the directional sensitivity associated with magnetic methods. In addition, ultrasonic powering allowed for further reduction in the total size of the implant by eliminating the need for a large area inductor. IMOG has an overall dimension of 1.2 mm × 1.3 mm × 8 mm, small enough to be implanted using a hypodermic needle or a trocar. In vitro and ex vivo experiments showed that IMOG is capable of generating more than 150 μA which, in turn, can create 0.525 μL/min of oxygen through electrolytic disassociation. In vivo experiments in a well-known hypoxic pancreatic tumor models (1 cm (3) in size) also verified adequate in situ tumor oxygenation in less than 10 min.

  8. Cardiopulmonary function and oxygen delivery during total liquid ventilation.

    PubMed

    Tsagogiorgas, Charalambos; Alb, Markus; Herrmann, Peter; Quintel, Michael; Meinhardt, Juergen P

    2011-10-01

    Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Copyright © 2011 Wiley-Liss, Inc.

  9. Retinal Oxygen Delivery and Metabolism in Healthy and Sickle Cell Retinopathy Subjects

    PubMed Central

    Felder, Anthony E.; Tan, Ou; Blair, Norman P.; Huang, David

    2018-01-01

    Purpose Reduction in inner retinal oxygen delivery (DO2) can cause retinal hypoxia and impair inner retinal oxygen metabolism (MO2), leading to vision loss. The purpose of the current study was to establish measurements of DO2 and MO2 in healthy subjects and test the hypothesis that DO2 and MO2 are reduced in sickle cell retinopathy (SCR) subjects. Methods Dual wavelength retinal oximetry and Doppler optical coherence tomography were performed in 12 healthy control and 12 SCR subjects. Images were analyzed to measure retinal arterial and venous oxygen content (O2A and O2V), venous diameter (DV), and total retinal blood flow (TRBF). Retinal arteriovenous oxygen content difference (O2AV), DO2, MO2, and oxygen extraction fraction (OEF) were calculated according to the following equations: O2AV = O2A − O2V; DO2 = TRBF * O2A; MO2 = TRBF * O2AV; OEF = MO2/DO2. Results Retinal DV and TRBF were higher in the SCR group as compared to the control group, whereas, O2A, O2V, and O2AV were lower in SCR group as compared to the control group. DO2, MO2, and OEF were not significantly different between control and SCR groups. MO2 and DO2 were linearly related, such that higher MO2 was associated with higher DO2. There was an inverse relationship between TRBF and OEF, such that lower TRBF was associated with higher OEF. Conclusions Increased blood flow compensated for decreased oxygen content, thereby maintaining DO2, MO2, and OEF at predominately lower stages of SCR. Quantitative assessment of these parameters has the potential to advance knowledge and improve diagnostic evaluation of retinal ischemic conditions. PMID:29677351

  10. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

    PubMed Central

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava

    2015-01-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  11. Near-infrared spectroscopic assessment of oxygen delivery to free flaps on monkeys following vascular occlusions and inhalation of pure oxygen

    NASA Astrophysics Data System (ADS)

    Tian, Fenghua; Ding, Haishu; Cai, Zhigang; Wang, Guangzhi; Zhao, Fuyun

    2002-04-01

    In recent studies, near-infrared spectroscopy (NIRS) has been considered as a potentially ideal noninvasive technique for the postoperative monitoring of plastic surgery. In this study, free flaps were raised on rhesus monkeys' forearms and oxygen delivery to these flaps was monitored following vascular occlusions and inhalation of pure oxygen. Optical fibers were adopted in the probe of the oximeter so that the detection could be performed in reflectance mode. The distance between emitter and detector can be adjusted easily to achieve the best efficacy. Different and repeatable patterns of changes were measured following vascular occlusions (arterial occlusion, venous occlusion and total occlusion) on flaps. It is clear that the near-infrared spectroscopy is capable of postoperatively monitoring vascular problems in flaps. NIRS showed high sensitivity to detect the dynamic changes in flaps induced by inhalation of pure oxygen in this study. The experimental results indicated that it was potential to assess tissue viability utilizing the dynamic changes induced by a noninvasive stimulation. It may be a new assessing method that is rapid, little influenced by other factors and brings less discomfort to patients.

  12. Changes in sevoflurane plasma concentration with delivery through the oxygenator during on-pump cardiac surgery.

    PubMed

    Nitzschke, R; Wilgusch, J; Kersten, J F; Trepte, C J; Haas, S A; Reuter, D A; Goetz, A E; Goepfert, M S

    2013-06-01

    It is unclear what factors affect the uptake of sevoflurane administered through the membrane oxygenator during cardiopulmonary bypass (CPB) and whether this can be monitored via the oxygenator exhaust gas. Stable delivery of sevoflurane was administered to 30 elective cardiac surgery patients at 1.8 vol% (inspiratory) via the anaesthetic circuit and ventilator. During CPB, sevoflurane was administered in the oxygenator fresh gas supply (Compactflo Evolution™; Sorin Group, Milano, Italy). Sevoflurane plasma concentration (SPC) was measured using gas chromatography. Changes were correlated with bispectral index (BIS), patient temperature, haematocrit, plasma albumin concentration, oxygenator fresh gas flow, and the sevoflurane concentration in the oxygenator exhaust at predefined time points. The mean SPC pre-bypass was 54.9 µg ml(-1) [95% confidence interval (CI): 50.6-59.1]. SPC decreased to 43.2 µg ml(-1) (95% CI: 40.3-46.1; P<0.001) after initiation of CPB, and was lower still during rewarming and weaning from bypass, 39.4 µg ml(-1) (95% CI: 36.6-42.3; P<0.001). BIS did not exceed a value of 55. SPCs were higher during hypothermia (P<0.001) and with an increase in oxygenator fresh gas flow (P=0.015), and lower with haemodilution (P=0.027). No correlation was found between SPC and the concentration of sevoflurane in the oxygenator exhaust gas (r=-0.04; 95% CI: -0.18 to 0.09; P=0.53). The uptake of sevoflurane delivered via the membrane oxygenator during CPB seems to be affected by hypothermia, haemodilution, and changes in the oxygenator fresh gas supply flow. Measuring the concentration of sevoflurane in the exhaust from the oxygenator is not useful for monitoring sevoflurane administration during bypass.

  13. Progressively heterogeneous mismatch of regional oxygen delivery to consumption during graded coronary stenosis in pig left ventricle.

    PubMed

    Alders, David J C; Groeneveld, A B Johan; Binsl, Thomas W; van Beek, Johannes H G M

    2015-11-15

    In normal hearts, myocardial perfusion is fairly well matched to regional metabolic demand, although both are distributed heterogeneously. Nonuniform regional metabolic vulnerability during coronary stenosis would help to explain nonuniform necrosis during myocardial infarction. In the present study, we investigated whether metabolism-perfusion correlation diminishes during coronary stenosis, indicating increasing mismatch of regional oxygen supply to demand. Thirty anesthetized male pigs were studied: controls without coronary stenosis (n = 11); group I, left anterior descending (LAD) coronary stenosis leading to coronary perfusion pressure reduction to 70 mmHg (n = 6); group II, stenosis with perfusion pressure of about 35 mmHg (n = 6); and group III, stenosis with perfusion pressure of 45 mmHg combined with adenosine infusion (n = 7). [2-(13)C]- and [1,2-(13)C]acetate infusion was used to calculate regional O2 consumption from glutamate NMR spectra measured for multiple tissue samples of about 100 mg dry mass in the LAD region. Blood flow was measured with microspheres in the same regions. In control hearts without stenosis, regional oxygen extraction did not correlate with basal blood flow. Average myocardial O2 delivery and consumption decreased during coronary stenosis, but vasodilation with adenosine counteracted this. Regional oxygen extraction was on average decreased during stenosis, suggesting adaptation of metabolism to lower oxygen supply after half an hour of ischemia. Whereas regional O2 delivery correlated with O2 consumption in controls, this relation was progressively lost with graded coronary hypotension but partially reestablished by adenosine infusion. Therefore, coronary stenosis leads to heterogeneous metabolic stress indicated by decreasing regional O2 supply to demand matching in myocardium during partial coronary obstruction. Copyright © 2015 the American Physiological Society.

  14. Effects of oxygen inhalation on cardiac output, coronary blood flow and oxygen delivery in healthy individuals, assessed with MRI.

    PubMed

    Bodetoft, Stefan; Carlsson, Marcus; Arheden, Håkan; Ekelund, Ulf

    2011-02-01

    Oxygen (O2) is a cornerstone in the treatment of critically ill patients, and the guidelines prescribe 10-15 l of O2/min even to those who are initially normoxic. Studies using indirect or invasive methods suggest, however, that supplemental O2 may have negative cardiovascular effects. The aim of this study was to test the hypothesis, using noninvasive cardiac magnetic resonance imaging, that inhaled supplemental O2 decreases cardiac output (CO) and coronary blood flow in healthy individuals. Sixteen healthy individuals inhaled O2 at 1, 8 and 15 l/min through a standard reservoir bag mask. A 1.5 T magnetic resonance imaging scanner was used to measure stroke volume, CO and coronary sinus blood flow. Left ventricular (LV) perfusion was calculated as coronary sinus blood flow/LV mass. The O2 response was dose-dependent. At 15 l of O2/min, blood partial pressure of O2 increased from an average 11.7 to 51.0 kPa with no significant changes in blood partial pressure of CO2 or arterial blood pressure. At the same dose, LV perfusion decreased by 23% (P=0.005) and CO decreased by 10% (P=0.003) owing to a decrease in heart rate (by 9%, P<0.002), with no significant changes in stroke volume or LV dimensions. Owing to the decreased CO and LV perfusion, systemic and coronary O2 delivery fell by 4 and 11% at 8 l of O2/min, despite the increased blood oxygen content. Our data indicate that O2 administration decreases CO, LV perfusion and systemic and coronary O2 delivery in healthy individuals. Further research should address the effects of O2 therapy in normoxic patients.

  15. Acute oxygen therapy: an audit of prescribing and delivery practices in a tertiary hospital in Perth, Western Australia.

    PubMed

    Kamran, Anam; Chia, Elisa; Tobin, Claire

    2018-02-01

    Oxygen is a widely used drug in the hospital setting. However, international audits suggest that oxygen administration practices are often not compliant with prescribed standards. This can place patients at risk and cause serious adverse events. To analyse data related to recent practices of oxygen prescription and administration at Royal Perth Hospital (RPH), Western Australia. The results of this audit aim to guide further research on possible interventional studies implementing key solutions. All patients who received care in the Acute Medical Unit at RPH between 1 September and 14 September 2015 were included in this audit. Patients who were given supplemental oxygen during their admission were selected for further review of records. Appropriate medically indicated target oxygen saturations for each patient were judged under consultation with a respiratory specialist. A total of 65 patients received oxygen supplementation within the study period; 36 of these patients (55.4%) had target oxygen saturations prescribed by doctors, and 25% of the prescribed targets were judged to be inappropriate. In total, 49 patients (75.4%) were exposed to a potential risk from oxygen therapy due to prescription error and/or delivery error. A real risk was identified in 19 patients (29.2%) as they received oxygen at levels outside their appropriate medically indicated target range. The current practices of oxygen prescription and administration within RPH are suboptimal. Patients are placed at risk of oxygen toxicity due to deviation from oxygen prescription guidelines. © 2017 Royal Australasian College of Physicians.

  16. UHMS position statement: topical oxygen for chronic wounds.

    PubMed

    Feldmeier, J J; Hopf, H W; Warriner, R A; Fife, C E; Gesell, L B; Bennett, M

    2005-01-01

    A small body of literature has been published reporting the application of topical oxygen for chronic non-healing wounds . Frequently, and erroneously, this form of oxygen administration has been referred to as "topical hyperbaric oxygen therapy" or even more erroneously "hyperbaric oxygen therapy." The advocates of topical oxygen claim several advantages over systemic hyperbaric oxygen including decreased cost, increased safety, decreased complications and putative physiologic effects including decreased free radical formation and more efficient delivery of oxygen to the wound surface. With topical oxygen an airtight chamber or polyethylene bag is sealed around a limb or the trunk by either a constriction/tourniquet device or by tape and high flow (usually 10 liters per minute) oxygen is introduced into the bag and over the wound. Pressures just over 1.0 atmospheres absolute (atm abs) (typically 1.004 to 1.013 atm abs) are recommended because higher pressures could decrease arterial/capillary inflow. The premise for topical oxygen, the diffusion of oxygen into the wound adequate to enhance healing, is attractive (though not proven) and its delivery is certainly less complex and expensive than hyperbaric oxygen. When discussing the physiology of topical oxygen, its proponents frequently reference studies of systemic hyperbaric oxygen suggesting that mechanisms are equally applicable to both topical and systemic high pressure oxygen delivery. In fact, however, the two are very different. To date, mechanisms of action whereby topical oxygen might be effective have not been defined or substantiated. Conversely, cellular toxicities due to extended courses of topical oxygen have been reported, although, again these data are not conclusive, and no mechanism for toxicity has been examined scientifically. Generally, collagen production and fibroblast proliferation are considered evidence of improved healing, and these are both enhanced by hyperbaric oxygen therapy

  17. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    PubMed

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  18. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits.

    PubMed

    Yu, Dao-Yi; Cringle, Stephen J; Su, Erning; Yu, Paula K; Humayun, Mark S; Dorin, Giorgio

    2005-03-01

    To make the first measurements of intraretinal oxygen distribution and consumption after laser photocoagulation of the retina and to compare the efficiency of micropulsed (MP) and continuous wave (CW) laser delivery in achieving an oxygen benefit in the treated area. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth before and after laser treatment in anesthetized, mechanically ventilated, Dutch Belted rabbits (n = 11). Laser lesions were created by using a range of power levels from an 810-nm diode laser coupled with an operating microscope delivery system. MP duty cycles of 5%, 10%, and 15% were compared with CW delivery in each eye. Sufficient power levels of both the CW and MP laser reduced outer retinal oxygen consumption and increased oxygen level within the retina. At these power levels, which correlated with funduscopically visible lesions, there was histologically visible damage to the RPE and photoreceptors. Retinal damage was energy dependent but short-duty-cycle MP delivery was more selective in terms of retinal cell damage, with a wider safety range in comparison with CW delivery. The relationship between laser power level and mode of delivery and the resultant changes in oxygen metabolism and oxygen level in the retina was determined. Only partial destruction of RPE and photoreceptors is necessary, to produce a measurable oxygen benefit in the treated area of retina.

  19. Resuscitation of severe but brief haemorrhagic shock with PFC in rabbits restores skeletal muscle oxygen delivery and does not alter skeletal muscle metabolism.

    PubMed

    Audonnet-Blaise, Sandra; Krafft, Marie-Pierre; Smani, Younes; Mertes, Paul-Michel; Marie, Pierre-Yves; Labrude, Pierre; Longrois, Dan; Menu, Patrick

    2006-07-01

    Studies have demonstrated that perfluorocarbon (PFC) emulsions associated with hyperoxia improved whole body oxygen delivery during resuscitation of acute haemorrhagic shock (HS). Nevertheless the microcirculatory effects of PFC and the potential deleterious effects of hyperoxic reperfusion are still of concern. We investigated (i) the ability of a newly formulated, small sized and highly stable PFC emulsion to increase skeletal muscle oxygen delivery and (ii) the effect of hyperoxic reperfusion on skeletal muscle metabolism after a brief period of ischaemia using an original, microdialysis-based method that allowed simultaneous measurement tissue oxygen pressure (PtiO2) and interstitial lactate and pyruvate. These measurements were carried out in anaesthetised and ventilated (FiO2 = 1) rabbits subjected to acute HS (50% of blood volume withdrawal) and either resuscitated with a PFC emulsion diluted with a 5% albumin solution (16.2 g PFC per kg body weight) (n = 10) or with a modified fluid gelatin solution (Gelofusine) (n = 10). We found no difference between the two groups for the haemodynamic and haematological variables (except for the venous oxygen partial pressure). However, a significant difference was observed in the slope of the regression linear relationship exhibited between the mean arterial pressure (MAP) and the PtiO2, PFC group showing a much steeper slope than Gelofusine group. In addition, PtiO2 values increased linearly with decreasing haematocrit (Hct) values in PFC-resuscitated animals and decreased linearly with decreasing Hct values in Gelofusine-resuscitated animals. There were no differences between the two groups concerning the blood and interstitial lactate/pyruvate ratios suggesting no deleterious effect of hyperoxic resuscitation in skeletal muscle. In conclusion these results suggest that resuscitation of severe, but brief, HS with PFC increased skeletal muscle oxygen delivery without measurable deleterious effects.

  20. PG medical training and accreditation: responsibility of the government for the adequate health service delivery.

    PubMed

    Bhattarai, M D

    2012-09-01

    On one hand there is obvious inadequate health coverage to the rural population and on the other hand the densely populated urban area is facing the triple burden of increasing non-communicable and communicable health problems and the rising health cost. The postgraduate medical training is closely interrelated with the adequate health service delivery and health economics. In relation to the prevailing situation, the modern medical education trend indicates the five vital issues. These are i). Opportunity needs to be given to all MBBS graduates for General Specialist and Sub-Specialist Training inside the country to complete their medical education, ii). Urgent need for review of PG residential training criteria including appropriate bed and teacher criteria as well as entry criteria and eligibility criteria, iii). Involvement of all available units of hospitals fulfilling the requirements of the residential PG training criteria, iv). PG residential trainings involve doing the required work in the hospitals entitling them full pay and continuation of the service without any training fee or tuition fee, and v). Planning of the proportions of General Specialty and Sub-Specialty Training fields, particularly General Practice (GP) including its career and female participation. With increased number of medical graduates, now it seems possible to plan for optimal health coverage to the populations with appropriate postgraduate medical training. The medical professionals and public health workers must make the Government aware of the vital responsibility and the holistic approach required.

  1. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    ]. Combined with a mechanical compressor, a Solid Electrolyte Oxygen Separator (SEOS) should be capable of producing ABO grade oxygen at pressures >2400 psia, on the space station. Feasibility tests using a SEOS integrated with a mechanical compressor identified an unexpected contaminant in the oxygen: water vapour was found in the oxygen product, sometimes at concentrations higher than 40 ppm (the ABO limit for water vapour is 7 ppm). If solid electrolyte membranes are really "infinitely selective" to oxygen as they are reported to be, where did the water come from? If water is getting into the oxygen, what other contaminants might get into the oxygen? Microscopic analyses of wafers, welds, and oxygen delivery tubes were performed in an attempt to find the source of the water vapour contamination. Hot and cold pressure decay tests were performed. Measurements of water vapour as a function of O2 delivery rate, O2 delivery pressure, and process air humidity levels were the most instructive in finding the source of water contamination (Fig 3). Water contamination was directly affected by oxygen delivery rate (doubling the oxygen production rate cut the water level in half). Water was affected by process air humidity levels and delivery pressure in a way that indicates the water was diffusing into the oxygen delivery system.

  2. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  3. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  4. Computer Simulations of the Tumor Vasculature: Applications to Interstitial Fluid Flow, Drug Delivery, and Oxygen Supply.

    PubMed

    Welter, Michael; Rieger, Heiko

    2016-01-01

    Tumor vasculature, the blood vessel network supplying a growing tumor with nutrients such as oxygen or glucose, is in many respects different from the hierarchically organized arterio-venous blood vessel network in normal tissues. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature. Integrative models, based on detailed experimental data and physical laws, implement, in silico, the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. This chapter provides an overview over the current status of computer simulations of vascular remodeling during tumor growth including interstitial fluid flow, drug delivery, and oxygen supply within the tumor. The model predictions are compared with experimental and clinical data and a number of longstanding physiological paradigms about tumor vasculature and intratumoral solute transport are critically scrutinized.

  5. Oxygen delivery using neonatal self-inflating bags without reservoirs.

    PubMed

    Sugiura, Takahiro; Urushibata, Rei; Komatsu, Kenji; Shioda, Tsutomu; Ota, Tatsuki; Sato, Megumi; Okubo, Yumiko; Fukuoka, Tetsuya; Hosono, Shigeharu; Tamura, Masanori

    2017-02-01

    Guidelines recommend avoiding excessive oxygen during neonatal resuscitation. Recent studies have suggested that oxygen titration can be achieved using a self-inflating bag, but data on the effectiveness of resuscitators used in neonatal ventilation are scarce, The aim of this study was therefore to determine the amount of oxygen delivered using several brands of neonatal self-inflating resuscitation bags without reservoirs under different conditions with regard to oxygen flow rate, ventilation rate (VR), peak inspiratory pressure (PIP) range, and test lung compliance. Oxygen concentration was measured under a variety of conditions. Combinations of oxygen flow rate (10, 5.0, 3.0 and 1.0 L/min), VR (40, 60 inflations/min), PIP range (20-25 cmH 2 O, 35-40 cmH 2 O), and test lung compliance (0.6, 1.0, 3.0, and 5.0 mL/cmH 2 O) were examined using six kinds of self-inflating bag. Delivered oxygen concentration varied widely (30.1-96.7%) and had a significant positive correlation with gas flow rate in all of the bags. Delivered oxygen concentration was also negatively correlated with PIP in all of the bags and with VR in some of them. Test lung compliance did not affect delivered oxygen concentration. The use of neonatal resuscitation self-inflating bags without reservoirs resulted in different delivered oxygen concentrations depending on gas flow rate, VR, PIP, and manufacturer, but not on lung compliance. This suggests that targeted oxygen concentrations could be delivered, even in lungs with decreased compliance, during resuscitation. © 2016 Japan Pediatric Society.

  6. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  7. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.

    PubMed

    Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico

    2008-10-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.

  8. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  9. Preparation and characterization of dextran nanobubbles for oxygen delivery.

    PubMed

    Cavalli, R; Bisazza, A; Giustetto, P; Civra, A; Lembo, D; Trotta, G; Guiot, C; Trotta, M

    2009-11-03

    Dextran nanobubbles were prepared with a dextran shell and a perfluoropentan core in which oxygen was stored. To increase the stability polyvinylpirrolidone was also added to the formulation as stabilizing agent. Rhodamine B was used as fluorescent marker to obtain fluorescent nanobubbles. The nanobubble formulations showed sizes of about 500nm, a negative surface charge and a good capacity of loading oxygen, no hemolytic activity or toxic effect on cell lines. The fluorescent labelled nanobubbles could be internalized in Vero cells. Oxygen-filled nanobubbles were able to release oxygen in different hypoxic solutions at different time after their preparation in in vitro experiments. The oxygen release kinetics could be enhanced after nanobubble insonation with ultrasound at 2.5MHz. The oxygen-filled nanobubble formulations might be proposed for therapeutic applications in various diseases.

  10. COPD and air travel: oxygen equipment and preflight titration of supplemental oxygen.

    PubMed

    Akerø, Aina; Edvardsen, Anne; Christensen, Carl C; Owe, Jan O; Ryg, Morten; Skjønsberg, Ole H

    2011-07-01

    Patients with COPD may need supplemental oxygen during air travel to avoid development of severe hypoxemia. The current study evaluated whether the hypoxia-altitude simulation test (HAST), in which patients breathe 15.1% oxygen simulating aircraft conditions, can be used to establish the optimal dose of supplemental oxygen. Also, the various types of oxygen-delivery equipment allowed for air travel were compared. In a randomized crossover trial, 16 patients with COPD were exposed to alveolar hypoxia: in a hypobaric chamber (HC) at 2,438 m (8,000 ft) and with a HAST. During both tests, supplemental oxygen was given by nasal cannula (NC) with (1) continuous flow, (2) an oxygen-conserving device, and (3) a portable oxygen concentrator (POC). PaO(2) kPa (mm Hg) while in the HC and during the HAST with supplemental oxygen at 2 L/min (pulse setting 2) on devices 1 to 3 was (1) 8.6 ± 1.0 (65 ± 8) vs 12.5 ± 2.4 (94 ± 18) (P < .001), (2) 8.6 ± 1.6 (64 ± 12) vs 9.7 ± 1.5 (73 ± 11) (P < .001), and (3) 7.7 ± 0.9 (58 ± 7) vs 8.2 ± 1.1 (62 ± 8) (P= .003), respectively. The HAST may be used to identify patients needing supplemental oxygen during air travel. However, oxygen titration using an NC during a HAST causes accumulation of oxygen within the facemask and underestimates the oxygen dose required. When comparing the various types of oxygen-delivery equipment in an HC at 2,438 m (8,000 ft), compressed gaseous oxygen with continuous flow or with an oxygen-conserving device resulted in the same PaO(2), whereas a POC showed significantly lower PaO(2) values. ClinicalTrials.gov; No.: Identifier: NCT01019538; URL: clinicaltrials.gov.

  11. Peripheral vascular function, oxygen delivery and utilization: the impact of oxidative stress in aging and heart failure with reduced ejection fraction

    PubMed Central

    Wray, D. Walter; Amann, Markus

    2016-01-01

    The aging process appears to be a precursor to many age-related diseases, perhaps the most impactful of which is cardiovascular disease (CVD). Heart disease, a manifestation of CVD, is the leading cause of death in the USA, and heart failure (HF), a syndrome that develops as a consequence of heart disease, now affects almost six million American. Importantly, as this is an age-related disease, this number is likely to grow along with the ever-increasing elderly population. Hallmarks of the aging process and HF patients with a reduced ejection fraction (HFrEF) include exercise intolerance, premature fatigue, and limited oxygen delivery and utilization, perhaps as a consequence of diminished peripheral vascular function. Free radicals and oxidative stress have been implicated in this peripheral vascular dysfunction, as a redox imbalance may directly impact the function of the vascular endothelium. This review aims to bring together studies that have examined the impact of oxidative stress on peripheral vascular function and oxygen delivery and utilization with both healthy aging and HFrEF. PMID:27392715

  12. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    PubMed

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans.

    PubMed

    Ibaraki, Masanobu; Shinohara, Yuki; Nakamura, Kazuhiro; Miura, Shuichi; Kinoshita, Fumiko; Kinoshita, Toshibumi

    2010-07-01

    Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.

  14. Synthesis and evaluation of sensitizer drug photorelease chemistry: Micro-optic method applied to singlet oxygen generation and drug delivery

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam

    This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) from the probe tip at the distal end of the fiber. The aim is to develop a 1st and 2nd generation device for site specific delivery of photosensitizer and singlet oxygen to overcome the challenges involved in systemic administration of the sensitizer. Synthesis and evaluation of drug (pheophorbide-a) delivery applying micro-optic method from native and fluorinated silica probe tip was achieved. The amount of sensitizer photocleavage depends on the loading level of sensitizer onto the probe tips. We also found that photorelease efficiency depends on the nature of the solvents where sensitizer is photocleaved. For example, no photorelease was observed in an aqueous solvent where sensitizer remained adsorbed to the native silica probe-tip. But, 90% photocleavage was obtained in octanol. A significant amount of photosensitizer (formate ester of pyropheophorbide- a) diffused into the liposome when photocleavage study was carried out in liposome. Substantial increase of photorelease was observed in organic solvent when pyropheophorbide-a (PPa) sensitizer was attached to the partially fluorinated porous Vycor glass. We also explored sensitizer photorelease from the fluorinated silica surface at various temperatures and we found that autocatalytic photorelease happened at room temperature and above

  15. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery.

    PubMed

    Li, Juanjuan; Meng, Xuan; Deng, Jian; Lu, Di; Zhang, Xin; Chen, Yanrui; Zhu, Jundong; Fan, Aiping; Ding, Dan; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2018-05-23

    Nanoparticulate antitumor photodynamic therapy (PDT) has been suffering from the limited dose accumulation in tumor. Herein, we report dually hypoxia- and singlet oxygen-responsive polymeric micelles to efficiently utilize the photosensitizer deposited in the disease site and hence facilely improve PDT's antitumor efficacy. Tailored methoxy poly(ethylene glycol)-azobenzene-poly(aspartic acid) copolymer conjugate with imidazole as the side chains was synthesized. The conjugate micelles (189 ± 19 nm) obtained by self-assembly could efficiently load a model photosensitizer, chlorin e6 (Ce6) with a loading of 4.1 ± 0.5% (w/w). The facilitated cellular uptake of micelles was achieved by the triggered azobenzene collapse that provoked poly(ethylene glycol) shedding; rapid Ce6 release was enabled by imidazole oxidation that induced micelle disassembly. In addition, the singlet oxygen-mediated cargo release not only addressed the limited diffusion range and short half-life of singlet oxygen but also decreased the oxygen level, which could in turn enhance internalization and increase the intracellular Ce6 concentration. The hypoxia-induced dePEGylation and singlet oxygen-triggered Ce6 release was demonstrated both in aqueous buffer and in Lewis lung carcinoma (LLC) cells. The cellular uptake study demonstrated that the dually responsive micelles could deliver significantly more Ce6 to the cells, which resulted in a substantially improved cytotoxicity. This concurred well with the superior in vivo antitumor ability of micelles in a LLC tumor-bearing mouse model. This study presented an intriguing nanoplatform to realize interactively triggered photosensitizer delivery and improved antitumor PDT efficacy.

  16. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.

    PubMed

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X

    2013-08-01

    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tubing length for long-term oxygen therapy.

    PubMed

    Aguiar, Carolina; Davidson, Josy; Carvalho, Andréa K; Iamonti, Vinícius C; Cortopassi, Felipe; Nascimento, Oliver A; Jardim, José R

    2015-02-01

    Most patients on long-term oxygen therapy use stationary oxygen delivery systems. It is not uncommon for guidelines to instruct patients to use tubing lengths no longer than 19.68 ft (6 m) when using an oxygen concentrator and 49.21 ft (15 m) when using cylinders. However, these concepts are not based on sufficient evidence. Thus, our objective was to evaluate whether a 98.42-ft (30-m) tubing length affects oxygen flow and FIO2 delivery from 1 cylinder and 2 oxygen concentrators. The 3 oxygen delivery systems were randomly selected, and 1, 3, and 5 L/min flows and FIO2 were measured 5 times at each flow at the proximal and distal outlets of the tubing by a gas-flow analyzer. Paired Student t test was used to analyze the difference between flows and FIO2 at proximal and distal outlets of tubing length. A total of 45 flows were measured between proximal and distal outlets of the 98.42-ft (30-m) tubing. Flows were similar for 1 and 3 L/min, but distal flow was higher than proximal flow at 5 L/min (5.57×5.14 L/min, P<.001). FIO2 was lower at distal than proximal outlet tubing at flows 1, 3, and 5 L/min, but the mean difference between measurements was less than 1%. Tubing length of 98.42 ft (30 m) may be used by patients for home delivery oxygen with flows up to 5 L/min, as there were no important changes in flows or FIO2. Copyright © 2015 by Daedalus Enterprises.

  18. Home oxygen therapy: re-thinking the role of devices.

    PubMed

    Melani, Andrea S; Sestini, Piersante; Rottoli, Paola

    2018-03-01

    A range of devices are available for delivering and monitoring home oxygen therapy (HOT). Guidelines do not give indications for the choice of the delivery device but recommend the use of an ambulatory system in subjects on HOT whilst walking. Areas covered: We provide a clinical overview of HOT and review traditional and newer delivery and monitoring devices for HOT. Despite relevant technology advancements, clinicians, faced with many challenges when they prescribe oxygen therapy, often remain familiar to traditional devices and continuous flow delivery of oxygen. Some self-filling delivery-less devices could increase the users' level of independence with ecological advantage and, perhaps, reduced cost. Some newer portable oxygen concentrators are being available, but more work is needed to understand their performances in different diseases and clinical settings. Pulse oximetry has gained large diffusion worldwide and some models permit long-term monitoring. Some closed-loop portable monitoring devices are also able to adjust oxygen flow automatically in accordance with the different needs of everyday life. This might help to improve adherence and the practice of proper oxygen titration that has often been omitted because difficult to perform and time-consuming. Expert commentary: The prescribing physicians should know the characteristics of newer devices and use technological advancements to improve the practice of HOT.

  19. Comparison of actual oxygen delivery kinetics to those predicted by mathematical modeling following stage 1 palliation just prior to superior cavopulmonary anastomosis.

    PubMed

    Yuki, Koichi; DiNardo, James A

    2015-02-01

    Optimizing systemic oxygen delivery (DO2) and hemodynamics in children with hypoplastic left heart syndrome (HLHS) is a clinical challenge. Mathematical modeling of the HLHS circulation has been used to determine the relationship between oxygen kinetic parameters and DO2 and to determine how DO2 might be optimized. The model demonstrates that neither arterial oxygen saturation (SaO2) nor mixed venous oxygen saturation (SvO2) alone accurately predicts DO2. Oxygen delivery kinetics predicted by previously described mathematical modeling were compared with actual patients' hemodynamic data. We sought to determine which patient derived parameters correlated best with DO2. Patients with HLHS who underwent cardiac catheterization prior to surgery to create a superior cavopulmonary anastomosis from 2007 to 2011 were identified. Hemodynamic data obtained were compared with the data derived from the mathematical model. Correlations between SaO2, SvO2, SaO2-SvO2, SaO2/(SaO2-SvO2), pulmonary-to-systemic blood flow ratio (Qp/Qs), and DO2 were evaluated using both linear and nonlinear analyses, and R(2) was calculated. Patients' data fit most aspects of the mathematical model. DO2 had the best correlation with SaO2/(SaO2-SvO2; R(2) = 0.8755) followed by SaO2 -SvO2 (R(2) = 0.8063), while SaO2 or SvO2 alone did not demonstrate a significant correlation as predicated by the mathematical model (R(2) = 0.09564 and 0.4831, respectively). SaO2/(SaO2 -SvO2) would be useful clinically to track changes in DO2 that occur with changes in patient condition or with interventions. © 2014 John Wiley & Sons Ltd.

  20. The oxygen paradox of neurovascular coupling

    PubMed Central

    Leithner, Christoph; Royl, Georg

    2014-01-01

    The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply. PMID:24149931

  1. Anaemia: can we define haemoglobin thresholds for impaired oxygen homeostasis and suggest new strategies for treatment?

    PubMed

    Hare, Gregory M T; Tsui, Albert K Y; Ozawa, Sherri; Shander, Aryeh

    2013-03-01

    Observational clinical studies in perioperative medicine have defined a progressive increase in mortality that is proportional to both chronic preoperative anaemia and acute interpretative reductions in haemoglobin concentration (Hb). However, this knowledge has not yet helped to define the critical Hb threshold for organ injury and mortality in specific patient populations or in individual patients. Nor has this knowledge enabled us to develop effective treatment strategies for anaemia, as evident from the lack of a demonstrable improvement in survival in patients randomised to higher Hb levels by various treatment strategies including allogeneic red blood cell transfusion, erythropoiesis-stimulating agents (ESAs) and haemoglobin-based oxygen carriers (HBOCs). These findings emphasise the need for a clearer understanding of the mechanism of anaemia-induced mortality. Towards achieving this goal, experimental studies have defined adaptive mechanism by which oxygen homeostasis is maintained during acute anaemia. The mechanisms include: (1) effective sensing of anaemia-induced tissue hypoxia; (2) adaptive cardiovascular responses to maintain adequate tissue oxygen delivery; (3) heterogeneity of organ-specific oxygen delivery to preferentially sustain vital organs which are essential for acute survival (heart and brain); (4) evidence of increased vital organ injury with interruption of cardiovascular responses to anaemia and (5) evidence of activation of adaptive cellular responses to maintain oxygen homeostasis and support survival during acute anaemia. Understanding these mechanisms may allow us to define treatment thresholds and novel treatment strategies for acute anaemia based on biological markers of tissue hypoxia. The overall goal of these approaches is to improve patient outcomes, including event-free perioperative survival. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Topical Oxygen for Chronic Wounds: A PRO/CON Debate

    PubMed Central

    Mutluoglu, Mesut; Cakkalkurt, Aslican; Uzun, Gunalp; Aktas, Samil

    2014-01-01

    The role of oxygen in wound healing is universally accepted and does not require any further evidence; however the controversy as to whether oxygen delivery systems have the potential to improve wound healing remains to be concluded. Topical oxygen treatment (TOT) involves the delivery of 100% oxygen for a mean of 90 min, once a day at an atmospheric pressure slightly above 1 atm abs. The use of TOT gained increasing interest recently. The current manuscript will summarize the pros and cons of TOT in the view of the available literature. PMID:26199891

  3. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth.

    PubMed

    Pichler, Gerhard; Binder, Corinna; Avian, Alexander; Beckenbach, Elisabeth; Schmölzer, Georg M; Urlesberger, Berndt

    2013-12-01

    To define reference ranges for regional cerebral tissue oxygen saturation (crSO2) and regional cerebral fractional tissue oxygen extraction (cFTOE) during the first 15 minutes after birth in neonates requiring no medical support. The crSO2 was measured using near infrared spectroscopy (Invos 5100 cerebral/somatic oximeter monitor; Somanetics Corp, Troy, Michigan) during the first 15 minutes after birth for term and preterm neonates. The near infrared spectroscopy sensor was placed on the left forehead. Peripheral oxygen saturation and heart rate were continuously measured by pulse oximetry, and cFTOE was calculated. Neonates were excluded if they required any medical support. A total of 381 neonates were included: 82 term neonates after vaginal delivery, 272 term neonates after cesarean delivery, and 27 preterm neonates after cesarean delivery. In all neonates, median (10th-90th percentiles) crSO2 was 41% (23-64) at 2 minutes, 68% (45-85) at 5 minutes, 79% (65-90) at 10 minutes, and 77% (63-89) at 15 minutes of age. In all neonates, median (10th-90th percentiles) cFTOE was 33% (11-70) at 2 minutes, 21% (6-45) at 5 minutes, 15% (5-31) at 10 minutes, and 18% (7-34) at 15 minutes of age. We report reference ranges of crSO2 and cFTOE in neonates requiring no medical support during transition immediately after birth. The use of cerebral oxygenation monitoring and use of these reference ranges in neonates during transition may help to guide oxygen delivery and avoid cerebral hypo-oxygenation and hyperoxygenation. Copyright © 2013 Mosby, Inc. All rights reserved.

  4. Osmotic phenomena in application for hyperbaric oxygen treatment.

    PubMed

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  5. Oxygen supersaturated fluid using fine micro/nanobubbles

    PubMed Central

    Matsuki, Noriaki; Ishikawa, Takuji; Ichiba, Shingo; Shiba, Naoki; Ujike, Yoshihito; Yamaguchi, Takami

    2014-01-01

    Microbubbles show peculiar properties, such as shrinking collapse, long lifetime, high gas solubility, negative electric charge, and free radical production. Fluids supersaturated with various gases can be easily generated using microbubbles. Oxygen microbubble fluid can be very useful for oxygen delivery to hypoxic tissues. However, there have been no reports of comparative investigations into adding fluids containing oxygen fine micro/nanobubbles (OFM-NBs) to common infusion solutions in daily medical care. In this study, it was demonstrated that OFMNBs can generate oxygen-supersaturated fluids, and they may be sufficiently small to infuse safely into blood vessels. It was found that normal saline solution is preferable for generating an oxygen-rich infusion fluid, which is best administered as a 30-minute intravenous infusion. It was also concluded that dextran solution is suitable for drug delivery substances packing oxygen gas over a 1-hour intravenous infusion. In addition, normal saline solution containing OFMNBs was effective for improving blood oxygenation. Thus, the use of OFMNB-containing fluids is a potentially effective novel method for improving blood oxygenation in cases involving hypoxia, ischemic diseases, infection control, and anticancer chemoradiation therapies. PMID:25285003

  6. Oxygen supersaturated fluid using fine micro/nanobubbles.

    PubMed

    Matsuki, Noriaki; Ishikawa, Takuji; Ichiba, Shingo; Shiba, Naoki; Ujike, Yoshihito; Yamaguchi, Takami

    2014-01-01

    Microbubbles show peculiar properties, such as shrinking collapse, long lifetime, high gas solubility, negative electric charge, and free radical production. Fluids supersaturated with various gases can be easily generated using microbubbles. Oxygen microbubble fluid can be very useful for oxygen delivery to hypoxic tissues. However, there have been no reports of comparative investigations into adding fluids containing oxygen fine micro/nanobubbles (OFM-NBs) to common infusion solutions in daily medical care. In this study, it was demonstrated that OFMNBs can generate oxygen-supersaturated fluids, and they may be sufficiently small to infuse safely into blood vessels. It was found that normal saline solution is preferable for generating an oxygen-rich infusion fluid, which is best administered as a 30-minute intravenous infusion. It was also concluded that dextran solution is suitable for drug delivery substances packing oxygen gas over a 1-hour intravenous infusion. In addition, normal saline solution containing OFMNBs was effective for improving blood oxygenation. Thus, the use of OFMNB-containing fluids is a potentially effective novel method for improving blood oxygenation in cases involving hypoxia, ischemic diseases, infection control, and anticancer chemoradiation therapies.

  7. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy

    PubMed Central

    Eshaq, Randa S.; Wright, William S.; Harris, Norman R.

    2014-01-01

    Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. PMID:24936440

  8. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy.

    PubMed

    Eshaq, Randa S; Wright, William S; Harris, Norman R

    2014-01-01

    Retinal tissue receives its supply of oxygen from two sources - the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C.

  9. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  10. Effectiveness and Safety of High-Flow Nasal Cannula Oxygen Delivery during Bronchoalveolar Lavage in Acute Respiratory Failure Patients.

    PubMed

    Kim, Eun Jin; Jung, Chi Young; Kim, Kyung Chan

    2018-06-19

    Bronchoalveolar lavage (BAL) is a necessary procedure for diagnosis of various lung diseases. High-flow nasal cannula (HFNC) oxygen delivery was recently introduced. This study aimed to investigate the safety and effectiveness of HFNC oxygen supply during BAL procedure in patients with acute respiratory failure (ARF). Patients who underwent BAL while using HFNC at a partial pressure of oxygen in arterial blood/fraction of inspired oxygen (PaO₂/FiO₂; PF) ratio of 300 or below among patients who had been admitted from March 2013 to May 2017 were retrospectively investigated. Thirty-three BAL procedures were confirmed. Their baseline PF ratio was 166.1±46.7. FiO₂ values before, during, and after BAL were 0.45±0.12, 0.74±0.19, and 0.57±0.14, respectively. Flow (L/min) values before, during, and after BAL were 26.5±20.3, 49.0±7.2, and 40.8±14.2, respectively. Both FiO₂ and flow during and after the procedure were significantly different from those before the procedure (both p<0.001). Oxygen saturation levels before, during, and after BAL measured by pulse oximeter were 94.8±2.9, 94.6±3.5, and 95.2±2.8%, respectively. There were no significant differences in oxygen saturation among the three groups. Complications of BAL procedure included transient hypoxemia, hypotension, and fever. However, there was no endotracheal intubation within 24 hours. Baseline PF ratio in "without HFNC" group was significantly higher than that in "with HFNC" group. There were no differences in complications between the two groups. The use of HFNC during BAL procedure in ARF patients was effective and safe. However, there were no significant differences in oxygen saturation level and complications comparing "without HFNC" group in mild ARF. More studies are needed for moderate to severe ARF patients. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.

  11. Oxygen diffusion: an enzyme-controlled variable parameter.

    PubMed

    Erdmann, Wilhelm; Kunke, Stefan

    2014-01-01

    Previous oxygen microelectrode studies have shown that the oxygen diffusion coefficient (DO₂) increases during extracellular PO₂ decreases, while intracellular PO₂ remained unchanged and thus cell function (spike activity of neurons). Oxygen dependency of complex multicellular organisms requires a stable and adequate oxygen supply to the cells, while toxic concentrations have to be avoided. Oxygen brought to the tissue by convection diffuses through the intercellular and cell membranes, which are potential barriers to diffusion. In gerbil brain cortex, PO₂ and DO₂ were measured by membrane-covered and by bare gold microelectrodes, as were also spike potentials. Moderate respiratory hypoxia was followed by a primary sharp drop of tissue PO₂ that recovered to higher values concomitant with an increase of DO₂. A drop in intracellular PO₂ recovered immediately. Studies on the abdominal ganglion of aplysia californica showed similar results.Heterogeneity is a feature of both normal oxygen supply to tissue and supply due to a wide range of disturbances in oxygen supply. Oxygen diffusion through membranes is variable thereby ensuring adequate intracellular PO₂. Cell-derived glucosamine oxidase seems to regulate the polymerization/depolymerisation ratio of membrane mucopolysaccharides and thus oxygen diffusion.Variability of oxygen diffusion is a decisive parameter for regulating the supply/demand ratio of oxygen supply to the cell; this occurs in highly developed animals as well as in species of a less sophisticated nature. Autoregulation of oxygen diffusion is as important as the distribution/perfusion ratio of the capillary meshwork and as the oxygen extraction ratio in relation to oxygen consumption of the cell. Oxygen diffusion resistance is the cellular protection against luxury oxygen supply (which can result in toxic oxidative species leading to mutagenesis).

  12. Effect of reducing inspired oxygen concentration on oxygenation parameters during general anaesthesia in horses in lateral or dorsal recumbency.

    PubMed

    Uquillas, E; Dart, C M; Perkins, N R; Dart, A J

    2018-01-01

    To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency. Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery. During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided. During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency. © 2017 Australian Veterinary Association.

  13. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    PubMed

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P < .05). Postoperatively, cerebral oxygen saturation was closely and positively correlated with systemic arterial pressure, arterial oxygen saturation, and arterial oxygen tension and negatively with oxygen extraction ratio (P < .0001 for all). Cerebral oxygen saturation was moderately and positively correlated with systemic blood flow and oxygen delivery (P < .0001 for both). It was weakly and positively correlated with pulmonary blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  14. Oxygen availability and skeletal muscle oxidative capacity in patients with peripheral arterial disease: Implications from in vivo and in vitro assessments.

    PubMed

    Hart, Corey R; Layec, Gwenael; Trinity, Joel D; Le Fur, Yann; Gifford, Jayson R; Clifton, Heather L; Richardson, Russell S

    2018-06-22

    Evidence suggests that peak skeletal muscle mitochondrial ATP synthesis rate (V max ) in patients with peripheral arterial disease (PAD) may be attenuated due to disease-related impairments in oxygen (O 2 ) supply. However, in vitro assessments suggest intrinsic deficits in mitochondrial respiration despite ample O 2 availability. To address this conundrum, Doppler ultrasound, near infrared spectroscopy (NIRS), phosphorus magnetic resonance spectroscopy ( 31 P-MRS), and high-resolution respirometry were combined to assess convective O 2 delivery, tissue oxygenation, V max , and skeletal muscle mitochondrial capacity (Complex I+II, State 3 respiration), respectively, in the gastrocnemius muscle of 10 patients with early-stage PAD and 11 physical activity-matched healthy controls (HC). All subjects were studied in free-flow control conditions (FF) and with reactive hyperemia (RH), induced by a period of brief ischemia during the last 30s of submaximal plantar flexion exercise. The patients with PAD repeated the FF and RH trials under hyperoxic conditions (FF+100%O 2 and RH+100%O 2 ). Compared to the HC, the patients with PAD exhibited attenuated O 2 delivery at the same absolute work rate, and attenuated tissue re-oxygenation and V max after relative intensity-matched exercise. Compared to the FF condition, only RH+100%O 2 significantly increased convective O 2 delivery (~44%), tissue re-oxygenation (~54%), and V max (~60%) in PAD (p<0.05) such that V max was now not different from the HC. Furthermore, there was no evidence of an intrinsic mitochondrial deficit in PAD, assessed in vitro with adequate O 2 . Thus, in combination, this comprehensive in vivo and in vitro investigation implicates O 2 supply as the predominant factor limiting mitochondrial oxidative capacity in early-stage PAD.

  15. Assessing the tongue colour of newly born infants may help to predict the need for supplemental oxygen in the delivery room.

    PubMed

    Dawson, J A; Ekström, A; Frisk, C; Thio, M; Roehr, C C; Kamlin, C O F; Donath, S M; Davis, P G

    2015-04-01

    It takes several minutes for infants to become pink after birth. Preductal oxygen saturation (SpO2) measurements are used to guide the delivery of supplemental oxygen to newly born infants, but pulse oximetry is not available in many parts of the world. We explored whether the pinkness of an infant's tongue provided a useful indication that supplemental oxygen was required. This was a prospective observational study of infants delivered by Caesarean section. Simultaneous recording of SpO2 and visual assessment of whether the tongue was pink or not was made at 1-7 and 10 min after birth. The 38 midwives and seven paediatric trainees carried out 271 paired assessments on 68 infants with a mean (SD) birthweight of 3214 (545) grams and gestational age of 38 (2) weeks. When the infant did not have a pink tongue, this predicted SpO2 of <70% with a sensitivity of 26% and a specificity of 96%. Tongue colour was a specific but insensitive sign that indicated when SpO2 was <70%. When the tongue is pink, it is likely that an infant has an SpO2 of more than 70% and does not require supplemental oxygen. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  16. The S factor--a new derived hemodynamic oxygenation parameter--a useful tool for simplified mathematical modeling of global problems of oxygen transport.

    PubMed

    Farrell, K; Wasser, T

    1997-01-01

    We describe a new derived hemodynamic oxygenation parameter, the S factor (S). The factor is based on oxygen delivery and oxygen consumption and can range from -3 to 1. It allows simplified mathematical modeling of clinical problems of oxygen transport and can be applied to many clinical situations. A new hemodynamic oxygenation parameter, the S factor (S), is introduced as an aid to mathematical modeling. It is defined as follows: [formula: see text] (DO2 = oxygen delivery, VO2 = oxygen consumption) S can theoretically vary from -3 (DO2 = VO2) to +1 (VO2 = 0). When DO2/VO2 = 4 (ie. OER = 0.25), S = 0. An S < 0 implies utilization of reserve oxygen transport capacity. An S > 0 implies increased oxygen delivery in relation to oxygen consumption (ie. "shunted oxygen delivery"). By algebraic manipulation and substitution of the components of DO2 into Equation 1: DO2 = Q x Ca x 10 DO2 = Q [(Hb)(Sat)(1.36) + PaO2(.0031)] 10 (2) the following equations can be derived: [formula: see text] [formula: see text] Ca - Cv (Ca = arterial content, Cv = venous content) can be determined by substituting components of oxygen consumption: VO2 = Q (Ca - Cv) x 10 (5) into equation 1 and solving for Ca - Cv. [formula: see text] Equation 6 can be simplified to: [formula: see text] A previously defined relationship between mixed venous PO2 (PvO2) and DO2/VO2 (where calculated P50 is 26.6 +/- 1.0) can be used to modify S in a clinically relevant manner. PvO2 = 5.44D O2/VO2 + 18.16 (8) The relationship between S and PvO2 can be defined by substituting Equation 4 into Equation 1 and solving for PvO2 PvO2 = [21.76/(1-S)] + 18.16 (9) As an example, at a PvO2 of 28 torr (anaerobic threshold), S = -1.2. The relationship between PvO2 and S is shown in Figure 1. S, which can also be defined as 1-4(VO2/DO2) or 1-4(OER), is a useful tool for mathematical modeling of global problems of oxygen transport because the previously derived equations with the S value allow the components of oxygen transport

  17. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.

    PubMed

    Mohanty, Joy G; Nagababu, Enika; Rifkind, Joseph M

    2014-01-01

    Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H2O2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H2O2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from

  18. Simple method to make a supersaturated oxygen fluid.

    PubMed

    Tange, Yoshihiro; Yoshitake, Shigenori; Takesawa, Shingo

    2018-01-22

    Intravenous oxygenation has demonstrated significant increase in partial pressure of oxygen (PO 2 ) in animal models. A highly dissolved oxygen solution might be able to provide a sufficient level of oxygen delivery to the tissues and organs in patients with hypoxia. However, conventional fluid oxygenation methods have required the use of original devices. If simpler oxygenation of a solution is possible, it will be a useful strategy for application in clinical practice. We simply developed its administration by injection of either air or oxygen gas into conventional saline. We determined the PO 2 values in the solutions in comparison with conventional saline in vitro. To examine the effects of the administration of the new solutions on the blood gas profile, we diluted bovine blood with either conventional or the new solutions and analyzed PO 2 , oxygen saturation (SO 2 ) and total oxygen content. PO 2 levels in the blood and new solution mixture significantly increased with each additional injected gas volume. Significant increases in the PO 2 and SO 2 of the bovine blood were found in those blood samples with the new solution, as compared with those with the control solution. These results suggest that this solution promotes oxygen delivery to the hypoxic tissue and recovery from hypoxia. This method is simpler and easier than previous methods.

  19. Erythropoiesis-stimulating agents and other methods to enhance oxygen transport

    PubMed Central

    Elliott, S

    2008-01-01

    Oxygen is essential for life, and the body has developed an exquisite method to collect oxygen in the lungs and transport it to the tissues. Hb contained within red blood cells (RBCs), is the key oxygen-carrying component in blood, and levels of RBCs are tightly controlled according to demand for oxygen. The availability of oxygen plays a critical role in athletic performance, and agents that enhance oxygen delivery to tissues increase aerobic power. Early methods to increase oxygen delivery included training at altitude, and later, transfusion of packed RBCs. A breakthrough in understanding how RBC formation is controlled included the discovery of erythropoietin (Epo) and cloning of the EPO gene. Cloning of the EPO gene was followed by commercial development of recombinant human Epo (rHuEpo). Legitimate use of this and other agents that affect oxygen delivery is important in the treatment of anaemia (low Hb levels) in patients with chronic kidney disease or in cancer patients with chemotherapy-induced anaemia. However, competitive sports was affected by illicit use of rHuEpo to enhance performance. Testing methods for these agents resulted in a cat-and-mouse game, with testing labs attempting to detect the use of a drug or blood product to improve athletic performance (doping) and certain athletes developing methods to use the agents without being detected. This article examines the current methods to enhance aerobic performance and the methods to detect illicit use. PMID:18362898

  20. AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery.

    PubMed

    Subudhi, Andrew W; Fan, Jui-Lin; Evero, Oghenero; Bourdillon, Nicolas; Kayser, Bengt; Julian, Colleen G; Lovering, Andrew T; Roach, Robert C

    2014-05-01

    Cerebral hypoxaemia associated with rapid ascent to high altitude can be life threatening; yet, with proper acclimatization, cerebral function can be maintained well enough for humans to thrive. We investigated adjustments in global and regional cerebral oxygen delivery (DO2) as 21 healthy volunteers rapidly ascended and acclimatized to 5260 m. Ultrasound indices of cerebral blood flow in internal carotid and vertebral arteries were measured at sea level, upon arrival at 5260 m (ALT1; atmospheric pressure 409 mmHg) and after 16 days of acclimatization (ALT16). Cerebral DO2 was calculated as the product of arterial oxygen content and flow in each respective artery and summed to estimate global cerebral blood flow. Vascular resistances were calculated as the quotient of mean arterial pressure and respective flows. Global cerebral blood flow increased by ∼70% upon arrival at ALT1 (P < 0.001) and returned to sea-level values at ALT16 as a result of changes in cerebral vascular resistance. A reciprocal pattern in arterial oxygen content maintained global cerebral DO2 throughout acclimatization, although DO2 to the posterior cerebral circulation was increased by ∼25% at ALT1 (P = 0.032). We conclude that cerebral DO2 is well maintained upon acute exposure and acclimatization to hypoxia, particularly in the posterior and inferior regions of the brain associated with vital homeostatic functions. This tight regulation of cerebral DO2 was achieved through integrated adjustments in local vascular resistances to alter cerebral perfusion during both acute and chronic exposure to hypoxia. © 2013 The Authors. Experimental Physiology © 2013 The Physiological Society.

  1. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  2. Retinal oxygen extraction in humans

    PubMed Central

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  3. Delivery of cardiopulmonary resuscitation in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Barratt, M. R.; Billica, R. D.

    1992-01-01

    The microgravity environment presents several challenges for delivering effective cardiopulmonary resuscitation (CPR). Chest compressions must be driven by muscular force rather than by the weight of the rescuer's upper torso. Airway stabilization is influenced by the neutral body posture. Rescuers will consist of crew members of varying sizes and degrees of physical deconditioning from space flight. Several methods of CPR designed to accommodate these factors were tested in the one G environment, in parabolic flight, and on a recent shuttle flight. Methods: Utilizing study participants of varying sizes, different techniques of CPR delivery were evaluated using a recording CPR manikin to assess adequacy of compressive force and frequency. Under conditions of parabolic flight, methods tested included conventional positioning of rescuer and victim, free floating 'Heimlich type' compressions, straddling the patient with active and passive restraints, and utilizing a mechanical cardiac compression assist device (CCAD). Multiple restrain systems and ventilation methods were also assessed. Results: Delivery of effective CPR was possible in all configurations tested. Reliance on muscular force alone was quickly fatiguing to the rescuer. Effectiveness of CPR was dependent on technique, adequate restraint of the rescuer and patient, and rescuer size and preference. Free floating CPR was adequate but rapidly fatiguing. The CCAD was able to provide adequate compressive force but positioning was problematic. Conclusions: Delivery of effective CPR in microgravity will be dependent on adequate resuer and patient restraint, technique, and rescuer size and preference. Free floating CPR may be employed as a stop gap method until patient restraint is available. Development of an adequate CCAD would be desirable to compensate for the effects of deconditioning.

  4. Technical aspects of oxygen saving devices.

    PubMed

    Brambilla, I; Arlati, S; Chiusa, I; Micallef, E

    1990-01-01

    Oxygen economizing devices have been extensively studied, both at rest and during muscular exercise, in an attempt to increase the autonomy of a portable oxygen apparatus. The aim of this study is threefold: first, to suggest a simple method to verify in a simple way the technical accuracy of a demand flow oxygen delivery device; second, to suggest how we can monitor in a simple way the clinical efficacy of an economizer; and third, to remember that we can utilize an oxygen saving device to give a better protection than nasal prongs against the worsening of HbO2 desaturation induced by exercise.

  5. Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating

    NASA Astrophysics Data System (ADS)

    Boix-Garriga, Ester; Acedo, Pilar; Casadó, Ana; Villanueva, Angeles; Stockert, Juan Carlos; Cañete, Magdalena; Mora, Margarita; Lluïsa Sagristá, Maria; Nonell, Santi

    2015-09-01

    Poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) are being considered as nanodelivery systems for photodynamic therapy. The physico-chemical and biological aspects of their use remain largely unknown. Herein we report the results of a study of PLGA NPs for the delivery of the model hydrophobic photosensitizer ZnTPP to HeLa cells. ZnTPP was encapsulated in PLGA with high efficiency and the NPs showed negative zeta potentials and diameters close to 110 nm. Poly(ethylene glycol) (PEG) coating, introduced to prevent opsonization and clearance by macrophages, decreased the size and zeta potential of the NPs by roughly a factor of two and improved their stability in the presence of serum proteins. Photophysical studies revealed two and three populations of ZnTPP and singlet oxygen in uncoated and PEGylated NPs, respectively. Singlet oxygen is confined within the NPs in bare PLGA while it is more easily released into the external medium after PEG coating, which contributes to a higher photocytotoxicity towards HeLa cells in vitro. PLGA NPs are internalized by endocytosis, deliver their cargo to lysosomes and induce cell death by apoptosis upon exposure to light. In conclusion, PLGA NPs coated with PEG show high potential as delivery systems for photodynamic applications.

  6. Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation

    NASA Astrophysics Data System (ADS)

    Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.

    2017-06-01

    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.

  7. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    PubMed Central

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  8. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. But, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. We show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O 2 batteries. The heme’s oxygen binding capability facilitates battery recharge by accepting and releasingmore » dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. Our study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.« less

  9. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    DOE PAGES

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; ...

    2016-10-19

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. But, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. We show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O 2 batteries. The heme’s oxygen binding capability facilitates battery recharge by accepting and releasingmore » dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. Our study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.« less

  10. A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks.

    PubMed

    Tsoukias, Nikolaos M; Goldman, Daniel; Vadapalli, Arjun; Pittman, Roland N; Popel, Aleksander S

    2007-10-21

    A detailed computational model is developed to simulate oxygen transport from a three-dimensional (3D) microvascular network to the surrounding tissue in the presence of hemoglobin-based oxygen carriers. The model accounts for nonlinear O(2) consumption, myoglobin-facilitated diffusion and nonlinear oxyhemoglobin dissociation in the RBCs and plasma. It also includes a detailed description of intravascular resistance to O(2) transport and is capable of incorporating realistic 3D microvascular network geometries. Simulations in this study were performed using a computer-generated microvascular architecture that mimics morphometric parameters for the hamster cheek pouch retractor muscle. Theoretical results are presented next to corresponding experimental data. Phosphorescence quenching microscopy provided PO(2) measurements at the arteriolar and venular ends of capillaries in the hamster retractor muscle before and after isovolemic hemodilution with three different hemodilutents: a non-oxygen-carrying plasma expander and two hemoglobin solutions with different oxygen affinities. Sample results in a microvascular network show an enhancement of diffusive shunting between arterioles, venules and capillaries and a decrease in hemoglobin's effectiveness for tissue oxygenation when its affinity for O(2) is decreased. Model simulations suggest that microvascular network anatomy can affect the optimal hemoglobin affinity for reducing tissue hypoxia. O(2) transport simulations in realistic representations of microvascular networks should provide a theoretical framework for choosing optimal parameter values in the development of hemoglobin-based blood substitutes.

  11. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation

    PubMed Central

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2015-01-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28 ± 0.08 μL min−1 (p < 0.001), and 0.20 ± 0.04 μL min−1 (p < 0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation. Results from an oxygen diffusion model based on previous oxygen electrode measurements corroborated our in vivo observations. We believe that vis-OCT has the potential to reveal the fundamental role of oxygen metabolism in various retinal diseases. PMID:26658555

  12. Efficient Active Oxygen Free Radical Generated in Tumor Cell by Loading-(HCONH2)·H2O2 Delivery Nanosystem with Soft-X-ray Radiotherapy

    PubMed Central

    Xu, Lei; Shao, Yiran; Chang, Chengkang; Zhu, Yingchun

    2018-01-01

    Tumor hypoxia is known to result in radiotherapy resistance and traditional radiotherapy using super-hard X-ray irradiation can cause considerable damage to normal tissue. Therefore, formamide peroxide (FPO) with high reactive oxygen content was employed to enhance the oxygen concentration in tumor cells and increase the radio-sensitivity of low-energy soft-X-ray. To improve stability of FPO, FPO is encapsulated into polyacrylic acid (PAA)-coated hollow mesoporous silica nanoparticles (FPO@HMSNs-PAA). On account of the pH-responsiveness of PAA, FPO@HMSNs-PAA will release more FPO in simulated acidic tumor microenvironment (pH 6.50) and subcellular endosomes (pH 5.0) than in simulated normal tissue media (pH 7.40). When exposed to soft-X-ray irradiation, the released FPO decomposes into oxygen and the generated oxygen further formed many reactive oxygen species (ROS), leading to significant tumor cell death. The ROS-mediated cytotoxicity of FPO@HMSNs-PAA was confirmed by ROS-induced green fluorescence in tumor cells. The presented FPO delivery system with soft-X-ray irradiation paves a way for developing the next opportunities of radiotherapy toward efficient tumor prognosis. PMID:29649155

  13. Efficacy of a portable oxygen concentrator with pulsed delivery for treatment of hypoxemia during equine field anesthesia.

    PubMed

    Coutu, Paige; Caulkett, Nigel; Pang, Daniel; Boysen, Søren

    2015-09-01

    Hypoxemia is common during equine field anesthesia. Our hypothesis was that oxygen therapy from a portable oxygen concentrator would increase PaO2 during field anesthesia compared with the breathing of ambient air. Prospective clinical study. Fifteen yearling (250 - 400 kg) horses during field castration. Horses were maintained in dorsal recumbency during anesthesia with an intravenous infusion of 2000 mg ketamine and 500 mg xylazine in 1 L of 5% guaifenesin. Arterial samples for blood gas analysis were collected immediately post-induction (PI), and at 15 and 30 minutes PI. The control group (n = 6) breathed ambient air. The treatment group (n = 9) were administered pulsed-flow oxygen (192 mL per bolus) by nasal insufflation during inspiration for 15 minutes PI, then breathed ambient air. The study was performed at 1300 m above sea level. One-way and two-way repeated-measures anova with post-hoc Bonferroni tests were used for within and between-group comparisons, respectively. Significance was set at p ≤ 0.05. Mean ± SD PaO2 in controls at 0, 15 and 30 minutes PI were 46 ± 7 mmHg (6.1 ± 0.9 kPa), 42 ± 9 mmHg (5.6 ± 1.1 kPa), and 48 ± 7 mmHg (6.4 ± 0.1 kPa), respectively (p = 0.4). In treatment animals, oxygen administration significantly increased PaO2 at 15 minutes PI to 60 ± 13 mmHg (8.0 ± 1.7 kPa), compared with baseline values of 46 ± 8 mmHg (6.1 ± 1 kPa) (p = 0.007), and 30 minute PI values of 48 ± 7 mmHg (6.5 ± 0.9 kPa) (p = 0.003). These data show that a pulsed-flow delivery of oxygen can increase PaO2 in dorsally recumbent horses during field anesthesia with ketamine-xylazine-guaifenesin. The portable oxygen concentrator may help combat hypoxemia during field anesthesia in horses. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  14. Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer

    PubMed Central

    Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala

    2013-01-01

    We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635

  15. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  16. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  17. Resuscitation of Preterm Neonates With Limited Versus High Oxygen Strategy

    PubMed Central

    Kapadia, Vishal S.; Chalak, Lina F.; Sparks, John E.; Allen, James R.; Savani, Rashmin C.

    2013-01-01

    OBJECTIVE: To determine whether a limited oxygen strategy (LOX) versus a high oxygen strategy (HOX) during delivery room resuscitation decreases oxidative stress in preterm neonates. METHODS: A randomized trial of neonates of 24 to 34 weeks’ gestational age (GA) who received resuscitation was performed. LOX neonates received room air as the initial resuscitation gas, and fraction of inspired oxygen (Fio2) was adjusted by 10% every 30 seconds to achieve target preductal oxygen saturations (Spo2) as described by the 2010 Neonatal Resuscitation Program guidelines. HOX neonates received 100% O2 as initial resuscitation gas, and Fio2 was adjusted by 10% to keep preductal Spo2 at 85% to 94%. Total hydroperoxide (TH), biological antioxidant potential (BAP), and the oxidative balance ratio (BAP/TH) were analyzed in cord blood and the first hour of life. Secondary outcomes included delivery room interventions, respiratory support on NICU admission, and short-term morbidities. RESULTS: Forty-four LOX (GA: 30 ± 3 weeks; birth weight: 1678 ± 634 g) and 44 HOX (GA: 30 ± 3 weeks; birth weight: 1463 ± 606 g) neonates were included. LOX decreased integrated excess oxygen (∑Fio2 × time [min]) in the delivery room compared with HOX (401 ± 151 vs 662 ± 249; P < .01). At 1 hour of life, BAP/TH was 60% higher for LOX versus HOX neonates (13 [9–16] vs 8 [6–9]) µM/U.CARR, P < .01). LOX decreased ventilator days (3 [0–64] vs 8 [0–96]; P < .05) and reduced the incidence of bronchopulmonary dysplasia (7% vs 25%; P < .05). CONCLUSIONS: LOX is feasible and results in less oxygen exposure, lower oxidative stress, and decreased respiratory morbidities and thus is a reasonable alternative for resuscitation of preterm neonates in the delivery room. PMID:24218465

  18. Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury

    PubMed Central

    Pollen, Sean; Greco, Elisabetta; Courtneidge, Holly; Hall, Andrew M.; Duchen, Michael R.; Tam, Frederick W. K.; Unwin, Robert J.; Singer, Mervyn

    2018-01-01

    Objective: To explain the paradigm of significant renal functional impairment despite preserved hemodynamics and histology in sepsis-induced acute kidney injury. Design: Prospective observational animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Intervention: Using a fluid-resuscitated sublethal rat model of fecal peritonitis, changes in renal function were characterized in relation to global and renal hemodynamics, and histology at 6 and 24 hours (n = 6–10). Sham-operated animals were used as comparison (n = 8). Tubular cell mitochondrial function was assessed using multiphoton confocal imaging of live kidney slices incubated in septic serum. Measurements and Main Results: By 24 hours, serum creatinine was significantly elevated with a concurrent decrease in renal lactate clearance in septic animals compared with sham-operated and 6-hour septic animals. Renal uncoupling protein-2 was elevated in septic animals at 24 hours although tubular cell injury was minimal and mitochondrial ultrastructure in renal proximal tubular cells preserved. There was no significant change in global or renal hemodynamics and oxygen delivery/consumption between sham-operated and septic animals at both 6- and 24-hour timepoints. In the live kidney slice model, mitochondrial dysfunction was seen in proximal tubular epithelial cells incubated with septic serum with increased production of reactive oxygen species, and decreases in nicotinamide adenine dinucleotide and mitochondrial membrane potential. These effects were prevented by coincubation with the reactive oxygen species scavenger, 4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-oxyl. Conclusions: Renal dysfunction in sepsis occurs independently of hemodynamic instability or structural damage. Mitochondrial dysfunction mediated by circulating mediators that induce local oxidative stress may represent an important pathophysiologic mechanism. PMID:29293148

  19. Effects of antenatal magnesium sulfate treatment for neonatal neuro-protection on cerebral oxygen kinetics.

    PubMed

    Stark, Michael J; Hodyl, Nicolette A; Andersen, Chad C

    2015-09-01

    The underlying neuro-protective mechanisms of antenatal magnesium sulfate (MgSO(4)) in infants born preterm remain poorly understood. Early neonatal brain injury may be preceded by low cerebral blood flow (CBF) and elevated cerebral fractional tissue oxygen extraction (cFTOE). This study investigated the effect of antenatal MgSO(4) on cerebral oxygen delivery, consumption, and cFTOE in preterm infants. CBF and tissue oxygenation index were measured, and oxygen delivery, consumption, and cFTOE calculated within 24 h of birth and at 48 and 72 h of life in 36 infants ≤ 30 wk gestation exposed to MgSO(4) and 29 unexposed infants. Total internal carotid blood flow and cerebral oxygen delivery did not differ between the groups at the three study time-points. Cerebral oxygen consumption and cFTOE were lower in infants exposed to antenatal MgSO(4) (P = 0.012) compared to unexposed infants within 24 h of delivery. This difference was not evident by 48 h of age. Fewer infants in the MgSO(4) group developed P/IVH by 72 h of age (P = 0.03). Infants exposed to MgSO(4) had similar systemic and cerebral hemodynamics but lower cFTOE compared to nonexposed. These findings suggest reduced cerebral metabolism maybe a component of the neuro-protective actions of antenatal MgSO(4).

  20. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    PubMed Central

    Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges

    2016-01-01

    Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783

  1. Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy.

    PubMed

    Bhandari, Pushpak; Novikova, Gloriia; Goergen, Craig J; Irudayaraj, Joseph

    2018-02-15

    New intravesical treatment approaches for bladder cancer are needed as currently approved treatments show several side effects and high tumor recurrence rate. Our study used MB49 murine urothelial carcinoma model to evaluate oxygen encapsulated cellulosic nanobubbles as a novel agent for imaging and ultrasound guided drug delivery. In this study, we show that oxygen nanobubbles (ONB) can be propelled (up to 40 mm/s) and precisely guided in vivo to the tumor by an ultrasound beam. Nanobubble velocity can be controlled by altering the power of the ultrasound Doppler beam, while nanobubble direction can be adjusted to different desired angles by altering the angle of the beam. Precise ultrasound beam steering of oxygen nanobubbles was shown to enhance the efficacy of mitomycin-C, resulting in significantly lower tumor progression rates while using a 50% lower concentration of chemotherapeutic drug. Further, dark field imaging was utilized to visualize and quantify the ONB ex vivo. ONBs were found to localize up to 500 µm inside the tumor using beam steering. These results demonstrate the potential of an oxygen nanobubble drug encapsulated system to become a promising strategy for targeted drug delivery because of its multimodal (imaging and oxygen delivery) and multifunctional (targeting and hypoxia programming) properties.

  2. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy.

    PubMed

    McMonnies, Charles

    This review examines the role of oxidative stress in damage to cells of the trabecular meshwork and associated impaired aqueous drainage as well as damage to retinal ganglion cells and associated visual field losses. Consideration is given to the interaction between vascular and mechanical explanations for pathological changes in glaucoma. For example, elevated intraocular pressure (IOP) forces may contribute to ischaemia but there is increasing evidence that altered blood flow in a wider sense is also involved. Both vascular and mechanical theories are involved through fluctuations in intraocular pressure and dysregulation of blood flow. Retinal function is very sensitive to changes in haemoglobin oxygen concentration and the associated variations in the production of reactive oxygen species. Reperfusion injury and production of reactive oxygen species occurs when IOP is elevated or blood pressure is low and beyond the capacity for blood flow autoregulation to maintain appropriate oxygen concentration. Activities such as those associated with postural changes, muscular effort, eye wiping and rubbing which cause IOP fluctuation, may have significant vascular, mechanical, reperfusion and oxidative stress consequences. Hyperbaric oxygen therapy exposes the eye to increased oxygen concentration and the risk of oxidative damage in susceptible individuals. However, oxygen concentration in aqueous humour, and the risk of damage to trabecular meshwork cells may be greater if hyperbaric oxygen is delivered by a hood which exposes the anterior ocular surface to higher than normal oxygen levels. Oronasal mask delivery of hyperbaric oxygen therapy appears to be indicated in these cases. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  3. Inspired oxygen concentrations with or without an oxygen economizer during ether draw-over anaesthesia.

    PubMed

    Khaing, T T; Yu, S; Brock-Utne, J G

    1997-08-01

    An oxygen economizer tube is attached to draw-over vaporizers and acts as a reservoir of supplemental oxygen. The clinical importance of the presence or absence of the economizer tube (volume 130 ml) has not been adequately studied in manually ventilated patients using ether from an Ohmeda Cyprane Portable Anesthesia Complete (PAC) draw-over vaporizer. A total of sixteen patients ASA 1-2, undergoing elective surgery for peripheral orthopaedic procedures were studied with and without an economizer tube. Each patient acted as his or her own control. Standard procedures were used for anaesthetic induction with muscle relaxant, endotracheal intubation and anaesthetic maintenance. Supplemental oxygen was supplied by an oxygen concentrator. Using the draw-over vaporizer without an oxygen economizer tube, there was a slight increase in FiO2 of 20%, 23%, 27%, 30%, 33% and 33%, with increasing oxygen supplementation of 0 to 5 l/min, respectively. With an economizer tube, the FiO2 values increased to 20%, 26%, 35%, 46%, 54% and 66% at 0 to 5 l/min of oxygen respectively. The FiO2 values were significantly different at 3, 4, and 5 l/min (P < 0.05), showing the potential advantages of an oxygen economizer tube attached to a draw-over vaporizer in this setting. No significant differences were seen in the oxygen saturations of these healthy patients with or without an oxygen economizer.

  4. Survey of Oxygen Delivery Practices in UK Paediatric Intensive Care Units

    PubMed Central

    Peters, Mark J.

    2016-01-01

    Purpose. Administration of supplemental oxygen is common in paediatric intensive care. We explored the current practice of oxygen administration using a case vignette in paediatric intensive care units (PICU) in the united kingdom. Methods. We conducted an online survey of Paediatric Intensive Care Society members in the UK. The survey outlined a clinical scenario followed by questions on oxygenation targets for 5 common diagnoses seen in critically ill children. Results. Fifty-three paediatric intensive care unit members from 10 institutions completed the survey. In a child with moderate ventilatory requirements, 21 respondents (42%) did not follow arterial partial pressure of oxygen (PaO2) targets. In acute respiratory distress syndrome, cardiac arrest, and sepsis, there was a trend to aim for lower PaO2 as the fraction of inspired oxygen (FiO2) increased. Conversely, in traumatic brain injury and pulmonary hypertension, respondents aimed for normal PaO2 even as the FiO2 increased. Conclusions. In this sample of clinicians PaO2 targets were not commonly used. Clinicians target lower PaO2 as FiO2 increases in acute respiratory distress syndrome, cardiac arrest, and sepsis whilst targeting normal range irrespective of FiO2 in traumatic brain injury and pulmonary hypertension. PMID:27516901

  5. A Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Overbeeke, Arend; Hodgson, Edward; Paul, Heather; Geier, Harold; Bradt, Howard

    2007-01-01

    Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in EVA systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded Hamilton Sundstrand production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper will describe the design and manufacture of the prototype system and present the results of preliminary testing to verify its performance characteristics. The potential significance and application of the system will also be discussed.

  6. Medical oxygen and air travel.

    PubMed

    Lyznicki, J M; Williams, M A; Deitchman, S D; Howe, J P

    2000-08-01

    This report responds to a resolution that asked the American Medical Association (AMA) to take action to improve airport and airline accommodations for passengers requiring medical oxygen. Information for the report was derived from a search of the MEDLINE database and references listed in pertinent articles, as well as through communications with experts in aerospace and emergency medicine. Based on this information, the AMA Council on Scientific Affairs determined that commercial air travel exposes passengers to altitude-related hypoxia and gas expansion, which may cause some passengers to experience significant symptoms and medical complications during flight. Medical guidelines are available to help physicians evaluate and counsel potential passengers who are at increased risk of inflight hypoxemia. Supplemental oxygen may be needed for some passengers to maintain adequate tissue oxygenation and prevent hypoxemic complications. For safety and security reasons, federal regulations prohibit travelers from using their own portable oxygen system onboard commercial aircraft. Many U.S. airlines supply medical oxygen for use during flight but policies and procedures vary. Oxygen-dependent passengers must make additional arrangements for the use of supplemental oxygen in airports. Uniform standards are needed to specify procedures and equipment for the use of medical oxygen in airports and aboard commercial aircraft. Revision of federal regulations should be considered to accommodate oxygen-dependent passengers and permit them to have an uninterrupted source of oxygen from departure to destination.

  7. Mechanisms controlling the oxygen consumption in experimentally induced hypochloremic alkalosis in calves.

    PubMed

    Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal

    2002-01-01

    The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased

  8. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    PubMed

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.

  9. Performance of a continuous flow passenger oxygen mask at an altitude of 40,000 feet.

    DOT National Transportation Integrated Search

    1996-02-01

    A redesigned continuous flow passenger oxygen mask was tested for its ability to deliver an adequate supply of oxygen at an altitude of 40,000 feet above sea level. Four male subjects participated in the study. Blood oxygen saturation (SaO2) baseline...

  10. Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark

    2014-03-01

    In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.

  11. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    PubMed

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states

  12. High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.

    PubMed

    Meir, Jessica U; Milsom, William K

    2013-06-15

    The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions between temperature and pH on bar-headed goose Hb-O2 affinity have not previously been determined. An increase in breathing of the hypoxic and extremely cold air experienced by a bar-headed goose at altitude (due to the enhanced hypoxic ventilatory response in this species) could result in both reduced temperature and reduced levels of CO2 at the blood-gas interface in the lungs, enhancing O2 loading. In addition, given the strenuous nature of flapping flight, particularly in thin air, blood leaving the exercising muscle should be warm and acidotic, facilitating O2 unloading. To explore the possibility that features of blood biochemistry in this species could further enhance O2 delivery, we determined the P50 (the partial pressure of O2 at which Hb is 50% saturated) of whole blood from bar-headed geese under conditions of varying temperature and [CO2]. We found that blood-O2 affinity was highly temperature sensitive in bar-headed geese compared with other birds and mammals. Based on our analysis, temperature and pH effects acting on blood-O2 affinity (cold alkalotic lungs and warm acidotic muscle) could increase O2 delivery by twofold during sustained flapping flight at high altitudes compared with what would be delivered by blood at constant temperature and pH.

  13. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng

    2016-08-01

    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (-17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.

  14. Self-fill oxygen technology: benefits for patients, healthcare providers and the environment

    PubMed Central

    Hex, Nick; Setters, Jo; Little, Stuart

    2016-01-01

    “Non-delivery” home oxygen technologies that allow self-filling of ambulatory oxygen cylinders are emerging. They can offer a relatively unlimited supply of ambulatory oxygen in suitably assessed people who require long-term oxygen therapy (LTOT), providing they can use these systems safely and effectively. This allows users to be self-sufficient and facilitates longer periods of time away from home. The evolution and evidence base of this technology is reported with the experience of a national service review in Scotland (UK). Given that domiciliary oxygen services represent a significant cost to healthcare providers globally, these systems offer potential cost savings, are appealing to remote and rural regions due to the avoidance of cylinder delivery and have additional lower environmental impact due to reduced fossil fuel consumption and subsequently reduced carbon emissions. Evidence is emerging that self-fill/non-delivery oxygen systems can meet the ambulatory oxygen needs of many patients using LTOT and can have a positive impact on quality of life, increase time spent away from home and offer significant financial savings to healthcare providers. Educational aims Provide update for oxygen prescribers on options for home oxygen provision. Provide update on the evidence base for available self-fill oxygen technologies. Provide and update for healthcare commissioners on the potential cost-effective and environmental benefits of increased utilisation of self-fill oxygen systems. PMID:27408629

  15. Oxygen Flow Rate Requirements of Critically Injured Patients

    DTIC Science & Technology

    2015-04-08

    2.0 BACKGROUND Supplemental oxygen is required to correct hypoxemia and is often used to augment tissue oxygen delivery following hemorrhagic ...least 6 months after enrollment to determine mortality status. 3.4 Outcome Measurements The primary outcomes were the proportion of subjects...and 53/204 (26%) with hemorrhagic shock (systolic blood pressure (SBP) ៊ or blood transfusion). There were 33/142 (23%) patients with an indication

  16. Biomaterials for drug delivery systems.

    PubMed

    Buckles, R G

    1983-01-01

    Drug delivery systems have unusual materials requirements which derive mainly from their therapeutic role: to administer drugs over prolonged periods of time at rates that are independent of patient-to-patient variables. The chemical nature of the surfaces of such devices may stimulate biorejection processes which can be enhanced or suppressed by the simultaneous presence of the drug that is being administered. Selection of materials for such systems is further complicated by the need for compatibility with the drug contained within the system. A review of selected drug delivery systems is presented. This leads to a definition of the technologies required to develop successfully such systems as well as to categorize the classes of drug delivery systems available to the therapist. A summary of the applications of drug delivery systems will also be presented. There are five major challenges to the biomaterials scientist: (1) how to minimize the influence on delivery rate of the transient biological response that accompanies implantation of any object; (2) how to select a composition, size, shape, and flexibility that optimizes biocompatibility; (3) how to make an intravascular delivery system that will retain long-term functionality; (4) how to make a percutaneous lead for those delivery systems that cannot be implanted but which must retain functionality for extended periods; and (5) how to make biosensors of adequate compatibility and stability to use with the ultimate drug delivery system-a system that operates with feedback control.

  17. Inner Ear Drug Delivery for Auditory Applications

    PubMed Central

    Swan, Erin E. Leary; Mescher, Mark J.; Sewell, William F.; Tao, Sarah L.; Borenstein, Jeffrey T.

    2008-01-01

    Many inner ear disorders cannot be adequately treated by systemic drug delivery. A blood-cochlear barrier exists, similar physiologically to the blood-brain barrier, which limits the concentration and size of molecules able to leave the circulation and gain access to the cells of the inner ear. However, research in novel therapeutics and delivery systems has led to significant progress in the development of local methods of drug delivery to the inner ear. Intratympanic approaches, which deliver therapeutics to the middle ear, rely on permeation through tissue for access to the structures of the inner ear, whereas intracochlear methods are able to directly insert drugs into the inner ear. Innovative drug delivery systems to treat various inner ear ailments such as ototoxicity, sudden sensorineural hearing loss, autoimmune inner ear disease, and for preserving neurons and regenerating sensory cells are being explored. PMID:18848590

  18. 7 CFR 3017.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Adequate evidence. 3017.900 Section 3017.900 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER... Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  19. International Space Station United States Oxygen Generator Development Testing

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Mason, Richard K.

    2000-01-01

    A life test of a liquid anode feed oxygen generator assembly (OGA) using SPE(R) (United Technologies Corporation, Hamilton Sundstrand Division) membrane technology was terminated in June of 1999. In the total 15,658 hours of operation at MSFC since delivery in 1995, the OGA has produced 2,103 kilograms (kg) (4,632 pounds mass (lbm)) of oxygen, and 263 kg (579 lbm) of hydrogen. Evaluation of cell stack characteristics and oxygen and hydrogen hydrophilic/hydrophobic membrane separators will be discussed.

  20. 29 CFR 98.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false Adequate evidence. 98.900 Section 98.900 Labor Office of the Secretary of Labor GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 98.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  1. 29 CFR 98.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Adequate evidence. 98.900 Section 98.900 Labor Office of the Secretary of Labor GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 98.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  2. 29 CFR 98.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false Adequate evidence. 98.900 Section 98.900 Labor Office of the Secretary of Labor GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 98.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  3. The Effect of Adequate Gestational Weight Gain among Adolescents Relative to Adults of Equivalent Body Mass Index and the Risk of Preterm Birth, Cesarean Delivery, and Low Birth Weight.

    PubMed

    Houde, Michele; Dahdouh, Elias M; Mongrain, Vanessa; Dubuc, Elise; Francoeur, Diane; Balayla, Jacques

    2015-12-01

    To determine whether similar odds of cesarean delivery (C/S), preterm birth (PTB), and low birth weight (LBW) are observed among adolescents compared with body mass index (BMI)-equivalent adults in cases of adequate gestational weight gain. We conducted a retrospective, population-based, cohort study using the Center for Disease Control and Prevention's birth data files from the United States for 2012. We selected from the cohort all singleton, cephalic pregnancies and stratified them according to maternal age, prepregnancy BMI, and gestational weight gain following the 2009 Institute of Medicine (IOM) recommendations. The effect of adequate gestational weight gain among adolescents relative to adults of equivalent BMI on the risk of C/S, PTB, and LBW was estimated using logistic regression analysis, adjusting for relevant confounders. We analyzed a total of 3,960,796 births, of which 1,036,646 (26.1%) met the inclusion criteria. In adolescents and adults, likelihood of achieving ideal gestational weight gain decreased with greater prepregnancy BMI. Relative to adults, the overall odds of C/S in all adolescents were (adjusted odds ratio [95% confidence interval]) 0.61 (0.58 to 0.63). When comparing equivalent BMI categories, these odds were unchanged (P < .0001). The overall adjusted odds ratio of LBW was 1.15 (1.13 to 1.16). These odds were significantly higher when BMI stratification took place, decreasing with advancing BMI categories, from 1.23 (1.14 to 1.33) among the underweight, to nonsignificant differences in the obese classes (P < .05). Finally, when including only those achieving ideal weight gain, the overall odds of premature delivery (1.17 [1.14 to 1.20]) were higher among nonobese adolescents, while they were not found among the obese. When ideal gestational weight gain is attained, only nonobese adolescents exhibit a greater risk of LBW and preterm birth relative to adults of similar BMI, whereas the risk of C/S remains lower for all adolescents

  4. Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model

    PubMed Central

    Soetikno, Brian T.; Yi, Ji; Shah, Ronil; Liu, Wenzhong; Purta, Patryk; Zhang, Hao F.; Fawzi, Amani A.

    2015-01-01

    Retinopathy of prematurity (ROP) represents a major cause of childhood vision loss worldwide. The 50/10 oxygen-induced retinopathy (OIR) model mimics the findings of ROP, including peripheral vascular attenuation and neovascularization. The oxygen metabolism of the inner retina has not been previously explored in this model. Using visible-light optical coherence tomography (vis-OCT), we measured the oxygen saturation of hemoglobin and blood flow within inner retinal vessels, enabling us to compute the inner retinal oxygen delivery (irDO2) and metabolic rate of oxygen (irMRO2). We compared these measurements between age-matched room-air controls and rats with 50/10 OIR on postnatal day 18. To account for a 61% decrease in the irDO2 in the OIR group, we found an overall statistically significant decrease in retinal vascular density affecting the superficial and deep retinal vascular capillary networks in rats with OIR compared to controls. Furthermore, matching the reduced irDO2, we found a 59% decrease in irMRO2, which we correlated with a statistically significant reduction in retinal thickness in the OIR group, suggesting that the decreased irMRO2 was due to decreased neuronal oxygen utilization. By exploring these biological and metabolic changes in great detail, our study provides an improved understanding of the pathophysiology of OIR model. PMID:26576731

  5. Fetal circulatory responses to oxygen lack.

    PubMed

    Jensen, A; Berger, R

    1991-10-01

    The knowledge on fetal and neonatal circulatory physiology accumulated by basic scientists and clinicians over the years has contributed considerably to the recent decline of perinatal morbidity and mortality. This review will summarize the peculiarities of the fetal circulation, the distribution of organ blood flow during normoxemia, and that during oxygen lack caused by various experimental perturbations. Furthermore, the relation between oxygen delivery and tissue metabolism during oxygen lack as well as evidence to support a new concept will be presented along with the principal cardiovascular mechanisms involved. Finally, blood flow and oxygen delivery to the principal fetal organs will be examined and discussed in relation to organ function. The fetal circulatory response to hypoxemia and asphyxia is a centralization of blood flow in favour of the brain, heart, and adrenals and at the expense of almost all peripheral organs, particularly of the lungs, carcass, skin and scalp. This response is qualitatively similar but quantitatively different under various experimental conditions. However, at the nadir of severe acute asphyxia the circulatory centralization cannot be maintained. Then there is circulatory decentralization, and the fetus will experience severe brain damage if not expire unless immediate resuscitation occurs. Future work in this field will have to concentrate on the important questions, what factors determine this collapse of circulatory compensating mechanisms in the fetus, how does it relate to neuronal damage, and how can the fetal brain be pharmacologically protected against the adverse effects of asphyxia.

  6. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF... Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  7. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2 Grants and Agreements 1 2012-01-01 2012-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF... Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  8. Patterns of dissolved oxygen dynamics in a Pacific Northwest slough and tide channel.

    EPA Science Inventory

    Pacific Northwest (PNW) estuaries and tide channels are habitats or migratory corridors for societally prized salmonids. These fish have high oxygen requirements, and an adequate level of dissolved oxygen is considered an important gauge of a PNW water body’s condition. W...

  9. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids.

    PubMed

    Lee, GeonHui; Jun, Yesl; Jang, HeeYeong; Yoon, Junghyo; Lee, JaeSeo; Hong, MinHyung; Chung, Seok; Kim, Dong-Hwee; Lee, SangHoon

    2018-01-01

    Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to

  10. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    PubMed

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  11. Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury

    DTIC Science & Technology

    2017-09-01

    oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short pulses of blue LED light resulting in a fluorescent...Award Number: W81XWH-16-1-0602 TITLE: Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation

  12. Resuscitation With 100% Oxygen Causes Intestinal Glutathione Oxidation and Reoxygenation Injury in Asphyxiated Newborn Piglets

    PubMed Central

    Haase, Erika; Bigam, David L.; Nakonechny, Quentin B.; Jewell, Laurence D.; Korbutt, Gregory; Cheung, Po-Yin

    2004-01-01

    Objective: To compare mesenteric blood flow, oxidative stress, and mucosal injury in piglet small intestine during hypoxemia and reoxygenation with 21%, 50%, or 100% oxygen. Summary Background Data: Necrotizing enterocolitis is a disease whose pathogenesis likely involves hypoxia-reoxygenation and the generation of oxygen-free radicals, which are known to cause intestinal injury. Resuscitation of asphyxiated newborns with 100% oxygen has been shown to increase oxidative stress, as measured by the glutathione redox ratio, and thus may predispose to free radical-mediated tissue injury. Methods: Newborn piglets subjected to severe hypoxemia for 2 hours were resuscitated with 21%, 50%, or 100% oxygen while superior mesenteric artery (SMA) flow and hemodynamic parameters were continuously measured. Small intestinal tissue samples were analyzed for histologic injury and levels of oxidized and reduced glutathione. Results: SMA blood flow decreased to 34% and mesenteric oxygen delivery decreased to 9% in hypoxemic piglets compared with sham-operated controls. With reoxygenation, SMA blood flow increased to 177%, 157%, and 145% of baseline values in piglets resuscitated with 21%, 50%, and 100% oxygen, respectively. Mesenteric oxygen delivery increased to more than 150% of baseline values in piglets resuscitated with 50% or 100% oxygen, and this correlated significantly with the degree of oxidative stress, as measured by the oxidized-to-reduced glutathione ratio. Two of eight piglets resuscitated with 100% oxygen developed gross and microscopic evidence of pneumatosis intestinalis and severe mucosal injury, while all other piglets were grossly normal. Conclusions: Resuscitation of hypoxemic newborn piglets with 100% oxygen is associated with an increase in oxygen delivery and oxidative stress, and may be associated with the development of small intestinal hypoxia-reoxygenation injury. Resuscitation of asphyxiated newborns with lower oxygen concentrations may help to decrease

  13. Improved ASTM G72 Test Method for Ensuring Adequate Fuel-to-Oxidizer Ratios

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susana A.

    2016-01-01

    The ASTM G72/G72M-15 Standard Test Method for Autogenous Ignition Temperature of Liquids and Solids in a High-Pressure Oxygen-Enriched Environment is currently used to evaluate materials for the ignition susceptibility driven by exposure to external heat in an enriched oxygen environment. Testing performed on highly volatile liquids such as cleaning solvents has proven problematic due to inconsistent test results (non-ignitions). Non-ignition results can be misinterpreted as favorable oxygen compatibility, although they are more likely associated with inadequate fuel-to-oxidizer ratios. Forced evaporation during purging and inadequate sample size were identified as two potential causes for inadequate available sample material during testing. In an effort to maintain adequate fuel-to-oxidizer ratios within the reaction vessel during test, several parameters were considered, including sample size, pretest sample chilling, pretest purging, and test pressure. Tests on a variety of solvents exhibiting a range of volatilities are presented in this paper. A proposed improvement to the standard test protocol as a result of this evaluation is also presented. Execution of the final proposed improved test protocol outlines an incremental step method of determining optimal conditions using increased sample sizes while considering test system safety limits. The proposed improved test method increases confidence in results obtained by utilizing the ASTM G72 autogenous ignition temperature test method and can aid in the oxygen compatibility assessment of highly volatile liquids and other conditions that may lead to false non-ignition results.

  14. A bench evaluation of fraction of oxygen in air delivery and tidal volume accuracy in home care ventilators available for hospital use

    PubMed Central

    Baboi, Loredana; Subtil, Fabien

    2016-01-01

    Background Turbine-powered ventilators are not only designed for long-term ventilation at home but also for hospital use. It is important to verify their capabilities in delivering fraction of oxygen in air (FIO2) and tidal volume (VT). Methods We assessed the FIO2 accuracy and the VT delivery in four home care ventilators (HCV) on the bench. The four HCV were Astral 150, Elisée 150, Monnal T50 and Trilogy 200 HCV, which were connected to a lung model (ASL 5000). For assessing FIO2 accuracy, lung model was set to mimic an obstructive lung and HCV were set in volume controlled mode (VC). They supplied with air, 3 or 15 L/min oxygen and FIO2 was measured by using a ventilator tester (Citrex H4TM). For the VT accuracy, the lung model was set in a way to mimic three adult configurations (normal, obstructive, or restrictive respiratory disorder) and one pediatric configuration. Each HCV was set in VC. Two VT (300 and 500 mL) in adult lung configuration and one 50 mL VT in pediatric lung configuration, at two positive end expiratory pressures 5 and 10 cmH2O, were tested. VT accuracy was measured as volume error (the relative difference between set and measured VT). Statistical analysis was performed by suing one-factor ANOVA with a Bonferroni correction for multiple tests. Results For Astral 150, Elisée 150, Monnal T50 and Trilogy 200, FIO2 averaged 99.2%, 93.7%, 86.3%, and 62.1%, respectively, at 15 L/min oxygen supplementation rate (P<0.001). Volume error was 0.5%±0%, −38%±0%, −9%±0%, −29%±0% and −36%±0% for pediatric lung condition (P<0.001). In adult lung configurations, Monnal T50 systematically over delivered VT and Trilogy 150 was sensitive to lung configuration when VT was set to 300 mL at either positive end-expiratory pressure (PEEP). Conclusions HCV are different in terms of FIO2 efficiency and VT delivery. PMID:28149559

  15. Accelerating change: Fostering innovation in healthcare delivery at academic medical centers.

    PubMed

    Ostrovsky, Andrey; Barnett, Michael

    2014-03-01

    Academic medical centers (AMCs) have the potential to be leaders in the era of healthcare delivery reform, but most have yet to display a commitment to delivery innovation on par with their commitment to basic research. Several institutional factors impede delivery innovation including the paucity of adequate training in design and implementation of new delivery models and the lack of established pathways for academic career advancement outside of research. This paper proposes two initiatives to jumpstart disruptive innovation at AMCs: an institutional "innovation incubator" program and a clinician-innovator career track coupled with innovation training programs. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Implementation of an oxygen therapy clinic to manage users of long-term oxygen therapy.

    PubMed

    Chaney, John C; Jones, Kevin; Grathwohl, Kurt; Olivier, Kenneth N

    2002-11-01

    decrease inappropriate supplemental oxygen use, which can result in significant cost savings while providing improved health-care delivery. Further evaluation is necessary to identify the long-term benefits and cost savings in this population.

  17. Smart Drug Delivery Systems in Cancer Therapy.

    PubMed

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Role of hemoglobin and capillarization for oxygen delivery and extraction in muscular exercise.

    PubMed

    Saltin, B; Kiens, B; Savard, G; Pedersen, P K

    1986-01-01

    Through the years the role of the various links in the transport of oxygen in the human body has been discussed extensively, and especially whether one of these links could be singled out as limiting oxygen uptake during exercise. In his thesis work Lars Hermansen dealt with several of these variables related to oxygen transport and uptake. Two of these were the hemoglobin concentration of the blood (Hb) and skeletal muscle capillarization. These are the focus of this article. It can be demonstrated that variation in arterial oxygen content due to different Hb concentrations is fully compensated for at the level of the muscle, i.e. the amount of oxygen delivered to contracting muscles is adjusted by a variation in the blood flow so that it is the same regardless of Hb concentration in the range of 118-172 g X l-1. At the systemic level, with a large fraction of the muscle exercising, this causes an increase in submaximal heart rate and a lowering in maximal oxygen uptake in people with low as compared to normal or high Hb concentration. The primary significance of an enlarged capillary network in the muscle does not appear to be for accommodating a larger flow, but rather to allow for a long enough mean transit time and large enough surface area for optimal exchange of gases, substrates and metabolites.

  19. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    PubMed

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  20. Improved Arterial Blood Oxygenation Following Intravenous Infusion of Cold Supersaturated Dissolved Oxygen Solution

    PubMed Central

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    BACKGROUND One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. METHODS Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer’s lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. RESULTS Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. CONCLUSIONS A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model. PMID:25249764

  1. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  2. Hyperbaric oxygen therapy and preconditioning for ischemic and hemorrhagic stroke.

    PubMed

    Hu, Sheng-Li; Feng, Hua; Xi, Guo-Hua

    2016-01-01

    To date, the therapeutic methods for ischemic and hemorrhagic stroke are still limited. The lack of oxygen supply is critical for brain injury following stroke. Hyperbaric oxygen (HBO), an approach through a process in which patients breathe in 100% pure oxygen at over 101 kPa, has been shown to facilitate oxygen delivery and increase oxygen supply. Hence, HBO possesses the potentials to produce beneficial effects on stroke. Actually, accumulated basic and clinical evidences have demonstrated that HBO therapy and preconditioning could induce neuroprotective functions via different mechanisms. Nevertheless, the lack of clinical translational study limits the application of HBO. More translational studies and clinical trials are needed in the future to develop effective HBO protocols.

  3. Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2016-03-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28+/-0.08 μL/min (p<0.001), and 0.20+/-0.04 μL/min (p<0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).

  4. Quadriceps oxygenation during isometric exercise in sailing.

    PubMed

    Vogiatzis, I; Tzineris, D; Athanasopoulos, D; Georgiadou, O; Geladas, N

    2008-01-01

    The aim of the present study was to investigate why blood lactate after prolonged quadriceps contraction during hiking is only marginally increased. Eight sailors performed five 3-min hiking bouts interspersed with 5-s recovery periods. Whole body oxygen uptake, heart rate and lactate were recorded, along with continuous-wave near-infrared spectroscopy measures of quadriceps oxygenation. The time for 50% re-oxygenation was also assessed as an indication of the degree of localized oxygen delivery stress. Hiking elicited a significant (p = 0.001) increase in mean (+/- SD) heart rate (124 +/- 10 beats . min (-1)) which was accompanied by a disproportionately low oxygen uptake (12 +/- 2 ml.kg(-1).min(-1)). Lactate was significantly (p = 0.001) increased throughout hiking manoeuvres, though post-exercise it remained low (3.2 +/- 0.9 mmol.l(-1)). During the hiking bouts mean quadriceps oxygenation was significantly (p = 0.001) reduced compared to baseline (by 33 +/- 5%), indicating an imbalance between muscle oxygen accessibility and oxygen demand. During rest intervals quadriceps oxygenation was partially restored. After the end of the final bout the time for 50 % re-oxygenation was only 8 +/- 2 s, whereas recovery of quadriceps oxygenation and oxygen uptake was completed within 3 min. We conclude that the observed low lactate could be attributed to the small oxygen and energy deficits during hiking as the muscles' oxygen accessibility is presumably partially restored during the brief rest intervals.

  5. Microfluidic wound bandage: localized oxygen modulation of collagen maturation.

    PubMed

    Lo, Joe F; Brennan, Martin; Merchant, Zameer; Chen, Lin; Guo, Shujuan; Eddington, David T; DiPietro, Luisa A

    2013-01-01

    Restoring tissue oxygenation has the potential to improve poorly healing wounds with impaired microvasculature. Compared with more established wound therapy using hyperbaric oxygen chambers, topical oxygen therapy has lower cost and better patient comfort, although topical devices have provided inconsistent results. To provide controlled topical oxygen while minimizing moisture loss, a major issue for topical oxygen, we have devised a novel wound bandage based on microfluidic diffusion delivery of oxygen. In addition to modulating oxygen from 0 to 100% in 60 seconds rise time, the microfluidic oxygen bandage provides a conformal seal around the wound. When 100% oxygen is delivered, it penetrates wound tissues as measured in agar phantom and in vivo wounds. Using this microfluidic bandage, we applied the oxygen modulation to 8 mm excisional wounds prepared on diabetic mice. Treatment with the microfluidic bandage demonstrated improved collagen maturity in the wound bed, although only marginal differences were observed in total collagen, microvasculature, and external closure rates. Our results show that proper topical oxygen can improve wound parameters underneath the surface. Because of the ease of fabrication, the oxygen bandage represents an economical yet practical method for oxygen wound research. © 2013 by the Wound Healing Society.

  6. Oxygen generation by combined electrolysis and fuel-cell technology: clinical use in COPD patients requiring long time oxygen therapy.

    PubMed

    Hirche, T O; Born, T; Jungblut, S; Sczepanski, B; Kenn, K; Köhnlein, T; Hirche, H; Wagner, T O

    2008-10-27

    Oxy-Gen lite, a recently developed combined electrolysis and fuel cell technology, de-novo generates oxygen with high purity for medical use from distilled water and room air. However, its use in patients with chronic respiratory failure has never been evaluated. To test the clinical applicability and safety of Oxy-Gen lite technology, we enrolled 32 COPD patients with chronic hypoxemia and long-term oxygen therapy (LTOT) in a controlled, randomized, multicenter clinical trial. Standard continuous oxygen therapy with a maximal flow rate of 2 L/min was tested against pulsatile oxygen delivery by Oxy-Gen lite. Oxygen saturation at seated-rest was recorded over 30 min and used as a primary read-out parameter. Oxygen saturation was also recorded during mild physical strain (speaking out loud) or overnight's sleep. Both methods of oxygen supply established oxygen saturations within the normal range (i.e., upper plateau of the sigmoid oxyhaemoglobin dissociation curve) compared to breathing room air (p<0.0001). Mean oxygen saturation under standard continuous oxygen flow or Oxy-Gen lite technology during rest, physical strain or sleep proved statistically equivalent (95%CI<2.5% of reference saturation). The use of Oxy-Gen lite in COPD patients with hypoxemia and LTOT oxygen saturation comparable to standard oxygen therapy. There is evidence that this form of oxygen supply is not only functional during rest but also during mild physical strain or overnight's sleep. Low noise, energy- and overhead-costs are particular advantages of this technology.

  7. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans.

    PubMed

    Beltrame, T; Hughson, R L

    2017-05-01

    What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O 2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non

  8. Patterns of dissolved oxygen dynamics in a Pacific Northwest slough and tide channel - CERF 2015

    EPA Science Inventory

    Pacific Northwest (PNW) estuaries and tide channels are habitats or migratory corridors for societally prized salmonids. These fish have high oxygen requirements, and an adequate level of dissolved oxygen is considered an important gauge of a PNW water body’s condition. W...

  9. Hyperthermic overdrive: oxygen delivery does not limit thermal tolerance in Drosophila melanogaster.

    PubMed

    Mölich, Andreas B; Förster, Thomas D; Lighton, John R B

    2012-01-01

    The causes of thermal tolerance limits in animals are controversial. In many aquatic species, it is thought that the inability to deliver sufficient oxygen at high temperatures is more critical than impairment of molecular functions of the mitochondria. However, terrestrial insects utilize a tracheal system, and the concept of a mismatch between metabolic demand and circulatory performance might not apply to them. Using thermo-limit respirometry, it has been shown earlier in Drosophila melanogaster that CO(2) release rates at temperatures above the upper thermal limit (CT(max)) exceed the rate at CT(max). The nature of this post-CT(max), or "post-mortal" peak, is unknown. Either its source is increased aerobic mitochondrial respiration (hyperthermic overdrive), or an anaerobic process such as liberation of stored CO(2) from the hemolymph. The post-mortal peak of CO(2) release was found to be oxygen dependent. As the rate of CO(2) emission is a conservative indicator of rate of O(2) consumption, aerobic flux at the thermal limit is submaximal, which contradicts the theory that oxygen availability limits metabolic activity at high temperatures in insects. Consequently, the tracheal system should be capable of delivering sufficient oxygen for aerobic activity of the mitochondria at and above Ct(max).

  10. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    NASA Astrophysics Data System (ADS)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  11. Oxygen, ecology, and the Cambrian radiation of animals

    PubMed Central

    Sperling, Erik A.; Frieder, Christina A.; Raman, Akkur V.; Girguis, Peter R.; Levin, Lisa A.; Knoll, Andrew H.

    2013-01-01

    The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator–prey “arms races” can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation. PMID:23898193

  12. Oxygen, ecology, and the Cambrian radiation of animals

    NASA Astrophysics Data System (ADS)

    Sperling, Erik A.; Frieder, Christina A.; Raman, Akkur V.; Girguis, Peter R.; Levin, Lisa A.; Knoll, Andrew H.

    2013-08-01

    The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator-prey "arms races" can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.

  13. Monitoring the condition of the fetus during delivery.

    PubMed

    Sarvilinna, Nanna; Isaksson, Camilla; Kokljuschkin, Henrica; Timonen, Susanna; Halmesmäki, Erja

    Uterine contractions during delivery increase the resistance to flow in the blood vessels of the placenta and decreases placental blood circulation, possibly subjecting the fetus to hypoxia. Several methods have been developed for monitoring the condition of the fetus during delivery. Cardiotocography is used to monitor the fetus's heart rate and variability in relation to the mother's contractions. A change in cardiotocography recording due to stimulation of the presenting part is an indication of a healthy fetus. ST analysis of fetal ECG depicts the oxygenation of fetal cardiac muscle during delivery. In addition to cardiotocography and ST analysis, analysis of blood gases and lactate determination are used in assessing the condition of the fetus.

  14. Recent advances in oral pulsatile drug delivery.

    PubMed

    Kalantzi, Lida E; Karavas, Evangelos; Koutris, Efthimios X; Bikiaris, Dimitrios N

    2009-01-01

    Pulsatile drug delivery aims to release drugs on a programmed pattern i.e.: at appropriate time and/or at appropriate site of action. Currently, it is gaining increasing attention as it offers a more sophisticated approach to the traditional sustained drug delivery i.e: a constant amount of drug released per unit time or constant blood levels. Technically, pulsatile drug delivery systems administered via the oral route could be divided into two distinct types, the time controlled delivery systems and the site-specific delivery systems. The simplest pulsatile formulation is a two layer press coated tablet consisted of polymers with different dissolution rates. Homogenicity of the coated barrier is mandatory in order to assure the predictability of the lag time. The disadvantage of such formulation is that the rupture time cannot be always adequately manipulated as it is strongly correlated with the physicochemical properties of the polymer. Gastric retentive systems, systems where the drug is released following a programmed lag phase, chronopharmaceutical drug delivery systems matching human circadian rhythms, multiunit or multilayer systems with various combinations of immediate and sustained-release preparation, are all classified under pulsatile drug delivery systems. On the other hand, site-controlled release is usually controlled by factors such as the pH of the target site, the enzymes present in the intestinal tract and the transit time/pressure of various parts of the intestine. In this review, recent patents on pulsatile drug delivery of oral dosage forms are summarized and discussed.

  15. Studies of the Effects of Perfluorocarbon Emulsions on Platelet Number and Function in Models of Critical Battlefield Injury

    DTIC Science & Technology

    2016-09-01

    to treat traumatic injuries by enhanced delivery of oxygen . A concerned side effect of PFC may cause thrombocytopenia (TCYP). FDA requests...Morris, A., Zhu, J., Spiess, B.D., Parsons, J.T. The Effect of Perfluorocarbon Oxygen Therapeutics in a Sheep Survival Model of Severe Hemorrhagic...of effectively oxygenating sensitive tissue in the absence of adequate hemoglobin and/or blood flow. PFC emulsion volumes required for efficacy can

  16. Humidification of Blow-By Oxygen During Recovery of Postoperative Pediatric Patients: One Unit's Journey.

    PubMed

    Donahue, Suzanne; DiBlasi, Robert M; Thomas, Karen

    2018-02-02

    To examine the practice of nebulizer cool mist blow-by oxygen administered to spontaneously breathing postanesthesia care unit (PACU) pediatric patients during Phase one recovery. Existing evidence was evaluated. Informal benchmarking documented practices in peer organizations. An in vitro study was then conducted to simulate clinical practice and determine depth and amount of airway humidity delivery with blow-by oxygen. Informal benchmarking information was obtained by telephone interview. Using a three-dimensional printed simulation model of the head connected to a breathing lung simulator, depth and amount of moisture delivery in the respiratory tree were measured. Evidence specific to PACU administration of cool mist blow-by oxygen was limited. Informal benchmarking revealed that routine cool mist oxygenated blow-by administration was not widely practiced. The laboratory experiment revealed minimal moisture reaching the mid-tracheal area of the simulated airway model. Routine use of oxygenated cool mist in spontaneously breathing pediatric PACU patients is not supported. Copyright © 2017 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  17. Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing.

    PubMed

    Kaur, Indu P; Kapila, Meenakshi; Agrawal, Rumjhum

    2007-12-01

    Ageing proceeds by highly complicated biochemical processes, in which the involvement of the reactive oxygen species (ROS) and free radicals has been implicated. Reactive oxygen species are dramatically enhanced by exposure to the ultraviolet radiation. Free radical scavengers and antioxidants can thus provide a long-term protection against these changes. Currently, dermaceutical and cosmetic industry is growing immensely with its main focus on packaging the active into a suitable/novel delivery system. This not only enhances the customer acceptance but offers better targeting to the upper skin layer, with faster onset, at a lower concentration of the active. Later also counter toxic or adverse effects observed with large doses especially when administered orally. Several of the antioxidant molecules are labile to degradation in the presence of oxygen, water and light, hence it becomes all the more appropriate to use a delivery system which will augment their stability and hence enhance the performance. In the present review, we focus on the pioneering research on novel delivery systems which can promote the therapeutic value of antioxidants for combating UV-induced photoageing.

  18. [Oxygenation: the impact of face mask coupling.].

    PubMed

    Gregori, Waldemar Montoya de; Mathias, Lígia Andrade da Silva Telles; Piccinini Filho, Luiz; Pena, Ernesto Leonardo de Carpio; Vicuna, Aníbal Heberto Mora; Vieira, Joaquim Edson

    2005-10-01

    Different oxygenation techniques aim at promoting denitrogenation before apnea during induction. The main reason why CIO2 = 100% cannot be reached is the lack of adequate face mask coupling, allowing the entry of room air. Although anesthesiologists know this principle, not all of them apply it correctly, facilitating the entry of air in fresh gases flow and consequently diluting CIO2. This prospective study was performed to comparatively evaluate, through the variation of oxygen expired concentration (CEO2), the efficacy of the oxygenation technique via face mask in the conditions routinely used by anesthesiologists, simulating situations of progressive leaks. Oxygen end-tidal concentrations of 15 volunteers, physical status ASA I, were studied with 8 deep breaths (vital capacity) in 60 s with fresh gas flow of 10 L.min-1. The face mask was: tightly fitted with 100% CIO2 (Tf100) or varying from 50% to 90%, (Tf50, Tf60, Tf70, Tf80, Tf90); gravity-coupled to face and 100% CIO2 (Grav) and moved 1 cm away from face with 100% CIO2 (Aw). CEO2 was recorded at 10 s intervals. P < 0.05 was considered statistically significant. CEO2 has increased for all groups (p < 0.001), but only Tf100 reached values close to ideal (82.20 - 87). Comparing mean CEO2 of Grav and Tf100 at the end of 60s, (82.20 and 65.87) there was a difference of approximately 20% between both techniques, since gravity-coupled mask only did not provide adequate oxygenation. There were no significant differences between groups Tf70 and Grav (65.87 and 62.67) in all studied moments, suggesting that the latter simulates a 70% CIO2 at 60 s. Mean Aw group CEO2 increased to 47.20 at 60s showing that this technique may be associated to unacceptable risk of hypoxemia. All situations of face mask coupling gradually increased CEO2, although with decreased oxygenation efficacy due to situations of face mask malposition. This study has shown the need for attention during oxygenation, using well coupled face mask and

  19. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  20. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  1. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  2. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  3. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  4. Extra permeability is required to model dynamic oxygen measurements: evidence for functional recruitment?

    PubMed Central

    Barrett, Matthew JP; Suresh, Vinod

    2013-01-01

    Neural activation triggers a rapid, focal increase in blood flow and thus oxygen delivery. Local oxygen consumption also increases, although not to the same extent as oxygen delivery. This ‘uncoupling' enables a number of widely-used functional neuroimaging techniques; however, the physiologic mechanisms that govern oxygen transport under these conditions remain unclear. Here, we explore this dynamic process using a new mathematical model. Motivated by experimental observations and previous modeling, we hypothesized that functional recruitment of capillaries has an important role during neural activation. Using conventional mechanisms alone, the model predictions were inconsistent with in vivo measurements of oxygen partial pressure. However, dynamically increasing net capillary permeability, a simple description of functional recruitment, led to predictions consistent with the data. Increasing permeability in all vessel types had the same effect, but two alternative mechanisms were unable to produce predictions consistent with the data. These results are further evidence that conventional models of oxygen transport are not sufficient to predict dynamic experimental data. The data and modeling suggest that it is necessary to include a mechanism that dynamically increases net vascular permeability. While the model cannot distinguish between the different possibilities, we speculate that functional recruitment could have this effect in vivo. PMID:23673433

  5. [Delivery of the IUGR fetus].

    PubMed

    Perrotin, F; Simon, E G; Potin, J; Laffon, M

    2013-12-01

    The purpose of this paper is to review available data regarding the management of delivery in intra uterine growth retarded fetuses and try to get recommendations for clinical obstetrical practice. Bibliographic research performed by consulting PubMed database and recommendations from scientific societies with the following words: small for gestational age, intra-uterine growth restriction, fetal growth restriction, very low birth weight infants, as well as mode of delivery, induction of labor, cesarean section and operative delivery. The diagnosis of severe IUGR justifies the orientation of the patient to a referral centre with all necessary resources for very low birth weight or premature infants Administration of corticosteroids for fetal maturation (before 34 WG) and a possible neuroprotective treatment by with magnesium sulphate (before 32-33 WG) should be discussed. Although elective caesarean section is common, there is no current evidence supporting the use of systematic cesarean section, especially when the woman is in labor. Induction of labor, even with unfavorable cervix is possible under continuous FHR monitoring, in favorable obstetric situations and in the absence of severe fetal hemodynamic disturbances. Instrumental delivery and routine episiotomy are not recommended. For caesarean section under spinal anesthesia, an adequate anesthetic management must ensure the maintenance of basal blood pressure. Compared with appropriate for gestational age fetus, IUGR fetus is at increased risk of metabolic acidosis or perinatal asphyxia during delivery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. CONSTRUCTION OF AN OXYGEN CHAMBER FOR THE TREATMENT OF PNEUMONIA

    PubMed Central

    Stadie, William C.

    1922-01-01

    1. The construction of an oxygen chamber is given. This chamber can be quickly filled with oxygen to any concentration up to 65 per cent and maintained at the desired concentration for an indefinite time. 2. The construction of ventilating system, cooling device, carbon dioxide remover, automatic oxygen analyzer, and filling and maintenance devices is given. 3. The chamber is designed so that pneumonia patients with anoxemia may be placed in it and breathe an atmosphere containing 40 to 60 per cent of oxygen. 4. The chamber is easy of ingress and egress, is economical in cost of operation, and comfortably accomodates patient and attendants so that adequate nursing and medical attention can be given at all times. PMID:19868609

  7. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  8. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  9. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  10. Airline policy for passengers requiring supplemental in-flight oxygen.

    PubMed

    Walker, Jacqueline; Kelly, Paul T; Beckert, Lutz

    2009-05-01

    The aim of this study was to investigate the current Australian/New Zealand airline policy on supplemental in-flight oxygen for passengers with lung disease. Fifty-four commercial airlines servicing international routes were surveyed. Information was gathered from airline call centres and web sites. The survey documented individual airline policy on in-flight oxygen delivery, approval schemes, equipment and cost. Of the 54 airlines contacted, 43 (81%) were able to support passengers requiring in-flight oxygen. The majority (88%) of airlines provided a cylinder for passengers to use. Airline policy for calculating the cost of in-flight oxygen differed considerably between carriers. Six (14%) airlines supplied oxygen to passengers free of charge; however, three of these airlines charged for an extra seat. Fifteen airlines (35%) charged on the basis of oxygen supplied, that is, per cylinder. Fourteen airlines (33%) had a flat rate charge per sector. This study confirmed that most airlines can accommodate passengers requiring supplemental oxygen. However, the findings highlight inconsistencies in airline policies and substantial cost differences for supplemental in-flight oxygen. We advocate an industry standardization of policy and cost of in-flight oxygen.

  11. A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood.

    PubMed

    Lee, Chang-Joon; Ngo, Jennifer P; Kar, Saptarshi; Gardiner, Bruce S; Evans, Roger G; Smith, David W

    2017-08-01

    To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as "Strahler" orders) of the preglomerular renal vasculature in the rat, with an analysis of an extensive data set obtained using light microscopy to estimate oxygen mass transfer coefficients for each Strahler order. Furthermore, the AV shunting model is now set within a global oxygen transport model that includes transport from arteries, glomeruli, peritubular capillaries, and veins to tissue. While a number of lines of evidence suggest AV shunting is significant, most importantly, our AV oxygen shunting model predicts AV shunting is small under normal physiological conditions (~0.9% of total renal oxygen delivery; range 0.4-1.4%), but increases during renal ischemia, glomerular hyperfiltration (~2.1% of total renal oxygen delivery; range 0.84-3.36%), and some cardiovascular disease states (~3.0% of total renal oxygen delivery; range 1.2-4.8%). Under normal physiological conditions, blood Po 2 is predicted to fall by ~16 mmHg from the root of the renal artery to glomerular entry, with AV oxygen shunting contributing ~40% and oxygen diffusion from arteries to tissue contributing ~60% of this decline. Arterial Po 2 is predicted to fall most rapidly from Strahler order 4 , under normal physiological conditions. We conclude that AV oxygen shunting normally has only a small impact on renal oxygenation, but may exacerbate renal hypoxia during renal ischemia, hyperfiltration, and some cardiovascular disease states. Copyright © 2017 the American Physiological Society.

  12. Intravascular ATP and the regulation of blood flow and oxygen delivery in humans.

    PubMed

    Crecelius, Anne R; Kirby, Brett S; Dinenno, Frank A

    2015-01-01

    Regulation of vascular tone is a complex response that integrates multiple signals that allow for blood flow and oxygen supply to match oxygen demand appropriately. Here, we discuss the potential role of intravascular adenosine triphosphate (ATP) as a primary factor in these responses and put forth the hypothesis that deficient ATP release contributes to impairments in vascular control exhibited in aged and diseased populations.

  13. The 30-second rule: the effects of prolonged intubation attempts on oxygen saturation and heart rate in preterm infants in the delivery room.

    PubMed

    Wozniak, Madeline; Arnell, Kathy; Brown, Melissa; Gonzales, Sarah; Lazarus, Danielle; Rich, Wade; Katheria, Anup

    2018-04-01

    A duration of 30 seconds has been shown to improve the success rate of intubation attempts without any decompensation. There is limited data regarding the detrimental effects of prolonged intubation attempts in preterm infants. The aim was to determine the effect of prolonged intubation attempts on heart rate and oxygen saturation in preterm infants. We retrospectively reviewed videos and physiologic data collected during delivery room (DR) resuscitations. Infants who had a functioning pulse oximeter at the time of intubation in the delivery room were analyzed using video and analog recordings. The duration of the intubation attempt was defined as the time the laryngoscope blade was in the infant's mouth. Prolonged intubations were defined as intubations over 30 seconds. Baseline heart rate and saturations were defined as the heart rate and saturation immediately prior to the intubation attempt. Video recording was used to determine time laryngoscope was in the mouth, what other procedures were performed, and whether there was recovery between attempts. Analog data including heart rate, airway pressure and saturation was also recorded. There were 52 intubation attempts in 28 infants. The median (IQR) birth weight and gestational age were 795 (705, 972) grams and 25 (25, 27) weeks. The duration of an intubation attempt was 35 (27, 46) seconds with number of attempts 2 (1, 2). There were 34 intubation attempts greater than 30 seconds (prolonged group) and 18 attempts less than or equal to 30 seconds (short group). Longer attempts did not affect intubation success (successful 34 [25,37] seconds vs. unsuccessful 41[29, 53] seconds; P=0.05). Infants in the prolonged group had a greater decrease in oxygen saturation percentage from baseline (5±8 percent, short intubation group and 13±27 prolonged intubation group; P=0.004). There was also a significant decrease in heart rate beats per minute between the two groups (6±9 in the short intubation group and 23±29

  14. Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock.

    PubMed

    Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong

    2015-11-01

    The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.

  15. Patient injuries from anesthesia gas delivery equipment: a closed claims update.

    PubMed

    Mehta, Sonya P; Eisenkraft, James B; Posner, Karen L; Domino, Karen B

    2013-10-01

    Improvements in anesthesia gas delivery equipment and provider training may increase patient safety. The authors analyzed patient injuries related to gas delivery equipment claims from the American Society of Anesthesiologists Closed Claims Project database over the decades from 1970s to the 2000s. After the Institutional Review Board approval, the authors reviewed the Closed Claims Project database of 9,806 total claims. Inclusion criteria were general anesthesia for surgical or obstetric anesthesia care (n = 6,022). Anesthesia gas delivery equipment was defined as any device used to convey gas to or from (but not involving) the airway management device. Claims related to anesthesia gas delivery equipment were compared between time periods by chi-square test, Fisher exact test, and Mann-Whitney U test. Anesthesia gas delivery claims decreased over the decades (P < 0.001) to 1% of claims in the 2000s. Outcomes in claims from 1990 to 2011 (n = 40) were less severe, with a greater proportion of awareness (n = 9, 23%; P = 0.003) and pneumothorax (n = 7, 18%; P = 0.047). Severe injuries (death/permanent brain damage) occurred in supplemental oxygen supply events outside the operating room, breathing circuit events, or ventilator mishaps. The majority (85%) of claims involved provider error with (n = 7) or without (n = 27) equipment failure. Thirty-five percent of claims were judged as preventable by preanesthesia machine check. Gas delivery equipment claims in the Closed Claims Project database decreased in 1990-2011 compared with earlier decades. Provider error contributed to severe injury, especially with inadequate alarms, improvised oxygen delivery systems, and misdiagnosis or treatment of breathing circuit events.

  16. Impact of renal medullary three-dimensional architecture on oxygen transport.

    PubMed

    Fry, Brendan C; Edwards, Aurélie; Sgouralis, Ioannis; Layton, Anita T

    2014-08-01

    We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (PO2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial PO2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal PO2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the

  17. Part-2: Analytical Expressions of Concentrations of Glucose, Oxygen, and Gluconic Acid in a Composite Membrane for Closed-Loop Insulin Delivery for the Non-steady State Conditions.

    PubMed

    Mehala, N; Rajendran, L; Meena, V

    2017-02-01

    A mathematical model developed by Abdekhodaie and Wu (J Membr Sci 335:21-31, 2009), which describes a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose-sensitive composite membrane has been discussed. This theoretical model depicts a system of non-linear non-steady state reaction diffusion equations. These equations have been solved using new approach of homotopy perturbation method and analytical solutions pertaining to the concentrations of glucose, oxygen, and gluconic acid are derived. These analytical results are compared with the numerical results, and limiting case results for steady state conditions and a good agreement is observed. The influence of various kinetic parameters involved in the model has been presented graphically. Theoretical evaluation of the kinetic parameters like the maximal reaction velocity (V max ) and Michaelis-Menten constants for glucose and oxygen (K g and K ox ) is also reported. This predicted model is very much useful for designing the glucose-responsive composite membranes for closed-loop insulin delivery.

  18. Can Earth Materials BE Adequately Covered in a - or Two-Semester Course?

    NASA Astrophysics Data System (ADS)

    Hefferan, K. P.; O'Brien, J.

    2007-12-01

    Traditional geology programs offer courses in mineralogy, optical mineralogy, igneous petrology, metamorphic petrology, sedimentology and economic geology. At many universities this suite of mineralogy/petrology courses has been supplanted by a one-semester or two-semester Earth Materials course. This interactive poster poses five questions to faculty and students related to the means by which Earth Materials can be delivered: 1) Available online syllabi demonstrate a wide variation in the topics addressed in Earth Materials courses; is there a standard core of key topics that must be covered and in what level of detail? 2) Can a one-semester or two- semester Earth Materials course adequately cover these topics? 3) Excellent textbooks exist in both mineralogy and in petrology; what textbooks, if any, adequately encompass Earth Materials? 4) How has the online environment changed the way in which we use textbooks in the classroom? 5) Given the evolution of geology programs, higher education and the global economy in the past twenty years, what additional changes can be anticipated with respect to delivery and demand of Earth Materials topics? Answers-- or at least related discussions-- to these questions are encouraged via verbal dialogue among participants and/or by comments written on the poster. Our goal is to solicit faculty, student and industry feedback to create a textbook, curricula and online materials that support an Earth Materials course.

  19. A simplified concept for controlling oxygen mixtures in the anaesthetic machine--better, cheaper and more user-friendly?

    PubMed

    Berge, J A; Gramstad, L; Grimnes, S

    1995-05-01

    Modern anaesthetic machines are equipped with several safety components to prevent delivery of hypoxic mixtures. However, such a technical development has increased the complexity of the equipment. We report a reconstructed anaesthetic machine in which a paramagnetic oxygen analyzer has provided the means to simplify the apparatus. The new machine is devoid of several components conventionally included to prevent hypoxic mixtures: oxygen failure protection device, reservoir O2 alarm, N2O/air selector, and proportioning system for oxygen/nitrous oxide delivery. These devices have been replaced by a simple safety system using a paramagnetic oxygen analyzer at the common gas outlet, which in a feed-back system cuts off the supply of nitrous oxide whenever the oxygen concentration falls below 25%. The simplified construction of the anaesthetic machine has important consequences for safety, cost and user-friendliness. Reducing the complexity of the construction also simplifies the pre-use checkout procedure, and an efficient 5-point check list is presented for the new machine.

  20. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    NASA Astrophysics Data System (ADS)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  1. The role of oxygen-associated therapies for the healing of chronic wounds, particularly in patients with diabetes.

    PubMed

    Brimson, C H; Nigam, Y

    2013-04-01

    This paper discusses the role of molecular oxygen as an aid to wound healing, and the potential value of the three major therapies which allow the delivery of oxygen to the wound site: Hyperbaric Oxygen Therapy (HBOT), Topical Oxygen Therapy (TOT) and a new sterile wound dressing, Oxyzyme™. We summarize studies which have been undertaken using these interventions, and discuss their reported effect on chronic, non-healing wounds, in particular, on ulcers associated with Diabetes. The main conclusions drawn from the studies reviewed indicate that therapeutic oxygen can be used as an aid to the healing of chronic wounds; and benefits are clearly evident with the use of both HBOT and TOT. There is also potential for the use of a new, portable, topical oxygen delivery system, oxyzyme. However its use is still embryonic and studies on its effectiveness are limited. More robust measures of its efficacy are urgently needed. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  2. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  3. Retinal oxygen distribution and the role of neuroglobin.

    PubMed

    Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M

    2016-07-01

    The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.

  4. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  5. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.

  6. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    PubMed

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  7. Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements.

    PubMed

    Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W

    2015-06-01

    What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically

  8. Oxygen partial pressure effects on metabolic rate and behavior of tethered flying locusts.

    PubMed

    Rascón, Brenda; Harrison, Jon F

    2005-11-01

    Resting insects are extremely tolerant of hypoxia. However, oxygen requirements increase dramatically during flight. Does the critical atmospheric P (O)(2) (P(c)) increase strongly during flight, or does increased tracheal conductance allow even flying insects to possess large safety margins for oxygen delivery? We tested the effect of P(O)(2) on resting and flying CO(2) emission, as well as on flight behavior and vertical force production in flying locusts, Schistocerca americana. The P(c) for CO(2) emission of resting animals was less than 1 kPa, similar to prior studies. The P(c) for flight bout duration was between 10 and 21 kPa, the P(c) for vertical force production was between 3 and 5 kPa, and the P(c) for CO(2) emission was between 10 and 21 kPa. Our study suggests that the P(c) for steady-state oxygen consumption is between 10 and 21 kPa (much higher than for resting animals), and that tracheal oxygen stores allowed brief flights in 5 and 10 kPa P(O)(2) atmospheres to occur. Thus, P(c) values strongly increased during flight, consistent with the hypothesis that the excess oxygen delivery capacity observed in resting insects is substantially reduced during flight.

  9. Transtracheal oxygen and positive airway pressure: A salvage technique in overlap syndrome.

    PubMed

    Biscardi, Frank Hugo; Rubio, Edmundo Raul

    2014-01-01

    The coexistence of sleep apnea-hypopnea syndrome (SAHS) with chronic obstructive pulmonary disease (COPD) occurs commonly. This so called overlap syndrome leads to more profound hypoxemia, hypercapnic respiratory failure, and pulmonary hypertension than each of these conditions independently. Not infrequently, these patients show profound hypoxemia, despite optimal continuous positive airway pressure (CPAP) therapy for their SAHS. We report a case where CPAP therapy with additional in-line oxygen supplementation failed to accomplish adequate oxygenation. Adding transtracheal oxygen therapy (TTOT) to CPAP therapy provided better results. We review the literature on transtracheal oxygen therapy and how this technique may play a significant role in these complicated patients with overlap syndrome, obviating the need for more invasive procedures, such as tracheostomy.

  10. Early Oxygen-Utilization and Brain Activity in Preterm Infants

    PubMed Central

    de Vries, Linda S.; Groenendaal, Floris; Toet, Mona C.; Lemmers, Petra M. A.; Vosse van de, Renè E.; van Bel, Frank; Benders, Manon J. N. L.

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343

  11. Microvascular oxygen consumption during sickle cell pain crisis.

    PubMed

    Rowley, Carol A; Ikeda, Allison K; Seidel, Miles; Anaebere, Tiffany C; Antalek, Matthew D; Seamon, Catherine; Conrey, Anna K; Mendelsohn, Laurel; Nichols, James; Gorbach, Alexander M; Kato, Gregory J; Ackerman, Hans

    2014-05-15

    Sickle cell disease is an inherited blood disorder characterized by chronic hemolytic anemia and episodic vaso-occlusive pain crises. Vaso-occlusion occurs when deoxygenated hemoglobin S polymerizes and erythrocytes sickle and adhere in the microvasculature, a process dependent on the concentration of hemoglobin S and the rate of deoxygenation, among other factors. We measured oxygen consumption in the thenar eminence during brachial artery occlusion in sickle cell patients and healthy individuals. Microvascular oxygen consumption was greater in sickle cell patients than in healthy individuals (median [interquartile range]; sickle cell: 0.91 [0.75-1.07] vs healthy: 0.75 [0.62-0.94] -ΔHbO2/min, P < .05) and was elevated further during acute pain crisis (crisis: 1.10 [0.78-1.30] vs recovered: 0.88 [0.76-1.03] -ΔHbO2/min, P < .05). Increased microvascular oxygen consumption during pain crisis could affect the local oxygen saturation of hemoglobin when oxygen delivery is limiting. Identifying the mechanisms of elevated oxygen consumption during pain crisis might lead to the development of new therapeutic interventions. This trial was registered at www.clinicaltrials.gov as #NCT01568710.

  12. Targeted delivery of growth factors in ischemic stroke animal models.

    PubMed

    Rhim, Taiyoun; Lee, Minhyung

    2016-01-01

    Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.

  13. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    PubMed

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  14. An evolutionary approach to the architecture of effective healthcare delivery systems.

    PubMed

    Towill, D R; Christopher, M

    2005-01-01

    Aims to show that material flow concepts developed and successfully applied to commercial products and services can form equally well the architectural infrastructure of effective healthcare delivery systems. The methodology is based on the "power of analogy" which demonstrates that healthcare pipelines may be classified via the Time-Space Matrix. A small number (circa 4) of substantially different healthcare delivery pipelines will cover the vast majority of patient needs and simultaneously create adequate added value from their perspective. The emphasis is firmly placed on total process mapping and analysis via established identification techniques. Healthcare delivery pipelines must be properly engineered and matched to life cycle phase if the service is to be effective. This small family of healthcare delivery pipelines needs to be designed via adherence to very specific-to-purpose principles. These vary from "lean production" through to "agile delivery". The proposition for a strategic approach to healthcare delivery pipeline design is novel and positions much currently isolated research into a comprehensive organisational framework. It therefore provides a synthesis of the needs of global healthcare.

  15. Time Duration of Oxygen Adaptation Immediately after Birth; Monitoring by Pulse Oximeter in Perinatal Period of the Infants at Charoenkrung Pracharak Hospital.

    PubMed

    Suwattanaphim, Suparach; Yodavuhd, Sirisanpang; Puangsa-art, Supalarp

    2015-07-01

    Oxygen Saturation is one of the important data to determine patient status and worldwide applied in several situations. Evaluation about status of immediate perinatal period of the infant usually uses clinical assessment, Apgar scoring, which had been used for a long time without other scientific measurement. Pulse oximeter the non-invasive measurement of oxygen saturation, may play role for oxygen saturation evaluation in newborn that immediately change from intra to extra uterine environment. Monitoring the time duration that immediately born infants by normal labor or Cesarean section modes, used to archived target oxygen saturation (SpO) and looking for the other factors that influence oxygen saturation adaptation. The data of the 553 infants born in Charoenkrung Pracharak Hospital, Bangkok, Thailand between October 2012 and April 2013 were collected. The 204 healthy newborns that met all criteria were studied. All infants were recorded pulse oximeter from the second to the tenth minute after birth. They were grouped by several factors such as maternal gravidity, gestational age, mode of delivery, Apgar score, birth weight, and sex. Time interval to achieve target oxygen saturation (SpO2 ≥ 90%) was collected for analysis. The oxygen saturation of infants immediately after birth showed an increase. Median time interval was 6.5 (2-10) minutes for 90% saturation and 7 (2-10) minutes for 95% saturation, respectively. Only mode of delivery showed statistical significant time difference (p < 0.001). A Cox proportional hazards analysis of the Kaplan-Meier curves demonstrated that infants born by cesarean delivery took significantly longer time to reach a stable SpO2 ≥ 90% than infants born by vaginal delivery (95% CI = 1.28 to 2.74; p < 0.01). A newly born infant has to take 6.5 minutes (2-10) after birth to adjust their oxygen saturation to reach normal higher level of extra uterine life, median SpO2 of 90%. Furthermore, mode of delivery makes a significant

  16. In-space technology development: Atomic oxygen and orbital debris effects

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Potter, Andrew E., Jr.

    1989-01-01

    Earlier Shuttle flight experiments have shown atomic oxygen within the orbital environment can interact with many materials to produce surface recession and mass loss and combine catalytically with other constituents to generate visible and infrared glows. In addition to these effects, examinations of returned satellite hardware have shown many spacecraft materials are also susceptible to damage from high velocity impacts with orbital space debris. These effects are of particular concern for large, multi-mission spacecraft, such as Space Station and SDI operational satellites, that will operate in low-Earth orbit (LEO) during the late 1990's. Not only must these spacecraft include materials and exterior coatings that are resistant to atomic oxygen surface interactions, but these materials must also provide adequate protection against erosion and pitting that could result from numerous impacts with small particles (less than 100 microns) of orbital space debris. An overview of these concerns is presented, and activities now underway to develop materials and coatings are outlined that will provide adequate atomic protection for future spacecraft. The report also discusses atomic oxygen and orbital debris flight experiments now under development to expand our limited data base, correlate ground-based measurments with flight results, and develop an orbital debris collision warning system for use by future spacecraft.

  17. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach

    PubMed Central

    Patel, Rachana; Ladusingh, Laishram

    2015-01-01

    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007–08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women’s residing in more urbanized districts increased the utilization. “Inter-district” variation was 14 percent whereas “between-villages” variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible

  18. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach.

    PubMed

    Patel, Rachana; Ladusingh, Laishram

    2015-01-01

    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007-08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women's residing in more urbanized districts increased the utilization. "Inter-district" variation was 14 percent whereas "between-villages" variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible considering

  19. Image-based modelling of skeletal muscle oxygenation

    PubMed Central

    Clough, G. F.

    2017-01-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo. Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange. PMID:28202595

  20. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L

    2012-10-01

    Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Retinal oxygen saturation before and after glaucoma surgery.

    PubMed

    Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka

    2017-08-01

    This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p < 0.001). Although oxygen saturation in retinal arterioles remained unchanged before and after surgery (104.7 ± 10.6% before and 105.4 ± 9.3% after surgery, p = 0.58), the oxygen saturation in the venules increased from 54.9 ± 7.4% to 57.4 ± 5.7% (p = 0.01). Intraocular pressure (IOP) decreases caused by glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  3. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  4. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  5. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  6. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  7. 2H,3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues.

    PubMed

    Prato, Mauro; Magnetto, Chiara; Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues.

  8. 2H,3H-Decafluoropentane-Based Nanodroplets: New Perspectives for Oxygen Delivery to Hypoxic Cutaneous Tissues

    PubMed Central

    Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues. PMID:25781463

  9. Oxygen, pH, and mitochondrial oxidative phosphorylation.

    PubMed

    Wilson, David F; Harrison, David K; Vinogradov, Sergei A

    2012-12-15

    The oxygen dependence of mitochondrial oxidative phosphorylation was measured in suspensions of isolated rat liver mitochondria using recently developed methods for measuring oxygen and cytochrome c reduction. Cytochrome-c oxidase (energy conservation site 3) activity of the mitochondrial respiratory chain was measured using an artificial electron donor (N,N,N',N'-tetramethyl-p-phenylenediamine) and ascorbate to directly reduce the cytochrome c, bypassing sites 1 and 2. For mitochondrial suspensions with added ATP, metabolic conditions approximating those in intact cells and decreasing oxygen pressure both increased reduction of cytochrome c and decreased respiratory rate. The kinetic parameters [K(M) and maximal rate (V(M))] for oxygen were determined from the respiratory rates calculated for 100% reduction of cytochrome c. At 22°C, the K(M) for oxygen is near 3 Torr (5 μM), 12 Torr (22 μM), and 18 Torr (32 μM) at pH 6.9, 7.4, and 7.9, respectively, and V(M) corresponds to a turnover number for cytochrome c at 100% reduction of near 80/s and is independent of pH. Uncoupling oxidative phosphorylation increased the respiratory rate at saturating oxygen pressures by twofold and decreased the K(M) for oxygen to <2 Torr at all tested pH values. Mitochondrial oxidative phosphorylation is an important oxygen sensor for regulation of metabolism, nutrient delivery to tissues, and cardiopulmonary function. The decrease in K(M) for oxygen with acidification of the cellular environment impacts many tissue functions and may give transformed cells a significant survival advantage over normal cells at low-pH, oxygen-limited environment in growing tumors.

  10. Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Madsen, Peter Teglberg; Wang, Tobias; Bayley, Mark

    2015-06-01

    Thermal sensitivity of the cardiorespiratory oxygen supply capacity has been proposed as the cardinal link underlying the upper boundary of the temperature niche in aquatic ectotherms. Here we examined the evidence for this link in two eurythermal decapods, the Giant tiger shrimp (Penaeus monodon) and the European crayfish (Astacus astacus). We found that both species have a temperature resistant cardiorespiratory system, capable of maintaining oxygen delivery up to their upper critical temperature (Tcrit). In neither species was Tcrit reduced in hypoxia (60% air saturation) and both species showed an exponential increase in heart and gill ventilation rates up to their Tcrit. Further, failure of action potential conduction in preparations of A. astacus motor neurons coincided with Tcrit, indicating that compromised nervous function may provide the underlying determinant for Tcrit rather than oxygen delivery. At high temperatures, absolute aerobic scope was maintained in P. monodon, but reduced in A. astacus. However, A. astacus also displayed reduced exercise intensity indicating that impaired muscle performance with resulting reduced tissue oxygen demand may explain the reduced scope rather than insufficient oxygen supply capacity. This interpretation agrees with early literature on aquatic ectotherms, correlating loss of nervous function with impaired locomotion as temperatures approach Tcrit.

  11. Orbital transfer vehicle oxygen turbopump technology. Volume 1: Design, fabrication, and hydrostatic bearing testing

    NASA Technical Reports Server (NTRS)

    Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.

    1990-01-01

    The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.

  12. Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy.

    PubMed

    Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya

    2014-01-01

    Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning

  13. [Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy].

    PubMed

    Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya

    2014-01-01

    Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning

  14. Maternal oxygen delivery is not related to altitude- and ancestry-associated differences in human fetal growth

    PubMed Central

    Zamudio, Stacy; Postigo, Lucrecia; Illsley, Nicholas P; Rodriguez, Carmelo; Heredia, Gladys; Brimacombe, Michael; Echalar, Lourdes; Torricos, Tatiana; Tellez, Wilma; Maldonado, Ivan; Balanza, Elfride; Alvarez, Tatiana; Ameller, Julio; Vargas, Enrique

    2007-01-01

    Fetal growth is reduced at high altitude, but the decrease is less among long-resident populations. We hypothesized that greater maternal uteroplacental O2 delivery would explain increased fetal growth in Andean natives versus European migrants to high altitude. O2 delivery was measured with ultrasound, Doppler and haematological techniques. Participants (n= 180) were pregnant women of self-professed European or Andean ancestry living at 3600 m or 400 m in Bolivia. Ancestry was quantified using ancestry-informative single nucleotide polymorphims. The altitude-associated decrement in birth weight was 418 g in European versus 236 g in Andean women (P < 0.005). Altitude was associated with decreased uterine artery diameter, volumetric blood flow and O2 delivery regardless of ancestry. But the hypothesis was rejected as O2 delivery was similar between ancestry groups at their respective altitudes of residence. Instead, Andean neonates were larger and heavier per unit of O2 delivery, regardless of altitude (P < 0.001). European admixture among Andeans was negatively correlated with birth weight at both altitudes (P < 0.01), but admixture was not related to any of the O2 transport variables. Genetically mediated differences in maternal O2 delivery are thus unlikely to explain the Andean advantage in fetal growth. Of the other independent variables, only placental weight and gestational age explained significant variation in birth weight. Thus greater placental efficiency in O2 and nutrient transport, and/or greater fetal efficiency in substrate utilization may contribute to ancestry- and altitude-related differences in fetal growth. Uterine artery O2 delivery in these pregnancies was 99 ± 3 ml min−1, ∼5-fold greater than near-term fetal O2 consumption. Deficits in maternal O2 transport in third trimester normal pregnancy are unlikely to be causally associated with variation in fetal growth. PMID:17510190

  15. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  16. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  17. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  18. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  19. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  20. Safety in the Chemical Laboratory: Handling of Oxygen in Research Experiments.

    ERIC Educational Resources Information Center

    Burnett, R. J.; Cole, J. E., Jr.

    1985-01-01

    Examines some of the considerations involved in setting up a typical oxygen/organic reaction. These considerations (including protection for personnel/equipment, adequate ventilation, reactor design, maximum reactor charge, operating procedures, and others) influence how the reaction is to be conducted and what compromises the scientist must…

  1. Adequate supervision for children and adolescents.

    PubMed

    Anderst, James; Moffatt, Mary

    2014-11-01

    Primary care providers (PCPs) have the opportunity to improve child health and well-being by addressing supervision issues before an injury or exposure has occurred and/or after an injury or exposure has occurred. Appropriate anticipatory guidance on supervision at well-child visits can improve supervision of children, and may prevent future harm. Adequate supervision varies based on the child's development and maturity, and the risks in the child's environment. Consideration should be given to issues as wide ranging as swimming pools, falls, dating violence, and social media. By considering the likelihood of harm and the severity of the potential harm, caregivers may provide adequate supervision by minimizing risks to the child while still allowing the child to take "small" risks as needed for healthy development. Caregivers should initially focus on direct (visual, auditory, and proximity) supervision of the young child. Gradually, supervision needs to be adjusted as the child develops, emphasizing a safe environment and safe social interactions, with graduated independence. PCPs may foster adequate supervision by providing concrete guidance to caregivers. In addition to preventing injury, supervision includes fostering a safe, stable, and nurturing relationship with every child. PCPs should be familiar with age/developmentally based supervision risks, adequate supervision based on those risks, characteristics of neglectful supervision based on age/development, and ways to encourage appropriate supervision throughout childhood. Copyright 2014, SLACK Incorporated.

  2. Vaginal delivery after previous caesarean section: is X-ray pelvimetry necessary?

    PubMed

    Thubisi, M; Ebrahim, A; Moodley, J; Shweni, P M

    1993-05-01

    To determine whether antepartum X-ray pelvimetry (XRP) reliably identified women suitable for a trial labour or repeat elective caesarean section after one previous section. A prospective controlled trial in which women were randomly allocated to either an antepartum XRP group who had XRP at 36 weeks gestation to determine mode of delivery, or a control group who had a trial labour without antepartum XRP. Following delivery, all controls had postpartum XRP. Department of Obstetrics and Gynaecology, King Edward VIII Hospital, Durban, South Africa. Three hundred-six women with a history of one previous caesarean section. Mode of delivery, birthweight and maternal and perinatal mortality and morbidity in the two groups. In the antepartum XRP group, 23 of 144 (16%) of women delivered vaginally compared with 60 of 144 (42%) controls (P < 0.0001). Of the 84 women with adequate antepartum XRP only 23 (27.7%) delivered vaginally. In the control group, 33 of 60 (55%) women who had vaginal deliveries had inadequate postpartum XRP and would have had a caesarean section if this information was known in the antepartum period; 62 of 84 (74%) caesarean sections in the control group had adequate postpartum XRP. Birthweight of the infants was similar in the two groups. There were no maternal or perinatal deaths. Maternal morbidity was similar in the two groups. Neonatal morbidity was minimal. Antepartum XRP is not necessary prior to a trial labour in women with one previous caesarean section. It increases the caesarean section rate and is a poor predictor of the outcome of labour.

  3. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond

    PubMed Central

    Chang, Thomas M. S.

    2013-01-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymermembrane. Extensions in to oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics. PMID:22409281

  4. BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS

    PubMed Central

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271

  5. Antenatal Betamethasone for Women at Risk for Late Preterm Delivery.

    PubMed

    Gyamfi-Bannerman, Cynthia; Thom, Elizabeth A; Blackwell, Sean C; Tita, Alan T N; Reddy, Uma M; Saade, George R; Rouse, Dwight J; McKenna, David S; Clark, Erin A S; Thorp, John M; Chien, Edward K; Peaceman, Alan M; Gibbs, Ronald S; Swamy, Geeta K; Norton, Mary E; Casey, Brian M; Caritis, Steve N; Tolosa, Jorge E; Sorokin, Yoram; VanDorsten, J Peter; Jain, Lucky

    2016-04-07

    Infants who are born at 34 to 36 weeks of gestation (late preterm) are at greater risk for adverse respiratory and other outcomes than those born at 37 weeks of gestation or later. It is not known whether betamethasone administered to women at risk for late preterm delivery decreases the risks of neonatal morbidities. We conducted a multicenter, randomized trial involving women with a singleton pregnancy at 34 weeks 0 days to 36 weeks 5 days of gestation who were at high risk for delivery during the late preterm period (up to 36 weeks 6 days). The participants were assigned to receive two injections of betamethasone or matching placebo 24 hours apart. The primary outcome was a neonatal composite of treatment in the first 72 hours (the use of continuous positive airway pressure or high-flow nasal cannula for at least 2 hours, supplemental oxygen with a fraction of inspired oxygen of at least 0.30 for at least 4 hours, extracorporeal membrane oxygenation, or mechanical ventilation) or stillbirth or neonatal death within 72 hours after delivery. The primary outcome occurred in 165 of 1427 infants (11.6%) in the betamethasone group and 202 of 1400 (14.4%) in the placebo group (relative risk in the betamethasone group, 0.80; 95% confidence interval [CI], 0.66 to 0.97; P=0.02). Severe respiratory complications, transient tachypnea of the newborn, surfactant use, and bronchopulmonary dysplasia also occurred significantly less frequently in the betamethasone group. There were no significant between-group differences in the incidence of chorioamnionitis or neonatal sepsis. Neonatal hypoglycemia was more common in the betamethasone group than in the placebo group (24.0% vs. 15.0%; relative risk, 1.60; 95% CI, 1.37 to 1.87; P<0.001). Administration of betamethasone to women at risk for late preterm delivery significantly reduced the rate of neonatal respiratory complications. (Funded by the National Heart, Lung, and Blood Institute and the Eunice Kennedy Shriver National

  6. The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka).

    PubMed

    Steinhausen, M F; Sandblom, E; Eliason, E J; Verhille, C; Farrell, A P

    2008-12-01

    The mechanism underlying the decrease in aerobic scope in fish at warm temperatures is not fully understood and is the focus of this research. Our study examined oxygen uptake and delivery in resting, swimming and recovering sockeye salmon while water temperature was acutely increased from 15 degrees C to 24 degrees C in 2 degrees C h(-1) increments. Fish swam at a constant speed during the temperature change. By simultaneously measuring oxygen consumption (M(O(2))), cardiac output (Q) and the blood oxygen status of arterial and venous blood, we were able to determine where in the oxygen cascade a limitation appeared when fish stopped sustained swimming as temperature increased. High temperature fatigue of swimming sockeye salmon was not a result of a failure of either oxygen delivery to the gills or oxygen diffusion at the gills because oxygen partial pressure (P(O(2))) and oxygen content (C(O(2))) in arterial blood did not decrease with increasing temperature, as would be predicted for such limitations. Instead, arterial oxygen delivery (Ta(O(2))) was initially hampered due to a failure to adequately increase Q with increasing temperature. Subsequently, lactate appeared in the blood and venous P(O(2)) remained constant.

  7. Quantifying consumption rates of dissolved oxygen along bed forms

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2016-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.

  8. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  9. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  10. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  11. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  12. Oxytocin for labour and caesarean delivery: implications for the anaesthesiologist.

    PubMed

    Dyer, Robert A; Butwick, Alexander J; Carvalho, Brendan

    2011-06-01

    The implications of the obstetric use of oxytocin for obstetric anaesthesia practice are summarised. The review focuses on recent research on the uterotonic effects of oxytocin for prophylaxis and management of uterine atony during caesarean delivery. Oxytocin remains the first-line agent in the prevention and management of uterine atony. In-vitro and in-vivo studies show that prior exposure to oxytocin induces uterine muscle oxytocin receptor desensitization. This may influence oxytocin dosing for adequate uterine tone following delivery. Oxytocin has important cardiovascular side-effects (hypotension, tachycardia and myocardial ischaemia). Recent studies suggest that the effective dose of oxytocin for prophylaxis against uterine atony during caesarean delivery is significantly lower than the 5-10 IU historically used by anaesthesiologists. Slow administration of small bolus doses of oxytocin minimises maternal haemodynamic disturbance. Continuous oxytocin infusions are recommended for maintaining uterine tone after bolus administration, although ideal infusion rates are still to be established. The efficacy of the long-acting oxytocin analogue carbetocin requires further investigation. Recommendations are presented for oxytocin dosing during caesarean delivery. Oxytocin remains the first-line uterotonic after vaginal and caesarean delivery. Recent research elucidates the therapeutic range of oxytocin during caesarean delivery, as well as receptor desensitization. Evidenced-based protocols for the prevention and treatment of uterine atony during caesarean delivery are recommended.

  13. Light-switchable systems for remotely controlled drug delivery.

    PubMed

    Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung

    2017-12-10

    Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Transtracheal oxygen therapy.

    PubMed

    Christopher, Kent L; Schwartz, Michael D

    2011-02-01

    Transtracheal oxygen therapy (TTO) has been used for long-term oxygen therapy for nearly 30 years. Numerous investigators have explored the potential benefits of TTO. Those results are reviewed in this article. TTO is best viewed not as a catheter but as a program for care. This article discusses patient selection for TTO. Publications evaluating complications are reviewed. In the past, a modified Seldinger technique (MST) was used for the creation of the tracheocutaneous fistula. The rather long program required for tract maturation with MST was labor-intensive and required substantial patient education and monitoring, particularly during the immature tract phase. Minor complications were not infrequent. More recently, the Lipkin method has been used to create a surgical tract under conscious sedation with topical anesthesia. The procedure is safe and well tolerated. Transtracheal oxygen is initiated the day following the procedure. Similarly, the tract matures in 7 to 10 days rather than the 6 to 8 weeks with MST. More rapid healing time and superior tract characteristics substantially reduce complications. The TTO program tailored for the Lipkin procedure is shortened, streamlined, and much less labor-intensive. Optimal outcomes with the TTO program require a committed pulmonologist, respiratory therapist, nurse, and surgeon (for the Lipkin procedure). This article discusses new directions in the use of transtracheal gas delivery, including the management of obstructive sleep apnea. Preliminary investigations regarding transtracheal augmented ventilation are presented. These include nocturnal use in severe chronic lung disease and liberation from prolonged mechanical ventilation.

  15. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia

    PubMed Central

    Carreau, Aude; Hafny-Rahbi, Bouchra El; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-01-01

    Abstract Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. PMID:21251211

  16. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    PubMed

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  17. Skin oxygen tension is improved by immersion in oxygen-enriched water.

    PubMed

    Reading, S A; Yeomans, M; Levesque, C

    2013-12-01

    The perceived health and physiologic functioning of skin depends on adequate oxygen availability. Economical and easily used therapeutic approaches to increase skin oxygenation could improve the subjective appearance of the skin as well as support the management of some cutaneous conditions related to chronic hypoxic ischaemia (e.g. ulcerative wounds). We have tested the hypothesis that the O2 partial pressure of skin (PskO2 ) increases during immersion in water enriched with high levels of dissolved oxygen. A commercially available device was used to produce water containing 45 to 65 mg L(-1) of dissolved O2 . Young adults (YA; n = 7), older adults (OA; n = 13) and older adults with diabetes (OAD; n = 11) completed different experiments that required them to immerse their feet in tap water (<2 mg L(-1) of O2 ; control) or O2 -enriched water (O2 -H2 O; experimental) for 30 min. Transcutaneous oximetry was used to measure PskO2 for 20 min pre- and post-immersion. Pre-immersion mean (standard deviation) PskO2 on the plantar surface of the big toe was 75 (10), 67 (10) and 65 (10) mmHg in YA, OA and OAD, respectively. Post-immersion PskO2 was 244 (25), 193 (28) and 205 (28) mmHg for the same groups. We also show that post-immersion PskO2 varies by location and with advancing age. Water is an effective vehicle for transporting dissolved O2 across the skin surface and could be used as a basis for development of economical therapeutic approaches that improve skin oxygen tension to support skin health and function. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics

    PubMed Central

    Hong, Seong-Chul; Yoo, Seung-Yup; Kim, Hyeongmin; Lee, Jaehwi

    2017-01-01

    Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives. PMID:28257059

  19. Cerebral Oxygen Saturation in Children With Congenital Heart Disease and Chronic Hypoxemia.

    PubMed

    Kussman, Barry D; Laussen, Peter C; Benni, Paul B; McGowan, Francis X; McElhinney, Doff B

    2017-07-01

    Increased hemoglobin (Hb) concentration accompanying hypoxemia is a compensatory response to maintain tissue oxygen delivery. Near infrared spectroscopy (NIRS) is used clinically to detect abnormalities in the balance of cerebral tissue oxygen delivery and consumption, including in children with congenital heart disease (CHD). Although NIRS-measured cerebral tissue O2 saturation (ScO2) correlates with arterial oxygen saturation (SaO2), jugular bulb O2 saturation (SjbO2), and Hb, little data exist on the interplay between these factors and cerebral O2 extraction (COE). This study investigated the associations of ScO2 and ΔSaO2-ScO2 with SaO2 and Hb and verified the normal range of ScO2 in children with CHD. Children undergoing cardiac catheterization for CHD were enrolled in a calibration and validation study of the FORE-SIGHT NIRS monitor. Two pairs of simultaneous arterial and jugular bulb samples were drawn for co-oximetry, calculation of a reference ScO2 (REF CX), and estimation of COE. Pearson correlation and linear regression were used to determine relationships between O2 saturation parameters and Hb. Data were also analyzed according to diagnostic group defined as acyanotic (SaO2 ≥ 90%) and cyanotic (SaO2 < 90%). Of 65 children studied, acceptable jugular bulb samples (SjbO2 absolute difference between samples ≤10%) were obtained in 57 (88%). The ΔSaO2-SjbO2, ΔSaO2-ScO2, and ΔSaO2-REF CX were positively correlated with SaO2 and negatively correlated with Hb (all P < .001). Although by diagnostic group ScO2 differed statistically (P = .002), values in the cyanotic patients were within the range considered normal (69% ± 6%). COE estimated by the difference between arterial and jugular bulb O2 content (ΔCaO2-CjbO2, mL O2/100 mL) was not different for cyanotic and acyanotic patients (P = .10), but estimates using ΔSaO2-SjbO2, ΔSaO2-ScO2, or ΔSaO2-ScO2/SaO2 were significantly different between the cyanotic and acyanotic children (P < .001). Children

  20. Chronopharmaceutical Drug Delivery Systems: Hurdles, Hype or Hope?⊗

    PubMed Central

    Youan, Bi-Botti C.

    2010-01-01

    The current advances in chronobiology and the knowledge gained from chronotherapy of selected diseases strongly suggest that “the one size fits all at all times” approach to drug delivery is no longer substantiated, at least for selected bioactive agents and disease therapy or prevention. Thus, there is a critical and urgent need for chronopharmaceutical research (e.g., design and evaluation of robust, spatially and temporally controlled drug delivery systems that would be clinically intended for chronotherapy by different routes of administration). This review provides a brief overview of current delivery system intended for chronotherapy. In theory, such an ideal “magic pill” preferably with affordable cost, would improve the safety, efficacy and patient compliance of old and new drugs. However, currently, there are three major hurdles for the successful transition of such system from laboratory to patient bedside. These include the challenges to identify adequate (i) rhythmic biomaterials and systems, (ii) rhythm engineering modeling, perhaps using system biology and (iii) regulatory guidance. PMID:20438781

  1. Selection of Environmentally Friendly Solvents for the Extravehicular Mobility Unit Secondary Oxygen Pack Cold Trap Testing

    NASA Technical Reports Server (NTRS)

    Steele, John; Chullen, Cinda; Morenz, Jesse; Stephenson, Curtis

    2010-01-01

    Freon-113(TradeMark) has been used as a chemistry lab sampling solvent at NASA/JSC for EMU (extravehicular Mobility Unit) SOP (Secondary Oxygen Pack) oxygen testing Cold Traps utilized at the USA (United Space Alliance) Houston facility. Similar testing has occurred at the HSWL (Hamilton Sundstrand Windsor Locks) facility. A NASA Executive Order bans the procurement of all ODS (ozone depleting substances), including Freon-113 by the end of 2009. In order to comply with NASA direction, HSWL began evaluating viable solvents to replace Freon-113 . The study and testing effort to find Freon-113 replacements used for Cold Trap sampling is the subject of this paper. Test results have shown HFE-7100 (a 3M fluorinated ether) to be an adequate replacement for Freon-113 as a solvent to remove and measure the non-volatile residue collected in a Cold Trap during oxygen testing. Furthermore, S-316 (a Horiba Instruments Inc. high molecular weight, non-ODS chlorofluorocarbon) was found to be an adequate replacement for Freon-113 as a solvent to reconstitute non-volatile residue removed from a Cold Trap during oxygen testing for subsequent HC (hydrocarbon) analysis via FTIR (Fourier Transform Infrared Spectroscopy).

  2. Triiodothyronine facilitates weaning from extracorporeal membrane oxygenation by improved mitochondrial substrate utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Files, Matthew D.; Kajimoto, Masaki; Priddy, Colleen M.

    2014-03-20

    Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and / or by ECMO.

  3. Impaired Tissue Oxygenation in Metabolic Syndrome Requires Increased Microvascular Perfusion Heterogeneity

    PubMed Central

    McClatchey, P. Mason; Wu, Fan; Olfert, I. Mark; Ellis, Christopher G.; Goldman, Daniel; Reusch, Jane E. B.

    2018-01-01

    Metabolic syndrome (MS) in obese Zucker rats (OZR) is associated with impaired skeletal muscle performance and blunted hyperemia. Studies suggest that reduced O2 diffusion capacity is required to explain compromised muscle performance and that heterogeneous microvascular perfusion distribution is critical. We modeled tissue oxygenation during muscle contraction in control and OZR skeletal muscle using physiologically realistic relationships. Using a network model of Krogh cylinders with increasing perfusion asymmetry and increased plasma skimming, we predict increased perfusion heterogeneity and decreased muscle oxygenation in OZR, with partial recovery following therapy. Notably, increasing O2 delivery had less impact on VO2 than equivalent decreases in O2 delivery, providing a mechanism for previous empirical work associating perfusion heterogeneity and impaired O2 extraction. We demonstrate that increased skeletal muscle perfusion asymmetry is a defining characteristic of MS and must be considered to effectively model and understand blood-tissue O2 exchange in this model of human disease. PMID:28168652

  4. Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury

    DTIC Science & Technology

    2013-01-01

    spinal cord ischemia. Acta Med Okayama 1997; 51:71–77. 10. Daugherty WP, Levasseur JE, Sun D, Spiess BD, Bullock MR: Perfluorocarbon emulsion improves...cerebral oxygenation and mitochondrial function after fluid percussion brain injury in rats. Neurosurgery 2004; 54:1223–1230. 11. Spiess B...2008; 2: 213-20. 13. Zhou Z, Sun D, Levasseur JE, Merenda A, Hamm RJ, Zhu J, Spiess BD, Bullock MR. Perfluorocarbon emulsions improve cognitive

  5. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    PubMed

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  6. Posttransfusion Increase of Hematocrit per se Does Not Improve Circulatory Oxygen Delivery due to Increased Blood Viscosity.

    PubMed

    Zimmerman, Robert; Tsai, Amy G; Salazar Vázquez, Beatriz Y; Cabrales, Pedro; Hofmann, Axel; Meier, Jens; Shander, Aryeh; Spahn, Donat R; Friedman, Joel M; Tartakovsky, Daniel M; Intaglietta, Marcos

    2017-05-01

    Blood transfusion is used to treat acute anemia with the goal of increasing blood oxygen-carrying capacity as determined by hematocrit (Hct) and oxygen delivery (DO2). However, increasing Hct also increases blood viscosity, which may thus lower DO2 if the arterial circulation is a rigid hydraulic system as the resistance to blood flow will increase. The net effect of transfusion on DO2 in this system can be analyzed by using the relationship between Hct and systemic blood viscosity of circulating blood at the posttransfusion Hct to calculate DO2 and comparing this value with pretransfusion DO2. We hypothesized that increasing Hct would increase DO2 and tested our hypothesis by mathematically modeling DO2 in the circulation. Calculations were made assuming a normal cardiac output (5 L/min) with degrees of anemia ranging from 5% to 80% Hct deficit. We analyzed the effects of transfusing 0.5 or more units of 300 cc of packed red blood cells (PRBCs) at an Hct of 65% and calculated microcirculatory DO2 after accounting for increased blood viscosity and assuming no change in blood pressure. Our model accounts for O2 diffusion out of the circulation before blood arriving to the nutritional circulation and for changes in blood flow velocity. The immediate posttransfusion DO2 was also compared with DO2 after the transient increase in volume due to transfusion has subsided. Blood transfusion of up to 3 units of PRBCs increased DO2 when Hct (or hemoglobin) was 60% lower than normal, but did not increase DO2 when administered before this threshold. After accounting for the effect of increasing blood viscosity on blood flow owing to increasing Hct, we found in a mathematical simulation of DO2 that transfusion of up to 3 units of PRBCs does not increase DO2, unless anemia is the result of an Hct deficit greater than 60%. Observations that transfusions occasionally result in clinical improvement suggest that other mechanisms possibly related to increased blood viscosity may

  7. A comparative analysis of domiciliary oxygen therapy in five European countries.

    PubMed

    Garattini, L; Cornago, D; Tediosi, F

    2001-11-01

    This comparative study analyses the domestic market of domiciliary oxygen therapy in five European countries (Denmark, France, Germany, Italy, and the UK) according to a common checklist of subjects. Domestic legislation, prescription procedures, delivery, and the market situation concerning oxygen therapy were considered. The analysis involved (i) reviewing the literature on oxygen therapy in national and international journals, and (ii) interviewing a selected expert panel of market operators in each country (composed of at least one civil servant, one physician, one distributor, and one oxygen manufacturer). The analysis did not find any specific relationship between the health care system framework and the oxygen therapy market, except for a greater inclination towards home care in national health services. In all these countries oxygen therapy is reimbursed, but the type of supply and its diffusion differ widely. The spread of domiciliary care has undermined the traditional role of pharmacies in the oxygen distribution chain in all countries except Italy. The study did not help identify any specific country that can be considered a benchmark for oxygen therapy, each one dealing with oxygen therapy in a different way. An economic evaluation of the different supply modalities could help improve decision making by public authorities.

  8. When populism takes over the delivery of health care: Venezuela.

    PubMed

    Daryanani, Sunil

    2017-01-01

    Adequate and modern health care is not available in Venezuela at this moment. A humanitarian crisis of post war dimensions is currently rampant and afflicting all Venezuelans alike. The delivery and availability of cancer care is severely limited and inadequate. No funding is available as populist measures, mismanagement, pillaging, corruption, lack of forethought and expertise have brought the country into severe economic collapse and political turmoil.

  9. Forceps Delivery Volumes in Teaching and Nonteaching Hospitals: Are Volumes Sufficient for Physicians to Acquire and Maintain Competence?

    PubMed Central

    Kyser, Kathy L.; Lu, Xin; Santillan, Donna; Santillan, Mark; Caughey, Aaron B.; Wilson, Mark C.; Cram, Peter

    2015-01-01

    Purpose The decline in the use of forceps in operative deliveries over the last two decades raises questions about teaching hospitals' ability to provide trainees with adequate experience in the use of forceps. The authors examined: (1) the number of operative deliveries performed in teaching and nonteaching hospitals, and (2) whether teaching hospitals performed a sufficient number of forceps deliveries for physicians to acquire and maintain competence. Method The authors used State Inpatient Data from nine states to identify all women hospitalized for childbirth in 2008. They divided hospitals into three categories: major teaching, minor teaching, and nonteaching. They calculated delivery volumes (total operative, cesarean, vacuum, forceps, two or more methods) for each hospital and compared data across hospital categories. Results The sample included 1,344,305 childbirths in 835 hospitals. The mean cesarean volumes for major teaching, minor teaching, and nonteaching hospitals were 969.8, 757.8, and 406.9. The mean vacuum volumes were 301.0, 304.2, and 190.4, and the mean forceps volumes were 25.2, 15.3, and 8.9. In 2008, 31 hospitals (3.7% of all hospitals) performed no vacuum extractions, and 320 (38.3%) performed no forceps deliveries. In 2008, 13 (23%) major teaching and 44 (44%) minor teaching hospitals performed five or fewer forceps deliveries. Conclusions Low forceps delivery volumes may preclude many trainees from acquiring adequate experience and proficiency. These findings highlighted broader challenges, faced by many specialties, in ensuring that trainees and practicing physicians acquire and maintain competence in infrequently performed, highly technical procedures. PMID:24280847

  10. Wound Healing Essentials: Let There Be Oxygen

    PubMed Central

    Sen, Chandan K.

    2009-01-01

    The state of wound oxygenation is a key determinant of healing outcomes. From a diagnostic standpoint, measurements of wound oxygenation are commonly used to guide treatment planning such as amputation decision. In preventive applications, optimizing wound perfusion and providing supplemental O2 in the peri-operative period reduces the incidence of post-operative infections. Correction of wound pO2 may, by itself, trigger some healing responses. Importantly, approaches to correct wound pO2 favorably influence outcomes of other therapies such as responsiveness to growth factors and acceptance of grafts. Chronic ischemic wounds are essentially hypoxic. Primarily based on the tumor literature, hypoxia is generally viewed as being angiogenic. This is true with the condition that hypoxia be acute and mild to modest in magnitude. Extreme near-anoxic hypoxia, as commonly noted in problem wounds, is not compatible with tissue repair. Adequate wound tissue oxygenation is required but may not be sufficient to favorably influence healing outcomes. Success in wound care may be improved by a personalized health care approach. The key lies in our ability to specifically identify the key limitations of a given wound and in developing a multifaceted strategy to specifically address those limitations. In considering approaches to oxygenate the wound tissue it is important to recognize that both too little as well as too much may impede the healing process. Oxygen dosing based on the specific need of a wound therefore seems prudent. Therapeutic approaches targeting the oxygen sensing and redox signaling pathways are promising. PMID:19152646

  11. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.

    2000-01-01

    An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.

  12. 3D printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lv, Xiang; Xue, Yue; Wang, Haili; Shen, Shu Wei; Zhou, Ximing; Liu, Guangli; Dong, Erbao; Xu, Ronald X.

    2017-03-01

    Tissue-simulating phantoms with interior vascular network may facilitate traceable calibration and quantitative validation of many medical optical devices. However, a solid phantom that reliably simulates tissue oxygenation and blood perfusion is still not available. This paper presents a new method to fabricate hollow microtubes for blood vessel simulation in solid phantoms. The fabrication process combines ultraviolet (UV) rapid prototyping technique with fluid mechanics of a coaxial jet flow. Polydimethylsiloxane (PDMS) and a UV-curable polymer are mixed at the designated ratio and extruded through a coaxial needle device to produce a coaxial jet flow. The extruded jet flow is quickly photo-polymerized by ultraviolet (UV) light to form vessel-simulating solid structures at different sizes ranging from 700 μm to 1000 μm. Microtube structures with adequate mechanical properties can be fabricated by adjusting material compositions and illumination intensity. Curved, straight and stretched microtubes can be formed by adjusting the extrusion speed of the materials and the speed of the 3D printing platform. To simulate vascular structures in biologic tissue, we embed vessel-simulating microtubes in a gel wax phantom of 10 cm x10 cm x 5 cm at the depth from 1 to 2 mm. Bloods at different oxygenation and hemoglobin concentration levels are circulated through the microtubes at different flow rates in order to simulate different oxygenation and perfusion conditions. The simulated physiologic parameters are detected by a tissue oximeter and a laser speckle blood flow meter respectively and compared with the actual values. Our experiments demonstrate that the proposed 3D printing process is able to produce solid phantoms with simulated vascular networks for potential applications in medical device calibration and drug delivery studies.

  13. Normothermic cardiopulmonary bypass increases cerebral tissue oxygenation during combined valve surgery: a single-centre, randomized trial.

    PubMed

    Lenkin, Andrey I; Zaharov, Viktor I; Lenkin, Pavel I; Smetkin, Alexey A; Bjertnaes, Lars J; Kirov, Mikhail Y

    2013-05-01

    In cardiac surgery, the choice of temperature regimen during cardiopulmonary bypass (CPB) remains a subject of debate. Hypothermia reduces tissue metabolic demands, but may impair the autoregulation of cerebral blood flow and contribute to neurological morbidity. The aim of this study was to evaluate the effect of two different temperature regimens during CPB on the systemic oxygen transport and the cerebral oxygenation during surgical correction of acquired heart diseases. In a prospective study, we randomized 40 adult patients with combined valvular disorders requiring surgical correction of two or more valves into two groups: (i) a normothermic (NMTH) group (n = 20), in which the body core temperature was maintained at 36.6°C during CPB and (ii) a hypothermic (HPTH) group (n = 20), in which the body was cooled to a core temperature of 32°C maintained throughout the period of CPB. The systemic oxygen transport and the cerebral oxygen saturation (SctO2) were assessed by means of a PiCCO2 haemodynamic monitor and a cerebral oximeter, respectively. All the patients received standard perioperative monitoring. We assessed haemodynamic and oxygen transport parameters, the duration of mechanical ventilation and the length of the ICU and the hospital stays. During CPB, central venous oxygen saturation was significantly higher in the HPTH group but SctO2 was increased in the NMTH group (P < 0.05). Cardiac index, systemic oxygen delivery and consumption increased postoperatively in both groups. However, oxygen delivery and consumption were significantly higher in the NMTH group (P < 0.05). The duration of respiratory support and the length of ICU and hospital stays did not differ between the groups. During combined valve surgery, normothermic CPB provides lower central venous oxygen saturation, but increases cerebral tissue oxygenation when compared with the hypothermic regimen.

  14. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.

    PubMed

    Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-06-01

    Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  15. Milrinone, dobutamine or epinephrine use in asphyxiated newborn pigs resuscitated with 100% oxygen.

    PubMed

    Joynt, Chloë; Bigam, David L; Charrois, Gregory; Jewell, Laurence D; Korbutt, Gregory; Cheung, Po-Yin

    2010-06-01

    After resuscitation, asphyxiated neonates often develop poor cardiac function with hypotension, pulmonary hypertension and multiorgan ischemia. In a swine model of neonatal hypoxia-reoxygenation, effects of epinephrine, dobutamine and milrinone on systemic, pulmonary and regional hemodynamics and oxygen transport were compared. Controlled, block-randomized study. University research laboratory. Mixed breed piglets (1-3 days, 1.5-2.3 kg). In acutely instrumented piglets, normocapnic alveolar hypoxia (10-15% oxygen) was induced for 2 h followed by reoxygenation with 100% oxygen (1 h) then 21% oxygen (3 h). At 2 h of reoxygenation, after volume loading (Ringer's lactate 10 ml/kg), either saline (placebo), epinephrine (0.5 microg/kg/min), dobutamine (20 microg/kg/min) or milrinone (0.75 microg/kg/min) were infused for 2 h in a blinded, block-randomized fashion (n = 6/group). All medications similarly improved cardiac output, stroke volume and systemic oxygen delivery (vs. placebo-controls, p < 0.05). Epinephrine and dobutamine significantly increased, while milrinone maintained, mean arterial pressure over pretreatment values while placebo-treated piglets developed hypotension and shock. The mean arterial to pulmonary arterial pressures ratio was not different among groups. All medications significantly increased carotid and intestinal, but not renal, arterial blood flows and oxygen delivery, whereas milrinone caused lower renal vascular resistance than epinephrine and dobutamine-treated groups. Plasma troponin I, plasma and myocardial lactate levels, and histologic ischemic features were not different among groups. In newborn piglets with hypoxia-reoxygenation, epinephrine, dobutamine and milrinone are effective inotropes to improve cardiac output, carotid and intestinal perfusion, without aggravating pulmonary hypertension. Milrinone may also improve renal perfusion.

  16. Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance.

    PubMed

    Gallez, Bernard; Neveu, Marie-Aline; Danhier, Pierre; Jordan, Bénédicte F

    2017-08-01

    Tumor hypoxia has long been considered as a detrimental factor for the response to irradiation. In order to improve the sensitivity of tumors cells to radiation therapy, tumor hypoxia may theoretically be alleviated by increasing the oxygen delivery or by decreasing the oxygen consumption by tumor cells. Mathematical modelling suggested that decreasing the oxygen consumption should be more efficient than increasing oxygen delivery in order to alleviate tumor hypoxia. In this paper, we review several promising strategies targeting the mitochondrial respiration for which alleviation of tumor hypoxia and increase in sensitivity to irradiation have been demonstrated. Because the translation of these approaches into the clinical arena requires the use of pharmacodynamics biomarkers able to identify shift in oxygen consumption and tumor oxygenation, we also discuss the relative merits of imaging biomarkers (Positron Emission Tomography and Magnetic Resonance) that may be used for therapeutic guidance. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Magnetic nanoparticle drug delivery systems for targeting tumor

    NASA Astrophysics Data System (ADS)

    Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

    2014-04-01

    Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

  18. Development of a Self-calibrating Dissolved Oxygen Microsensor Array for the Monitoring and Control of Plant Growth in a Space Environment

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy

    2004-01-01

    Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,

  19. The effects of capillary transit time heterogeneity (CTH) on brain oxygenation

    PubMed Central

    Angleys, Hugo; Østergaard, Leif; Jespersen, Sune N

    2015-01-01

    We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. PMID:25669911

  20. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  1. Oxygen concentration affects upper thermal tolerance in a terrestrial vertebrate.

    PubMed

    Shea, Tanner K; DuBois, P Mason; Claunch, Natalie M; Murphey, Nicolette E; Rucker, Kiley A; Brewster, Robert A; Taylor, Emily N

    2016-09-01

    We tested the oxygen limitation hypothesis, which states that animals decline in performance and reach the upper limits of their thermal tolerance when the metabolic demand for oxygen at high temperatures exceeds the circulatory system's ability to supply adequate oxygen, in air-breathing lizards exposed to air with different oxygen concentrations. Lizards exposed to hypoxic air (6% O2) gaped, panted, and lost their righting response at significantly lower temperatures than lizards exposed to normoxic (21% O2) or hyperoxic (35% O2) air. A greater proportion of lizards in the hyperoxic treatment were able to withstand body temperatures above 44°C than in the normoxic treatment. We also found that female lizards had a higher panting threshold than male lizards, while sex had no effect on gaping threshold and loss of righting response. Body size affected the temperature at which lizards lost the righting response, with larger lizards losing the response at lower temperatures than smaller lizards when exposed to hypoxic conditions. These data suggest that oxygen limitation plays a mechanistic role in the thermal tolerance of lizards. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Oximeter for reliable clinical determination of blood oxygen saturation in a fetus

    DOEpatents

    Robinson, Mark R.; Haaland, David M.; Ward, Kenneth J.

    1996-01-01

    With the crude instrumentation now in use to continuously monitor the status of the fetus at delivery, the obstetrician and labor room staff not only over-recognize the possibility of fetal distress with the resultant rise in operative deliveries, but at times do not identify fetal distress which may result in preventable fetal neurological harm. The invention, which addresses these two basic problems, comprises a method and apparatus for non-invasive determination of blood oxygen saturation in the fetus. The apparatus includes a multiple frequency light source which is coupled to an optical fiber. The output of the fiber is used to illuminate blood containing tissue of the fetus. In the preferred embodiment, the reflected light is transmitted back to the apparatus where the light intensities are simultaneously detected at multiple frequencies. The resulting spectrum is then analyzed for determination of oxygen saturation. The analysis method uses multivariate calibration techniques that compensate for nonlinear spectral response, model interfering spectral responses and detect outlier data with high sensitivity.

  3. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of...

  4. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of...

  5. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of...

  6. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of...

  7. When populism takes over the delivery of health care: Venezuela

    PubMed Central

    Daryanani, Sunil

    2017-01-01

    Adequate and modern health care is not available in Venezuela at this moment. A humanitarian crisis of post war dimensions is currently rampant and afflicting all Venezuelans alike. The delivery and availability of cancer care is severely limited and inadequate. No funding is available as populist measures, mismanagement, pillaging, corruption, lack of forethought and expertise have brought the country into severe economic collapse and political turmoil. PMID:29225695

  8. A novel approach to the management of critically ill neonatal Ebstein's anomaly: Veno-venous extracorporeal membrane oxygenation to promote right ventricular recovery.

    PubMed

    Bauser-Heaton, Holly; Nguyen, Charles; Tacy, Theresa; Axelrod, David

    2015-01-01

    This is the first report of the use of veno-venous extracorporeal membrane oxygenation in a neonate with severe Ebstein's anomaly. The report suggests the use of veno-venous extracorporeal membrane oxygenation in the immediate neonatal period may be a useful therapy in severe Ebstein's anomaly. By providing adequate oxygenation independent of the patient's native pulmonary blood flow, veno-venous extracorporeal membrane oxygenation allows the pulmonary vascular resistance to decrease and may promote right ventricular recovery.

  9. Hemoglobin oxygen affinty in patients with low-output heart failure and cardiogenic shock after acute myocardial infaraction.

    PubMed

    Agostoni, A; Lotto, A; Stabilini, R; Bernasconi, C; Gerli, G; Gattinoni, L; Lapichino, G; Sslvadé, P

    1975-06-01

    The aim of this study was to determine the oxigen affinity actually present in vivo in blood from patients with acute myocardial infarction. Patients with uncomplicated acute myocardial infarction had normal value of P50 in vivo (partial pressure of oxygen at which 50 percent of the hemoglobin is saturated with oxygen at fixed levels of pHand PC02 present in vivo). Also the values of P50 in vivo of blood from patients with low cardiac output with mild or severe heart failured did not differ from the normal mean. This was the consequence of an increase of 2, 3-diphosphoglycerate levels (which reduces the oxygen affinity of hemoglobin) and of the immediate effect of alkalosis (Bohr effect). By contrast, the values of P50 in vivo were significantly increased in patients with cardiogenic shock. This could be ascribed to the state of acute acidiosis present in these patients. In these conditions the changes in the values of P50 in vivo play an important role in the oxygen delivery to the tissues. However, high values of P50 do not enhance oxygen delivery when a severe arterial hypoxemia (P02 smaller than 40-45 mm Hg) is also present.

  10. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals.

    PubMed

    Pörtner, H O

    2001-04-01

    Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.

  11. Copper transport into the secretory pathway is regulated by oxygen in macrophages

    PubMed Central

    White, Carine; Kambe, Taiho; Fulcher, Yan G.; Sachdev, Sherri W.; Bush, Ashley I.; Fritsche, Kevin; Lee, Jaekwon; Quinn, Thomas P.; Petris, Michael J.

    2009-01-01

    Summary Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In this study, we demonstrate that oxygen limitation promotes a series of striking alterations in copper homeostasis in RAW264.7 macrophage cells. Hypoxia was found to stimulate copper uptake and to increase the expression of the copper importer, CTR1. This resulted in increased copper delivery to the ATP7A copper transporter and copper-dependent trafficking of ATP7A to cytoplasmic vesicles. Significantly, the ATP7A protein was required to deliver copper into the secretory pathway to ceruloplasmin, a secreted copperdependent enzyme, the expression and activity of which were stimulated by hypoxia. However, the activities of the alternative targets of intracellular copper delivery, superoxide dismutase and cytochrome c oxidase, were markedly reduced in response to hypoxia. Collectively, these findings demonstrate that copper delivery into the biosynthetic secretory pathway is regulated by oxygen availability in macrophages by a selective increase in copper transport involving ATP7A. PMID:19351718

  12. Titanium-Oxygen Reactivity Study

    NASA Technical Reports Server (NTRS)

    Chafey, J. E.; Scheck, W. G.; Witzell, W. E.

    1962-01-01

    A program has been conducted at Astronautics to investigate the likelihood of occurrence of the catastrophic oxidation of titanium alloy sheet under conditions which simulate certain cases of accidental failure of the metal while it is in contact with liquid or gaseous oxygen. Three methods of fracturing the metal were used; they consisted of mechanical puncture, tensile fracture of welded joints, and perforation by very high velocity particles. The results of the tests which have been conducted provide further evidence of the reactivity of titanium with liquid and gaseous oxygen. The evidence indicates that the rapid fracturing of titanium sheet while it is in contact with oxygen initiates the catastrophic oxidation reaction. Initiation occurred when the speed of the fracture was some few feet per second, as in both the drop-weight puncture tests and the static tensile fracture tests of welded joints, as well as when the speed was several thousand feet per second, as in the simulated micrometeoroid penetration tests. The slow propagation of a crack, however, did not initiate the reaction. It may logically be concluded that the localized frictional heat of rapid fracture and/or spontaneous oxidation (exothermic) of minute particles emanating from the fracture cause initiation of the reaction. Under conditions of slow fracture, however, the small heat generated may be adequately dissipated and the reaction is not initiated. A portion of the study conducted consisted of investigating various means by which the reaction might be retarded or prevented. Providing a "barrier" at the titanium-oxygen interface consisting of either aluminum metal or a coating of a petroleum base corrosion inhibitor appeared to be only partially effective in retarding the reaction. The accidental puncturing or similar rupturing of thin-walled pressurized oxygen tanks on missiles and space vehicle will usually constitute loss of function, and may sometimes cause their catastrophic destruction

  13. [Oxidative power and intracellular distribution of mitochondria control cell oxygen regime when arterial hypoxemia occurs].

    PubMed

    Liabakh, E G; Lissov, P N

    2012-01-01

    The regulatory impact of the mitochondria spatial distribution and enlargement in their oxidative power qO2 on the tissue oxygenation of skeletal muscle during hypoxia were studied. Investigations were performed by the mathematical modeling of 3D O2 diffusion-reaction in muscle fiber. The oxygen consumption rate VO2 and tissue pO2 were analyzed in response to a decrease in arterial blood oxygen concentration from 19.5 to 10 vol. % at a moderate load (3.5 ml/min per 100 g). The cells with evenly (case 1) and unevenly (case 2) distributed mitochondria were considered. According to calculations due to a rise in mitochondria oxidative power from 3.5 to 6.5 ml/min. per 100 g of tissue it is possible to maintain muscle oxygen V(O2) at constant level of 3.5 ml/min per 100 g despite a decrease in O2 delivery. Minimum value of tissue pO2 was about 0 and an area of hypoxia appeared inside the cell in case 1. But hypoxia disappeared and minimum value of pO2 increased from 0 to 4 mm Hg if mitochondria were distributed unevenly (case 2). It is shown that the possibilities of such regulation were limited and depended on the ratio of "the degree of hypoxemia--the level of oxygen delivery." It was assumed that an increase in mitochondria enzyme activity and mitochondria migration to the places of the greatest oxygen consumption rate can improve oxygen regime in the cells in terms of their adaptation to hypoxia. It is possible that changes in mitochondrial oxidative power and their intracellular redistribution may be considered as a new dimension in regulation of cell oxygen regime.

  14. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present

  15. Development of oxygen meters for the use in lead-bismuth

    NASA Astrophysics Data System (ADS)

    Konys, J.; Muscher, H.; Voß, Z.; Wedemeyer, O.

    2001-07-01

    Liquid lead and the eutectic lead-bismuth alloy (PbBi) are considered both as a spallation target and coolant of an accelerator driven system (ADS) for the transmutation of long-lived actinides from nuclear waste into shorter living isotopes. It is known that both, pure lead and PbBi, exhibit a high corrosivity against austenitic and ferritic steels, because of the high solubility of nickel and iron in PbBi. One way of reducing the strong corrosion is the in situ formation of stable oxide scales on the steel surfaces. Thermodynamic calculations and experimental results have confirmed, that the control of oxygen in lead or PbBi within a defined activity range can lead to acceptable corrosion rates. To control the level of oxygen dissolved in lead or PbBi, a sensor for measuring the oxygen activity is required. Within the sodium fast breeder reactor development, an adequate technique was established for estimating oxygen in liquid sodium. This knowledge can be used for other metal/oxygen systems like oxygen in PbBi. For measuring the oxygen activity and calculating its concentration, the relevant thermodynamic and solubility data have to be considered. Two reference electrode systems: Pt/air and In/In 2O 3 (both based on yttria-stabilized zirconia as solid electrolyte) are investigated to evaluate their electromotive force (EMF)-temperature dependency in saturated and unsaturated oxygen solutions. Results with both types of oxygen meters in PbBi at different oxygen levels were compared with theoretical calculations. The experimental data indicate that the design, construction and integration of an oxygen control unit in a large scale PbBi-loop seems to be very feasible.

  16. Principles of nanoparticle design for overcoming biological barriers to drug delivery

    PubMed Central

    Blanco, Elvin; Shen, Haifa; Ferrari, Mauro

    2016-01-01

    Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery. PMID:26348965

  17. Ocular oxygen consumption during vitreoperfusion in the cat.

    PubMed

    Blair, N P

    2000-01-01

    Little is known about the total ocular oxygen consumption rate (QO2) in human diseases. Reductions in QO2 may indicate the amount of tissue loss produced by conditions such as retinal ischemia. We sought a method to estimate QO2 that eventually could be used in patients during vitrectomy surgery. We performed vitreoperfusion (perfusion of the vitreous cavity after vitrectomy) in 22 cat eyes with no ocular blood flow. The solution contained nutrients and a high partial pressure of oxygen (PO2). In 8 eyes we placed an oxygen electrode on the sclera, choroid, or outer retina to evaluate oxygen delivery from the vitreoperfusion solution (group 1). In 8 eyes the retinas were undisturbed (group 2), and in 6 eyes we excised the retinas (group 3). In groups 2 and 3 we estimated QO2 from the temporal decline of PO2 in the vitreoperfusion solution according to a pharmacokinetic model. Group 1 demonstrated oxygenation of the entire retina. The means and standard deviations of QO2 were 3.2 +/- 0.8 and 0.4 +/- 0.7 microL/min in groups 2 and 3, respectively, the difference being the retinal contribution, 88%. In group 2, metabolism accounted for an average of 82% of the oxygen loss from the vitreoperfusion solution, whereas flow and diffusion accounted for 13% and 5%, respectively. Ocular oxygen consumption can be estimated by means of vitreoperfusion. Further developments may allow measurements in patients during vitreous surgery to clarify the pathophysiology of their diseases and assess the amount of retinal tissue that has been lost.

  18. Neonatal self-inflating bags: achieving titrated oxygen delivery using low flows: an experimental study.

    PubMed

    Sasi, Arun; Chandrakumar, Natarajan; Deorari, Ashok; Paul, Vinod K; Shankar, Jeeva; Sreenivas, Vishnubhatla; Agarwal, Ramesh

    2013-08-01

    To determine delivered O2 concentration (dFiO2) during manual inflations using neonatal self-inflating resuscitation bags (SIBs) at oxygen (O2) flow rates <1 L/min. This experimental study, determined dFiO2 during 216 sets of manual inflations at different O2 flow rate (L/min; 0.2, 0.4, 0.6, 0.8, 1.0 and 5.0), controlling peak inspiratory pressures (PIP; cm of H2O; 10-15, 15-20 and 20-25), inflation rates (per min; 30, 40 and 60), with and without O2 reservoir using two SIBs--the Laerdal infant resuscitator (240 mL) and Ambu Mark IV resuscitator (300 mL). A leak proof circuit connecting the SIB in series with pressure transducer, O2 analyzer and test lung was used. All possible combinations were tested four times each. The dFiO2 with each possible combination was compared using generalised estimating equation. The mean dFiO2 with SIB even without reservoirs varied with rates and PIP from 75 to 93% at O2 flow rate of 5 L/min. At 1 L/min flow itself, 65-85% O2 is delivered. The dFiO2 was reduced to approximately 40% with flow of 0.2 L/min, PIP 20-25 cmH2O and inflations 40-60 per min. During manual breaths using neonatal SIBs, the delivered O2 concentration of nearly 40% is attained at clinically used inflation pressures and rates by using lower flows. A graded increase in O2 delivery from 40 to 99% was obtained with flow varying from 0.2 to 5 L/min and addition of reservoir. However, even at such low flows, reduction in O2 concentration below 40% was unattained. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  19. Effects of prophylactic indomethacin in extremely low-birth-weight infants with and without adequate exposure to antenatal corticosteroids.

    PubMed

    Schmidt, Barbara; Seshia, Mary; Shankaran, Seetha; Mildenhall, Lindsay; Tyson, Jon; Lui, Kei; Fok, Tai; Roberts, Robin

    2011-07-01

    To examine whether treatment with antenatal corticosteroids modifies the immediate and long-term effects of prophylactic indomethacin sodium trihydrate in extremely low-birth-weight infants. Post hoc subgroup analysis of data from the Trial of Indomethacin Prophylaxis in Preterms. Thirty-two neonatal intensive care units in Canada, the United States, Australia, New Zealand, and Hong Kong. A total of 1195 infants with birth weights of 500 to 999 g and known exposure to antenatal corticosteroids. We defined as adequate any exposure to antenatal corticosteroids that occurred at least 24 hours before delivery. Indomethacin or placebo intravenously once daily for the first 3 days. Death or survival to 18 months with cerebral palsy, cognitive delay, severe hearing loss, or bilateral blindness; severe periventricular and intraventricular hemorrhage; patent ductus arteriosus; and surgical closure of a patent ductus arteriosus. Of the 1195 infants in this analysis cohort, 670 had adequate and 525 had inadequate exposure to antenatal corticosteroids. There was little statistical evidence of heterogeneity in the effects of prophylactic indomethacin between the subgroups for any of the outcomes. The adjusted P values for interaction were as low as .15 for the outcome of death or impairment at 18 months and as high as .80 for the outcome of surgical duct closure. We find little evidence that the effects of prophylactic indomethacin vary in extremely low-birth-weight infants with and without adequate exposure to antenatal corticosteroids. Trial Registration clinicaltrials.gov Identifier: NCT00009646.

  20. Can oxygen set thermal limits in an insect and drive gigantism?

    PubMed

    Verberk, Wilco C E P; Bilton, David T

    2011-01-01

    Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods.

  1. Elimination of Gaseous Microemboli from Cardiopulmonary Bypass using Hypobaric Oxygenation

    PubMed Central

    Gipson, Keith E.; Rosinski, David J.; Schonberger, Robert B.; Kubera, Cathryn; Mathew, Eapen S.; Nichols, Frank; Dyckman, William; Courtin, Francois; Sherburne, Bradford; Bordey, Angelique F; Gross, Jeffrey B.

    2014-01-01

    Background Numerous gaseous microemboli (GME) are delivered into the arterial circulation during cardiopulmonary bypass (CPB). These emboli damage end organs through multiple mechanisms that are thought to contribute to neurocognitive deficits following cardiac surgery. Here, we use hypobaric oxygenation to reduce dissolved gases in blood and greatly reduce GME delivery during CPB. Methods Variable subatmospheric pressures were applied to 100% oxygen sweep gas in standard hollow fiber microporous membrane oxygenators to oxygenate and denitrogenate blood. GME were quantified using ultrasound while air embolism from the surgical field was simulated experimentally. We assessed end organ tissues in swine postoperatively using light microscopy. Results Variable sweep gas pressures allowed reliable oxygenation independent of CO2 removal while denitrogenating arterial blood. Hypobaric oxygenation produced dose-dependent reductions of Doppler signals produced by bolus and continuous GME loads in vitro. Swine were maintained using hypobaric oxygenation for four hours on CPB with no apparent adverse events. Compared with current practice standards of O2/air sweep gas, hypobaric oxygenation reduced GME volumes exiting the oxygenator (by 80%), exiting the arterial filter (95%), and arriving at the aortic cannula (∼100%), indicating progressive reabsorption of emboli throughout the CPB circuit in vivo. Analysis of brain tissue suggested decreased microvascular injury under hypobaric conditions. Conclusions Hypobaric oxygenation is an effective, low-cost, common sense approach that capitalizes on the simple physical makeup of GME to achieve their near-total elimination during CPB. This technique holds great potential for limiting end-organ damage and improving outcomes in a variety of patients undergoing extracorporeal circulation. PMID:24206970

  2. Measuring hemoglobin amount and oxygen saturation of skin with advancing age

    NASA Astrophysics Data System (ADS)

    Watanabe, Shumpei; Yamamoto, Satoshi; Yamauchi, Midori; Tsumura, Norimichi; Ogawa-Ochiai, Keiko; Akiba, Tetsuo

    2012-03-01

    We measured the oxygen saturation of skin at various ages using our previously proposed method that can rapidly simulate skin spectral reflectance with high accuracy. Oxygen saturation is commonly measured by a pulse oximeter to evaluate oxygen delivery for monitoring the functions of heart and lungs at a specific time. On the other hand, oxygen saturation of skin is expected to assess peripheral conditions. Our previously proposed method, the optical path-length matrix method (OPLM), is based on a Monte Carlo for multi-layered media (MCML), but can simulate skin spectral reflectance 27,000 times faster than MCML. In this study, we implemented an iterative simulation of OPLM with a nonlinear optimization technique such that this method can also be used for estimating hemoglobin concentration and oxygen saturation from the measured skin spectral reflectance. In the experiments, the skin reflectance spectra of 72 outpatients aged between 20 and 86 years were measured by a spectrophotometer. Three points were measured for each subject: the forearm, the thenar eminence, and the intermediate phalanx. The result showed that the oxygen saturation of skin remained constant at each point as the age varied.

  3. Intra-renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Ferguson, Christopher M; Riester, Scott M; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2015-01-19

    Percutaneous transluminal renal angioplasty (PTRA) fails to fully improve cardiac injury and dysfunction in patients with renovascular hypertension (RVH). Mesenchymal stem cells (MSCs) restore renal function, but their potential for attenuating cardiac injury after reversal of RVH has not been explored. We hypothesized that replenishment of MSCs during PTRA would improve cardiac function and oxygenation, and decrease myocardial injury in porcine RVH. Pigs were studied after 16 weeks of RVH, RVH treated 4 weeks earlier with PTRA with or without adjunct intra-renal delivery of MSC (10^6 cells), and controls. Cardiac structure, function (fast-computed tomography (CT)), and myocardial oxygenation (Blood-Oxygen-Level-Dependent- magnetic resonance imaging) were assessed in-vivo. Myocardial microvascular density (micro-CT) and myocardial injury were evaluated ex-vivo. Kidney venous and systemic blood levels of inflammatory markers were measured and their renal release calculated. PTRA normalized blood pressure, yet stenotic-kidney glomerular filtration rate, similarly blunted in RVH and RVH + PTRA, normalized only in PTRA + MSC-treated pigs. PTRA attenuated left ventricular remodeling, whereas myocardial oxygenation, subendocardial microvascular density, and diastolic function remained decreased in RVH + PTRA, but normalized in RVH + PTRA-MSC. Circulating isoprostane levels and renal release of inflammatory cytokines increased in RVH and RVH + PTRA, but normalized in RVH + PTRA-MSC, as did myocardial oxidative stress, inflammation, collagen deposition, and fibrosis. Intra-renal MSC delivery during PTRA preserved stenotic-kidney function, reduced systemic oxidative stress and inflammation, and thereby improved cardiac function, oxygenation, and myocardial injury four weeks after revascularization, suggesting a therapeutic potential for adjunctive MSC delivery to preserve cardiac function and structure after reversal of experimental RVH.

  4. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics.

    PubMed

    du Plessis, Lissinda H; Marais, Etienne B; Mohammed, Faruq; Kotzé, Awie F

    2014-01-01

    In the last decades several new biotechnologically-based therapeutics have been developed due to progress in genetic engineering. A growing challenge facing pharmaceutical scientists is formulating these compounds into oral dosage forms with adequate bioavailability. An increasingly popular approach to formulate biotechnology-based therapeutics is the use of lipid based formulation technologies. This review highlights the importance of lipid based drug delivery systems in the formulation of oral biotechnology based therapeutics including peptides, proteins, DNA, siRNA and vaccines. The different production procedures used to achieve high encapsulation efficiencies of the bioactives are discussed, as well as the factors influencing the choice of excipient. Lipid based colloidal drug delivery systems including liposomes and solid lipid nanoparticles are reviewed with a focus on recent advances and updates. We further describe microemulsions and self-emulsifying drug delivery systems and recent findings on bioactive delivery. We conclude the review with a few examples on novel lipid based formulation technologies.

  5. Enhancing Tumor Drug Delivery by Laser-Activated Vascular Barrier Disruption

    DTIC Science & Technology

    2006-12-01

    increased, which leads to normal tissue toxicity . This delivery problem not only limits the clinical application of existing chemotherapeutics, but also...principles and uses photochemical reactions to generate biological effectors, such as reactive oxygen species (ROS), which cause oxidative damage to...liposomes, mi- celles, and biodegradable nanoparticles , or conju- gated with hydrophilic polymers.6 It is likely that although some level of

  6. Predictors of adequate depression treatment among Medicaid-enrolled adults.

    PubMed

    Teh, Carrie Farmer; Sorbero, Mark J; Mihalyo, Mark J; Kogan, Jane N; Schuster, James; Reynolds, Charles F; Stein, Bradley D

    2010-02-01

    To determine whether Medicaid-enrolled depressed adults receive adequate treatment for depression and to identify the characteristics of those receiving inadequate treatment. Claims data from a Medicaid-enrolled population in a large mid-Atlantic state between July 2006 and January 2008. We examined rates and predictors of minimally adequate psychotherapy and pharmacotherapy among adults with a new depression treatment episode during the study period (N=1,098). Many depressed adults received either minimally adequate psychotherapy or pharmacotherapy. Black individuals and individuals who began their depression treatment episode with an inpatient psychiatric stay for depression were markedly less likely to receive minimally adequate psychotherapy and more likely to receive inadequate treatment. Racial minorities and individuals discharged from inpatient treatment for depression are at risk for receiving inadequate depression treatment.

  7. 76 FR 22805 - Medical Devices; Reclassification of the Topical Oxygen Chamber for Extremities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... use and adequate healing of wounds using the TOCE. In addition, FDA has evaluated more than 20 years... humidified oxygen topically at a pressure slightly greater than atmospheric pressure to aid healing of... pressure to aid healing of chronic skin ulcers such as bedsores. Elsewhere in the Federal Register of April...

  8. Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization

    PubMed Central

    Loges, Sonja; Schmidt, Thomas; Jonckx, Bart; Tian, Ya-Min; Lanahan, Anthony A.; Pollard, Patrick; de Almodovar, Carmen Ruiz; De Smet, Frederik; Vinckier, Stefan; Aragonés, Julián; Debackere, Koen; Luttun, Aernout; Wyns, Sabine; Jordan, Benedicte; Pisacane, Alberto; Gallez, Bernard; Lampugnani, Maria Grazia; Dejana, Elisabetta; Simons, Michael; Ratcliffe, Peter; Maxwell, Patrick; Carmeliet, Peter

    2014-01-01

    SUMMARY A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2+/− mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy. PMID:19217150

  9. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs

    PubMed Central

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate. PMID:23720633

  10. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    PubMed

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate.

  11. Oxygen-dependent delayed fluorescence measured in skin after topical application of 5-aminolevulinic acid.

    PubMed

    Harms, Floor A; de Boon, Wadim M I; Balestra, Gianmarco M; Bodmer, Sander I A; Johannes, Tanja; Stolker, Robert J; Mik, Egbert G

    2011-10-01

    Mitochondrial oxygen tension can be measured in vivo by means of oxygen-dependent quenching of delayed fluorescence of protoporphyrin IX (PpIX). Here we demonstrate that delayed fluorescence is readily observed from skin in rat and man after topical application of the PpIX precursor 5-aminolevulinic acid (ALA). Delayed fluorescence lifetimes respond to changes in inspired oxygen fraction and blood supply. The signals contain lifetime distributions and the fitting of rectangular distributions to the data appears more adequate than mono-exponential fitting. The use of topically applied ALA for delayed fluorescence lifetime measurements might pave the way for clinical use of this technique. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  13. Oxygen Supplementation to Stabilize Preterm Infants in the Fetal to Neonatal Transition: No Satisfactory Answer.

    PubMed

    Torres-Cuevas, Isabel; Cernada, Maria; Nuñez, Antonio; Escobar, Javier; Kuligowski, Julia; Chafer-Pericas, Consuelo; Vento, Maximo

    2016-01-01

    Fetal life elapses in a relatively low oxygen environment. Immediately after birth with the initiation of breathing, the lung expands and oxygen availability to tissue rises by twofold, generating a physiologic oxidative stress. However, both lung anatomy and function and the antioxidant defense system do not mature until late in gestation, and therefore, very preterm infants often need respiratory support and oxygen supplementation in the delivery room to achieve postnatal stabilization. Notably, interventions in the first minutes of life can have long-lasting consequences. Recent trials have aimed to assess what initial inspiratory fraction of oxygen and what oxygen targets during this transitional period are best for extremely preterm infants based on the available nomogram. However, oxygen saturation nomogram informs only of term and late preterm infants but not on extremely preterm infants. Therefore, the solution to this conundrum may still have to wait before a satisfactory answer is available.

  14. The analysis of parameters of the cryogenic oxygen unit cooperating with power plant to realize oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Hnydiuk-Stefan, Anna; Składzień, Jan

    2015-03-01

    The paper examines from the thermodynamic point of view operation of coal fired power unit cooperating with the cryogenic oxygen unit, with a particular emphasis on the characteristic performance parameters of the oxygen unit. The relatively high purity technical oxygen produced in the oxygen unit is then used as the oxidant in the fluidized bed boiler of the modern coal fired power unit with electric power output of approximately 460 MW. The analyzed oxygen unit has a classical two-column structure with an expansion turbine (turboexpander), which allows the use of relatively low pressure initially compressed air. Multivariant calculations were performed, the main result being the loss of power and efficiency of the unit due to the need to ensure adequate driving power to the compressor system of the oxygen generating plant.

  15. Time trends in births and cesarean deliveries among women with disabilities.

    PubMed

    Horner-Johnson, Willi; Biel, Frances M; Darney, Blair G; Caughey, Aaron B

    2017-07-01

    Although it is likely that childbearing among women with disabilities is increasing, no empirical data have been published on changes over time in the numbers of women with disabilities giving birth. Further, while it is known that women with disabilities are at increased risk of cesarean delivery, temporal trends in cesarean deliveries among women with disabilities have not been examined. To assess time trends in births by any mode and in primary cesarean deliveries among women with physical, sensory, or intellectual/developmental disabilities. We conducted a retrospective cohort study using linked vital records and hospital discharge data from all deliveries in California, 2000-2010 (n = 4,605,061). We identified women with potential disabilities using ICD-9 codes. We used descriptive statistics and visualizations to examine time patterns. Logistic regression analyses assessed the association between disability and primary cesarean delivery, stratified by year. Among all women giving birth, the proportion with a disability increased from 0.27% in 2000 to 0.80% in 2010. Women with disabilities had significantly elevated odds of primary cesarean delivery in each year, but the magnitude of the odds ratio decreased over time from 2.60 (95% CI = 2.25 = 2.99) in 2000 to 1.66 (95% CI = 1.51-1.81) in 2010. Adequate clinician training is needed to address the perinatal care needs of the increasing numbers of women with disabilities giving birth. Continued efforts to understand cesarean delivery patterns and reasons for cesarean deliveries may help guide further reductions in proportions of cesarean deliveries among women with disabilities relative to women without disabilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cerebral Oxygen Saturation to Guide Oxygen Delivery in Preterm Neonates for the Immediate Transition after Birth: A 2-Center Randomized Controlled Pilot Feasibility Trial.

    PubMed

    Pichler, Gerhard; Urlesberger, Berndt; Baik, Nariae; Schwaberger, Bernhard; Binder-Heschl, Corinna; Avian, Alexander; Pansy, Jasmin; Cheung, Po-Yin; Schmölzer, Georg Marcus

    2016-03-01

    To assess if monitoring of cerebral regional tissue oxygen saturation (crSO2) using near-infrared spectroscopy (NIRS) to guide respiratory and supplemental oxygen support reduces burden of cerebral hypoxia and hyperoxia in preterm neonates during resuscitation after birth. Preterm neonates <34(+0) weeks of gestation were included in a prospective randomized controlled pilot feasibility study at 2 tertiary level neonatal intensive care units. In a NIRS-visible group, crSO2 monitoring in addition to pulse oximetry was used to guide respiratory and supplemental oxygen support during the first 15 minutes after birth. In a NIRS-not-visible group, only pulse oximetry was used. The primary outcomes were burden of cerebral hypoxia (<10th percentile) or hyperoxia (>90th percentile) measured in %minutes crSO2 during the first 15 minutes after birth. Secondary outcomes were all cause of mortality and/or cerebral injury and neurologic outcome at term age. Allocation sequence was 1:1 with block-randomization of 30 preterm neonates at each site. In the NIRS-visible group burden of cerebral hypoxia in %minutes, crSO2 was halved, and the relative reduction was 55.4% (95% CI 37.6-73.2%; P = .028). Cerebral hyperoxia was observed in NIRS-visible group in 3 neonates with supplemental oxygen and in NIRS-not-visible group in 2. Cerebral injury rate and neurologic outcome at term age was similar in both groups. Two neonates died in the NIRS-not-visible group and none in the NIRS-visible group. No severe adverse reactions were observed. Reduction of burden of cerebral hypoxia during immediate transition and resuscitation after birth is feasible by crSO2 monitoring to guide respiratory and supplemental oxygen support. ClinicalTrials.gov: NCT02017691. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The effect of high flow nasal cannula oxygen therapy on middle ear pressure.

    PubMed

    Piastro, Kristina; Chaskes, Mark; Agarwal, Jay; Parnes, Steven

    2016-01-01

    To investigate the effect of high flow nasal cannula oxygen therapy (HFOT) on middle ear pressure. Ten patients (eight males and two females) with oxygen desaturations requiring HFOT were recruited with 19 ears available for our study. The study group was aged 29-90years (mean 65.3±16.5). All patients underwent a review of medical history, questioned about subjective hearing loss and underwent a standard otologic exam, with middle ear pressures measured with a GSI TympStar tympanometer. The middle ear peak pressures in our study group ranged from 25 to -200daPa (mean -13.7±56.3daPa). Volume of HFOT was delivered at 20-40L (mean 30.5±9L) and fraction of inspired oxygen required was 30-70% (mean 58±13%). There was a positive correlation between liters of oxygen delivery and middle ear pressure with a Pearson coefficient (R) of 0.436, although lacking statistical significance (p=0.06). Previous studies have shown that HFOT delivered in the range of 35-40L/min produces pharyngeal pressures at or above 5cm H2O. Since pharyngeal pressures of 5cm H2O produced via CPAP have shown to produce middle ear pressures above 40daPa, we expected HFOT to result in similar middle ear pressures of 35-40L/min. However, although our results show an increase in middle ear pressures with flow volume, HFOT did not produce significant increases in middle ear pressures. This may make HFOT an appropriate option of oxygen delivery to patients who require otologic procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Hyperbaric Oxygen Therapy—A Novel Treatment Modality in Oral Submucous Fibrosis: A Review

    PubMed Central

    Kumar, M. Ashwini; Radhika, Besta; Reddy, Satya Prakash; Yaga, Uday Shankar

    2015-01-01

    Oral submucous fibrosis (OSMF) is a chronic, debilitating disease characterized by juxta epithelial fibrosis of the oral cavity and regarded as a potentially malignant disorder. Numerous treatment modalities ranging from various drugs to behavioral therapy have been tried with inconsistent results with varying degrees of success reflecting low predictability, requiring further evaluation and standardization. Novel treatment modality such as Hyperbaric oxygen therapy (HBOT) involves inhalation of 100% oxygen at increased atmospheric pressure usually ranging between 2.0 and 2.5 atmospheres for periods between 60 and 120 min. HBOT which can increase oxygen tension and delivery to oxygen-deficient tissue, is a supplementary therapy to improve hypoxic environment of OSMF and also possesses potent anti-inflammatory properties. This article enlightens on possible beneficial effects of HBOT in the management of OSMF at cellular and molecular level. PMID:26155590

  19. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part I. Theory.

    PubMed

    Hovan, Andrej; Datta, Shubhashis; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor

    2018-05-24

    The singlet oxygen produced by energy transfer between an excited photosensitizer (pts) and ground-state oxygen molecules plays a key role in photodynamic therapy. Different nanocarrier systems are extensively studied to promote targeted pts delivery in a host body. The phosphorescence kinetics of the singlet oxygen produced by the short laser pulse photosensitization of pts inside nanoparticles is influenced by singlet oxygen diffusion from the particles to the surrounding medium. Two theoretical models are presented in this work: a more complex numerical one and a simple analytical one. Both the models predict the time course of singlet oxygen concentration inside and outside of the spherical particles following short-pulse excitation of pts. On the basis of the comparison of the numerical and analytical results, a semiempirical analytical formula is derived to calculate the characteristic diffusion time of singlet oxygen from the nanoparticles to the surrounding solvent. The phosphorescence intensity of singlet oxygen produced in pts-loaded nanocarrier systems can be calculated as a linear combination of the two concentrations (inside and outside the particles), taking the different phosphorescence emission rate constants into account.

  20. Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism?

    PubMed Central

    Verberk, Wilco C. E. P.; Bilton, David T.

    2011-01-01

    Background Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Methodology/Principal Findings Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. Conclusions/Significance These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods. PMID:21818347

  1. Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery.

    PubMed

    Liu, Xin; Xiang, Jiajia; Zhu, Dingcheng; Jiang, Liming; Zhou, Zhuxian; Tang, Jianbin; Liu, Xiangrui; Huang, Yongzhuo; Shen, Youqing

    2016-03-02

    A novel fusogenic lipidic polyplex (FLPP) vector is designed to fuse with cell membranes, mimicking viropexis, and eject the polyplex into the cytosol, where the cationic polymer is subsequently oxidized by intracellular reactive oxygen species and converts to being negatively charged, efficiently releasing the DNA. The vector delivering suicide gene achieves significantly better inhibition of tumor growth than doxorubicin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cerebral glucose deficiency versus oxygen deficiency in neonatal encephalopathy.

    PubMed

    Rudolph, A M

    2018-04-24

    Hypoxic-ischemic encephalopathy (HIE) in newborn infants is generally considered to result from decreased arterial oxygen content or cerebral blood flow. Cerebral injury similar to that of HIE has been noted with hypoglycemia. Studies in fetal lambs have shown that ventilation with 3% oxygen did not change cerebral blood flow, but ventilation with 100% oxygen resulted in marked reduction in cerebral blood flow, glucose delivery and glucose consumption. Blood glucose concentration falls markedly after birth; this, associated with the fall in cerebral blood flow, greatly reduces glucose supply to the brain. In preterm infants, blood glucose levels tend to be very low. Also persistent patency of the ductus arteriosus may reduce cerebral flow in diastole, thus exaggerating the decrease in glucose supply. I propose that glycopenic-ischemic encephalopathy is a more appropriate term for the cerebral insult. We should consider more aggressive management of the low blood glucose concentrations in the neonate, and particularly in preterm infants. Administration of high levels of oxygen in inspired air should be avoided to reduce the enhancement of cerebral vasoconstriction and decreased flow that normally occurs after birth.

  3. [Oxygen-transporting function of the blood circulation system in sevoflurane anesthesia during myocardial revascularization under extracorporeal circulation].

    PubMed

    Skopets, A A; Lomivorotov, V V; Karakhalis, N B; Makarov, A A; Duman'ian, E S; Lomivorotova, L V

    2009-01-01

    The purpose of the study was to evaluate the efficiency of oxygen-transporting function of the circulatory system under sevoflurane anesthesia during myocardial revascularization operations under extracorporeal circulation. Twenty-five patients with coronary heart disease were examined. Mean blood pressure, heart rate, cardiac index, total peripheral vascular resistance index, pulmonary pressure, pulmonary wedge pressure, and central venous pressure were measured. Arterial and mixed venous blood oxygen levels, oxygen delivery and consumption index, arteriovenous oxygen difference, and glucose and lactate concentrations were calculated. The study has demonstrated that sevoflurane is an effective and safe anesthetic for myocardial revascularization operations in patients with coronary heart disease. The use of sevoflurane contributes to steady-state oxygen-transporting function of the circulatory system at all surgical stages.

  4. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    NASA Astrophysics Data System (ADS)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  5. Health workers' perceptions of facilitators of and barriers to institutional delivery in Tigray, Northern Ethiopia.

    PubMed

    Gebrehiwot, Tesfay; San Sebastian, Miguel; Edin, Kerstin; Goicolea, Isabel

    2014-04-10

    Evidence shows that the three delays, delay in 1) deciding to seek medical care, 2) reaching health facilities and 3) receiving adequate obstetric care, are still contributing to maternal deaths in low-income countries. Ethiopia is a major contributor to the worldwide death toll of mothers with a maternal mortality ratio of 676 per 100,000 live births. The Ethiopian Ministry of Health launched a community-based health-care system in 2003, the Health Extension Programme (HEP), to tackle maternal mortality. Despite strong efforts, universal access to services remains limited, particularly skilled delivery attendance. With the help of 'the three delays' framework, this study explores health-service providers' perceptions of facilitators and barriers to the utilization of institutional delivery in Tigray, a northern region of Ethiopia. Twelve in-depth interviews were carried out with eight health extension workers (HEWs) and four midwives. Each interview lasted between 90 and 120 minutes. Data were analysed through a thematic analysis approach. Three themes emerged from the analysis: the struggle between tradition and newly acquired knowledge, community willingness to deal with geographical barriers, and striving to do a good job with insufficient resources. These themes represent the three steps in the path towards receiving adequate institutional delivery care at a health facility. Of the themes, 'increased community awareness', 'organization of the community' and 'hospital with specialized staff' were recognized as facilitators. On the other hand, 'delivery as a natural event', 'cultural tradition and rituals', 'inaccessible transport', 'unmet community expectation' and 'shortage of skilled human resources' were represented as barriers to institutional delivery. The participants in this study gave emphasis to the major barriers to institutional delivery that are closely connected with the three delays model. Despite the initiatives being implemented by the Tigray

  6. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    PubMed

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2018-02-01

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O 2 min -1 m -2 cm Hg -1 with pure water and 1.71 ± 1.03 mL O 2 min -1 m -2 cm Hg -1 with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells

    PubMed Central

    Mairbäurl, Heimo

    2013-01-01

    During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise. PMID:24273518

  8. 22 CFR 1006.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Adequate evidence. 1006.900 Section 1006.900 Foreign Relations INTER-AMERICAN FOUNDATION GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT... reasonable belief that a particular act or omission has occurred. ...

  9. 22 CFR 1508.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Adequate evidence. 1508.900 Section 1508.900 Foreign Relations AFRICAN DEVELOPMENT FOUNDATION GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT... reasonable belief that a particular act or omission has occurred. ...

  10. Three Years of on Orbit ISS Oxygen Generation System Operation 2007-2010

    NASA Technical Reports Server (NTRS)

    Diderich, Greg S.; Polis, Pete; VanKeuren, Steven P.; Erickson, Bob

    2010-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) has accumulated 240 days of continuous operation at varied oxygen production rates within the US Laboratory Module (LAB) since it was first activated in July 2007. OGS relocated from the ISS LAB to Node 3 during 20A Flight (February 2010). The OGS rack delivery was accelerated for on-orbit checkout in the LAB, and it was launched to ISS in July of 2006. During the on-orbit checkout interval within the LAB from July 2007 to October 2008, OGS operational times were limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Longer runtimes are now achievable due to the continuous feedwater availability after ULF2 delivery and activation of the USOS Water Recovery System (WRS) racks. OGS is considered a critical function to maintaining six crew capability. There have been a number of failures which interrupted or threatened to interrupt oxygen production. Filters in the recirculation loop have clogged and have been replaced, Hydrogen sensors have fallen out of specifications, a pump delta pressure sensor failed, a pump failed to start, and the voltage on the cell stack increased out of tolerance. This paper will discuss the operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  11. Modelling the effects of cerebral microvasculature morphology on oxygen transport.

    PubMed

    Park, Chang Sub; Payne, Stephen J

    2016-01-01

    The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating

  12. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments

    PubMed Central

    Vargas, Sergio; Larsen, Morten; Elemans, Coen PH; Canfield, Donald E

    2018-01-01

    Animals have a carefully orchestrated relationship with oxygen. When exposed to low environmental oxygen concentrations, and during periods of increased energy expenditure, animals maintain cellular oxygen homeostasis by enhancing internal oxygen delivery, and by enabling the anaerobic production of ATP. These low-oxygen responses are thought to be controlled universally across animals by the hypoxia-inducible factor (HIF). We find, however, that sponge and ctenophore genomes lack key components of the HIF pathway. Since sponges and ctenophores are likely sister to all remaining animal phyla, the last common ancestor of extant animals likely lacked the HIF pathway as well. Laboratory experiments show that the marine sponge Tethya wilhelma maintains normal transcription under oxygen levels down to 0.25% of modern atmospheric saturation, the lowest levels we investigated, consistent with the predicted absence of HIF or any other HIF-like pathway. Thus, the last common ancestor of all living animals could have metabolized aerobically under very low environmental oxygen concentrations. PMID:29402379

  13. Climate change affects marine fishes through the oxygen limitation of thermal tolerance.

    PubMed

    Pörtner, Hans O; Knust, Rainer

    2007-01-05

    A cause-and-effect understanding of climate influences on ecosystems requires evaluation of thermal limits of member species and of their ability to cope with changing temperatures. Laboratory data available for marine fish and invertebrates from various climatic regions led to the hypothesis that, as a unifying principle, a mismatch between the demand for oxygen and the capacity of oxygen supply to tissues is the first mechanism to restrict whole-animal tolerance to thermal extremes. We show in the eelpout, Zoarces viviparus, a bioindicator fish species for environmental monitoring from North and Baltic Seas (Helcom), that thermally limited oxygen delivery closely matches environmental temperatures beyond which growth performance and abundance decrease. Decrements in aerobic performance in warming seas will thus be the first process to cause extinction or relocation to cooler waters.

  14. Changes in maternal lipid peroxidation before and immediately after delivery.

    PubMed

    John, Jessy; Mathangi, D C; Dilara, K; Subhashini, A S; Vijayraghavan, Jaya

    2012-08-01

    Oxidative damage has been implicated in pathogenesis of many diseases. It is known that various kinds of stresses accelerate the production of free radicals. As pregnancy being a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement, increased level of oxidative stress would be expected. The present study was to elucidate the degree of oxidative stress during labour and immediately after delivery. Twenty healthy pregnant women and age matched and 20 healthy non-pregnant women were selected as subjects for this longitudinal study. Plasma malondialdehyde concentration was estimated as thiobarbituric acid reacting substances. A significant (p < 0.01) increase in plasma malondialdehyde concentration was noted in pregnant women during labour than in the non-pregnant women. Plasma malondialdehyde concentration was noted to increase with the progression and duration of labour to immediately following delivery. Labour being stressful state results in oxidative stress, which increased with increase in duration and progression of the labour till immediately following delivery.

  15. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives.

    PubMed

    Chen, Fa-Ming; Shelton, Richard M; Jin, Yan; Chapple, Iain L C

    2009-05-01

    Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus.

  16. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    PubMed Central

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293

  17. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    PubMed

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  18. Effect of supplemental oxygen versus dobutamine administration on liver oxygen tension in dPP-guided normovolemic pigs.

    PubMed

    Pestel, G; Fukui, K; Hager, H; Kurz, A; Hiltebrand, L

    2009-01-01

    Difference in pulse pressure (dPP) confirms adequate intravascular filling as a prerequisite for tissue perfusion. We hypothesized that both oxygen and dobutamine increase liver tissue oxygen tension (ptO(2)). Eight anesthetized pigs received dPP-guided fluid management. Hepatic pO(2) was measured with Clark-type electrodes placed subcapsularly, and on the liver surface. Pigs received: (1) supplemental oxygen (F(i)O(2) 1.0); (2) dobutamine 2.5 microg/kg/min, and (3) dobutamine 5 microg/kg/min. Data were analyzed using repeated-measures ANOVA followed by a Tukey post-test for multiple comparisons. ptO(2 )measured subcapsularly and at the liver surface were compared using the Bland-Altman plot. Variation in F(i)O(2) changed local hepatic tissue ptO(2) [subcapsular measurement: 39 +/- 12 (F(i)O(2) 0.3), 89 +/- 35 mm Hg (F(i)O(2) 1.0, p = 0.01 vs. F(i)O(2) 0.3), 44 +/- 10 mm Hg (F(i)O(2) 0.3, p = 0.05 vs. F(i)O(2) 1.0); surface measurement: 52 +/- 35 (F(i)O(2) 0.3), 112 +/- 24 mm Hg (F(i)O(2) 1.0, p = 0.001 vs. F(i)O(2) 0.3), 54 +/- 24 mm Hg (F(i)O(2) 0.3, p = 0.001 vs. F(i)O(2) 1.0)]. Surface measurements were widely scattered compared to subcapsular measurements (bias: -15 mm Hg, precision: 76.3 mm Hg). Dobutamine did not affect hepatic oxygenation. Supplemental oxygen increased hepatic tissue pO(2) while dobutamine did not. Although less invasive, the use of surface measurements is discouraged. Copyright 2009 S. Karger AG, Basel.

  19. 22 CFR 208.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Adequate evidence. 208.900 Section 208.900 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  20. 22 CFR 208.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Adequate evidence. 208.900 Section 208.900 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  1. 10 CFR 503.35 - Inability to obtain adequate capital.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... capital investment, through tariffs, without unreasonably adverse economic effect on its service area... 10 Energy 4 2010-01-01 2010-01-01 false Inability to obtain adequate capital. 503.35 Section 503... New Facilities § 503.35 Inability to obtain adequate capital. (a) Eligibility. Section 212(a)(1)(D) of...

  2. "Something Adequate"? In Memoriam Seamus Heaney, Sister Quinlan, Nirbhaya

    ERIC Educational Resources Information Center

    Parker, Jan

    2014-01-01

    Seamus Heaney talked of poetry's responsibility to represent the "bloody miracle", the "terrible beauty" of atrocity; to create "something adequate". This article asks, what is adequate to the burning and eating of a nun and the murderous gang rape and evisceration of a medical student? It considers Njabulo Ndebele's…

  3. Atmospheric oxygen level and the evolution of insect body size.

    PubMed

    Harrison, Jon F; Kaiser, Alexander; VandenBrooks, John M

    2010-07-07

    Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO(2) (aPO(2)) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO(2), suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO(2) on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.

  4. CPAP and High-Flow Nasal Cannula Oxygen in Bronchiolitis.

    PubMed

    Sinha, Ian P; McBride, Antonia K S; Smith, Rachel; Fernandes, Ricardo M

    2015-09-01

    Severe respiratory failure develops in some infants with bronchiolitis because of a complex pathophysiologic process involving increased airways resistance, alveolar atelectasis, muscle fatigue, and hypoxemia due to mismatch between ventilation and perfusion. Nasal CPAP and high-flow nasal cannula (HFNC) oxygen may improve the work of breathing and oxygenation. Although the mechanisms behind these noninvasive modalities of respiratory support are not well understood, they may help infants by way of distending pressure and delivery of high concentrations of warmed and humidified oxygen. Observational studies of varying quality have suggested that CPAP and HFNC may confer direct physiologic benefits to infants with bronchiolitis and that their use has reduced the need for intubation. No trials to our knowledge, however, have compared CPAP with HFNC in bronchiolitis. Two randomized trials compared CPAP with oxygen delivered by low-flow nasal cannula or face mask and found some improvements in blood gas results and some physiologic parameters, but these trials were unable to demonstrate a reduction in the need for intubation. Two trials evaluated HFNC in bronchiolitis (one comparing it with headbox oxygen, the other with nebulized hypertonic saline), with the results not seeming to suggest important clinical or physiologic benefits. In this article, we review the pathophysiology of respiratory failure in bronchiolitis, discuss these trials in detail, and consider how future research studies may be designed to best evaluate CPAP and HFNC in bronchiolitis.

  5. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS... belief that a particular act or omission has occurred. ...

  6. Transcutaneous oxygen tension monitoring in critically ill patients receiving packed red blood cells.

    PubMed

    Schlager, Oliver; Gschwandtner, Michael E; Willfort-Ehringer, Andrea; Kurz, Martin; Mueller, Markus; Koppensteiner, Renate; Heinz, Gottfried

    2014-12-01

    Whether transfusions of packed red blood cells (PRBCs) affect tissue oxygenation in stable critically ill patients is still matter of discussion. The microvascular capacity for tissue oxygenation can be determined noninvasively by measuring transcutaneous oxygen tension (tcpO2). The aim of this study was to assess tissue oxygenation by measuring tcpO2 in stable critically ill patients receiving PRBC transfusions. Nineteen stable critically ill patients, who received 2 units of PRBC, were prospectively included into this pilot study. Transcutaneous oxygen tension was measured continuously during PRBC transfusions using Clark's electrodes. In addition, whole blood viscosity and global hemodynamics were determined. Reliable measurement signals during continuous tcpO2 monitoring were observed in 17 of 19 included patients. Transcutaneous oxygen tension was related to the global oxygen consumption (r=-0.78; P=.003), the arterio-venous oxygen content difference (r=-0.65; P=.005), and the extraction rate (r=-0.71; P=.02). The transfusion-induced increase of the hemoglobin concentration was paralleled by an increase of the whole blood viscosity (P<.001). Microvascular tissue oxygenation by means of tcpO2 was not affected by PRBC transfusions (P=.46). Packed red blood cell transfusions resulted in an increase of global oxygen delivery (P=.02) and central venous oxygen saturation (P=.01), whereas oxygen consumption remained unchanged (P=.72). In stable critically ill patients, microvascular tissue oxygenation can be continuously monitored by Clark's tcpO2 electrodes. According to continuous tcpO2 measurements, the microvascular tissue oxygenation is not affected by PRBC transfusions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. How many oxygen cylinders do you need to take on transport? A nomogram for cylinder size and duration

    PubMed Central

    Lutman, D; Petros, A J

    2006-01-01

    When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator. PMID:16921085

  8. How many oxygen cylinders do you need to take on transport? A nomogram for cylinder size and duration.

    PubMed

    Lutman, D; Petros, A J

    2006-09-01

    When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator.

  9. Improvement of oxygen storage properties of hexagonal YMnO3+δ by microstructural modifications

    NASA Astrophysics Data System (ADS)

    Klimkowicz, Alicja; Świerczek, Konrad; Kobayashi, Shuntaro; Takasaki, Akito; Allahyani, Wadiah; Dabrowski, Bogdan

    2018-02-01

    Hexagonal YMnO3+δ is shown to be an effective temperature-swing oxygen storage material working at low temperatures (150-300 °C) in pure oxygen if adequately processed or obtained having sub-micrometer primary particles with limited number of big agglomerates. A substantial increase of a practical oxygen storage capacity is observed for a sample synthesized by a solid-state method, which was subjected to a high impact mechanical milling. However, even better properties can be achieved for the sol-gel technique-produced YMnO3+δ. The reversible incorporation and release of the oxygen is associated with a structural transformation between stoichiometric YMnO3 (Hex0) phase and a mixture of oxygen-loaded Hex1 with δ ≈ 0.28 and Hex2 with δ ≈ 0.41 phases, as documented by in situ structural X-ray diffraction studies, supported by thermogravimetric experiments. Contrary to HoMnO3+δ, it was not possible to obtain single phase Hex1 material in oxygen, as well as to oxidize YMnO3 in air. Results confirm crucial role of the ionic size of rare earth element Ln on the oxygen storage-related properties and stability of the oxygen-loaded LnMnO3+δ phases.

  10. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  11. Noninvasive optoacoustic monitoring of cerebral venous blood oxygenation in newborns

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Wynne, Karon E.; Petrov, Yuriy; Esenaliev, Rinat O.; Richardson, C. Joan; Prough, Donald S.

    2012-02-01

    Cerebral ischemia after birth and during labor is a major cause of death and severe complications such as cerebral palsy. In the USA alone, cerebral palsy results in permanent disability of 10,000 newborns per year and approximately 500,000 of the total population. Currently, no technology is capable of direct monitoring of cerebral oxygenation in newborns. This study proposes the use of an optoacoustic technique for noninvasive cerebral ischemia monitoring by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, near-infrared optoacoustic system suitable for noninvasive monitoring of cerebral ischemia in newborns with normal weight (NBW), low birth-weight (LBW, 1500 - 2499 g) and very low birth-weight (VLBW, < 1500 g). The system was capable of detecting SSS signals through the open anterior and posterior fontanelles as well as through the skull. We tested the system in NBW, LBW, and VLBW newborns (weight range: from 675 g to 3,000 g) admitted to the neonatal intensive care unit. We performed single and continuous measurements of the SSS blood oxygenation. The data acquisition, processing and analysis software developed by our group provided real-time, absolute SSS blood oxygenation measurements. The SSS blood oxygenation ranged from 60% to 80%. Optoacoustic monitoring of the SSS blood oxygenation provides valuable information because adequate cerebral oxygenation would suggest that no therapy was necessary; conversely, evidence of cerebral ischemia would prompt therapy to increase cerebral blood flow.

  12. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  13. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  14. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  15. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  16. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  17. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  18. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  19. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  20. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  1. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  2. Preventing the first cesarean delivery: summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, and American College of Obstetricians and Gynecologists Workshop.

    PubMed

    Spong, Catherine Y; Berghella, Vincenzo; Wenstrom, Katharine D; Mercer, Brian M; Saade, George R

    2012-11-01

    With more than one third of pregnancies in the United States being delivered by cesarean and the growing knowledge of morbidities associated with repeat cesarean deliveries, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the Society for Maternal-Fetal Medicine, and the American College of Obstetricians and Gynecologists convened a workshop to address the concept of preventing the first cesarean delivery. The available information on maternal and fetal factors, labor management and induction, and nonmedical factors leading to the first cesarean delivery was reviewed as well as the implications of the first cesarean delivery on future reproductive health. Key points were identified to assist with reduction in cesarean delivery rates including that labor induction should be performed primarily for medical indication; if done for nonmedical indications, the gestational age should be at least 39 weeks or more and the cervix should be favorable, especially in the nulliparous patient. Review of the current literature demonstrates the importance of adhering to appropriate definitions for failed induction and arrest of labor progress. The diagnosis of "failed induction" should only be made after an adequate attempt. Adequate time for normal latent and active phases of the first stage, and for the second stage, should be allowed as long as the maternal and fetal conditions permit. The adequate time for each of these stages appears to be longer than traditionally estimated. Operative vaginal delivery is an acceptable birth method when indicated and can safely prevent cesarean delivery. Given the progressively declining use, it is critical that training and experience in operative vaginal delivery are facilitated and encouraged. When discussing the first cesarean delivery with a patient, counseling should include its effect on future reproductive health.

  3. Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance

    PubMed Central

    Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.

    2010-01-01

    Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395

  4. Fluoride concentrations in urine of delivery ward personnel following exposure to low concentrations of methoxyflurane.

    PubMed

    Dahlgren, B E

    1979-09-01

    Midwives and other delivery ward personnel exposed to methoxyflurane do not have measurable traces of the agent in expired air when examined soon after exposure. This may imply a rapid uptake of the anesthetic. If this is the case, then the products of the metabolism of methoxyflurane, such as fluoride, may appear in the urine of such personnel. The present study investigated urinary fluoride levels in 24 delivery ward personnel and compared the values found after methoxyflurane/nitrous oxide analgesia with those measured in the same individuals after exposure to nitrous oxide alone. A highly significant difference was observed. Thus it would appear that, in spite of an apparently adequate system of environmental ventilation, there is a significant uptake of methoxyflurane by delivery ward personnel when this agent is employed for obstetrical analgesia.

  5. Topical oxygen as an adjunct to wound healing: a clinical case series.

    PubMed

    Kalliainen, Loree K.; Gordillo, Gayle M.; Schlanger, Richard; Sen, Chandan K.

    2003-01-01

    BACKGROUND: Disrupted vasculature and high energy-demand to support processing and regeneration of wounded tissue are typical characteristics of a wound site. Oxygen delivery is a critical element for the healing of wounds. Clinical experience with adjunctive hyperbaric oxygen therapy in the treatment of chronic wounds have shown that wound hyperoxia increases wound granulation tissue formation and accelerates wound contraction and secondary closure. Nevertheless, the physiologic basis for this modality remains largely unknown. Also, systemic hyperbaric oxygen therapy is associated with risks related to oxygen toxicity. Topical oxygen therapy represents a less explored modality in wound care. The advantages of topical oxygen therapy include low cost, lack of systemic oxygen toxicity, and the ability to receive treatment at home, making the benefits of oxygen therapy available to a much larger population of patients. MATERIALS AND METHODS: Over 9 months, seven surgeons treated 58 wounds in 32 patients with topical oxygen with follow-up ranging from 1 to 8 months. The data presented herein is a retrospective analysis of the results we have achieved using topical oxygen on complex wounds. RESULTS: Thirty-eight wounds in 15 patients healed while on topical oxygen. An additional five wounds in five patients had preoperative oxygen therapy; all wounds initially healed postoperatively. In two patients, wounds recurred post-healing. In ten wounds, topical oxygen had no effect; and two of those patients went on to require limb amputation. There were no complications attributable to topical oxygen. Three patients died during therapy and one died in the first postoperative month from underlying medical problems. Two patients were lost to follow-up. CONCLUSIONS: In this case series, topical oxygen had no detrimental effects on wounds and showed beneficial indications in promoting wound healing.

  6. Immunization delivery in British Columbia

    PubMed Central

    Omura, John; Buxton, Jane; Kaczorowski, Janusz; Catterson, Jason; Li, Jane; Derban, Andrea; Hasselback, Paul; Machin, Shelagh; Linekin, Michelle; Morgana, Tamsin; O’Briain, Barra; Scheifele, David; Dawar, Meena

    2014-01-01

    Abstract Objective To explore the experiences of family physicians and pediatricians delivering immunizations, including perceived barriers and supports. Design Qualitative study using focus groups. Setting Ten cities throughout British Columbia. Participants A total of 46 family physicians or general practitioners, 10 pediatricians, and 2 residents. Methods A semistructured dialogue guide was used by a trained facilitator to explore participants’ experiences and views related to immunization delivery in British Columbia. Verbatim transcriptions were independently coded by 2 researchers. Key themes were analyzed and identified in an iterative manner using interpretive description. Main findings Physicians highly valued vaccine delivery. Factors facilitating physician-delivered immunizations included strong beliefs in the value of vaccines and having adequate information. Identified barriers included the large time commitment and insufficient communication about program changes, new vaccines, and the adult immunization program in general. Some physicians reported good relationships with local public health, while others reported the opposite experience, and this varied by geographic location. Conclusion These findings suggest that physicians are supportive of delivering vaccines. However, there are opportunities to improve the sustainability of physician-delivered immunizations. While compensation schemes remain under the purview of the provincial governments, local public health authorities can address the information needs of physicians. PMID:24627403

  7. Vaginal delivery of breech presentation.

    PubMed

    Kotaska, Andrew; Menticoglou, Savas; Gagnon, Robert

    2009-06-01

    elective Caesarean section. (I) 2. Careful case selection and labour management in a modern obstetrical setting may achieve a level of safety similar to elective Caesarean section. (II-1) 3. Planned vaginal delivery is reasonable in selected women with a term singleton breech fetus. (I) 4. With careful case selection and labour management, perinatal mortality occurs in approximately 2 per 1000 births and serious short-term neonatal morbidity in approximately 2% of breech infants. Many recent retrospective and prospective reports of vaginal breech delivery that follow specific protocols have noted excellent neonatal outcomes. (II-1) 5. Long-term neurological infant outcomes do not differ by planned mode of delivery even in the presence of serious short-term neonatal morbidity. (I) RECOMMENDATIONS: LABOUR SELECTION CRITERIA: 1. For a woman with suspected breech presentation, pre- or early labour ultrasound should be performed to assess type of breech presentation, fetal growth and estimated weight, and attitude of fetal head. If ultrasound is not available, Caesarean section is recommended. (II-1A) 2. Contraindications to labour include a. Cord presentation (II-3A) b. Fetal growth restriction or macrosomia (I-A) c. Any presentation other than a frank or complete breech with a flexed or neutral head attitude (III-B) d. Clinically inadequate maternal pelvis (III-B) e. Fetal anomaly incompatible with vaginal delivery (III-B) 3. Vaginal breech delivery can be offered when the estimated fetal weight is between 2500 g and 4000 g. (II-2B) LABOUR MANAGEMENT: 4. Clinical pelvic examination should be performed to rule out pathological pelvic contraction. Radiologic pelvimetry is not necessary for a safe trial of labour; good progress in labour is the best indicator of adequate fetal-pelvic proportions. (III-B) 5. Continuous electronic fetal heart monitoring is preferable in the first stage and mandatory in the second stage of labour. (I-A) When membranes rupture, immediate vaginal

  8. Continuous Real-time Viability Assessment of Kidneys Based on Oxygen Consumption

    PubMed Central

    Weegman, B.P.; Kirchner, V.A.; Scott, W.E.; Avgoustiniatos, E.S.; Suszynski, T.M.; Ferrer-Fabrega, J.; Rizzari, M.D.; Kidder, L.S.; Kandaswamy, R.; Sutherland, D.E.R.; Papas, K.K.

    2010-01-01

    Background Current ex vivo quality assessment of donor kidneys is limited to vascular resistance measurements and histological analysis. New techniques for the assessment of organ quality before transplantation may further improve clinical outcomes while expanding the depleted deceased-donor pool. We propose the measurement of whole organ oxygen consumption rate (WOOCR) as a method to assess the quality of kidneys in real time before transplantation. Methods Five porcine kidneys were procured using a donation after cardiac death (DCD) model. The renal artery and renal vein were cannulated and the kidney connected to a custom-made hypothermic machine perfusion (HMP) system equipped with an inline oxygenator and fiber-optic oxygen sensors. Kidneys were perfused at 8°C, and the perfusion parameters and partial oxygen pressures (pO2) were measured to calculate WOOCR. Results Without an inline oxygenator, the pO2 of the perfusion solution at the arterial inlet and venous outlet diminished to near 0 within minutes. However, once adequate oxygenation was provided, a significant pO2 difference was observed and used to calculate the WOOCR. The WOOCR was consistently measured from presumably healthy kidneys, and results suggest that it can be used to differentiate between healthy and purposely damaged organs. Conclusions Custom-made HMP systems equipped with an oxygenator and inline oxygen sensors can be applied for WOOCR measurements. We suggest that WOOCR is a promising approach for the real-time quality assessment of kidneys and other organs during preservation before transplantation. PMID:20692397

  9. An overview of Ball Aerospace cryogen storage and delivery systems

    NASA Astrophysics Data System (ADS)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  10. Topical oxygen wound therapies for chronic wounds: a review.

    PubMed

    Dissemond, J; Kröger, K; Storck, M; Risse, A; Engels, P

    2015-02-01

    Chronic wounds are an increasing problem in our ageing population and can arise in many different ways. Over the past decades it has become evident that sufficient oxygen supply is an essential factor of appropriate wound healing. Sustained oxygen deficit has a detrimental impact on wound healing, especially for patients with chronic wounds. This has been proven for wounds associated with peripheral arterial occlusive disease (PAOD) and diabetic foot ulcers (particularly in combination with PAOD). However, this is still under debate for other primary diseases. In the past few years several different new therapeutic approaches for topical oxygen therapies have been developed to support wound healing. These tend to fall into one of four categories: (1) delivery of pure oxygen either under pressurised or (2) ambient condition, (3) chemical release of oxygen via an enzymatic reaction or (4) increase of oxygen by facilitated diffusion using oxygen binding and releasing molecules. In this review article, the available therapeutic topical oxygen-delivering approaches and their impact on wound healing are presented and critically discussed. A summary of clinical data, daily treatment recommendations and practicability is provided. J. Dissemond received an honorarium for lectures, advisory boards and/or clinical studies from the following companies: 3M, B. Braun, BSN, Coloplast, Convatec, Draco, Hartmann, KCI, Lohmann&Rauscher, Medoderm, Merz, Sastomed, Systagenix, UCB-Pharma, Urgo. K. Kröger received an honorarium for lectures, advisory boards and/or clinical studies from the following companies: Bayer, Sanofi, GSK, Hartmann, Sastomed, UCB-Pharma, Urgo. M. Storck received an honorarium for lectures for the following companies: KCI, Systagenix, and UCB-Pharma. A. Risse received an honorarium for lectures, advisory boards and/or clinical studies from the following companies: Bracco, Coloplast, Draco, Lilly Deutschland, NovoNordisk, Sastomed, Urgo. P. Engels received an

  11. Oxygen as a critical determinant of bone fracture healing-a multiscale model.

    PubMed

    Carlier, Aurélie; Geris, Liesbet; van Gastel, Nick; Carmeliet, Geert; Van Oosterwyck, Hans

    2015-01-21

    A timely restoration of the ruptured blood vessel network in order to deliver oxygen and nutrients to the fracture zone is crucial for successful bone healing. Indeed, oxygen plays a key role in the aerobic metabolism of cells, in the activity of a myriad of enzymes as well as in the regulation of several (angiogenic) genes. In this paper, a previously developed model of bone fracture healing is further improved with a detailed description of the influence of oxygen on various cellular processes that occur during bone fracture healing. Oxygen ranges of the cell-specific oxygen-dependent processes were established based on the state-of-the art experimental knowledge through a rigorous literature study. The newly developed oxygen model is compared with previously published experimental and in silico results. An extensive sensitivity analysis was also performed on the newly introduced oxygen thresholds, indicating the robustness of the oxygen model. Finally, the oxygen model was applied to the challenging clinical case of a critical sized defect (3mm) where it predicted the formation of a fracture non-union. Further model analyses showed that the harsh hypoxic conditions in the central region of the callus resulted in cell death and disrupted bone healing thereby indicating the importance of a timely vascularization for the successful healing of a large bone defect. In conclusion, this work demonstrates that the oxygen model is a powerful tool to further unravel the complex spatiotemporal interplay of oxygen delivery, diffusion and consumption with the several healing steps, each occurring at distinct, optimal oxygen tensions during the bone repair process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  13. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  14. 34 CFR 85.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Adequate evidence. 85.900 Section 85.900 Education Office of the Secretary, Department of Education GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT... reasonable belief that a particular act or omission has occurred. (Authority: E.O. 12549 (3 CFR, 1986 Comp...

  15. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  16. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  17. 34 CFR 85.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Adequate evidence. 85.900 Section 85.900 Education Office of the Secretary, Department of Education GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT... reasonable belief that a particular act or omission has occurred. Authority: E.O. 12549 (3 CFR, 1986 Comp., p...

  18. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  19. Nanostructures for protein drug delivery.

    PubMed

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  20. 'Multi-associations': predisposed to misinterpretation of peripheral tissue oxygenation and circulation in neonates.

    PubMed

    Pichler, Gerhard; Pocivalnik, Mirjam; Riedl, Regina; Pichler-Stachl, Elisabeth; Morris, Nicholas; Zotter, Heinz; Müller, Wilhelm; Urlesberger, Berndt

    2011-08-01

    Interpretation of peripheral circulation in ill neonates is crucial but difficult. The aim was to analyse parameters potentially influencing peripheral oxygenation and circulation. In a prospective observational cohort study in 116 cardio-circulatory stable neonates, peripheral muscle near-infrared spectroscopy (NIRS) with venous occlusion was performed. Tissue oxygenation index (TOI), mixed venous oxygenation (SvO(2)), fractional oxygen extraction (FOE), fractional tissue oxygen extraction (FTOE), haemoglobin flow (Hbflow), oxygen delivery (DO(2)), oxygen consumption (VO(2)), and vascular resistance (VR) were assessed. Correlation coefficients between NIRS parameters and demographic parameters (gestational age, birth weight, age, actual weight, diameter of calf, subcutaneous adipose tissue), monitoring parameters (heart rate, arterial oxygen saturation (SaO(2)), mean blood pressure (MAP), core/peripheral temperature, central/peripheral capillary refill time) and laboratory parameters (haemoglobin concentration (Hb-blood), pCO(2)) were calculated. All demographic parameters except for Hbflow and DO(2) correlated with NIRS parameters. Heart rate correlated with TOI, SvO(2), VO(2) and VR. SaO(2) correlated with FOE/FTOE. MAP correlated with Hbflow, DO(2), VO(2) and VR. Core temperature correlated with FTOE. Peripheral temperature correlated with all NIRS parameters except VO(2). Hb-blood correlated with FOE and VR. pCO(2) levels correlated with TOI and SvO(2). The presence of multiple interdependent factors associated with peripheral oxygenation and circulation highlights the difficulty in interpreting NIRS data. Nevertheless, these findings have to be taken into account when analysing peripheral oxygenation and circulation data.

  1. Drug delivery strategies for chemoprevention of UVB-induced skin cancer: A review.

    PubMed

    Bagde, Arvind; Mondal, Arindam; Singh, Mandip

    2018-01-01

    Annually, more skin cancer cases are diagnosed than the collective incidence of the colon, lung, breast, and prostate cancer. Persistent contact with sunlight is a primary cause for all the skin malignancies. UVB radiation induces reactive oxygen species (ROS) production in the skin which eventually leads to DNA damage and mutation. Various delivery approaches for the skin cancer treatment/prevention have been evolving and are directed toward improvements in terms of delivery modes, therapeutic agents, and site-specificity of therapeutics delivery. The effective chemoprevention activity achieved is based on the efficiency of the delivery system used and the amount of the therapeutic molecule deposited in the skin. In this article, we have discussed different studies performed specifically for the chemoprevention of UVB-induced skin cancer. Ultra-flexible nanocarriers, transethosomes nanocarriers, silica nanoparticles, silver nanoparticles, nanocapsule suspensions, microemulsion, nanoemulsion, and polymeric nanoparticles which have been used so far to deliver the desired drug molecule for preventing the UVB-induced skin cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany

    NASA Astrophysics Data System (ADS)

    Kohfahl, Claus; Massmann, Gudrun; Pekdeger, Asaf

    2009-05-01

    The microbial degradation of pharmaceuticals found in surface water used for artificial recharge is strongly dependent on redox conditions of the subsurface. Furthermore the durability of production wells may decrease considerably with the presence of oxygen and ferrous iron due to the precipitation of trivalent iron oxides and subsequent clogging. Field measurements are presented for oxygen at a bank filtration site in Berlin, Germany, along with simplified calculations of different oxygen pathways into the groundwater. For a two-dimensional vertical cross-section, oxygen input has been calculated for six scenarios related to different water management strategies. Calculations were carried out in order to assess the amount of oxygen input due to (1) the infiltration of oxic lake water, (2) air entrapment as a result of water table oscillations, (3) diffusive oxygen flux from soil air and (4) infiltrating rainwater. The results show that air entrapment and infiltrating lake water during winter constitute by far the most important mechanism of oxygen input. Oxygen input by percolating rainwater and by diffusive delivery of oxygen in the gas phase is negligible. The results exemplify the importance of well management as a determining factor for water oscillations and redox conditions during artificial recharge.

  3. Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism

    USGS Publications Warehouse

    Chabbi, A.; McKee, K.L.; Mendelssohn, I.A.

    2000-01-01

    The objective of this work was to determine whether radial oxygen loss (ROL) from roots of Typha domingensis and Cladium jamaicense creates an internal oxygen deficiency or, conversely, indicates adequate internal aeration and leakage of excess oxygen to the rhizosphere. Methylene blue in agar was used to quantify oxygen leakage. Typha's roots had a higher porosity than Cladium's and responded to flooding treatment by increasing cortical air space, particularly near the root tips. A greater oxygen release, which occurred along the subapical root axis, and an increase in rhizosphere redox potential (Eh) over time were associated with the well-developed aerenchyma system in Typha. Typha roots, regardless of oxygen release pattern, showed low or undetectable alcohol dehydrogenage (ADH) activity or ethanol concentrations, indicating that ROL did not cause internal deficiencies. Cladium roots also releases oxygen, but this loss primarily occurred at the root tips and was accompanied by increased root ADH activity and ethanol concentrations. These results support the hypothesis that oxygen release by Cladium is accompanied by internal deficiencies of oxygen sufficient to stimulate alcoholic fermentation and helps explain Cladium's lesser flood tolerance in comparison with Typha.

  4. Harmful Effects of Hyperoxia in Postcardiac Arrest, Sepsis, Traumatic Brain Injury, or Stroke: The Importance of Individualized Oxygen Therapy in Critically Ill Patients.

    PubMed

    Vincent, Jean-Louis; Taccone, Fabio Silvio; He, Xinrong

    2017-01-01

    The beneficial effects of oxygen are widely known, but the potentially harmful effects of high oxygenation concentrations in blood and tissues have been less widely discussed. Providing supplementary oxygen can increase oxygen delivery in hypoxaemic patients, thus supporting cell function and metabolism and limiting organ dysfunction, but, in patients who are not hypoxaemic, supplemental oxygen will increase oxygen concentrations into nonphysiological hyperoxaemic ranges and may be associated with harmful effects. Here, we discuss the potentially harmful effects of hyperoxaemia in various groups of critically ill patients, including postcardiac arrest, traumatic brain injury or stroke, and sepsis. In all these groups, there is evidence that hyperoxia can be harmful and that oxygen prescription should be individualized according to repeated assessment of ongoing oxygen requirements.

  5. A qualitative analysis of health professionals' job descriptions for surgical service delivery in Uganda.

    PubMed

    Buwembo, William; Munabi, Ian G; Galukande, Moses; Kituuka, Olivia; Luboga, Samuel A

    2014-01-01

    The ever increasing demand for surgical services in sub-Saharan Africa is creating a need to increase the number of health workers able to provide surgical care. This calls for the optimisation of all available human resources to provide universal access to essential and emergency surgical services. One way of optimising already scarce human resources for health is by clarifying job descriptions to guide the scope of practice, measuring rewards/benefits for the health workers providing surgical care, and informing education and training for health professionals. This study set out to determine the scope of the mandate to perform surgical procedures in current job descriptions of surgical care health professionals in Uganda. A document review was conducted of job descriptions for the health professionals responsible for surgical service delivery in the Ugandan Health care system. The job descriptions were extracted and subjected to a qualitative content data analysis approach using a text based RQDA package of the open source R statistical computing software. It was observed that there was no explicit mention of assignment of delivery of surgical services to a particular cadre. Instead the bulk of direct patient related care, including surgical attention, was assigned to the lower cadres, in particular the medical officer. Senior cadres were assigned to perform predominantly advisory and managerial roles in the health care system. In addition, a no cost opportunity to task shift surgical service delivery to the senior clinical officers was identified. There is a need to specifically assign the mandate to provide surgical care tasks, according to degree of complexity, to adequately trained cadres of health workers. Health professionals' current job descriptions are not explicit, and therefore do not adequately support proper training, deployment, defined scope of practice, and remuneration for equitable surgical service delivery in Uganda. Such deliberate assignment

  6. Perceptions of hyperbaric oxygen therapy among podiatrists practicing in high-risk foot clinics.

    PubMed

    Henshaw, Frances R; Brennan, Lauren; MacMillan, Freya

    2018-01-03

    Foot ulceration is a devastating and costly consequence of diabetes. Hyperbaric oxygen therapy is recognised as an adjunctive therapy to treat diabetes-related foot ulceration, yet uptake is low. Semi-structured interviews were conducted with 16 podiatrists who manage patients with foot ulcers related to diabetes to explore their perceptions of, and the barriers/facilitators to, referral for hyperbaric oxygen. Podiatrists cited logistical issues such as location of facilities as well as poor communication pathways, lack of delegation and lack of follow up when patients presented for hyperbaric treatment. In general, podiatrists had an understanding of the premise of hyperbaric oxygen therapy and evidence to support its use but could only provide very limited citations of key papers and guidelines to support their position. Podiatrists stated that they felt a patient was lost from their care when referred for hyperbaric oxygen and that aftercare might not be adequate. Improved referral and delegation pathways for patients presenting for hyperbaric oxygen, as well as the provision of easily accessible evidence to support this therapy, could help to increase podiatrists' confidence in deciding whether or not to recommend their patients for hyperbaric oxygen therapy. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  7. Monodisperse Polyethylene Glycol Diacrylate Hydrogel Microsphere Formation by Oxygen-Controlled Photopolymerization in a Microfluidic Device

    PubMed Central

    Krutkramelis, K.; Xia, B.; Oakey, J.

    2016-01-01

    PEG-based hydrogels have become widely used as drug delivery and tissue scaffolding materials. Common among PEG hydrogel-forming polymers are photopolymerizable acrylates such as polyethylene glycol diacrylate (PEGDA). Microfluidics and microfabrication technologies have recently enabled the miniaturization of PEGDA structures, thus enabling many possible applications for nano- and micro- structured hydrogels. The presence of oxygen, however, dramatically inhibits the photopolymerization of PEGDA, which in turn frustrates hydrogel formation in environments of persistently high oxygen concentration. Using PEGDA that has been emulsified in fluorocarbon oil via microfluidic flow focusing within polydimethylsiloxane (PDMS) devices, we show that polymerization is completely inhibited below critical droplet diameters. By developing an integrated model incorporating reaction kinetics and oxygen diffusion, we demonstrate that the critical droplet diameter is largely determined by the oxygen transport rate, which is dictated by the oxygen saturation concentration of the continuous oil phase. To overcome this fundamental limitation, we present a nitrogen micro-jacketed microfluidic device to reduce oxygen within the droplet, enabling the continuous on-chip photopolymerization of microscale PEGDA particles. PMID:26987384

  8. OXYGEN ABUNDANCES IN CEPHEIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTEmore » analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.« less

  9. Topical oxygen therapy promotes the healing of chronic diabetic foot ulcers: a pilot study.

    PubMed

    Hayes, P D; Alzuhir, N; Curran, G; Loftus, I M

    2017-11-02

    Interventions that can heal or reduce diabetic foot ulcer (DFU) size may reduce the incidence of infection and amputation, and reduce associated social and economic costs. Many chronic wounds exhibit a degree of hypoxia and this leads to a reduction in healing processes including cell division and differentiation, angiogenesis, infection prevention, and collagen production. The aim of this pilot study was to assess the effects of a device supplying continuous oxygen ambulatory therapy on healing in chronic DFUs. Patients with chronic DFUs from two tertiary referral hospitals in the UK received treatment with the device. Data were prospectively obtained on wound size using standardised digital images measured by a clinician blinded to the study. Data on device satisfaction and pain were also obtained. We recruited 10 patients, with a mean ulcer duration of 43 weeks (median: 43 weeks) before treatment. By week eight, mean ulcer size had decreased by 51% (median: 53%). Seven of the 10 ulcers were in a healing trajectory, one ulcer present for 56 weeks healed completely, a two-year old ulcer was reduced by more than 50%, and a third, present for 88 weeks, was down to 10% of its original size by the end of the eight-week study. There was also a non-significant trend towards reduction in pain and the device was extremely well tolerated. The ambulatory topical oxygen delivery device showed a significant beneficial effect on wound size. This poses practical advantages over currently existing oxygen-based wound therapies such as hyperbaric oxygen therapy due to its continuous oxygen delivery, ease of use, safety and lower cost. The results of this study warrant further review of the device in comparison to standard wound therapies.

  10. Measurement of systemic oxygen consumption in patients during extracorporeal membrane oxygenation--description of a new method and the first clinical observations.

    PubMed

    Cheypesh, A; Yu, X; Li, J

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides temporary life-saving support for patients with severe cardiac failure, but is associated with significant morbidity and mortality. While ECMO enables oxygen delivery (DO2), little is known about oxygen consumption (VO2), largely due to technical difficulties. We aimed to introduce the adaptation of respiratory mass spectrometry to measure VO2 in patients during ECMO and to use this unique model to determine the pathological dependency of VO2 on DO2 in humans. Respiratory mass spectrometry remains the 'state-of-the-art' method, allowing the highly sensitive and rapid measurement of VO2 in critically ill patients. The principle and design of the respiratory mass spectrometer are described, together with the setting up of this machine with the ECMO oxygenator and the native lungs of the patients. In two patients with severe dilated cardiomyopathy and little cardiac contraction, the decrease in pump flow and, hence, DO2 by 20% was associated with a decrease in VO2 by 5% and 8%, respectively, whereas the increase in pump flow was not associated with any significant change in VO2. The direct measurement of VO2 by respiratory mass spectrometry in ECMO patients provides a unique technique for clinical research on the metabolism and VO2-DO2 relationship in this special group of critically ill patients. Our pilot study is the first to demonstrate a pathological dependency of VO2 on DO2 in humans. Further studies are warranted with this technique to examine the changes and the factors affecting systemic oxygen transport in patients during ECMO.

  11. Susceptibility weighted imaging of stroke brain in response to normobaric oxygen (NBO) therapy

    NASA Astrophysics Data System (ADS)

    Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.

    2015-03-01

    The neuroprotective effect of oxygen leads to recent interest in normobaric oxygen (NBO) therapy after acute ischemic stroke. However, the mechanism remains unclear and inconsistent outcomes were reported in human studies. Because NBO aims to improve brain tissue oxygenation by enhancing oxygen delivery to ischemic tissue, monitoring the oxygenation level changes in response to NBO becomes necessary to elucidate the mechanism and to assess the efficacy. Susceptibility weighted imaging (SWI) which provides a new MRI contrast by combining the magnitude and phase images is fit for purpose. SWI is sensitive to deoxyhemoglobin level changes and thus can be used to evaluate the cerebral metabolic rate of oxygen. In this study, SWI was used for in vivo monitoring of oxygenation changes in a rat model of permanent middle cerebral artery occlusion (MCAO) before, during and after 30 min of NBO treatment. Regions of interest in ischemic core, penumbra and contralateral normal area were generated based on diffusionweighted imaging and perfusion imaging. Significant differences in SWI indicating different oxygenation levels were generally found: contralateral normal > penumbra > ischemic core. Ischemic core showed insignificant increase in oxygenation during NBO and returned to pre-treatment level after termination of NBO. Meanwhile, the oxygenation levels slightly increased in contralateral normal and penumbra regions during NBO and significantly decreased to a level lower than pre-treatment after termination of NBO, indicating secondary metabolic disruption upon the termination of transient metabolic support from oxygen. Further investigation of NBO effect combined with reperfusion is necessary while SWI can be used to detect hemorrhagic transformation after reperfusion.

  12. Enhancing the photodynamic effect of hypericin in tumour spheroids by fractionated light delivery in combination with hyperoxygenation.

    PubMed

    Huygens, Ann; Kamuhabwa, Appolinary R; Van Laethem, An; Roskams, Tania; Van Cleynenbreugel, Ben; Van Poppel, Hendrik; Agostinis, Patrizia; De Witte, Peter A M

    2005-06-01

    The aim of this study was to explore the hypothesis of oxygen depletion during light irradiation as a possible explanation for the incomplete response seen after hypericin-mediated photodynamic therapy (PDT) under specific conditions. To investigate this, we performed PDT experiments using transitional cell carcinoma spheroids with fractionated light irradiation and hyperoxygenation. After 2-h incubation with 3 different hypericin concentrations, spheroids were irradiated either continuously or with fractionated light delivery. The effect of hyperoxygenation was investigated by bubbling normobaric oxygen in the solution surrounding the spheroids before continuous irradiation or during the dark interval of light fractionation. The PDT efficacy was evaluated with an MTT antiproliferation assay and apoptotic cells were visualized after PDT by DAPI staining. Our results show that fractionated light delivery with dark intervals ranging from 1 to 10 min does not enhance the PDT efficacy in spheroids at all, whereas hyperoxygenation, using appropriate hypericin concentrations and oxygenation intervals, results in a virtually complete malignant cell killing through apoptosis. This study suggests that oxygen depletion is the major source of relative treatment failure in hypericin-mediated PDT with spheroids, which can only be overcome with hyperoxygenation. Therefore, whole bladder wall PDT with hypericin is likely to become a very efficient antitumoural treatment against superficial bladder cancer, on the condition that instillation fluids are hyperoxygenated during light irradiation.

  13. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    PubMed

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  14. Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films.

    PubMed

    Novitski, David; Kosakian, Aslan; Weissbach, Thomas; Secanell, Marc; Holdcroft, Steven

    2016-11-30

    Mass transport of oxygen through an ionomer contained within the cathode catalyst layer in an anion exchange membrane fuel cell is critical for a functioning fuel cell, yet is relatively unexplored. Moreover, because water is a reactant in the oxygen reduction reaction (ORR) in alkaline media, an adequate supply of water is required. In this work, ORR mass transport behavior is reported for methylated hexamethyl-p-terphenyl polymethylbenzimidazoles (HMT-PMBI), charge balanced by hydroxide ions (IEC from 2.1 to 2.5 mequiv/g), and commercial Fumatec FAA-3 membranes. Electrochemical mass transport parameters are determined by potential step chronoamperometry using a Pt microdisk solid-state electrochemical cell, in air at 60 °C, with relative humidity controlled between 70% and 98%. The oxygen diffusion coefficient (D bO2 ), oxygen concentration (c bO2 ), and oxygen permeability (D bO2 ·c bO2 ) were obtained by nonlinear curve fitting of the current transients using the Shoup-Szabo equation. Mass transport parameters are correlated to water content of the ionomer membrane. It is found that the oxygen diffusion coefficients decreased by 2 orders of magnitude upon reducing the water content of the ionomer membrane by lowering the relative humidity. The limitation of the Shoup-Szabo equation for extracting ORR mass transport parameters using thin ionomer films was evaluated by numerical modeling of the current transients, which revealed that a significant discrepancy (up to 29% under present conditions) was evident for highly hydrated membranes for which the oxygen diffusion coefficient was largest, and in which the oxygen depletion region reached the ionomer/gas interface during the chronoamperometric analysis.

  15. Funding the Formula Adequately in Oklahoma

    ERIC Educational Resources Information Center

    Hancock, Kenneth

    2015-01-01

    This report is a longevity, simulational study that looks at how the ratio of state support to local support effects the number of school districts that breaks the common school's funding formula which in turns effects the equity of distribution to the common schools. After nearly two decades of adequately supporting the funding formula, Oklahoma…

  16. Insights on Localized and Systemic Delivery of Redox-Based Therapeutics

    PubMed Central

    Batrakova, Elena V.; Mota, Roberto

    2018-01-01

    Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside. PMID:29636836

  17. Oxygen ion transference number of doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong; Liu, Meilin

    The transference numbers for oxygen ion (t O) in several LaGaO 3-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications.

  18. Determinants of Oxygen Therapy in Childhood Pneumonia in a Resource-Constrained Region

    PubMed Central

    Kuti, Bankole Peter; Adegoke, Samuel Ademola; Ebruke, Benard E.; Howie, Stephen; Oyelami, Oyeku Akibu; Ota, Martin

    2013-01-01

    Childhood pneumonia is a leading cause of morbidity and mortality among underfives particularly in the resource-constraint part of the world. A high proportion of these deaths are due to lack of oxygen, thereby making oxygen administration a life-saving adjunctive when indicated. However, many primary health centres that manage most of the cases often lack the adequate manpower and facilities to decide which patient should be on oxygen therapy. Therefore, this study aimed to determine factors that predict hypoxaemia at presentation in children with severe pneumonia. Four hundred and twenty children aged from 2 to 59 months (40% infants) with severe pneumonia admitted to a health centre in rural Gambia were assessed at presentation. Eighty-one of them (19.30%) had hypoxaemia (oxygen saturation < 90%). Children aged 2–11 months, with grunting respiration, cyanosis, and head nodding, and those with cardiomegaly on chest radiograph were at higher risk of hypoxaemia (P < 0.05). Grunting respiration (OR = 5.210, 95% CI 2.287–7.482) and cyanosis (OR = 83.200, 95% CI 5.248–355.111) were independent predictors of hypoxaemia in childhood pneumonia. We conclude that children that grunt and are centrally cyanosed should be preferentially commenced on oxygen therapy even when there is no facility to confirm hypoxaemia. PMID:23819060

  19. T cells enhance gold nanoparticle delivery to tumors in vivo.

    PubMed

    Kennedy, Laura C; Bear, Adham S; Young, Joseph K; Lewinski, Nastassja A; Kim, Jean; Foster, Aaron E; Drezek, Rebekah A

    2011-04-04

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  20. T cells enhance gold nanoparticle delivery to tumors in vivo

    NASA Astrophysics Data System (ADS)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  1. Magnetite Nanoparticles Coated with Rifampicin and Chlortetracycline for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Nǎdejde, Claudia; Ciurlicǎ, Ecaterina Foca-nici; Creangǎ, Dorina; Cârlescu, Aurelian; Bǎdescu, Vasile

    2010-12-01

    Four types of biocompatible magnetic fluids based on superparamagnetic nanoparticles with Fe3O4 cores were functionalized with antibiotics (rifampicin or chlortetracycline) as potential candidates for in vivo biomedical applications, such as magnetically controlled drug delivery. The synthesis consisted in coprecipitation of iron oxide in basic, as well as in acid medium, followed by the dispersion of the resulted magnetite nanoparticles in aqueous solution containing the antibiotic. The chosen method to prepare the magnetite-core/drug-shell systems avoided intermediate organic coating of the magnetic nanoparticles. Comparative analysis of the rheological features of the aqueous magnetic fluid samples was performed. The structural features of the coated magnetic particles were investigated by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometry (VSM). Good crystallinity and adequate stability in time were evidenced. Drug delivery curves were spectrophotometrically provided.

  2. 9 CFR 2.33 - Attending veterinarian and adequate veterinary care.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... veterinary care. 2.33 Section 2.33 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... adequate veterinary care. (a) Each research facility shall have an attending veterinarian who shall provide adequate veterinary care to its animals in compliance with this section: (1) Each research facility shall...

  3. 9 CFR 2.33 - Attending veterinarian and adequate veterinary care.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... veterinary care. 2.33 Section 2.33 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... adequate veterinary care. (a) Each research facility shall have an attending veterinarian who shall provide adequate veterinary care to its animals in compliance with this section: (1) Each research facility shall...

  4. Bidirectional Control of Blood Flow by Astrocytes: A Role for Tissue Oxygen and Other Metabolic Factors.

    PubMed

    Gordon, Grant R J; Howarth, Clare; MacVicar, Brian A

    2016-01-01

    Altering cerebral blood flow through the control of cerebral vessel diameter is critical so that the delivery of molecules important for proper brain functioning is matched to the activity level of neurons. Although the close relationship of brain glia known as astrocytes with cerebral blood vessels has long been recognized, it is only recently that these cells have been demonstrated to translate information on the activity level and energy demands of neurons to the vasculature. In particular, astrocytes respond to elevations in extracellular glutamate as a consequence of synaptic transmission through the activation of group 1 metabotropic glutamate receptors. These Gq-protein coupled receptors elevate intracellular calcium via IP3 signaling. A close examination of astrocyte endfeet calcium signals has been shown to cause either vasoconstriction or vasodilation. Common to both vasomotor responses is the generation of arachidonic acid in astrocytes by calcium sensitive phospholipase A2. Vasoconstriction ensues from the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid, while vasodilation ensues from the production of epoxyeicosatrienoic acids or prostaglandins. Factors that determine whether constrictor or dilatory pathways predominate include brain oxygen, lactate, adenosine as well as nitric oxide. Changing the oxygen level itself leads to many downstream changes that facilitate the switch from vasoconstriction at high oxygen to vasodilation at low oxygen. These findings highlight the importance of astrocytes as sensors of neural activity and metabolism to coordinate the delivery of essential nutrients via the blood to the working cells.

  5. [Pregnancy toxemia. Oxygen input/extraction in preeclampsia-eclampsia].

    PubMed

    Rodríguez-Badillo, R F; Noriega-R, T; Audifred-Salomón, J R; García-Lara, E

    1996-07-01

    We tried to determine if the toxemia of pregnancy has during its clinical evolution a dependent DO2/VO2 relationship and determine its critical DO2 and finally define if this has a prognostic value. There were included patients with diagnosis of preeclampsia/eclampsia that were enter at the Intensive Care Unit for treatment and monitoring. It was placed a catheter in the pulmonary artery and it was determine the cardiac output and by means of standard formulas the DO2, VO2 and EO2 were calculated. The critical delivery of oxygen was stablished in agree at the Gutiérrez's method. At the same time it was monitorised the base excess which was gotten from arterial and venous blood gases. 36 patients (29 with preclampsia and 7 with eclampsia) were included, with a mean age of 26.3 years old. The mean gestational age was 36.1 weeks. The critical delivery for preeclamptic patients was stablished in 924 mL/min and at the eclamptic patients in 830 mL/min: both values had prognostic correlation with survival and nonsurvival patients (p < 0.001, x2 = 28.29). In survival patients it was a dependent DO2/VO2 relationship during the first 72 hours of study and then it was independent; this fact was accompaniment of a positive increase in the base excess and a decreasing in the EO2 values (< 27%). In the nonsurvival group, these mainteined a DO2/VO2 relationship in a dependent way during all the study and it was accompaniment with a continuous negative base excess with values of EO2 > 30%. The toxemia of pregnancy had a behaviour like state accompaniment of a dependent DO2/VO2 relationship causing an important oxygen deficient that was improved was improved in the survival patients that reach values over the critical delivery. These facts suggesting the presence of a metabolic blockade in variable degree that can improve or increase agree a therapeutic manipulations in the critic DO2.

  6. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    PubMed Central

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  7. Use of a High-Flow Oxygen Delivery System in a Critically Ill Patient with Dementia

    DTIC Science & Technology

    2008-12-01

    February 1, 2007. http://www.fda.gov/ cdrh /safety/ 020107_vapotherm.html. Accessed October 7, 2008. HIGH-FLOW OXYGEN IN A CRITICALLY ILL PATIENT WITH DEMENTIA RESPIRATORY CARE • DECEMBER 2008 VOL 53 NO 12 1743

  8. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    PubMed Central

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  9. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells.

    PubMed

    Zheng, Lixia; Wu, Shao; Tan, Li; Tan, Huo; Yu, Baodan

    2016-09-01

    Delivery of amphiphobic drugs (insoluble in both water and oil) has been a great challenge in drug delivery. SNX-2112, a novel inhibitor of Hsp90, is a promising drug candidate for treating various types of cancers; however, the insolubility greatly limits its clinical application. This study aimed to build a new type of drug delivery system using single-walled carbon nanotubes (SWNTs) for controllable release of SNX-2112; chitosan (CHI) was non-covalently added to SWNTs to improve their biocompatibility. SWNTs-CHI demonstrated high drug-loading capability; the release of SNX-2112 was pH triggered and time related. The intracellular reactive oxygen species of SWNTs-CHI increased, compared with that of SWNTs, leading to higher mitogen-activated protein kinase and cell apoptosis. The results of western-blotting, lactate dehydrogenase (LDH) release assay, and cell viability assay analyses indicated that apoptosis-related proteins were abundantly expressed in K562 cells and that the drug delivery system significantly inhibited K562 cells. Thus, SWNT-CHI/SNX-2112 shows great potential as a drug delivery system for cancer therapy. © The Author(s) 2016.

  10. Sex differences in the oxygen delivery, extraction, and uptake during moderate-walking exercise transition.

    PubMed

    Beltrame, Thomas; Villar, Rodrigo; Hughson, Richard L

    2017-09-01

    Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O 2 ) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O 2 , deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O 2 difference (a-vO 2 diff ) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O 2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O 2 , a-vO 2 diff , HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O 2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O 2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.

  11. Bioinspired Mechano‐Sensitive Macroporous Ceramic Sponge for Logical Drug and Cell Delivery

    PubMed Central

    Xu, Changlu; Wei, Zhihao; Gao, Huajian; Bai, Yanjie; Liu, Huiling; Yang, Huilin

    2017-01-01

    On‐demand, ultrahigh precision delivery of molecules and cells assisted by scaffold is a pivotal theme in the field of controlled release, but it remains extremely challenging for ceramic‐based macroporous scaffolds that are prevalently used in regenerative medicine. Sea sponges (Phylum Porifera), whose bodies possess hierarchical pores or channels and organic/inorganic composite structures, can delicately control water intake/circulation and therefore achieve high precision mass transportation of food, oxygen, and wastes. Inspired by leuconoid sponge, in this study, the authors design and fabricate a biomimetic macroporous ceramic composite sponge (CCS) for high precision logic delivery of molecules and cells regulated by mechanical stimulus. The CCS reveals unique on‐demand AND logic release behaviors in response to dual‐gates of moisture and pressure (or strain) and, more importantly, 1 cm3 volume of CCS achieves unprecedentedly delivery precision of ≈100 ng per cycle for hydrophobic or hydrophilic molecules and ≈1400 cells per cycle for fibroblasts, respectively. PMID:28638781

  12. [Assessment of cerebral oxygen saturation using near infrared spectroscopy under driver fatigue state].

    PubMed

    Li, Zeng-yong; Dai, Shi-xun; Zhang, Xiao-yin; Li, Yue; Yu, Xing-xin

    2010-01-01

    The objective of the present study is to assess the cerebral saturation under driver fatigue based on the near infrared spectroscopy (NIRS) signals. Twenty healthy male subjects were randomly divided into two groups: A-group (study group) and B-group (control group). All subjects were required to be well rested before the experiment. In A-group the subjects were required to perform the simulated driving task for 3 hours. Cerebral oxygenation signal was monitored for 20 minutes prior to and after the prescribed task period from the left frontal lobe. The results show that cerebral oxygen saturation was found to be significantly lower following 3-hour driving in the task group compared to that in the control group (F = 15.92, p < 0.001). Also a significant difference in selective reaction time was observed between the task group and control group during the post task period (p = 0.021). These findings showed that the cerebral blood oxygen saturation was closely related to the driver fatigue. The decline of the cerebral oxygen saturation might indicate a reduced cerebral oxygen delivery. This suggests that NIRS could provide a non-invasive method to detect driver fatigue.

  13. A review of oxygen removal from oxygen-bearing coal-mine methane.

    PubMed

    Zhao, Peiyu; Zhang, Guojie; Sun, Yinghui; Xu, Ying

    2017-06-01

    In this article, a comparison will be made concerning the advantages and disadvantages of five kinds of coal mine methane (CMM) deoxygenation method, including pressure swing adsorption, combustion, membrane separation, non-metallic reduction, and cryogenic distillation. Pressure swing adsorption has a wide range of application and strong production capacity. To achieve this goal, adsorbent must have high selectivity, adsorption capacity, and adequate adsorption/desorption kinetics, remain stable after several adsorption/desorption cycles, and possess good thermal and mechanical stabilities. Catalytic combustion deoxygenation is a high-temperature exothermic redox chemical reaction, which releases large amounts of thermal energy. So, the stable and accurate control of the temperature is not easy. Meanwhile partial methane is lost. The key of catalytic combustion deoxygenation lies in the development of high-efficiency catalyst. Membrane separation has advantages of high separation efficiency and low energy consumption. However, there are many obstacles, including higher costs. Membrane materials have the requirements of both high permeability and high selectivity. The development of new membrane materials is a key for membrane separation. Cryogenic distillation has many excellence advantages, such as high purity production and high recovery. However, the energy consumption increases with decreasing CH 4 concentrations in feed gas. Moreover, there are many types of operational security problems. And that several kinds of deoxygenation techniques mentioned above have an economic value just for oxygen-bearing CMM with methane content above 30%. Moreover, all the above methods are not applicable to deoxygenation of low concentration CMM. Non-metallic reduction method cannot only realize cyclic utilization of deoxidizer but also have no impurity gases generation. It also has a relatively low cost and low loss rate of methane, and the oxygen is removed thoroughly. In

  14. Correlation Between Capnography and Arterial Carbon Dioxide Before, During, and After Severe Chest Injury in Swine

    DTIC Science & Technology

    2012-01-01

    In addi- tion to securing a patent airway, first responders must attempt to achieve adequate ventilation, as hyperventilation or hypo- ventilation... hyperventilated or hypoventi- lated (n = 890 intubated and n = 2,709 nonintubated) before hospital arrival. Adverse effects of ventilation are especially...perfusion, whereas hypoventila- tion causes decreased oxygen delivery (3, 4). Additional risks associated with hyperventilation include overinflation of

  15. Topical oxygen therapy results in complete wound healing in diabetic foot ulcers.

    PubMed

    Yu, Janelle; Lu, Suzanne; McLaren, Ann-Marie; Perry, Julie A; Cross, Karen M

    2016-11-01

    Diabetic foot ulcers (DFUs) are a significant problem in an aging population. Fifteen percent of diabetics develop a DFU over their lifetime, which can lead to potential amputation. The 5-year survival rate after amputation is 31%, which is greater than the lifetime risk of mortality from cancer. Topical oxygen is a promising technique for the adjunctive therapy of chronic wounds including DFUs, but few controlled studies exist to support its clinical adoption. The aim of this study was to compare a portable topical oxygen delivery system in patients with nonhealing DFUs to standard best practice. Twenty patients were randomized into a topical oxygen group (n = 10), and a nonplacebo control group with regular dressings and standard care (n = 10), and attended the diabetic foot clinic once weekly for 8 weeks. Ulcer surface area over time was analyzed using standardized digital imaging software. DFUs were present without healing for a mean duration of 76 weeks prior to the study. They found a significant difference in healing rate between patients receiving topical oxygen and those receiving standard care. Topical oxygen, therefore, represents a potentially exciting new technology to shorten healing time in patients with nonhealing DFUs. More prospective randomized and powered studies are needed to determine the benefits of topical oxygen, but our current results are very promising. © 2016 by the Wound Healing Society.

  16. Effects of varying hematocrit on intestinal oxygen uptake in neonatal lambs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzman, I.R.; Tabata, B.; Edelstone, D.I.

    1985-04-01

    The authors chronically catheterized 15 newborn lambs (9.5 +/- 2.8 days) and measured intestinal blood flow (Qi) by the radionuclide microsphere technique at hematocrit levels ranging from 10 to 55%. Seven animals were made progressively anemic and eight polycythemic by means of exchange transfusions. Using the Fick principle, they calculated intestinal oxygen delivery (Di O/sub 2/), oxygen consumption (Vi O/sub 2/), and oxygen extraction. Initial base-line values were Qi = 195.5 ml . min-1 . 100 g intestine-1, Di O/sub 2/ = 22.1 ml . min-1 . 100 g-1, Vi O/sub 2/ = 4.8 ml . min-1 . 100 g-1,more » and O/sub 2/ extraction = 22.5%. As the hematocrit was lowered, Di O/sub 2/ decreased and O2 extraction increased and vice versa when the hematocrit was raised. Vi O/sub 2/ remained constant, but Qi did not correlate with changes in hematocrit. However, intestinal blood flow, as a percent distribution of total blood flow, decreased with lower hematocrit levels. At no time was there any evidence of anaerobic metabolism as measured by excess lactate production. The data indicate that the intestines of neonatal lambs are capable of maintaining their metabolic needs over a wide range of oxygen availability induced by a changing hematocrit. The primary mechanism is through alteration of oxygen extraction. Within the range of the experiments, no critically low oxygen availability was attained at which anaerobic metabolism became significant.« less

  17. The effect of sustained hypoxia on the cardio-respiratory response of bowfin Amia calva: implications for changes in the oxygen transport system.

    PubMed

    Porteus, C S; Wright, P A; Milsom, W K

    2014-03-01

    This study examined mechanisms underlying cardio-respiratory acclimation to moderate sustained hypoxia (6.0 kPa for 7 days at 22° C) in the bowfin Amia calva, a facultative air-breathing fish. This level of hypoxia is slightly below the critical oxygen tension (pcrit ) of A. calva denied access to air (mean ± s.e. = 9.3 ± 1.0 kPa). Before exposure to sustained hypoxia, A. calva with access to air increased air-breathing frequency on exposure to acute progressive hypoxia while A. calva without access to air increased gill-breathing frequency. Exposure to sustained hypoxia increased the gill ventilation response to acute progressive hypoxia in A. calva without access to air, regardless of whether they had access to air or not during the sustained hypoxia. Additionally, there was a decrease in Hb-O2 binding affinity in these fish. This suggests that, in A. calva, acclimation to hypoxia elicits changes that increase oxygen delivery to the gas exchange surface for oxygen uptake and reduce haemoglobin affinity to enhance oxygen delivery to the tissues. © 2013 The Fisheries Society of the British Isles.

  18. PLGA-loaded nanomedicines in melanoma treatment: Future prospect for efficient drug delivery

    PubMed Central

    Das, Sreemanti; Khuda-Bukhsh, Anisur Rahman

    2016-01-01

    Current treatment methods for melanoma have some limitations such as less target-specific action, severe side effects and resistance to drugs. Significant progress has been made in exploring novel drug delivery systems based on suitable biochemical mechanisms using nanoparticles ranging from 10 to 400 nm for drug delivery and imaging, utilizing their enhanced penetration and retention properties. Poly-lactide-co-glycolide (PLGA), a copolymer of poly-lactic acid and poly-glycolic acid, provides an ideally suited performance-based design for better penetration into skin cells, thereby having a greater potential for the treatment of melanoma. Moreover, encapsulation protects the drug from deactivation by biological reactions and interactions with biomolecules, ensuring successful delivery and bioavailability for effective treatment. Controlled and sustained delivery of drugs across the skin barrier that otherwise prohibits entry of larger molecules can be successfully made with adequately stable biocompatible nanocarriers such as PLGA for taking drugs through the small cutaneous pores permitting targeted deposition and prolonged drug action. PLGA is now being extensively used in photodynamic therapy and targeted therapy through modulation of signal proteins and drug-DNA interactions. Recent advances made on these nanomedicines and their advantages in the treatment of skin melanoma are highlighted and discussed in this review. PMID:27934796

  19. Seeking better topical delivery technologies of moisturizing agents for enhanced skin moisturization.

    PubMed

    Kim, Hyeongmin; Kim, Jeong Tae; Barua, Sonia; Yoo, Seung-Yup; Hong, Seong-Chul; Lee, Kyung Bin; Lee, Jaehwi

    2018-01-01

    An adequate hydration level is essential to maintain epidermal barrier functions and normal physiological activities of skin tissues. Diverse moisturizing agents and pharmaceutical formulations for dermal deliveries have thus extensively been investigated. This review comprehensively discusses scientific outcomes of moisturizing agents and pharmaceutical vehicles for skin moisturization, thereby providing insight into designing innovative pharmaceutical formulations for effective skin moisturization. Areas covered: We discussed the functions of various moisturizing agents ranging from conventional creams to novel moisturizers which has recently been explored. In addition, novel pharmaceutical formulations for efficient dermal delivery of the moisturizers, in particular, nanocarriers, were discussed along with their uses in commercial products. Expert opinion: Although various moisturizing agents have demonstrated their promising effects, exploitation of pharmaceutical formulations for their dermal delivery have been limited to few commonly used moisturizing agents. Thus, combinatorial investigation of novel moisturizers and pharmaceutical vehicles should be further conducted. As a new concept for improving skin moisturization, skin regeneration technologies using therapeutic cells have recently shown great promise for skin moisturization, but major challenges remain, such as efficient delivery and prolonged survival of such cells. Thus, novel approaches for improving skin moisturization require continuous efforts of pharmaceutical scientists to address the remaining problems.

  20. Labor Contractions Enhance Oxygenation and Behavioral Activity of Newborn Rat Pups

    NASA Technical Reports Server (NTRS)

    Mills, N. A.; Baer, L. A.; Ronca, A. E.; Balton, Bonnie (Technical Monitor)

    2002-01-01

    Labor contractions help instigate behavioral responses at birth (viz., breathing and suckling) that are vital for the newborn's adaptation to the extrauterine world (Ronca et al., 1996). In the present study, we analyzed the role of labor contractions in postpartum oxygenation and behavioral activity of newborn rat pups. Newborns were observed following either vaginal (V) or cesarean delivery. For cesarean delivery, day 21 pregnant dams' were administered a spinal transaction to eliminate lower body sensation, a laparotomy was performed and the uterus was maintained in a heated (37.5 C) bath. Four rat fetuses in one of the dams' paired uterine horn were compressed (C) to Simulate labor contractions (20 sec/min for 10 min) while four fetuses in the opposite horn were not compressed (NC). Fetuses were surgically removed from the uterus, stroked with a soft brush to mimic postnatal licking by the dam, the umbilical cord occluded. Pups were exposed to room temperature (22 C) for one hr, then nest temperature (33 C) for one hr. PO2, CO2, and O2, saturation were determined at 0, 30, 60, or 120 min post delivery using a blood gas analyzer. V and C delivered neonates showed comparable rates of PO2, CO2 and O2 saturation whereas NC neonates showed depressed levels at all time points (p<0.05). Respiratory rates of V, C and NC neonates increased significantly (p<0.05) over the first two postpartum hrs and did not differ across groups. Postpartum behavioral activity was significantly greater in V and C conditions and positively correlated with postnatal oxygenation. These findings provide further evidence for importance of labor contractions in early postpartum adaptation.

  1. Interaction of Black Phosphorus with Oxygen and Water

    DOE PAGES

    Huang, Yuan; Qiao, Jingsi; He, Kai; ...

    2016-10-24

    Black phosphorus (BP) has attracted significant interest as a monolayer or few-layer material with extraordinary electrical and optoelectronic properties. Chemical reactions with different ambient species, notably oxygen and water, are important as they govern key properties such as stability in air, electronic structure and charge transport, wetting by aqueous solutions, etc. Here, we report experiments combined with ab-initio calculations that address the effects of oxygen and water in contact with BP. Our results show that the reaction with oxygen is primarily responsible for changing properties of BP. Oxidation involving the dissociative chemisorption of O 2 causes the decomposition of BPmore » and continuously lowers the conductance of BP field-effect transistors (FETs). In contrast, BP is stable in contact with deaerated (i.e., O 2 depleted) water and the carrier mobility in BP FETs gated by H 2O increases significantly due to efficient dielectric screening of scattering centers by the high-k dielectric. Isotope labeling experiments, contact angle measurements and calculations show that the pristine BP surface is hydrophobic, but is turned progressively hydrophilic by oxidation. Lastly, our results open new avenues for exploring applications that require contact of BP with aqueous solutions including solution gating, electrochemistry, and solution-phase approaches for exfoliation, dispersion, and delivery of BP.« less

  2. The iodized salt programme in Bangalore, India provides adequate iodine intakes in pregnant women and more-than-adequate iodine intakes in their children.

    PubMed

    Jaiswal, Nidhi; Melse-Boonstra, Alida; Sharma, Surjeet Kaur; Srinivasan, Krishnamachari; Zimmermann, Michael B

    2015-02-01

    To compare the iodine status of pregnant women and their children who were sharing all meals in Bangalore, India. A cross-sectional study evaluating demographic characteristics, household salt iodine concentration and salt usage patterns, urinary iodine concentrations (UIC) in women and children, and maternal thyroid volume (ultrasound). Antenatal clinic of an urban tertiary-care hospital, which serves a low-income population. Healthy pregnant women in all trimesters, aged 18-35 years, who had healthy children aged 3-15 years. Median (range) iodine concentrations of household powdered and crystal salt were 55·9 (17·2-65·9) ppm and 18·9 (2·2-68·2) ppm, respectively. The contribution of iodine-containing supplements and multi-micronutrient powders to iodine intake in the families was negligible. Adequately iodized salt, together with small amounts of iodine in local foods, were providing adequate iodine during pregnancy: (i) the overall median (range) UIC in women was 172 (5-1024) µg/l; (ii) the median UIC was >150 µg/l in all trimesters; and (iii) thyroid size was not significantly different across trimesters. At the same time, the median (range) UIC in children was 220 (10-782) µg/l, indicating more-than-adequate iodine intake at this age. Median UIC was significantly higher in children than in their mothers (P=0·008). In this selected urban population of southern India, the iodized salt programme provides adequate iodine to women throughout pregnancy, at the expense of higher iodine intake in their children. Thus we suggest that the current cut-off for median UIC in children indicating more-than-adequate intake, recommended by the WHO/UNICEF/International Council for the Control of Iodine Deficiency Disorders may, need to be reconsidered.

  3. Anesthesia for arthroscopic shoulder surgery in the beach chair position: monitoring of cerebral oxygenation using combined bispectral index and near-infrared spectroscopy.

    PubMed

    Kawano, Hiroaki; Matsumoto, Tomomi

    2014-10-01

    Recent research has shown that cerebrovascular complications following shoulder surgery performed in the beach chair position under general anesthesia arise secondary to cerebral ischemia. Appropriate management of cerebral oxygenation is thus one of the primary goals of anesthetic management during such procedures. The present report describes the case of a 65-year-old male patient, in which both bispectral index (BIS) and near-infrared spectroscopy (NIRS) were used to monitor cerebral oxygenation. During the positioning, we observed an increased suppression ratio (SR) while BIS and regional cerebral oxygen saturation (rSO2) were at adequate level. In view of the difference in blood pressure between the heart and the base of the brain, blood pressure was maintained to ensure adequate cerebral perfusion. Although intraoperative rSO2 was at or around the cut-off point (a 12% relative decrease from baseline), no marked decrease in BIS or further increase in the SR was observed. Monitoring of cerebral perfusion using combined BIS and NIRS optimized anesthetic management during the performance of arthroscopic shoulder surgery in the beach chair position.

  4. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made...

  5. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  6. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  7. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  8. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  9. The effects of topical oxygen therapy on equine distal limb dermal wound healing.

    PubMed

    Tracey, Alexandra K; Alcott, Cody J; Schleining, Jennifer A; Safayi, Sina; Zaback, Peter C; Hostetter, Jesse M; Reinertson, Eric L

    2014-12-01

    Topical oxygen therapy (TOT) has been used in human medicine to promote healing in chronic wounds. To test the efficacy and safety of TOT in horses, an experimental wound model was created by making 1 standardized dermal wound on each limb of 4 healthy horses (n = 16). Each wound was fitted with an oxygen delivery cannula and covered with a bandage. One limb of each front and hind pair was randomly assigned to the treatment group (fitted with an oxygen concentrator device), with the contralateral limb assigned to the control group (no device). Wound area, epithelial area, and contraction were measured every 3 to 4 d. Biopsy samples and culture swabs were taken on days 16 and 32 to evaluate angiogenesis, fibroplasia, epithelial hyperplasia, inflammation and bacterial growth. Mean healing time in treated wounds (45 d, range: 38 to 52 d) was not significantly different from that in the paired control wounds (50 d, range: 38 to 62 d). Topical oxygen therapy had little effect on dermal wound healing in this experimental wound model in healthy horses.

  10. Exercise training in older adults, what effects on muscle oxygenation? A systematic review.

    PubMed

    Fiogbé, Elie; de Vassimon-Barroso, Verena; de Medeiros Takahashi, Anielle Cristhine

    2017-07-01

    To determine the effects of different modality of exercise training programs on muscle oxygenation in older adults. Relevant articles were searched in PubMed, Web of Science, Science Direct and Scopus, using the keywords: "Aged" AND "Muscle oxygenation" AND (Exercise OR "Exercise therapy" OR "Exercise Movement Techniques" OR Hydrotherapy), without limitation concerning the publication date. To be included in the full analysis, the study had to be a randomized controlled trial in which older adults participants (mean age: 65 years at least) were submitted to an exercise-training program and muscle oxygenation assessment. The searches resulted in 1238 articles from which 7 met all the inclusion criteria. The trials involved 370 older adults (68.7±1.7years), healthy and with peripheral arterial disease. Studies included resistance and endurance exercises as well as walking sessions. Training sessions were 2-6 time per week, lasted 3-24 months and with different training intensity throughout studies. After a long-term resistance training, healthy older adults showed enhanced muscle oxygen extraction capacity, regulation of vessels and vascular endothelium function; endurance training is reported to improve microvascular blood flow and matching of oxygen delivery to oxygen utilization, muscle oxidative capacity and muscle saturation, and walking sessions results in better muscle oxygen availability and muscle oxygen extraction capacity in older adults with peripheral arterial disease. This review supports the fact that depending on the clinical status of the participants and the modality, exercise training improves different aspects of the muscle oxygenation in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of Negative-Pressure Wound Therapy on Tissue Oxygenation in Diabetic Feet.

    PubMed

    Jung, Jae-A; Yoo, Ki-Hyun; Han, Seung-Kyu; Lee, Ye-Na; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-08-01

    Negative-pressure wound therapy (NPWT) has become a common wound care treatment modality for a variety of wounds. Several previous studies have reported that NPWT increases blood flow in the wound bed. However, NPWT might decrease tissue oxygenation in the wound bed because the foam sponge of NPWT compresses the wound bed under the influence of the applied negative pressure. Adequate tissue oxygenation is an essential consideration during diabetic foot management, and the foot is more sensitive to ischemia than any other region. Furthermore, the issue as to whether NPWT reduces or increases tissue oxygenation in diabetic feet has never been correctly addressed. The aim of this study was to evaluate the influence of NPWT on tissue oxygenation in diabetic feet. Transcutaneous partial oxygen pressures (TcPO2) were measured to determine tissue oxygenation levels beneath NPWT dressings on 21 feet of 21 diabetic foot ulcer patients. A TcPO2 sensor was fixed at the tarsometatarsal area of contralateral unwounded feet. A suction pressure of -125 mm Hg was applied until TcPO2 reached a steady state. The TcPO2 values for diabetic feet were measured before, during, and after NPWT. The TcPO2 levels decreased significantly after applying NPWT in all patients. Mean TcPO2 values before, during, and after therapy were 44.6 (SD, 15.2), 6.0 (SD, 7.1), and 40.3 (SD, 16.4) mm Hg (P < .01), respectively. These results show that NPWT significantly reduces tissue oxygenation levels in diabetic feet.

  12. Non-invasive Transdermal Two-dimensional Mapping of Cutaneous Oxygenation with Rapid-drying Liquid Bandage

    DTIC Science & Technology

    2014-10-01

    biological functions such as cell proliferation, immune responses and collagen synthesis. Poor oxygenation is directly associated with the development of...response to infections and collagen synthesis; damaged tissue deprived of adequate blood flow has a decreased ability to heal [1, 7]. The surgical...EXPRESS 3754 2.5. Monitoring wound progression of in vivo porcine full-thickness burns Animal housing and maintenance: A Yorkshire cross-bred female pig

  13. Anesthetic management for Cesarean delivery in parturients with a diagnosis of dwarfism.

    PubMed

    Lange, Elizabeth M S; Toledo, Paloma; Stariha, Jillian; Nixon, Heather C

    2016-08-01

    The literature on the anesthetic management of parturients with dwarfism is sparse and limited to isolated case reports. Pregnancy complications associated with dwarfism include an increased risk of respiratory compromise, an increased risk of Cesarean delivery, and an unpredictable degree of anesthesia with neuraxial techniques. Therefore, we conducted this retrospective review to evaluate the anesthetic management of parturients with a diagnosis of dwarfism. We used a query of billing data to identify short statured women who underwent a Cesarean delivery during May 1, 2008 to May 1, 2013. We then hand searched the electronic medical record for qualifying patients with heights < 148 cm and a diagnosis of dwarfism. The extracted data included patient demographics and obstetric and anesthetic information. We identified 13 women with dwarfism who had 15 Cesarean deliveries in total. Twelve of the women had disproportionate dwarfism, and ten of the 15 Cesarean deliveries were due to cephalopelvic disproportion. Neuraxial anesthesia was attempted in 93% of deliveries. The dose chosen for initiation of neuraxial anesthesia was lower than the typical doses used in parturients of normal stature. Neuraxial anesthetic complications included difficult neuraxial placement (64%), high spinal (7%), inadequate surgical level (13%), and unrecognized intrathecal catheter (7%). The data collected suggest that females with a diagnosis of dwarfism may have difficult neuraxial placement and potentially require lower dosages of local anesthetic for both spinal and epidural anesthesia to achieve adequate surgical blockade.

  14. What influences the decision to undergo institutional delivery by skilled birth attendants? A cohort study in rural Andhra Pradesh, India.

    PubMed

    Nair, M; Ariana, P; Webster, P

    2012-01-01

    Despite continuing efforts to promote skilled institutional delivery, eight women die every hour in India due to causes related to pregnancy and child birth. The objectives of this study were to assess the prevalence and the determinants of institutional delivery by skilled birth attendants in a rural population in Andhra Pradesh, India. This cross-sectional study used data from 'Young Lives', a longitudinal study on childhood poverty, and the study population was a cohort of 1419 rural, economically deprived women (from the Young Lives study) in Andhra Pradesh, India. The data are from round-1 of Young Lives younger cohort recruited in 2002 and followed until 2015. The participation rate of households was 99.5%. Prevalence of skilled institutional delivery was 36.8%. Women's education (odds ratio [OR] for secondary education 2.06; 95% confidence interval [95%CI] 1.33-3.19), desire to be pregnant (OR 1.89; 95% CI 1.12-3.22) and adequate prenatal care (OR 1.69; 95% CI 1.30-2.21) were found to be the positive determinants of skilled institutional delivery. High birth order (OR for second birth 0.44; 95% CI 0.32-0.60, OR for third birth 0.47; 95% CI 0.30-0.72 and OR for ≥fourth 0.47; 95% CI 0.27-0.81), schedule caste/schedule tribe social background (OR 0.70; 95% CI 0.53-0.93) and poor economic status of the household (OR for the poorest households 0.67; 95% CI 0.46-0.99) were negatively associated with skilled institutional delivery. Despite existence of supporting schemes, the utilisation of skilled institutional delivery services was low in the study population. Educated women and women with adequate prenatal care who have a desired pregnancy were more likely to utilise health institutions and skilled delivery care. There is a need for integrated approaches through maternal health, family planning and education programs, and a focus on uneducated, poor women belonging to disadvantaged social groups.

  15. [Effectiveness of the HighFO novel oxygen nebulizer for respiratory failure patients with severe hypoxia].

    PubMed

    Takamatsu, Kazufumi; Sakuramoto, Minoru; Inoue, Daiki; Ishitoko, Manabu; Itotani, Ryo; Suzuki, Shinko; Matsumoto, Masataka; Takemura, Masaya; Fukui, Motonari

    2011-04-01

    Optimal oxygen delivery is an essential component of therapy for patients with respiratory failure. Reservoir masks or air entrainment nebulizers have often been used for patients who require highly concentrated oxygen, but these may not actually deliver a sufficient fraction of inspired oxygen if there is a marked increase in the patient's ventilatory demands, or if oxygen flow becomes limited due to high resistance in the nebulizer nozzles. The HighFO nebulizer is a novel air entrainment nebulizer equipped with unique structures which reduce nozzle resistance, and as a result, it is possible to supply a sufficient flow of highly concentrated-oxygen. The purpose of this study was to evaluate the effectiveness and usefulness of the HighFO nebulizer in 10 respiratory failure patients with severe hypoxemia who used a reservoir mask and required more than 10 L/min of oxygen supply. In each case, the reservoir mask was replaced with the HighFO nebulizer, and changes in percutaneous oxygen saturation (SpO2) were monitored using pulse oximetry. Oxygenation improved promptly after the reservoir mask was substituted for the HighFO nebulizer (SpO2 : 83.7% +/- 8.5%-94.2% +/- 3.2%, p = 0.007). This finding suggests that the HighFO nebulizer was reasonably effective in delivering highly concentrated oxygen, sufficient for patient demands. The HighFO nebulizer may be the beginning of a new strategy for oxygen therapy.

  16. Correlation changes in EEG, conditioned and behavioral reactions with various degrees of oxygen insufficiency

    NASA Technical Reports Server (NTRS)

    Agadzhanyan, N. A.; Zakharova, I. N.; Kalyuzhnyy, L. V.; Dvorzhak, I. I.; Moravek, M.; Tsmiral, Y. I.

    1974-01-01

    The dynamics of change in bioelectric activity of the brain during acute hypoxia are studied for the time that working capacity and active consciousness are preserved, and to establish the correlation between EEG changes and behavioral reactions under oxygen starvation. Changes in body functions and behavioral disturbances are related to the degree of oxygen saturation in the blood, to bioelectric activity of the brain, and to an increase in conditioned reflexes. The capacity for adequate reaction to external signals and for coordinated psychomotor activity after loss of consciousness returns to man after 30 seconds. Repeated effects of hypoxia produce changes in the physiological reactions of the body directed toward better adaptation to changing gaseous environments.

  17. Effect of hindpaw electrical stimulation on capillary flow heterogeneity and oxygen delivery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yuandong; Wei, Wei; Li, Chenxi; Wang, Ruikang K.

    2017-02-01

    We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of 8 µm and a system dynamic range of 105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.

  18. Life Breath: A Little Girl's Courage, a Mother's Determination, and the Healing Power of Oxygen

    ERIC Educational Resources Information Center

    Hollingsworth, Jan Carter

    2008-01-01

    This article presents a story of a little girl's courage, a mother's determination, and the healing power of oxygen. Grace was born on March 6, 1999 at full term, and Shannon says her pregnancy and delivery were uncomplicated. Within days of arriving home, however, Grace's condition took a serious turn. At an ophthalmologist visit when Grace was…

  19. Temporal trends in receipt of adequate lymphadenectomy in bladder cancer 1988 to 2010.

    PubMed

    Cole, Alexander P; Dalela, Deepansh; Hanske, Julian; Mullane, Stephanie A; Choueiri, Toni K; Meyer, Christian P; Nguyen, Paul L; Menon, Mani; Kibel, Adam S; Preston, Mark A; Bellmunt, Joaquim; Trinh, Quoc-Dien

    2015-12-01

    The importance of pelvic lymphadenectomy (LND) for diagnostic and therapeutic purposes at the time of radical cystectomy (RC) for bladder cancer is well documented. Although some debate remains on the optimal number of lymph nodes removed, 10 nodes has been proposed as constituting an adequate LND. We used data from the Surveillance, Epidemiology, and End Results database to examine predictors and temporal trends in the receipt of an adequate LND at the time of RC for bladder cancer. Within the Surveillance, Epidemiology, and End Results database, we extracted data on all patients with nonmetastatic bladder cancer receiving RC in the years 1988 to 2010. First, we assess the proportion of individuals undergoing RC who received an adequate LND (≥10 nodes removed) over time. Second, we calculate odds ratios (ORs) of receiving an adequate LND using logistic regression modeling to compare study periods. Covariates included sex, race, age, region, tumor stage, urban vs. rural location, and insurance status. Among the 5,696 individuals receiving RC during the years 1988 to 2010, 2,576 (45.2%) received an adequate LND. Over the study period, the proportion of individuals receiving an adequate LND increased from 26.4% to 61.3%. The odds of receiving an adequate LND increased over the study period; a patient undergoing RC in 2008 to 2010 was over 4-fold more likely to receive an adequate LND relative to a patient treated in 1988 to 1991 (OR = 4.63, 95% CI: 3.32-6.45). In addition to time of surgery, tumor stage had a positive association with receipt of adequate LND (OR = 1.49 for stage IV [T4 N1 or N0] vs. stage I [T1 or Tis], 95% CI: 1.22-1.82). Age, sex, marital status, and race were not significant predictors of adequate LND. Adequacy of pelvic LND remains an important measure of surgical quality in bladder cancer. Our data show that over the years 1988 to 2010, the likelihood of receiving an adequate LND has increased substantially; however, a substantial minority of

  20. The effectiveness of apneic oxygenation during tracheal intubation in various clinical settings: a narrative review.

    PubMed

    Wong, David T; Yee, Amanda J; Leong, Siaw May; Chung, Frances

    2017-04-01

    During the process of tracheal intubation, patients are apneic or hypoventilating and are at risk of becoming hypoxemic. This risk is especially high in patients with acute or chronic respiratory failure and accompanying compromised respiratory reserve. To address this concern, apneic oxygenation can be administered during tracheal intubation to aid in maintaining arterial oxygen saturation. The objective of this narrative review is to examine the utilization of apneic oxygenation within the operating room, intensive care unit (ICU), emergency department, and pre-hospital settings and to determine its efficacy compared with controls. For this narrative review, we obtained pertinent articles using MEDLINE ® (1946 to April 2016), EMBASE™ (1974 to April 2016), Google Scholar, and manual searches. Apneic oxygenation was administered using various techniques, including the use of nasal prongs, nasopharyngeal or endotracheal catheters, or laryngoscopes. First, all 12 operating room studies showed that apneic oxygenation significantly prolonged the duration to, and incidence of, desaturation. Second, two of the five ICU studies showed a significantly smaller decline in oxygen saturation with apneic oxygenation, with three studies showing no statistically significant difference vs controls. Lastly, two emergency department or pre-hospital studies showed that the use of apneic oxygenation resulted in a significantly lower incidence of desaturation and smaller declines in oxygen saturation. Sixteen of the 19 studies showed that apneic oxygenation prolongs safe apneic time and reduces the incidence of arterial oxygen desaturation. Overall, studies in this review show that apneic oxygenation prolongs the time to oxygen desaturation during tracheal intubation. Nevertheless, the majority of the studies were small in size, and they neither measured nor were adequately powered to detect adverse respiratory events or other serious rare complications. Prolonged apneic oxygenation

  1. Region 8: Colorado Adequate Letter (10/29/2001)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Denvers' particulate matter (PM10) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  2. Randomised controlled trial of sustained lung inflation for resuscitation of preterm infants in the delivery room.

    PubMed

    Jiravisitkul, Paveewan; Rattanasiri, Sasivimol; Nuntnarumit, Pracha

    2017-02-01

    To compare the effects of sustained lung inflation (SLI) vs. standard resuscitation on physiologic responses of preterm infants during resuscitation. Preterm infants (25-32 weeks gestational age) requiring positive-pressure ventilation or continuous positive airway pressure were randomly assigned to either the SLI group (SLI at 25cmH 2 O for 15s) or Non-SLI group (standard resuscitation alone). The heart rate (HR), oxygen saturation (SpO 2 ), oxygen requirement, and intubation rate in the delivery room were evaluated. Eighty-one infants were enrolled (SLI group, 43; Non-SLI group, 38). The use of SLI effectively reduced the oxygen requirement. The mean fraction of inspired oxygen 10min after birth was 0.28 (95% CI, 0.26-0.30) in the SLI group and 0.47 (95% CI, 0.43-0.52) in the Non-SLI group (p<0.001). During the first 5min, infants in the SLI group trended towards a higher HR and SpO 2 than those in the Non-SLI group. The intubation rate in the delivery room was not different between the two groups; however, among infants ≤28 weeks gestational age, the intubation rate was lower in the SLI than Non-SLI group (5 of 17 [29%] vs. 10 of 16 [63%], respectively; p=0.05). The duration of respiratory support, survival without bronchopulmonary dysplasia, and the occurrence of pneumothorax were not different between the groups. SLI in infants who require respiratory support appears to be effective in facilitating postnatal transition as determined by HR and SpO 2 responses, resulting in less oxygen supplementation. Further studies are needed to confirm the benefits of SLI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis.

    PubMed

    Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert

    2016-05-01

    Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements. © The Author(s) 2016.

  4. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    PubMed

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  5. Region 1: Connecticut Adequate Letter (6/14/2017)

    EPA Pesticide Factsheets

    Letter from Office of Ecosystem Protection to Connecticut Department of Energy & Environmental Protection determined submitted 2017 Motor Vehicle Emissions Budgets adequate for transportation conformity purposes, Greater Connecticut area. (March 20, 2017)

  6. Region 8: Utah Adequate Letter (6/10/2005)

    EPA Pesticide Factsheets

    This letter from EPA to Utah Department of Environmental Quality determined Salt Lake Citys' and Ogdens' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  7. Peptide and protein delivery using new drug delivery systems.

    PubMed

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  8. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation.

    PubMed

    Causin, Paola; Guidoboni, Giovanna; Malgaroli, Francesca; Sacco, Riccardo; Harris, Alon

    2016-06-01

    The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen ([Formula: see text]) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, [Formula: see text] is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the [Formula: see text] distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the [Formula: see text] profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the [Formula: see text] tension at the level of the retinal ganglion cells; and (3) arterial [Formula: see text

  9. Spectroscopy and imaging of oxygen delivery to tissue under strenuous conditions (NIR in athletes)

    NASA Astrophysics Data System (ADS)

    Chance, Britton; Nioka, Shoko; Long, Hong; Xie, Chunhua; Ma, XuHui; Ntziachristos, Vasilis; Luo, Qingming

    2000-04-01

    It was demonstrated that the dynamics of muscle oxygen utilization can readily be measured using dual wavelength hemoglobin oximetry. This method can be used for muscle training exercise and also for evaluation of exercise performance where the anaerobic threshold must be avoided. It was shown that CW imaging technology gives images along the surface of the muscle while the time resolved spectroscopy gives images transverse to the muscle.

  10. Use of near-infrared spectroscopy (NIRS) in cerebral tissue oxygenation monitoring in neonates.

    PubMed

    Gumulak, Rene; Lucanova, Lucia Casnocha; Zibolen, Mirko

    2017-06-01

    Near-infrared spectroscopy (NIRS) is a technology capable of non-invasive, continuous measuring of regional tissue oxygen saturation (StO 2 ). StO 2 represents a state of hemodynamic stability, which is influenced by many factors. Extensive research has been done in the field of measuring StO 2 of various organs. The current clinical availability of several NIRS-based devices reflects an important development in prevention, detection and correction of discrepancy in oxygen delivery to the brain and vital organs. Managing cerebral ischemia remains a significant issue in the neonatal intensive care units (NICU). Cerebral tissue oxygenation (cStO 2 ) and cerebral fractional tissue extraction (cFTOE) are reported in a large number of clinical studies. This review provides a summary of the concept of function, current variability of NIRS-based devices used in neonatology, clinical applications in continuous cStO 2 monitoring, limitations, disadvantages, and the potential of current technology.

  11. SN 2010LP—A TYPE IA SUPERNOVA FROM A VIOLENT MERGER OF TWO CARBON-OXYGEN WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kromer, M.; Taubenberger, S.; Seitenzahl, I. R.

    2013-11-20

    SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M {sub ☉} adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close tomore » the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp.« less

  12. Feasibility of absolute cerebral tissue oxygen saturation during cardiopulmonary resuscitation.

    PubMed

    Meex, Ingrid; De Deyne, Cathy; Dens, Jo; Scheyltjens, Simon; Lathouwers, Kevin; Boer, Willem; Vundelinckx, Guy; Heylen, René; Jans, Frank

    2013-03-01

    Current monitoring during cardiopulmonary resuscitation (CPR) is limited to clinical observation of consciousness, breathing pattern and presence of a pulse. At the same time, the adequacy of cerebral oxygenation during CPR is critical for neurological outcome and thus survival. Cerebral oximetry, based on near-infrared spectroscopy (NIRS), provides a measure of brain oxygen saturation. Therefore, we examined the feasibility of using NIRS during CPR. Recent technologies (FORE-SIGHT™ and EQUANOX™) enable the monitoring of absolute cerebral tissue oxygen saturation (SctO2) values without the need for pre-calibration. We tested both FORE-SIGHT™ (five patients) and EQUANOX Advance™ (nine patients) technologies in the in-hospital as well as the out-of-hospital CPR setting. In this observational study, values were not utilized in any treatment protocol or therapeutic decision. An independent t-test was used for statistical analysis. Our data demonstrate the feasibility of both technologies to measure cerebral oxygen saturation during CPR. With the continuous, pulseless near-infrared wave analysis of both FORE-SIGHT™ and EQUANOX™ technology, we obtained SctO2 values in the absence of spontaneous circulation. Both technologies were able to assess the efficacy of CPR efforts: improved resuscitation efforts (improved quality of chest compressions with switch of caregivers) resulted in higher SctO2 values. Until now, the ability of CPR to provide adequate tissue oxygenation was difficult to quantify or to assess clinically due to a lack of specific technology. With both technologies, any change in hemodynamics (for example, ventricular fibrillation) results in a reciprocal change in SctO2. In some patients, a sudden drop in SctO2 was the first warning sign of reoccurring ventricular fibrillation. Both the FORE-SIGHT™ and EQUANOX™ technology allow non-invasive monitoring of the cerebral oxygen saturation during CPR. Moreover, changes in SctO2 values might be

  13. Birth wind and fire: raising awareness to operating room fires during delivery.

    PubMed

    Wolf, Omer; Weissman, Oren; Harats, Moti; Farber, Nimrod; Stavrou, Demetris; Tessone, Ariel; Zilinsky, Isaac; Winkler, Eyal; Haik, Josef

    2013-09-01

    We researched whether the obstetric operating room (OR) qualified as a fire-risk environment so as to take preventive measures accordingly. We analyzed a series of iatrogenic burns inflicted during birth by collecting clinical data and comparing it with known OR fire risk factors and with other factors that repeated in all cases in search of unique characteristics of the obstetric OR. All three cases shared in common the same type of oxygen-rich open ventilation system, alcohol-based prepping solution, and the hastiness of cesarean delivery while spontaneous vaginal delivery was already in progress. The obstetric OR is, as suspected, a fire-prone zone in more ways than the regular OR. Therefore, preventive measures should be undertaken and awareness for the possibility for such occurrences should be raised.

  14. Noninvasive detection of change in skeletal muscle oxygenation during incremental exercise with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Luo, Qingming; Xu, Guodong; Li, Pengcheng

    2003-12-01

    Near infrared spectroscopy (NIRS) has been developed as a non-invasive method to assess O2 delivery, O2 consumption and blood flow, in diverse local muscle groups at rest and during exercise. The aim of this study was to investigate local O2 consumption in exercising muscle by use of near-infrared spectroscopy (NIRS). Ten elite athletes of different sport items were tested in rest and during step incremental load exercise. Local variations of quadriceps muscles were investigated with our wireless NIRS blood oxygen monitor system. The results show that the changes of blood oxygen relate on the sport items, type of muscle, kinetic capacity et al. These results indicate that NIRS is a potential useful tool to detect local muscle oxygenation and blood flow profiles; therefore it might be easily applied for evaluating the effect of athletes training.

  15. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles

    PubMed Central

    Chorny, Michael; Hood, Elizabeth; Levy, Robert J.; Muzykantov, Vladimir R.

    2010-01-01

    Antioxidant enzymes have shown promise as a therapy for pathological conditions involving increased production of reactive oxygen species (ROS). However the efficiency of their use for combating oxidative stress is dependent on the ability to achieve therapeutically adequate levels of active enzymes at the site of ROS-mediated injury. Thus, the implementation of antioxidant enzyme therapy requires a strategy enabling both guided delivery to the target site and effective protection of the protein in its active form. To address these requirements we developed magnetically responsive nanoparticles (MNP) formed by precipitation of calcium oleate in the presence of magnetite-based ferrofluid (controlled aggregation/precipitation) as a carrier for magnetically guided delivery of therapeutic proteins. We hypothesized that antioxidant enzymes, catalase and superoxide dismutase, can be protected from proteolytic inactivation by encapsulation in MNP. We also hypothesized that catalase-loaded MNP applied with a high-gradient magnetic field can rescue endothelial cells from hydrogen peroxide toxicity in culture. To test these hypotheses, a family of enzyme-loaded MNP formulations were prepared and characterized with respect to their magnetic properties, enzyme entrapment yields and protection capacity. SOD- and catalase-loaded MNP were formed with average sizes ranging from 300 to 400 nm, and a protein loading efficiency of 20–33%. MNP were strongly magnetically responsive (magnetic moment at saturation of 14.3 emu/g) in the absence of magnetic remanence, and exhibited a protracted release of their cargo protein in plasma. Catalase stably associated with MNP was protected from proteolysis and retained 20% of its initial enzymatic activity after 24 hr of exposure to pronase. Under magnetic guidance catalase-loaded MNP were rapidly taken up by cultured endothelial cells providing increased resistance to oxidative stress (62±12% cells rescued from hydrogen peroxide induced

  16. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics.

    PubMed

    Stegemann, J

    1992-07-01

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  17. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics

    NASA Astrophysics Data System (ADS)

    Stegemann, J.

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  18. Region 9: Nevada Adequate Letter (3/30/2006)

    EPA Pesticide Factsheets

    This is a letter from Deborah Jordan, Director, to Leo M. Drozdoff regarding Nevada's motor vehicle emissions budgets in the 2005 Truckee Meadows CO Redesignation Request and Maintenance Plan are adequate for transportation conformity decisions.

  19. Region 6: Texas Adequate Letter (4/16/2010)

    EPA Pesticide Factsheets

    This letter from EPA to Texas Commission on Environmental Quality determined 2021 motor vehicle emission budgets for nitrogen oxides (NOx) and volatile organic compounds (VOCs) for Beaumont/Port Arthur area adequate for transportation conformity purposes

  20. Region 6: Texas Adequate Letter (6/21/17)

    EPA Pesticide Factsheets

    Letter from EPA approves Motor Vehicle Emissions Budgets contained in latest revisions to Houston/Galveston/Brazoria (HGB) 2008 8-hour Ozone State Implementation Plan, adequate for transportation conformity purposes and announced in the Federal Register.

  1. Optimum time for intravenous cannulation after induction with sevoflurane, oxygen, and nitrous oxide in children without any premedication.

    PubMed

    Hasan, Abm Kamrul; Sivasankar, Raman; Nair, Salil G; Hasan, Wamia U; Latif, Zulaidi

    2018-02-01

    Intravenous cannulation is usually done in children after inhalational induction with volatile anesthetic agents. The optimum time for safe intravenous cannulation after induction with sevoflurane, oxygen, and nitrous oxide has been studied in premedicated children, but there is no information for the optimum time for cannulation with inhalational induction in children without premedication. The aim of this study was to determine the optimum time for intravenous cannulation after the induction of anesthesia with sevoflurane, oxygen, and nitrous oxide in children without any premedication. This is a prospective, observer-blinded, up-and-down sequential allocation study in unpremedicated ASA grade 1 children aged 2-6 years undergoing elective dental surgery. Intravenous cannulation was attempted after inhalational induction with sevoflurane, oxygen, and nitrous oxide. The timing of cannulation was considered adequate if there was no movement, coughing, or laryngospasm. The cannulation attempt for the first child was set at 4 minutes after the loss of eyelash reflex and the time for intravenous cannulation was determined by the up-and-down method using 15 seconds as step size. Probit test was used to analyze the up-down sequences for the study. The adequate time for effective cannulation after induction with sevoflurane, oxygen, and nitrous oxide in 50% and 95% of patients was 53.02 seconds (95% confidence limits, 20.23-67.76 seconds) and 87.21 seconds (95% confidence limits, 70.77-248.03 seconds), respectively. We recommend waiting for 1 minute 45 seconds (105 seconds) after the loss of eyelash reflex before attempting intravenous cannulation in pediatric patients induced with sevoflurane, oxygen, and nitrous oxide without any premedication. © 2018 John Wiley & Sons Ltd.

  2. The application of polysaccharide-based nanogels in peptides/proteins and anticancer drugs delivery.

    PubMed

    Zhang, Lin; Pan, Jifei; Dong, Shibo; Li, Zhaoming

    2017-09-01

    Finding adequate carriers for proteins/peptides and anticancer drugs delivery has become an urgent need, owing to the growing number of therapeutic macromolecules and the increasing amount of cancer incidence. Polysaccharide-based nanogels have attracted interest as carriers for proteins/peptides and anticancer drugs because of their characteristic properties like biodegradability, biocompatibility, stimuli-responsive behaviour, softness and swelling to help achieve a controlled, triggered response at the target site. In addition, the groups of the polysaccharide backbone are able to be modified to develop functional nanogels. Some polysaccharides have the intrinsic ability to recognise specific cell types, allowing the design of targeted drug delivery systems through receptor-mediated endocytosis. This review is aimed at describing and exploring the potential of polysaccharides that are used in nanogels which can help to deliver proteins/peptides and anticancer drugs.

  3. Reinterpreting the importance of oxygen-based biodegradation in chloroethene-contaminated groundwater

    USGS Publications Warehouse

    Bradley, Paul M.

    2011-01-01

    Chlororespiration is common in shallow aquifer systems under conditions nominally identified as anoxic. Consequently, chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products is interpreted as evidence that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, nonconservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms and is consistent with contaminant degradation to nondiagnostic mineralization products like CO2. While anoxic mineralization of chloroethene compounds has been proposed previously, recent results suggest that oxygen-based mineralization of chloroethenes also can be significant at dissolved oxygen concentrations below the currently accepted field standard for nominally anoxic conditions. Thus, reassessment of the role and potential importance of low concentrations of oxygen in chloroethene biodegradation are needed, because mischaracterization of operant biodegradation processes can lead to expensive and ineffective remedial actions. A modified interpretive framework is provided for assessing the potential for chloroethene biodegradation under different redox conditions and the probable role of oxygen in chloroethene biodegradation.

  4. Region 8: Colorado Adequate Letter (1/20/2004)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Greeleys' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes and will be announced in the FR.

  5. Region 4: Tennessee Adequate Letter (9/30/2010)

    EPA Pesticide Factsheets

    This letter acknowledges that the EPA has reviewed Tennessee's Knoxville Area redesignation request and maintenace plan, as well as the motor vehicle emissions budgets (MVEBs) and have determined that these MVEBs are adequate for transportation conformity

  6. Region 9: California Adequate Letter (7/14/2017)

    EPA Pesticide Factsheets

    EPA approves California Air Resources Board Motor Vehicle Emissions Budgets in San Joaquin Valley Unified Air Pollution Control Districts 2016 Plan for 2008 8-Hour Ozone Standard adequate for transportation conformity purposes announced in Federal Register

  7. Region 9: Arizona Adequate Letter (10/14/2003)

    EPA Pesticide Factsheets

    This is a letter from Jack P. Broadben,. Director, to Nancy Wrona and Dennis Smith informing them that Maricopa County's motor vehicle emissions budgets in the 2003 MAGCO Maintenance Plan are adequate for transportation conformity purposes.

  8. Effect of supersaturated oxygen delivery on infarct size after percutaneous coronary intervention in acute myocardial infarction.

    PubMed

    Stone, Gregg W; Martin, Jack L; de Boer, Menko-Jan; Margheri, Massimo; Bramucci, Ezio; Blankenship, James C; Metzger, D Christopher; Gibbons, Raymond J; Lindsay, Barbara S; Weiner, Bonnie H; Lansky, Alexandra J; Krucoff, Mitchell W; Fahy, Martin; Boscardin, W John

    2009-10-01

    Myocardial salvage is often suboptimal after percutaneous coronary intervention in ST-segment elevation myocardial infarction. Posthoc subgroup analysis from a previous trial (AMIHOT I) suggested that intracoronary delivery of supersaturated oxygen (SSO(2)) may reduce infarct size in patients with large ST-segment elevation myocardial infarction treated early. A prospective, multicenter trial was performed in which 301 patients with anterior ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention within 6 hours of symptom onset were randomized to a 90-minute intracoronary SSO(2) infusion in the left anterior descending artery infarct territory (n=222) or control (n=79). The primary efficacy measure was infarct size in the intention-to-treat population (powered for superiority), and the primary safety measure was composite major adverse cardiovascular events at 30 days in the intention-to-treat and per-protocol populations (powered for noninferiority), with Bayesian hierarchical modeling used to allow partial pooling of evidence from AMIHOT I. Among 281 randomized patients with tc-99m-sestamibi single-photon emission computed tomography data in AMIHOT II, median (interquartile range) infarct size was 26.5% (8.5%, 44%) with control compared with 20% (6%, 37%) after SSO(2). The pooled adjusted infarct size was 25% (7%, 42%) with control compared with 18.5% (3.5%, 34.5%) after SSO(2) (P(Wilcoxon)=0.02; Bayesian posterior probability of superiority, 96.9%). The Bayesian pooled 30-day mean (+/-SE) rates of major adverse cardiovascular events were 5.0+/-1.4% for control and 5.9+/-1.4% for SSO(2) by intention-to-treat, and 5.1+/-1.5% for control and 4.7+/-1.5% for SSO(2) by per-protocol analysis (posterior probability of noninferiority, 99.5% and 99.9%, respectively). Among patients with anterior ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention within 6 hours of symptom onset, infusion of SSO(2) into

  9. Electronic nicotine delivery systems: is there a need for regulation?

    PubMed

    Trtchounian, Anna; Talbot, Prue

    2011-01-01

    Electronic nicotine delivery systems (ENDS) purport to deliver nicotine to the lungs of smokers. Five brands of ENDS were evaluated for design features, accuracy and clarity of labelling and quality of instruction manuals and associated print material supplied with products or on manufacturers' websites. ENDS were purchased from online vendors and analysed for various parameters. While the basic design of ENDS was similar across brands, specific design features varied significantly. Fluid contained in cartridge reservoirs readily leaked out of most brands, and it was difficult to assemble or disassemble ENDS without touching nicotine-containing fluid. Two brands had designs that helped lessen this problem. Labelling of cartridges was very poor; labelling of some cartridge wrappers was better than labelling of cartridges. In general, packs of replacement cartridges were better labelled than the wrappers or cartridges, but most packs lacked cartridge content and warning information, and sometimes packs had confusing information. Used cartridges contained fluid, and disposal of nicotine-containing cartridges was not adequately addressed on websites or in manuals. Orders were sometimes filled incorrectly, and safety features did not always function properly. Print and internet material often contained information or made claims for which there is currently no scientific support. Design flaws, lack of adequate labelling and concerns about quality control and health issues indicate that regulators should consider removing ENDS from the market until their safety can be adequately evaluated.

  10. Effects of temperature and oxygen on growth and differentiation of embryos of the ground skink, Scincella lateralis.

    PubMed

    Flewelling, Sarena; Parker, Scott L

    2015-08-01

    Development of reptile embryos is dependent upon adequate oxygen availability to meet embryonic metabolic demand. Metabolic rate of embryos is temperature dependent, with oxygen consumption increasing exponentially as a function of temperature. Because metabolic rate is more temperature sensitive than diffusion, developmental processes are predicted to be oxygen-limited at high temperatures. We tested the hypothesis that the amount of development lizard embryos achieve in the oviduct is dependent upon both temperature and oxygen availability. We evaluated the effect of temperature (23, 33°C) and oxygen concentration (9%, 15%, 21% O2 ) on survival and development of embryos of the oviparous skink Scincella lateralis. We predicted that incubation at 33°C under hypoxic conditions would result in higher embryo mortality due to mismatch between embryo oxygen demand and oxygen supply compared to eggs incubated at 23°C under hypoxic conditions. Embryo mortality was highest at 33°C/9% O2 (86%) compared to 23°C/9% O2 (14%), however, mortality did not differ among any other oxygen-temperature treatment combination. Both temperature and oxygen affected differentiation, but the interaction between temperature and oxygen was not significant. Embryo growth in mass and hatchling mass were affected by oxygen concentration independent of temperature treatment. Differing responses of growth and differentiation to temperature and oxygen treatments suggests that somatic growth may be more sensitive to oxygen availability than differentiation. Results indicate that embryo mortality can occur both via the direct effect of high temperature on cellular function as well as indirectly through thermally induced oxygen diffusion limitation. © 2015 Wiley Periodicals, Inc.

  11. Effects of vacuum suctioning and strategic drape tenting on oxygen concentration in a simulated surgical field.

    PubMed

    Kung, Theodore A; Kong, Sarah W; Aliu, Oluseyi; Azizi, Jahan; Kai, Salim; Cederna, Paul S

    2016-02-01

    To investigate the isolated and combined effects of vacuum suctioning and strategic drape tenting on oxygen concentration in an experimental setting. Experimental. Clinical simulation center of a university-affiliated hospital. Mannequin simulation of a patient undergoing facial surgery under sedation anesthesia. Supplemental oxygen was delivered via nasal cannula. Vacuum suctioning and strategic drape tenting. The experimental trials entailed measuring oxygen concentration around the nasal cannula continuously either in the presence or absence of a standard operating room vacuum suction system and strategic tenting of surgical drapes. The primary outcome was the time required for oxygen concentration to reach 21%. In the control group (without suction or strategic tenting), a mean time of 180 seconds elapsed until the measured oxygen concentration reached 21% after cessation of oxygen delivery. Use of a vacuum suction device alone (110 seconds; P < .01) or in combination with strategic tenting (110 seconds; P < .01) significantly reduced this time. No significant benefit was seen when tenting was used alone (160 seconds; P < .30). Use of a vacuum suction device during surgery will lower local oxygen concentration, and this in turn may decrease the risk of operating room fires. Although strategic tenting of surgical drapes has a theoretical benefit to decreasing the pooling of oxygen around the surgical site, further investigation is necessary before its routine use is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Impact of referral transport system on institutional deliveries in Haryana, India.

    PubMed

    Prinja, Shankar; Jeet, Gursimer; Kaur, Manmeet; Aggarwal, Arun Kumar; Manchanda, Neha; Kumar, Rajesh

    2014-06-01

    Creation of a strong referral transport network across the country is necessary for improving physical access to public sector health facilities. In this study we evaluated the referral transport services in Haryana, i.e. Haryana Swasthya Vaahan Sewa (HSVS), now known as National Ambulance Service (NAS), to assess the extent and pattern of utilization, and to ascertain its effect on public sector institutional deliveries. Secondary data on 116,562 patients transported during April to July 2011 in Haryana state were analysed to assess extent and pattern of NAS utilization. Exit interviews were conducted with 270 consecutively selected users and non- users of referral services respectively in Ambala (High NAS utilization), Hisar (medium utilization) and Narnaul (low utilization) districts. Month-wise data on institutional deliveries in public facilities during 2005-2012 were collected in these three districts, and analysed using interrupted time series analysis to assess the impact of NAS on institutional deliveries. Female gender (OR=77.7), rural place of residence (OR=5.96) and poor socio-economic status (poorest wealth quintile OR=2.64) were significantly associated with NAS ambulance service usage. Institutional deliveries in Haryana rose significantly after the introduction of NAS service in Ambala (OR=137.4, 95% CI=22.4-252.4) and Hisar (OR=215, 95% CI=88.5-341.3) districts. No significant increase was observed in Narnaul (OR=4.5, 95% CI=-137.4 to 146.4) district. The findings of the present study showed a positive effect of referral transport service on increasing institutional deliveries. However, this needs to be backed up with adequate supply of basic and emergency obstetric care at hospitals and health centres.

  13. Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    NASA Astrophysics Data System (ADS)

    Semyachkina-Glushkovskaya, O. V.; Sokolovski, S. G.; Goltsov, A.; Gekaluyk, A. S.; Saranceva, E. I.; Bragina, O. A.; Tuchin, V. V.; Rafailov, E. U.

    2017-09-01

    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a ;gold key; has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research.

  14. Non-invasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field 17O MR spectroscopy

    PubMed Central

    Cui, Weina; Zhu, Xiao-Hong; Vollmers, Manda L; Colonna, Emily T; Adriany, Gregor; Tramm, Brandon; Dubinsky, Janet M; Öz, Gülin

    2013-01-01

    To assess cerebral energetics in transgenic mouse models of neurologic disease, a robust, efficient, and practical method for quantification of cerebral oxygen consumption is needed. 17O magnetic resonance spectroscopy (MRS) has been validated to measure cerebral metabolic rate of oxygen (CMRO2) in the rat brain; however, mice present unique challenges because of their small size. We show that CMRO2 measurements with 17O MRS in the mouse brain are highly reproducible using 16.4 Tesla and a newly designed oxygen delivery system. The method can be utilized to measure mitochondrial function in mice quickly and repeatedly, without oral intubation, and has numerous potential applications to study cerebral energetics. PMID:24064490

  15. Diffusion Limitation and Hyperoxic Enhancement of Oxygen Consumption in Zooxanthellate Sea Anemones, Zoanthids, and Corals.

    PubMed

    Shick, J M

    1990-08-01

    Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.

  16. Universal institutional delivery among mothers in a remote mountain district of Nepal: what are the challenges?

    PubMed

    Joshi, D; Baral, S C; Giri, S; Kumar, A M V

    2016-12-21

    Setting: Eight village development committees of Mugu District, a remote mountainous district of Nepal that has poor maternal health indicators. Objectives: 1) To assess the proportion of mothers who delivered in health facilities (institutional delivery); 2) among mothers who delivered at home, to understand their reasons for doing so; and 3) among mothers who delivered in health facilities, to understand their challenges. Design: Cross-sectional study involving semi-structured interviews with mothers conducted in 2015. Results: Of 275 mothers, 97 (35%) had an institutional delivery. Multivariate logistic regression analysis showed that women who resided within 1 h distance from the birthing centre, had adequate mass media exposure or had only one child were more likely to deliver in hospital. Reasons for non-institutional delivery ( n = 178) were related to geographical access (49%), personal preferences (18%) and perceived poor quality care (4%). Mothers who accessed institutional delivery ( n = 97) also reported difficulties related to travel (60%), costs (28%), dysfunctional health system (18%) and unfriendly attitudes of the health-care providers (7%). Conclusion: To improve access to institutional delivery, the government should establish a 24/7 emergency ambulance network, including air ambulance. Health system issues, including unfriendly staff attitudes, urgently need to be addressed to gain the trust of the mothers.

  17. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Oh, Jun-Seok; Fukuhara, Hideo; Bhatia, Rishabh; Gaur, Nishtha; Nguyen, Cuong K.; Hong, Sung-Ha; Ito, Satsuki; Ogawa, Kotaro; Kawada, Chiaki; Shuin, Taro; Tsuda, Masayuki; Furihata, Mutsuo; Kurabayashi, Atsushi; Furuta, Hiroshi; Ito, Masafumi; Inoue, Keiji; Hatta, Akimitsu; Short, Robert D.

    2018-01-01

    Cold atmospheric plasmas have attracted significant worldwide attention for their potential beneficial effects in cancer therapy. In order to further improve the effectiveness of plasma in cancer therapy, it is important to understand the generation and transport of plasma reactive species into tissue fluids, tissues and cells, and moreover the rates and depths of delivery, particularly across physical barriers such as skin. In this study, helium (He) plasma jet treatment of a 3D cancer tumour, grown on the back of a live mouse, induced apoptosis within the tumour to a depth of 2.8 mm. The He plasma jet was shown to deliver reactive oxygen species through the unbroken skin barrier before penetrating through the entire depth of the tumour. The depth and rate of transport of He plasma jet generated H2O2, NO3 - and NO2 -, as well as aqueous oxygen [O2(aq)], was then tracked in an agarose tissue model. This provided an approximation of the H2O2, NO3 -, NO2 - and O2(aq) concentrations that might have been generated during the He plasma jet treatment of the 3D tumour. It is proposed that the He plasma jet can induce apoptosis within a tumour by the ‘deep’ delivery of H2O2, NO3 - and NO2 - coupled with O2(aq); the latter raising oxygen tension in hypoxic tissue.

  18. Safe delivery of optical power from space.

    PubMed

    Smith, M; Fork, R L; Cole, S

    2001-05-07

    More than a billion gigawatts of sunlight pass through the area extending from Earth out to geostationary orbit. A small fraction of this clean renewable power appears more than adequate to satisfy the projected needs of Earth, and of human exploration and development of space far into the future. Recent studies suggest safe and efficient access to this power can be achieved within 10 to 40 years. Light, enhanced in spatial and temporal coherence, as compared to natural sunlight, offers a means, and probably the only practical means, of usefully transmitting this power to Earth. We describe safety standards for satellite constellations and Earth based sites designed, respectively, to transmit, and receive this power. The spectral properties, number of satellites, and angle subtended at Earth that are required for safe delivery are identified and discussed.

  19. Tissue oxygen monitoring by photoacoustic lifetime imaging (PALI) and its application to image-guided photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2015-03-01

    The oxygen partial pressure (pO2), which results from the balance between oxygen delivery and its consumption, is a key component of the physiological state of a tissue. Images of oxygen distribution can provide essential information for identifying hypoxic tissue and optimizing cancer treatment. Previously, we have reported a noninvasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor on small animals to identify hypoxia area. We also showed that PALI is able monitor changes of tissue oxygen, in an acute ischemia and breathing modulation model. Here we present our work on developing a treatment/imaging modality (PDT-PALI) that integrates PDT and a combined ultrasound/photoacoustic imaging system. The system provides real-time feedback of three essential parameters namely: tissue oxygen, light penetration in tumor location, and distribution of photosensitizer. Tissue oxygen imaging is performed by applying PALI, which relies on photoacoustic probing of oxygen-dependent, excitation lifetime of Methylene Blue (MB) photosensitizer. Lifetime information can also be used to generate image showing the distribution of photosensitizer. The level and penetration depth of PDT illumination can be deduced from photoacoustic imaging at the same wavelength. All images will be combined with ultrasound B-mode images for anatomical reference.

  20. Non-invasive cerebral oxygenation reflects mixed venous oxygen saturation during the varying haemodynamic conditions in patients undergoing transapical transcatheter aortic valve implantation.

    PubMed

    Paarmann, Hauke; Heringlake, Matthias; Heinze, Hermann; Hanke, Thorsten; Sier, Holger; Karsten, Jan; Schön, Julika

    2012-03-01

    Transapical transcatheter aortic valve implantation (TA-TAVI) is increasingly used to treat aortic valve stenosis in high-risk patients. Mixed venous oxygen saturation (SvO(2)) is still the 'gold standard' for the determination of the systemic oxygen delivery to consumption ratio in cardiac surgery patients. Recent data suggest that regional cerebral oxygen saturation (rScO(2)) determined by near-infrared spectroscopy is closely related to SvO(2). The present study compares rScO(2) and SvO(2) in patients undergoing TA-TAVI. n = 20 cardiac surgery patients scheduled for TA-TAVI were enrolled in this prospective observational study. SvO(2) and rScO(2) were determined at predefined time points during the procedure. Correlation and Bland-Altman analysis of the complete data set showed a correlation coefficient of r(2 )= 0.7 between rScO(2) and SvO(2) (P < 0.0001), a mean difference (bias) of 5.8 with limits of agreement (1.96 SD) of -6.8 to 18.3% and a percentage error of 17.5%. At all predefined time points correlation was moderate (r(2 )= 0.50) to close (r = 0.84), and the percentage error was <24%. RScO(2) determined by near-infrared spectroscopy is correlated to SvO(2) during varying haemodynamic conditions in patients undergoing TA-TAVI. This suggests that rScO(2) is reflective not only of the cerebral, but also of the systemic oxygen balance.

  1. [TRANSPORT OF OXYGEN DURING GEOMETRICAL RECONSTRUCTION OF THE LEFT VENTRICLE IN CONJUNCTION WITH CORONARY ARTERY BYPASS GRAFTING AND USING OF HIGH THORACIC EPIDURAL ANESTHESIA AS A MAJOR COMPONENT OF GENERAL ANAESTHESIA].

    PubMed

    Zatevahina, M V; Farzutdinov, A F; Rahimov, A A; Makrushin, I M; Kvachantiradze, G Y

    2015-01-01

    The purpose of the study is to examine the perioperative dynamics of strategic blood oxygen transport indicators: delivery (DO2), consumption (VO2), the coefficient of oxygen uptake (CUO2) and their composition, as well as the dynamics of blood lactate indicators in patients with ischaemic heart disease (IHD) who underwent surgery under cardiopulmonary bypass with high thoracic epidural anaesthesia (HTEA) as the main component of anesthesia. Research was conducted in 30 patients with a critical degree of operational risk, during the correction of post-infarction heart aneurysmn using the V. Dor method in combination with coronary artery bypass grafting. The strategic blood oxygen transport indicators (delivery, consumption and the oxygen uptake coefficient) showed a statistically significant decrease compared to the physiological norm and to the initial data at two points of the research: the intubation of the trachea and during cardiopulmonary bypass. The system components of oxygen were influenced at problematic stages by the dynamics of SvO2 (increase), AVD (decrease), hemodilution withe fall of the HIb- in the process of JR in the persence of superficial hypothermia. The maintenance of optimal CA in the context of HTEA, combined with a balanced volemic load and a minimized cardiotonic support ensured the stabilisation of strategic blood oxygen transport indicators aithe postperfusion stage and during the immediate postoperative period The article is dedicated to the study of strategic blood oxygen transport indicators and their components during the operation of geometric reconstruc-tion of the left ventricle combined with coronary artery-bypass using cardiopulmonary bypass and with high thoracic epidural anesthesia as the main component of general anaesthesia. The analysis has covered the stagewise delivery dynamics, consumption and the oxygen uptake coefficient at II stages of the operation and of the immediate postoperative period. The study has ident (fled

  2. Aerosol delivery and humidification with the Boussignac continuous positive airway pressure device.

    PubMed

    Thille, Arnaud W; Bertholon, Jean-François; Becquemin, Marie-Hélène; Roy, Monique; Lyazidi, Aissam; Lellouche, François; Pertusini, Esther; Boussignac, Georges; Maître, Bernard; Brochard, Laurent

    2011-10-01

    A simple method for effective bronchodilator aerosol delivery while administering continuing continuous positive airway pressure (CPAP) would be useful in patients with severe bronchial obstruction. To assess the effectiveness of bronchodilator aerosol delivery during CPAP generated by the Boussignac CPAP system and its optimal humidification system. First we assessed the relationship between flow and pressure generated in the mask with the Boussignac CPAP system. Next we measured the inspired-gas humidity during CPAP, with several humidification strategies, in 9 healthy volunteers. We then measured the bronchodilator aerosol particle size during CPAP, with and without heat-and-moisture exchanger, in a bench study. Finally, in 7 patients with acute respiratory failure and airway obstruction, we measured work of breathing and gas exchange after a β(2)-agonist bronchodilator aerosol (terbutaline) delivered during CPAP or via standard nebulization. Optimal humidity was obtained only with the heat-and-moisture exchanger or heated humidifier. The heat-and-moisture exchanger had no influence on bronchodilator aerosol particle size. Work of breathing decreased similarly after bronchodilator via either standard nebulization or CPAP, but P(aO(2)) increased significantly only after CPAP aerosol delivery. CPAP bronchodilator delivery decreases the work of breathing as effectively as does standard nebulization, but produces a greater oxygenation improvement in patients with airway obstruction. To optimize airway humidification, a heat-and-moisture exchanger could be used with the Boussignac CPAP system, without modifying aerosol delivery.

  3. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

    PubMed Central

    Sakadžić, Sava; Yuan, Shuai; Dilekoz, Ergin; Ruvinskaya, Svetlana; Vinogradov, Sergei A.; Ayata, Cenk; Boas, David A.

    2009-01-01

    We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain. PMID:19340106

  4. Region 5: Wisconsin Adequate Letter (4/16/2015)

    EPA Pesticide Factsheets

    This March 13, 2015 letter from EPA approves Wisconsins Kenosha and Sheboygan counties Early Progress Plan for year 2015 Motor Vehicle Emissions Budgets (MVEBs) for VOC and NOx finding them adequate for transportation conformity purposes and will be announ

  5. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging.

    PubMed

    Catchlove, Sarah J; Macpherson, Helen; Hughes, Matthew E; Chen, Yufen; Parrish, Todd B; Pipingas, Andrew

    2018-01-01

    Understanding how vascular and metabolic factors impact on cognitive function is essential to develop efficient therapies to prevent and treat cognitive losses in older age. Cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and venous oxygenation (Yv) comprise key physiologic processes that maintain optimum functioning of neural activity. Changes to these parameters across the lifespan may precede neurodegeneration and contribute to age-related cognitive decline. This study examined differences in blood flow and metabolism between 31 healthy younger (<50 years) and 29 healthy older (>50 years) adults; and investigated whether these parameters contribute to cognitive performance. Participants underwent a cognitive assessment and MRI scan. Grey matter CMRO2 was calculated from measures of CBF (phase contrast MRI), arterial and venous oxygenation (TRUST MRI) to assess group differences in physiological function and the contribution of these parameters to cognition. Performance on memory (p<0.001) and attention tasks (p<0.001) and total CBF were reduced (p<0.05), and Yv trended toward a decrease (p = .06) in the older group, while grey matter CBF and CMRO2 did not differ between the age groups. Attention was negatively associated with CBF when adjusted (p<0.05) in the older adults, but not in the younger group. There was no such relationship with memory. Neither cognitive measure was associated with oxygen metabolism or venous oxygenation in either age group. Findings indicated an age-related imbalance between oxygen delivery, consumption and demand, evidenced by a decreased supply of oxygen with unchanged metabolism resulting in increased oxygen extraction. CBF predicted attention when the age-effect was controlled, suggesting a task- specific CBF- cognition relationship.

  6. AICAR Administration Attenuates Hemorrhagic Hyperglycemia and Lowers Oxygen Debt in Anesthetized Male Rabbits.

    PubMed

    Huang, Yi; Ratz, Paul H; Miner, Amy S; Locke, Victoria A; Chen, Grace; Chen, Yang; Barbee, Robert W

    2017-01-01

    Background: Many strategies have been utilized to treat traumatic shock via improved oxygen delivery (DO 2 ), while fewer have been used to in an attempt to reduce oxygen demand (VO 2 ). The cellular energy sensor 5' adenosine monophosphate-activated protein kinase (AMPK) has the potential to modulate both whole-body DO 2 and VO 2 . Therefore, we determined the effect of the AMPK activator AICAR (5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside) given acutely or chronically on key metabolites, hemodynamics, and oxygen consumption/delivery before and during hemorrhage in anesthetized male rabbits. Methods: Chronically treated animals received AICAR (40 mg/kg/day, IV) for 10 days prior to hemorrhage, while rabbits in the acute study were infused with AICAR (7.5 mg/kg bolus, 2 mg/kg/min infusion) or vehicle (0.3 ml/kg saline bolus, 0.03 ml/kg/min infusion) IV for 2 h prior to severe hemorrhage. Both acutely and chronically treated animals were sedated (ketamine/xylazine cocktail) the morning of the terminal experiment and surgically prepared for hemorrhage, including the implantation of arterial and venous catheters (for blood removal/sampling and drug/vehicle administration) and thoracotomy for implantation of transit-time flow transducers (for cardiac output determination). Results: AICAR given acutely lowered arterial blood glucose and increased blood lactate levels before hemorrhage, and abolished the well-documented hemorrhage-induced hyperglycemia seen in vehicle treated animals. Animals given AICAR chronically had blunted hemorrhage-induced hyperglycemia without prior baseline changes. Chronically treated AICAR animals showed significantly lower lactate levels during hemorrhage. Rabbits receiving AICAR both acutely and chronically experienced similar falls in mean arterial pressure, cardiac output and hence DO 2 to their vehicle counterparts throughout the hemorrhage period. However, rabbits treated either acutely or chronically with AICAR accumulated lower

  7. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  8. Hydrogen peroxide filled poly(methyl methacrylate) microcapsules: potential oxygen delivery materials.

    PubMed

    Mallepally, Rajendar R; Parrish, Chance C; Mc Hugh, Mark A M; Ward, Kevin R

    2014-11-20

    This paper describes the synthesis of H₂O₂-H₂O filled poly(methyl methacrylate) (PMMA) microcapsules as potential candidates for controlled O₂ delivery. The microcapsules are prepared by a water-in-oil solvent emulsion and evaporation method. The results of this study describe the effect of process parameters on the characteristics of the microcapsules and on their in vitro performance. The size of the microcapsules, as determined from scanning electron microscopy, ranges from ∼5 to 30 μm and the size distribution is narrow. The microcapsules exhibit an internal morphology with entrapped H₂O₂-H₂O droplets randomly distributed in the PMMA continuous phase. In vitro release studies of 4.5 wt% H₂O₂-loaded microcapsules show that ∼70% of the H₂O₂ releases in 24h. This corresponds to a total O₂ production of ∼12 cc/gram of dry microcapsules. Shelf-life studies show that the microcapsules retain ∼84 wt% of the initially loaded H₂O₂ after nine months storage at 2-8 °C, which is an attractive feature for clinical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Region 8: Colorado Adequate Letter (8/17/2011)

    EPA Pesticide Factsheets

    This March 4, 2011 letter from EPA to Chistopher E. Urbina M.D., MPH, Colorado Department of Public Health and Environment states that EPA has found that the Greeley, CO second 10 year Limited Maintenance Plan (LMP) adequate for transportation conformity

  10. Region 8: Colorado Adequate Letter (6/11/2012)

    EPA Pesticide Factsheets

    This August 9, 2011 letter from EPA to Chistopher E. Urbina M.D., MPH, Colorado Department of Public Health and Environment states that EPA has found that the Fort Collins, CO second 10 year Limited Maintenance Plan (LMP) adequate for transportation

  11. Using Multitheory Model of Health Behavior Change to Predict Adequate Sleep Behavior.

    PubMed

    Knowlden, Adam P; Sharma, Manoj; Nahar, Vinayak K

    The purpose of this article was to use the multitheory model of health behavior change in predicting adequate sleep behavior in college students. A valid and reliable survey was administered in a cross-sectional design (n = 151). For initiation of adequate sleep behavior, the construct of behavioral confidence (P < .001) was found to be significant and accounted for 24.4% of the variance. For sustenance of adequate sleep behavior, changes in social environment (P < .02), emotional transformation (P < .001), and practice for change (P < .001) were significant and accounted for 34.2% of the variance.

  12. Reaction of oxygen with the respiratory chain in cells and tissues.

    PubMed

    Chance, B

    1965-09-01

    This paper considers the way in which the oxygen reaction described by Dr. Nicholls and the ADP control reactions described by Dr. Racker could cooperate to establish a purposeful metabolic control phenomenon in vivo. This has required an examination of the kinetic properties of the respiratory chain with particular reference to methods for determinations of oxygen affinity (K(m)). The constant parameter for tissue respiration is k(1), the velocity constant for the reaction of oxygen with cytochrome oxidase. Not only is this quantity a constant for a particular tissue or mitochondria; it appears to vary little over a wide range of biological material, and for practical purposes a value of 5 x 10(7) at 25 degrees close to our original value (20) is found to apply with adequate accuracy for calculation of K(m) for mammalia. The quantity which will depend upon the tissue and its metabolic state is the value of K(m) itself, and K(m) may be as large as 0.5 microM and may fall to 0.05 microM or less in resting, controlled, or inhibited states. The control characteristic for ADP may depend upon the electron flux due to the cytochrome chain (40); less ADP is required to activate the slower electron transport at lower temperatures than at higher temperatures. The affinity constants for ADP control appear to be less dependent upon substrate supplied to the system. The balance of ADP and oxygen control in vivo is amply demonstrated experimentally and is dependent on the oxygen concentration as follows. In the presence of excess oxygen, control may be due to the ADP or phosphate (or substrate), and the kinetics of oxygen utilization will be independent of the oxygen concentration. As the oxygen concentration is diminished, hemoglobin becomes disoxygenated, deep gradients of oxygen concentration develop in the tissue, and eventually cytochrome oxidase becomes partially and then completely reduced. DPN at this point will become reduced and the electron flow diminished. The rate

  13. High pressure autothermal reforming in low oxygen environments

    NASA Astrophysics Data System (ADS)

    Reese, Mark A.; Turn, Scott Q.; Cui, Hong

    Recent interest in fuel cells has led to the conceptual design of an ocean floor, fuel cell-based, power generating station fueled by methane from natural gas seeps or from the controlled decomposition of methane hydrates. Because the dissolved oxygen concentration in deep ocean water is too low to provide adequate supplies to a fuel processor and fuel cell, oxygen must be stored onboard the generating station. A lab scale catalytic autothermal reformer capable of operating at pressures of 6-50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). Optimization, using oxygen-to-carbon (O 2/C) and water-to-carbon (S/C) ratios as independent variables, was conducted at three pressures using bottled O 2. Surface response methodology was employed using a 2 2 factorial design. Optimal points were validated using H 2O 2 as both a stored oxidizer and steam source. The optimal experimental conditions for maximizing the moles of H 2(out)/O 2(in) occurred at a S/C ratio of 3.00-3.35 and an O 2/C ratio of 0.44-0.48. When using H 2O 2 as the oxidizer, the moles of H 2(out)/O 2(in) increased ≤14%. An equilibrium model was also used to compare experimental and theoretical results.

  14. Clarification of cyanide's effect on oxygen transport characteristics in a canine model.

    PubMed

    Pham, Julius Cuong; Huang, David T; McGeorge, Francis T; Rivers, Emanuel P

    2007-03-01

    To clarify the cardiovascular mechanisms of cyanide poisoning by evaluating oxygen transport characteristics using a canine model. A prospective controlled experiment was performed at a hospital-based animal laboratory. Five male beagle (17 (2) kg) dogs were anesthetised with alpha-chloralose, paralysed with pancuronium bromide and mechanically ventilated. Potassium cyanide was infused at 0.045 mg/kg/min for 110 min. Heart rate, blood pressure, cardiac output, oxygen delivery (DO2), oxygen consumption (VO2) and oxygen extraction ratio (OER) were measured every 10 min for 140 min. DO2 was measured by an indirect calorimeter. Cyanide and lactate levels peaked at 1.52 (0.25) mg/l and 9.1 (1.5) mmol/l, respectively. Systolic blood pressure remained relatively constant whereas diastolic blood pressure decreased by 19%. Cardiac output, heart rate and DO2 increased to a maximum of 6%, 10% and 10%, respectively, at 40 min, after which they declined to a low of 32%, 28% and 30% below baseline, respectively. Stroke volume remained constant. Oxygen consumption initially increased by 5%, then decreased to 24% below baseline. The OER initially declined to 35% below baseline, then increased throughout the rest of the study. Cyanide poisoning in the canine model showed two phases of injury. The first (compensated) phase had a mechanism consistent with a traditional global oxygen consumption defect. The second (decompensated) phase had a mechanism consistent with heart failure. This heart failure was due to bradycardia. These data suggest chronotropy as an avenue of further study in the temporary treatment of cyanide poisoning.

  15. Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere

    PubMed Central

    Kump, Lee R.

    2014-01-01

    Considerable geological, geochemical, paleontological, and isotopic evidence exists to support the hypothesis that the atmospheric oxygen level rose from an Archean baseline of essentially zero to modern values in two steps roughly 2.3 billion and 0.8–0.6 billion years ago (Ga). The first step in oxygen content, the Great Oxidation Event, was likely a threshold response to diminishing reductant input from Earth’s interior. Here I provide an alternative to previous suggestions that the second step was the result of the establishment of the first terrestrial fungal–lichen ecosystems. The consumption of oxygen by aerobes respiring this new source of organic matter in soils would have necessitated an increase in the atmospheric oxygen content to compensate for the reduced delivery of oxygen to the weathering environment below the organic-rich upper soil layer. Support for this hypothesis comes from the observed spread toward more negative carbon isotope compositions in Neoproterozoic (1.0–0.542 Ga) and younger limestones altered under the influence of ground waters, and the positive correlation between the carbon isotope composition and oxygen content of modern ground waters in contact with limestones. Thus, the greening of the planet’s land surfaces forced the atmospheric oxygen level to a new, higher equilibrium state. PMID:25225378

  16. Region 8: Colorado Adequate Letter (6/11/2012)

    EPA Pesticide Factsheets

    This August 11, 2011 letter from EPA to Chistopher E. Urbina M.D., MPH, Colorado Department of Public Health and Environment states that EPA has found that the Aspen PM10 maintenance plan and the 2023 motor vehicle emissions budget (MVEB) adequate

  17. Region 9: Arizona Adequate Letter (11/1/2001)

    EPA Pesticide Factsheets

    This is a letter from Jack P. Broadbent, Director, Air Division to Nancy Wrona and James Bourney informing them of the adequacy of Revised MAG 1999 Serious Area Carbon Monoxide Plan and that the MAG CO Plan is adequate for Maricopa County.

  18. Region 9: California Adequate Letter (1/22/2018)

    EPA Pesticide Factsheets

    This December 19, 2017 letter form EPA, finding adequate certain motor vehicle emissions budgets for the 2006 fine particulate matter (PM2.5) National Ambient Air Quality Standars in the Final 2016 Air Quality Managemnet Plan for the South Coast area (2016

  19. Transdermal drug delivery

    PubMed Central

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  20. High Oxygen Concentrations Adversely Affect the Performance of Pulmonary Surfactant.

    PubMed

    Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew

    2017-08-01

    Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional F IO 2 while pediatric/adult therapy is administered with high F IO 2 . We suspected a connection between F IO 2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively ( P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively ( P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary surfactant were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of surfactant film to high concentrations of oxygen expedited the frangibility of pulmonary surfactant, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a