Science.gov

Sample records for adhering escherichia coli

  1. Recent advances in adherence and invasion of pathogenic Escherichia coli

    PubMed Central

    Kalita, Anjana; Hu, Jia; Torres, Alfredo G.

    2014-01-01

    Purpose of review Colonization of the host epithelia by pathogenic Escherichia coli is influenced by the ability of the bacteria to interact with host surfaces. Because the initial step of an E. coli infection is to adhere, invade, and persist within host cells, some strategies used by intestinal and extra-intestinal E. coli to infect host cell are presented. Recent findings This review highlights recent progress understanding how extra-intestinal pathogenic E. coli strains express specific adhesins/invasins that allow colonization of the urinary tract or the meninges, while intestinal E. coli strains are able to colonize different regions of the intestinal tract using other specialized adhesins/invasins. Finally, evaluation of, different diets and environmental conditions regulating the colonization of these pathogens is discussed. Summary Discovery of new interactions between pathogenic E. coli and the host epithelial cells unravels the need of more mechanistic studies that can provide new clues in how to combat these infections. PMID:25023740

  2. Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity

    PubMed Central

    Martinez-Medina, Margarita; Garcia-Gil, Librado Jesus

    2014-01-01

    Escherichia coli (E. coli), and particularly the adherent invasive E. coli (AIEC) pathotype, has been increasingly implicated in the ethiopathogenesis of Crohn’s disease (CD). E. coli strains with similar pathogenic features to AIEC have been associated with other intestinal disorders such as ulcerative colitis, colorectal cancer, and coeliac disease, but AIEC prevalence in these diseases remains largely unexplored. Since AIEC was described one decade ago, substantial progress has been made in deciphering its mechanisms of pathogenicity. However, the molecular bases that characterize the phenotypic properties of this pathotype are still not well resolved. A review of studies focused on E. coli populations in inflammatory bowel disease (IBD) is presented here and we discuss about the putative role of this species on each IBD subtype. Given the relevance of AIEC in CD pathogenesis, we present the latest research findings concerning AIEC host-microbe interactions and pathogenicity. We also review the existing data regarding the prevalence and abundance of AIEC in CD and its association with other intestinal diseases from humans and animals, in order to discuss the AIEC disease- and host-specificity. Finally, we highlight the fact that dietary components frequently found in industrialized countries may enhance AIEC colonization in the gut, which merits further investigation and the implementation of preventative measures. PMID:25133024

  3. relA enhances the adherence of enteropathogenic Escherichia coli.

    PubMed

    Spira, Beny; Ferreira, Gerson Moura; de Almeida, Luiz Gustavo

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) is a known causative agent of diarrhea in children. In the process of colonization of the small intestine, EPEC synthesizes two types of adhesins, the bundle-forming pilus (BFP) and intimin. The BFP pilus is an adhesin associated with the initial stages of adherence of EPEC to epithelial cells, while the outer membrane protein intimin carries out the intimate adherence that takes place at the third stage of infection. BFP is encoded by the bfp operon located in plasmid EAF, present only in typical EPEC isolates, while eae, the gene that encodes intimin is situated in the LEE, a chromosomal pathogenicity island. Transcription of bfp and eae is regulated by the products of the perABC operon, also present in plasmid EAF. Here we show that deletion of relA, that encodes a guanosine penta and tetraphosphate synthetase impairs EPEC adherence to epithelial cells in vitro. In the absence of relA, the transcription of the regulatory operon perABC is reduced, resulting in lower levels of BFP and intimin. Bacterial adherence, BFP and intimin synthesis and perABC expression are restored upon complementation with the wild-type relA allele. PMID:24643076

  4. Adherence to Hospital Antibiotic Policy for Treatment of Escherichia coli ESBL in Urine

    PubMed Central

    Prakash, K. Gnana; Deshpande, Shreeram A.; Aravazhi, Anbu N.

    2016-01-01

    Introduction Escherichia coli are the most common uropathogen worldwide accounting for 80% of the Urinary Tract Infections (UTIs). Nosocomial infections caused by Multi-drug resistant Gram negative bacteria expressing Extended Spectrum β Lactamase enzyme, pose a serious therapeutic challenge to clinicians due to limited therapeutic options. Stringent adherence to Hospital Antibiotic Policy in treating Urinary Escherichia coli ESBLs is a borne necessity. Aim A clinical audit was undertaken in the form of a cross-sectional study to evaluate the compliance on appropriate antibiotic prescription and strict adherence to Hospital Antibiotic Policy for therapeutic management of the patients infected with urinary Escherichia coli ESBL producers. Materials and Methods A cross-sectional medical audit on adherence to treatment of Escherichia coli ESBL producers from in-patients diagnosed to have urinary tract infections for a duration of 7 months was conducted as a prospective study. Clinical data, culture and sensitivity reports of the patient diagnosed with urinary Escherichia coli ESBLs were compared with the treatment chart to ensure strict adherence to hospital antibiotic policy for appropriate therapy by physicians. Data were analysed using IBM SPSS version 20 software. Results The incidence of uncomplicated cystitis, pyelonephritis and complicated pyelonephritis cases were 65.24% (107 out of 164), 20.7% (34 out of 164) and 14.02% (23 out of 164) respectively. Resistance to individual fluoroquinolones like norfloxacin, ciprofloxacin and ofloxacin were found to be 60%, 59% and 47.5% respectively. As per hospital antibiotic policy, fluoroquinolones were prescribed in only 23% of the patients for the treatment of urinary Escherichia coli ESBLs. Conclusion Irrational utilization of antibiotics and non-adherence to antibiotic policy could have been the significant risk factors for drug resistance. Optimized antibiotic use, Microbiology laboratory support and periodic

  5. Molecular response of Escherichia coli adhering onto nanoscale topography

    PubMed Central

    2012-01-01

    Bacterial adhesion onto abiotic surfaces is an important issue in biology and medicine since understanding the bases of such interaction represents a crucial aspect in the design of safe implant devices with intrinsic antibacterial characteristics. In this framework, we investigated the effects of nanostructured metal substrates on Escherichia coli adhesion and adaptation in order to understand the bio-molecular dynamics ruling the interactions at the interface. In particular, we show how highly controlled nanostructured gold substrates impact the bacterial behavior in terms of morphological changes and lead to modifications in the expression profile of several genes, which are crucially involved in the stress response and fimbrial synthesis. These results mainly demonstrate that E. coli cells are able to sense even slight changes in surface nanotopography and to actively respond by activating stress-related pathways. At the same time, our findings highlight the possibility of designing nanoengineered substrates able to trigger specific bio-molecular effects, thus opening the perspective of smartly tuning bacterial behavior by biomaterial design. PMID:23078758

  6. Bison and bovine rectoanal junctions exhibit similar cellular architecture and Escherichia coli O157 adherence patterns

    PubMed Central

    2013-01-01

    Background Escherichia coli O157 (E. coli O157) has been isolated from bison retail meat, a fact that is important given that bison meat has been implicated in an E. coli O157-multistate outbreak. In addition, E. coli O157 has also been isolated from bison feces at slaughter and on farms. Cattle are well documented as E. coli O157 reservoirs, and the primary site of E. coli O157 persistence in such reservoirs is the rectoanal junction (RAJ), located at the distal end of the bovine gastrointestinal tract. Since bison and cattle share many genetic similarities manifested as common lineage, susceptibility to infection and the nature of immune responses to infectious agents, we decided to evaluate whether the RAJ of these animals were comparable both in terms of cellular architecture and as sites for adherence of E. coli O157. Specifically, we compared the histo-morphologies of the RAJ and evaluated the E. coli O157 adherence characteristics to the RAJ squamous epithelial (RSE) cells, from these two species. Results We found that the RAJ of both bison and cattle demonstrated similar distribution of epithelial cell markers villin, vimentin, cytokeratin, E-cadherin and N-cadherin. Interestingly, N-cadherin predominated in the stratified squamous epithelium reflecting its proliferative nature. E. coli O157 strains 86–24 SmR and EDL 933 adhered to RSE cells from both animals with similar diffuse and aggregative patterns, respectively. Conclusion Our observations further support the fact that bison are likely ‘wildlife’ reservoirs for E. coli O157, harboring these bacteria in their gastrointestinal tract. Our results also extend the utility of the RSE-cell assay, previously developed to elucidate E. coli O157-cattle RAJ interactions, to studies in bison, which are warranted to determine whether these observations in vitro correlate with those occurring in vivo at the RAJ within the bison gastrointestinal tract. PMID:24373611

  7. Enterotoxigenic Escherichia coli TibA Glycoprotein Adheres to Human Intestine Epithelial Cells

    PubMed Central

    Lindenthal, Christoph; Elsinghorst, Eric A.

    2001-01-01

    Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human ileum and colon. Two separate invasion loci (tia and tib) that direct noninvasive E. coli strains to adhere to and invade cultured human intestine epithelial cells have previously been isolated from the classical ETEC strain H10407. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane glycoprotein. Synthesis of TibA is directly correlated with the adherence and invasion phenotypes of the tib locus, suggesting that this protein is an adhesin and invasin. Here we report the purification of TibA and characterization of its biological activity. TibA was purified by continuous-elution preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified TibA was biotin labeled and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Unlabeled TibA competed with biotin-labeled TibA, suggesting the presence of a specific TibA receptor in HCT8 cells. These results show that TibA acts as an adhesin. Polyclonal anti-TibA antiserum inhibited invasion of ETEC strain H10407 and of recombinant E. coli bearing tib locus clones, suggesting that TibA also acts as an invasin. The ability of TibA to direct epithelial cell adhesion suggests a role for this protein in ETEC pathogenesis. PMID:11119488

  8. Enterotoxigenic Escherichia coli TibA glycoprotein adheres to human intestine epithelial cells.

    PubMed

    Lindenthal, C; Elsinghorst, E A

    2001-01-01

    Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human ileum and colon. Two separate invasion loci (tia and tib) that direct noninvasive E. coli strains to adhere to and invade cultured human intestine epithelial cells have previously been isolated from the classical ETEC strain H10407. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane glycoprotein. Synthesis of TibA is directly correlated with the adherence and invasion phenotypes of the tib locus, suggesting that this protein is an adhesin and invasin. Here we report the purification of TibA and characterization of its biological activity. TibA was purified by continuous-elution preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified TibA was biotin labeled and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Unlabeled TibA competed with biotin-labeled TibA, suggesting the presence of a specific TibA receptor in HCT8 cells. These results show that TibA acts as an adhesin. Polyclonal anti-TibA antiserum inhibited invasion of ETEC strain H10407 and of recombinant E. coli bearing tib locus clones, suggesting that TibA also acts as an invasin. The ability of TibA to direct epithelial cell adhesion suggests a role for this protein in ETEC pathogenesis. PMID:11119488

  9. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli.

    PubMed

    Sampaio, Suely C F; Luiz, Wilson B; Vieira, Mônica A M; Ferreira, Rita C C; Garcia, Bruna G; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L M; Ferreira, Luís C S; Gomes, Tânia A T

    2016-04-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliCa nd fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of a EPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of a EPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The a EPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of a EPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  10. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium.

    PubMed

    Walsham, Alistair D S; MacKenzie, Donald A; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains. PMID:26973622

  11. Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli.

    PubMed

    Hinthong, Woranich; Indrawattana, Nitaya; Pitaksajjakul, Pannamthip; Pipattanaboon, Chonlatip; Kongngoen, Thida; Tharnpoophasiam, Prapin; Worakhunpiset, Suwalee

    2015-08-01

    The influence of temperature on bacterial virulence has been studied worldwide from the viewpoint of climate change and global warming. The bacterium enteroaggregative Escherichia coli (EAEC) is the causative agent of watery diarrhea and shows an increasing incidence worldwide. Its pathogenicity is associated with the virulence factors aggregative adherence fimbria type I and II (AAFI and AAFII), encoded by aggA and aafA in EAEC strains 17-2 and 042, respectively. This study focused on the effect of temperature increases from 29 °C to 40 °C on fimbrial gene expression using real-time PCR, and on its virulence using an aggregative adherence assay and biofilm formation assay. Incubation at 32 °C caused an up-regulation in both EAEC strains 17-2 and strain 042 virulence gene expression. EAEC strain 042 cultured at temperature above 32 °C showed down-regulation of aafA expression except at 38 °C. Interestingly, EAEC cultured at a high temperature showed a reduced adherence to cells and an uneven biofilm formation. These results provide evidence that increases in temperature potentially affect the virulence of pathogenic EAEC, although the response varies in each strain. PMID:26213951

  12. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    PubMed Central

    Walsham, Alistair D. S.; MacKenzie, Donald A.; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L.; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains. PMID:26973622

  13. Evaluation of the Effects of SDIA, a LUXR Homologue, on Adherence and Motility of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quorum-sensing (QS) signaling pathways are important regulatory networks for controlling the expression of genes promoting adherence of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to epithelial cells. A recent study has shown that EHEC O157:H7 encodes a luxR homologue, called sdiA¸ which upon...

  14. Curli modulates adherence of Escherichia coli O157 to bovine recto-anal junction squamous epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent studies have shown that Intimin and the Locus of Enterocyte Effacement-encoded proteins do not play a role in Escherichia coli O157 (O157) adherence to the bovine recto-anal junction squamous epithelial cells (RSE) cells. Hence, to define factors that play a contributory role, we investi...

  15. Understanding Host-Adherent-Invasive Escherichia coli Interaction in Crohn's Disease: Opening Up New Therapeutic Strategies

    PubMed Central

    Massier, Sébastien; Darfeuille-Michaud, Arlette; Billard, Elisabeth; Barnich, Nicolas

    2014-01-01

    A trillion of microorganisms colonize the mammalian intestine. Most of them have coevolved with the host in a symbiotic relationship and some of them have developed strategies to promote their replication in the presence of competing microbiota. Recent evidence suggests that perturbation of the microbial community favors the emergence of opportunistic pathogens, in particular adherent-invasive Escherichia coli (AIEC) that can increase incidence and severity of gut inflammation in the context of Crohn's disease (CD). This review will report the importance of AIEC as triggers of intestinal inflammation, focusing on their impact on epithelial barrier function and stimulation of mucosal inflammation. Beyond manipulation of immune response, restoration of gut microbiota as a new treatment option for CD patients will be discussed. PMID:25580435

  16. EVALUATING THE ROLE OF SDIA AND HHA IN ENHANCED ADHERENCE OF A SDIA HHA DOUBLE MUTANT OF ENTEROHEMORRHAGIC ESCHERICHIA COLI O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adherence of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to biotic (epithelial cells) and abiotic surfaces (biofilm formation) proceeds from an initial reversible adherence to an irreversible stage of intimate adherence. While flagella and fimbriae facilitate initial stage of adherence in both...

  17. Influence of oxygen availability on physiology, verocytotoxin expression and adherence of Escherichia coli O157.

    PubMed

    James, B W; Keevil, C W

    1999-01-01

    A strain of Escherichia coli serotype O157 was grown in steady state chemostat culture under aerobic, oxygen-limited and anaerobic conditions. The growth and metabolic efficiency of oxygen-limited and anaerobic cultures was impaired, with biomass yield and the molar growth yield for glucose, Yglucose, reduced markedly in comparison with aerobic cultures. Steady state cells were typically short rods 2-3 microns long, and were encapsulated by a layer of extracellular material. The majority of cells were non-flagellated and fimbriae were not observed. Chemostat-grown cells were significantly more adhesive for HEp-2 monolayers than cells grown in aerobic batch culture. Furthermore, oxygen-limited and anaerobic cultures were significantly more adhesive for Hep-2 cells when compared with cells grown in aerobic chemostat culture, possibly reflecting increased pathogenicity associated with the induction of novel adhesins. Type 1 pili were not responsible for increased adherence. Verocytotoxins, VT1 and VT2, were expressed constitutively and were not influenced by oxygen availability. This study demonstrates that E. coli O157 is a versatile micro-organism, which responds to environmental conditions likely to be encountered during infection by inducing a phenotype which is more adhesive for human epithelial cells. PMID:10030015

  18. Diffusely Adhering Escherichia coli Strains Induce Attaching and Effacing Phenotypes and Secrete Homologs of Esp Proteins

    PubMed Central

    Beinke, Christina; Laarmann, Sven; Wachter, Clemens; Karch, Helge; Greune, Lilo; Schmidt, M. Alexander

    1998-01-01

    Recent epidemiological studies indicate that Escherichia coli strains which exhibit the diffuse-adherence phenotype (DAEC strains) represent a potential cause of diarrhea in infants. We investigated the interaction of DAEC strains isolated from diarrhea patients in Brazil and in Germany with epithelial cells in tissue culture. The investigated strains were identified as DAEC strains by (i) their attachment pattern, (ii) presence of genes associated with the Dr family of adhesins, and (iii) lack of genetic markers for other diarrhea-associated E. coli categories. Several clinical DAEC isolates were shown to secrete similar patterns of proteins into tissue culture medium. Protein secretion was found to be regulated by environmental parameters, namely, medium, temperature, pH, and iron concentration. DAEC strains secreting these proteins induced accumulation of actin and tyrosine-phosphorylated proteins at sites of bacterial attachment, leading to the formation of pedestals and/or extended surface structures. These changes were phenotypically similar to the attaching and effacing (A/E) lesions observed with enteropathogenic and some enterohemorrhagic E. coli strains carrying the locus of enterocyte effacement (LEE) pathogenicity island. Proteins homologous to the EspA, EspB, and EspD proteins, necessary for signal transduction events inducing A/E lesions, were identified by sequence analysis and cross-reaction of specific antibodies. However, initially nonadhering strains secreting these proteins induced signal transduction events only after prolonged infection. These results indicate that secretion of the Esp proteins alone is not sufficient for efficient signal transduction. This study further shows that some DAEC strains are likely to contain a homolog(s) of the LEE locus which may contribute to the pathogenic potential of DAEC. PMID:9453606

  19. In vitro adherence patterns of Shigella serogroups to bovine recto-anal junction squamous epithelial (RSE) cells are similar to those of Escherichia coli O157

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine whether Shigella species, which are human gastrointestinal pathogens, can adhere to cattle recto-anal junction squamous epithelial (RSE) cells using a recently standardized adherence assay, and to compare their adherence patterns to that of Escherichia coli O15...

  20. A Localized Adherence-Like Pattern as a Second Pattern of Adherence of Classic Enteropathogenic Escherichia coli to HEp-2 Cells That Is Associated with Infantile Diarrhea

    PubMed Central

    Scaletsky, Isabel C. A.; Pedroso, Margareth Z.; Oliva, Carlos A. G.; Carvalho, Rozane L. B.; Morais, Mauro B.; Fagundes-Neto, Ulysses

    1999-01-01

    Escherichia coli strains that cause nonbloody diarrhea in infants are known to present three distinct patterns of adherence to epithelial cells, namely, localized (LA), diffuse (DA), and aggregative (AA) adherence. Strains with LA (typical Enteropathogenic Escherichia coli [EPEC]) are well recognized as a cause of secretory diarrhea, but the role of strains with DA (DAEC) is controversial, and strains with AA (EAEC) have been more frequently related to persistent diarrhea whereas its relationship with acute diarrhea is not well defined. To determine the relationship of the different types of E. coli adherence patterns with acute diarrhea (lasting less than 14 days) and persistent diarrhea (lasting more than 14 days) in São Paulo, Brazil, we studied stool specimens from 40 infants under 1 year of age with diarrhea and 40 age-matched control infants without any gastrointestinal symptoms. Twenty-eight (35.0%) of eighty cases yielded adherent E. coli (HEp-2 cells). Strains with localized and aggregative adherence were associated with acute and persistent diarrhea. A total of 11.2% of the adherent strains were typical EPEC serotypes and hybridized with the enteroadherence factor probe; 5.0% were EAEC and hybridized with the EAEC probe. DAEC strains were isolated from 10.0% of patients and 7.5% of controls and did not hybridize with the two probes used (daaC and AIDA-I). Strains with a localized adherence-like pattern (atypical EPEC) were found significantly more frequently (P = 0.028) in cultures from children with diarrhea (17.5%) than in controls (2.5%). PMID:10377120

  1. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  2. Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells.

    PubMed

    Eaves-Pyles, Tonyia; Allen, Christopher A; Taormina, Joanna; Swidsinski, Alexander; Tutt, Christopher B; Jezek, G Eric; Islas-Islas, Martha; Torres, Alfredo G

    2008-07-01

    Inflammatory diseases of the intestinal tract are a major health concern both in the United States and around the world. Evidence now suggests that a new category of Escherichia coli, designated Adherent Invasive E. coli (AIEC) is highly prevalent in Crohn's Disease (CD) patients. AIEC strains have been shown to colonize and adhere to intestinal epithelial cells (IEC). However, the role AIEC strains play in the induction of an inflammatory response is not known. Therefore, we examined several E. coli strains (designated LF82, O83:H1, 6604 and 6655) that were isolated from CD patients for their ability to induce inflammation in two IEC, Caco-2BBe and T-84 cells. Results showed that each strain had varying abilities to adhere to and invade IEC as well as induced cytokine secretion from polarized IEC. However, E. coli O83:H1 displayed the best characteristics of AIEC strains as compared to the prototype AIEC strain LF82, inducing cytokine secretion from IEC and promoting immune cell migration through IEC. Upon further analysis, E. coli O83:H1 did not harbor virulence genes present in known pathogenic intestinal organisms. Further characterization of E. coli O83:H1 virulence determinants showed that a non-flagellated O83:H1 strain significantly decreased the organism's ability to adhere to and invade both IEC and elicit IEC cytokine secretion compared to the wild type and complemented strains. These findings demonstrate that E. coli O83:H1 possesses the characteristics of the AIEC LF82 strain that may contribute to the low-grade, chronic inflammation observed in Crohn's disease. PMID:17900983

  3. The tib adherence locus of enterotoxigenic Escherichia coli is regulated by cyclic AMP receptor protein.

    PubMed

    Espert, Shirley M; Elsinghorst, Eric A; Munson, George P

    2011-03-01

    Enterotoxigenic Escherichia coli (ETEC) is a Gram-negative enteric pathogen that causes profuse watery diarrhea through the elaboration of heat-labile and/or heat-stable toxins. Virulence is also dependent upon the expression of adhesive pili and afimbrial adhesins that allow the pathogen to adhere to the intestinal epithelium or mucosa. Both types of enterotoxins are regulated at the level of transcription by cyclic AMP (cAMP) receptor protein (CRP). To further our understanding of virulence gene regulation, an in silico approach was used to identify putative CRP binding sites in the genome of H10407 (O78:H11), an ETEC strain that was originally isolated from the stool of a Bangledeshi patient with cholera-like symptoms circa 1971. One of the predicted binding sites was located within an intergenic region upstream of tibDBCA. TibA is an autotransporter and afimbrial adhesin that is glycosylated by TibC. Expression of the TibA glycoprotein was abolished in an H10407 crp mutant and restored when crp was provided in trans. TibA-dependent aggregation was also abolished in a cyaA::kan strain and restored by addition of exogenous cAMP to the growth medium. DNase I footprinting confirmed that the predicted site upstream of tibDBCA is bound by CRP. Point mutations within the CRP binding site were found to abolish or significantly impair CRP-dependent activation of the tibDB promoter. Thus, these studies demonstrate that CRP positively regulates the expression of the glycosylated afimbrial adhesin TibA through occupancy of a binding site within tibDBp. PMID:21216994

  4. Role of the Escherichia coli O157:H7 O side chain in adherence and analysis of an rfb locus.

    PubMed Central

    Bilge, S S; Vary, J C; Dowell, S F; Tarr, P I

    1996-01-01

    Shiga-toxigenic Escherichia coli strains belonging to serotype O157 are important human pathogens, but the genetic basis of expression of the O157 antigen and the role played by the lipopolysaccharide O side chain in the adherence of this organism to epithelial cells are not understood. We performed TnphoA mutagenesis on E. coli O157:H7 strain 86-24 to identify a mutant (strain F12) deficient in O-antigen expression. Nucleotide sequence analysis demonstrated that the transposon inserted within an open reading frame with significant homology to rfbE of Vibrio cholerae O1 (U. H. Stroeher, L. E. Karageorgos, R. Morona, and P. A. Manning, Proc. Natl. Acad. Sci. USA 89:2566-2570, 1992), which is postulated to encode perosamine synthetase. This open reading frame was designated rfbE(EcO157:H7). The guanine-plus-cytosine fraction (0.35) suggests that rfbE(EcO157:H7) may have originated in a species other than E. coli. rfbE(EcO157:H7) is conserved in nontoxigenic E. coli O157 strains expressing a variety of other flagellar antigens but is not found in E. coli O55:H7 strains, which are more closely related to E. coli O157:H7. Strain F12 was significantly more adherent to HeLa cells in a quantitative adherence assay than was its E. coli O157:H7 parent, but they did not differ in other phenotypes. Restoration of the expression of the O side chain by complementation of the TnphoA mutation in strain F12 by a plasmid expressing intact rfbE(EcO157:H7) reduced the adherence of the hyperadherent strain F12. We conclude that rfbE(EcO157:H7) is necessary for the expression of the O157 antigen, that acquisition of E. coli rfb genes occurred independently in E. coli O157:H7 and unrelated O157 strains, and that the O side chain of E. coli O157:H7 lipopolysaccharide interferes with the adherence of E. coli O157:H7 to epithelial cells. PMID:8890241

  5. Bison and bovine rectoanal junctions exhibit similar cellular architecture and Escherichia coli O157 adherence patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157 (O157) is frequently isolated from bison retail meat, a fact that is important given that bison meat has also been implicated in an O157-multistate outbreak. In addition, O157 has also been isolated from bison feces at slaughter and on farms. Cattle are well documented as O15...

  6. Comparative genomic analysis and adherence characteristics of supershedder strains of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli O157:H7 (O157) is a zoonotic foodborne pathogen of major public health concern that results in considerable intestinal and extra-intestinal illness in humans. Asymptomatic cattle are the primary reservoir of O157 and harbor the pathogen at the terminal recto-an...

  7. EX VIVO ADHERENCE TO MURINE ILEAL, BIOFILM FORMATION ABILITY AND PRESENCE OF ADHERENCE-ASSOCIATED OF HUMAN AND ANIMAL DIARRHEAGENIC ESCHERICHIA COLI.

    PubMed

    Sukkua, Kannika; Rattanachuay, Pattamarat; Sukhumungoon, Pharanai

    2016-01-01

    Diarrheagenic Escherichia coli (DEC) are important bacteria causing gastrointestinal infection, which can lead to severe forms of illnesses. This study focused on DEC adherent capabilities using murine intestinal tissue as a model. Ex vivo adherence results showed that enteroaggregative E. coli (EAEC) strain PSU280 exhibited the highest level of adherence, followed by strains from ETEC category. Scanning electron micrographs displayed tight binding and putative bacterial curli fibers, including putative fimbrial structures. The presence of putative curli fibers was confirmed by the presence of csgA, a curli major structural subunit gene. Five and 3 of 15 DEC possessed lpf (encoding long polar fimbriae) and agn43 (encoding antigen43), respectively. Comparable biofilm formation efficiency but variable levels autoaggregation were observed among the DEC strains. In addition, yeast agglutination could be visualized in 11/15 strains. This study demonstrates the adherent ability of DEC strains isolated in southern Thailand as well as a number of crucial adherence-associated genes, information of importance to the understanding of DEC pathogenesis in this region of the country. PMID:27086424

  8. Prevalence of Escherichia coli strains with localized, diffuse, and aggregative adherence to HeLa cells in infants with diarrhea and matched controls.

    PubMed Central

    Gomes, T A; Blake, P A; Trabulsi, L R

    1989-01-01

    To determine the possible role of Escherichia coli strains with three different patterns of adherence to HeLa cells in causing diarrhea in infants in São Paulo, Brazil, we studied stool specimens from 100 infants up to 1 year of age with acute diarrheal illnesses and 100 age-matched control infants without recent diarrhea. E. coli with localized adherence to HeLa cells was much more common in patients (23%) than in controls (2%) (P less than 0.0001) and was detected more frequently than rotavirus (19%) was in patients, even though the study was conducted during the coldest months of the year. Most (80%) of the E. coli colonies with localized adherence were of traditional enteropathogenic E. coli serotypes. Little difference was found between patients and controls in the rate of isolation of E. coli with diffuse adherence (31 and 32%, respectively) or aggregative adherence (10 and 8%, respectively). A genetic probe used to detect a plasmid-mediated adhesin which confers expression of localized adherence proved to be 100% sensitive and 99.9% specific in detecting E. coli with localized adherence to HeLa cells. Although E. coli strains with localized adherence have now been shown to be enteric pathogens in several parts of the world, the role of strains showing diffuse adherence and aggregative adherence is still uncertain. PMID:2563383

  9. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Shiga toxigenic Escherichia coli O104:H4 bares the characteristics of both enterohemorrhagic (EHEC) and enteroaggregative (EAEC) E. coli. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga...

  10. Contributions of EspA filaments and curli fimbriae in cellular adherence and biofilm formation of enterohemorrhagic Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed incr...

  11. Antibody against the Carboxyl Terminus of Intimin α Reduces Enteropathogenic Escherichia coli Adherence to Tissue Culture Cells and Subsequent Induction of Actin Polymerization

    PubMed Central

    Carvalho, Humberto M.; Teel, Louise D.; Kokai-Kun, John F.; O'Brien, Alison D.

    2005-01-01

    The C-terminal third of intimin binds to its translocated receptor (Tir) to promote attaching and effacing lesion formation during infection with enteropathogenic Escherichia coli (EPEC). We observed that the adherence of EPEC strains to HEp-2 cells was reduced and that actin polymerization was blocked by antibody raised against the C-terminal third of intimin α. PMID:15784601

  12. Emerging Enteropathogenic Escherichia coli Strains?

    PubMed Central

    Irino, Kinue; Girão, Dennys M.; Girão, Valéria B.C.; Guth, Beatriz E.C.; Vaz, Tânia M.I.; Moreira, Fabiana C.; Chinarelli, Silvia H.; Vieira, Mônica A.M.

    2004-01-01

    Escherichia coli strains of nonenteropathogenic serogroups carrying eae but lacking the enteropathogenic E. coli adherence factor plasmid and Shiga toxin DNA probe sequences were isolated from patients (children, adults, and AIDS patients) with and without diarrhea in Brazil. Although diverse in phenotype and genotype, some strains are potentially diarrheagenic. PMID:15504277

  13. Up-Regulation of Intestinal Vascular Endothelial Growth Factor by Afa/Dr Diffusely Adhering Escherichia coli

    PubMed Central

    Cane, Gaëlle; Moal, Vanessa Liévin-Le; Pagès, Gilles; Servin, Alain L.; Hofman, Paul; Vouret-Craviari, Valérie

    2007-01-01

    Background Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF) has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC). Methodology VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. Principal Findings C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1) the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55) acting as a bacterial receptor, and (2) the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. Conclusions Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro-inflammatory E. coli strain

  14. A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli.

    PubMed

    Nazarian, Shahram; Gargari, Seyed Latif Mousavi; Rasooli, Iraj; Hasannia, Sadegh; Pirooznia, Nazanin

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of diarrhea among children. Colonization factors and enterotoxins are the major ETEC candidate vaccines. Since protection against ETEC mostly occurs by induction of IgA antibodies, much effort is focused on the development of oral vaccines. In this study oral immunogenicity of a poly(lactic-co-glycolic acid) (PLGA) encapsulated chimeric protein containing CfaB, CstH, CotA and LTB (Heat-labile B subunit) was investigated. The protein was encapsulated in PLGA by double emulsion method and nanoparticles were characterized physicochemically. Immunogenicity was assessed by evaluating IgG1, IgG2 and IgA titers after BALB/c mice vaccination. Non aggregated nanoparticles had a spherical shape with an average particle size of 252.7±23 nm and 91.96±4.4% of encapsulation efficiency. Western blotting showed maintenance of the molecular weight and antigenicity of the released protein. Oral immunization of mice induced serum IgG and fecal IgA antibody responses. Immunization induced protection against ETEC binding to Caco-2 cells. The effect of LT toxin on fluid accumulation in ileal loops was neutralized by inhibition of enterotoxin binding to GM1-ganglosides. Delivery of the chimeric protein in PLGA elicited both systemic and mucosal immune responses. The findings could be exploited to development of oral multi-component ETEC prophylactic measures. PMID:23906742

  15. HIF1A regulates xenophagic degradation of adherent and invasive Escherichia coli (AIEC)

    PubMed Central

    Mimouna, Sanda; Bazin, Marie; Mograbi, Baharia; Darfeuille-Michaud, Arlette; Brest, Patrick; Hofman, Paul; Vouret-Craviari, Valérie

    2015-01-01

    The hypoxia inducible transcription factor HIF1 activates autophagy, a general catabolic pathway involved in the maintenance of cellular homeostasis. Dysfunction in both autophagy and HIF1 has been implicated in an increasing number of human diseases, including inflammatory bowel disease (IBD), such as Crohn disease (CD). Adherent invasive E. coli (AIEC) colonize ileal mucosa of CD patients and strongly promote gastrointestinal inflammatory disorders by activation of HIF-dependent responses. Here, we aim to characterize the contribution of HIF1 in xenophagy, a specialized form of autophagy involved in the degradation of intracellular bacteria. Our results showed that endogenous HIF1A knockdown increased AIEC survival in intestinal epithelial cells. We demonstrate that the increase in survival rate correlates with a dramatic impairment of the autophagic flux at the autolysosomal maturation step. Furthermore, we show that AIEC remained within single-membrane LC3-II-positive vesicles and that they were unable to induce the phosphorylation of ULK1. These results suggested that, in the absence of HIF1A, AIEC were found within LC3-associated phagosomes. Using blocking antibodies against TLR5 and CEACAM6, the 2 well-known AIEC-bound receptors, we showed that downstream receptor signaling was necessary to mediate ULK1 phosphorylation. Finally, we provide evidence that HIF1 mediates CEACAM6 expression and that CEACAM6 is necessary to recruit ULK1 in a bacteria-containing signaling hub. Collectively, these results identify a new function for HIF1 in AIEC-dedicated xenophagy, and suggest that coactivation of autophagy and HIF1A expression may be a potential new therapy to resolve AIEC infection in CD patients. PMID:25484075

  16. Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death.

    PubMed

    Glasser, A L; Boudeau, J; Barnich, N; Perruchot, M H; Colombel, J F; Darfeuille-Michaud, A

    2001-09-01

    Escherichia coli strains recovered from Crohn's disease (CD) lesions are able to adhere to and invade cultured intestinal epithelial cells. We analyzed the behavior within macrophages of adherent invasive E. coli (AIEC) strains isolated from patients with CD. All the 15 AIEC strains tested were able to replicate extensively within J774-A1 cells: the numbers of intracellular bacteria increased 2.2- to 74.2-fold at 48 h over that at 1 h postinfection. By use of murine peritoneal macrophages and human monocyte-derived-macrophages, the reference AIEC strain LF82 was confirmed to be able to survive intracellularly. Transmission electron micrographs of AIEC LF82-infected macrophages showed that at 24 h postinfection, infected cells harbored large vacuoles containing numerous bacteria, as a result of the fusion of several vacuoles occurring after 8 h postinfection. No lactate dehydrogenase (LDH) release, no sign of DNA fragmentation or degradation, and no binding to fluorescein isothlocyanate-labeled annexin V were observed with LF82-infected J774-A1 cells, even after 24 h postinfection. LF82-infected J774-A1 cells secreted 2.7-fold more tumor necrosis factor alpha (TNF-alpha) than cells stimulated with 1 microg of lipopolysaccharide (LPS)/ml. No release of interleukin-1beta was observed with LPS-prestimulated J774-A1 cells infected with AIEC LF82. These findings showed that (i) AIEC strains are able to survive and to replicate within macrophages, (ii) AIEC LF82 replication does not induce any cell death of the infected cells, and (iii) LF82-infected J774-A1 cells release high levels of TNF-alpha. These properties could be related to some features of CD and particularly to granuloma formation, one of the hallmarks of CD lesions. PMID:11500426

  17. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    PubMed

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  18. Ribonucleotide Reductase NrdR as a Novel Regulator for Motility and Chemotaxis during Adherent-Invasive Escherichia coli Infection

    PubMed Central

    Dreux, Nicolas; Cendra, Maria del Mar; Massier, Sébastien; Darfeuille-Michaud, Arlette

    2015-01-01

    A critical step in the life cycle of all organisms is the duplication of the genetic material during cell division. Ribonucleotide reductases (RNRs) are essential enzymes for this step because they control the de novo production of the deoxyribonucleotides required for DNA synthesis and repair. Enterobacteriaceae have three functional classes of RNRs (Ia, Ib, and III), which are transcribed from separate operons and encoded by the genes nrdAB, nrdHIEF, and nrdDG, respectively. Here, we investigated the role of RNRs in the virulence of adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease (CD) patients. Interestingly, the LF82 strain of AIEC harbors four different RNRs (two class Ia, one class Ib, and one class III). Although the E. coli RNR enzymes have been extensively characterized both biochemically and enzymatically, little is known about their roles during bacterial infection. We found that RNR expression was modified in AIEC LF82 bacteria during cell infection, suggesting that RNRs play an important role in AIEC virulence. Knockout of the nrdR and nrdD genes, which encode a transcriptional regulator of RNRs and class III anaerobic RNR, respectively, decreased AIEC LF82's ability to colonize the gut mucosa of transgenic mice that express human CEACAM6 (carcinoembryonic antigen-related cell adhesion molecule 6). Microarray experiments demonstrated that NrdR plays an indirect role in AIEC virulence by interfering with bacterial motility and chemotaxis. Thus, the development of drugs targeting RNR classes, in particular NrdR and NrdD, could be a promising new strategy to control gut colonization by AIEC bacteria in CD patients. PMID:25605769

  19. Adherence of curli producing Shiga-toxigenic Escherichia coli to baby spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular appendages, such as curli fibers have been suggested to be involved in STEC persistence in fresh produce as these curli are critical in biofilm formation and adherence to animal cells. We determined the role of curli in attachment of STEC on spinach leaves. The curli expression by wild-ty...

  20. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4.

    PubMed

    Nagy, Attila; Xu, Yunfeng; Bauchan, Gary R; Shelton, Daniel R; Nou, Xiangwu

    2016-07-16

    The Shiga toxigenic Escherichia coli O104:H4 isolated during the 2011 European outbreak expresses Shiga toxin 2a and possess virulence genes associated with the enteroaggregative E. coli (EAEC) pathotype. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga-toxin adsorption, but it is not clear whether the AAF/I fimbriae are involved in the colonization and biofilm formation on food and environmental matrices such as the surface of fresh produce. We deleted the gene encoding for the AAF/I fimbriae main subunit (AggA) from an outbreak associated E. coli O104:H4 strain, and evaluated the role of AAF/I fimbriae in the adherence and colonization of E. coli O104:H4 to spinach and abiotic surfaces. The deletion of aggA did not affect the adherence of E. coli O104:H4 to these surfaces. However, it severely diminished the colonization and biofilm formation of E. coli O104:H4 on these surfaces. Strong aggregation and biofilm formation on spinach and abiotic surfaces were observed with the wild type strain but not the isogenic aggA deletion mutant, suggesting that AAF/I fimbriae play a crucial role in persistence of O104:H4 cells outside of the intestines of host species, such as on the surface of fresh produce. PMID:27099984

  1. Feeding the Probiotic Enterococcus faecium Strain NCIMB 10415 to Piglets Specifically Reduces the Number of Escherichia coli Pathotypes That Adhere to the Gut Mucosa

    PubMed Central

    Guenther, Sebastian; Oelgeschläger, Kathrin; Kinnemann, Bianca; Pieper, Robert; Hartmann, Susanne; Tedin, Karsten; Semmler, Torsten; Neumann, Konrad; Schierack, Peter; Bethe, Astrid; Wieler, Lothar H.

    2013-01-01

    Feed supplementation with the probiotic Enterococcus faecium for piglets has been found to reduce pathogenic gut microorganisms. Since Escherichia coli is among the most important pathogens in pig production, we performed comprehensive analyses to gain further insight into the influence of E. faecium NCIMB 10415 on porcine intestinal E. coli. A total of 1,436 E. coli strains were isolated from three intestinal habitats (mucosa, digesta, and feces) of probiotic-supplemented and nonsupplemented (control) piglets. E. coli bacteria were characterized via pulsed-field gel electrophoresis (PFGE) for clonal analysis. The high diversity of E. coli was reflected by 168 clones. Multilocus sequence typing (MLST) was used to determine the phylogenetic backgrounds, revealing 79 sequence types (STs). Pathotypes of E. coli were further defined using multiplex PCR for virulence-associated genes. While these analyses discerned only a few significant differences in the E. coli population between the feeding groups, analyses distinguishing clones that were uniquely isolated in either the probiotic group only, the control group only, or both groups (shared group) revealed clear effects at the habitat level. Interestingly, extraintestinal pathogenic E. coli (ExPEC)-typical clones adhering to the mucosa were significantly reduced in the probiotic group. Our data show a minor influence of E. faecium on the overall population of E. coli in healthy piglets. In contrast, this probiotic has a profound effect on mucosa-adherent E. coli. This finding further substantiates a specific effect of E. faecium strain NCIMB 10415 in piglets against pathogenic E. coli in the intestine. In addition, these data question the relevance of data based on sampling fecal E. coli only. PMID:24123741

  2. Inhibitory effects of α-cyperone on adherence and invasion of avian pathogenic Escherichia coli O78 to chicken type II pneumocytes.

    PubMed

    Zhang, Li-Yan; Lv, Shuang; Wu, Shuai-Cheng; Guo, Xun; Xia, Fang; Hu, Xi-Rou; Song, Zhou; Zhang, Cui; Qin, Qian-Qian; Fu, Ben-Dong; Yi, Peng-Fei; Shen, Hai-Qing; Wei, Xu-Bin

    2014-05-15

    Avian pathogenic Escherichia coli (APEC) are extra-intestinal pathogenic E. coli, and usually cause avian septicemia through breaching the blood-gas barrier. Type II pneumocytes play an important role of maintaining the function of the blood-gas barrier. However, the mechanism of APEC injuring type II pneumocytes remains unclear. α-cyperone can inhibit lung cell injury induced by Staphylococcus aureus. In order to explore whether α-cyperone regulates the adherence and invasion of APEC-O78 to chicken type II pneumocytes, we successfully cultured chicken type II pneumocytes. The results showed that α-cyperone significantly decreased the adherence of APEC-O78 to chicken type II pneumocytes. In addition, α-cyperone inhibited actin cytoskeleton polymerization induced by APEC-O78 through down regulating the expression of Nck-2, Cdc42 and Rac1. These results provide new evidence for the prevention of colibacillosis in chicken. PMID:24629766

  3. Escherichia coli (E. coli)

    MedlinePlus

    ... so you might hear about E. coli being found in drinking water, which are not themselves harmful, but indicate the ... at CDC Foodborne disease Travelers' Health: Safe Food & Water Healthy Swimming E. coli Infection & Farm ... Word file Microsoft Excel file Audio/Video file Apple ...

  4. Decreased Adherence of Enterohemorrhagic Escherichia coli to HEp-2 Cells in the Presence of Antibodies That Recognize the C-Terminal Region of Intimin

    PubMed Central

    Gansheroff, Lisa J.; Wachtel, Marian R.; O'Brien, Alison D.

    1999-01-01

    Antiserum raised against intimin from enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 has been shown previously by our laboratory to inhibit adherence of this strain to HEp-2 cells. In the present study, we sought to identify the region(s) of intimin important for the effect of anti-intimin antisera on EHEC adherence and to determine whether antisera raised against intimin from an O157:H7 strain could reduce adherence of other strains. Compared to preimmune serum controls, polyclonal sera raised against the histidine-tagged intimin protein RIHisEae (intiminO157) or against His-tagged C-terminal fragments of intimin from strain 86-24 reduced adherence of this strain. Furthermore, an antibody fraction purified from the anti-RIHisEae serum that contained antibodies to the C-terminal third of intimin, the putative receptor-binding domain, also reduced adherence of strain 86-24, but a purified fraction containing antibodies to the N-terminal two-thirds of intimin did not inhibit adherence. The polyclonal anti-intiminO157 serum raised against RIHisEae inhibited, to different degrees, the adherence of another O157:H7 strain, an EHEC O55:H7 strain, one of two independent EHEC O111:NM isolates tested, and one of two EHEC O26:H11 strains tested. Adherence of the other O26:H11 and O111:NM strains and an EPEC O127:H6 strain was not reduced. Finally, immunoblot analysis indicated a correlation between the antigenic divergence in the C-terminal third of intimins from different strains and the capacity of anti-intiminO157 antiserum to reduce adherence of heterologous strains. Taken together, these data suggest that intiminO157 could be used as an immunogen to elicit adherence-blocking antibodies against O157:H7 strains and closely-related EHEC. PMID:10569757

  5. Adherence of non-O157 Shiga-toxin Escherichia coli to bovine recto-anal junction squamous epithelial cells appears to be mediated by mechanisms distinct from those used by O157

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents evidence that the pattern of adherence of clinically relevant non-O157 Shiga-toxin producing Escherichia coli (STEC) to bovine recto-anal junction squamous epithelial cells (RSE) is similar to that of O157, although the mechanisms of adherence appear to be distinct. Our results f...

  6. Proteins other than the Locus of Enterocyte Effacement-encoded proteins may contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, the Type III Secretion System (TTSS) proteins considered critical for Escherichia coli O157 (O157) adherence to the follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), did not appear to contribute to O157 adherence to the RAJ squamous epithelial (RSE) ...

  7. Heat-labile enterotoxin-induced activation of NF-κB and MAPK pathways in intestinal epithelial cells impacts enterotoxigenic Escherichia coli (ETEC) adherence.

    PubMed

    Wang, Xiaogang; Gao, Xiaofei; Hardwidge, Philip R

    2012-08-01

    Enterotoxigenic Escherichia coli (ETEC) causes human morbidity and mortality in developing nations and is an emerging threat to food safety in developed nations. The ETEC heat-labile enterotoxin (LT) not only causes diarrheal disease by deregulating host adenylate cyclase, but also enhances ETEC adherence to intestinal epithelial cells. The mechanism governing this LT pro-adherence phenotype is unclear. Here we investigated intestinal epithelial cell signal transduction pathways activated by ETEC and quantified the relative importance of these host pathways to LT-induced ETEC adherence. We show that ETEC activates both NF-κB and mitogen-activated protein kinase signalling pathways through mechanisms that are primarily dependent upon LT. LT-induced NF-κB activation depends upon the cAMP-dependent activation of the Ras-like GTPase Rap1 but is independent of protein kinase A (PKA). By using inhibitors of these pathways, we demonstrate that inhibiting the p38 mitogen-activated protein kinase prevents LT from increasing ETEC adherence. By contrast, the LT pro-adherence phenotype appears unrelated to both LT-induced Rap1 activity and to subsequent NF-κB activation. We speculate that LT may alter host signal transduction to induce the presentation of ligands for ETEC adhesins in such a way that promotes ETEC adherence. Our findings provide insight into previously unexplored functions of LT and their relative importance to ETEC virulence. PMID:22452361

  8. pEntYN10 a plasmid of Escherichia coli O169:H41 associated with adherence and toxin production.

    PubMed

    Navarro, Armando

    2015-01-01

    In this issue of Virulence, Ban E et al. described the complete sequence of the pEntYN10 plasmid of Escherichia coli O169:H41. The plasmid has 182 coding sequences (CDs); among the identified CDs, some were identified as colonization factors (CFs), one was an enterotoxin and others were insertion sequences (IS). In this editorial, the main findings, as well as the epidemiological significance and spontaneous loss of pEntYN10 plasmid of E. coli O169:H41 strains are discussed. PMID:26537790

  9. Enterohemorrhagic Escherichia coli Adhesins.

    PubMed

    McWilliams, Brian D; Torres, Alfredo G

    2014-06-01

    Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbria) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this article have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics. PMID:26103974

  10. Contributions of EspA Filaments and Curli Fimbriae in Cellular Adherence and Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7.

    PubMed

    Sharma, Vijay K; Kudva, Indira T; Bearson, Bradley L; Stasko, Judith A

    2016-01-01

    In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed increased adherence to HEp-2 cells and produced abundant biofilms. Transcriptional analysis revealed increased expression of espA as well as the csgA gene, which encodes curli fimbriae that are essential for biofilm formation. In the present study, we constructed hha espA, hha csgA, and hha csgA espA deletion mutants to determine the relative importance of EspA and CsgA in O157 adherence to HEp-2 cells and biofilm formation. In vitro adherence assays, conducted at 37°C in a tissue culture medium containing 0.1% glucose, showed that HEp-2 cell adherence required EspA because hha espA and hha csgA espA mutants adhered to HEp-2 cells at higher levels only when complemented with an espA-expressing plasmid. Biofilm assays performed at 28°C in a medium lacking glucose showed dependency of biofilm formation on CsgA; however EspA was not produced under these conditions. Despite production of detectable levels of EspA at 37°C in media supplemented with 0.1% glucose, the biofilm formation occurred independent of EspA. These results indicate dependency of O157 adherence to epithelial cells on EspA filaments, while CsgA promoted biofilm formation under conditions mimicking those found in the environment (low temperature with nutrient limitations) and in the digestive tract of an host animal (higher temperature and low levels of glucose). PMID:26900701

  11. Contributions of EspA Filaments and Curli Fimbriae in Cellular Adherence and Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Sharma, Vijay K.; Kudva, Indira T.; Bearson, Bradley L.; Stasko, Judith A.

    2016-01-01

    In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed increased adherence to HEp-2 cells and produced abundant biofilms. Transcriptional analysis revealed increased expression of espA as well as the csgA gene, which encodes curli fimbriae that are essential for biofilm formation. In the present study, we constructed hha espA, hha csgA, and hha csgA espA deletion mutants to determine the relative importance of EspA and CsgA in O157 adherence to HEp-2 cells and biofilm formation. In vitro adherence assays, conducted at 37°C in a tissue culture medium containing 0.1% glucose, showed that HEp-2 cell adherence required EspA because hha espA and hha csgA espA mutants adhered to HEp-2 cells at higher levels only when complemented with an espA-expressing plasmid. Biofilm assays performed at 28°C in a medium lacking glucose showed dependency of biofilm formation on CsgA; however EspA was not produced under these conditions. Despite production of detectable levels of EspA at 37°C in media supplemented with 0.1% glucose, the biofilm formation occurred independent of EspA. These results indicate dependency of O157 adherence to epithelial cells on EspA filaments, while CsgA promoted biofilm formation under conditions mimicking those found in the environment (low temperature with nutrient limitations) and in the digestive tract of an host animal (higher temperature and low levels of glucose). PMID:26900701

  12. Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies.

    PubMed

    Moonens, Kristof; Van den Broeck, Imke; Okello, Emmanuel; Pardon, Els; De Kerpel, Maia; Remaut, Han; De Greve, Henri

    2015-01-01

    Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs) fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding. PMID:25828907

  13. Adherence of streptococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa to fibronectin-coated and uncoated epithelial cells.

    PubMed Central

    Abraham, S N; Beachey, E H; Simpson, W A

    1983-01-01

    The relationship between the variability in the fibronectin (Fn) content on human buccal epithelial cells and the capacity of the cells to bind gram-positive (Streptococcus pyogenes) or gram-negative (Escherichia coli or Pseudomonas aeruginosa) bacteria was investigated. Adhesion experiments performed with mixtures of epithelial cells and mixed suspensions of either S. pyogenes and E. coli or S. pyogenes and P. aeruginosa exhibited three major populations of buccal cells: one of these was able to bind S. pyogenes (gram positive) but neither of the gram-negative bacteria; a second population was able to bind the gram-negative but not the gram-positive bacteria; and a third was able to bind various numbers of both types of organisms. Further adhesion experiments performed with a mixture of epithelial cells and a mixed suspension of S. pyrogens, E. coli, and fluoresceinconjugated methacrylate beads coated with immune immunoglobulin G directed against Fn revealed that the epithelial cells recognizing the gram-positive bacteria were rich in Fn, whereas those recognizing the gram-negative organisms were poor in Fn. Immunoelectron microscopy confirmed that cells of S. pyogenes bound to epithelial cells coated with Fn, whereas cells of E. coli bound to epithelial cells lacking Fn. These results suggest that Fn on the surfaces of epithelial cells may modulate the ecology of the human oropharyngeal cavity, especially with respect to the colonization of these surfaces by pathogenic gram-negative or gram-positive bacteria. Images PMID:6411621

  14. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  15. Characterization of the Escherichia coli AF/R1 pilus operon: novel genes necessary for transcriptional regulation and for pilus-mediated adherence.

    PubMed

    Cantey, J R; Blake, R K; Williford, J R; Moseley, S L

    1999-05-01

    We isolated the genetic determinant of AF/R1 pilus production in attaching/effacing Escherichia coli RDEC-1 and identified seven genes required for pilus expression and function. DNA sequence analysis of the structural subunit gene afrA corrected an error in the published sequence and extended homology with the F18 pilus subunit of pig edema E. coli strains. AfrB and AfrC, encoded downstream from AfrA, were required for pilus expression. AfrB was related to the usher protein PefC of Salmonella typhimurium plasmid-encoded fimbriae, and AfrC was related to PefD, a chaperone protein. AfrD and AfrE, encoded downstream from AfrC, were not necessary for the expression of AF/R1 pili but were required for ileal adherence as assayed by ileal brush border aggregation. Thus, the adhesive subunit of the AF/R1 pilus is distinct from the structural subunit, as is the case for Pap pili and type 1 pili. AfrD was related to FedE of the F18 fimbrial operon of the E. coli strain that causes edema disease in pigs. AfrE was a novel protein. AfrR and AfrS are encoded upstream from AfrA, in the opposite orientation. AfrR is related to the AraC family of transcriptional regulators, and AfrR and AfrS interact to function in a novel mode of transcriptional activation of afrA. AF/R1 pili mediate the adherence to Peyer's patch M cells, ileal mucosa, and colonic mucosa in a rabbit model of diarrhea caused by enteropathogenic E. coli. Our observations will facilitate the further study of the phenomena of M-cell adherence. PMID:10225886

  16. Characterization of the Escherichia coli AF/R1 Pilus Operon: Novel Genes Necessary for Transcriptional Regulation and for Pilus-Mediated Adherence

    PubMed Central

    Cantey, J. Robert; Blake, R. K.; Williford, J. R.; Moseley, Steve L.

    1999-01-01

    We isolated the genetic determinant of AF/R1 pilus production in attaching/effacing Escherichia coli RDEC-1 and identified seven genes required for pilus expression and function. DNA sequence analysis of the structural subunit gene afrA corrected an error in the published sequence and extended homology with the F18 pilus subunit of pig edema E. coli strains. AfrB and AfrC, encoded downstream from AfrA, were required for pilus expression. AfrB was related to the usher protein PefC of Salmonella typhimurium plasmid-encoded fimbriae, and AfrC was related to PefD, a chaperone protein. AfrD and AfrE, encoded downstream from AfrC, were not necessary for the expression of AF/R1 pili but were required for ileal adherence as assayed by ileal brush border aggregation. Thus, the adhesive subunit of the AF/R1 pilus is distinct from the structural subunit, as is the case for Pap pili and type 1 pili. AfrD was related to FedE of the F18 fimbrial operon of the E. coli strain that causes edema disease in pigs. AfrE was a novel protein. AfrR and AfrS are encoded upstream from AfrA, in the opposite orientation. AfrR is related to the AraC family of transcriptional regulators, and AfrR and AfrS interact to function in a novel mode of transcriptional activation of afrA. AF/R1 pili mediate the adherence to Peyer’s patch M cells, ileal mucosa, and colonic mucosa in a rabbit model of diarrhea caused by enteropathogenic E. coli. Our observations will facilitate the further study of the phenomena of M-cell adherence. PMID:10225886

  17. Distribution and Phylogeny of Immunoglobulin-Binding Protein G in Shiga Toxin-Producing Escherichia coli and Its Association with Adherence Phenotypes▿

    PubMed Central

    Merkel, Viktor; Ohder, Barbara; Bielaszewska, Martina; Zhang, Wenlan; Fruth, Angelika; Menge, Christian; Borrmann, Erika; Middendorf, Barbara; Müthing, Johannes; Karch, Helge; Mellmann, Alexander

    2010-01-01

    eibG in Shiga toxin-producing Escherichia coli (STEC) O91 encodes a protein (EibG) which binds human immunoglobulins G and A and contributes to bacterial chain-like adherence to human epithelial cells. We investigated the prevalence of eibG among STEC, the phylogeny of eibG, and eibG allelic variations and their impact on the adherence phenotype. eibG was found in 15.0% of 240 eae-negative STEC strains but in none of 157 eae-positive STEC strains. The 36 eibG-positive STEC strains belonged to 14 serotypes and to eight multilocus sequence types (STs), with serotype O91:H14/H− and ST33 being the most common. Sequences of the complete eibG gene (1,527 bp in size) from eibG-positive STEC resulted in 21 different alleles with 88.11% to 100% identity to the previously reported eibG sequence; they clustered into three eibG subtypes (eibG-α, eibG-β, and eibG-γ). Strains expressing EibG-α and EibG-β displayed a mostly typical chain-like adherence pattern (CLAP), with formation of long chains on both human and bovine intestinal epithelial cells, whereas strains with EibG-γ adhered in short chains, a pattern we termed atypical CLAP. The same adherence phenotypes were displayed by E. coli BL21(DE3) clones containing the respective eibG-α, eibG-β, and eibG-γ subtypes. We propose two possible evolutionary scenarios for eibG in STEC: a clonal development of eibG in strains with the same phylogenetic background or horizontal transfer of eibG between phylogenetically unrelated STEC strains. PMID:20547747

  18. Reduction of Escherichia coli adherence to uroepithelial bladder cells after consumption of cranberry juice: a double-blind randomized placebo-controlled cross-over trial.

    PubMed

    Di Martino, P; Agniel, R; David, K; Templer, C; Gaillard, J L; Denys, P; Botto, H

    2006-02-01

    To determine the efficacy of the consumption of cranberry juice versus placebo with regard to the presence of in vitro bacterial anti-adherence activity in the urine of healthy volunteers. Twenty healthy volunteers, 10 men and 10 women, were included. The study was a double-blind, randomized, placebo-controlled, and cross-over study. In addition to normal diet, each volunteer received at dinner a single dose of 750 ml of a total drink composed of: (1) 250 ml of the placebo and 500 ml of mineral water, or (2) 750 ml of the placebo, or (3) 250 ml of the cranberry juice and 500 ml of mineral water, or (4) 750 ml of the cranberry juice. Each volunteer took the four regimens successively in a randomly order, with a washout period of at least 6 days between every change in regimen. The first urine of the morning following cranberry or placebo consumption was collected and used to support bacterial growth. Six uropathogenic Escherichia coli strains (all expressing type 1 pili; three positive for the gene marker for P-fimbriae papC and three negative for papC), previously isolated from patients with symptomatic urinary tract infections, were grown in urine samples and tested for their ability to adhere to the T24 bladder cell line in vitro. There were no significant differences in the pH or specific gravity between the urine samples collected after cranberry or placebo consumption. We observed a dose dependent significant decrease in bacterial adherence associated with cranberry consumption. Adherence inhibition was observed independently from the presence of genes encoding type P pili and antibiotic resistance phenotypes. Cranberry juice consumption provides significant anti-adherence activity against different E. coli uropathogenic strains in the urine compared with placebo. PMID:16397814

  19. Escherichia coli O157:H7 Strains That Persist in Feedlot Cattle Are Genetically Related and Demonstrate an Enhanced Ability To Adhere to Intestinal Epithelial Cells ▿

    PubMed Central

    Carlson, Brandon A.; Nightingale, Kendra K.; Mason, Gary L.; Ruby, John R.; Choat, W. Travis; Loneragan, Guy H.; Smith, Gary C.; Sofos, John N.; Belk, Keith E.

    2009-01-01

    A longitudinal study was conducted to investigate the nature of Escherichia coli O157:H7 colonization of feedlot cattle over the final 100 to 110 days of finishing. Rectal fecal grab samples were collected from an initial sample population of 788 steers every 20 to 22 days and microbiologically analyzed to detect E. coli O157:H7. The identities of presumptive colonies were confirmed using a multiplex PCR assay that screened for gene fragments unique to E. coli O157:H7 (rfbE and fliCh7) and other key virulence genes (eae, stx1, and stx2). Animals were classified as having persistent shedding (PS), transient shedding (TS), or nonshedding (NS) status if they consecutively shed the same E. coli O157:H7 genotype (based on the multiplex PCR profile), exhibited variable E. coli O157 shedding, or never shed morphologically typical E. coli O157, respectively. Overall, 1.0% and 1.4% of steers were classified as PS and NS animals, respectively. Characterization of 132 E. coli O157:H7 isolates from PS and TS animals by pulsed-field gel electrophoresis (PFGE) typing yielded 32 unique PFGE types. One predominant PFGE type accounted for 53% of all isolates characterized and persisted in cattle throughout the study. Isolates belonging to this predominant and persistent PFGE type demonstrated an enhanced (P < 0.0001) ability to adhere to Caco-2 human intestinal epithelial cells compared to isolates belonging to less common PFGE types but exhibited equal virulence expression. Interestingly, the attachment efficacy decreased as the genetic divergence from the predominant and persistent subtype increased. Our data support the hypothesis that certain E. coli O157:H7 strains persist in feedlot cattle, which may be partially explained by an enhanced ability to colonize the intestinal epithelium. PMID:19617387

  20. Pathogenic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli, a member of the Enterobacteriaceae family, is a part of the normal flora of the intestinal tract of humans and a variety of animals. E. coli strains are classified on the basis of antigenic differences in two surface components (serotyping), the somatic antigen (O) of the lipopoly...

  1. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  2. Point Mutations in FimH Adhesin of Crohn's Disease-Associated Adherent-Invasive Escherichia coli Enhance Intestinal Inflammatory Response

    PubMed Central

    Dreux, Nicolas; Denizot, Jérémy; Martinez-Medina, Margarita; Mellmann, Alexander; Billig, Maria; Kisiela, Dagmara; Chattopadhyay, Sujay; Sokurenko, Evgeni; Neut, Christel; Gower-Rousseau, Corinne; Colombel, Jean-Frédéric; Bonnet, Richard; Darfeuille-Michaud, Arlette; Barnich, Nicolas

    2013-01-01

    Adherent-invasive Escherichia coli (AIEC) are abnormally predominant on Crohn's disease (CD) ileal mucosa. AIEC reference strain LF82 adheres to ileal enterocytes via the common type 1 pili adhesin FimH and recognizes CEACAM6 receptors abnormally expressed on CD ileal epithelial cells. The fimH genes of 45 AIEC and 47 non-AIEC strains were sequenced. The phylogenetic tree based on fimH DNA sequences indicated that AIEC strains predominantly express FimH with amino acid mutations of a recent evolutionary origin - a typical signature of pathoadaptive changes of bacterial pathogens. Point mutations in FimH, some of a unique AIEC-associated nature, confer AIEC bacteria a significantly higher ability to adhere to CEACAM-expressing T84 intestinal epithelial cells. Moreover, in the LF82 strain, the replacement of fimHLF82 (expressing FimH with an AIEC-associated mutation) with fimHK12 (expressing FimH of commensal E. coli K12) decreased the ability of bacteria to persist and to induce severe colitis and gut inflammation in infected CEABAC10 transgenic mice expressing human CEACAM receptors. Our results highlight a mechanism of AIEC virulence evolution that involves selection of amino acid mutations in the common bacterial traits, such as FimH protein, and leads to the development of chronic inflammatory bowel disease (IBD) in a genetically susceptible host. The analysis of fimH SNPs may be a useful method to predict the potential virulence of E. coli isolated from IBD patients for diagnostic or epidemiological studies and to identify new strategies for therapeutic intervention to block the interaction between AIEC and gut mucosa in the early stages of IBD. PMID:23358328

  3. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli

    PubMed Central

    Saldaña, Zeus; Xicohtencatl-Cortes, Juan; Avelino, Fabiola; Phillips, Alan D.; Kaper, James B.; Puente, José L.; Girón, Jorge A.

    2009-01-01

    Summary Curli are adhesive fimbriae of Escherichia coli and Salmonella enterica. Expression of curli (csgA) and cellulose (bcsA) is co-activated by the transcriptional activator CsgD. In this study, we investigated the contribution of curli and cellulose to the adhesive properties of enterohemorragic (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) O127:H6. While single mutations in csgA, csgD, or bcsA in EPEC and EHEC had no dramatic effect on cell adherence, double csgAbcsA mutants were significantly less adherent than the single mutants or wild-type strains to human colonic HT-29 epithelial cells or to cow colon tissue in vitro. Over-expression of csgD (carried on plasmid pCP994) in a csgD mutant, but not in the single csgA or bscA mutants, led to significant increase in adherence and biofilm formation in EPEC and EHEC, suggesting that synchronized over-production of curli and cellulose enhances bacterial adherence. In line with this finding, csgD transcription was activated significantly in the presence of cultured epithelial cells as compared to growth in tissue culture medium. Analysis of the influence of virulence and global regulators in the production of curli in EPEC identified Fis (factor for inversion stimulation) as a, heretofore unrecognized, negative transcriptional regulator of csgA expression. An EPEC E2348/69Δfis produced abundant amounts of curli whereas a double fiscsgD mutant yielded no detectable curli production. Our data suggest that curli and cellulose act in concert to favor host colonization, biofilm formation, and survival in different environments. PMID:19187284

  4. Pathogenic Escherichia coli.

    PubMed

    Kaper, James B; Nataro, James P; Mobley, Harry L

    2004-02-01

    Few microorganisms are as versatile as Escherichia coli. An important member of the normal intestinal microflora of humans and other mammals, E. coli has also been widely exploited as a cloning host in recombinant DNA technology. But E. coli is more than just a laboratory workhorse or harmless intestinal inhabitant; it can also be a highly versatile, and frequently deadly, pathogen. Several different E. coli strains cause diverse intestinal and extraintestinal diseases by means of virulence factors that affect a wide range of cellular processes. PMID:15040260

  5. Enterotoxigenic Escherichia coli CS6 gene products and their roles in CS6 structural protein assembly and cellular adherence.

    PubMed

    Wajima, Takeaki; Sabui, Subrata; Fukumoto, Megumi; Kano, Shigeyuki; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar; Hamabata, Takashi

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) produces a variety of colonization factors necessary for attachment to the host cell, among which CS6 is one of the most prevalent in ETEC isolates from developing countries. The CS6 operon is composed of 4 genes, cssA, cssB, cssC, and cssD. The molecular mechanism of CS6 assembly and cell surface presentation, and the contribution of each protein to the attachment of the bacterium to intestinal cells remain unclear. In the present study, a series of css gene-deletion mutants of the CS6 operon were constructed in the ETEC genetic background, and their effect on adhesion to host cells and CS6 assembly was studied. Each subunit deletion resulted in a reduction in the adhesion to intestinal cells to the same level of laboratory E. coli strains, and this effect was restored by complementary plasmids, suggesting that the 4 proteins are necessary for CS6 expression. Bacterial cell fractionation and western blotting of the mutant strains suggested that the formation of a CssA-CssB-CssC complex is necessary for recognition by CssD and transport of CssA-CssB to the outer membrane as a colonization factor. PMID:21729748

  6. Escherichia coli O157 adherence to the bovine recto-anal junction (RAJ) squamous epithelial cells is mediated by adhesins other than those encoded by genes on the Locus of Enterocyte Attachment (LEE) pathogenicity island

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157 (O157) persist in the gastrointestinal tracts (GIT) of bovine reservoirs primarily by adhering to the mucocutaneous, recto-anal junction (RAJ), comprising of both follicle-associated-epithelial (FAE) cells proximally and stratified squamous epithelial (RSE) cells distally. Whe...

  7. Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer membrane protein.

    PubMed Central

    Elsinghorst, E A; Weitz, J A

    1994-01-01

    Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human colon and ileocecum. Two separate loci (tia and tib) that direct noninvasive E. coli HB101 to adhere to and invade intestinal epithelial cells have previously been cosmid cloned from ETEC H10407. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cellular fractions from tib-positive HB101 shows that the tib locus directs the synthesis of a 104-kDa outer membrane protein (the TibA protein). The tib locus was subcloned to a maximum of 6.7 kb and mutagenized with transposon Tn5. Production of TibA was directly correlated with the capacity of the subclones and Tn5 mutants to invade and adhere to epithelial cells, suggesting that TibA was required for these phenotypes. The position and direction of transcription of the tibA gene were identified by complementation and in vivo T7 RNA polymerase-promoter induction experiments. The role of the tib locus in epithelial cell invasion was confirmed by the construction of chromosomal deletion derivatives in H10407. These deletion mutants invaded epithelial cells at about 15% of the parental level and were fully complemented by plasmids bearing the tib locus. The size and function of the TibA protein are similar to those of invasin from Yersinia pseudotuberculosis (103 kDa). However, a tib probe did not hybridize with the gene encoding invasin. Hybridization analyses of genomic DNA from a wide variety of pathogenic and nonpathogenic bacteria, including Salmonella, Shigella, Yersinia, and Escherichia species, indicate that the tib locus is unique to specific ETEC strains. Images PMID:8039917

  8. Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer membrane protein.

    PubMed

    Elsinghorst, E A; Weitz, J A

    1994-08-01

    Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human colon and ileocecum. Two separate loci (tia and tib) that direct noninvasive E. coli HB101 to adhere to and invade intestinal epithelial cells have previously been cosmid cloned from ETEC H10407. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cellular fractions from tib-positive HB101 shows that the tib locus directs the synthesis of a 104-kDa outer membrane protein (the TibA protein). The tib locus was subcloned to a maximum of 6.7 kb and mutagenized with transposon Tn5. Production of TibA was directly correlated with the capacity of the subclones and Tn5 mutants to invade and adhere to epithelial cells, suggesting that TibA was required for these phenotypes. The position and direction of transcription of the tibA gene were identified by complementation and in vivo T7 RNA polymerase-promoter induction experiments. The role of the tib locus in epithelial cell invasion was confirmed by the construction of chromosomal deletion derivatives in H10407. These deletion mutants invaded epithelial cells at about 15% of the parental level and were fully complemented by plasmids bearing the tib locus. The size and function of the TibA protein are similar to those of invasin from Yersinia pseudotuberculosis (103 kDa). However, a tib probe did not hybridize with the gene encoding invasin. Hybridization analyses of genomic DNA from a wide variety of pathogenic and nonpathogenic bacteria, including Salmonella, Shigella, Yersinia, and Escherichia species, indicate that the tib locus is unique to specific ETEC strains. PMID:8039917

  9. Clinical implications of enteroadherent Escherichia coli.

    PubMed

    Arenas-Hernández, Margarita M P; Martínez-Laguna, Ygnacio; Torres, Alfredo G

    2012-10-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including nonintimate adherence mediated by various adhesins. These so called "enteroadherent E. coli" categories subsequently produce toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  10. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  11. Surfactant protein D inhibits adherence of uropathogenic Escherichia coli to the bladder epithelial cells and the bacterium-induced cytotoxicity: a possible function in urinary tract.

    PubMed

    Kurimura, Yuichiro; Nishitani, Chiaki; Ariki, Shigeru; Saito, Atsushi; Hasegawa, Yoshihiro; Takahashi, Motoko; Hashimoto, Jiro; Takahashi, Satoshi; Tsukamoto, Taiji; Kuroki, Yoshio

    2012-11-16

    The adherence of uropathogenic Escherichia coli (UPEC) to the host urothelial surface is the first step for establishing UPEC infection. Uroplakin Ia (UPIa), a glycoprotein expressed on bladder urothelium, serves as a receptor for FimH, a lectin located at bacterial pili, and their interaction initiates UPEC infection. Surfactant protein D (SP-D) is known to be expressed on mucosal surfaces in various tissues besides the lung. However, the functions of SP-D in the non-pulmonary tissues are poorly understood. The purposes of this study were to investigate the possible function of SP-D expressed in the bladder urothelium and the mechanisms by which SP-D functions. SP-D was expressed in human bladder mucosa, and its mRNA was increased in the bladder of the UPEC infection model in mice. SP-D directly bound to UPEC and strongly agglutinated them in a Ca(2+)-dependent manner. Co-incubation of SP-D with UPEC decreased the bacterial adherence to 5637 cells, the human bladder cell line, and the UPEC-induced cytotoxicity. In addition, preincubation of SP-D with 5637 cells resulted in the decreased adherence of UPEC to the cells and in a reduced number of cells injured by UPEC. SP-D directly bound to UPIa and competed with FimH for UPIa binding. Consistent with the in vitro data, the exogenous administration of SP-D inhibited UPEC adherence to the bladder and dampened UPEC-induced inflammation in mice. These results support the conclusion that SP-D can protect the bladder urothelium against UPEC infection and suggest a possible function of SP-D in urinary tract. PMID:23012359

  12. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  13. Escherichia coli K88ac fimbriae expressing heat-labile and heat-stable (STa) toxin epitopes elicit antibodies that neutralize cholera toxin and STa toxin and inhibit adherence of K88ac fimbrial E. coli.

    PubMed

    Zhang, Chengxian; Zhang, Weiping

    2010-12-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Bacterial adhesins and heat-labile (LT) and heat-stable (ST) enterotoxins are the virulence determinants in ETEC diarrhea. It is believed that vaccines inducing anti-adhesin immunity to inhibit bacterial adherence and anti-toxin immunity to eliminate toxin activity would provide broad-spectrum protection against ETEC. In this study, an ETEC fimbrial adhesin was used as a platform to express LT and STa for adhesin-toxin fusion antigens to induce anti-toxin and anti-adhesin immunity. An epitope from the B subunit of LT toxin (LTP1, (8)LCSEYRNTQIYTIN(21)) and an STa toxoid epitope ((5)CCELCCNPQCAGCY(18)) were embedded in the FaeG major subunit of E. coli K88ac fimbriae. Constructed K88ac-toxin chimeric fimbriae were harvested and used for rabbit immunization. Immunized rabbits developed anti-K88ac, anti-LT, and anti-STa antibodies. Moreover, induced antibodies not only inhibited adherence of K88ac fimbrial E. coli to porcine small intestinal enterocytes but also neutralized cholera toxin and STa toxin. Data from this study demonstrated that K88ac fimbriae expressing LT and STa epitope antigens elicited neutralizing anti-toxin antibodies and anti-adhesin antibodies and suggested that E. coli fimbriae could serve as a platform for the development of broad-spectrum vaccines against ETEC. PMID:20980482

  14. HtrA stress protein is involved in intramacrophagic replication of adherent and invasive Escherichia coli strain LF82 isolated from a patient with Crohn's disease.

    PubMed

    Bringer, Marie-Agnès; Barnich, Nicolas; Glasser, Anne-Lise; Bardot, Olivier; Darfeuille-Michaud, Arlette

    2005-02-01

    Adherent and invasive Escherichia coli (AIEC) bacteria isolated from Crohn's disease patients are able to greatly replicate within macrophages without escaping from the phagosome and without inducing macrophage death. In the present study, evidence is provided that in AIEC strain LF82 the htrA gene encoding the stress protein HtrA is essential for intracellular replication within J774-A1 macrophages. Deletion of the htrA gene in strain LF82 induced increased sensitivity of the isogenic mutant to oxidative stress caused by hydrogen peroxide and a reduced rate of growth in an acid and nutrient-poor medium partly reproducing the microenvironment of the phagosome. In vitro experiments using an LF82 htrA gene promoter fusion with the lacZ gene revealed a 38-fold activation of the promoter in AIEC LF82 intramacrophagic bacteria. The CpxRA two-component signaling pathway was not involved in this activation. In addition, the activation of the LF82 htrA gene promoter was not observed in the nonpathogenic E. coli K-12 intramacrophagic bacteria, indicating that the AIEC LF82 genetic background is crucial for induction of htrA gene transcription during phagocytosis. PMID:15664909

  15. Antibodies Directed against Shiga-Toxin Producing Escherichia coli Serotype O103 Type III Secreted Proteins Block Adherence of Heterologous STEC Serotypes to HEp-2 Cells

    PubMed Central

    Desin, Taseen S.; Townsend, Hugh G.; Potter, Andrew A.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) serotype O103 is a zoonotic pathogen that is capable of causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. The main animal reservoir for STEC is ruminants and hence reducing the levels of this pathogen in cattle could ultimately lower the risk of STEC infection in humans. During the process of infection, STECO103 uses a Type III Secretion System (T3SS) to secrete effector proteins (T3SPs) that result in the formation of attaching and effacing (A/E) lesions. Vaccination of cattle with STEC serotype O157 T3SPs has previously been shown to be effective in reducing shedding of STECO157 in a serotype-specific manner. In this study, we tested the ability of rabbit polyclonal sera against individual STECO103 T3SPs to block adherence of the organism to HEp-2 cells. Our results demonstrate that pooled sera against EspA, EspB, EspF, NleA and Tir significantly lowered the adherence of STECO103 relative to pre-immune sera. Likewise, pooled anti-STECO103 sera were also able to block adherence by STECO157. Vaccination of mice with STECO103 recombinant proteins induced strong IgG antibody responses against EspA, EspB, NleA and Tir but not against EspF. However, the vaccine did not affect fecal shedding of STECO103 compared to the PBS vaccinated group over the duration of the experiment. Cross reactivity studies using sera against STECO103 recombinant proteins revealed a high degree of cross reactivity with STECO26 and STECO111 proteins implying that sera against STECO103 proteins could potentially provide neutralization of attachment to epithelial cells by heterologous STEC serotypes. PMID:26451946

  16. Antibodies Directed against Shiga-Toxin Producing Escherichia coli Serotype O103 Type III Secreted Proteins Block Adherence of Heterologous STEC Serotypes to HEp-2 Cells.

    PubMed

    Desin, Taseen S; Townsend, Hugh G; Potter, Andrew A

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) serotype O103 is a zoonotic pathogen that is capable of causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. The main animal reservoir for STEC is ruminants and hence reducing the levels of this pathogen in cattle could ultimately lower the risk of STEC infection in humans. During the process of infection, STECO103 uses a Type III Secretion System (T3SS) to secrete effector proteins (T3SPs) that result in the formation of attaching and effacing (A/E) lesions. Vaccination of cattle with STEC serotype O157 T3SPs has previously been shown to be effective in reducing shedding of STECO157 in a serotype-specific manner. In this study, we tested the ability of rabbit polyclonal sera against individual STECO103 T3SPs to block adherence of the organism to HEp-2 cells. Our results demonstrate that pooled sera against EspA, EspB, EspF, NleA and Tir significantly lowered the adherence of STECO103 relative to pre-immune sera. Likewise, pooled anti-STECO103 sera were also able to block adherence by STECO157. Vaccination of mice with STECO103 recombinant proteins induced strong IgG antibody responses against EspA, EspB, NleA and Tir but not against EspF. However, the vaccine did not affect fecal shedding of STECO103 compared to the PBS vaccinated group over the duration of the experiment. Cross reactivity studies using sera against STECO103 recombinant proteins revealed a high degree of cross reactivity with STECO26 and STECO111 proteins implying that sera against STECO103 proteins could potentially provide neutralization of attachment to epithelial cells by heterologous STEC serotypes. PMID:26451946

  17. Mortality in kittens is associated with a shift in ileum mucosa-associated enterococci from Enterococcus hirae to biofilm-forming Enterococcus faecalis and adherent Escherichia coli.

    PubMed

    Ghosh, Anuradha; Borst, Luke; Stauffer, Stephen H; Suyemoto, Mitsu; Moisan, Peter; Zurek, Ludek; Gookin, Jody L

    2013-11-01

    Approximately 15% of foster kittens die before 8 weeks of age, with most of these kittens demonstrating clinical signs or postmortem evidence of enteritis. While a specific cause of enteritis is not determined in most cases, these kittens are often empirically administered probiotics that contain enterococci. The enterococci are members of the commensal intestinal microbiota but also can function as opportunistic pathogens. Given the complicated role of enterococci in health and disease, it would be valuable to better understand what constitutes a "healthy" enterococcal community in these kittens and how this microbiota is impacted by severe illness. In this study, we characterized the ileum mucosa-associated enterococcal community of 50 apparently healthy and 50 terminally ill foster kittens. In healthy kittens, Enterococcus hirae was the most common species of ileum mucosa-associated enterococci and was often observed to adhere extensively to the small intestinal epithelium. These E. hirae isolates generally lacked virulence traits. In contrast, non-E. hirae enterococci, notably Enterococcus faecalis, were more commonly isolated from the ileum mucosa of kittens with terminal illness. Isolates of E. faecalis had numerous virulence traits and multiple antimicrobial resistances. Moreover, the attachment of Escherichia coli to the intestinal epithelium was significantly associated with terminal illness and was not observed in any kitten with adherent E. hirae. These findings identify a significant difference in the species of enterococci cultured from the ileum mucosa of kittens with terminal illness compared to the species cultured from healthy kittens. In contrast to prior case studies that associated enteroadherent E. hirae with diarrhea in young animals, these controlled studies identified E. hirae as more often isolated from healthy kittens and adherence of E. hirae as more common and extensive in healthy kittens than in sick kittens. PMID:23966487

  18. Mortality in Kittens Is Associated with a Shift in Ileum Mucosa-Associated Enterococci from Enterococcus hirae to Biofilm-Forming Enterococcus faecalis and Adherent Escherichia coli

    PubMed Central

    Ghosh, Anuradha; Borst, Luke; Stauffer, Stephen H.; Suyemoto, Mitsu; Moisan, Peter; Zurek, Ludek

    2013-01-01

    Approximately 15% of foster kittens die before 8 weeks of age, with most of these kittens demonstrating clinical signs or postmortem evidence of enteritis. While a specific cause of enteritis is not determined in most cases, these kittens are often empirically administered probiotics that contain enterococci. The enterococci are members of the commensal intestinal microbiota but also can function as opportunistic pathogens. Given the complicated role of enterococci in health and disease, it would be valuable to better understand what constitutes a “healthy” enterococcal community in these kittens and how this microbiota is impacted by severe illness. In this study, we characterized the ileum mucosa-associated enterococcal community of 50 apparently healthy and 50 terminally ill foster kittens. In healthy kittens, Enterococcus hirae was the most common species of ileum mucosa-associated enterococci and was often observed to adhere extensively to the small intestinal epithelium. These E. hirae isolates generally lacked virulence traits. In contrast, non-E. hirae enterococci, notably Enterococcus faecalis, were more commonly isolated from the ileum mucosa of kittens with terminal illness. Isolates of E. faecalis had numerous virulence traits and multiple antimicrobial resistances. Moreover, the attachment of Escherichia coli to the intestinal epithelium was significantly associated with terminal illness and was not observed in any kitten with adherent E. hirae. These findings identify a significant difference in the species of enterococci cultured from the ileum mucosa of kittens with terminal illness compared to the species cultured from healthy kittens. In contrast to prior case studies that associated enteroadherent E. hirae with diarrhea in young animals, these controlled studies identified E. hirae as more often isolated from healthy kittens and adherence of E. hirae as more common and extensive in healthy kittens than in sick kittens. PMID:23966487

  19. Recurrent Escherichia coli bacteremia.

    PubMed Central

    Maslow, J N; Mulligan, M E; Arbeit, R D

    1994-01-01

    Escherichia coli is the most common gram-negative organism associated with bacteremia. While recurrent E. coli urinary tract infections are well-described, recurrent E. coli bacteremia appears to be uncommon, with no episodes noted in multiple series of patients with gram-negative bacteremias. We report on 5 patients with recurrent bloodstream infections identified from a series of 163 patients with E. coli bacteremia. For each patient, the isolates from each episode were analyzed by pulsed-field gel electrophoresis (PFGE) and ribotyping and for the presence of E. coli virulence factors. For each of four patients, the index and recurrent episodes of bacteremia represented the same strain as defined by PFGE, and the strains were found to carry one or more virulence factors. The remaining patient, with two episodes of bloodstream infection separated by a 4-year interval, was infected with two isolates that did not carry any virulence factors and that were clonally related by ribotype analysis but differed by PFGE. All five patients had either a local host defense defect (three patients) or impaired systemic defenses (one patient) or both (one patient). Thus, recurrent E. coli bacteremia is likely to represent a multifactorial process that occurs in patients with impaired host defenses who are infected with virulent isolates. Images PMID:7910828

  20. The Escherichia coli O157:H7 cattle immunoproteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine rectoanal junction squamous epithelial (RSE) cells.

    PubMed

    Kudva, Indira T; Krastins, Bryan; Torres, Alfredo G; Griffin, Robert W; Sheng, Haiqing; Sarracino, David A; Hovde, Carolyn J; Calderwood, Stephen B; John, Manohar

    2015-06-01

    Building on previous studies, we defined the repertoire of proteins comprising the immunoproteome (IP) of Escherichia coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (O157 IP), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called "proteomics-based expression library screening" (PELS; Kudva et al., 2006). The E. coli O157 IP (O157-IP) comprised 91 proteins, and included those identified previously using proteomics-based expression library screening, and also proteins comprising DMEM and bovine rumen fluid proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured HEp-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine rectoanal junction squamous epithelial cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to rectoanal junction squamous epithelial cells, and additionally implicate a possible role for the outer membrane protein A regulator, TdcA, in the expression of such adhesins. Our observations have implications for the development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract. PMID:25643951

  1. Production of the Escherichia coli Common Pilus by Uropathogenic E. coli Is Associated with Adherence to HeLa and HTB-4 Cells and Invasion of Mouse Bladder Urothelium

    PubMed Central

    Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370

  2. Infection strategies of enteric pathogenic Escherichia coli

    PubMed Central

    Clements, Abigail; Young, Joanna C.; Constantinou, Nicholas; Frankel, Gad

    2012-01-01

    Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection. PMID:22555463

  3. Development of Heptylmannoside-Based Glycoconjugate Antiadhesive Compounds against Adherent-Invasive Escherichia coli Bacteria Associated with Crohn’s Disease

    PubMed Central

    Sivignon, Adeline; Yan, Xibo; Alvarez Dorta, Dimitri; Bonnet, Richard; Bouckaert, Julie; Fleury, Etienne; Bernard, Julien; Gouin, Sébastien G.; Darfeuille-Michaud, Arlette

    2015-01-01

    ABSTRACT The ileal lesions of Crohn’s disease (CD) patients are colonized by adherent-invasive Escherichia coli (AIEC) bacteria. These bacteria adhere to mannose residues expressed by CEACAM6 on host cells in a type 1 pilus-dependent manner. In this study, we investigated different antagonists of FimH, the adhesin of type 1 pili, for their ability to block AIEC adhesion to intestinal epithelial cells (IEC). Monovalent and multivalent derivatives of n-heptyl α-d-mannoside (HM), a nanomolar antagonist of FimH, were tested in vitro in IEC infected with the AIEC LF82 strain and in vivo by oral administration to CEACAM6-expressing mice infected with LF82 bacteria. In vitro, multivalent derivatives were more potent than the monovalent derivatives, with a gain of efficacy superior to their valencies, probably owing to their ability to form bacterial aggregates. Of note, HM and the multi-HM glycoconjugates exhibited lower efficacy in vivo in decreasing LF82 gut colonization. Interestingly, HM analogues functionalized with an isopropylamide (1A-HM) or β-cyclodextrin pharmacophore at the end of the heptyl tail (1CD-HM) exerted beneficial effects in vivo. These two compounds strongly decreased the amount of LF82 bacteria in the feces of mice and that of bacteria associated with the gut mucosa when administered orally at a dose of 10 mg/kg of body weight after infection. Importantly, signs of colitis and intestinal inflammation induced by LF82 infection were also prevented. These results highlight the potential of the antiadhesive compounds to treat CD patients abnormally colonized by AIEC bacteria and point to an alternative to the current approach focusing on blocking proinflammatory mediators. PMID:26578673

  4. Increased S-Nitrosylation and Proteasomal Degradation of Caspase-3 during Infection Contribute to the Persistence of Adherent Invasive Escherichia coli (AIEC) in Immune Cells

    PubMed Central

    Dunne, Karl A.; Allam, Amr; McIntosh, Anne; Houston, Stephanie A.; Cerovic, Vuk; Goodyear, Carl S.; Roe, Andrew J.; Beatson, Scott A.; Milling, Simon W.; Walker, Daniel; Wall, Daniel M.

    2013-01-01

    Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn’s disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients. PMID:23861899

  5. The Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages.

    PubMed

    Bringer, Marie-Agnès; Glasser, Anne-Lise; Tung, Ching-Hsuan; Méresse, Stéphane; Darfeuille-Michaud, Arlette

    2006-03-01

    Adherent-invasive Escherichia coli (AIEC) bacteria isolated from Crohn's disease patients are able to extensively replicate within macrophages in large vacuoles. The mechanism by which AIEC bacteria survive within phagocytic cells is unknown. This report describes the maturation of AIEC LF82-containing phagosomes within J774 macrophages. LF82-containing phagosomes traffic through the endocytic pathway as shown by the sequential acquisition and loss of EEA1 and Rab7 and by accumulation of Lamp-1, Lamp-2 and cathepsin D. We demonstrated that AIEC LF82-containing phagosomes mature into active phagolysosomes where bacteria are exposed to low pH and to the degradative activity of cathepsin D. Finally, we showed that an acidic environment is necessary for replication of AIEC LF82 bacteria within J774 macrophages. Thus, evidence is provided that AIEC LF82 bacteria do not escape from the endocytic pathway but undergo normal interaction with host endomembrane organelles and replicate within acidic and cathepsin D-positive vacuolar phagolysosomes. PMID:16469058

  6. Increased Rate of Apoptosis and Diminished Phagocytic Ability of Human Neutrophils Infected with Afa/Dr Diffusely Adhering Escherichia coli Strains

    PubMed Central

    Brest, Patrick; Bétis, Frédéric; Çuburu, Nicolas; Selva, Eric; Herrant, Magali; Servin, Alain; Auberger, Patrick; Hofman, Paul

    2004-01-01

    The proinflammatory effect of Afa/Dr diffusely adhering Escherichia coli (Afa/Dr DAEC) strains have been recently demonstrated in vitro by showing that polymorphonuclear leukocyte (PMN) transepithelial migration is induced after bacterial colonization of apical intestinal monolayers. The effect of Afa/Dr DAEC-PMN interaction on PMN behavior has been not investigated. Because of the putative virulence mechanism of PMN apoptosis during infectious diseases and taking into account the high level of expression of the decay-accelerating factor (DAF, or CD55), the receptor of Afa/Dr DAEC on PMNs, we sought to determine whether infection of PMNs by Afa/Dr DAEC strains could promote cell apoptosis. We looked at the behavior of PMNs incubated with Afa/Dr DAEC strains once they had transmigrated across polarized monolayers of intestinal (T84) cells. Infection of PMNs by Afa/Dr DAEC strains induced PMN apoptosis characterized by morphological nuclear changes, DNA fragmentation, caspase activation, and a high level of annexin V expression. However, transmigrated and nontransmigrated PMNs incubated with Afa/Dr DAEC strains showed similar elevated global caspase activities. PMN apoptosis depended on their agglutination, induced by Afa/Dr DAEC, and was still observed after preincubation of PMNs with anti-CD55 and/or anti-CD66 antibodies. Low levels of phagocytosis of Afa/Dr DAEC strains were observed both in nontransmigrated and in transmigrated PMNs compared to that observed with the control E. coli DH5α strain. Taken together, these data strongly suggest that interaction of Afa/Dr DAEC with PMNs may increase the bacterial virulence both by inducing PMN apoptosis through an agglutination process and by diminishing their phagocytic capacity. PMID:15385473

  7. Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli.

    PubMed

    Atassi, Fabrice; Brassart, Dominique; Grob, Philipp; Graf, Federico; Servin, Alain L

    2006-04-01

    The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372. In addition, we observed that adhering Lactobacillus strains inhibited adhesion of E. coli IH11128 onto HeLa cells, and inhibited internalization of E. coli IH11128 within HeLa cells. PMID:16553843

  8. Genetic relatedness and virulence properties of enteropathogenic Escherichia coli strains of serotype O119:H6 expressing localized adherence or localized and aggregative adherence-like patterns on HeLa cells.

    PubMed

    Garcia, Bruna G; Ooka, Tadasuke; Gotoh, Yasuhiro; Vieira, Mônica A M; Yamamoto, Denise; Ogura, Yoshitoshi; Girão, Dennys M; Sampaio, Suely C F; Melo, Alexis Bonfim; Irino, Kinue; Hayashi, Tetsuya; Gomes, Tânia A T

    2016-05-01

    Enteropathogenic Escherichia coli (EPEC) induce attaching and effacing (A/E) lesions in enterocytes and produce the bundle-forming pilus (BFP) contributing to the localized adherence (LA) pattern formation on HeLa cells. Enteroaggregative E. coli (EAEC) produce aggregative adherence (AA) on HeLa cells and form prominent biofilms. The ability to produce LA or AA is an important hallmark to classify fecal E. coli isolates as EPEC or EAEC, respectively. E. coli strains of serotype O119:H6 exhibit an LA+ phenotype and have been considered as comprising a clonal group of EPEC strains. However, we have recently identified O119:H6 EPEC strains that produce LA and an AA-like pattern concurrently (LA/AA-like+). In this study, we evaluated the relatedness of three LA/AA-like+ and three LA+ O119:H6 strains by comparing their virulence and genotypic properties. We first found that the LA/AA-like+ strains induced actin accumulation in HeLa cells (indicative of A/E lesions formation) and formed biofilms on abiotic surfaces more efficiently than the LA+ strains. MLST analysis showed that the six strains all belong to the ST28 complex. All strains carried multiple plasmids, but as plasmid profiles were highly variable, this cannot be used to differentiate LA/AA-like+ and LA+ strains. We further obtained their draft genome sequences and the complete sequences of four plasmids harbored by one LA/AA-like+ strain. Analysis of these sequences and comparison with 37 fully sequenced E. coli genomes revealed that both O119:H6 groups belong to the E. coli phylogroup B2 and are very closely related with only 58-67 SNPs found between LA/AA-like+ and LA+ strains. Search of the draft sequences of the six strains for adhesion-related genes known in EAEC and other E. coli pathotypes detected no genes specifically present in LA/AA-like+ strains. Unexpectedly however, we found that a large plasmid distinct from pEAF is responsible for the AA-like phenotype of the LA/AA-like+ strains. Although we

  9. Carrageenan Gum and Adherent Invasive Escherichia coli in a Piglet Model of Inflammatory Bowel Disease: Impact on Intestinal Mucosa-associated Microbiota.

    PubMed

    Munyaka, Peris M; Sepehri, Shadi; Ghia, Jean-Eric; Khafipour, Ehsan

    2016-01-01

    Inflammatory bowel diseases (IBD) including Crohn's disease (CD), and ulcerative colitis (UC), are chronic conditions characterized by chronic intestinal inflammation. Adherent invasive Escherichia coli (AIEC) pathotype has been increasingly implicated in the etiopathogenesis of IBD. In a 21-day study, we investigated the effects of AIEC strain UM146 inoculation on microbiota profile of the ileal, cecal, ascending and descending colon in a pig model of experimental colitis. Carrageenan gum (CG) was used to induce colitis in weaner piglets whereas AIEC strain UM146 previously isolated from a CD patient was included to investigate a cause or consequence effect in IBD. Treatments were: (1) control; (2) CG; (3) AIEC strain UM146; and (4) CG+UM146. Pigs in groups 2 and 4 received 1% CG in drinking water from day 1 of the study while pigs in groups 3 and 4 were inoculated with UM146 on day 8. Following euthanization on day 21, tissue mucosal scrapings were collected and used for DNA extraction. The V4 region of bacterial 16S rRNA gene was then subjected to Illumina sequencing. Microbial diversity, composition, and the predicted functional metagenome were determined in addition to short chain fatty acids profiles in the digesta and inflammatory cytokines in the intestinal tissue. CG-induced colitis decreased bacterial species richness and shifted community composition. At the phylum level, an increase in Proteobacteria and Deferribacteres and a decrease in Firmicutes, Actinobacteria, and Bacteroidetes were observed in CG and CGUM146 compared to control and UM146. The metabolic capacity of the microbiome was also altered in CG and CGUM146 compared to UM146 and control in the colon. We demonstrated that CG resulted in bacterial dysbiosis and shifted community composition similar to what has been previously observed in IBD patients. However, AIEC strain UM146 alone did not cause any clear changes compared to CG or control in our experimental IBD pig model. PMID:27092122

  10. Pathogenesis of Human Diffusely Adhering Escherichia coli Expressing Afa/Dr Adhesins (Afa/Dr DAEC): Current Insights and Future Challenges

    PubMed Central

    2014-01-01

    SUMMARY The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as “silent pathogens” with the capacity to emerge as “pathobionts” for the development of inflammatory bowel disease and intestinal carcinogenesis. PMID:25278576

  11. Carrageenan Gum and Adherent Invasive Escherichia coli in a Piglet Model of Inflammatory Bowel Disease: Impact on Intestinal Mucosa-associated Microbiota

    PubMed Central

    Munyaka, Peris M.; Sepehri, Shadi; Ghia, Jean-Eric; Khafipour, Ehsan

    2016-01-01

    Inflammatory bowel diseases (IBD) including Crohn's disease (CD), and ulcerative colitis (UC), are chronic conditions characterized by chronic intestinal inflammation. Adherent invasive Escherichia coli (AIEC) pathotype has been increasingly implicated in the etiopathogenesis of IBD. In a 21-day study, we investigated the effects of AIEC strain UM146 inoculation on microbiota profile of the ileal, cecal, ascending and descending colon in a pig model of experimental colitis. Carrageenan gum (CG) was used to induce colitis in weaner piglets whereas AIEC strain UM146 previously isolated from a CD patient was included to investigate a cause or consequence effect in IBD. Treatments were: (1) control; (2) CG; (3) AIEC strain UM146; and (4) CG+UM146. Pigs in groups 2 and 4 received 1% CG in drinking water from day 1 of the study while pigs in groups 3 and 4 were inoculated with UM146 on day 8. Following euthanization on day 21, tissue mucosal scrapings were collected and used for DNA extraction. The V4 region of bacterial 16S rRNA gene was then subjected to Illumina sequencing. Microbial diversity, composition, and the predicted functional metagenome were determined in addition to short chain fatty acids profiles in the digesta and inflammatory cytokines in the intestinal tissue. CG-induced colitis decreased bacterial species richness and shifted community composition. At the phylum level, an increase in Proteobacteria and Deferribacteres and a decrease in Firmicutes, Actinobacteria, and Bacteroidetes were observed in CG and CGUM146 compared to control and UM146. The metabolic capacity of the microbiome was also altered in CG and CGUM146 compared to UM146 and control in the colon. We demonstrated that CG resulted in bacterial dysbiosis and shifted community composition similar to what has been previously observed in IBD patients. However, AIEC strain UM146 alone did not cause any clear changes compared to CG or control in our experimental IBD pig model. PMID:27092122

  12. CARD15 variants determine a disturbed early response of monocytes to adherent-invasive Escherichia coli strain LF82 in Crohn's disease.

    PubMed

    Peeters, H; Bogaert, S; Laukens, D; Rottiers, P; De Keyser, Filip; Darfeuille-Michaud, A; Glasser, A-L; Elewaut, D; De Vos, M

    2007-06-01

    Caspase activation and recruitment domain 15 (CARD15) and Toll-like receptor 4 (TLR4) are respectively intracellular and membrane-bound receptors for bacterial cell wall components [respectively muramyl dipeptide (MDP) and lipopolysaccharide (LPS)]. Polymorphisms in CARD15 and TLR4 have been linked with Crohn's disease (CD). Adherent-invasive Escherichia coli (AIEC) strains with particular adhesion and invasion characteristics have been specifically associated with CD ileal mucosa. The aim of this study was to investigate the functional impact of these polymorphisms on monocytes in patients with CD, in response to MDP, LPS and AIEC strain LF82. Monocytes were isolated from 40 patients with CD using magnetic cell sorting, stimulated with LPS or MDP or infected with AIEC. IL-1beta, IL-6, IL-8, IL-10, IL-12 and tumour necrosis factor alpha induction was assessed using quantitative real time-polymerase chain reaction, Cytometric Bead Array and ELISA. Bacterial intracellular survival and replication was assessed using a gentamicin protection assay. Results were linked with the presence of CARD15 and TLR4 polymorphisms. Monocytes of patients with CARD15 polymorphisms showed an early reduced cytokine response (IL-1beta, IL-6 and IL-10) to infection with AIEC, which was restored after 20 h. A gene-dose effect was seen, comparing wild-types, heterozygotes and homozygotes. We found no differences in intracellular survival and replication of AIEC. Heterozygous carriage of TLR4 polymorphisms did not influence monocyte response. In conclusion, patients with CD carrying CARD15 polymorphisms show a disturbed early inflammatory monocyte response after infection with AIEC strain LF82. For the first time, a functional defect was detected in single heterozygous carriers. These findings reflect the potential role of a genetically altered host response to disease-related bacteria in the pathogenesis of CD. PMID:17504508

  13. Both enzymatic and non-enzymatic properties of heat-labile enterotoxin are responsible for LT-enhanced adherence of enterotoxigenic Escherichia coli to porcine IPEC-J2 cells.

    PubMed

    Fekete, Peter Z; Mateo, Kristina S; Zhang, Weiping; Moxley, Rodney A; Kaushik, Radhey S; Francis, David H

    2013-06-28

    Previous studies in piglets indicate that heat labile enterotoxin (LT) expression enhances intestinal colonization by K88 adhesin-producing enterotoxigenic Escherichia coli (ETEC) as wild-type ETEC adhered to intestinal epithelium in substantially greater numbers than did non-toxigenic constructs. Enzymatic activity of the toxin was also shown to contribute to the adhesion of ETEC and non-ETEC bacteria to epithelial cells in culture. To further characterize the contribution of LT to host cell adhesion, a nontoxigenic, K88-producing E. coli was transformed with either the gene encoding for LT holotoxin, a catalytically-attenuated form of the toxin [LT(R192G)], or LTB subunits, and resultant changes in bacterial adherence to IPEC-J2 porcine intestinal epithelial cells were measured. Strains expressing LT holotoxin or mutants were able to adhere in significantly higher numbers to IPEC-J2 cells than was an isogenic, toxin-negative construct. LT+ strains were also able to significantly block binding of a wild-type LT+ ETEC strain to IPEC-J2 cells. Adherence of isogenic strains to IPEC-J2 cells was unaltered by cycloheximide treatment, suggesting that LT enhances ETEC adherence to IPEC-J2 cells independent of host cell protein synthesis. However, pretreating IPEC-J2 cells with LT promoted adherence of negatively charged latex beads (a surrogate for bacteria which carry a negative change), which adherence was inhibited by cycloheximide, suggesting LT may induce a change in epithelial cell membrane potential. Overall, these data suggest that LT may enhance ETEC adherence by promoting an association between LTB and epithelial cells, and by altering the surface charge of the host plasma membrane to promote non-specific adherence. PMID:23517763

  14. Vaccination with DNA Encoding Truncated Enterohemorrhagic Escherichia coli (EHEC) Factor for Adherence-1 Gene (efa-1′) Confers Protective Immunity to Mice Infected with E. coli O157:H7

    PubMed Central

    Riquelme-Neira, Roberto; Rivera, Alejandra; Sáez, Darwin; Fernández, Pablo; Osorio, Gonzalo; del Canto, Felipe; Salazar, Juan C.; Vidal, Roberto M.; Oñate, Angel

    2016-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1′) in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1′ gene (pVAXefa-1′) into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1′, EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1′ have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle. PMID:26835434

  15. Vaccination with DNA Encoding Truncated Enterohemorrhagic Escherichia coli (EHEC) Factor for Adherence-1 Gene (efa-1') Confers Protective Immunity to Mice Infected with E. coli O157:H7.

    PubMed

    Riquelme-Neira, Roberto; Rivera, Alejandra; Sáez, Darwin; Fernández, Pablo; Osorio, Gonzalo; del Canto, Felipe; Salazar, Juan C; Vidal, Roberto M; Oñate, Angel

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1') in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1' gene (pVAXefa-1') into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1', EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1' have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle. PMID:26835434

  16. Adhesion behaviors of Escherichia coli on hydroxyapatite.

    PubMed

    Kamitakahara, Masanobu; Takahashi, Shohei; Yokoi, Taishi; Inoue, Chihiro; Ioku, Koji

    2016-04-01

    Optimum design of support materials for microorganisms is required for the construction of bioreactors. However, the effects of support materials on microorganisms are still unclear. In this study, we investigated the adhesion behavior of Escherichia coli (E. coli) on hydroxyapatite (HA), polyurethane (PU), poly(vinyl chloride) (PVC), and carbon (Carbon) to obtain basic knowledge for the design of support materials. The total metabolic activity and number of E. coli adhering on the samples followed the order of HA ≈ Carbon>PVC>PU. On the other hand, the water contact angle of the pellet surfaces followed the order of HAcoli. The results implied that HA has a potential as a support material for microorganisms used in bioreactors. PMID:26838837

  17. Escherichia coli K88ac Fimbriae Expressing Heat-Labile and Heat-Stable (STa) Toxin Epitopes Elicit Antibodies That Neutralize Cholera Toxin and STa Toxin and Inhibit Adherence of K88ac Fimbrial E. coli▿

    PubMed Central

    Zhang, Chengxian; Zhang, Weiping

    2010-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Bacterial adhesins and heat-labile (LT) and heat-stable (ST) enterotoxins are the virulence determinants in ETEC diarrhea. It is believed that vaccines inducing anti-adhesin immunity to inhibit bacterial adherence and anti-toxin immunity to eliminate toxin activity would provide broad-spectrum protection against ETEC. In this study, an ETEC fimbrial adhesin was used as a platform to express LT and STa for adhesin-toxin fusion antigens to induce anti-toxin and anti-adhesin immunity. An epitope from the B subunit of LT toxin (LTP1, 8LCSEYRNTQIYTIN21) and an STa toxoid epitope (5CCELCCNPQCAGCY18) were embedded in the FaeG major subunit of E. coli K88ac fimbriae. Constructed K88ac-toxin chimeric fimbriae were harvested and used for rabbit immunization. Immunized rabbits developed anti-K88ac, anti-LT, and anti-STa antibodies. Moreover, induced antibodies not only inhibited adherence of K88ac fimbrial E. coli to porcine small intestinal enterocytes but also neutralized cholera toxin and STa toxin. Data from this study demonstrated that K88ac fimbriae expressing LT and STa epitope antigens elicited neutralizing anti-toxin antibodies and anti-adhesin antibodies and suggested that E. coli fimbriae could serve as a platform for the development of broad-spectrum vaccines against ETEC. PMID:20980482

  18. Mechanisms of Emerging Diarrheagenic Escherichia coli Infection.

    PubMed

    Khan, Mohammed A.; Steiner, Ted S.

    2002-04-01

    Diarrheagenic Escherichia coli organisms are major causes of morbidity and mortality worldwide. Although most strains of E. coli are harmless commensals, a few types have emerged that are capable of disrupting the normal physiology of the human gut, producing illness ranging from watery diarrhea to fatal hemorrhagic colitis. Diarrheagenic E. coli cause infection by a variety of complex mechanisms, some of which are incompletely understood. These include adherence, elaboration of toxigenic mediators, invasion of the intestinal mucosa, and transportation of bacterial proteins into the host cells. Specific components of the host-microbial interaction that cause damage have been identified, increasing our understanding of the mechanisms of diarrhea. This article reviews some of the recent findings about the pathogenesis and infectious processes involved in three emerging pathotypes of this fascinating gram-negative bacterium. PMID:11927041

  19. EXTRAINTESTINAL PATHOGENIC ESCHERICHIA COLI (EXPEC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extraintestinal pathogenic Escherichia coli (ExPEC) possess virulence traits that allow them to invade, colonize, and induce disease in bodily sites outside of the gastrointestinal tract. Human diseases caused by ExPEC include urinary tract infections, neonatal meningitis, sepsis, pneumonia, surgic...

  20. Multiepitope fusion antigen induces broadly protective antibodies that prevent adherence of Escherichia coli strains expressing colonization factor antigen I (CFA/I), CFA/II, and CFA/IV.

    PubMed

    Ruan, Xiaosai; Knudsen, David E; Wollenberg, Katie M; Sack, David A; Zhang, Weiping

    2014-02-01

    Diarrhea is the second leading cause of death in children younger than 5 years and continues to be a major threat to global health. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacteria causing diarrhea in developing countries. ETEC strains are able to attach to host small intestinal epithelial cells by using bacterial colonization factor antigen (CFA) adhesins. This attachment helps to initiate the diarrheal disease. Vaccines that induce antiadhesin immunity to block adherence of ETEC strains that express immunologically heterogeneous CFA adhesins are expected to protect against ETEC diarrhea. In this study, we created a CFA multiepitope fusion antigen (MEFA) carrying representative epitopes of CFA/I, CFA/II (CS1, CS2, and CS3), and CFA/IV (CS4, CS5, and CS6), examined its immunogenicity in mice, and assessed the potential of this MEFA as an antiadhesin vaccine against ETEC. Mice intraperitoneally immunized with this CFA MEFA exhibited no adverse effects and developed immune responses to CFA/I, CFA/II, and CFA/IV adhesins. Moreover, after incubation with serum of the immunized mice, ETEC or E. coli strains expressing CFA/I, CFA/II, or CFA/IV adhesins were significantly inhibited in adherence to Caco-2 cells. Our results indicated this CFA MEFA elicited antibodies that not only cross-reacted to CFA/I, CFA/II and CFA/IV adhesins but also broadly inhibited adherence of E. coli strains expressing these seven adhesins and suggested that this CFA MEFA could be a candidate to induce broad-spectrum antiadhesin protection against ETEC diarrhea. Additionally, this antigen construction approach (creating an MEFA) may be generally used in vaccine development against heterogenic pathogens. PMID:24351757

  1. Shiga Toxin Producing Escherichia coli.

    PubMed

    Bryan, Allen; Youngster, Ilan; McAdam, Alexander J

    2015-06-01

    Shiga toxin-producing Escherichia coli (STEC) is among the common causes of foodborne gastroenteritis. STEC is defined by the production of specific toxins, but within this pathotype there is a diverse group of organisms. This diversity has important consequences for understanding the pathogenesis of the organism, as well as for selecting the optimum strategy for diagnostic testing in the clinical laboratory. This review includes discussions of the mechanisms of pathogenesis, the range of manifestations of infection, and the several different methods of laboratory detection of Shiga toxin-producing E coli. PMID:26004641

  2. The oxidoreductase DsbA plays a key role in the ability of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing.

    PubMed

    Bringer, Marie-Agnès; Rolhion, Nathalie; Glasser, Anne-Lise; Darfeuille-Michaud, Arlette

    2007-07-01

    Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-DeltadsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-DeltadsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes. PMID:17449627

  3. Regulation of Biofilm Formation in Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 encodes a variety of genetic factors for adherence to epithelial cells and to abiotic surfaces. While adherence to epithelial cells culminates in the formation of characteristic attaching and effacing (A/E) lesions, adherence to abiotic surfaces represents a prelude to the f...

  4. Inverse relationship between heat stable enterotoxin-b induced fluid accumulation and adherence of F4ac-positive enterotoxigenic Escherichia coli in ligated jejunal loops of F4ab/ac fimbria receptor-positive swine.

    PubMed

    Erume, Joseph; Wijemanne, Prageeth; Berberov, Emil M; Kachman, Stephen D; Oestmann, Daniel J; Francis, David H; Moxley, Rodney A

    2013-01-25

    Heat-labile enterotoxin (LT) produced by enterotoxigenic Escherichia coli (ETEC) increases bacterial adherence to porcine enterocytes in vitro and enhances small intestinal colonization in swine. Heat-stable enterotoxin-b (STb) is not known to affect colonization; however, through an induction of net fluid accumulation it might reduce bacterial adherence. The relationship between fluid accumulation and bacterial adherence in jejunal loops inoculated with ETEC strains that produce LT, STb, both, or neither toxin was studied. Ligated jejunal loops were constructed in weaned Yorkshire pigs in two independent experiments (Exp. 1, n=5, 8-week-old; Exp. 2, n=6, 6-8-week-old). Each pig was inoculated with six F4ac(+)E. coli strains: (1) LT(+), STb(+) parent (WAM2317); (2) STb(-) (ΔestB) mutant (MUN297); (3) MUN297 complemented with STb (MUN298); (4) LT(-) STb(-) (ΔeltAB ΔestB) mutant (MUN300); (5) MUN300 complemented with LT (MUN301); and (6) 1836-2 (non-enterotoxigenic, wild-type). Pigs were confirmed to be K88 (F4)ab/ac receptor-positive in Exp. 2 by testing for intestinal mucin-type glycoproteins and inferred to be receptor-positive in both Exp. 1 and 2 based on histopathologic evidence of bacterial adherence. Strains that produced STb induced marked fluid accumulation with the response (ml/cm) to WAM2317 and MUN298 significantly greater than that to the other strains (P<0.0001). Conversely, bacterial adherence scores based on immunohistochemistry and CFU/g of washed mucosa were both lowest in the strains that expressed STb and highest in those that did not. For the two experiments combined, the Pearson correlation coefficient (R) between fluid volume (ml/cm) and log CFU per gram was -0.57021 (P<0.0001); R(2)=0.3521 (n=197). These results support the hypothesis that enterotoxin-induced fluid accumulation flushes progeny organisms into the lumen of the bowel, thereby increasing the likelihood of fecal shedding and transmission of the pathogen to new hosts. PMID

  5. The Escherichia coli O157:H7 cattle immunoproteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine rectoanal junction squamous epithelial (RSE) cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Building on previous studies, we defined the repertoire of proteins comprising the antigenome of Escherichia coli (E. coli) O157 cultured in Dulbecco's Modified Eagles Medium (DMEM) supplemented with norepinephrine (NE; O157 protein-antigenome), a beta-adrenergic hormone that regulates E. coli O157 ...

  6. Screening the ability of natural feed ingredients to interfere with the adherence of enterotoxigenic Escherichia coli (ETEC) K88 to the porcine intestinal mucus.

    PubMed

    González-Ortiz, Gemma; Pérez, José Francisco; Hermes, Rafael Gustavo; Molist, Francesc; Jiménez-Díaz, Rufino; Martín-Orúe, Susana María

    2014-02-01

    The inhibition of the attachment of bacteria to the intestine by receptor analogues could be a novel approach to prevent enterotoxigenic Escherichia coli (ETEC) K88-induced diarrhoea in piglets. The objective of the present study was to screen the ability of different feed ingredients (FI) to bind to ETEC K88 (adhesion test, AT) and to block its attachment to the porcine intestinal mucus (blocking test, BT) using in vitro microtitration-based models. In the AT, wheat bran (WB), casein glycomacropeptide (CGMP) and exopolysaccharides exhibited the highest adhesion to ETEC K88 (P< 0·001). In the BT, WB, CGMP and locust bean (LB) reduced the number of ETEC K88 attached to the intestinal mucus (P< 0·001). For WB and LB, fractionation based on their carbohydrate components was subsequently carried out, and each fraction was evaluated individually. None of the WB fractions reduced the adhesion of ETEC K88 to the mucus as did the original extract, suggesting that a protein or glycoprotein could be involved in the recognition process. With regard to the LB fractions, the water-extractable material reduced the adhesion of ETEC K88 (P< 0·001) to the mucus similar to the original extract (P< 0·001), indicating, in this case, that galactomannans or phenolic compounds could be responsible for the recognition process. In conclusion, among the FI screened, the soluble extracts obtained from WB, LB and CGMP exhibited the highest anti-adhesive properties against ETEC K88 in the BT. These results suggest that they may be good candidates to be included in diets of weaned piglets for the prevention of ETEC K88-induced diarrhoea. PMID:24047890

  7. SEROLOGICAL CROSS-REACTIONS BETWEEN ESCHERICHIA COLI 0157 AND OTHER SPECIES OF THE GENUS ESCHERICHIA

    EPA Science Inventory

    Escherichia hermannii, a sorbitol-negative species of the genus Escherichia, has been reported to be agglutinated by Escherichia coli 0157 and four sorbitol-negative species of the genus Escherichia: . hermannii (24 isolates), Escherichia fergusonii (12 isolates), Escherichia vul...

  8. The Biology of the Escherichia coli Extracellular Matrix

    PubMed Central

    Hufnagel, David A.; DePas, William H.; Chapman, Matthew R.

    2015-01-01

    Chapter Summary Escherichia coli (E. coli) is one of the world’s best-characterized organisms, as it has been extensively studied for over a century. However, most of this work has focused on E. coli grown under laboratory conditions that do not faithfully simulate its natural environments. Therefore, the historical perspectives on E. coli physiology and life cycle are somewhat skewed toward experimental systems that feature E. coli growing logarithmically in a test tube. Typically a commensal bacterium, E. coli resides in the lower intestines of a slew of animals. Outside of the lower intestine, E. coli can adapt and survive in a very different set of environmental conditions. Biofilm formation allows E. coli to survive, and even thrive, in environments that do not support the growth of planktonic populations. E. coli can form biofilms virtually everywhere; in the bladder during a urinary tract infection, on in-dwelling medical devices, and outside of the host on plants and in the soil. The E. coli extracellular matrix, primarily composed of the protein polymer named curli and the polysaccharide cellulose, promotes adherence to organic and inorganic surfaces, and resistance to desiccation, the host immune system and other antimicrobials. The pathways that govern E. coli biofilm formation, cellulose production, and curli biogenesis will be discussed in this book chapter, which concludes with insights into the future of E. coli biofilm research and potential therapies. PMID:26185090

  9. Comparative Analysis of Super-Shedder Strains of Escherichia coli O157:H7 Reveals Distinctive Genomic Features and a Strongly Aggregative Adherent Phenotype on Bovine Rectoanal Junction Squamous Epithelial Cells

    PubMed Central

    Cote, Rebecca; Katani, Robab; Moreau, Matthew R.; Kudva, Indira T.; Arthur, Terrance M.; DebRoy, Chitrita; Mwangi, Michael M.; Albert, Istvan; Raygoza Garay, Juan Antonio; Li, Lingling; Brandl, Maria T.; Carter, Michelle Q.; Kapur, Vivek

    2015-01-01

    Shiga toxin-producing Escherichia coli O157:H7 (O157) are significant foodborne pathogens and pose a serious threat to public health worldwide. The major reservoirs of O157 are asymptomatic cattle which harbor the organism in the terminal recto-anal junction (RAJ). Some colonized animals, referred to as “super-shedders” (SS), are known to shed O157 in exceptionally large numbers (>104 CFU/g of feces). Recent studies suggest that SS cattle play a major role in the prevalence and transmission of O157, but little is known about the molecular mechanisms associated with super-shedding. Whole genome sequence analysis of an SS O157 strain (SS17) revealed a genome of 5,523,849 bp chromosome with 5,430 open reading frames and two plasmids, pO157 and pSS17, of 94,645 bp and 37,446 bp, respectively. Comparative analyses showed that SS17 is clustered with spinach-associated O157 outbreak strains, and belongs to the lineage I/II, clade 8, D group, and genotype 1, a subgroup of O157 with predicted hyper-virulence. A large number of non-synonymous SNPs and other polymorphisms were identified in SS17 as compared with other O157 strains (EC4115, EDL933, Sakai, TW14359), including in key adherence- and virulence-related loci. Phenotypic analyses revealed a distinctive and strongly adherent aggregative phenotype of SS17 on bovine RAJ stratified squamous epithelial (RSE) cells that was conserved amongst other SS isolates. Molecular genetic and functional analyses of defined mutants of SS17 suggested that the strongly adherent aggregative phenotype amongst SS isolates is LEE-independent, and likely results from a novel mechanism. Taken together, our study provides a rational framework for investigating the molecular mechanisms associated with SS, and strong evidence that SS O157 isolates have distinctive features and use a LEE-independent mechanism for hyper-adherence to bovine rectal epithelial cells. PMID:25664460

  10. Nonchemotactic Mutants of Escherichia coli

    PubMed Central

    Armstrong, John B.; Adler, Julius; Dahl, Margaret M.

    1967-01-01

    We have isolated 40 mutants of Escherichia coli which are nonchemotactic as judged by their failure to swarm on semisolid tryptone plates or to make bands in capillary tubes containing tryptone broth. All the mutants have normal flagella, a fact shown by their shape and reaction with antiflagella serum. All are fully motile under the microscope and all are sensitive to the phage chi. Unlike its parent, one of the mutants, studied in greater detail, failed to show chemotaxis toward oxygen, glucose, serine, threonine, or aspartic acid. The failure to exhibit chemotaxis does not result from a failure to use the chemicals. The swimming of this mutant was shown to be random. The growth rate was normal under several conditions, and the growth requirements were unchanged. Images PMID:5335897

  11. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence.

    PubMed

    Kennedy, Nicole M; Mukherjee, Nabanita; Banerjee, Pratik

    2016-07-01

    Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level. PMID:27357048

  12. Peptidoglycan Hydrolases of Escherichia coli

    PubMed Central

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  13. The Probiotic Escherichia coli Nissle 1917 Reduces Pathogen Invasion and Modulates Cytokine Expression in Caco-2 Cells Infected with Crohn's Disease-Associated E. coli LF82 ▿

    PubMed Central

    Huebner, Claudia; Ding, Yaoyao; Petermann, Ivonne; Knapp, Christoph; Ferguson, Lynnette R.

    2011-01-01

    Increased numbers of adherent invasive Escherichia coli (AIEC) have been found in Crohn's disease (CD) patients. In this report, we investigate the potential of the probiotic Escherichia coli Nissle 1917 (EcN) to reduce features associated with AIEC pathogenicity in an already established infection with AIEC reference strain LF82. PMID:21317252

  14. The Escherichia coli O157:H7 cattle immuno-proteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine recto-anal junction squamous epithelial (RSE) cells

    PubMed Central

    Kudva, Indira T.; Krastins, Bryan; Torres, Alfredo G.; Griffin, Robert W.; Sheng, Haiqing; Sarracino, David A.; Hovde, Carolyn J.; Calderwood, Stephen B.; John, Manohar

    2015-01-01

    SUMMARY Building on previous studies, we defined the repertoire of proteins comprising the immuno-proteome of E. coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (NE; O157 immuno-proteome), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called Proteomics-based Expression Library Screening (PELS; Kudva et al., 2006). The E. coli O157 immuno-proteome (O157-IP) comprised 91 proteins, and included those identified previously using PELS, and also proteins comprising DMEM- and bovine rumen fluid- proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured Hep-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine recto-anal junction squamous epithelial (RSE) cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to RSE-cells, and additionally implicate a possible role for the OmpA regulator, TdcA, in the expression of such adhesins. Our observations have implications for development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract. PMID:25643951

  15. Adhesion, biofilm and genotypic characteristics of antimicrobial resistant Escherichia coli isolates

    PubMed Central

    Cergole-Novella, Maria C.; Pignatari, Antonio C.C.; Guth, Beatriz E.C.

    2015-01-01

    Aggregative adherence to human epithelial cells, most to renal proximal tubular (HK-2) cells, and biofilm formation was identified among antimicrobial resistant Escherichia coli strains mainly isolated from bacteremia. The importance of these virulence properties contributing to host colonization and infection associated with multiresistant E. coli should not be neglected. PMID:26221104

  16. Structure of Escherichia coli tryptophanase.

    PubMed

    Ku, Shao Yang; Yip, Patrick; Howell, P Lynne

    2006-07-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the alpha-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the alpha-proton of the substrate for beta-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal. PMID:16790938

  17. Structure of Escherichia Coli Tryptophanase

    SciTech Connect

    Ku,S.; Yip, P.; Howell, P.

    2006-01-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the {alpha}-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the {alpha}-proton of the substrate for {beta}-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  18. The different ecological niches of enterotoxigenic Escherichia coli.

    PubMed

    Gonzales-Siles, Lucia; Sjöling, Åsa

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) is a water and food-borne pathogen that infects the small intestine of the human gut and causes diarrhoea. Enterotoxigenic E. coli adheres to the epithelium by means of colonization factors and secretes two enterotoxins, the heat labile toxin and/or the heat stable toxin that both deregulate ion channels and cause secretory diarrhoea. Enterotoxigenic E. coli as all E. coli, is a versatile organism able to survive and grow in different environments. During transmission and infection, ETEC is exposed to various environmental cues that have an impact on survivability and virulence. The ability to cope with exposure to different stressful habitats is probably shaping the pool of virulent ETEC strains that cause both endemic and epidemic infections. This review will focus on the ecology of ETEC in its different habitats and interactions with other organisms as well as abiotic factors. PMID:26522129

  19. Succinate production in Escherichia coli

    PubMed Central

    Thakker, Chandresh; Martínez, Irene; San, Ka-Yiu; Bennett, George N.

    2012-01-01

    Succinate has been recognized as an important platform chemical that can be produced from biomass. While a number of organisms are capable of succinate production naturally, this review focuses on the engineering of Escherichia coli for production of the four-carbon dicarboxylic acid. Important features of a succinate production system are to achieve optimal balance of reducing equivalents generated by consumption of the feedstock, while maximizing the amount of carbon that is channeled to the product. Aerobic and anaerobic production strains have been developed and applied to production from glucose as well as other abundant carbon sources. Metabolic engineering methods and strain evolution have been used and supplemented by the recent application of systems biology and in silico modeling tools to construct optimal production strains. The metabolic capacity of the production strain, as well as the requirement for efficient recovery of succinate and the reliability of the performance under scale-up are important in the overall process. The costs of the overall biorefinery compatible process will determine the economical commercialization of succinate and its impact in larger chemical markets. PMID:21932253

  20. Dihydropteridine reductase from Escherichia coli.

    PubMed Central

    Vasudevan, S G; Shaw, D C; Armarego, W L

    1988-01-01

    A dihydropteridine reductase from Escherichia coli was purified to apparent homogeneity. It is a dimeric enzyme with identical subunits (Mr 27000) and a free N-terminal group. It can use NADH (Vmax./Km 3.36 s-1) and NADPH (Vmax./Km 1.07 s-1) when 6-methyldihydro-(6H)-pterin is the second substrate, as well as quinonoid dihydro-(6H)-biopterin (Vmax./Km 0.69 s-1), dihydro-(6H)-neopterin (Vmax./Km 0.58 s-1), dihydro-(6H)-monapterin 0.66 s-1), 6-methyldihydro-(6H)-pterin and cis-6,7-dimethyldihydro-(6H)-pterin (Vmax./Km 0.66 s-1) when NADH is the second substrate. The pure reductase has a yellow colour and contains bound FAD. The enzyme also has pterin-independent NADH and NADPH oxidoreductase activities when potassium ferricyanide is the electron acceptor. Images Fig. 2. PMID:3060113

  1. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  2. Strategies for Protein Overproduction in Escherichia coli.

    ERIC Educational Resources Information Center

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  3. First step in using molecular data for microbial food safety risk assessment; hazard identification of Escherichia coli O157:H7 by coupling genomic data with in vitro adherence to human epithelial cells

    PubMed Central

    Pielaat, Annemarie; Boer, Martin P.; Wijnands, Lucas M.; van Hoek, Angela H.A.M.; Bouw, El; Barker, Gary C.; Teunis, Peter F.M.; Aarts, Henk J.M.; Franz, Eelco

    2015-01-01

    The potential for using whole genome sequencing (WGS) data in microbiological risk assessment (MRA) has been discussed on several occasions since the beginning of this century. Still, the proposed heuristic approaches have never been applied in a practical framework. This is due to the non-trivial problem of mapping microbial information consisting of thousands of loci onto a probabilistic scale for risks. The paradigm change for MRA involves translation of multidimensional microbial genotypic information to much reduced (integrated) phenotypic information and onwards to a single measure of human risk (i.e. probability of illness). In this paper a first approach in methodology development is described for the application of WGS data in MRA; this is supported by a practical example. That is, combining genetic data (single nucleotide polymorphisms; SNPs) for Shiga toxin-producing Escherichia coli (STEC) O157 with phenotypic data (in vitro adherence to epithelial cells as a proxy for virulence) leads to hazard identification in a Genome Wide Association Study (GWAS). This application revealed practical implications when using SNP data for MRA. These can be summarized by considering the following main issues: optimum sample size for valid inference on population level, correction for population structure, quantification and calibration of results, reproducibility of the analysis, links with epidemiological data, anchoring and integration of results into a systems biology approach for the translation of molecular studies to human health risk. Future developments in genetic data analysis for MRA should aim at resolving the mapping problem of processing genetic sequences to come to a quantitative description of risk. The development of a clustering scheme focusing on biologically relevant information of the microbe involved would be a useful approach in molecular data reduction for risk assessment. PMID:25910947

  4. Comparative analysis of super-shedder strains of Escherichia coli O157:H7 reveals distinctive genomic features and a strongly aggregative adherent phenotype on bovine rectoanal junction squamous epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli O157:H7 (O157) are significant foodborne pathogens and a serious threat to public health worldwide. The major reservoirs of O157 are asymptomatic cattle which harbor the organism in the terminal recto-anal junction (RAJ). Some colonized animals, referred to as ...

  5. Effects of subinhibitory concentrations of ciprofloxacin on enterotoxigenic Escherichia coli virulence factors.

    PubMed

    Oviedo, P; Quiroga, M; Pegels, E; Husulak, E; Vergara, M

    2000-12-01

    Eight enterotoxigenic Escherichia coli were studied with the aim of investigating the effect of subinhibitory concentrations of ciprofloxacin on their adherence properties and on the expression of thermolabile enterotoxin. Our data showed that the hydrophobicity on the bacterial cell surface, the hemagglutination properties, and thermolabile enterotoxin production were considerably reduced after treatment with subinhibitory concentrations of ciprofloxacin, suggesting that ciprofloxacin may be capable of decreasing adhesiveness and expression of the thermolabile toxin of enterotoxigenic Escherichia coli. In conclusion, our study supports the concept that subinhibitory concentrations of ciprofloxacin interfere with the process of host-parasite interactions such as adherence and toxin production. PMID:11154030

  6. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA

    PubMed Central

    Alrowais, Hind; McElheny, Christi L.; Spychala, Caressa N.; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A.

    2015-01-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase–producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described. PMID:26488485

  7. Escherichia Coli--Key to Modern Genetics.

    ERIC Educational Resources Information Center

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  8. Detection of O antigens in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipopolysaccharide on the surface of Escherichia coli constitute the O antigens, which are important virulence factors that are targets of both the innate and adaptive immune system and play a major role in host-pathogen interactions. O antigens that are responsible for antigenic specificity of the ...

  9. Escherichia coli and Sudden Infant Death Syndrome

    PubMed Central

    Bettelheim, Karl A.; Goldwater, Paul N.

    2015-01-01

    This review examines the association of strains of Escherichia coli with sudden infant death syndrome (SIDS) and the possible role these bacteria play in this enigmatic condition. The review addresses evidence for E. coli in SIDS infants, potential sources of E. coli in the environment, colonization by commensal and pathogenic strains, the variety of currently accepted pathotypes, and how these pathotypes could compromise intestinal integrity and induce inflammation. Both intestinal and extraintestinal pathotypes are compared in relation to the apparent liability in which virulence traits can be gained or lost by strains of E. coli. The way in which E. coli infections fit with current views on infant sleeping position and other SIDS risk factors is highlighted. PMID:26191064

  10. Mechanism of Sperm Immobilization by Escherichia coli

    PubMed Central

    Prabha, Vijay; Sandhu, Ravneet; Kaur, Siftjit; Kaur, Kiranjeet; Sarwal, Abha; Mavuduru, Ravimohan S.; Singh, Shravan Kumar

    2010-01-01

    Aim. To explore the influence of Escherichia coli on the motility of human spermatozoa and its possible mechanism. Methods. Highly motile preparations of spermatozoa from normozoospermic patients were coincubated with Escherichia coli for 4 hours. At 1, 2 and 4 hours of incubation, sperm motility was determined. The factor responsible for sperm immobilization without agglutination was isolated and purified from filtrates. Results. This report confirms the immobilization of spermatozoa by E. coli and demonstrates sperm immobilization factor (SIF) excreted by E. coli. Further this factor was purified by ammonium sulfate precipitation, gel permeation chromatography, and ion-exchange chromatography. Purified SIF (56 kDa) caused instant immobilization without agglutination of human spermatozoa at 800 μg/mL and death at 2.1 mg/mL. Spermatozoa incubated with SIF revealed multiple and profound alterations involving all superficial structures of spermatozoa as observed by scanning electron microscopy. Conclusion. In conclusion, these results have shown immobilization of spermatozoa by E. coli and demonstrate a factor (SIF) produced and secreted by E. coli which causes variable structural damage as probable morphological correlates of immobilization. PMID:20379358

  11. Diagnosisand Investigation of Diarrheagenic Escherichia coli.

    PubMed

    Nataro, J P; Martinez, J

    1998-01-01

    Although most Escherichia coli are harmless commensals of the human intestine, certain specific, highly-adapted E. coli strains are capable of causing urinary tract, systemic or enteric/diarrheagenic infection. Diarrheagenic E coli are divided into six distinct categories, or pathotypes, each with a distinct pathogenic scheme (Table 1). Combined, diarrheagenic E coli have emerged as perhaps the most important enteric pathogens of man. In the developing world, the E coli categories account for more cases of gastroenteiltis among infants than any other cause (1) In addition, E coli are also the most common cause of traveller's diarrhea, which afflicts more than one million travellers to the developing world annually (1). Enterohemorrhagic E coli (EHEC) are the cause of hemolytic uremic syndrome (HUS), which has become a major foodborne threat in many parts of the developed world (2). Table 1 Categories of Diarrheagenic E. coli Category Toxins Invasion Virulence plasmid Adhesin Clinical syndrome ETEC LT, ST - Many CFA/I, CFA/II, CFA/IV, others Watery diarrhea EPEC - + 60 MDa Bundle-forming pilus Watery diarrhea of infants EHEC SLT-1, SLT-2 - 60 MDa( a ) Intimin, Fimbriae( a ) Hemorrhagic colitis, HUS EAEC EAST1( a ) ? 65 MDa( a ) AAF/I, AAF/I Watery, persistent diarrhea EIEC EIET( a ) +++ 140 MDa Ipa's(?) Watery diarrhea, dysentery DAEC ? ? ? F1845( a ) Watery diarrhea ( a )Role in pathogenesis unproven. PMID:21390758

  12. Production and regulation of functional amyloid curli fimbriae by Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional amyloid, in the form of adhesive fimbrial proteins termed curli, was first described in Salmonella and Escherichia coli. Curli fibers adhere to various host cells and structural proteins, interact with components of the host immune system, and participate in biofilm formation. Shiga toxin...

  13. Proteomic analysis of Escherichia coli O157 for discovery of novel adhesins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cattle are primary reservoirs of the food borne human pathogen Escherichia coli O157 (O157). Given that the complement of factors contributing to O157 adherence to epithelial cells at the recto-anal junction and other intermittent anatomical sites along the bovine gastrointestinal trac...

  14. Escherichia coli in retail processed food.

    PubMed Central

    Pinegar, J. A.; Cooke, E. M.

    1985-01-01

    Four thousand two hundred and forty six samples of retail processed food were examined for the presence of Escherichia coli. Overall 12% of samples contained this organism, cakes and confectionery being more frequently contaminated (28%) than meat and meat based products (9%). Contamination was more frequent in the summer months than in the colder weather and 27% of the contaminated foods contained greater than 10(3) E. coli/g. E. coli from meat and meat based products were more commonly resistant to one or more antibiotics (14%) than were confectionery strains (1%). The significance of these findings in relation to the E. coli population of the human bowel is discussed. PMID:3894508

  15. Escherichia coli in retail processed food.

    PubMed

    Pinegar, J A; Cooke, E M

    1985-08-01

    Four thousand two hundred and forty six samples of retail processed food were examined for the presence of Escherichia coli. Overall 12% of samples contained this organism, cakes and confectionery being more frequently contaminated (28%) than meat and meat based products (9%). Contamination was more frequent in the summer months than in the colder weather and 27% of the contaminated foods contained greater than 10(3) E. coli/g. E. coli from meat and meat based products were more commonly resistant to one or more antibiotics (14%) than were confectionery strains (1%). The significance of these findings in relation to the E. coli population of the human bowel is discussed. PMID:3894508

  16. Escherichia coli bacteriuria and contraceptive method.

    PubMed

    Hooton, T M; Hillier, S; Johnson, C; Roberts, P L; Stamm, W E

    1991-01-01

    We evaluated the effects of contraceptive method on the occurrence of bacteriuria and vaginal colonization with Escherichia coli in 104 women who were evaluated prior to having sexual intercourse, the morning after intercourse, and 24 hours later. After intercourse, the prevalence of E coli bacteriuria increased slightly in oral contraceptive users but dramatically in both foam and condom users and diaphragm-spermicide users. Twenty-four hours later, the prevalence of bacteriuria remained significantly elevated only in the latter two groups. Similarly, vaginal colonization with E coli was more dramatic and persistent in users of diaphragm-spermicide and foam and condoms. Vaginal colonization with Candida species, enterococci, and staphylococci also increased significantly in diaphragm-spermicide users after intercourse. We conclude that use of the diaphragm with spermicidal jelly or use of a spermicidal foam with a condom markedly alters normal vaginal flora and strongly predisposes users to the development of vaginal colonization and bacteriuria with E coli. PMID:1859519

  17. FTIR nanobiosensors for Escherichia coli detection

    PubMed Central

    Greppi, Gianfranco; Marongiu, Maria Laura; Roggero, Pier Paolo; Ravindranath, Sandeep P; Mauer, Lisa J; Schibeci, Nicoletta; Perria, Francesco; Piccinini, Massimo; Innocenzi, Plinio; Irudayaraj, Joseph

    2012-01-01

    Summary Infections due to enterohaemorrhagic E. coli (Escherichia coli) have a low incidence but can have severe and sometimes fatal health consequences, and thus represent some of the most serious diseases due to the contamination of water and food. New, fast and simple devices that monitor these pathogens are necessary to improve the safety of our food supply chain. In this work we report on mesoporous titania thin-film substrates as sensors to detect E. coli O157:H7. Titania films treated with APTES ((3-aminopropyl)triethoxysilane) and GA (glutaraldehyde) were functionalized with specific antibodies and the absorption properties monitored. The film-based biosensors showed a detection limit for E. coli of 1 × 102 CFU/mL, constituting a simple and selective method for the effective screening of water samples. PMID:23019542

  18. Prevalence and diversity of enterotoxigenic Escherichia coli strains in fresh produce.

    PubMed

    Feng, Peter C H; Reddy, Shanker P

    2014-05-01

    Analysis of fresh produce showed that enterotoxigenic Escherichia coli (ETEC) strains are most often found in cilantro and parsley, with prevalence rates of approximately 0.3%. Some ETEC strains also carried Shiga toxigenic E. coli (STEC) genes but had no STEC adherence factors, which are essential to cause severe human illness. Most ETEC strains in produce carried stable toxin and/or labile toxin genes but belonged to unremarkable serotypes that have not been reported to have caused human illnesses. PMID:24780338

  19. Large plasmids of avian Escherichia coli isolates.

    PubMed

    Doetkott, D M; Nolan, L K; Giddings, C W; Berryhill, D L

    1996-01-01

    The plasmid DNA of 30 Escherichia coli isolates from chickens was extracted and examined using techniques designed to isolate large plasmids. This plasmid DNA was examined for the presence of certain known virulence-related genes including cvaC, traT, and some aerobactin-related sequences. Seventeen of the 30 isolates contained from one to four plasmids greater than 50 kb in size. Eleven of these 17 strains possessed plasmids greater than 100 kb in size. Therefore, E. coli isolates of chickens frequently contain large plasmids, and many of these plasmids are likely to contain virulence-related sequences. PMID:8980827

  20. Uropathogenic Escherichia coli-associated exotoxins

    PubMed Central

    Welch, Rodney A.

    2015-01-01

    Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and blood stream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many but not all of these strains are likely to aid the colonization and immune evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin, cytotoxic necrotizing factor-1 and the autotransporters, Sat, Pic and Vat to extraintestinal human disease. PMID:27337488

  1. Production of antibody fragments in Escherichia coli.

    PubMed

    Katsuda, Tomohisa; Sonoda, Hiroyuki; Kumada, Yoichi; Yamaji, Hideki

    2012-01-01

    Escherichia coli is a host widely used in the industrial production of recombinant proteins. However, the expression of heterologous proteins in E. coli often encounters the formation of inclusion bodies, which are insoluble and nonfunctional protein aggregates. For the successful production of antibody fragments, which includes single-chain variable fragments (scFvs), we describe here the modification of linker, signal, and Shine-Dalgarno (SD) sequences, the coexpression of cytoplasmic and periplasmic chaperones, and a method for fed-batch cultivation with exponential feed. PMID:22907360

  2. Uropathogenic Escherichia coli-Associated Exotoxins.

    PubMed

    Welch, Rodney A

    2016-06-01

    Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease. PMID:27337488

  3. Hydrogen production by recombinant Escherichia coli strains

    PubMed Central

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  4. Competitive exclusion of diarrheagenic Escherichia coli (ETEC) from human enterocyte-like Caco-2 cells by heat-killed Lactobacillus.

    PubMed

    Chauvière, G; Coconnier, M H; Kerneis, S; Darfeuille-Michaud, A; Joly, B; Servin, A L

    1992-03-15

    Diarrheagenic Escherichia coli (ETEC) bearing CFA/I or CFA/II adhesive factors specifically adhere onto the brush border of the polarized epithelial human intestinal Caco-2 cells in culture. Heat-killed Lactobacillus acidophilus strain LB, that adheres onto Caco-2 cells, inhibits diarrheagenic Escherichia coli adhesion in a concentration-dependent manner. Since the L. acidophilus does not express ETEC-CFA adhesive factors, it can be postulated that the heat-killed L. acidophilus LB cells inhibit diarrheagenic E. coli attachment by steric hindrance of the human enterocytic ETEC receptors. PMID:1624102

  5. Novel compound for identifying Escherichia coli.

    PubMed Central

    Watkins, W D; Rippey, S R; Clavet, C R; Kelley-Reitz, D J; Burkhardt, W

    1988-01-01

    A new chromogenic compound, 5-bromo-4-chloro-3-indoxyl-beta-D-glucuronide, was found to be useful for the rapid, specific, differential identification of Escherichia coli in the sanitary analysis of shellfish and wastewater. Of 1,025 presumptively positive colonies (blue) and 583 presumptively negative colonies (nonblue), only 1% false-negative and 5% false-positive results were found. PMID:3046494

  6. Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In United States, it is estimated that non-O157 Shiga toxin-producing Escherichia coli (STEC) cause more illnesses than STEC O157:H7, and the majority of cases of non-O157 STEC infections is due to serogroups O26, O45, O103, O111, O121, and O145, referred to as the top six non-O157 STEC. The diseas...

  7. Infection by verocytotoxin-producing Escherichia coli.

    PubMed Central

    Karmali, M A

    1989-01-01

    Verocytotoxin (VT)-producing Escherichia coli (VTEC) are a newly recognized group of enteric pathogens which are increasingly being recognized as common causes of diarrhea in some geographic settings. Outbreak studies indicate that most patients with VTEC infection develop mild uncomplicated diarrhea. However, a significant risk of two serious and potentially life-threatening complications, hemorrhagic colitis and the hemolytic uremic syndrome, makes VTEC infection a public health problem of serious concern. The main reservoirs of VTEC appear to be the intestinal tracts of animals, and foods of animal (especially bovine) origin are probably the principal sources for human infection. The term VT refers to a family of subunit exotoxins with high biological activity. Individual VTEC strains elaborate one or both of at least two serologically distinct, bacteriophage-mediated VTs (VT1 and VT2) which are closely related to Shiga toxin and are thus also referred to as Shiga-like toxins. The holotoxins bind to cells, via their B subunits, to a specific receptor which is probably the glycolipid, globotriosyl ceramide (Gb3). Binding is followed by internalization of the A subunit, which, after it is proteolytically nicked and reduced to the A1 fragment, inhibits protein synthesis in mammalian cells by inactivating 60S ribosomal subunits through selective structural modification of 28S ribosomal ribonucleic acid. The mechanism of VTEC diarrhea is still controversial, and the relative roles of locally acting VT and "attaching and effacing adherence" of VTEC to the mucosa have yet to be resolved. There is increasing evidence that hemolytic uremic syndrome and possibly hemorrhagic colitis result from the systemic action of VT on vascular endothelial cells. The role of antitoxic immunity in preventing the systemic complications of VTEC infection is being explored. Antibiotics appear to be contraindicated in the treatment of VTEC infection. The most common VTEC serotype associated

  8. Draft genome sequence of Escherichia coli LCT-EC106.

    PubMed

    Li, Tianzhi; Pu, Fei; Yang, Rentao; Fang, Xiangqun; Wang, Junfeng; Guo, Yinghua; Chang, De; Su, Longxiang; Guo, Na; Jiang, Xuege; Zhao, Jiao; Liu, Changting

    2012-08-01

    Escherichia coli is a Gram-negative, rod-shaped bacterium that is commonly found in the intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes can cause serious food poisoning in humans. Here, we present the complete genome sequence of Escherichia coli LCT-EC106, which was isolated from CGMCC 1.2385. PMID:22843582

  9. Natural plasmid transformation in Escherichia coli.

    PubMed

    Tsen, Suh-Der; Fang, Suh-Sen; Chen, Mei-Jye; Chien, Jun-Yi; Lee, Chih-Chun; Tsen, Darwin Han-Lin

    2002-01-01

    Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli. PMID:12065899

  10. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass. PMID:27223822

  11. Molecular mechanisms of Escherichia coli pathogenicity.

    PubMed

    Croxen, Matthew A; Finlay, B Brett

    2010-01-01

    Escherichia coli is a remarkable and diverse organism. This normally harmless commensal needs only to acquire a combination of mobile genetic elements to become a highly adapted pathogen capable of causing a range of diseases, from gastroenteritis to extraintestinal infections of the urinary tract, bloodstream and central nervous system. The worldwide burden of these diseases is staggering, with hundreds of millions of people affected annually. Eight E. coli pathovars have been well characterized, and each uses a large arsenal of virulence factors to subvert host cellular functions to potentiate its virulence. In this Review, we focus on the recent advances in our understanding of the different pathogenic mechanisms that are used by various E. coli pathovars and how they cause disease in humans. PMID:19966814

  12. Thymineless Death in Escherichia coli: Strain Specificity

    PubMed Central

    Cummings, Donald J.; Mondale, Lee

    1967-01-01

    Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, Bs−12, K-12 rec-21, and possibly K-12 Lon−, all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation. Images PMID:5337772

  13. Action of sodium deoxycholate on Escherichia coli

    SciTech Connect

    D'Mello, A.; Yotis, W.W.

    1987-08-01

    Sodium deoxycholate is used in a number of bacteriological media for the isolation and classification of gram-negative bacteria from food and the environment. Initial experiments to study the effect of deoxycholate on the growth parameters of Escherichia coli showed an increase in the lag time constant and generation time and a decrease in the growth rate constant total cell yield of this microorganisms. Cell fractionation studies indicated that sodium deoxycholate at levels used in bacteriological media interferes with the incorporation of (U-/sup 14/C)glucose into the cold-trichloroacetic acid-soluble, ethanol-soluble, and trypsin-soluble cellular fractions of E. coli. Finally, sodium deoxycholate interfered with the flagellation and motility of Proteus mirabilis and E. coli. It would appear then that further improvement of the deoxycholate medium may be in order.

  14. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent.

    PubMed

    Danevčič, Tjaša; Borić Vezjak, Maja; Zorec, Maša; Stopar, David

    2016-01-01

    Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria. PMID:27612193

  15. Interaction between Escherichia coli and lunar fines

    NASA Technical Reports Server (NTRS)

    Johansson, K. R.

    1983-01-01

    A sample of mature lunar fines (10084.151) was solubilized to a high degree (about 17 percent) by the chelating agent salicylic acid (0.01. M). The neutralized (pH adjusted to 7.0) leachate was found to inhibit the growth of Escherichia coli (ATCC 259922) in a minimial mineral salts glucose medium; however, the inhibition was somewhat less than that caused by neutralized salicylic acid alone. The presence of lunar fines in the minimal medium was highly stimulatory to growth of E. coli following an early inhibitory response. The bacterium survived less well in the lunar leachate than in distilled water, no doubt because of the salicylate. It was concluded that the sample of lunar soil tested has nutritional value to E. coli and that certain products of fermentation helped to solubilize the lunar soil.

  16. Single Multiplex PCR Assay To Identify Simultaneously the Six Categories of Diarrheagenic Escherichia coli Associated with Enteric Infections

    PubMed Central

    Vidal, Maricel; Kruger, Eileen; Durán, Claudia; Lagos, Rosanna; Levine, Myron; Prado, Valeria; Toro, Cecilia; Vidal, Roberto

    2005-01-01

    We designed a multiplex PCR for the detection of all categories of diarrheagenic Escherichia coli. This method proved to be specific and rapid in detecting virulence genes from Shiga toxin-producing (stx1, stx2, and eae), enteropathogenic (eae and bfp), enterotoxigenic (stII and lt), enteroinvasive (virF and ipaH), enteroaggregative (aafII), and diffuse adherent (daaE) Escherichia coli in stool samples. PMID:16208019

  17. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  18. COMPARATIVE RESISTANCE OF ESCHERICHIA COLI AND ENTEROCOCCI TO CHLORINATION

    EPA Science Inventory

    Pure cultures of Escherichia coli and Enterococcus faecium were inactivated by free chlorine and monochloramine. ndigenous E. coli and enterococci in wastewater effluents were also inactivated. elective bacteriological media specifically designed for the enumeration of the target...

  19. Profiling of Escherichia coli Chromosome database.

    PubMed

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers. PMID:18392982

  20. Logarithmic Sensing in Escherichia coli Bacterial Chemotaxis

    PubMed Central

    Kalinin, Yevgeniy V.; Jiang, Lili; Tu, Yuhai; Wu, Mingming

    2009-01-01

    We studied the response of swimming Escherichia coli (E. coli) bacteria in a comprehensive set of well-controlled chemical concentration gradients using a newly developed microfluidic device and cell tracking imaging technique. In parallel, we carried out a multi-scale theoretical modeling of bacterial chemotaxis taking into account the relevant internal signaling pathway dynamics, and predicted bacterial chemotactic responses at the cellular level. By measuring the E. coli cell density profiles across the microfluidic channel at various spatial gradients of ligand concentration grad[L] and the average ligand concentration [L]¯near the peak chemotactic response region, we demonstrated unambiguously in both experiments and model simulation that the mean chemotactic drift velocity of E. coli cells increased monotonically with grad [L]/[L]¯ or ∼grad(log[L])—that is E. coli cells sense the spatial gradient of the logarithmic ligand concentration. The exact range of the log-sensing regime was determined. The agreements between the experiments and the multi-scale model simulation verify the validity of the theoretical model, and revealed that the key microscopic mechanism for logarithmic sensing in bacterial chemotaxis is the adaptation kinetics, in contrast to explanations based directly on ligand occupancy. PMID:19289068

  1. Mild gut inflammation modulates the proteome of intestinal Escherichia coli.

    PubMed

    Schumann, Sara; Alpert, Carl; Engst, Wolfram; Klopfleisch, Robert; Loh, Gunnar; Bleich, André; Blaut, Michael

    2014-09-01

    Using interleukin 10-deficient (IL-10(-/-) ) and wild-type mice monoassociated with either the adherent-invasive Escherichia coli UNC or the probiotic E. coli Nissle, the effect of a mild intestinal inflammation on the bacterial proteome was studied. Within 8 weeks, IL-10(-/-) mice monoassociated with E. coli UNC exhibited an increased expression of several proinflammatory markers in caecal mucosa. Escherichia coli Nissle-associated IL-10(-/-) mice did not do so. As observed previously for E. coli from mice with acute colitis, glycolytic enzymes were downregulated in intestinal E. coli UNC from IL-10(-/-) mice. In addition, the inhibitor of vertebrate C-type lysozyme, Ivy, was upregulated on messenger RNA (mRNA) and protein level in E. coli Nissle from IL-10(-/-) mice compared with E. coli UNC from these mice. Higher expression of Ivy in E. coli Nissle correlated with an improved growth of this probiotic strain in the presence of lysozyme-ethylenediaminetetraacetic acid (EDTA). By overexpressing Ivy, we demonstrated that Ivy contributes to a higher lysozyme resistance of E. coli, supporting the role of Ivy as a potential fitness factor. However, deletion of Ivy did not alter the growth phenotype of E. coli Nissle in the presence of lysozyme-EDTA, suggesting the existence of additional lysozyme inhibitors that can take over the function of Ivy. PMID:23855897

  2. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  3. Cyanide degradation by an Escherichia coli strain.

    PubMed

    Figueira, M M; Ciminelli, V S; de Andrade, M C; Linardi, V R

    1996-05-01

    Chemical formation of a glucose-cyanide complex was necessary for metabolic degradation of cyanide at concentrations up to 50.0 mg/L by a strain of Escherichia coli isolated from gold extraction circuit liquids. Ammonia accumulating during the culture log phase as the sole nitrogen by-product was further utilized for bacterial growth. Washed (intact) cells, harvested at different periods of bacterial growth on cyanide, consumed oxygen in presence of cyanide. These findings suggest that metabolism of cyanide involved a dioxygenase enzyme that converted cyanide directly to ammonia, without the formation of cyanate. PMID:8640610

  4. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  5. Enterotoxigenic Escherichia coli: Orchestrated host engagement.

    PubMed

    Fleckenstein, James M; Munson, George M; Rasko, David A

    2013-01-01

    The enterotoxigenic Escherichia coli are a pervasive cause of serious diarrheal illness in developing countries. Presently, there is no vaccine to prevent these infections, and many features of the basic pathogenesis of these organisms remain poorly understood. Until very recently most pathogenesis studies had focused almost exclusively on a small subset of known "classical" virulence genes, namely fimbrial colonization factors and the heat-labile (LT) and heat stable (ST) enterotoxins. However, recent investigations of pathogen-host interactions reveal a surprisingly complex and intricately orchestrated engagement involving the interplay of classical and "novel" virulence genes, as well as participation of genes highly conserved in the E. coli species. These studies may inform further rational approaches to vaccine development for these important pathogens. PMID:23892244

  6. Engineering the Escherichia coli Fermentative Metabolism

    NASA Astrophysics Data System (ADS)

    Orencio-Trejo, M.; Utrilla, J.; Fernández-Sandoval, M. T.; Huerta-Beristain, G.; Gosset, G.; Martinez, A.

    Fermentative metabolism constitutes a fundamental cellular capacity for industrial biocatalysis. Escherichia coli is an important microorganism in the field of metabolic engineering for its well-known molecular characteristics and its rapid growth. It can adapt to different growth conditions and is able to grow in the presence or absence of oxygen. Through the use of metabolic pathway engineering and bioprocessing techniques, it is possible to explore the fundamental cellular properties and to exploit its capacity to be applied as industrial biocatalysts to produce a wide array of chemicals. The objective of this chapter is to review the metabolic engineering efforts carried out with E. coli by manipulating the central carbon metabolism and fermentative pathways to obtain strains that produce metabolites with high titers, such as ethanol, alanine, lactate and succinate.

  7. Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood

    PubMed Central

    2013-01-01

    Background The gaseous headspace above naïve Escherichia Coli (E. coli) cultures and whole human blood inoculated with E. coli were collected and analyzed for the presence of trace gases that may have the potential to be used as novel, non-invasive markers of infectious disease. Methods The naïve E. coli culture, LB broth, and human whole blood or E. coli inoculated whole blood were incubated in hermetically sealable glass bioreactors at 37°C for 24 hrs. LB broth and whole human blood were used as controls for background volatile organic compounds (VOCs). The headspace gases were collected after incubation and analyzed using a gas chromatographic system with multiple column/detector combinations. Results Six VOCs were observed to be produced by E. coli-infected whole blood while there existed nearly zero to relatively negligible amounts of these gases in the whole blood alone, LB broth, or E. coli-inoculated LB broth. These VOCs included dimethyl sulfide (DMS), carbon disulfide (CS2), ethanol, acetaldehyde, methyl butanoate, and an unidentified gas S. In contrast, there were several VOCs significantly elevated in the headspace above the E. coli in LB broth, but not present in the E. coli/blood mixture. These VOCs included dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), methyl propanoate, 1-propanol, methylcyclohexane, and unidentified gases R2 and Q. Conclusions This study demonstrates 1) that cultivated E. coli in LB broth produce distinct gas profiles, 2) for the first time, the ability to modify E. coli-specific gas profiles by the addition of whole human blood, and 3) that E. coli-human whole blood interactions present different gas emission profiles that have the potential to be used as non-invasive volatile biomarkers of E. coli infection. PMID:23842518

  8. Escherichia coli as a bioreporter in ecotoxicology.

    PubMed

    Robbens, Johan; Dardenne, Freddy; Devriese, Lisa; De Coen, Wim; Blust, Ronny

    2010-11-01

    Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future. PMID:20803141

  9. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  10. Enteroadherent Escherichia coli as a cause of diarrhea among children in Mexico.

    PubMed Central

    Mathewson, J J; Oberhelman, R A; Dupont, H L; Javier de la Cabada, F; Garibay, E V

    1987-01-01

    Enteropathogenic Escherichia coli (EPEC) often exhibits localized adherence or diffuse adherence to HEp-2 cells. We recently provided evidence that HEp-2 cell-adherent or enteroadherent E. coli (EAEC) not belonging to EPEC serogroups was the cause of diarrhea among U.S. travelers to Mexico. In the present study, we looked for EAEC and EPEC in stool specimens from 154 children with acute diarrhea and 137 well children seen at several outpatient clinics in Guadalajara, Mexico. EAEC showing localized adherence (EAEC-L) was isolated from 13.0% of the patients and 0.7% of the controls (P less than 0.0001). EAEC showing diffuse adherence (EAEC-D) was recovered from 20.8% of the patients and 7.3% of the controls (P less than 0.001). EPEC was isolated from 4.5 and 6.7% of the patients and controls, respectively. Among all enteropathogens, only enterotoxigenic E. coli occurred as commonly (21.4%) as EAEC-D and EAEC-L did in children with diarrhea. Of the EAEC-L strains isolated from children with diarrhea, 20% belonged to recognized EPEC serogroups, and 3.1% of EAEC-D strains belonged to recognized EPEC serogroups. This study suggests that EAEC may be an important pediatric enteropathogen in Mexican children with diarrhea and further supports the observation that adherence to HEp-2 cells may be a marker of virulence independent of EPEC serogroup among E. coli strains. PMID:3312288

  11. Binding of type 1-piliated Escherichia coli to vaginal mucus.

    PubMed Central

    Venegas, M F; Navas, E L; Gaffney, R A; Duncan, J L; Anderson, B E; Schaeffer, A J

    1995-01-01

    To better understand the interactions involved in bacterial adherence and the role of mucus in the pathogenesis of urinary tract infections, we developed a system to study the binding of a recombinant Escherichia coli strain, HB101/pWRS1-17, expressing type 1 pili, to vaginal mucus collected from 28 women. Bacteria bound to differing extents to all specimens examined, and preincubation of bacteria with mannose inhibited binding by 50 to 89%. Additionally, all mucus samples showed reactivity with anti-mannose antibody, and the levels of reactivity correlated with the levels of bacterial binding, suggesting that the mannose-terminal saccharides present on these glycoproteins are the receptors for the binding of type 1-piliated bacteria. Mucus specimens collected over periods of 5 days and 12 weeks exhibited significant variation in bacterial binding, indicating temporal differences in the ability of vaginal mucus to act as a receptor for type 1-piliated E. coli. The results show that vaginal mucus can bind bacteria and may thus influence the initial attachment and subsequent colonization of the vaginal and urinary tract epithelium by E. coli. PMID:7822005

  12. Epithelial cell invasion by bovine septicemic Escherichia coli.

    PubMed Central

    Korth, M J; Lara, J C; Moseley, S L

    1994-01-01

    Little is known regarding the pathogenesis of Escherichia coli-induced septicemic colibacillosis of calves. To understand the mechanism by which these strains penetrate the intestinal epithelium and gain access to the bloodstream, we examined the potential of bovine septicemic E. coli to invade cultured epithelial cells. By using a gentamicin survival assay, we demonstrated bacterial invasion of Madin-Darby canine kidney (MDCK) cells. Transcytosis of polarized MDCK cell monolayers was also observed, but only when bacteria were added to the basolateral surface. Electron microscopy confirmed the presence of intracellular organisms which appeared to be within membrane-bound vacuoles. The bovine septicemic isolate used in this study expressed the fimbrial adhesion CS31A. To examine the role of CS31A-mediated adherence in invasion and transcytosis of MDCK cell monolayers, a CS31A-deficient mutant was constructed by suicide vector-mediated insertional mutagenesis. Although nonadherent, the mutant showed a level of invasion similar to that of the wild-type parent. E. coli DH5 alpha carrying the cloned CS31A determinant was noninvasive. These findings suggest that expression of CS31A is neither required nor sufficient to mediate invasion. Images PMID:7903284

  13. Pet, an Autotransporter Enterotoxin from Enteroaggregative Escherichia coli

    PubMed Central

    Eslava, Carlos; Navarro-García, Fernando; Czeczulin, John R.; Henderson, Ian R.; Cravioto, Alejandro; Nataro, James P.

    1998-01-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging cause of diarrheal illness. Clinical data suggest that diarrhea caused by EAEC is predominantly secretory in nature, but the responsible enterotoxin has not been described. Work from our laboratories has implicated a ca. 108-kDa protein as a heat-labile enterotoxin and cytotoxin, as evidenced by rises in short-circuit current and falls in tissue resistance in rat jejunal tissue mounted in an Ussing chamber. Here we report the genetic cloning, sequencing, and characterization of this high-molecular-weight heat-labile toxin. The toxin (designated the plasmid-encoded toxin [Pet]) is encoded on the 65-MDa adherence-related plasmid of EAEC strain 042. Nucleotide sequence analysis suggests that the toxin is a member of the autotransporter class of proteins, characterized by the presence of a conserved C-terminal domain which forms a β-barrel pore in the bacterial outer membrane and through which the mature protein is transported. The Pet toxin is highly homologous to the EspP protease of enterohemorrhagic E. coli and to EspC of enteropathogenic E. coli, an as yet cryptic protein. In addition to its potential role in EAEC infection, Pet represents the first enterotoxin within the autotransporter class of secreted proteins. We hypothesize that other closely related members of this class may also produce enterotoxic effects. PMID:9632580

  14. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    PubMed Central

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P.; Nishio, Erick K.; Kobayashi, Renata K. T.; Nakazato, Gerson

    2014-01-01

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections. PMID:25170683

  15. Discrepancies in the enumeration of Escherichia coli.

    PubMed

    Ray, B; Speck, M L

    1973-04-01

    Stationary-phase cells of Escherichia coli were enumerated by the pour plate method on Trypticase soy agar containing 0.3% yeast extract (TSYA), violet red-bile agar, and desoxycholate-lactose agar, and by the most-probable-number method in Brilliant Green-bile broth and lauryl sulfate broth. Maximum counts were assumed to be those on TSYA. In general, numbers detected were lower with the selective solid media and higher with the selective liquid media. Inhibitory effects, especially on selective solid media varied with the strains of E. coli. The lower detection on selective solid media was partly due to the stress induced in some cells by the temperature of the melted media used in the pour plate method. These cells apparently failed to repair and form colonies in the selective media. Improved detection on the selective solid media was achieved by using 1% nonfat milk solids, 1% peptone, or 1% MgSO(4).7H(2)O in the dilution blanks. Higher detection on selective agar media was effected by surface plating or by surface-overlay plating of the cells. The surface-overlay method appeared to be superior for the direct enumeration of E. coli in foods. PMID:4572980

  16. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  17. [Population genomic researches of Escherichia coli].

    PubMed

    Wu, Y R; Yang, R F; Cui, Y J

    2016-06-01

    Population genomics, an interdiscipline of genomics and population genetics, is booming in recent years with the rapid growth number of deciphered genomes and revolutionizes the understanding of bacterial population diversity and evolution dynamics. It also largely improves the prevention and control of infectious disease through providing more accurate genotyping and source-tracing results and more comprehensive characteristics of emerging pathogens. In this review, taking one of the best characterized bacteria, Escherichia coli, as model, we reviewed the phylogenetic relationship across its five major populations (designated A, B1, B2, D and E); and summarized researches on molecular mutation rate, selection signals, and patterns of adaptive evolution. We also described the application of population genomics in responding against large-scale outbreaks of E. coli O157:H7 and E. coli O104:H4. These results indicated that, although being a novel discipline, population genomics has played an important role in deciphering bacterial population structures, exploring evolutionary patterns and combating emerging infectious diseases. PMID:27256740

  18. Escherichia coli biofilm: development and therapeutic strategies.

    PubMed

    Sharma, G; Sharma, S; Sharma, P; Chandola, D; Dang, S; Gupta, S; Gabrani, R

    2016-08-01

    Escherichia coli biofilm consists of a bacterial colony embedded in a matrix of extracellular polymeric substances (EPS) which protects the microbes from adverse environmental conditions and results in infection. Besides being the major causative agent for recurrent urinary tract infections, E. coli biofilm is also responsible for indwelling medical device-related infectivity. The cell-to-cell communication within the biofilm occurs due to quorum sensors that can modulate the key biochemical players enabling the bacteria to proliferate and intensify the resultant infections. The diversity in structural components of biofilm gets compounded due to the development of antibiotic resistance, hampering its eradication. Conventionally used antimicrobial agents have a restricted range of cellular targets and limited efficacy on biofilms. This emphasizes the need to explore the alternate therapeuticals like anti-adhesion compounds, phytochemicals, nanomaterials for effective drug delivery to restrict the growth of biofilm. The current review focuses on various aspects of E. coli biofilm development and the possible therapeutic approaches for prevention and treatment of biofilm-related infections. PMID:26811181

  19. Role of Escherichia coli in Biofuel Production

    PubMed Central

    Koppolu, Veerendra; Vasigala, Veneela KR

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  20. Identification of a Glycoprotein Produced by Enterotoxigenic Escherichia coli

    PubMed Central

    Lindenthal, Christoph; Elsinghorst, Eric A.

    1999-01-01

    Enterotoxigenic Escherichia coli (ETEC) strain H10407 is capable of invading epithelial cell lines derived from the human ileocecum and colon in vitro. Two separate chromosomally encoded invasion loci (tia and tib) have been cloned from this strain. These loci direct nonadherent and noninvasive laboratory strains of E. coli to adhere to and invade cultured human intestinal epithelial cells. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane protein that is directly correlated with the adherence and invasion phenotypes. TibA is synthesized as a 100-kDa precursor (preTibA) that must be modified for biological activity. Outer membranes of recombinant E. coli expressing TibA or preTibA were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted to nitrocellulose. The presence of glycoproteins was detected by oxidization of carbohydrates with periodate and labeling with hydrazide-conjugated digoxigenin. Only TibA could be detected as a glycoprotein. Complementation experiments with tib deletion mutants of ETEC strain H10407 demonstrate that the TibA glycoprotein is expressed in H10407, that the entire tib locus is required for TibA synthesis, and that TibA is the only glycoprotein produced by H10407. Protease treatment of intact H10407 cells removes the carbohydrates on TibA, suggesting that they are surface exposed. TibA shows homology with AIDA-I from diffuse-adhering E. coli and with pertactin precursor from Bordetella pertussis. Both pertactin and AIDA-I are members of the autotransporter family of outer membrane proteins and are afimbrial adhesins that play an important role in the virulence of these organisms. Analysis of the predicted TibA amino acid sequence indicates that TibA is also an autotransporter. Analysis of the tib locus DNA sequence revealed an open reading frame with similarity to RfaQ, a glycosyltransferase. The product of this tib locus open reading frame is proposed to be responsible for Tib

  1. Identification of a glycoprotein produced by enterotoxigenic Escherichia coli.

    PubMed

    Lindenthal, C; Elsinghorst, E A

    1999-08-01

    Enterotoxigenic Escherichia coli (ETEC) strain H10407 is capable of invading epithelial cell lines derived from the human ileocecum and colon in vitro. Two separate chromosomally encoded invasion loci (tia and tib) have been cloned from this strain. These loci direct nonadherent and noninvasive laboratory strains of E. coli to adhere to and invade cultured human intestinal epithelial cells. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane protein that is directly correlated with the adherence and invasion phenotypes. TibA is synthesized as a 100-kDa precursor (preTibA) that must be modified for biological activity. Outer membranes of recombinant E. coli expressing TibA or preTibA were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted to nitrocellulose. The presence of glycoproteins was detected by oxidization of carbohydrates with periodate and labeling with hydrazide-conjugated digoxigenin. Only TibA could be detected as a glycoprotein. Complementation experiments with tib deletion mutants of ETEC strain H10407 demonstrate that the TibA glycoprotein is expressed in H10407, that the entire tib locus is required for TibA synthesis, and that TibA is the only glycoprotein produced by H10407. Protease treatment of intact H10407 cells removes the carbohydrates on TibA, suggesting that they are surface exposed. TibA shows homology with AIDA-I from diffuse-adhering E. coli and with pertactin precursor from Bordetella pertussis. Both pertactin and AIDA-I are members of the autotransporter family of outer membrane proteins and are afimbrial adhesins that play an important role in the virulence of these organisms. Analysis of the predicted TibA amino acid sequence indicates that TibA is also an autotransporter. Analysis of the tib locus DNA sequence revealed an open reading frame with similarity to RfaQ, a glycosyltransferase. The product of this tib locus open reading frame is proposed to be responsible for Tib

  2. Non-O157 Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC), also known as verocytotoxin-producing E. coli, are important food-borne pathogens responsible for outbreaks of hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC that cause HC and HUS are also referred to as enterohemorrhagic E. coli (E...

  3. WGS accurately predicts antimicrobial resistance in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  4. Virulence Gene Regulation in Escherichia coli.

    PubMed

    Mellies, Jay L; Barron, Alex M S

    2006-01-01

    Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression. PMID:26443571

  5. Efficient production of indigoidine in Escherichia coli.

    PubMed

    Xu, Fuchao; Gage, David; Zhan, Jixun

    2015-08-01

    Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. In our previous study, an indigoidine synthetase Sc-IndC and an associated helper protein Sc-IndB were identified from Streptomyces chromofuscus ATCC 49982 and successfully expressed in Escherichia coli BAP1 to produce the blue pigment at 3.93 g/l. To further improve the production of indigoidine, in this work, the direct biosynthetic precursor L-glutamine was fed into the fermentation broth of the engineered E. coli strain harboring Sc-IndC and Sc-IndB. The highest titer of indigoidine reached 8.81 ± 0.21 g/l at 1.46 g/l L-glutamine. Given the relatively high price of L-glutamine, a metabolic engineering technique was used to directly enhance the in situ supply of this precursor. A glutamine synthetase gene (glnA) was amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1, leading to the production of indigoidine at 5.75 ± 0.09 g/l. Because a nitrogen source is required for amino acid biosynthesis, we then tested the effect of different nitrogen-containing salts on the supply of L-glutamine and subsequent indigoidine production. Among the four tested salts including (NH4)2SO4, NH4Cl, (NH4)2HPO4 and KNO3, (NH4)2HPO4 showed the best effect on improving the titer of indigoidine. Different concentrations of (NH4)2HPO4 were added to the fermentation broths of E. coli BAP1/Sc-IndC+Sc-IndB+GlnA, and the titer reached the highest (7.08 ± 0.11 g/l) at 2.5 mM (NH4)2HPO4. This work provides two efficient methods for the production of this promising blue pigment in E. coli. PMID:26109508

  6. Selective translation during stress in Escherichia coli

    PubMed Central

    Moll, Isabella; Engelberg-Kulka, Hanna

    2016-01-01

    The bacterial stress response, a strategy to cope with environmental changes, is generally known to operate on the transcriptional level. Here, we discuss a novel paradigm for stress adaptation at the post-transcriptional level, based on the recent discovery of a stress-induced modified form of the translation machinery in Escherichia coli that is generated by MazF, the toxin component of the toxin–antitoxin (TA) module mazEF. Under stress, the induced endoribonuclease MazF removes the 3′-terminal 43 nucleotides of the 16S rRNA of ribosomes and, concomitantly, the 5′-untranslated regions (UTRs) of specific transcripts. This elegant mechanism enables selective translation due to the complementary effect of MazF on ribosomes and mRNAs, and also represents the first example of functional ribosome heterogeneity based on rRNA alteration. PMID:22939840

  7. Escherichia coli photoreactivating enzyme: purification and properties

    SciTech Connect

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w//sup 0/ of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected.

  8. Genetic Analysis of an Escherichia coli Syndrome

    PubMed Central

    Lennette, Evelyne T.; Apirion, David

    1971-01-01

    A mutant strain of Escherichia coli that fails to recover from prolonged (72 hr) starvation also fails to grow at 43 C. Extracts of this mutant strain show an increased ribonuclease II activity as compared to extracts of the parental strain, and stable ribonucleic acid is degraded to a larger extent in this strain during starvation. Ts+ transductants and revertants were tested for all the above-mentioned phenotypes. All the Ts+ transductants and revertants tested behaved like the Ts+ parental strain, which suggests that all the observed phenotypes are caused by a single sts (starvation-temperature sensitivity) mutation. The reversion rate from sts− to sts+ is rather low but is within the range of reversion rates for other single-site mutations. Three-point transduction crosses located this sts mutation between the ilv and rbs genes. The properties of sts+/sts− merozygotes suggested that the Ts− phenotype of this mutation is recessive. PMID:4945197

  9. Phosphoglucomutase Mutants of Escherichia coli K-12

    PubMed Central

    Adhya, Sankar; Schwartz, Maxime

    1971-01-01

    Bacteria with strongly depressed phosphoglucomutase (EC 2.7.5.1) activity are found among the mutants of Escherichia coli which, when grown on maltose, accumulate sufficient amylose to be detectable by iodine staining. These pgm mutants grow poorly on galactose but also accumulate amylose on this carbon source. Growth on lactose does not produce high amylose but, instead, results in the induction of the enzymes of maltose metabolism, presumably by accumulation of maltose. These facts suggest that the catabolism of glucose-1-phosphate is strongly depressed in pgm mutants, although not completely abolished. Anabolism of glucose-1-phosphate is also strongly depressed, since amino acid- or glucose-grown pgm mutants are sensitive to phage C21, indicating a deficiency in the biosynthesis of uridine diphosphoglucose or uridine diphosphogalactose, or both. All pgm mutations isolated map at about 16 min on the genetic map, between purE and the gal operon. PMID:4942754

  10. Structure of common pili from Escherichia coli.

    PubMed Central

    McMichael, J C; Ou, J T

    1979-01-01

    Several important properties of the common pili from Escherichia coli are discussed. These pili were resistant to the gentle Folin-Ciocalteau reagent methods for protein detection and were not readily solubilized by sodium dodecyl sulfate. They were found to contain a reducing sugar but not peptidoglycan. The pilin had multiple conformations in sodium dodecyl sulfate solution, and the appearance of multiple bands on sodium dodecyl sulfate gels did not necessarily indicate heterogeneity of the preparation. The ilus subunit was found to be a different protein than outer membrane III, which has the same apparent molecular weight. In addition, we conformed the results of Brinton (Trans. N.Y. Acad. Sci 27:1003-1054, 1965): that there is a dramatic change in the properties of pili after they are heated at pH values below 2. Images PMID:37233

  11. Novel antigens for enterotoxigenic Escherichia coli vaccines.

    PubMed

    Fleckenstein, James; Sheikh, Alaullah; Qadri, Firdausi

    2014-05-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common bacterial pathogens causing diarrhea in developing countries where they lead to hundreds of thousands of deaths, mostly in children. These organisms are a leading cause of diarrheal illness in travelers to endemic countries. ETEC pathogenesis, and consequently vaccine approaches, have largely focused on plasmid-encoded enterotoxins or fimbrial colonization factors. To date these approaches have not yielded a broadly protective vaccine. However, recent studies suggest that ETEC pathogenesis is more complex than previously appreciated and involves additional plasmid and chromosomally encoded virulence molecules that can be targeted in vaccines. Here, we review recent novel antigen discovery efforts, potential contribution of these proteins to the molecular pathogenesis of ETEC and protective immunity, and the potential implications for development of next generation vaccines for important pathogens. These proteins may help to improve the effectiveness of future vaccines by making them simpler and possibly broadly protective because of their conserved nature. PMID:24702311

  12. Oxygen sensitivity of an Escherichia coli mutant.

    PubMed

    Adler, H; Mural, R; Suttle, B

    1992-04-01

    Genetic evidence indicates that Oxys-6, an oxygen-sensitive mutant of Escherichia coli AB1157, is defective in the region of the hemB locus. Oxys-6 is capable of growth under aerobic conditions only if cultures are initiated at low-inoculum levels. Aerobic liquid cultures are limited to a cell density of 10(7) cells per ml by the accumulation of a metabolically produced, low-molecular-weight, heat-stable material in complex organic media. Both Oxys-6 and AB1157 cells produce the material, but only aerobic cultures of the mutant are inhibited by it. The material is produced by both intact cells and cell extracts in complex media. This reaction also occurs when the amino acid L-lysine is substituted for complex media. PMID:1551829

  13. Oxygen sensitivity of an Escherichia coli mutant.

    PubMed Central

    Adler, H; Mural, R; Suttle, B

    1992-01-01

    Genetic evidence indicates that Oxys-6, an oxygen-sensitive mutant of Escherichia coli AB1157, is defective in the region of the hemB locus. Oxys-6 is capable of growth under aerobic conditions only if cultures are initiated at low-inoculum levels. Aerobic liquid cultures are limited to a cell density of 10(7) cells per ml by the accumulation of a metabolically produced, low-molecular-weight, heat-stable material in complex organic media. Both Oxys-6 and AB1157 cells produce the material, but only aerobic cultures of the mutant are inhibited by it. The material is produced by both intact cells and cell extracts in complex media. This reaction also occurs when the amino acid L-lysine is substituted for complex media. Images PMID:1551829

  14. Direct Upstream Motility in Escherichia coli

    PubMed Central

    Kaya, Tolga; Koser, Hur

    2012-01-01

    We provide an experimental demonstration of positive rheotaxis (rapid and continuous upstream motility) in wild-type Escherichia coli freely swimming over a surface. This hydrodynamic phenomenon is dominant below a critical shear rate and robust against Brownian motion and cell tumbling. We deduce that individual bacteria entering a flow system can rapidly migrate upstream (>20 μm/s) much faster than a gradually advancing biofilm. Given a bacterial population with a distribution of sizes and swim speeds, local shear rate near the surface determines the dominant hydrodynamic mode for motility, i.e., circular or random trajectories for low shear rates, positive rheotaxis for moderate flow, and sideways swimming at higher shear rates. Faster swimmers can move upstream more rapidly and at higher shear rates, as expected. Interestingly, we also find on average that both swim speed and upstream motility are independent of cell aspect ratio. PMID:22500751

  15. Glucose-lactose diauxie in Escherichia coli.

    PubMed

    Loomis, W F; Magasanik, B

    1967-04-01

    Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed. PMID:5340309

  16. Surface expression of ω-transaminase in Escherichia coli.

    PubMed

    Gustavsson, Martin; Muraleedharan, Madhu Nair; Larsson, Gen

    2014-04-01

    Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity. PMID:24487538

  17. Genes under positive selection in Escherichia coli

    PubMed Central

    Petersen, Lise; Bollback, Jonathan P.; Dimmic, Matt; Hubisz, Melissa; Nielsen, Rasmus

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence for positive selection, such as the enigmatic rhs elements and transposases. Based on structural evidence, we hypothesize that the selection acting on transposases is related to the genomic conflict between transposable elements and the host genome. PMID:17675366

  18. Independence of replisomes in Escherichia coli chromosomalreplication

    SciTech Connect

    Breier, Adam M.; Weier, Heinz-Ulrich G.; Cozzarelli, Nicholas R.

    2005-03-13

    In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.

  19. Thiol-sensitive genes of Escherichia coli.

    PubMed Central

    Javor, G T

    1989-01-01

    The effect of 1-thioglycerol on the expression of genes of Escherichia coli was investigated. Pulse-labeled proteins from aerobically growing, 1-thioglycerol-treated E. coli were separated by two-dimensional gel electrophoresis, and their radioactivities were compared with those of identical proteins from nontreated cells. The first 10 min of exposure to thiol stimulated the synthesis of 10% of the observed proteins and inhibited the production of 16% of the proteins. After 30 min of growth with thiol, the synthesis of 44% of the observed proteins was inhibited and synthesis of 18% of the proteins was stimulated. In general, the expression of genes of carbohydrate metabolism, amino acid metabolism, and protein biosynthesis were inhibited, while nucleic acid synthetic and repair gene expressions showed mixed responses. Synthesis of transport proteins was not affected. Transient stimulation of oxidative-stress proteins and sustained stimulation of the expressions of trxB, ompA, and ompB genes and those of several unidentified gene products were also observed. Whether these complex responses merely reflect adjustments by cellular subsystems to a suddenly reducing environment or whether they are manifestations of a reductive-stress regulon will have to await genetic analysis of this phenomenon. Images PMID:2676982

  20. gltBDF operon of Escherichia coli.

    PubMed Central

    Castaño, I; Bastarrachea, F; Covarrubias, A A

    1988-01-01

    A 2.0-kilobase DNA fragment carrying antibiotic resistance markers was inserted into the gltB gene of Escherichia coli previously cloned in a multicopy plasmid. Replacement of the chromosomal gltB+ gene by the gltB225::omega mutation led to cells unable to synthesize glutamate synthase, utilize growth rate-limiting nitrogen sources, or derepress their glutamine synthetase. The existence of a gltBDF operon encoding the large (gltB) and small (gltD) subunits of glutamate synthase and a regulatory peptide (gltF) at 69 min of the E. coli linkage map was deduced from complementation analysis. A plasmid carrying the entire gltB+D+F+ operon complemented cells for all three of the mutant phenotypes associated with the polar gltB225::omega mutation in the chromosome. By contrast, plasmids carrying gltB+ only complemented cells for glutamate synthase activity. A major tricistronic mRNA molecule was detected from Northern (RNA blot) DNA-RNA hybridization experiments with DNA probes containing single genes of the operon. A 30,200-dalton polypeptide was identified as the gltF product, the lack of which was responsible for the inability of cells to use nitrogen-limiting sources associated with gltB225::omega. Images PMID:2448295

  1. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells.

    PubMed

    Crémet, Lise; Broquet, Alexis; Brulin, Bénédicte; Jacqueline, Cédric; Dauvergne, Sandie; Brion, Régis; Asehnoune, Karim; Corvec, Stéphane; Heymann, Dominique; Caroff, Nathalie

    2015-11-01

    Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate <0.01% for the non-cytotoxic E. coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (<7%), the most adherent E. coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts. PMID:26333570

  2. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    PubMed

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea. PMID:27228947

  3. Identification of Coli Surface Antigen 23, a novel adhesin of enterotoxigenic Escherichia coli.

    PubMed

    Del Canto, Felipe; Botkin, Douglas J; Valenzuela, Patricio; Popov, Vsevolod; Ruiz-Perez, Fernando; Nataro, James P; Levine, Myron M; Stine, O Colin; Pop, Mihai; Torres, Alfredo G; Vidal, Roberto

    2012-08-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains. PMID:22645287

  4. Identification of Coli Surface Antigen 23, a Novel Adhesin of Enterotoxigenic Escherichia coli

    PubMed Central

    Del Canto, Felipe; Botkin, Douglas J.; Valenzuela, Patricio; Popov, Vsevolod; Ruiz-Perez, Fernando; Nataro, James P.; Levine, Myron M.; Stine, O. Colin; Pop, Mihai

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains. PMID:22645287

  5. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. PMID:25611733

  6. Escherichia coli mutants deficient in exonuclease VII.

    PubMed Central

    Chase, J W; Richardson, C C

    1977-01-01

    Mutants of Escherichia coli having reduced levels of exonuclease VII activity have been isolated by a mass screening procedure. Nine mutants, five of which are known to be of independent origin, were obtained and designated xse. The defects in these strains lie at two or more loci. One of these loci, xseA, lies in the interval between purG and purC; it is 93 to 97% co-transducible with guaA. The order of the genes in this region is purG-xseA guaA,B-purC. The available data do not allow xseA to be ordered with respect to guaA,B. Exonuclease VII purified from E. coli KLC3 xseA3 is more heat labile than exonuclease VII purified from the parent, E. coli PA610 xse+. Therefore, xseA is the structural gene for exonuclease VII. Mutants with defects in the xseA gene show increased sensitivity to nalidixic acid and have an abnormally high frequency of recombination (hyper-Rec phenotype) as measured by the procedure of Konrad and Lehlman (1974). The hyper-Rec character of xseA strains is approximately one-half that of the polAex1 mutant defective in the 5' leads to 3' hydrolytic activity of deoxyribonucleic acid polymerase I. The double mutant, polAex1 xseA7, is twice as hyper-Rec as the polAex1 mutant alone. The xseA- strains are slightly more sensitive to ultraviolet irradiation than the parent strain. Bacteriophages T7, fd, and lambdared grow normally in xseA- strains. Images PMID:320198

  7. Destruction of single-species biofilms of Escherichia coli or Klebsiella pneumoniae subsp. pneumoniae by dextranase, lactoferrin, and lysozyme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activity of dextranase, lactoferrin, lysozyme, and nisin against biofilms composed of either Klebsiella pneumonia or Escherichia coli was examined using the MBEC Assay™. Mature biofilms were treated and then sonicated to remove the adherent biofilm. This material was quantified using a lumines...

  8. Hha Represses Biofilm Formation in Escherichia coli O157:H7 by Affecting the Expression of Flagella and Curli Fimbriae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that produces a broad-spectrum of diarrheal illnesses in infected humans. Although the genetic and molecular mechanisms enabling EHEC O157:H7 to produce characteristic adherence on epithelial cells are well characterized, the g...

  9. Definition of the Escherichia coli O157:H7 proteome under nutrient-limiting conditions to identify targets for efficacious cattle vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, the Type III Secretion System (TTSS) proteins considered critical for Escherichia coli O157 (O157) adherence to the follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), did not appear to contribute to O157 adherence to the RAJ squamous epithelial (RSE) c...

  10. Detection of Enteroaggregative Escherichia coli with Formalin-Preserved HEp-2 Cells

    PubMed Central

    Miqdady, Mohamad S.; Jiang, Zhi-Dong; Nataro, James P.; DuPont, Herbert L.

    2002-01-01

    Formalin-stored HEp-2 cells were used to assay Escherichia coli for adherence. Cells refrigerated in formalin for up to 28 days and used in a wet assay format demonstrated an assay sensitivity ranging from 94 to 98% to detect enteroaggregative E. coli (EAEC). HEp-2 cells first fixed and stored with formalin and then stored dry in ambient conditions for 6 weeks demonstrated an assay sensitivity of 92% to detect EAEC. Using formalin-fixed HEp-2 cells will improve the efficiency of EAEC identification. PMID:12149382

  11. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes.

    PubMed

    Boysen, Anders; Borch, Jonas; Krogh, Thøger Jensen; Hjernø, Karin; Møller-Jensen, Jakob

    2015-09-01

    Comparative studies of pathogenic bacteria and their non-pathogenic counterparts has led to the discovery of important virulence factors thereby generating insight into mechanisms of pathogenesis. Protein-based antigens for vaccine development are primarily selected among unique virulence-related factors produced by the pathogen of interest. However, recent work indicates that proteins that are not unique to the pathogen but instead selectively expressed compared to its non-pathogenic counterpart could also be vaccine candidates or targets for drug development. Modern methods in quantitative proteome analysis have the potential to discover both classes of proteins and hence form an important tool for discovering therapeutic targets. Adherent-invasive Escherichia coli (AIEC) and Enterotoxigenic E. coli (ETEC) are pathogenic variants of E. coli which cause intestinal disease in humans. AIEC is associated with Crohn's disease (CD), a chronic inflammatory condition of the gastrointestinal tract whereas ETEC is the major cause of human diarrhea which affects hundreds of millions annually. In spite of the disease burden associated with these pathogens, effective vaccines conferring long-term protection are still needed. In order to identify proteins with therapeutic potential, we have used mass spectrometry-based Stable Isotope Labeling with Amino acids in Cell culture (SILAC) quantitative proteomics method which allows us to compare the proteomes of pathogenic strains to commensal E. coli. In this study, we grew the pathogenic strains ETEC H10407, AIEC LF82 and the non-pathogenic reference strain E. coli K-12 MG1655 in parallel and used SILAC to compare protein levels in OMVs and culture supernatant. We have identified well-known virulence factors from both AIEC and ETEC, thus validating our experimental approach. In addition we find proteins that are not unique to the pathogenic strains but expressed at levels different from the commensal strain, including the

  12. Escherichia coli survival in waters: temperature dependence.

    PubMed

    Blaustein, R A; Pachepsky, Y; Hill, R L; Shelton, D R; Whelan, G

    2013-02-01

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q₁₀ model. This suggestion was made 34 years ago based on 20 survival curves taken from published literature, but has not been revisited since then. The objective of this study was to re-evaluate the accuracy of the Q₁₀ equation, utilizing data accumulated since 1978. We assembled a database of 450 E. coli survival datasets from 70 peer-reviewed papers. We then focused on the 170 curves taken from experiments that were performed in the laboratory under dark conditions to exclude the effects of sunlight and other field factors that could cause additional variability in results. All datasets were tabulated dependencies "log concentration vs. time." There were three major patterns of inactivation: about half of the datasets had a section of fast log-linear inactivation followed by a section of slow log-linear inactivation; about a quarter of the datasets had a lag period followed by log-linear inactivation; and the remaining quarter were approximately linear throughout. First-order inactivation rate constants were calculated from the linear sections of all survival curves and the data grouped by water sources, including waters of agricultural origin, pristine water sources, groundwater and wells, lakes and reservoirs, rivers and streams, estuaries and seawater, and wastewater. Dependency of E. coli inactivation rates on temperature varied among the water sources. There was a significant difference in inactivation rate values at the reference temperature between rivers and agricultural waters, wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes. At specific sites, the Q₁₀ equation was more accurate in rivers and coastal waters than in lakes making the value of

  13. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    Sewage samples from seven locations in the United States were analyzed for Escherichia coli isolates which were resistant to trimethoprim-sulfamethoxazole (SXT). The prevalence rate of SXT resistant organisms varied between the different geographical locales. The majority of th...

  14. Heat-resistant agglutinin 1 is an accessory enteroaggregative Escherichia coli colonization factor.

    PubMed

    Bhargava, Samhita; Johnson, Brandon B; Hwang, Jennifer; Harris, Tamia A; George, Anu S; Muir, Amanda; Dorff, Justin; Okeke, Iruka N

    2009-08-01

    Enteroaggregative Escherichia coli (EAEC) is an important cause of acute and persistent diarrhea. The defining stacked brick adherence pattern of Peruvian EAEC isolate 042 has previously been attributed to aggregative adherence fimbriae II (AAF/II), which confer aggregative adherence on laboratory E. coli strains. EAEC strains also show exceptional autoaggregation and biofilm formation, other phenotypes that have hitherto been ascribed to AAF/II. We report that EAEC 042 carries the heat-resistant agglutinin (hra1) gene, also known as hek, which encodes an outer membrane protein. Like AAF/II, the cloned EAEC 042 hra1 gene product is sufficient to confer autoaggregation, biofilm formation, and aggregative adherence on nonadherent and nonpathogenic laboratory E. coli strains. However, an 042 hra1 deletion mutant is not deficient in these phenotypes compared to the wild type. EAEC strain 042 produces a classic honeycomb or stacked brick pattern of adherence to epithelial cells. Unlike wild-type 042, the hra1 mutant typically does not form a tidy stacked brick pattern on HEp-2 cells in culture, which is definitive for EAEC. Moreover, the hra1 mutant is significantly impaired in the Caenorhabditis elegans slow kill colonization model. Our data suggest that the exceptional colonization of strain 042 is due to multiple factors and that Hra1 is an accessory EAEC colonization factor. PMID:19482929

  15. Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection

    PubMed Central

    Bretin, Alexis; Carrière, Jessica; Dalmasso, Guillaume; Bergougnoux, Agnès; B'chir, Wafa; Maurin, Anne-Catherine; Müller, Stefan; Seibold, Frank; Barnich, Nicolas; Bruhat, Alain; Darfeuille-Michaud, Arlette; Nguyen, Hang Thi Thu

    2016-01-01

    ABSTRACT The intestinal mucosa of Crohn disease (CD) patients is abnormally colonized by adherent-invasive E. coli (AIEC). Upon AIEC infection, autophagy is induced in host cells to restrain bacterial intracellular replication. The underlying mechanism, however, remains unknown. Here, we investigated the role of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway in the autophagic response to AIEC infection. We showed that infection of human intestinal epithelial T84 cells with the AIEC reference strain LF82 activated the EIF2AK4-EIF2A-ATF4 pathway, as evidenced by increased phospho-EIF2AK4, phospho-EIF2A and ATF4 levels. EIF2AK4 depletion inhibited autophagy activation in response to LF82 infection, leading to increased LF82 intracellular replication and elevated pro-inflammatory cytokine production. Mechanistically, EIF2AK4 depletion suppressed the LF82-induced ATF4 binding to promoters of several autophagy genes including MAP1LC3B, BECN1, SQSTM1, ATG3 and ATG7, and this subsequently inhibited transcription of these genes. LF82 infection of wild-type (WT), but not eif2ak4−/−, mice activated the EIF2AK4-EIF2A-ATF4 pathway, inducing autophagy gene transcription and autophagy response in enterocytes. Consequently, eif2ak4−/− mice exhibited increased intestinal colonization by LF82 bacteria and aggravated inflammation compared to WT mice. Activation of the EIF2AK4-EIF2A-ATF4 pathway was observed in ileal biopsies from patients with noninflamed CD, and this was suppressed in inflamed CD, suggesting that a defect in the activation of this pathway could be one of the mechanisms contributing to active disease. In conclusion, we show that activation of the EIF2AK4-EIF2A-ATF4 pathway upon AIEC infection serves as a host defense mechanism to induce functional autophagy to control AIEC intracellular replication. PMID:26986695

  16. Characterization of non-Shiga-toxin-producing Escherichia coli O157 strains isolated from dogs.

    PubMed

    Bentancor, A; Vilte, D A; Rumi, M V; Carbonari, C C; Chinen, I; Larzábal, M; Cataldi, A; Mercado, E C

    2010-01-01

    Shiga toxin-negative Escherichia coli O157 strains of various H types have been associated with diarrhea in children and are considered potentially pathogenic for humans. In this study, we describe non-Shiga toxin-producing E. coli O157 E. coli strains previously obtained from dogs in Argentina. Different E. coli phylogenetic lineages corresponding to flagellar types H16, H29 and H45 were identified. E. coli serotypes O157:H16 and O157:H45 contained intimin subtypes epsilon and alpha 1, respectively. Serotype O157:H45 carried the bfp gene encoding the bundle-forming pilus. Localized adherence-like patterns to HEp-2 cells were observed in O157:H16 strains, while O157:H45 adhered in a typical localized pattern. A total of eight different XbaI-pulse field electrophoresis patterns with more than 74 % similarity were identified among the nine E. coli O157:H16 strains. Our data emphasized the fact that dogs may harbor human pathogenic E. coli O157 which do not correspond to Shiga toxin-producing strains and whose potential human health hazard should not be underestimated. PMID:20461294

  17. The Escherichia coli Peripheral Inner Membrane Proteome*

    PubMed Central

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios

    2013-01-01

    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with

  18. The N-degradome of Escherichia coli

    PubMed Central

    Humbard, Matthew A.; Surkov, Serhiy; De Donatis, Gian Marco; Jenkins, Lisa M.; Maurizi, Michael R.

    2013-01-01

    The N-end rule is a conserved mechanism found in Gram-negative bacteria and eukaryotes for marking proteins to be degraded by ATP-dependent proteases. Specific N-terminal amino acids (N-degrons) are sufficient to target a protein to the degradation machinery. In Escherichia coli, the adaptor ClpS binds an N-degron and delivers the protein to ClpAP for degradation. As ClpS recognizes N-terminal Phe, Trp, Tyr, and Leu, which are not found at the N terminus of proteins translated and processed by the canonical pathway, proteins must be post-translationally modified to expose an N-degron. One modification is catalyzed by Aat, an enzyme that adds leucine or phenylalanine to proteins with N-terminal lysine or arginine; however, such proteins are also not generated by the canonical protein synthesis pathway. Thus, the mechanisms producing N-degrons in proteins and the frequency of their occurrence largely remain a mystery. To address these issues, we used a ClpS affinity column to isolate interacting proteins from E. coli cell lysates under non-denaturing conditions. We identified more than 100 proteins that differentially bound to a column charged with wild-type ClpS and eluted with a peptide bearing an N-degron. Thirty-two of 37 determined N-terminal peptides had N-degrons. Most of the proteins were N-terminally truncated by endoproteases or exopeptidases, and many were further modified by Aat. The identities of the proteins point to possible physiological roles for the N-end rule in cell division, translation, transcription, and DNA replication and reveal widespread proteolytic processing of cellular proteins to generate N-end rule substrates. PMID:23960079

  19. Biocontrol of Escherichia coli O157

    PubMed Central

    Boyacioglu, Olcay; Sharma, Manan; Sulakvelidze, Alexander; Goktepe, Ipek

    2013-01-01

    The effect of a bacteriophage cocktail (EcoShield™) that is specific against Escherichia coli O157:H7 was evaluated against a nalidixic acid-resistant enterohemorrhagic E. coli O157:H7 RM4407 (EHEC) strain on leafy greens stored under either (1) ambient air or (2) modified atmosphere (MA; 5% O2/35% CO2/60% N2). Pieces (~2 × 2 cm2) of leafy greens (lettuce and spinach) inoculated with 4.5 log CFU/cm2 EHEC were sprayed with EcoShield™ (6.5 log PFU/cm2). Samples were stored at 4 or 10°C for up to 15 d. On spinach, the level of EHEC declined by 2.38 and 2.49 log CFU/cm2 at 4 and 10°C, respectively, 30 min after phage application (p ≤ 0.05). EcoShield™ was also effective in reducing EHEC on the surface of green leaf lettuce stored at 4°C by 2.49 and 3.28 log units in 30 min and 2 h, respectively (p ≤ 0.05). At 4°C under atmospheric air, the phage cocktail significantly (p ≤ 0.05) lowered the EHEC counts in one day by 1.19, 3.21 and 3.25 log CFU/cm2 on spinach, green leaf and romaine lettuce, respectively compared with control (no bacteriophage) treatments. When stored under MA at 4°C, phages reduced (p ≤ 0.05) EHEC populations by 2.18, 3.50 and 3.13 log CFU/cm2, on spinach, green leaf and romaine lettuce. At 10°C, EHEC reductions under atmospheric air storage were 1.99, 3.90 and 3.99 log CFU/cm2 (p ≤ 0.05), while population reductions under MA were 3.08, 3.89 and 4.34 logs on spinach, green leaf and romaine lettuce, respectively, compared with controls (p ≤ 0.05). The results of this study showed that bacteriophages were effective in reducing the levels of E. coli O157:H7 on fresh leafy produce, and that the reduction was further improved when produce was stored under the MA conditions. PMID:23819107

  20. A DNA structural atlas for Escherichia coli.

    PubMed

    Pedersen, A G; Jensen, L J; Brunak, S; Staerfeldt, H H; Ussery, D W

    2000-06-16

    We have performed a computational analysis of DNA structural features in 18 fully sequenced prokaryotic genomes using models for DNA curvature, DNA flexibility, and DNA stability. The structural values that are computed for the Escherichia coli chromosome are significantly different from (and generally more extreme than) that expected from the nucleotide composition. To aid this analysis, we have constructed tools that plot structural measures for all positions in a long DNA sequence (e.g. an entire chromosome) in the form of color-coded wheels (http://www.cbs.dtu. dk/services/GenomeAtlas/). We find that these "structural atlases" are useful for the discovery of interesting features that may then be investigated in more depth using statistical methods. From investigation of the E. coli structural atlas, we discovered a genome-wide trend, where an extended region encompassing the terminus displays a high of level curvature, a low level of flexibility, and a low degree of helix stability. The same situation is found in the distantly related Gram-positive bacterium Bacillus subtilis, suggesting that the phenomenon is biologically relevant. Based on a search for long DNA segments where all the independent structural measures agree, we have found a set of 20 regions with identical and very extreme structural properties. Due to their strong inherent curvature, we suggest that these may function as topological domain boundaries by efficiently organizing plectonemically supercoiled DNA. Interestingly, we find that in practically all the investigated eubacterial and archaeal genomes, there is a trend for promoter DNA being more curved, less flexible, and less stable than DNA in coding regions and in intergenic DNA without promoters. This trend is present regardless of the absolute levels of the structural parameters, and we suggest that this may be related to the requirement for helix unwinding during initiation of transcription, or perhaps to the previously observed

  1. Routes for fructose utilization by Escherichia coli.

    PubMed

    Kornberg, H L

    2001-07-01

    There are three main routes for the utilization of fructose by Escherichia coli. One (Route A) predominates in the growth of wild-type strains. It involves the functioning of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) and a fructose operon, mapping at min. 48.7, containing genes for a membrane-spanning protein (fruA), a 1-phosphofructose kinase (fruK) and a diphosphoryl transfer protein (fruB), under negative regulation by a fruR gene mapping at min. 1.9. A second route (Route B) also involves the PTS and membrane-spanning proteins that recognize a variety of sugars possessing the 3,4,5-D-arabino-hexoseconfiguration but with primary specificity for mannose(manXYZ), mannitol (mtlA) and glucitol (gutA) and which, if over-produced, can transport also fructose. A third route (Route C), functioning in mutants devoid of Routes A and B, does not involve the PTS: fructose diffuses into the cell via an isoform (PtsG-F) of the major glucose permease of the PTS and is then phosphorylated by ATP and a manno(fructo)kinase (Mak+) specified by a normally cryptic 1032 bp ORF (yajF) of hitherto unknown function (Mak-o), mapping at min. 8.8 and corresponding to a peptide of 344 amino acids. Conversion of the Mak-o to the Mak+ phenotypeinvolves an A24D mutation in a putative regulatory region. PMID:11361065

  2. Genotoxicity of Graphene in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Sharma, Ananya

    Rapid advances in nanotechnology necessitate assessment of the safety of nanomaterials in the resulting products and applications. One key nanomaterial attracting much interest in many areas of science and technology is graphene. Graphene is a one atom thick carbon allotrope arranged in a two-dimensional honeycomb lattice. In addition to being extremely thin, graphene has several extraordinary physical properties such as its exceptional mechanical strength, thermal stability, and high electrical conductivity. Graphene itself is relatively chemically inert and therefore pristine graphene must undergo a process called functionalization, which is combination of chemical and physical treatments that change the properties of graphene, to make it chemically active. Functionalization of graphene is of crucial importance as the end application of graphene depends on proper functionalization. In the field of medicine, graphene is currently a nanomaterial of high interest for building biosensors, DNA transistors, and probes for cancer detection. Despite the promising applications of graphene in several areas of biomedicine, there have been only few studies in recent years that focus on evaluating cytotoxicity of graphene on cells, and almost no studies that investigate how graphene exposure affects cellular genetic material. Therefore, in this study we used a novel approach to evaluate the genotoxicity, i.e., the effects of graphene on DNA, using Escherichia coli as a prokaryotic model organism.

  3. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  4. Energetics of glycylglycine transport in Escherichia coli.

    PubMed

    Cowell, J L

    1974-10-01

    The transport system for glycylglycine in Escherichia coli behaves like a shock-sensitive transport system. The initial rate of transport is reduced 85% by subjecting whole cells to osmotic shock, and glycylglycine is not transported by membrane vesicles. The energetics of transport was studied with strain ML 308-225 and its mutant DL-54, which is deficient in Ca(2+)- and Mg(2+)-stimulated adenosine 5'-triphosphatase (EC 3.6.1.3) activity. It is concluded that active transport of glycylglycine, like other shock-sensitive transport systems, has an obligatory requirement for phosphate bond energy, but not for respiration or the energized state of the membrane. The major evidence for this conclusion is as follows. (i) Uptake of glycylglycine is severely inhibited by arsenate. (ii) Oxidizable energy sources such as d-lactate, succinate, and ascorbate, which is mediated by N-methylphenazinium methylsulfate, cannot serve as energy sources for the transport of glycylglycine in DL-54, which lacks oxidative phosphorylation. (iii) When energy is supplied only from adenosine-5'-triphosphate produced by glycolysis (anaerobic transport assays with glucose as the energy source in DL-54), substantial uptake of glycylglycine is observed. (iv) When the Ca(2+)-Mg(2+)-adenosine triphosphatase activity is absent but substrate-level phosphorylations and electron transport are operating (glucose as the energy source in DL-54), transport of glycylglycine shows significant resistance to the uncouplers, dinitrophenol and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. PMID:4278690

  5. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  6. Colonization factors of enterotoxigenic Escherichia coli.

    PubMed

    Madhavan, T P Vipin; Sakellaris, Harry

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of life-threatening diarrheal disease around the world. The major aspects of ETEC virulence are colonization of the small intestine and the secretion of enterotoxins which elicit diarrhea. Intestinal colonization is mediated, in part, by adhesins displayed on the bacterial cell surface. As colonization of the intestine is the critical first step in the establishment of an infection, it represents a potential point of intervention for the prevention of infections. Therefore, colonization factors (CFs) have been important subjects of research in the field of ETEC virulence. Research in this field has revealed that ETEC possesses a large array of serologically distinct CFs that differ in composition, structure, and function. Most ETEC CFs are pili (fimbriae) or related fibrous structures, while other adhesins are simple outer membrane proteins lacking any macromolecular structure. This chapter reviews the genetics, structure, function, and regulation of ETEC CFs and how such studies have contributed to our understanding of ETEC virulence and opened up potential opportunities for the development of preventive and therapeutic interventions. PMID:25596032

  7. ESCHERICHIA COLI Gene Induction by Alkylation Treatment

    PubMed Central

    Volkert, Michael R.; Nguyen, Dinh C.; Beard, K. Christopher

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased β-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes. PMID:3080354

  8. Incomplete flagellar structures in Escherichia coli mutants.

    PubMed Central

    Suzuki, T; Komeda, Y

    1981-01-01

    Escherichia coli mutants with defects in 29 flagellar genes identified so far were examined by electron microscopy for possession of incomplete flagellar structures in membrane-associated fractions. The results are discussed in consideration of the known transcriptional interaction of flagellar genes. Hook-basal body structures were detected in flaD, flaS, flaT, flbC, and hag mutants. The flaE mutant had a polyhook-basal body structure. An intact basal body appeared in flaK mutants. Putative precursors of the basal body were detected in mutants with defects in flaM, flaU, flaV, and flaY. No structures homologous to the flagellar basal body or its parts were detected in mutants with defects in flaA, flaB, flaC, flaG, flaH, flaI, flaL, flaN, flaO, flaP, flaQ, flaR, flaW, flaX, flbA, flbB, and flbD. One flaZ mutant had an incomplete flagellar basal body structure and another formed no significant structure, suggesting that flaZ is responsible for both basal body assembly and the transcription of the hag gene. Images PMID:7007337

  9. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1986-03-01

    The purpose of this project is to elucidate the way in which the fermentative synthesis of ethanol is regulated in the facultative anaerobe Escherichia coli. Focus is on the two final steps in alcohol synthesis, which are catalyzed by alcohol dehydrogenase and acetaldehyde CoA dehydrogenase. We have isolated a series of mutations affecting the expression of these enzymes. Some of these mutations are in the structural genes for these enzymes; others affect the regulation of the adh operon. We have recently cloned the genes coding for these enzymes and are now studying the effect of multiple copies of the adh gene on fermentative growth and its regulation. A recently invented technique, proton suicide has allowed the selection of a variety of novel mutants affecting fermentation which are presently being characterized. We have isolated a comprehensive collection of operon fusions in which the lacZ structural gene is fused to promoters that are inactive aerobically but active anaerobically. Although these genes (like adh) are only expressed under anaerobic conditions, the level of induction varies from two-fold to nearly 100-fold. The nitrogen source, medium pH, nature of the buffer, presence of alternative electron acceptors (e.g., nitrate), and other factors exert a great effect on the expression of many of these genes. In the near future we will investigate control mechanisms common to the adh operon and other anaerobically regulated genes.

  10. Kasugamycin-dependent mutants of Escherichia coli.

    PubMed Central

    Dabbs, E R

    1978-01-01

    Kasugamycin-dependent mutants have been isolated from Escherichia coli B. They were obtained through mutagenesis with ethyl methane sulfonate or nitrosoguanidine in conjunction with an antibiotic underlay technique. In the case of nitrosoguanidine, dependent mutants were obtained at a frequency of about 3% of survivors growing up in the selection. In the case of ethyl methane sulfonate, the corresponding value was 1%. Nineteen mutants showing a kasugamycin-dependent phenotype were studied. In terms of response to various temperatures and antibiotic concentrations, they were very heterogeneous, although most fell into two general classes. Genetic analysis indicated that in at least some cases, the kasugamycin-dependent phenotype was the product of two mutations. Two-dimensional gel electropherograms revealed alterations in the ribosomal proteins of seven mutants. One mutant had an alteration in protein S13, and one had an alteration in protein L14. Three showed changes in protein S9. Each of two mutants had changes in two proteins, S18 and L11. Three of these mutants additionally had protein S18 occurring in a partly altered, partly unaltered form. Images PMID:363701

  11. The Escherichia coli divisome: born to divide.

    PubMed

    Natale, Paolo; Pazos, Manuel; Vicente, Miguel

    2013-12-01

    Septation in Escherichia coli involves complex molecular mechanisms that contribute to the accuracy of bacterial division. The proto-ring, a complex made up by the FtsZ, FtsA and ZipA proteins, forms at the beginning of the process and directs the assembly of the full divisome. Central to this complex is the FtsZ protein, a GTPase able to assemble into a ring-like structure that responds to several modulatory inputs including mechanisms to position the septum at midcell. The connection with the cell wall synthesising machinery stabilizes the constriction of the cytoplasmic membrane. Although a substantial amount of evidence supports this description, many details on how individual divisome elements are structured or how they function are subjected to controversial interpretations. We discuss these discrepancies arising from incomplete data and from technical difficulties imposed by the small size of bacteria. Future work, including more powerful imaging and reconstruction technologies, will help to clarify the missing details on the architecture and function of the bacterial division machinery. PMID:23962168

  12. EFFECT OF MANURE ON ESCHERICHIA COLI ATTACHMENT TO SOIL FRACTIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli are commonly used as indicators of fecal contamination in the environment. Attachment of bacteria to soil and sediment is an important retardation factor of bacterial transport with runoff water. Despite the fact that E. coli are derived exclusively from feces/manure, the effect of ...

  13. Complete Genome Sequence of Enterotoxigenic Escherichia coli Myophage Murica

    PubMed Central

    Wilder, Joseph N.; Lancaster, Jacob C.; Cahill, Jesse L.; Rasche, Eric S.

    2015-01-01

    Murica is an rv5-like myophage that infects enterotoxigenic Escherichia coli. Pathogenic E. coli strains are responsible for many intestinal diseases, and phages that infect these bacteria may prove useful in preventing severe health issues. The following is a report of the complete genome sequence of Murica and its important features. PMID:26430048

  14. Complete Genome Sequence of Enterotoxigenic Escherichia coli Myophage Murica.

    PubMed

    Wilder, Joseph N; Lancaster, Jacob C; Cahill, Jesse L; Rasche, Eric S; Kuty Everett, Gabriel F

    2015-01-01

    Murica is an rv5-like myophage that infects enterotoxigenic Escherichia coli. Pathogenic E. coli strains are responsible for many intestinal diseases, and phages that infect these bacteria may prove useful in preventing severe health issues. The following is a report of the complete genome sequence of Murica and its important features. PMID:26430048

  15. Complete Draft Genome Sequence of Escherichia coli JF733

    PubMed Central

    Kleiner, Gabriele R. M.; Wibberg, Daniel; Winkler, Anika; Wertz, John E.; Friehs, Karl

    2016-01-01

    Escherichia coli JF733 is a strain with a long history in research on membrane proteins and processes. However, tracing back the strain development raises some questions concerning the correct genotype of JF733. Here, we present the complete draft genome of E. coli JF733 in order to resolve any remaining uncertainties. PMID:27103723

  16. Molecular Serotyping of Escherichia coli O111:H8

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate Escherichia coli serotyping is critical for pathogen diagnosis and surveillance of non-O157 shiga-toxigenic strains, however, few laboratories have this capacity. The molecular serotyping protocol described in this paper targets the somatic and flagellar antigens of E. coli O111:H8 used in...

  17. Properties and Transport Behavior among 12 Different Environmental Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli is a commonly used indicator organism for detecting the presence of fecal-borne pathogenic microorganisms in water supplies. The importance of E. coli as an indicator organism has led to numerous studies looking at cell properties and transport behavior of this microorganism. In man...

  18. Complete Draft Genome Sequence of Escherichia coli JF733.

    PubMed

    Kleiner, Gabriele R M; Wibberg, Daniel; Winkler, Anika; Kalinowski, Jörn; Wertz, John E; Friehs, Karl

    2016-01-01

    ITALIC! Escherichia coliJF733 is a strain with a long history in research on membrane proteins and processes. However, tracing back the strain development raises some questions concerning the correct genotype of JF733. Here, we present the complete draft genome of ITALIC! E. coliJF733 in order to resolve any remaining uncertainties. PMID:27103723

  19. Draft Genome Sequence of Uropathogenic Escherichia coli Strain NB8.

    PubMed

    Weng, Xing-Bei; Mi, Zu-Huang; Wang, Chun-Xin; Zhu, Jian-Ming

    2016-01-01

    Escherichia coli NB8 is a clinical pyelonephritis isolate. Here, we report the draft genome sequence of uropathogenic E. coli NB8, which contains drug resistance genes encoding resistance to beta-lactams, aminoglycosides, quinolones, macrolides, colistin, sulfonamide-trimethoprim, and tetracycline. NB8 infects the kidney and bladder, making it an important tool for studying E. coli pathogenesis. PMID:27609920

  20. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly.

    PubMed

    Lapaquette, Pierre; Glasser, Anne-Lise; Huett, Alan; Xavier, Ramnik J; Darfeuille-Michaud, Arlette

    2010-01-01

    Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells. Recent genome-wide association studies have highlighted the autophagy pathway as being associated with CD risk. In the present study we investigated whether defects in autophagy enhance replication of commensal and pathogenic Escherichia coli and CD-associated AIEC. We show that functional autophagy limits intracellular AIEC replication and that a subpopulation of the intracellular bacteria is located within LC3-positive autophagosomes. In IRGM and ATG16L1 deficient cells intracellular AIEC LF82 bacteria have enhanced replication. Surprisingly autophagy deficiency did not interfere with the ability of intracellular bacteria to survive and/or replicate for any other E. coli strains tested, including non-pathogenic, environmental, commensal, or pathogenic strains involved in gastro enteritis. Together these findings demonstrate a central role for autophagy restraining Adherent-Invasive E. coli strains associated with ileal CD. AIEC infection in patients with polymorphisms in autophagy genes may have a significant impact on the outcome of intestinal inflammation. PMID:19747213

  1. Soil solarization reduces Escherichia coli O157:H7 and total Escherichia coli on cattle feedlot pen surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedlot pen soils are a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM)....

  2. Inactivation of Escherichia coli O157:H7 and Escherichia coli 8739 in apple juice by pulsed electric fields.

    PubMed

    Evrendilek, G A; Zhang, Q H; Richter, E R

    1999-07-01

    The effect of high voltage pulsed electric field (PEF) treatment on Escherichia coli O157:H7 and generic E. coli 8739 in apple juice was investigated. Fresh apple juice samples inoculated with E. coli O157:H7 and E. coli 8739 were treated by PEF with selected parameters including electric field strength, treatment time, and treatment temperature. Samples were exposed to bipolar pulses with electric field strengths of 30, 26, 22, and 18 kV/cm and total treatment times of 172, 144, 115, and 86 micros. A 5-log reduction in both cultures was determined by a standard nonselective medium spread plate laboratory procedure. Treatment temperature was kept below 35 degrees C. Results showed no difference in the sensitivities of E. coli O157:H7 and E. coli 8739 against PEF treatment. PEF is a promising technology for the inactivation of E. coli O157:H7 and E. coli 8739 in apple juice. PMID:10419274

  3. Binding of diarrheagenic Escherichia coli to 32- to 33-kilodalton human intestinal brush border proteins.

    PubMed Central

    Manjarrez-Hernandez, A; Gavilanes-Parra, S; Chavez-Berrocal, M E; Molina-Lopez, J; Cravioto, A

    1997-01-01

    We have detected human intestinal brush border proteins to which Escherichia coli strains adhere by means of a blotting-nitrocellulose method in which the binding of radiolabeled bacteria to sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated intestinal cell membranes was evaluated. The brush border fraction contained several polypeptides that bound only adherent E. coli strains. The most prominent and consistent of these proteins had apparent molecular masses of 32 to 33 kDa. Additional polypeptides ranging from 50 to 70, from 105 to 130, and from 180 to 200 kDa were also recognized by adherent E. coli strains, although with less intensity (in accordance with the number of bound bacteria to these polypeptides). Independently of the pattern of adherence (localized [LA], diffuse [DA], or aggregative [AggA]) all HEp-2-adhering strains recognized, with different intensities, the 32- to 33-kDa brush border proteins, whereas nonadhesive strains did not. The relative avidity of an LA strain to bind to the 32- to 33-kDa proteins was approximately seven- and sixfold higher than the binding of strains with aggregative and diffuse adherence, respectively. Thus, it is reasonable to think that LA, DA, and AggA strains have a common adhesin that mediates binding to the 32- to 33-kDa bands. Inhibition experiments using HEp-2 cells demonstrated that isolated 32- to 33-kDa proteins or specific antiserum blocked preferentially bacterial adherence of the LA pattern. Delipidization and protein digestion of the human brush borders confirmed that E. coli bound to structures of a proteinaceous nature. Deglycosylation studies and sodium meta-periodate oxidation of the intestinal cell membranes decreased bacterial binding activity significantly, indicating that E. coli bound to carbohydrate moieties in the glycoproteins. These results suggest that binding of E. coli strains, mainly of the LA phenotype, to the 32- to 33-kDa proteins could play a role in colonization through

  4. Systematic Mutagenesis of the Escherichia coli Genome†

    PubMed Central

    Kang, Yisheng; Durfee, Tim; Glasner, Jeremy D.; Qiu, Yu; Frisch, David; Winterberg, Kelly M.; Blattner, Frederick R.

    2004-01-01

    A high-throughput method has been developed for the systematic mutagenesis of the Escherichia coli genome. The system is based on in vitro transposition of a modified Tn5 element, the Sce-poson, into linear fragments of each open reading frame. The transposon introduces both positive (kanamycin resistance) and negative (I-SceI recognition site) selectable markers for isolation of mutants and subsequent allele replacement, respectively. Reaction products are then introduced into the genome by homologous recombination via the λRed proteins. The method has yielded insertion alleles for 1976 genes during a first pass through the genome including, unexpectedly, a number of known and putative essential genes. Sce-poson insertions can be easily replaced by markerless mutations by using the I-SceI homing endonuclease to select against retention of the transposon as demonstrated by the substitution of amber and/or in-frame deletions in six different genes. This allows a Sce-poson-containing gene to be specifically targeted for either designed or random modifications, as well as permitting the stepwise engineering of strains with multiple mutations. The promiscuous nature of Tn5 transposition also enables a targeted gene to be dissected by using randomly inserted Sce-posons as shown by a lacZ allelic series. Finally, assessment of the insertion sites by an iterative weighted matrix algorithm reveals that these hyperactive Tn5 complexes generally recognize a highly degenerate asymmetric motif on one end of the target site helping to explain the randomness of Tn5 transposition. PMID:15262929

  5. The Melibiose Transporter of Escherichia coli

    PubMed Central

    Fuerst, Oliver; Lin, Yibin; Granell, Meritxell; Leblanc, Gérard; Padrós, Esteve; Lórenz-Fonfría, Víctor A.; Cladera, Josep

    2015-01-01

    We examine the role of Lys-377, the only charged residue in helix XI, on the functional mechanism of the Na+-sugar melibiose symporter from Escherichia coli. Intrinsic fluorescence, FRET, and Fourier transform infrared difference spectroscopy reveal that replacement of Lys-377 with either Cys, Val, Arg, or Asp disables both Na+ and melibiose binding. On the other hand, molecular dynamics simulations extending up to 200–330 ns reveal that Lys-377 (helix XI) interacts with the anionic side chains of two of the three putative ligands for cation binding (Asp-55 and Asp-59 in helix II). When Asp-59 is protonated during the simulations, Lys-377 preferentially interacts with Asp-55. Interestingly, when a Na+ ion is positioned in the Asp-55-Asp-59 environment, Asp-124 in helix IV (a residue essential for melibiose binding) reorients and approximates the Asp-55-Asp-59 pair, and all three acidic side chains act as Na+ ligands. Under these conditions, the side chain of Lys-377 interacts with the carboxylic moiety of these three Asp residues. These data highlight the crucial role of the Lys-377 residue in the spatial organization of the Na+ binding site. Finally, the analysis of the second-site revertants of K377C reveals that mutation of Ile-22 (in helix I) preserves Na+ binding, whereas that of melibiose is largely abolished according to spectroscopic measurements. This amino acid is located in the border of the sugar-binding site and might participate in sugar binding through apolar interactions. PMID:25971963

  6. Routes of quinolone permeation in Escherichia coli.

    PubMed Central

    Chapman, J S; Georgopapadakou, N H

    1988-01-01

    The uptake of quinolone antibiotics by Escherichia coli was investigated by using fleroxacin (RO 23-6240, AM 833) as a prototype compound. The uptake of fleroxacin was reduced and its MIC was increased in the presence of magnesium. Quinolones induced lipopolysaccharide release, increased cell-surface hydrophobicity and outer membrane permeability to B-lactams, and sensitized cells to lysis by detergents. These effects were also antagonized by magnesium and were very similar to those seen with EDTA and gentamicin. MICs of quinolones in portin-deficient strains were increased relative to those of the parent strain, consistent with a porin pathway of entry. However, MICs were further increased in the presence of magnesium; the size of the additional increase showed a positive correlation with quinolone hydrophobicity in an OmpF- OmpC- OmpA- strain. When quinolones were mixed with divalent cations in solution, changes in quinolone fluorescence suggestive of metal chelation were observed. The addition of fleroxacin to a cell suspension resulted in a rapid initial association of fluorescence with cells, followed by a brief decrease and a final time-dependent linear increase in cell-associated fluorescence. We interpret these results as representing chelation of outer membrane-bound magnesium by fleroxacin and other quinolones, dissociation of the quinolone-magnesium complex from the outer membrane, and diffusion of the quinolone through both porins and exposed lipid domains on the outer membrane. For a given quinolone, the contribution of the porin and nonporin pathways to total uptake is influenced by the hydrophobicity of the quinolone. PMID:3132091

  7. Serogroups of Escherichia coli from drinking water.

    PubMed

    Ramteke, P W; Tewari, Suman

    2007-07-01

    Fifty seven isolates of thermotolerant E. coli were recovered from 188 drinking water sources, 45 (78.9%) were typable of which 15 (26.3%) were pathogenic serotypes. Pathogenic serogroup obtained were 04 (Uropathogenic E. coli, UPEC), 025 (Enterotoxigenic E. coli, ETEC), 086 (Enteropathogenic E. coli, EPEC), 0103 (Shiga-toxin producing E. coli, STEC), 0157 (Shiga-toxin producing E. coli, STEC), 08 (Enterotoxigenic E. coli, ETEC) and 0113 (Shiga-toxin producing E. coli, STEC). All the pathogenic serotypes showed resistance to bacitracin and multiple heavy metal ions. Resistance to streptomycin and cotrimazole was detected in two strains whereas resistance to cephaloridine, polymixin-B and ampicillin was detected in one strain each. Transfer of resistances to drugs and metallic ions was observed in 9 out of 12 strains studied. Resistances to bacitracin were transferred in all nine strains. Among heavy metals resistance to As(3+) followed by Cr(6+) were transferred more frequently. PMID:17057960

  8. Rapid Sterilization of Escherichia coli by Solution Plasma Process

    NASA Astrophysics Data System (ADS)

    Andreeva, Nina; Ishizaki, Takahiro; Baroch, Pavel; Saito, Nagahiro

    2012-12-01

    Solution plasma (SP), which is a discharge in the liquid phase, has the potential for rapid sterilization of water without chemical agents. The discharge showed a strong sterilization performance against Escherichia coli bacteria. The decimal value (D value) of the reduction time for E. coli by this system with an electrode distance of 1.0 mm was estimated to be approximately 1.0 min. Our discharge system in the liquid phase caused no physical damage to the E. coli and only a small increase in the temperature of the aqueous solution. The UV light generated by the discharge was an important factor in the sterilization of E. coli.

  9. Serological cross-reactions between Escherichia coli O157 and other species of the genus Escherichia.

    PubMed

    Rice, E W; Sowers, E G; Johnson, C H; Dunnigan, M E; Strockbine, N A; Edberg, S C

    1992-05-01

    The antigenic relatedness of Escherichia coli O157 and four sorbitol-negative species of the genus Escherichia was examined. Isolates of Escherichia hermannii, E. fergusonii, E. vulneris, and E. blattae were tested in the tube agglutination assay by using polyclonal antisera and in the slide agglutination assay by using latex reagents. Only four isolates (17%) of E. hermannii exhibited serological cross-reactivity. PMID:1583138

  10. Serological cross-reactions between Escherichia coli O157 and other species of the genus Escherichia.

    PubMed Central

    Rice, E W; Sowers, E G; Johnson, C H; Dunnigan, M E; Strockbine, N A; Edberg, S C

    1992-01-01

    The antigenic relatedness of Escherichia coli O157 and four sorbitol-negative species of the genus Escherichia was examined. Isolates of Escherichia hermannii, E. fergusonii, E. vulneris, and E. blattae were tested in the tube agglutination assay by using polyclonal antisera and in the slide agglutination assay by using latex reagents. Only four isolates (17%) of E. hermannii exhibited serological cross-reactivity. PMID:1583138