Sample records for adhesion molecule e-cadherin

  1. Changes in E-cadherin rigidity sensing regulate cell adhesion.

    PubMed

    Collins, Caitlin; Denisin, Aleksandra K; Pruitt, Beth L; Nelson, W James

    2017-07-18

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.

  2. Allosteric Regulation of E-Cadherin Adhesion.

    PubMed

    Shashikanth, Nitesh; Petrova, Yuliya I; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M; Leckband, Deborah E

    2015-08-28

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Allosteric Regulation of E-Cadherin Adhesion*

    PubMed Central

    Shashikanth, Nitesh; Petrova, Yuliya I.; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M.; Leckband, Deborah E.

    2015-01-01

    Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120ctn, increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120ctn dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120ctn dephosphorylation. PMID:26175155

  4. Changes in E-cadherin rigidity sensing regulate cell adhesion

    PubMed Central

    Collins, Caitlin; Pruitt, Beth L.; Nelson, W. James

    2017-01-01

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion. PMID:28674019

  5. Low-expression of E-cadherin in leukaemia cells causes loss of homophilic adhesion and promotes cell growth.

    PubMed

    Rao, Qing; Wang, Ji-Ying; Meng, Jihong; Tang, Kejing; Wang, Yanzhong; Wang, Min; Xing, Haiyan; Tian, Zheng; Wang, Jianxiang

    2011-09-01

    E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.

  6. Human Langerhans cells express E-cadherin.

    PubMed

    Blauvelt, A; Katz, S I; Udey, M C

    1995-02-01

    Murine Langerhans cells (LC) synthesize and express E-cadherin, a Ca(++)-dependent homophilic cell adhesion molecule that mediates LC-keratinocyte (KC) binding in vitro. In vivo, E-cadherin expression by LC may promote localization and persistence of LC within the epidermis through LC-KC adhesion. In addition, changes in LC E-cadherin expression or affinity may be an important factor in the egress of LC from the epidermis after exposure to antigen. The aim of the present study was to determine if human LC also express E-cadherin. Suction blister roofs were obtained from normal volunteers and epidermal cell (EC) suspensions were prepared by limited trypsinization in the presence of 1 mM Ca++. EC were then incubated with antibodies to E-cadherin and CD1a or HLA-DR, and examined by two-color analytical flow cytometry or immunofluorescence microscopy. Most (82.9% +/- 7.4% [mean +/- SD], range 67-89%, n = 7) freshly prepared human LC expressed E-cadherin, as did the majority of KC. The amount of E-cadherin (as determined by mean fluorescence intensity) expressed by LC and KC was similar. Trypsin/EDTA treatment of freshly prepared EC abrogated expression of E-cadherin by LC and KC, whereas E-cadherin was not degraded by trypsin in the presence of Ca++. LC expressed lower levels of E-cadherin after 3 d in culture. Thus, human LC, like murine LC, express the homophilic adhesion molecule E-cadherin, which may be important in establishing and maintaining interactions between LC and KC in mammalian epidermis.

  7. Molecular cloning of a human Ca2+-dependent cell-cell adhesion molecule homologous to mouse placental cadherin: its low expression in human placental tissues

    PubMed Central

    1989-01-01

    P-cadherin is a subclass of Ca2+-dependent cell-cell adhesion molecules present in mouse placenta, where its localization suggests a function of connecting the embryo to the uterus (Nose, A., and M. Takeichi. 1986. J. Cell Biol. 103:2649-2658). We recently identified a human cadherin detected by an mAb capable of disrupting cell-cell adhesion of A-431 cells, and found that it was closely related immunochemically to mouse P-cadherin. Curiously, this cadherin was undetectable in human placenta by immunohistochemical examination (Shimoyama, Y., S. Hirohashi, S. Hirano, M. Noguchi, Y. Shimosato, M. Takeichi, and O. Abe. 1989. Cancer Res. 49:2128-2133). We here report the cloning and sequencing of cDNA clone encoding the human homologue of mouse P- cadherin. The deduced amino acid sequence of the human P-cadherin consists of 829 amino acid and shows striking homology with mouse P- cadherin. On Northern blot analysis, human P-cadherin was scarcely expressed in human placenta in contrast to mouse P-cadherin, which was abundantly expressed in mouse placenta throughout pregnancy, and it was shown that E-cadherin, but not P-cadherin, was the major cadherin molecule in human placenta. Moreover, NIH3T3 cells transfected with human P-cadherin cDNA expressed the functional cadherin molecule, which was identical to the cadherin we had previously identified using the mAb, showing that this molecule really does mediate cell-cell adhesion and that the cadherin we detected immunochemically is undoubtedly human P-cadherin. The results obtained in this study support the idea that P- cadherin plays little role, if any, in Ca2+-dependent cell-cell binding in human placental tissue at least after several weeks of pregnancy. PMID:2793940

  8. Biophysics of cadherin adhesion.

    PubMed

    Leckband, Deborah; Sivasankar, Sanjeevi

    2012-01-01

    Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.

  9. E-cadherin and β-catenin adhesion proteins correlate positively with connexins in colorectal cancer

    PubMed Central

    KANCZUGA-KODA, LUIZA; WINCEWICZ, ANDRZEJ; FUDALA, ANDRZEJ; ABRYCKI, TOMASZ; FAMULSKI, WALDEMAR; BALTAZIAK, MAREK; SULKOWSKI, STANISLAW; KODA, MARIUSZ

    2014-01-01

    The majority of solid cancers present with qualitative and quantitative aberrations of adhesion proteins, including E-cadherin and β-catenin, and connexin (Cx) gap junction proteins, which is consistent with alterations in the expression and location of such proteins in neoplastic cells. Since there are no data on the correlation between adhesion proteins and Cxs in human colorectal cancer (CRC), the aim of the present study was to evaluate the expression and correlation between these proteins. Tissue specimens were obtained from 151 cases of surgically removed colorectal adenocarcinomas. The samples were examined by immunohistochemistry with the use of antibodies against E-cadherin, β-catenin and the three Cxs: Cx26, Cx32 and Cx43. The aberrant expression of the studied adhesion proteins (primarily cytoplasmic for E-cadherin and cytoplasmic and/or nuclear for β-catenin) was observed, whereas only a minority of cases revealed normal membranous distribution of the labeling. The present study is the first in the literature to reveal a correlation between the expression of E-cadherin and β-catenin and the examined Cxs in CRC in humans. The positive correlation between the Cxs, particularly Cx26 and Cx32, and the adhesive proteins occurred in patients without lymph node metastases and in the moderately differentiated tumors (G2). Such a dependency was not observed in the analysis of the correlation between Cx43 and E-cadherin. However, a positive correlation between these proteins was observed in patients with lymph nodes metastases. Additionally, a link between the expression of these adhesion proteins was observed. The present study indicates, for the first time, that the expression of adhesion proteins, E-cadherin and β-catenin, is closely associated with the expression of three studied Cxs in CRC, and that this correlation may improve an understanding of the carcinogenic process in this cancer. PMID:24932249

  10. Immunohistochemical localization of cell adhesion molecule epithelial cadherin in human arachnoid villi and meningiomas.

    PubMed

    Tohma, Y; Yamashima, T; Yamashita, J

    1992-04-01

    Cadherins are a family of intercellular glycoproteins responsible for calcium-dependent cell adhesion and are currently divided into four types: epithelial (E), neuronal (N), placental (P), and vascular (V). Since cadherins are known to be indispensable for not only morphogenesis in the embryo but also maintenance of tumor cell nest, we examined the expression of E-cadherin in 31 meningiomas (11 syncytial, 12 transitional, 8 fibroblastic) and 3 arachnoid villi by immunoblot and immunohistochemical analyses. In the immunoblot analysis, E-cadherin was detected at the main band of Mr 124,000 in all of the arachnoid villi, as well as syncytial and transitional types of meningiomas, but not in the fibroblastic type. The immunohistochemical examination showed that E-cadherin was expressed at the cell borders of syncytial and transitional types, but the expression was absent in the fibroblastic type. Immunoelectron microscopy showed that E-cadherin was localized at the intermediate junctions in arachnoid villi, while it was detected diffusely at the cell surface in meningiomas. It is suggested from these data that the expression of E-cadherin might be closely related to the differentiation and organogenesis of meningioma cells.

  11. Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling

    PubMed Central

    Nanes, Benjamin A.; Kowalczyk, Andrew P.

    2014-01-01

    Adherens junctions are important mediators of intercellular adhesion, but they are not static structures. They are regularly formed, broken, and rearranged in a variety of situations, requiring changes in the amount of cadherins, the main adhesion molecule in adherens junctions, present at the cell surface. Thus, endocytosis, degradation, and recycling of cadherins are crucial for dynamic regulation of adherens junctions and control of intercellular adhesion. In this chapter, we review the involvement of cadherin endocytosis in development and disease. We discuss the various endocytic pathways available to cadherins, the adaptors involved, and the sorting of internalized cadherin for recycling or lysosomal degradation. In addition, we review the regulatory pathways controlling cadherin endocytosis and degradation, including regulation of cadherin endocytosis by catenins, cadherin ubiquitination, and growth factor receptor signaling pathways. Lastly, we discuss the proteolytic cleavage of cadherins at the plasma membrane. PMID:22674073

  12. The Integrated Role of Wnt/β-Catenin, N-Glycosylation, and E-Cadherin-Mediated Adhesion in Network Dynamics

    PubMed Central

    Vargas, Diego A.; Sun, Meng; Sadykov, Khikmet; Kukuruzinska, Maria A.; Zaman, Muhammad H.

    2016-01-01

    The cellular network composed of the evolutionarily conserved metabolic pathways of protein N-glycosylation, Wnt/β-catenin signaling pathway, and E-cadherin-mediated cell-cell adhesion plays pivotal roles in determining the balance between cell proliferation and intercellular adhesion during development and in maintaining homeostasis in differentiated tissues. These pathways share a highly conserved regulatory molecule, β-catenin, which functions as both a structural component of E-cadherin junctions and as a co-transcriptional activator of the Wnt/β-catenin signaling pathway, whose target is the N-glycosylation-regulating gene, DPAGT1. Whereas these pathways have been studied independently, little is known about the dynamics of their interaction. Here we present the first numerical model of this network in MDCK cells. Since the network comprises a large number of molecules with varying cell context and time-dependent levels of expression, it can give rise to a wide range of plausible cellular states that are difficult to track. Using known kinetic parameters for individual reactions in the component pathways, we have developed a theoretical framework and gained new insights into cellular regulation of the network. Specifically, we developed a mathematical model to quantify the fold-change in concentration of any molecule included in the mathematical representation of the network in response to a simulated activation of the Wnt/ β-catenin pathway with Wnt3a under different conditions. We quantified the importance of protein N-glycosylation and synthesis of the DPAGT1 encoded enzyme, GPT, in determining the abundance of cytoplasmic β-catenin. We confirmed the role of axin in β-catenin degradation. Finally, our data suggest that cell-cell adhesion is insensitive to E-cadherin recycling in the cell. We validate the model by inhibiting β-catenin-mediated activation of DPAGT1 expression and predicting changes in cytoplasmic β-catenin concentration and stability

  13. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    PubMed

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  14. Paradoxical expression of E-cadherin in prostatic bone metastases.

    PubMed

    Bryden, A A; Freemont, A J; Clarke, N W; George, N J

    1999-12-01

    To determine whether the calcium-dependent cell adhesion molecule E-cadherin is expressed in metastatic deposits of prostate cancer in bone. Ten bone biopsies containing metastatic deposits of untreated prostatic cancer were obtained and immunohistochemically stained for E-cadherin with the monoclonal antibody HECD-1, using the streptavidin-biotin complex technique. Benign prostatic tissue was used as the control. Of the 10 specimens, nine showed positive expression of E-cadherin, graded as strong in four. E-cadherin expression was strongest in well-differentiated metastases and decreased with increasing tumour grade. In some specimens there were mixed patterns of expression. E-cadherin is strongly expressed in prostatic bone metastases and the degree of expression appears to reflect local tumour grade. This suggests that loss of E-cadherin expression may not be critically linked to metastatic potential.

  15. E-cadherin can replace N-cadherin during secretory-stage enamel development.

    PubMed

    Guan, Xiaomu; Bidlack, Felicitas B; Stokes, Nicole; Bartlett, John D

    2014-01-01

    N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development. The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ. The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous

  16. αE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion

    PubMed Central

    Benjamin, Jacqueline M.; Kwiatkowski, Adam V.; Yang, Changsong; Korobova, Farida; Pokutta, Sabine; Svitkina, Tatyana

    2010-01-01

    αE-catenin binds the cell–cell adhesion complex of E-cadherin and β-catenin (β-cat) and regulates filamentous actin (F-actin) dynamics. In vitro, binding of αE-catenin to the E-cadherin–β-cat complex lowers αE-catenin affinity for F-actin, and αE-catenin alone can bind F-actin and inhibit Arp2/3 complex–mediated actin polymerization. In cells, to test whether αE-catenin regulates actin dynamics independently of the cadherin complex, the cytosolic αE-catenin pool was sequestered to mitochondria without affecting overall levels of αE-catenin or the cadherin–catenin complex. Sequestering cytosolic αE-catenin to mitochondria alters lamellipodia architecture and increases membrane dynamics and cell migration without affecting cell–cell adhesion. In contrast, sequestration of cytosolic αE-catenin to the plasma membrane reduces membrane dynamics. These results demonstrate that the cytosolic pool of αE-catenin regulates actin dynamics independently of cell–cell adhesion. PMID:20404114

  17. Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism.

    PubMed

    Kudo, Shota; Caaveiro, Jose M M; Tsumoto, Kouhei

    2016-09-06

    Orderly assembly of classical cadherins governs cell adhesion and tissue maintenance. A key event is the strand-swap dimerization of the extracellular ectodomains of two cadherin molecules from apposing cells. Here we have determined crystal structures of P-cadherin in six different conformational states to elaborate a motion picture of its adhesive dimerization at the atomic level. The snapshots revealed that cell-adhesive dimerization is facilitated by several intermediate states collectively termed X-dimer in analogy to other classical cadherins. Based on previous studies and on the combined structural, kinetic, thermodynamic, biochemical, and cellular data reported herein, we propose that the adhesive dimerization of human P-cadherin is achieved by a stepwise mechanism analogous to that of assembly chaperones. This mechanism, applicable to type I classical cadherins, confers high specificity and fast association rates. We expect these findings to guide innovative therapeutic approaches targeting P-cadherin in cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  19. Soluble fragments of e-cadherin cell-adhesion molecule increase in urinary-excretion of cancer-patients, potentially indicating its shedding from epithelial tumor-cells.

    PubMed

    Katayama, M; Hirai, S; Yasumoto, M; Nishikawa, K; Nagata, S; Otsuka, M; Kamihagi, K; Kato, I

    1994-11-01

    E-cadherin (Ecad) is well known to be a calcium-ion-dependent cell-cell adhesion molecule expressed mostly in epithelial tissues. Previous immunohistochemical studies suggested that this cell adhesion molecule acts as an invasion suppressor and is negligibly detected in cancer metastatic regions. Soluble Ecad fragments derived from the proteolysed membrane-associated form were detected in culture supernatants of two cell lines, COLO 205 and A-431, with normal distribution of cell surface Ecad. Soluble Ecad levels released into culture of COLO 205 exhibiting reduced cell-cell adhesion were apparently elevated above those of A-431 with tight cell-cell adhesion. Furthermore, human circulation and urine continuously contain soluble Ecad which consists mainly of homogeneous 75-85 kDa extracellular domains. Soluble Ecad urinary level per urinary creatinine level was found to be significantly elevated in 53% of patients suffering from various types of cancers including lung, liver, stomach, colon and rectal cancers, as compared with those in the age-matched healthy subjects. These results suggest that dysfunction of cell surface Ecad is responsible for its enhanced proteolytic shedding in tumorigenesis, which may lead to the decrease of cell surface Ecads. Furthermore, excretion of high levels of soluble Ecad fragments potentially indicates the progression of epithelial tumors excessively degrading cell surface Ecad in clinical subjects.

  20. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex.

    PubMed

    Lee, Kwangkook; Zhong, Xiaofen; Gu, Shenyan; Kruel, Anna Magdalena; Dorner, Martin B; Perry, Kay; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2014-06-20

    How botulinum neurotoxins (BoNTs) cross the host intestinal epithelial barrier in foodborne botulism is poorly understood. Here, we present the crystal structure of a clostridial hemagglutinin (HA) complex of serotype BoNT/A bound to the cell adhesion protein E-cadherin at 2.4 angstroms. The HA complex recognizes E-cadherin with high specificity involving extensive intermolecular interactions and also binds to carbohydrates on the cell surface. Binding of the HA complex sequesters E-cadherin in the monomeric state, compromising the E-cadherin-mediated intercellular barrier and facilitating paracellular absorption of BoNT/A. We reconstituted the complete 14-subunit BoNT/A complex using recombinantly produced components and demonstrated that abolishing either E-cadherin- or carbohydrate-binding of the HA complex drastically reduces oral toxicity of BoNT/A complex in vivo. Together, these studies establish the molecular mechanism of how HAs contribute to the oral toxicity of BoNT/A. Copyright © 2014, American Association for the Advancement of Science.

  1. Effects of Cd{sup 2+} on cis-dimer structure of E-cadherin in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Hiroshi, E-mail: hirotake@sapmed.ac.jp

    2014-02-21

    Highlights: • The effects of Cd on the dimer of cadherin in living cells was analyzed. • Cd induced cadherin dimer formation was not detected in living cell with low Ca. • Ca mediated structural cooperativity and allostery in the native cadherin. • Ca concentration-dependent competitive displacement of Cd from cadherin is proposed. - Abstract: E-cadherin, a calcium (Ca{sup 2+})-dependent cell–cell adhesion molecule, plays a key role in the maintenance of tissue integrity. We have previously demonstrated that E-cadherin functions in vivo as a cis-dimer through chemical cross-linking reagents. Ca{sup 2+} plays an important role in the cis-dimer formation ofmore » cadherin. However, the molecular mechanisms by which Ca{sup 2+} interacts with the binding sites that regulate cis-dimer structures have not been completely elucidated. As expected for a Ca{sup 2+} antagonist, cadmium (Cd{sup 2+}) disrupts cadherin function by displacing Ca{sup 2+} from its binding sites on the cadherin molecules. We used Cd{sup 2+} as a probe for investigating the role of Ca{sup 2+} in the dynamics of the E-cadherin extracellular region that involve cis-dimer formation and adhesion. While cell–cell adhesion assembly was completely disrupted in the presence of Cd{sup 2+}, the amount of cis-dimers of E-cadherin that formed at the cell surface was not affected. In our “Cd{sup 2+}-switch” experiments, we did not find that Cd{sup 2+}-induced E-cadherin cis-dimer formation in EL cells when they were incubated in low-Ca{sup 2+} medium. In the present study, we demonstrated for the first time the effects of Cd{sup 2+} on the cis-dimer structure of E-cadherin in living cells using a chemical cross-link analysis.« less

  2. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion.

    PubMed

    Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong

    2017-05-04

    E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking.

  3. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion

    PubMed Central

    Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong

    2017-01-01

    ABSTRACT E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking. PMID:27254775

  4. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface.

    PubMed Central

    Iino, R; Koyama, I; Kusumi, A

    2001-01-01

    Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443

  5. E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness

    PubMed Central

    Devis, Laura; Lapyckyj, Lara; Besso, María José; Llauradó, Marta; Abascal, María Florencia; Matos, María Laura; Lanau, Lucia; Castellví, Josep; Sánchez, José Luis; Pérez Benavente, Asunción; Gil-Moreno, Antonio; Reventós, Jaume; Santamaria Margalef, Anna; Rigau, Marina; Vazquez-Levin, Mónica Hebe

    2017-01-01

    Ovarian cancer (OC) is the fifth cancer death cause in women worldwide. The malignant nature of this disease stems from its unique dissemination pattern. Epithelial-to-mesenchymal transition (EMT) has been reported in OC and downregulation of Epithelial cadherin (E-cadherin) is a hallmark of this process. However, findings on the relationship between E-cadherin levels and OC progression, dissemination and aggressiveness are controversial. In this study, the evaluation of E-cadherin expression in an OC tissue microarray revealed its prognostic value to discriminate between advanced- and early-stage tumors, as well as serous tumors from other histologies. Moreover, E-cadherin, Neural cadherin (N-cadherin), cytokeratins and vimentin expression was assessed in TOV-112, SKOV-3, OAW-42 and OV-90 OC cell lines grown in monolayers and under anchorage-independent conditions to mimic ovarian tumor cell dissemination, and results were associated with cell aggressiveness. According to these EMT-related markers, cell lines were classified as mesenchymal (M; TOV-112), intermediate mesenchymal (IM; SKOV-3), intermediate epithelial (IE; OAW-42) and epithelial (E; OV-90). M- and IM-cells depicted the highest migration capacity when grown in monolayers, and aggregates derived from M- and IM-cell lines showed lower cell death, higher adhesion to extracellular matrices and higher invasion capacity than E- and IE-aggregates. The analysis of E-cadherin, N-cadherin, cytokeratin 19 and vimentin mRNA levels in 20 advanced-stage high-grade serous human OC ascites showed an IM phenotype in all cases, characterized by higher proportions of N- to E-cadherin and vimentin to cytokeratin 19. In particular, higher E-cadherin mRNA levels were associated with cancer antigen 125 levels more than 500 U/mL and platinum-free intervals less than 6 months. Altogether, E-cadherin expression levels were found relevant for the assessment of OC progression and aggressiveness. PMID:28934230

  6. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    PubMed Central

    1996-01-01

    Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein

  7. E-cadherin junction formation involves an active kinetic nucleation process

    PubMed Central

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  8. Correlation between E-cadherin-regulated cell adhesion and human osteosarcoma MG-63 cell anoikis.

    PubMed

    Lin, Ding-Sheng; Cai, Le-Yi; Ding, Jian; Gao, Wei-Yang

    2014-01-01

    The aim of this study was to investigate the relationship between cell adhesion and anoikis evasion among human osteosarcoma cells (MG-63), and to further study the molecular mechanisms. Human osteosarcoma cells (MG-63) were assessed for apoptosis, and caspase-3, E-cadherin and β-catenin expression in EDTA and control non-EDTA groups. MG-63 cells were predominantly aggregated when in suspension, and the suspended cells were more dispersed in the EDTA group. Following culture in suspension for 24 h, 48 h, or 72 h, the rates of apoptosis were 34.88%±3.64%, 59.3%±7.22% and 78.5%±5.21% in the experimental group and 7.34%±2.13%, 14.7%±3.69%, and 21.4%±3.60% in the control group, respectively. Caspase-3 expression progressively increased and E-cadherin and β-catenin were decreased in the experimental group, whereas there was no change in the control group. MG-63 cells could avoid anoikis through cell adhesion, and E-cadherin might play a role in this process.

  9. There are four dynamically and functionally distinct populations of E-cadherin in cell junctions

    PubMed Central

    Erami, Zahra; Timpson, Paul; Yao, Wu; Zaidel-Bar, Ronen; Anderson, Kurt I.

    2015-01-01

    ABSTRACT E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation. PMID:26471767

  10. E-Cadherin-Dependent Stimulation of Traction Force at Focal Adhesions via the Src and PI3K Signaling Pathways

    PubMed Central

    Jasaitis, Audrius; Estevez, Maruxa; Heysch, Julie; Ladoux, Benoit; Dufour, Sylvie

    2012-01-01

    The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior. PMID:22853894

  11. E-cadherin junction formation involves an active kinetic nucleation process

    DOE PAGES

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; ...

    2015-08-19

    Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less

  12. E-cadherin junction formation involves an active kinetic nucleation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han

    Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less

  13. DNA methylation-induced E-cadherin silencing is correlated with the clinicopathological features of melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Catalano, Teresa; Biondo, Carmelo; Beninati, Concetta; Teti, Diana; Venza, Isabella

    2016-04-01

    E-cadherin, a calcium-dependent cell-cell adhesion molecule, has an important role in epithelial cell function, maintenance of tissue architecture and cancer suppression. Loss of E-cadherin promotes tumor metastatic dissemination and predicts poor prognosis. The present study investigated the clinicopathological significance of E-cadherin expression in cutaneous, mucosal and uveal melanoma related to epigenetic mechanisms that may contribute to E-cadherin silencing. E-cadherin expression was reduced in 55/130 cutaneous (42.3%), 49/82 mucosal (59.7%) and 36/64 uveal (56.2%) melanoma samples as compared to normal skin controls and was inversely associated with promoter methylation. Of the 10 different CpG sites studied (nt 863, 865, 873, 879, 887, 892, 901, 918, 920 and 940), two sites (nt 892 and 940) were 90-100% methylated in all the melanoma specimens examined and the other ones were partially methylated (range, 53-86%). In contrast, the methylation rate of the E-cadherin gene was low in normal tissues (range, 5-24%). In all the three types of melanoma studied, a significant correlation was found between reduced levels of E-cadherin and reduced survival, high mitotic index and metastasis, accounting for the predilection of lymph nodal localization. In cutaneous and mucosal melanoma, low E-cadherin expression was positively correlated also with head/neck localization and ulceration. A high frequency of reduced E-cadherin levels occurred in choroid melanomas. In vitro experiments showed that E-cadherin transcription was restored following 5-aza-2'-deoxycytidine (5-aza-dC) treatment or DNMT1 silencing and was negatively correlated with the invasive potential of melanoma cells. The significant relationship between E-cadherin silencing and several poor prognostic factors indicates that this adhesion molecule may play an important role in melanomagenesis. Therefore, the inverse association of E-cadherin expression with promoter methylation raises the intriguing

  14. Cleavage and shedding of E-cadherin after induction of apoptosis.

    PubMed

    Steinhusen, U; Weiske, J; Badock, V; Tauber, R; Bommert, K; Huber, O

    2001-02-16

    Apoptotic cell death induces dramatic molecular changes in cells, becoming apparent on the structural level as membrane blebbing, condensation of the cytoplasm and nucleus, and loss of cell-cell contacts. The activation of caspases is one of the fundamental steps during programmed cell death. Here we report a detailed analysis of the fate of the Ca(2+)-dependent cell adhesion molecule E-cadherin in apoptotic epithelial cells and show that during apoptosis fragments of E-cadherin with apparent molecular masses of 24, 29, and 84 kDa are generated by two distinct proteolytic activities. In addition to a caspase-3-mediated cleavage releasing the cytoplasmic domain of E-cadherin, a metalloproteinase sheds the extracellular domain from the cell surface during apoptosis. Immunofluorescence analysis confirmed that concomitant with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulates in the cytosol. In the presence of inhibitors of caspase-3 and/or metalloproteinases, cleavage of E-cadherin was almost completely blocked. The simultaneous cleavage of the intracellular and extracellular domains of E-cadherin may provide a highly efficient mechanism to disrupt cadherin-mediated cell-cell contacts in apoptotic cells, a prerequisite for cell rounding and exit from the epithelium.

  15. Conformational epitopes at cadherin calcium-binding sites and p120-catenin phosphorylation regulate cell adhesion

    PubMed Central

    Petrova, Yuliya I.; Spano, MarthaJoy M.; Gumbiner, Barry M.

    2012-01-01

    We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin–catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor–induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane. PMID:22513089

  16. E-cadherin-mediated force transduction signals regulate global cell mechanics

    PubMed Central

    Muhamed, Ismaeel; Wu, Jun; Sehgal, Poonam; Kong, Xinyu; Tajik, Arash; Wang, Ning

    2016-01-01

    ABSTRACT This report elucidates an E-cadherin-based force-transduction pathway that triggers changes in cell mechanics through a mechanism requiring epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), and the downstream formation of new integrin adhesions. This mechanism operates in addition to local cytoskeletal remodeling triggered by conformational changes in the E-cadherin-associated protein α-catenin, at sites of mechanical perturbation. Studies using magnetic twisting cytometry (MTC), together with traction force microscopy (TFM) and confocal imaging identified force-activated E-cadherin-specific signals that integrate cadherin force transduction, integrin activation and cell contractility. EGFR is required for the downstream activation of PI3K and myosin-II-dependent cell stiffening. Our findings also demonstrated that α-catenin-dependent cytoskeletal remodeling at perturbed E-cadherin adhesions does not require cell stiffening. These results broaden the repertoire of E-cadherin-based force transduction mechanisms, and define the force-sensitive signaling network underlying the mechano-chemical integration of spatially segregated adhesion receptors. PMID:26966187

  17. E-cadherin in contact inhibition and cancer.

    PubMed

    Mendonsa, Alisha M; Na, Tae-Young; Gumbiner, Barry M

    2018-05-21

    E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.

  18. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    PubMed

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  19. Differences in E-Cadherin and Syndecan-1 Expression in Different Types of Ameloblastomas

    PubMed Central

    López-Verdín, Sandra; Pereira-Prado, Vanesa

    2018-01-01

    Ameloblastomas are a group of benign, locally aggressive, recurrent tumors characterized by their slow and infiltrative growth. E-Cadherin and syndecan-1 are cell adhesion molecules related to the behavior of various tumors, including ameloblastomas. Ninety-nine ameloblastoma samples were studied; the expression of E-cadherin and syndecan-1 were evaluated by immunohistochemistry. E-Cadherin and epithelial syndecan-1 were more highly expressed in intraluminal/luminal unicystic ameloblastoma than in mural unicystic ameloblastoma and solid/multicystic ameloblastoma, whereas the stromal expression of syndecan-1 was higher in mural unicystic ameloblastoma and solid/multicystic ameloblastoma. Synchronicity was observed between E-cadherin and epithelial syndecan-1; the expression was correlated with intensity in all cases. There was a strong association between expression and tumor size and recurrence. The evaluation of the expression of E-cadherin and syndecan-1 are important for determining the potential aggressiveness of ameloblastoma variants. Future studies are required to understand how the expression of these markers is related to tumor aggressiveness.

  20. Numb controls E-cadherin endocytosis through p120 catenin with aPKC

    PubMed Central

    Sato, Kazuhide; Watanabe, Takashi; Wang, Shujie; Kakeno, Mai; Matsuzawa, Kenji; Matsui, Toshinori; Yokoi, Keiko; Murase, Kiyoko; Sugiyama, Ikuko; Ozawa, Masayuki; Kaibuchi, Kozo

    2011-01-01

    Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity. PMID:21775625

  1. Protective effects of hydrogen-rich medium on lipopolysaccharide-induced monocytic adhesion and vascular endothelial permeability through regulation of vascular endothelial cadherin.

    PubMed

    Yu, Y; Wang, W N; Han, H Z; Xie, K L; Wang, G L; Yu, Y H

    2015-06-11

    We observed the effect of hydrogen-rich medium on lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs), hyaline leukocyte conglutination, and permeability of the endothelium. Endotheliocytes were inoculated on 6-well plates and randomly divided into 4 groups: control, H2, LPS, LPS+H2, H2, and LPS+H2 in saturated hydrogen-rich medium. We applied Wright's stain-ing to observe conglutination of hyaline leukocytes and HUVECs, flow cytometry to determine the content of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), enzyme-linked immunosorbent assay to measure the E-selectin concentration in the cell liquor, the transendothelial electrical resistance (TEER) to test the permeability of endothelial cells, and Western blot and immunofluorescence to test the expression and distribution of vascular endothelial (VE)-cadherin. Compared with control cells, there was an increase in endothelium-hyaline leukocyte conglutination, a reduction in VCAM-1, ICAM-1, and E-selectin, and the TEER value increased obviously. Compared with LPS, there was an obvious reduction in the conglutination of LPS+H2 cells, a reduction in VCAM-1, ICAM-1, and E-selectin levels, and a reduction in the TEER-resistance value, while the expression of VE-cadherin increased. Fluorescence results showed that, compared with control cells, the VE-cadherin in LPS cells was in-complete at the cell joints. Compared with LPS cells, the VE-cadherin in LPS+H2 cells was even and complete at the cell joints. Liquid rich in hydrogen could reduce LPS-induced production of adhesion molecules and endothelium-hyaline leukocyte conglutination, and influence the expression and distribution of VE-cadherin to regulate the permeability of the endothelium.

  2. Inhibition of homophilic dimerization and disruption of cell adhesion by P-cadherin-specific small molecules from SPR-based assays.

    PubMed

    Senoo, Akinobu; Nagatoishi, Satoru; Moberg, Anna; Babol, Linnea Nygren; Mitani, Tomoya; Tashima, Takumi; Kudo, Shota; Tsumoto, Kouhei

    2018-05-09

    The inhibitor for the homophilic dimerization of P-cadherin was discovered by SPR-based screening using fragment compounds. Our SPR assays identified a specific P-cadherin binder, which was able to inhibit the cell adhesion of living CHO cells that expressed P-cadherin.

  3. Expression of E-cadherin in canine anal sac gland carcinoma and its association with survival.

    PubMed

    Polton, G A; Brearley, M J; Green, L M; Scase, T J

    2007-12-01

    The objective of this study was to determine whether an association could be demonstrated between survival and the expression of the adhesion molecule E-cadherin by the neoplastic cells in a group of dogs with anal sac gland carcinomas (ASGCs). Archived formalin-fixed, paraffin wax-embedded primary tumour specimens were obtained for 36 cases of canine ASGC with known clinical management and survival data. Immunohistochemical methods were used to evaluate E-cadherin expression by the neoplastic cells and data were evaluated for an association between E-cadherin expression and survival. On univariate analysis, the median survival time for cases with tumours expressing E-cadherin in more than 75% of cells was significantly greater than that for cases with tumours expressing E-cadherin in fewer than 75% of cells (1168 versus 448 days, P = 0.0246). Both E-cadherin expression and presence or absence of distant metastases were significantly associated with survival on multivariate analysis. This study demonstrates that expression of E-cadherin at the cytoplasmic membrane in canine ASGCs is variable and potentially predictive of survival.

  4. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    PubMed

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  5. Diffusion and intermembrane distance: case study of avidin and E-cadherin mediated adhesion.

    PubMed

    Fenz, Susanne F; Merkel, Rudolf; Sengupta, Kheya

    2009-01-20

    We present a biomimetic model system for cell-cell adhesion consisting of a giant unilamellar vesicle (GUV) adhering via specific ligand-receptor interactions to a supported lipid bilayer (SLB). The modification of in-plane diffusion of tracer lipids and receptors in the SLB membrane due to adhesion to the GUV is reported. Adhesion was mediated by either biotin-neutravidin (an avidin analogue) or the extracellular domains of the cell adhesion molecule E-cadherin (Ecad). In the strong interaction (biotin-avidin) case, binding of soluble receptors to the SLB alone led to reduced diffusion of tracer lipids. From theoretical considerations, this could be attributed partially to introduction of obstacles and partially to viscous effects. Further specific binding of a GUV membrane caused additional slowing down of tracers (up to 15%) and immobilization of receptors, and led to accumulation of receptors in the adhesion zone until full coverage was achieved. The intermembrane distance was measured to be 7 nm from microinterferometry (RICM). We show that a crowding effect due to the accumulated receptors alone is not sufficient to account for the slowing downan additional friction from the membrane also plays a role. In the weak binding case (Ecad), the intermembrane distance was about 50 nm, corresponding to partial overlap of the Ecad domains. No significant change in diffusion of tracer lipids was observed upon either protein binding or subsequent vesicle binding. The former was probably due to very small effective size of the obstacles introduced into the bilayer by Ecad binding, whereas the latter was due to the fact that, with such high intermembrane distance, the resulting friction is negligible. We conclude that the effect of intermembrane adhesion on diffusion depends strongly on the choice of the receptors.

  6. Influence of E-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres.

    PubMed

    González, Sheyla; Ibáñez, Elena; Santaló, Josep

    2011-09-01

    Efforts to efficiently derive embryonic stem cells (ESC) from isolated blastomeres have been done to minimize ethical concerns about human embryo destruction. Previous studies in our laboratory indicated a poor derivation efficiency of mouse ESC lines from isolated blastomeres at the 8-cell stage (1/8 blastomeres) due, in part, to a low division rate of the single blastomeres in comparison to their counterparts with a higher number of blastomeres (2/8, 3/8 and 4/8 blastomeres). Communication and adhesion between blastomeres from which the derivation process begins could be important aspects to efficiently derive ESC lines. In the present study, an approach consisting in the adhesion of a chimeric E-cadherin (E-cad-Fc) to the blastomere surface was devised to recreate the signaling produced by native E-cadherin between neighboring blastomeres inside the embryo. By this approach, the division rate of 1/8 blastomeres increased from 44.6% to 88.8% and a short exposure of 24 h to the E-cad-Fc produced an ESC derivation efficiency of 33.6%, significantly higher than the 2.2% obtained from the control group without E-cad-Fc. By contrast, a longer exposure to the same chimeric protein resulted in higher proportions of trophoblastic vesicles. Thus, we establish an important role of E-cadherin-mediated adherens junctions in promoting both the division of single 1/8 blastomeres and the efficiency of the ESC derivation process.

  7. Prognostic value of E-cadherin, beta-catenin, CD44v6, and HER2/neu in metastatic cutaneous adenocarcinoma.

    PubMed

    Pozdnyakova, Olga; Hoang, Mai M P; Dresser, Karen A; Mahalingam, Meera

    2009-08-01

    Our recent experience with a patient developing cutaneous metastases within 3 months of diagnosis of esophageal adenocarcinoma suggests that altered expression of the cellular adhesion molecules, E-cadherin and CD44v6, may have had a role to play in the rapid onset of metastases. To corroborate these findings, we designed a cross-sectional study to investigate the expression of select molecules involved in the metastatic cascade. E-cadherin, beta-catenin, CD44v6, and HER2/neu immunohistochemical stains were performed on archival materials of metastatic adenocarcinoma to the skin from 27 patients and the available corresponding primary tumors in 10 patients. The primary sites included breast (n = 10; 37%), gastrointestinal tract (n = 10; 37%), ovary (n = 1; 4%), thyroid (n = 2; 7%), lung (n = 1; 4%), and unknown primary (n = 3; 11%). Expression of all markers was noted with the most significant increases observed in beta-catenin (26 of 27 cases; 96%), followed by CD44v6 (24 of 27 cases; 89%), E-cadherin (22 of 27 cases; 82%), and HER2/neu (11 of 27 cases; 41%). Contrasting expression of these molecules in the primary versus the metastatic tumors, enhanced expression of CD44v6 was observed in the cutaneous metastases relative to the primary in 6 of 10 (60%) cases. Of interest, 2 of these 6 cases (33%) also showed reduction in E-cadherin--a member of the cadherin family functioning as an invasion suppressor molecule. These findings reinforce the complexities of the metastatic cascade and imply that the variation in adhesive properties of tumor cells is, perhaps, a consequence of the difference in density of the molecules mediating this process.

  8. E-cadherin roles in animal biology: A perspective on thyroid hormone-influence.

    PubMed

    Izaguirre, María Fernanda; Casco, Victor Hugo

    2016-11-04

    The establishment, remodeling and maintenance of tissular architecture during animal development, and even across juvenile to adult life, are deeply regulated by a delicate interplay of extracellular signals, cell membrane receptors and intracellular signal messengers. It is well known that cell adhesion molecules (cell-cell and cell-extracellular matrix) play a critical role in these processes. Particularly, adherens junctions (AJs) mediated by E-cadherin and catenins determine cell-cell contact survival and epithelia function. Consequently, this review seeks to encompass the complex and prolific knowledge about E-cadherin roles during physiological and pathological states, particularly focusing on the influence exerted by the thyroid hormone (TH).

  9. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye

    PubMed Central

    Chan, Eunice HoYee; Chavadimane Shivakumar, Pruthvi; Clément, Raphaël; Laugier, Edith; Lenne, Pierre-François

    2017-01-01

    Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI: http://dx.doi.org/10.7554/eLife.22796.001 PMID:28537220

  10. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth.

    PubMed

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-10-13

    Intercellular bridges called "ring canals" (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs' anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin-containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs' anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin-dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth.

  11. An Elmo–Dock complex locally controls Rho GTPases and actin remodeling during cadherin-mediated adhesion

    PubMed Central

    Collins, Caitlin

    2014-01-01

    Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion. PMID:25452388

  12. Expression of cell adhesion molecules in the normal and T3 blocked development of the tadpole's kidney of Bufo arenarum (Amphibian, Anuran, Bufonidae).

    PubMed

    Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H

    2008-08-01

    Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.

  13. Cadherin-23 Mediates Heterotypic Cell-Cell Adhesion between Breast Cancer Epithelial Cells and Fibroblasts

    PubMed Central

    Apostolopoulou, Maria; Ligon, Lee

    2012-01-01

    In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis. PMID:22413011

  14. Unconventional Cadherin Localization in Honey Bee Gonads Revealed Through Domain-Specific Apis mellifera E- and N-Cadherin Antibodies Indicates Alternative Functions.

    PubMed

    Florecki, Mônica M; Hartfelder, Klaus

    2012-11-22

    As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i) associated with cell membranes, (ii) as homogeneously distributed throughout the cytoplasm, and (iii) as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes.

  15. E-Cadherin and Gastric Cancer: Cause, Consequence, and Applications

    PubMed Central

    Liu, Xin

    2014-01-01

    E-cadherin (epithelial-cadherin), encoded by the CDH1 gene, is a transmembrane glycoprotein playing a crucial role in maintaining cell-cell adhesion. E-cadherin has been reported to be a tumor suppressor and to be down regulated in gastric cancer. Besides genetic mutations in CDH1 gene to induce hereditary diffuse gastric cancer (HDGC), epigenetic factors such as DNA hypermethylation also contribute to the reduction of E-cadherin in gastric carcinogenesis. In addition, expression of E-cadherin could be mediated by infectious agents such as H. pylori (Helicobacter pylori). As E-cadherin is vitally involved in signaling pathways modulating cell proliferation, survival, invasion, and migration, dysregulation of E-cadherin leads to dysfunction of gastric epithelial cells and contributes to gastric cancer development. Moreover, changes in its expression could reflect pathological conditions of gastric mucosa, making its role in gastric cancer complicated. In this review, we summarize the functions of E-cadherin and the signaling pathways it regulates. We aim to provide comprehensive perspectives in the molecular mechanism of E-cadherin and its involvement in gastric cancer initiation and progression. We also focus on its applications for early diagnosis, prognosis, and therapy in gastric cancer in order to open new avenues in this field. PMID:25184143

  16. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines.

    PubMed

    Witta, Samir E; Gemmill, Robert M; Hirsch, Fred R; Coldren, Christopher D; Hedman, Karla; Ravdel, Larisa; Helfrich, Barbara; Dziadziuszko, Rafal; Chan, Daniel C; Sugita, Michio; Chan, Zeng; Baron, Anna; Franklin, Wilbur; Drabkin, Harry A; Girard, Luc; Gazdar, Adi F; Minna, John D; Bunn, Paul A

    2006-01-15

    The epidermal growth factor receptor (EGFR) is overexpressed in the majority of non-small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors, such as gefitinib and erlotinib, produce 9% to 27% response rates in NSCLC patients. E-Cadherin, a calcium-dependent adhesion molecule, plays an important role in NSCLC prognosis and progression, and interacts with EGFR. The zinc finger transcriptional repressor, ZEB1, inhibits E-cadherin expression by recruiting histone deacetylases (HDAC). We identified a significant correlation between sensitivity to gefitinib and expression of E-cadherin, and ZEB1, suggesting their predictive value for responsiveness to EGFR-tyrosine kinase inhibitors. E-Cadherin transfection into a gefitinib-resistant line increased its sensitivity to gefitinib. Pretreating resistant cell lines with the HDAC inhibitor, MS-275, induced E-cadherin along with EGFR and led to a growth-inhibitory and apoptotic effect of gefitinib similar to that in gefitinib-sensitive NSCLC cell lines including those harboring EGFR mutations. Thus, combined HDAC inhibitor and gefitinib treatment represents a novel pharmacologic strategy for overcoming resistance to EGFR inhibitors in patients with lung cancer.

  17. Unconventional Cadherin Localization in Honey Bee Gonads Revealed Through Domain-Specific Apis mellifera E- and N-Cadherin Antibodies Indicates Alternative Functions

    PubMed Central

    Florecki, Mônica M.; Hartfelder, Klaus

    2012-01-01

    As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i) associated with cell membranes, (ii) as homogeneously distributed throughout the cytoplasm, and (iii) as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes. PMID:26466735

  18. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling.

    PubMed

    Müller-Röver, S; Tokura, Y; Welker, P; Furukawa, F; Wakita, H; Takigawa, M; Paus, R

    1999-08-01

    The role of adhesion molecules in the control of hair follicle (HF) morphogenesis, regression and cycling is still rather enigmatic. Since the adhesion molecules E- and P-cadherin (Ecad and Pcad) are functionally important, e.g. during embryonic pattern formation, we have studied their expression patterns during neonatal HF morphogenesis and cycling in C57/BL6 mice by immunohistology and semi-quantitative RT-PCR. The expression of both cadherins was strikingly hair cycle-dependent and restricted to distinct anatomical HF compartments. During HF morphogenesis, hair bud keratinocytes displayed strong Ecad and Pcad immunoreactivity (IR). While neonatal epidermis showed Ecad IR in all epidermal layers, Pcad IR was restricted to the basal layer. During later stages of HF morphogenesis and during anagen IV-VI of the adolescent murine hair cycle, the outer root sheath showed strong E- and Pcad IR. Instead, the outermost portion of the hair matrix and the inner root sheath displayed isolated Ecad IR, while the innermost portion of the hair matrix exhibited isolated Pcad IR. During telogen, all epidermal and follicular keratinocytes showed strong Ecad IR. This is in contrast to Pcad, whose IR was stringently restricted to matrix and secondary hair germ keratinocytes which are in closest proximity to the dermal papilla. These findings suggest that isolated or combined E- and/or Pcad expression is involved in follicular pattern formation by segregating HF keratinocytes into functionally distinct subpopulations; most notably, isolated Pcad expression may segregate those hair matrix keratinocytes into one functional epithelial tissue unit, which is particularly susceptible to growth control by dermal papilla-derived morphogens. The next challenge is to define which secreted agents implicated in hair growth control modulate these follicular cadherin expression patterns, and to define how these basic parameters of HF topobiology are altered during common hair growth disorders.

  19. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    PubMed Central

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  20. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth

    PubMed Central

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-01-01

    Intercellular bridges called “ring canals” (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs’ anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin–containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs’ anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin–dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth. PMID:26424451

  1. Rab11 in Recycling Endosomes Regulates the Sorting and Basolateral Transport of E-CadherinV⃞

    PubMed Central

    Lock, John G.; Stow, Jennifer L.

    2005-01-01

    E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, ΔS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical ΔS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, μ1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion. PMID:15689490

  2. Adhesion molecules affected by treatment of lung cancer cells with epidermal growth factor.

    PubMed

    Fonseca, Fernando L A; Azzalis, Ligia A; Feder, David; Nogoceke, Everson; Junqueira, Virginia B C; Valenti, Vitor E; de Abreu, Luiz Carlos

    2011-10-01

    Lung cancer is one of the leading causes of death in the world. Some tumor events are attributed to an important group of molecules (cadherins and integrins). We evaluated the interactions of cell adhesion molecules in cell lines from lung cancer. Two lung cancer cell lines were nonmetastatic (H358 and H441) and two were metastatic (H1299 and H292). All cell lines were treated with epidermal growth factor (EGF), and Western blot analysis was performed to assess the interactions between these proteins. The bronchoalveolar cells H358 showed the three analyzed proteins: E-cadherin, β-catenin, and p120 catenin. The adenocarcinoma cells H441 did not present p120 catenin, and carcinoma cells did not show E-cadherin (H1299) or p120 catenin (H292). FAK (pTyr925) was dephosphorylated in adenocarcinoma cells H441, absent in carcinoma cells H1299, and upregulated in the other carcinoma cells H292. p130Cas showed no difference when the cell lines were treated with EGF for 30 min; it was absent in the metastatic carcinoma cells H1299. Paxillin was dephosphorylated in adenocarcinoma cells H441 and also absent in other metastatic carcinoma cells H292. Vinculin showed the same results, and talin was downregulated in adenocarcinoma cells H441 when the cells were treated with EGF. Rap1 was downregulated and PYK2 was upregulated in the same cell line. Our data help to comprehend the mechanism involved in cell migration to the blood and metastasis generation. In conclusion, the expression patterns of cell-cell adhesion were not affected by EGF treatment but it affected cell-extracellular matrix adhesion.

  3. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape

    PubMed Central

    Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L.; Sivasankar, Sanjeevi

    2016-01-01

    Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473

  4. Reevaluating αE-catenin monomer and homodimer functions by characterizing E-cadherin/αE-catenin chimeras

    PubMed Central

    Bianchini, Julie M.; Kitt, Khameeka N.; Gloerich, Martijn; Pokutta, Sabine; Weis, William I.

    2015-01-01

    As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion. PMID:26416960

  5. [Effect of forced E-cadherin expression on adhesion and proliferation of human breast carcinoma cells].

    PubMed

    Yang, Li-Juan; Liu, Yu-Qin; Gu, Bei; Bian, Xiao-Cui; Feng, Hai-Liang; Yang, Zhen-Li; Liu, Yan-Yan

    2010-12-01

    To investigate the role that E-cadherin (E-cad) plays on cell adhesion and proliferation of human breast carcinoma. E-cad expression vector was transfected into an E-cad-negative human breast carcinoma MDA-MB-231 cells. G418 was used to screen positive clones. E-cad, β-catenin (β-cat) and cyclin D1 expressions of these clones were confirmed by Western blot. Their cell-cell and cell-matrix adhesion abilities were detected. E-cad/β-catenin interaction was confirmed by immunoprecipitation. Cell proliferation was evaluated by MTT. Cell apoptosis was analyzed by flow cytometry. Direct two-step immunocytochemistry was used to detect the localization of β-cat. E-cad(+) cell strains Ecad-231-7 and Ecad-231-9 were established. When cultured in ultra-low-binding dishes Ecad-231 cells grow in suspension while Ecad-231-7 and Ecad-231-9 cells grow in large clamps. When co-cultured with HCT116 cells, the average adhesion rates at 30 min are 39.0%, 60.0% and 59.5% for MDA-MB-231, Ecad-231-7 and Ecad-231-9 respectively. The average detachment rates by EDTA for 5 min are 37.4%, 4.2% and 7.4% respectively. So E-cad expression enhanced hemotypic and heterotypic cell-cell adhesion and cell-matrix adhesion. Forced exogenously expressed E-cad could combine with endogenous β-cat, whereas down stream cyclin D1 expression was significantly decreased, as evidenced by Western blot. The rates of cell apoptosis of MDA-MB-231, Ecad-231-7 and Ecad-231-9 were 1.8%, 2.0% and 2.1%. Expression of E-cad had no obvious effect on the apoptosis of tumor cells with regular culture. β-cat increased in the cytoplasma. Two monoclonal tumor cell strains (Ecad-231-7 and Ecad-231-9) stably expressing E-cad were successfully established. E-cad could enhance adhesion and inhibit proliferation of human breast carcinoma cells through a pathway involving β-cat and cyclin D1.

  6. Le(x) glycan mediates homotypic adhesion of embryonal cells independently from E-cadherin: a preliminary note.

    PubMed

    Handa, Kazuko; Takatani-Nakase, Tomoka; Larue, Lionel; Stemmler, Marc P; Kemler, Rolf; Hakomori, Sen-itiroh

    2007-06-22

    Le(x) glycan and E-cadherin (Ecad) are co-expressed at embryonal stem (ES) cells and embryonal carcinoma (EC) cells. While the structure and function of Ecad mediating homotypic adhesion of these cells have been well established, evidence that Le(x) glycan also mediates such adhesion is weak, despite the fact that Le(x) oligosaccharide inhibits the compaction process. To provide stronger evidence, we knocked out Ecad gene in EC and ES cells to establish F9 Ecad (-/-) and D3M Ecad (-/-) cells, which highly express Le(x) glycan but do not express Ecad at all. Both F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong autoaggregation in the presence of Ca(2+), while PYS-2 cells, which express trace amount of Ecad and undetectable level of Le(x) glycan, did not display autoaggregation. In addition, F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong adhesion to plates coated with Le(x) glycosphingolipid (III(3)FucnLc4Cer), in dose-dependent manner, in the presence of Ca(2+). Thus, ES or EC cells display autoaggregation and strong adhesion to Le(x)-coated plates in the absence of Ecad, further supporting the notion of Le(x) self-recognition (i.e., Le(x)-to-Le(x) interaction) in cell adhesion.

  7. N-cadherin prodomain processing regulates synaptogenesis.

    PubMed

    Reinés, Analía; Bernier, Louis-Philippe; McAdam, Robyn; Belkaid, Wiam; Shan, Weisong; Koch, Alexander W; Séguéla, Philippe; Colman, David R; Dhaunchak, Ajit S

    2012-05-02

    Classical cadherins, which are adhesion molecules functioning at the CNS synapse, are synthesized as adhesively inactive precursor proteins in the endoplasmic reticulum (ER). Signal sequence and prodomain cleavage in the ER and Golgi apparatus, respectively, activates their adhesive properties. Here, we provide the first evidence for sorting of nonadhesive precursor N-cadherin (ProN) to the neuronal surface, where it coexists with adhesively competent mature N-cadherin (N-cad), generating a spectrum of adhesive strengths. In cultured hippocampal neurons, a high ProN/N-cad ratio downregulates synapse formation. Neurons expressing genetically engineered uncleavable ProN make markedly fewer synapses. The synapse number can be rescued to normality by depleting surface ProN levels through prodomain cleavage by an exogenous protease. Finally, prodomain processing is developmentally regulated in the rat hippocampus. We conclude that it is the ProN/N-cad ratio and not mature N-cad alone that is critical for regulation of adhesion during synaptogenesis.

  8. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    PubMed

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James

    2016-12-20

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  9. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    PubMed

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  10. Direct measurements of multiple adhesive alignments and unbinding trajectories between cadherin extracellular domains.

    PubMed Central

    Sivasankar, S; Gumbiner, B; Leckband, D

    2001-01-01

    Direct measurements of the interactions between antiparallel, oriented monolayers of the complete extracellular region of C-cadherin demonstrate that, rather than binding in a single unique orientation, the cadherins adhere in three distinct alignments. The strongest adhesion is observed when the opposing extracellular fragments are completely interdigitated. A second adhesive alignment forms when the interdigitated proteins separate by 70 +/- 10 A. A third complex forms at a bilayer separation commensurate with the approximate overlap of cadherin extracellular domains 1 and 2 (CEC1-2). The locations of the energy minima are independent of both the surface density of bound cadherin and the stiffness of the force transducer. Using surface element integration, we show that two flat surfaces that interact through an oscillatory potential will exhibit discrete minima at the same locations in the force profile measured between hemicylinders covered with identical materials. The measured interaction profiles, therefore, reflect the relative separations at which the antiparallel proteins adhere, and are unaffected by the curvature of the underlying substrate. The successive formation and rupture of multiple protein contacts during detachment can explain the observed sluggish unbinding of cadherin monolayers. Velocity-distance profiles, obtained by quantitative video analysis of the unbinding trajectory, exhibit three velocity regimes, the transitions between which coincide with the positions of the adhesive minima. These findings suggest that cadherins undergo multiple stage unbinding, which may function to impede adhesive failure under force. PMID:11259289

  11. Neuroglian and DE-cadherin activate independent cytoskeleton assembly pathways in Drosophila S2 cells.

    PubMed

    Dubreuil, R R; Grushko, T

    1999-11-19

    The cytoskeletal proteins spectrin and ankyrin colocalize with sites of E-cadherin-mediated cell-cell adhesion in mammalian cells. Here we examined the effects of Drosophila DE-cadherin expression on spectrin and ankyrin in Drosophila S2 tissue culture cells. DE-cadherin caused a dramatic change in the cytoplasmic concentration and distribution of armadillo, the Drosophila homolog of beta catenin. However, DE-cadherin expression had no detectable effect on the quantity or subcellular distribution of ankyrin or spectrin. In reciprocal experiments, recruitment of ankyrin and alphabeta spectrin to the plasma membrane by another cell adhesion molecule, neuroglian, had no effect on the quantity or distribution of armadillo. The results indicate that DE-cadherin-catenin complexes and neuroglian-spectrin/ankyrin complexes form by nonintersecting pathways. Recruitment of spectrin does not appear to be a conserved feature of DE-cadherin function. Copyright 1999 Academic Press.

  12. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma.

    PubMed

    Lyons, A J; Jones, J

    2007-08-01

    Carcinomas are characterized by invasion of malignant cells into the underlying connective tissue and migration of malignant cells to form metastases at distant sites. These processes require alterations in cell-cell and cell-extracellular matrix interactions. As cell adhesion molecules play a role in cell-cell and cell-extracellular matrix adhesion and interactions they are involved in the process of tumour invasion and metastases. In epithelial tissues, receptors of the integrin family mediate adhesion to the adjacent matrix whereas cadherins largely mediate intercellular adhesion. These and other cell adhesion molecules such as intercellular adhesion molecule-1, CD44, dystroglycans and selectins, are involved and undergo changes in carcinomas, which provide possible targets for anti-cancer drug treatments. In the extracellular matrix that is associated with tumours, laminin 5, oncofetal fibronectin and tenascin C appear. The degree of expression of some of these moieties indicates prognosis in oral cancer and offer targets for antibody-directed radiotherapy. Metalloproteases which degrade the extracellular matrix are increased in carcinomas, and their activity is necessary for tumour angiogenesis and consequent invasion and metastases. Metalloprotease inhibitors have begun to produce decreases in mortality in clinical trials. This report provides a brief overview of our current understanding of cell adhesion molecules, the extracellular matrix, tumour invasion and metastasis.

  13. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  14. μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth.

    PubMed

    Chen, Yi-Ting; Tai, Chin-Yin

    2017-05-01

    Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N-cadherin, a calcium-dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N-cadherin internalizes through clathrin-mediated endocytosis (CME). Two tyrosine-based motifs in the cytoplasmic domain of N-cadherin recognized by the μ2 subunit of the AP-2 adaptor complex are responsible for CME of N-cadherin. Moreover, β-catenin, a core component of the N-cadherin adhesion complex, inhibits N-cadherin endocytosis by masking the 2 tyrosine-based motifs. Removal of β-catenin facilitates μ2 binding to N-cadherin, thereby increasing clathrin-mediated N-cadherin endocytosis and neurite outgrowth without affecting the steady-state level of surface N-cadherin. These results identify and characterize the mechanism controlling N-cadherin endocytosis through β-catenin-regulated μ2 binding to modulate neurite outgrowth. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  16. Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development.

    PubMed

    Babb, S G; Barnett, J; Doedens, A L; Cobb, N; Liu, Q; Sorkin, B C; Yelick, P C; Raymond, P A; Marrs, J A

    2001-06-01

    Zebrafish E-cadherin (cdh1) cell adhesion molecule cDNAs were cloned. We investigated spatial and temporal expression of cdh1 during early embryogenesis. Expression was observed in blastomeres, the anterior mesoderm during gastrulation, and developing epithelial structures. In the developing nervous system, cdh1 was detected at the pharyngula stage (24 hpf) in the midbrain-hindbrain boundary (MHB). Developmental regulation of MHB formation involves wnt1 and pax2.1. wnt1 expression preceded cdh1 expression during MHB formation, and cdh1 expression in the MHB was dependent on normal development of this structure. Copyright 2001 Wiley-Liss, Inc.

  17. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    PubMed

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm 2 , compared with the observed value of 3431.8μm 2 in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm 2 (vitiligo) and 8966.7μm 2 (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells

    PubMed Central

    Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L. R.; Ward, Christopher M.

    2011-01-01

    Background We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. Methodology In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. Results We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation. PMID:21779327

  19. E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L R; Ward, Christopher M

    2011-01-01

    We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation.

  20. Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells.

    PubMed

    Stadler, Mira; Scherzer, Martin; Walter, Stefanie; Holzner, Silvio; Pudelko, Karoline; Riedl, Angelika; Unger, Christine; Kramer, Nina; Weil, Beatrix; Neesen, Jürgen; Hengstschläger, Markus; Dolznig, Helmut

    2018-01-18

    Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.

  1. O-mannosylation and N-glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer

    PubMed Central

    Bartels, Markus F.; Miyoshi, Eiji; Pierce, Michael; Taniguchi, Naoyuki; Carneiro, Fátima; Seruca, Raquel; Reis, Celso A.; Strahl, Sabine; Pinho, Salomé S.

    2016-01-01

    Dysregulation of tumor suppressor protein E-cadherin is an early molecular event in cancer. O-mannosylation profile of E-cadherin is a newly-described post-translational modification crucial for its adhesive functions in homeostasis. However, the role of O-mannosyl glycans in E-cadherin-mediated cell adhesion in cancer and their interplay with N-glycans remains largely unknown. We herein demonstrated that human gastric carcinomas exhibiting a non-functional E-cadherin display a reduced expression of O-mannosyl glycans concomitantly with increased modification with branched complex N-glycans. Accordingly, overexpression of MGAT5-mediated branched N-glycans both in gastric cancer cells and transgenic mice models led to a significant decrease of O-mannosyl glycans attached to E-cadherin that was associated with impairment of its tumour suppressive functions. Importantly, overexpression of protein O-mannosyltransferase 2 (POMT2) induced a reduced expression of branched N-glycans which led to a protective effect of E-cadherin biological functions. Overall, our results reveal a newly identified mechanism of (dys)regulation of E-cadherin that occur through the interplay between O-mannosylation and N-glycosylation pathway. PMID:27533452

  2. Modulation of N-glycosylation by mesalamine facilitates membranous E-cadherin expression in colon epithelial cells☆

    PubMed Central

    Khare, Vineeta; Lang, Michaela; Dammann, Kyle; Campregher, Christoph; Lyakhovich, Alex; Gasche, Christoph

    2014-01-01

    Genome wide association studies have implicated intestinal barrier function genes in the pathogenesis of ulcerative colitis. One of such loci CDH1, encoding E-cadherin, a transmembrane glycoprotein with known tumor suppressor functions, is also linked to the susceptibility to colorectal cancer. Loss of membranous E-cadherin expression is common in both colitis and cancer. We have recently demonstrated that mesalamine (5-ASA); the anti-inflammatory drug used to treat ulcerative colitis, induces membranous expression of E-cadherin and increases intercellular adhesion. Using colorectal cancer epithelial cells with aberrant E-cadherin expression, we investigated the mechanism underlying such an effect of 5-ASA. Post-translational modification of E-cadherin glycosylation was analyzed by biotin/streptavidin detection of sialylated glycoproteins. GnT-III (N-acetylglucosaminyltransferase III) expression was assessed by qRT-PCR, Western blot and immunofluorescence. GnT-III activity was analyzed by reactivity with E-4/L-4-PHA. Expression, localization and interaction of E-cadherin and β-catenin were analyzed by Western blot, immunocytochemistry and RNA interference. 5-ASA activity modulated E-cadherin glycosylation and increased both mRNA and protein levels of GnT-III and its activity as detected by increased E4-lectin reactivity. Intestinal APCMin polyps in mice showed low expression of GnT-III and 5-ASA was effective in increasing its expression. The data demonstrated that remodeling of glycans by GnT-III mediated bisect glycosylation, contributes to the membranous retention of E-cadherin by 5-ASA; facilitating intercellular adhesion. Induction of membranous expression of E-cadherin by 5-ASA is a novel mechanism for mucosal healing in colitis that might impede tumor progression by modulation of GnT-III expression. PMID:24184502

  3. E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs.

    PubMed

    Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Crawford, Howard C; Fusenig, Norbert E; Garlick, Jonathan A

    2005-03-01

    We studied the link between loss of E-cadherin-mediated adhesion and acquisition of malignant properties in three-dimensional, human tissue constructs that mimicked the initial stages of squamous cell cancer progression. Suppression of E-cadherin expression in early-stage, skin-derived tumor cells (HaCaT-II-4) was induced by cytoplasmic sequestration of beta-catenin upon stable expression of a dominant-negative E-cadherin fusion protein (H-2Kd-Ecad). In monolayer cultures, expression of H-2Kd-Ecad resulted in decreased levels of E-cadherin, redistribution of beta-catenin to the cytoplasm, and complete loss of intercellular adhesion when compared with control II-4 cells. This was accompanied by a 7-fold decrease in beta-catenin-mediated transcription and a 12-fold increase in cell migration. In three-dimensional constructs, E-cadherin-deficient tissues showed disruption of architecture, loss of adherens junctional proteins from cell contacts, and focal tumor cell invasion. Invasion was linked to activation of matrix metalloproteinase (MMP)-mediated degradation of basement membrane in H-2Kd-Ecad-expressing tissue constructs that was blocked by MMP inhibition (GM6001). Quantitative reverse transcription-PCR showed a 2.5-fold increase in MMP-2 and an 8-fold increase in MMP-9 in cells expressing the H-2Kd-Ecad fusion protein when compared with controls, and gel zymography showed increased MMP protein levels. Following surface transplantation of three-dimensional tissues, suppression of E-cadherin expression greatly accelerated tumorigenesis in vivo by inducing a switch to high-grade carcinomas that resulted in a 5-fold increase in tumor size after 4 weeks. Suppression of E-cadherin expression and loss of its function fundamentally modified squamous cell carcinoma progression by activating a highly invasive, aggressive tumor phenotype, whereas maintenance of E-cadherin prevented invasion in vitro and limited tumor progression in vivo.

  4. Prognostic implications of adhesion molecule expression in colorectal cancer.

    PubMed

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation.

  5. Prognostic implications of adhesion molecule expression in colorectal cancer

    PubMed Central

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation. PMID:26097606

  6. Novel metastatic models of esophageal adenocarcinoma derived from FLO-1 cells highlight the importance of E-cadherin in cancer metastasis.

    PubMed

    Liu, David S; Hoefnagel, Sanne J M; Fisher, Oliver M; Krishnadath, Kausilia K; Montgomery, Karen G; Busuttil, Rita A; Colebatch, Andrew J; Read, Matthew; Duong, Cuong P; Phillips, Wayne A; Clemons, Nicholas J

    2016-12-13

    There is currently a paucity of preclinical models available to study the metastatic process in esophageal cancer. Here we report FLO-1, and its isogenic derivative FLO-1LM, as two spontaneously metastatic cell line models of human esophageal adenocarcinoma. We show that FLO-1 has undergone epithelial-mesenchymal transition and metastasizes following subcutaneous injection in mice. FLO-1LM, derived from a FLO-1 liver metastasis, has markedly enhanced proliferative, clonogenic, anti-apoptotic, invasive, immune-tolerant and metastatic potential. Genome-wide RNAseq profiling revealed a significant enrichment of metastasis-related pathways in FLO-1LM cells. Moreover, CDH1, which encodes the adhesion molecule E-cadherin, was the most significantly downregulated gene in FLO-1LM compared to FLO-1. Consistent with this, repression of E-cadherin expression in FLO-1 cells resulted in increased metastatic activity. Importantly, reduced E-cadherin expression is commonly reported in esophageal adenocarcinoma and independently predicts poor patient survival. Collectively, these findings highlight the biological importance of E-cadherin activity in the pathogenesis of metastatic esophageal adenocarcinoma and validate the utility of FLO-1 parental and FLO-1LM cells as preclinical models of metastasis in this disease.

  7. Specificity of cell–cell adhesion by classical cadherins: Critical role for low-affinity dimerization through β-strand swapping

    PubMed Central

    Chen, Chien Peter; Posy, Shoshana; Ben-Shaul, Avinoam; Shapiro, Lawrence; Honig, Barry H.

    2005-01-01

    Cadherins constitute a family of cell-surface proteins that mediate intercellular adhesion through the association of protomers presented from juxtaposed cells. Differential cadherin expression leads to highly specific intercellular interactions in vivo. This cell–cell specificity is difficult to understand at the molecular level because individual cadherins within a given subfamily are highly similar to each other both in sequence and structure, and they dimerize with remarkably low binding affinities. Here, we provide a molecular model that accounts for these apparently contradictory observations. The model is based in part on the fact that cadherins bind to one another by “swapping” the N-terminal β-strands of their adhesive domains. An inherent feature of strand swapping (or, more generally, the domain swapping phenomenon) is that “closed” monomeric conformations act as competitive inhibitors of dimer formation, thus lowering affinities even when the dimer interface has the characteristics of high-affinity complexes. The model describes quantitatively how small affinity differences between low-affinity cadherin dimers are amplified by multiple cadherin interactions to establish large specificity effects at the cellular level. It is shown that cellular specificity would not be observed if cadherins bound with high affinities, thus emphasizing the crucial role of strand swapping in cell–cell adhesion. Numerical estimates demonstrate that the strength of cellular adhesion is extremely sensitive to the concentration of cadherins expressed at the cell surface. We suggest that the domain swapping mechanism is used by a variety of cell-adhesion proteins and that related mechanisms to control affinity and specificity are exploited in other systems. PMID:15937105

  8. Expression of adhesion molecules and cytokeratin 20 in merkel cell carcinomas.

    PubMed

    Tanaka, Yasushi; Sano, Toshiaki; Qian, Zhi Rong; Hirokawa, Mitsuyoshi

    2004-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin. MCCs often show characteristic paranuclear dot-like immunopositivity for cytokeratin 20 (CK20), a globular aggregation of CK20 intermediate filaments. These aggregates typically form rhabdoid features and fibrous bodies and may be associated with a down-regulation in adhesion molecules (AMs). To date, the relationship between the expression of AMs and CK20 and clinicopathological findings in MCC has not been well examined. In this immunohistochemical study, we assessed the expression of AMs, CK20, and chromogranin A (CgA) on MCCs in 8 men and 23 women with this disease, and also characterized their clinicopathological features. This study is the largest of its kind that has been undertaken to date in Japanese patients. Compared to normal tissue, E-cadherin and alpha- and beta-catenins showed reduced membranous expression in 95.7%, 46.7%, and 45.2% of MCCs, respectively. Nuclear E-cadherin localization was seen in four tumors, all of which predominantly showed a CK20 dot pattern. However, there was no significant relationship between the membranous expression of AMs and a CK20 dot pattern. E-cadherin expression was significantly lower in tumors of > or =2 cm, and tumors negative for E-cadherin more frequently developed outside of the head and neck than within those regions. CgA was more intensely expressed in tumors with uniform nuclei and a dense lymphocytic infiltrate than in those that showed pleomorphisms and that had few, if any, infiltrating lymphocytes. These findings suggest that MCCs have a reduced expression of AMs and that down-regulation of E-cadherin expression may correlate with increased tumor aggressiveness. The fact that no significant relationship was demonstrable between the membranous expression of AMs and the CK20 expression pattern suggests that the mechanism of aggregation of intermediate filaments may be different in different types of tumors.

  9. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction

    PubMed Central

    Cohen, Daniel J.; Gloerich, Martijn; Nelson, W. James

    2016-01-01

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell–cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin–mediated cell–cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell–cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue–material interfaces. PMID:27930308

  10. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.

    PubMed

    Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R

    2002-03-01

    To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.

  11. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    PubMed

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  12. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, modulates the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3.

    PubMed

    Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi

    2002-07-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.

  13. Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells.

    PubMed

    Lee, K H; Choi, E Y; Hyun, M S; Jang, B I; Kim, T N; Kim, S W; Song, S K; Kim, J H; Kim, J-R

    2007-01-01

    Proteolytic shedding of the ectodomain of a variety of transmembrane proteins, including cell-to-cell adhesion molecules, has been observed in solid cancers. We have investigated whether extracellular cleavage of E-cadherin mediated by matrix metalloproteinase-7 (MMP-7) is involved in hepatocyte growth factor (HGF) induced in vitro invasion in stomach cancer cells. The effects of HGF on the expression of E-cadherin/beta-catenin and MMP-7 at both the protein and mRNA levels were assessed in stomach cancer cells, NUGC-3 and MKN-28, and in cells in which the expression of MMP-7 was downregulated by transfection with a MMP-7 short hairpin RNA plasmid. Treatment with HGF increased the extracellular cleavage of E-cadherin and the release of MMP-7 and reduced the level of E-cadherin in a dose- and time-dependent manner. HGF treatment repressed the phosphorylation of beta-catenin in a Triton-soluble fraction, but enhanced this phosphorylation in a Triton-insoluble fraction. The association of E-cadherin with beta-catenin was decreased by HGF treatment in the Triton-soluble fraction. In addition, treatment of MMP-7 short hairpin RNA transfected NUGC-3 cells with HGF resulted in no extracellular cleavage of E-cadherin and also decreased the in vitro cell invasion. These results suggest that incubation with HGF mediated the release of MMP-7, resulting in extracellular cleavage of E-cadherin from stomach cancer cells. This might be a key mechanism in HGF-induced in vitro invasion and metastasis. Copyright 2007 S. Karger AG, Basel.

  14. Loss of T-cadherin (CDH-13) regulates AKT signaling and desensitizes cells to apoptosis in melanoma.

    PubMed

    Bosserhoff, Anja K; Ellmann, Lisa; Quast, Annika S; Eberle, Juergen; Boyle, Glen M; Kuphal, Silke

    2014-08-01

    An understanding of signaling pathways is a basic requirement for the treatment of melanoma. Currently, kinases are at the center of melanoma therapies. According to our research, additional alternative molecules are equally important for development of melanoma. In this regard, cancer progression is, among other factors, driven by an altered adhesion via cadherins. For instance, the de-regulated expression of the adhesion molecule T-cadherin is found in various cancer types, including melanoma, and influences migration and invasion. T-cadherin is thought to affect cellular function largely through its signaling and not its adhesion properties because the molecule is anchored into the cell membrane by a glycosylphosphatidylinositol (GPI) moiety. However, detailed knowledge about the consequences of the loss of T-cadherin in melanoma is currently lacking. For this reason, we were interested in assessing which signaling pathways are initiated by T-cadherin. The tumor growth of subcutaneously injected T-cadherin-positive melanoma cells was diminished compared with T-cadherin-negative cells in nude mice. The difference in tumor volume was not due to decreased proliferation but rather due to increased apoptosis. After the expression of T-cadherin was induced, we detected V-AKT murine thymoma viral oncogene homolog (AKT) and FoxO3a hypophosphorylation accompanied by the downregulation of the antiapoptotic molecules BCL-2, BCL-x and Clusterin. Furthermore, we detected a diminished transcriptional activity of CREB and AP-1. We demonstrated that T-cadherin functions as a pro-apoptotic tumor suppressor that antagonizes AKT/CREB/AP-1/FoxO3a signaling, whereas NFκB, TCF/LEF and mTOR are not part of the T-cadherin signaling pathway. Notably, we found that the restoration of T-cadherin in melanoma cells causes sensitization to apoptosis induced by CD95/Fas antibody CH-11. © 2013 Wiley Periodicals, Inc.

  15. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  16. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  17. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

    NASA Astrophysics Data System (ADS)

    Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-03-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.

  18. Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src

    PubMed Central

    Alt-Holland, Addy; Sowalsky, Adam; Szwec-Levin, Yonit; Shamis, Yulia; Hatch, Harold; Feig, Larry A.; Garlick, Jonathan A.

    2011-01-01

    Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC. PMID:21716326

  19. Requirement of the actin cytoskeleton for the association of nectins with other cell adhesion molecules at adherens and tight junctions in MDCK cells.

    PubMed

    Yamada, Akio; Irie, Kenji; Fukuhara, Atsunori; Ooshio, Takako; Takai, Yoshimi

    2004-09-01

    Nectins, Ca(2+)-independent immunoglobulin-like cell adhesion molecules (CAMs), first form cell-cell adhesion where cadherins are recruited, forming adherens junctions (AJs) in epithelial cells and fibroblasts. In addition, nectins recruit claudins, occludin, and junctional adhesion molecules (JAMs) to the apical side of AJs, forming tight junctions (TJs) in epithelial cells. Nectins are associated with these CAMs through peripheral membrane proteins (PMPs), many of which are actin filament-binding proteins. We examined here the roles of the actin cytoskeleton in the association of nectins with other CAMs in MDCK cells stably expressing exogenous nectin-1. The nectin-1-based cell-cell adhesion was formed and maintained irrespective of the presence and absence of the actin filament-disrupting agents, such as cytochalasin D and latrunculin A. In the presence of these agents, only afadin remained at the nectin-1-based cell-cell adhesion sites, whereas E-cadherin and other PMPs at AJs, alpha-catenin, beta-catenin, vinculin, alpha-actinin, ADIP, and LMO7, were not concentrated there. The CAMs at TJs, claudin-1, occludin and JAM-1, or the PMPs at TJs, ZO-1 and MAGI-1, were not concentrated there, either. These results indicate that the actin cytoskeleton is required for the association of the nectin-afadin unit with other CAMs and PMPs at AJs and TJs.

  20. [Regulative effects of hydrogen-rich medium on monocytic adhesion and vascular endothelial permeability].

    PubMed

    Wang, Wei-na; Xie, Ke-liang; Chen, Hong-guang; Han, Huan-zhi; Wang, Guo-lin; Yu, Yong-hao

    2013-11-19

    To explore the regulative effects of hydrogen-rich medium on lipopolysaccharide (LPS)-induced monocytes adhesion to human umbilical vein endothelial cells (HUVEC) and vascular endothelial permeability in vitro. Endothelial cells were seeded in 6-well plates and randomly divided into 4 groups (n = 42 each):control (A), hydrogen-rich medium (B), LPS (C) and LPS+hydrogen-rich medium (D). Cells were cultured in plain culture medium in groups A and C or in hydrogen-saturated culture medium in groups B and D.LPS 1 µg/ml was added into groups C and D.When forming a monolayer, monocytes were added into each group after 6, 12 and 24 h respectively. After a 90-minute co-culturing, adhesion status was detected by Wright-Giemsa stain.Supernatants were collected to detect the concentrations of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin by enzyme-linked immunosorbent assay (ELISA). The expression of VE-cadherin was measured by Western blot. Cells were stained with immunofluorescence to show the distribution of VE-cadherin after a 24-hour incubation. Compared with group A, the adhesion of monocytes to endothelial cells increased (P < 0.05) in group C, the levels of E-selectin and VCAM-1 became elevated (P < 0.05) while the expression of VE-cadherin decreased significantly (P < 0.05). Compared with group C, adhesion decreased in group D (P < 0.05), the levels of E-selectin and VCAM-1 decreased (P < 0.05) while there was an increased expression of VE-cadherin (P < 0.05). Three timepoints showed the same tendency. The results of 24 h fluorescence indicated that, compared with group A, VE-cadherin was incomplete in cell-cell connections in group C.However it was complete and well-distributed in group D versus group C. Hydrogen-rich medium may reduce the LPS-induced release of adhesion molecules, lessen monocytic adhesion to HUVEC and regulate the expression of VE-cadherin to protect vascular permeability.

  1. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    PubMed Central

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  2. Resolving the molecular mechanism of cadherin catch bond formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that theymore » form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated« less

  3. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors ormore » siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.« less

  4. The evaluation of p,p'-DDT exposure on cell adhesion of hepatocellular carcinoma.

    PubMed

    Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

    2014-08-01

    Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p'-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p'-DDT, exposing HepG2 cells for 6 days, decreased cell-cell adhesion and elevated cell-matrix adhesion. Strikingly, p,p'-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p'-DDT-induced effects. p,p'-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p'-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p'-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p'-DDT profoundly promotes the adhesion process by decreasing cell-cell adhesion and inducing cell-matrix adhesion via the ROS-mediated JAK/STAT3 pathway. All these events account for the carcinogenic potential of p,p'-DDT in liver. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Slug, Twist, and E-Cadherin as Immunohistochemical Biomarkers in Meningeal Tumors

    PubMed Central

    Nagaishi, Masaya; Nobusawa, Sumihito; Tanaka, Yuko; Ikota, Hayato; Yokoo, Hideaki; Nakazato, Yoichi

    2012-01-01

    The overexpression of Twist and Slug and subsequent down-regulation of E-cadherin facilitate the acquirement of invasive growth properties in cancer cells. It is unclear which of these molecules are expressed in mesenchymal tumors in the central nervous system. Here, we investigated 10 cases each of hemangiopericytoma, solitary fibrous tumor, meningothelial, fibrous, angiomatous, and atypical meningiomas, and 5 cases of anaplastic meningioma for Slug, Twist, E-cadherin, and N-cadherin immunoexpression. Nuclear Slug expression was observed in 9/10 (90%) hemangiopericytomas and 5/10 (50%) solitary fibrous tumors, but not in any meningiomas, except for 1 case. Similarly, nuclear Twist expression was more extensive in hemangiopericytomas and solitary fibrous tumors than meningiomas. In contrast to Slug and Twist, the positive expression of E-cadherin was observed in 39/45 (87%) meningiomas, but not in any hemangiopericytomas or solitary fibrous tumors (P<0.0001). The fraction of tumor cells expressing E-cadherin in meningeal tumors was negatively correlated to those of Twist (P = 0.004) and Slug (P<0.0001). The overexpression of Slug and Twist with down-regulation of E-cadherin was characteristic findings in hemangiopericytomas and solitary fibrous tumors, but not in meningiomas. The immunohistochemical profiles of the two tumor groups may be useful as diagnostic markers in cases that present a differential diagnosis challenge. PMID:23029385

  6. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx

    PubMed Central

    2011-01-01

    Background Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. Objectives To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. Methods E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. Results pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. Conclusion These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. Level of evidence: 2b PMID:21639893

  7. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx.

    PubMed

    Huber, Gerhard F; Züllig, Lena; Soltermann, Alex; Roessle, Matthias; Graf, Nicole; Haerle, Stephan K; Studer, Gabriela; Jochum, Wolfram; Moch, Holger; Stoeckli, Sandro J

    2011-06-03

    Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. 2b.

  8. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces

    PubMed Central

    Plutoni, Cédric; Bazellieres, Elsa; Le Borgne-Rochet, Maïlys; Comunale, Franck; Brugues, Agusti; Séveno, Martial; Planchon, Damien; Thuault, Sylvie; Morin, Nathalie; Bodin, Stéphane; Trepat, Xavier

    2016-01-01

    Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM. PMID:26783302

  9. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    PubMed

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    PubMed

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-08

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Characterization of the Cadherin-Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell-Cell Adhesion.

    PubMed

    Clarke, Donald Nathaniel; Miller, Phillip W; Lowe, Christopher J; Weis, William I; Nelson, William James

    2016-08-01

    The cadherin-catenin complex (CCC) mediates cell-cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis We demonstrated that N. vectensis has a complete repertoire of cadherin-catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Heterogeneous Cadherin Expression and Multicellular Aggregate Dynamics in Ovarian Cancer Dissemination.

    PubMed

    Klymenko, Yuliya; Johnson, Jeffrey; Bos, Brandi; Lombard, Rachel; Campbell, Leigh; Loughran, Elizabeth; Stack, M Sharon

    2017-07-01

    Epithelial ovarian carcinoma spreads via shedding of cells and multicellular aggregates (MCAs) from the primary tumor into peritoneal cavity, with subsequent intraperitoneal tumor cell:mesothelial cell adhesion as a key early event in metastatic seeding. Evaluation of human tumor extracts and tissues confirms that well-differentiated ovarian tumors express abundant E-cadherin (Ecad), whereas advanced lesions exhibit upregulated N-cadherin (Ncad). Two expression patterns are observed: "mixed cadherin," in which distinct cells within the same tumor express either E- or Ncad, and "hybrid cadherin," wherein single tumor cell(s) simultaneously expresses both cadherins. We demonstrate striking cadherin-dependent differences in cell-cell interactions, MCA formation, and aggregate ultrastructure. Mesenchymal-type Ncad+ cells formed stable, highly cohesive solid spheroids, whereas Ecad+ epithelial-type cells generated loosely adhesive cell clusters covered by uniform microvilli. Generation of "mixed cadherin" MCAs using fluorescently tagged cell populations revealed preferential sorting into cadherin-dependent clusters, whereas mixing of cell lines with common cadherin profiles generated homogeneous aggregates. Recapitulation of the "hybrid cadherin" Ecad+/Ncad+ phenotype, via insertion of the CDH2 gene into Ecad+ cells, resulted in the ability to form heterogeneous clusters with Ncad+ cells, significantly enhanced adhesion to organotypic mesomimetic cultures and peritoneal explants, and increased both migration and matrix invasion. Alternatively, insertion of CDH1 gene into Ncad+ cells greatly reduced cell-to-collagen, cell-to-mesothelium, and cell-to-peritoneum adhesion. Acquisition of the hybrid cadherin phenotype resulted in altered MCA surface morphology with increased surface projections and increased cell proliferation. Overall, these findings support the hypothesis that MCA cadherin composition impacts intraperitoneal cell and MCA dynamics and thereby affects

  13. Extracellular matrix molecules and cell adhesion molecules induce neurites through different mechanisms

    PubMed Central

    1990-01-01

    It has recently become clear that both extracellular matrix (ECM) glycoproteins and various cell adhesion molecules (CAMs) can promote neurite outgrowth from primary neurons, though little is known of the intracellular mechanisms through which these signals are transduced. We have previously obtained evidence that protein kinase C function is an important part of the neuronal response to laminin (Bixby, J.L. 1989. Neuron. 3:287-297). Because such CAMs as L1 (Lagenauer, C., and V. Lemmon. 1987. Proc. Natl. Acad. Sci. USA. 84:7753-7757) and N-cadherin (Bixby, J.L. and R. Zhang. 1990. J. Cell Biol. 110:1253-1260) can be purified and used as substrates to promote neurite growth, we have now tested whether the response to CAMs is similarly dependent on protein kinase C. We find that inhibition of protein kinase C inhibits growth on fibronectin or collagen as well as on laminin. In contrast, C kinase inhibition actually potentiates the initial growth response to L1 or N- cadherin. The later "phase" of outgrowth on both of these CAMs is inhibited, however. Additionally, phorbol esters, which have no effect on neurite growth when optimal laminin concentrations are used, potentiate growth even on optimal concentrations of L1 or N-cadherin. The results indicate that different intracellular mechanisms operate during initial process outgrowth on ECM substrates as compared to CAM substrates, and suggest that protein kinase C function is required for continued neurite growth on each of these glycoproteins. PMID:2277083

  14. Alterations induced by E-cadherin and beta-catenin antibodies during the development of Bufo arenarum (Anura-Bufonidae).

    PubMed

    Izaguirre, M F; Adur, J F; Soler, A P; Casco, V H

    2001-10-01

    E(epithelial)-cadherin is a member of a calcium-dependent family of cell surface glycoproteins involved in cell-cell adhesion and morphogenesis. Catenins are a large family of proteins that connect the cadherins to the cytoskeleton. They are important for cadherin function and for transducing signals involved in specification of cell fate during embryogenesis. The best characterized catenins include alpha-, beta-, gamma-, and p120-catenin. Using specific antibodies, we studied the expression and distribution of E-cadherin, and alpha- and beta-catenin in developmental stages of Bufo arenarum toad. The three proteins were found co-localized in stages 19 to 41 of development. Surprisingly, E-cadherin was the only of these three proteins found earlier than stage 19. To test whether E-cadherin and beta-catenin have a functional role in Bufo arenarum embryogenesis, stage 17 whole embryos were incubated with anti-E-cadherin and beta-catenin antibodies. Both anti-E-cadherin and anti-beta-catenin antibodies induced severe morphological alterations. However, while alterations produced by the anti-beta-catenin antibody, showed some variability from the most severe (neural tube and notochord duplication) to a simple delay in development, the alterations with anti-E-cadherin were homogeneous. These observations suggest a critical role for E-cadherin and beta-catenin in the early embryonic development of the Bufo arenarum toad. Our results are consistent with the developmental role of these proteins in other species. One of the most surprising findings was the blockage with the anti-beta-catenin antibodies on later embryo stages, and we hypothesize that the partial axes duplication could be mediated by the notochord induction.

  15. Differential Function of N-Cadherin and Cadherin-7 in the Control of Embryonic Cell Motility

    PubMed Central

    Dufour, Sylvie; Beauvais-Jouneau, Alice; Delouvée, Annie; Thiery, Jean Paul

    1999-01-01

    Similar amounts of N-cadherin and cadherin-7, the prototypes of type I and type II cadherin, induced cell-cell adhesion in murine sarcoma 180 transfectants, Ncad-1 and cad7-29, respectively. However, in the initial phase of aggregation, Ncad-1 cells aggregated more rapidly than cad7-29 cells. Isolated Ncad-1 and cad7-29 cells adhered and spread in a similar manner on fibronectin (FN), whereas aggregated cad7-29 cells were more motile and dispersed than aggregated Ncad-1 cells. cad7-29 cells established transient contacts with their neighbors which were stabilized if FN-cell interactions were perturbed. In contrast, Ncad-1 cells remained in close contact when they migrated on FN. Both β-catenin and cadherin were more rapidly downregulated in cad7-29 than in Ncad-1 cells treated with cycloheximide, suggesting a higher turnover rate for cadherin-7–mediated cell-cell contacts than for those mediated by N-cadherin. The extent of FN-dependent focal adhesion kinase phosphorylation was much lower if the cells had initiated N-cadherin–mediated rather than cadherin-7–mediated cell adhesion before plating. On grafting into the embryo, Ncad-1 cells did not migrate and remained at or close to the graft site, even after 48 h, whereas grafted cad7-29 cells dispersed efficiently into embryonic structures. Thus, the adhesive phenotype of cadherin-7–expressing cells is regulated by the nature of the extracellular matrix environment which also controls the migratory behavior of the cells. In addition, adhesions mediated by different cadherins differentially regulate FN-dependent signaling. The transient contacts specifically observed in cadherin- 7–expressing cells may also be important in the control of cell motility. PMID:10427101

  16. Complex interactions amongst N-cadherin, DLAR, and Liprin-α regulate Drosophila photoreceptor axon targeting

    PubMed Central

    Prakash, Saurabh; Maclendon, Helen; Dubreuil, Catherine I.; Ghose, Aurnab; Hwa, Jennifer; Dennehy, Kelly A.; Tomalty, Katharine M.H.; Clark, Kelsey; Van Vactor, David; Clandinin, Thomas R.

    2009-01-01

    The formation of stable adhesive contacts between pre- and post-synaptic neurons represents the initial step in synapse assembly. The cell adhesion molecule N-cadherin, the receptor tyrosine phosphatase DLAR, and the scaffolding molecule Liprin-α play critical, evolutionarily conserved roles in this process. However, how these proteins signal to the growth cone, and are themselves regulated, remains poorly understood. Using Drosophila photoreceptors (R cells) as a model, we evaluate genetic and physical interactions among these three proteins. We demonstrate that DLAR function in this context is independent of phosphatase activity, but requires interactions mediated by its intracellular domain. Genetic studies reveal both positive and, surprisingly, inhibitory interactions amongst all three genes. These observations are corroborated by biochemical studies demonstrating that DLAR physically associates via its phosphatase domain with N-cadherin in Drosophila embryos. Together, these data demonstrate that N-cadherin, DLAR, and Liprin-α function in a complex to regulate adhesive interactions between pre- and post-synaptic cells, and provide a novel mechanism for controlling the activity of liprin-α in the developing growth cone. PMID:19766621

  17. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  18. Hypoxia reduces the E-cadherin expression and increases OSCC cell migration regardless of the E-cadherin methylation profile.

    PubMed

    Domingos, Patrícia Luciana Batista; Souza, Marcela Gonçalves; Guimarães, Talita Antunes; Santos, Eliane Sobrinho; Farias, Lucyana Conceição; de Carvalho Fraga, Carlos Alberto; Jones, Kimberly Marie; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2017-05-01

    The purpose of the current study is to investigate the association between E-cadherin methylation status, hypoxia and OSCC. HaCat and SCC9 cell lines were submitted to hypoxic treatment, followed by methylation profile analysis (MS-PCR) and analysis of the expression of mRNA gene E-cadherin (RT-PCR). Study group samples comprise individuals affected by potentially malignant lesions Potential Malignant Oral Lesion (PMOL, n=18) and oral squamous cell carcinoma (OSCC, n=28). The control group oral mucosa (OM, n=15) of patients with an oral mucocele. Cell migration ability was evaluated a scratch wound assay in SCC9 and HaCat cell lines RESULTS: E-cadherin mRNA expression in the cell lines SCC9 and HaCat was significantly reduced under hypoxia, regardless of the methylation profile, when compared to the control group. No differences in methylation profile of the E-cadherin were observed among the groups OM, PMOL and OSCC. HaCat and SCC9 presented increases in cell migration rates under hypoxia. The current study demonstrates that hypoxia reduces E-cadherin expression and increase cell migration, regardless of the methylation profile. Additionally, no differences in E-cadherin methylation patterns were observed among OM, PMOL and OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    PubMed Central

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  20. Stability studies of extracellular domain two of neural-cadherin.

    PubMed

    Vunnam, Nagamani; McCool, John K; Williamson, Michael; Pedigo, Susan

    2011-12-01

    Neural- (NCAD) and epithelial- (ECAD) cadherin are calcium-dependent cell-adhesive molecules, and are localized at excitatory and inhibitory synapses respectively. They play an important role in synaptogenesis, synapse maintenance and plasticity. The extracellular region plays a critical role in cadherin-mediated cell adhesion, and has five tandemly repeated ectodomains (EC1-EC5). Calcium binding is required for dimer formation between first two N-terminal domains (EC1-EC2). Despite similarity in the primary structure, the extracellular domains of NCAD and ECAD have different intrinsic stability, dimerization affinity and kinetics of disassembly. To investigate the origin of these differences, we are characterizing the modular domains individually. Here, we report studies of NCAD2, EC2 of NCAD. This domain is important for calcium binding and is the physical linkage between the dimerization interface in EC1 and the membrane proximal modular domains. Thermal-denaturation studies show that NCAD2 is less stable than ECAD2 and less influenced by the adjoining 7-residue, N- and C-terminal linker segments. In addition the NCAD2 constructs are less influenced by added salt. This difference is likely due to variation in the overall number and distribution of charges on these anionic proteins. Our studies indicate that despite their sequence similarity and apparently passive role in adhesive dimer formation, EC2 of E- and N-cadherins are distinctly different and may contribute to the differences in energetics and kinetics of dimerization. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. WNT7a induces E-cadherin in lung cancer cells.

    PubMed

    Ohira, Tatsuo; Gemmill, Robert M; Ferguson, Kevin; Kusy, Sophie; Roche, Joëlle; Brambilla, Elisabeth; Zeng, Chan; Baron, Anna; Bemis, Lynne; Erickson, Paul; Wilder, Elizabeth; Rustgi, Anil; Kitajewski, Jan; Gabrielson, Edward; Bremnes, Roy; Franklin, Wilbur; Drabkin, Harry A

    2003-09-02

    E-cadherin loss in cancer is associated with de-differentiation, invasion, and metastasis. Drosophila DE-cadherin is regulated by Wnt/beta-catenin signaling, although this has not been demonstrated in mammalian cells. We previously reported that expression of WNT7a, encoded on 3p25, was frequently downregulated in lung cancer, and that loss of E-cadherin or beta-catenin was a poor prognostic feature. Here we show that WNT7a both activates E-cadherin expression via a beta-catenin specific mechanism in lung cancer cells and is involved in a positive feedback loop. Li+, a GSK3 beta inhibitor, led to E-cadherin induction in an inositol-independent manner. Similarly, exposure to mWNT7a specifically induced free beta-catenin and E-cadherin. Among known transcriptional suppressors of E-cadherin, ZEB1 was uniquely correlated with E-cadherin loss in lung cancer cell lines, and its inhibition by RNA interference resulted in E-cadherin induction. Pharmacologic reversal of E-cadherin and WNT7a losses was achieved with Li+, histone deacetylase inhibition, or in some cases only with combined inhibitors. Our findings provide support that E-cadherin induction by WNT/beta-catenin signaling is an evolutionarily conserved pathway operative in lung cancer cells, and that loss of WNT7a expression may be important in lung cancer development or progression by its effects on E-cadherin.

  2. Reduced expression of E-cadherin and p120-catenin and elevated expression of PLC-γ1 and PIKE are associated with aggressiveness of oral squamous cell carcinoma

    PubMed Central

    Jiang, Yi; Liao, Liyan; Shrestha, Chandrama; Ji, Shangli; Chen, Ying; Peng, Jian; Wang, Larry; Liao, Eryuan; Xie, Zhongjian

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most lethal malignant tumors. The cadherin/catenin cell-cell adhesion complex plays a major role in cancer development and progression. p120-catenin (p120) is a cytoplasmic molecule closely associated with E-cadherin which activates phospholipase C-γ1 (PLC-γ1). Our previous studies indicate that activation of PLC-γ1 plays a critical role in epidermal growth factor (EGF)-induced migration and proliferation of squamous cell carcinoma (SCC) cells and phosphatidylinositol 3-kinase enhancer (PIKE) is highly expressed in SCC cells and mediates EGFR-dependent SCC cell proliferation. Our current study was to determine whether the expression of E-cadherin, p120, PLC-γ1, and PIKE, is associated with OSCC. To address this issue, we assessed levels and localization of E-cadherin, p120, PLC-γ1, and PIKE in specimen of 92 patients with OSCC by immunohistochemistry. The results showed that the expression of E-cadherin, and p120 negatively correlated with the tumor differentiation and the expression of PLC-γ1 and PIKE positively correlated with the tumor differentiation. The expression of PLC-γ1 and PIKE in OSCC stage T3 + T4 or in OSCC with lymph node metastasis was significantly higher than that in OSCC stage T1 + T2 or in OSCC without lymph node metastasis. The expression of p120 positively correlated with levels of E-cadherin but negatively correlated with levels of PLC-γ1 and PIKE in OSCC. These data indicate that increased expression of PLC-γ1 and PIKE and decreased expression of E-cadherin and p120 are associated with the aggressiveness of OSCC. PMID:26464646

  3. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells.

    PubMed

    Grabowska, Magdalena M; Sandhu, Brindar; Day, Mark L

    2012-02-01

    During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG(1), fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin-Deficient Cells.

    PubMed

    Telford, Bryony J; Chen, Augustine; Beetham, Henry; Frick, James; Brew, Tom P; Gould, Cathryn M; Single, Andrew; Godwin, Tanis; Simpson, Kaylene J; Guilford, Parry

    2015-05-01

    The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. ©2015 American Association for Cancer Research.

  5. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds.

    PubMed

    Tafrihi, Majid; Nakhaei Sistani, Roohollah

    2017-07-01

    Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.

  6. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Cosgrove, Brian D.; Mui, Keeley L.; Driscoll, Tristan P.; Caliari, Steven R.; Mehta, Kush D.; Assoian, Richard K.; Burdick, Jason A.; Mauck, Robert L.

    2016-12-01

    During mesenchymal development, the microenvironment gradually transitions from one that is rich in cell-cell interactions to one that is dominated by cell-ECM (extracellular matrix) interactions. Because these cues cannot readily be decoupled in vitro or in vivo, how they converge to regulate mesenchymal stem cell (MSC) mechanosensing is not fully understood. Here, we show that a hyaluronic acid hydrogel system enables, across a physiological range of ECM stiffness, the independent co-presentation of the HAVDI adhesive motif from the EC1 domain of N-cadherin and the RGD adhesive motif from fibronectin. Decoupled presentation of these cues revealed that HAVDI ligation (at constant RGD ligation) reduced the contractile state and thereby nuclear YAP/TAZ localization in MSCs, resulting in altered interpretation of ECM stiffness and subsequent changes in downstream cell proliferation and differentiation. Our findings reveal that, in an evolving developmental context, HAVDI/N-cadherin interactions can alter stem cell perception of the stiffening extracellular microenvironment.

  7. Relation of glypican-3 and E-cadherin expressions to clinicopathological features and prognosis of mucinous and non-mucinous colorectal adenocarcinoma.

    PubMed

    Foda, Abd Al-Rahman Mohammad; Mohammad, Mie Ali; Abdel-Aziz, Azza; El-Hawary, Amira Kamal

    2015-06-01

    Glypican-3 (GPC3) is a member of the membrane-bound heparin sulfate proteoglycans. E-cadherin is an adhesive receptor that is believed to act as a tumor suppressor gene. Many studies had investigated E-cadherin expressions in colorectal carcinoma (CRC) while only one study had investigated GPC3 expression in CRC. This study aims to investigate expression of GCP3 and E-cadherin in colorectal mucinous carcinoma (MA) and non-mucinous adenocarcinoma (NMA) using manual tissue microarray technique. Tumor tissue specimens are collected from 75 cases of MC and 75 cases of NMA who underwent radical surgery from Jan 2007 to Jan 2012 at the Gastroenterology Centre, Mansoura University, Egypt. Their clinicopathological parameters and survival data were revised and analyzed using established statistical methodologies. High-density manual tissue microarrays were constructed using modified mechanical pencil tip technique and immunohistochemistry for GPC3 and E-cadherin was done. NMA showed higher expression of GPC3 than MA with no statistically significant relation. NMA showed a significantly higher E-cadherin expression than MA. GPC3 and E-cadherin positivity rates were significantly interrelated in NMA, but not in MA, group. In NMA group, there was no significant relation between either GPC3 or E-cadherin expression and the clinicopathological features. In a univariate analysis, neither GPC3 nor E-cadherin expression showed a significant impact on disease-free survival (DFS) or overall survival (OS). GPC3 and E-cadherin expressions are not independent prognostic factors in CRC. However, expressions of both are significantly interrelated in NMA patients, suggesting an excellent interplay between both, in contrast to MA. Further molecular studies are needed to further explore the relationship between GCP3 and E-cadherin in colorectal carcinogenesis.

  8. Epithelial-mesenchymal transition and nuclear β-catenin induced by conditional intestinal disruption of Cdh1 with Apc is E-cadherin EC1 domain dependent

    PubMed Central

    Carter, Emma J.; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A. Bassim

    2016-01-01

    Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity. PMID:27566565

  9. Antioxidants Maintain E-Cadherin Levels to Limit Drosophila Prohemocyte Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Simon, LaTonya; Fossett, Nancy

    2014-01-01

    Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation. PMID:25226030

  10. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site.

    PubMed

    Abbruzzese, Genevieve; Becker, Sarah F; Kashef, Jubin; Alfandari, Dominique

    2016-07-15

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. Copyright © 2015. Published by Elsevier Inc.

  11. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site

    PubMed Central

    Kashef, Jubin; Alfandari, Dominique

    2015-01-01

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell–cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. PMID:26206614

  12. E-cadherin and, in its absence, N-cadherin promotes Nanog expression in mouse embryonic stem cells via STAT3 phosphorylation.

    PubMed

    Hawkins, Kate; Mohamet, Lisa; Ritson, Sarah; Merry, Catherine L R; Ward, Christopher M

    2012-09-01

    We have recently shown that loss of E-cadherin in mouse embryonic stem cells (mESCs) results in significant alterations to both the transcriptome and hierarchy of pluripotency-associated signaling pathways. Here, we show that E-cadherin promotes kruppel-like factor 4 (Klf4) and Nanog transcript and protein expression in mESCs via STAT3 phosphorylation and that β-catenin, and its binding region in E-cadherin, is required for this function. To further investigate the role of E-cadherin in leukemia inhibitory factor (LIF)-dependent pluripotency, E-cadherin null (Ecad(-/-)) mESCs were cultured in LIF/bone morphogenetic protein supplemented medium. Under these conditions, Ecad(-/-) mESCs exhibited partial restoration of cell-cell contact and STAT3 phosphorylation and upregulated Klf4, Nanog, and N-cadherin transcripts and protein. Abrogation of N-cadherin using an inhibitory peptide caused loss of phospho STAT3, Klf4, and Nanog in these cells, demonstrating that N-cadherin supports LIF-dependent pluripotency in this context. We therefore identify a novel molecular mechanism linking E- and N-cadherin to the core circuitry of pluripotency in mESCs. This mechanism may explain the recently documented role of E-cadherin in efficient induced pluripotent stem cell reprogramming. Copyright © 2012 AlphaMed Press.

  13. Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis.

    PubMed

    Thiery, J P; Boyer, B; Tucker, G; Gavrilovic, J; Valles, A M

    1988-01-01

    Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal

  14. 25 Years of Tension over Actin Binding to the Cadherin Cell Adhesion Complex: The Devil is in the Details.

    PubMed

    Nelson, W James; Weis, William I

    2016-07-01

    Over the past 25 years, there has been a conceptual (re)evolution in understanding how the cadherin cell adhesion complex, which contains F-actin-binding proteins, binds to the actin cytoskeleton. There is now good synergy between structural, biochemical, and cell biological results that the cadherin-catenin complex binds to F-actin under force. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Expression of E-cadherin and vimentin in oral squamous cell carcinoma

    PubMed Central

    Zhou, Jingping; Tao, Detao; Xu, Qing; Gao, Zhenlin; Tang, Daofang

    2015-01-01

    The aim of the study is to determine the levels of E-cadherin, vimentin expression in tumor tissues from patients with oral squamous cell carcinoma (OSCC), and the relationship between the expression of E-cadherin, vimentin and epithelial-mesenchymal transition, in order to explore its values for predicting the invasion and metastasis of oral squamous cell carcinoma, short survival of patients in many types of cancer. E-cadherin and vimentin expression of 10 benign and 42 OSCC tumor tissues was examined by immunohistochemical staining. E-cadherin is positively expressed in normal oral mucosa epithelium, but vimentin expression is not found in normal oral mucosa epithelia; the E-cadherin and vimentin were expressed in 26 of 42 (61.9%) and 16 of 42 (38.1%), respectively. No statistically difference was found for E-cadherin and vimentin expression in patients with different age, gender and tumor location, E-cadherin and vimentin expression was significantly associated with lymph node metastasis and tissue location (P < 0.05); E-cadherin expression was also significantly associated with tumor stage (P < 0.05); there are significantly difference between infiltrative margin and central area in patients with oral squamous cell carcinoma for E-cadherin and vimentin positive expression (P < 0.05). E-cadherin and vimentin positive expression was associated with tumor metastasis of oral squamous cell carcinoma. Our study preliminarily confirmed that EMT phenomenon is existed during the development of oral squamous cell carcinoma. Co-evaluation of E-cadherin and vimentin might be a valuable tool for predicting OSCC patient outcome. PMID:26045832

  16. E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97.

    PubMed

    Lock, John G; Hammond, Luke A; Houghton, Fiona; Gleeson, Paul A; Stow, Jennifer L

    2005-12-01

    E-cadherin is a cell-cell adhesion protein that is trafficked and delivered to the basolateral cell surface. Membrane-bound carriers for the post-Golgi exocytosis of E-cadherin have not been characterized. Green fluorescent protein (GFP)-tagged E-cadherin (Ecad-GFP) is transported from the trans-Golgi network (TGN) to the recycling endosome on its way to the cell surface in tubulovesicular carriers that resemble TGN tubules labeled by members of the golgin family of tethering proteins. Here, we examine the association of golgins with tubular carriers containing E-cadherin as cargo. Fluorescent GRIP domains from golgin proteins replicate the membrane binding of the full-length proteins and were coexpressed with Ecad-GFP. The GRIP domains of p230/golgin-245 and golgin-97 had overlapping but nonidentical distributions on the TGN; both domains were on TGN-derived tubules but only the golgin-97 GRIP domain coincided with Ecad-GFP tubules in live cells. When the Arl1-binding endogenous golgins, p230/golgin-245 and golgin-97 were displaced from Golgi membranes by overexpression of the p230 GRIP domain, trafficking of Ecad-GFP was inhibited. siRNA knockdown of golgin-97 also inhibited trafficking of Ecad-GFP. Thus, the GRIP domains of p230/golgin-245 and golgin-97 bind discriminately to distinct membrane subdomains of the TGN. Golgin-97 is identified as a selective and essential component of the tubulovesicular carriers transporting E-cadherin out of the TGN.

  17. DE-Cadherin Is Required for Intercellular Motility during Drosophila Oogenesis

    PubMed Central

    Niewiadomska, Paulina; Godt, Dorothea; Tepass, Ulrich

    1999-01-01

    Cadherins are involved in a variety of morphogenetic movements during animal development. However, it has been difficult to pinpoint the precise function of cadherins in morphogenetic processes due to the multifunctional nature of cadherin requirement. The data presented here indicate that homophilic adhesion promoted by Drosophila E-cadherin (DE-cadherin) mediates two cell migration events during Drosophila oogenesis. In Drosophila follicles, two groups of follicle cells, the border cells and the centripetal cells migrate on the surface of germline cells. We show that the border cells migrate as an epithelial patch in which two centrally located cells retain epithelial polarity and peripheral cells are partially depolarized. Both follicle cells and germline cells express DE-cadherin, and border cells and centripetal cells strongly upregulate the expression of DE-cadherin shortly before and during their migration. Removing DE-cadherin from either the follicle cells or the germline cells blocks migration of border cells and centripetal cells on the surface of germline cells. The function of DE-cadherin in border cells appears to be specific for migration as the formation of the border cell cluster and the adhesion between border cells are not disrupted in the absence of DE-cadherin. The speed of migration depends on the level of DE-cadherin expression, as border cells migrate more slowly when DE-cadherin activity is reduced. Finally, we show that the upregulation of DE-cadherin expression in border cells depends on the activity of the Drosophila C/EBP transcription factor that is essential for border cell migration. PMID:9971747

  18. 6-Mercaptopurine attenuates adhesive molecules in experimental vasospasm.

    PubMed

    Chang, Chih-Zen; Lin, Chih-Lung; Kassel, Neal F; Kwan, Aij-Lie; Howng, Shen-Long

    2010-05-01

    Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, are important inflammatory mediators which are elevated in the serum of patients following aneurysmal subarachnoid hemorrhage (SAH). The authors previously found that 6-mercaptopurine (6-mp) was effective in preventing and reversing arterial narrowing in a rodent SAH model. The present study was to examine whether levels of adhesion molecules were altered after treatment with 6-mp in this animal model. Animals were each injected with autologous blood into the cisterna magna, and intraperitoneal treatment with 6-mp (2 mg/kg) was initiated 1 h before (prevention) or later (treatment). The compound was subsequently administered at 24 and 48 h post-SAH. Blood samples were collected at 72 h post-SAH to measure ICAM-1, VCAM-1, and E-selectin levels. The basilar arteries were harvested and sliced, and their cross-sectional areas were measured. Morphologically, convolution of the internal elastic lamina, distorted endothelial wall, and myonecrosis of the smooth muscle were prominently observed in the SAH only and vehicle-treated SAH groups, but not in the 6-mp-treated SAH group or in healthy controls. No significant differences were found in the levels of VCAM-1 among all groups. However, the levels of E-selectin were increased in all animals subjected to SAH (SAH only and SAH plus vehicle groups) compared with healthy controls (no SAH), but not in the 6-mp group (SAH plus 6-mp treatment and preventive treatment with 6-mp).Likewise, the levels of ICAM-1 in the SAH only and SAH plus vehicle groups were significantly elevated (p < 0.001), and pretreatment and treatment with 6-mp reduced ICAM-1 to control levels. These results show that ICAM-1 and E-selectin may play a role in mediating SAH-induced vasospasm and that a reduction of both adhesive molecules after SAH may partly contribute to the antispastic effect of 6-mp.

  19. E-cadherin regulators are differentially expressed in the epithelium and stroma of keratocystic odontogenic tumors.

    PubMed

    Porto, Lia Pontes Arruda; dos Santos, Jean Nunes; Ramalho, Luciana Maria Pedreira; Figueiredo, Andreia Leal; Carneiro Júnior, Bráulio; Gurgel, Clarissa Araújo; Paiva, Katiúcia Batista Silva; Xavier, Flávia Caló Aquino

    2016-04-01

    The epithelial-mesenchymal transition (EMT) is the process where cells lose their epithelial features and acquire properties of typical mesenchymal cells. The dissociation of tumor cells due to changes in cell-cell adhesion is one of the key principles of tumor invasion and EMT. Thus, the knowledge of the molecular features of EMT in keratocyst odontogenic tumor (KOT) can provide useful markers to aid in the diagnosis and prognosis and perhaps contribute to an alternative therapeutic approach as it shows an aggressive clinical behavior and high recurrence rates. This study aimed to evaluate the EMT in KOT by the immunoexpression of E-cadherin, N-cadherin, Snail, and Slug and comparing to radicular cysts and dental follicles. Thirty-two KOTs, 15 radicular cysts, and 08 dental follicles were used for immunohistochemistry, evaluating the extent, intensity, labeling pattern, cellular compartment in the epithelium and stroma, and the presence of inflammation. E-cadherin was preserved in most cases of keratocystic odontogenic tumor. N-cadherin was increased in the tumor epithelium, a result that was positively correlated with the heterogeneous and nuclear immunoexpression of Slug in the epithelium; Slug also correlated with high Snail immunoexpression. N-cadherin was positively correlated with Slug in the stroma of keratocystic odontogenic tumors. The high immunoexpression of Snail and nuclear Slug in keratocystic odontogenic tumors suggests these proteins as transcription factors without necessarily participating in 'cadherin switching'. However, the knowledge of their induction of the epithelial-mesenchymal transition in odontogenic tumors is still limited. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudenko, Gabby

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affectmore » their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.« less

  1. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  2. N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO

    PubMed Central

    Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.

    2009-01-01

    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  3. Differential cadherin expression in the developing postnatal telencephalon of a New World monkey.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Oka, Mariko; Iriki, Atsushi

    2013-12-01

    Cadherins are cell adhesion molecules widely expressed in the nervous system, where they play various roles in neural patterning, nuclei formation, axon guidance, and synapse formation and function. Although many published articles have reported on cadherin expression in rodents and ferrets, there are limited data on their expression in primate brains. In this study, in situ hybridization analysis was performed for 10 cadherins [nine classic cadherins (Cdh4, -6, -7, -8, -9, -10, -11, -12, and -20) and T-cadherin (Cdh13)] in the developing postnatal telencephalon of the common marmoset (Callithrix jacchus). Each cadherin showed broad expression in the cerebral cortex, basal ganglia, amygdala, and hippocampus, as previously shown in the rodent brain. However, detailed expression patterns differed between rodents and marmosets. In contrast to rodents, cadherin expression was reduced overall and localized to restricted areas of the brain during the developmental process, suggesting that cadherins are more crucially involved in developmental or maturation processes rather than in neural functioning. These results also highlight the possibility that restricted/less redundant cadherin expression allows primate brains to generate functional diversity among neurons, allowing morphological and functional differences between rodents and primates. Copyright © 2013 Wiley Periodicals, Inc.

  4. Loss of intercellular adhesion leads to differential accumulation of hypericin in bladder cancer

    NASA Astrophysics Data System (ADS)

    Lucky, S. Sasidharan; Bhuvaneswari, Ramaswamy; Chin, William W. L.; Lau, Weber K. O.; Olivo, Malini C. D.

    2009-06-01

    Photodynamic diagnosis (PDD) exploits the photoactive nature of certain compounds, namely photosensitizers, in order to enhance the visual demarcation between normal and neoplastic tissue. Hypericin is one such potent photosensitizer that preferentially accumulate in neoplastic tissue, and fluoresce in the visible spectrum when illuminated with light of an appropriate wavelength. In our study, we investigated the role of E-cadherin in the selective permeation of hypericin in bladder cancer tissues. Clinical studies were done on a series of 43 histologically graded bladder cancer biopsy specimens, obtained from 28 patients who received intravesical instillations with 8μM hypericin solution for at least 2 hours. Immunohistochemical staining was used to assess the expression of E-cadherin, in the cryosectioned tissues. Hypericin uptake was examined by fluorescence microscopy. Immunohistochemical staining showed a clear expression of E-cadherin along the urothelial lining of the normal and pre-malignant tissues. Partial expression of these cell adhesion molecules were still observed in malignant tissues, however there was a loss of expression to variable extends along the urothelium. Thus, loss of intercellular adhesion can be associated with enhanced hypericin permeation through paracellular diffusion.

  5. O-GlcNAcylation affects β-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer.

    PubMed

    Harosh-Davidovich, Shani Ben; Khalaila, Isam

    2018-03-01

    O-GlcNAcylation, the addition of β-N-acetylglucosamine (O-GlcNAc) moiety to Ser/Thr residues, is a sensor of the cell metabolic state. Cancer diseases such as colon, lung and breast cancer, possess deregulated O-GlcNAcylation. Studies during the last decade revealed that O-GlcNAcylation is implicated in cancer tumorigenesis and proliferation. The Wnt/β-catenin signaling pathway and cadherin-mediated adhesion are also implicated in epithelial-mesenchymal transition (EMT), a key cellular process in invasion and cancer metastasis. Often, deregulation of the Wnt pathway is caused by altered phosphorylation of its components. Specifically, phosphorylation of Ser or Thr residues of β-catenin affects its location and interaction with E-cadherin, thus facilitating cell-cell adhesion. Consistent with previous studies, the current study indicates that β-catenin is O-GlcNAcylated. To test the effect of O-GlcNAcylation on cell motility and how O-GlcNAcylation might affect β-catenin and E-cadherin functions, the enzyme machinery of O-GlcNAcylation was modulated either with chemical inhibitors or by gene silencing. When O-GlcNAcase (OGA) was inhibited, a global elevation of protein O-GlcNAcylation and increase in the expression of E-cadherin and β-catenin were noted. Concomitantly with enhanced O-GlcNAcylation, β-catenin transcriptional activity were elevated. Additionally, fibroblast cell motility was enhanced. Stable silenced cell lines with adenoviral OGA or adenoviral O-GlcNAc transferase (OGT) were established. Consistent with the results obtained by OGA chemical inhibition by TMG, OGT-silencing led to a significant reduction in β-catenin level. In vivo, murine orthotropic colorectal cancer model indicates that elevated O-GlcNAcylation leads to increased mortality rate, tumor and metastasis development. However, reduction in O-GlcNAcylation promoted survival that could be attributed to attenuated tumor and metastasis development. The results described herein provide

  6. Soluble adhesion molecules in human cancers: sources and fates.

    PubMed

    van Kilsdonk, Jeroen W J; van Kempen, Léon C L T; van Muijen, Goos N P; Ruiter, Dirk J; Swart, Guido W M

    2010-06-01

    Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases. Besides these membrane-bound adhesion molecules several soluble adhesion molecules are detected in the supernatant of tumor cell lines and patient body fluids. Truncated soluble adhesion molecules can be generated by several conventional mechanisms, including alternative splicing of mRNA transcripts, chromosomal translocation, and extracellular proteolytic ectodomain shedding. Secretion of vesicles (ectosomes and exosomes) is an alternative mechanism mediating the release of full-length adhesion molecules. Soluble adhesion molecules function as modulators of cell adhesion, induce proteolytic activity and facilitate cell signalling. Additionally, adhesion molecules present on secreted vesicles might be involved in the vesicle-target cell interaction. Based on currently available data, released soluble adhesion molecules contribute to cancer progression and therefore should not be regarded as unrelated and non-functional side products of tumor progression. 2010 Elsevier GmbH. All rights reserved.

  7. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase.

    PubMed

    Taddei, Maria Letizia; Chiarugi, Paola; Cirri, Paolo; Buricchi, Francesca; Fiaschi, Tania; Giannoni, Elisa; Talini, Doriana; Cozzi, Giacomo; Formigli, Lucia; Raugei, Giovanni; Ramponi, Giampietro

    2002-11-15

    Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.

  8. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia.

    PubMed

    Higgins, J R; Papayianni, A; Brady, H R; Darling, M R; Walshe, J J

    1998-08-01

    Our purpose was to investigate circulating levels of vascular cell adhesion molecule-1 in the peripheral and uteroplacental circulations during normotensive and hypertensive pregnancies. This prospective observational study involved 2 patient groups. Group 1 consisted of 22 women with pre-eclampsia and 30 normotensive women followed up longitudinally through pregnancy and post partum. There were an additional 13 women with established gestational hypertension. Group 2 consisted of 20 women with established pre-eclampsia and 19 normotensive control subjects undergoing cesarean delivery. Plasma levels of vascular cell adhesion molecule-1 were measured in blood drawn from the antecubital vein (group 1) and from both the antecubital and uterine veins (group 2). Data were analyzed by analysis of variance. In group 1 vascular cell adhesion molecule-1 levels did not change significantly throughout normal pregnancy and post partum. Women with established pre-eclampsia had increased vascular cell adhesion molecule-1 levels compared with the normotensive pregnancy group (P = .01). Vascular cell adhesion molecule-1 levels were not elevated in women with established gestational hypertension. In group 2 significantly higher levels of vascular cell adhesion molecule-1 were detected in the uteroplacental (P < .0001) and peripheral (P < .0001) circulations of pre-eclamptic women by comparison with normotensive women. In the pre-eclamptic group there was a tendency toward higher vascular cell adhesion molecule-1 levels in the peripheral circulation than in the uteroplacental circulation (P = .06). In contrast to vascular cell adhesion molecule-1, circulating levels of E-selectin and intercellular adhesion molecule-1, other major leukocyte adhesion molecules expressed by the endothelium, were not different in pre-eclamptic and normotensive pregnancies. Established pre-eclampsia is characterized by selective dysregulation of vascular cell adhesion molecule-1 homeostasis. This event

  9. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition.

    PubMed

    Li, Qisheng; Sodroski, Catherine; Lowey, Brianna; Schweitzer, Cameron J; Cha, Helen; Zhang, Fang; Liang, T Jake

    2016-07-05

    Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.

  10. [Immunohistochemical expression of the E-cadherin-catenin complex in gastric cancer].

    PubMed

    Guzmán, Pablo; Araya, Juan; Villaseca, Miguel; Roa, Iván; Melo, Angélica; Muñoz, Sergio; Roa, Juan

    2006-08-01

    The E-cadherin/catenin complex plays an essential role in the control of epithelial differentiation. Abnormal expression in tumors correlates with histological grade, advanced stage and poor prognosis. To evaluate the expression pattern of E-cadherin/catenin complex in gastric carcinoma and analyze their association with tumor clinicopathological features and patient survival. Inmunohistochemical staining of E-cadherin, alpha and ss-catenin was performed from paraffin specimens of 65 gastric carcinomas. Abnormal expression of E-cadherin, alpha and ss-catenin was demonstrated in 82%, 85% and 88% of gastric carcinomas, respectively. There was a significant correlation between abnormal expression and Lauren pathological classification and depth of infiltration, but not with tumor stage, positive lymph node metastases and survival. Abnormal expression of E-cadherin, alpha and ss-catenin occurs frequently in gastric carcinoma and correlates with histological grade.

  11. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity

    PubMed Central

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit

    2015-01-01

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity. PMID:26195669

  12. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    PubMed

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  13. Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells

    PubMed Central

    Streets, Andrew J.; Wagner, Bart E.; Harris, Peter C.; Ward, Christopher J.; Ong, Albert C. M.

    2009-01-01

    Summary Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited human renal disease and is caused by mutations in two genes, PKD1 (85%) and PKD2 (15%). Cyst epithelial cells are characterised by a complex cellular phenotype including changes in proliferation, apoptosis, basement membrane composition and apicobasal polarity. Since polycystin 1 (PC1), the PKD1 protein, has been located in the basolateral membrane of kidney epithelial cells, we hypothesised that it might have a key role in mediating or stabilising cell-cell interactions. In non-ciliated L929 cells, stable or transient surface expression of the PC1 extracellular domain was sufficient to confer an adhesive phenotype and stimulate junction formation. In MDCK cells, we found that PC1 was recruited to the lateral membranes coincident with E-cadherin within 30 minutes after a `calcium switch'. Recruitment of both proteins was significantly delayed when cells were treated with a PC1 blocking antibody raised to the PKD domains. Finally, PC1 and E-cadherin could be coimmunoprecipitated together from MDCK cells. We conclude that PC1 has a key role in initiating junction formation via initial homophilic interactions and facilitates junction assembly and the establishment of apicobasal polarity by E-cadherin recruitment. PMID:19351715

  14. Roles of cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1.

    PubMed

    Shinohara, M; Kodama, A; Matozaki, T; Fukuhara, A; Tachibana, K; Nakanishi, H; Takai, Y

    2001-06-01

    Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.

  15. Growth cones are actively influenced by substrate-bound adhesion molecules.

    PubMed

    Burden-Gulley, S M; Payne, H R; Lemmon, V

    1995-06-01

    As axons advance to appropriate target tissues during development, their growth cones encounter a variety of cell adhesion molecules (CAMs) and extracellular matrix molecules (ECM molecules). Purified CAMs and ECM molecules influence neurite outgrowth in vitro and are thought to have a similar function in vivo. For example, when retinal ganglion cell (RGC) neurons are grown on different CAM and ECM molecule substrates in vitro, their growth cones display distinctive morphologies (Payne et al., 1992). Similarly, RGC growth cones in vivo have distinctive shapes at different points in the pathway from the eye to the tectum, suggesting the presence of localized cues that determine growth cone behaviors such as pathway selection at choice points. In this report, time-lapse video microscopy was utilized to examine dynamic transformations of RGC growth cones as they progressed from L1/8D9, N-cadherin, or laminin onto a different substrate. Contact made by the leading edge of a growth cone with a new substrate resulted in a rapid and dramatic alteration in growth cone morphology. In some cases, the changes encompassed the entire growth cone including those regions not in direct contact with the new substrate. In addition, the growth cones displayed a variety of behavioral responses that were dependent upon the order of substrate contact. These studies demonstrate that growth cones are actively affected by the substrate, and suggest that abrupt changes in the molecular composition of the growth cone environment are influential during axonal pathfinding.

  16. Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion.

    PubMed

    Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik

    2005-01-01

    To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.

  17. Adhesion molecules and receptors

    USDA-ARS?s Scientific Manuscript database

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  18. E-cadherin immunohistochemical expression in mammary gland neoplasms in bitches.

    PubMed

    Rodo, A; Malicka, E

    2008-01-01

    The aim of the study was to investigate E-cadherin expression in correlation with other neoplasm traits such as: histological type, the differentiation grade and proliferative activity. Material for the investigation comprised mammary gland tumours, collected from dogs, the patients of veterinary clinics, during surgical procedures and archival samples. All together 21 adenomas, 32 complex carcinomas, 35 simple carcinomas and 13 solid carcinomas were qualified for further investigation. E-cadherin expression was higher in adenomas as compared with carcinomas but lower in solid carcinomas as compared with simple and complex carcinomas. More over, the expression of E-cadherin decreased with the increase in the neoplasm malignancy and proliferative activity (value of the mitotic index and number of cells showing Ki67). The study has shown that the expression of E-cadherin can be used as a prognostic factor.

  19. E-Cadherin As A Chemotherapy Resistance Mechanism On Metastatic Breast Cancer

    DTIC Science & Technology

    2011-05-01

    chemotherapy. REPORTABLE OUTCOMES Publications 1. Chao Y, Wu Q, Shepard C, and Wells A. “Hepatocyte induced re-expression of E-cadherin in breast...Microenvironment (Appendix 2) 3. Chao Y*, Shepard CR*, Wells A (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial...Metastases.” Academy of Clinical Laboratory Physicians and Scientists. Redondo Beach, PA. June 2009. 2. Chao Y, Shepard CR, Wells, A. “E-cadherin

  20. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    PubMed

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  1. Direct Ca2+-dependent Heterophilic Interaction between Desmosomal Cadherins, Desmoglein and Desmocollin, Contributes to Cell–Cell Adhesion

    PubMed Central

    Chitaev, Nikolai A.; Troyanovsky, Sergey M.

    1997-01-01

    Human fibrosarcoma cells, HT-1080, feature extensive adherens junctions, lack mature desmosomes, and express a single known desmosomal protein, Desmoglein 2 (Dsg2). Transfection of these cells with bovine Desmocollin 1a (Dsc1a) caused dramatic changes in the subcellular distribution of endogenous Dsg2. Both cadherins clustered in the areas of the adherens junctions, whereas only a minor portion of Dsg2 was seen in these areas in the parental cells. Deletion mapping showed that intact extracellular cadherin-like repeats of Dsc1a (Arg1-Thr170) are required for the translocation of Dsg2. Deletion of the intracellular C-domain that mediates the interaction of Dsc1a with plakoglobin, or the CSI region that is involved in the binding to desmoplakin, had no effect. Coimmunoprecipitation experiments of cell lysates stably expressing Dsc1a with anti-Dsc or -Dsg antibodies demonstrate that the desmosomal cadherins, Dsg2 and Dsc1a, are involved in a direct Ca2+-dependent interaction. This conclusion was further supported by the results of solid phase binding experiments. These showed that the Dsc1a fragment containing cadherin-like repeats 1 and 2 binds directly to the extracellular portion of Dsg in a Ca2+-dependent manner. The contribution of the Dsg/ Dsc interaction to cell–cell adhesion was tested by coculturing HT-1080 cells expressing Dsc1a with HT-1080 cells lacking Dsc but expressing myc-tagged plakoglobin (MPg). In the latter cells, MPg and the endogenous Dsg form stable complexes. The observed specific coimmunoprecipitation of MPg by anti-Dsc antibodies in coculture indicates that an intercellular interaction between Dsc1 and Dsg is involved in cell–cell adhesion. PMID:9214392

  2. Disruption of basement membrane, extracellular matrix metalloproteinases and E-cadherin in renal-cell carcinoma.

    PubMed

    Morell-Quadreny, L; Rubio, Jose; Lopez-Guerrero, Jose Antonio; Casanova, Juan; Ramos, D; Iborra, Inmaculada; Solsona, Eduardo; Llombart-Bosch, A

    2003-01-01

    A retrospective study was performed to determine the prognostic value of Basement Membrane (BM) integrity, Matrix Metalloproteinases (MMPs) and E-Cadherin expression in renal cell carcinoma (RCC). An immunohistochemical study on laminin and collagen IV, MMPs 1 and 2, and E-Cadherin was carried out on 71 RCCs. BM fragmentation was considered taking 75% as a cut-off. MMP 1 and MMP2 immunostaining, as well as E-Cadherin was considered taking 25% as a cut-off. An inverse relationship was seen between E-Cadherin with laminin, collagen IV and MMPs. More than 75% loss of laminin, collagen IV and E-Cadherin, as well as higher expression of MMPs, were associated with symptoms, tumoral size and worse grade. Loss of collagen IV and E-Cadherin were of prognostic value. Both BM and E-Cadherin are good prognostic markers. MMPs patterns show a relationship between BM proteins and E-Cadherin, but evaluation is more time-consuming and provide no better prognostication; consequently they are not useful in routine clinical applications.

  3. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules.

    PubMed

    Zhao, Yan; Yuan, Zuyi; Liu, Yan; Xue, Jiahong; Tian, Yuling; Liu, Weimin; Zhang, Weiping; Shen, Yan; Xu, Wei; Liang, Xiao; Chen, Tao

    2010-03-01

    Adhesion molecules have been implicated in the development and progression of atherosclerosis. Cannabinoids have been reported to modulate the migration and adhesion molecules expression of various cell types. Here we examined the effects of WIN55212-2, a cannabinoid receptor 1 (CB1-R)/cannabinoid receptor 2 (CB2-R) agonist on the development of atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice, which are vulnerable because of their high plasma cholesterol and triacylglycerol levels, focusing on the expression of endothelial adhesion molecules. In the aorta of ApoE-/- mice, WIN55212-2 significantly reduced aortic root plaque area. The mechanism for this seemed to be reduced infiltration of macrophages into the atherosclerotic plaque which was also associated with reduced expression of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and P-selectin in the aorta. In vitro studies revealed reduced cell adhesion of a monocytic cell line (U937) to human umbilical vein endothelial cells after incubation with WIN55212-2. The reduction in macrophage adhesion also correlated with significant reductions in the expression of VCAM-1, ICAM-1, and P-selectin, indicating that reduced infiltration of macrophages in atherosclerotic plaques may occur as a result of the direct effect of WIN55212-2 on adhesion molecules in macrophages and endothelial cells. In conclusion, WIN55212-2 seems to have direct anti-atherosclerotic effects in an animal model of atherosclerosis. These effects were at least partly due to effects on the expression of VCAM-1, ICAM-1, and P-selectin, which led to reduced macrophage adhesion and infiltration. Furthermore, the protective effects completely blocked by the highly selective CB2 receptor antagonist AM630 suggest that these beneficial effects of WIN55212-2 may be mediated through the CB2 receptor.

  4. Drosophila E-Cadherin Functions in Hematopoietic Progenitors to Maintain Multipotency and Block Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Fossett, Nancy

    2013-01-01

    A fundamental question in stem cell biology concerns the regulatory strategies that control the choice between multipotency and differentiation. Drosophila blood progenitors or prohemocytes exhibit key stem cell characteristics, including multipotency, quiescence, and niche dependence. As a result, studies of Drosophila hematopoiesis have provided important insights into the molecular mechanisms that control these processes. Here, we show that E-cadherin is an important regulator of prohemocyte fate choice, maintaining prohemocyte multipotency and blocking differentiation. These functions are reminiscent of the role of E-cadherin in mammalian embryonic stem cells. We also show that mis-expression of E-cadherin in differentiating hemocytes disrupts the boundary between these cells and undifferentiated prohemocytes. Additionally, upregulation of E-cadherin in differentiating hemocytes increases the number of intermediate cell types expressing the prohemocyte marker, Patched. Furthermore, our studies indicate that the Drosophila GATA transcriptional co-factor, U-shaped, is required for E-cadherin expression. Consequently, E-cadherin is a downstream target of U-shaped in the maintenance of prohemocyte multipotency. In contrast, we showed that forced expression of the U-shaped GATA-binding partner, Serpent, repressed E-cadherin expression and promoted lamellocyte differentiation. Thus, U-shaped may maintain E-cadherin expression by blocking the inhibitory activity of Serpent. Collectively, these observations suggest that GATA:FOG complex formation regulates E-cadherin levels and, thereby, the choice between multipotency and differentiation. The work presented in this report further defines the molecular basis of prohemocyte cell fate choice, which will provide important insights into the mechanisms that govern stem cell biology. PMID:24040319

  5. Leptospira interrogans Binds to Cadherins

    PubMed Central

    Evangelista, Karen; Franco, Ricardo; Schwab, Andrew; Coburn, Jenifer

    2014-01-01

    Leptospirosis, caused by pathogenic species of Leptospira, is the most widespread zoonosis and has emerged as a major public health problem worldwide. The adhesion of pathogenic Leptospira to host cells, and to extracellular matrix (ECM) components, is likely to be necessary for the ability of leptospires to penetrate, disseminate and persist in mammalian host tissues. Previous work demonstrated that pathogenic L. interrogans binds to host cells more efficiently than to ECM. Using two independent screening methods, mass spectrometry and protein arrays, members of the cadherin family were identified as potential L. interrogans receptors on mammalian host surfaces. We focused our investigation on vascular endothelial (VE)-cadherin, which is widely expressed on endothelia and is primarily responsible for endothelial cell-cell adhesion. Monolayers of EA.hy926 and HMEC-1 endothelial cells produce VE-cadherin, bind L. interrogans in vitro, and are disrupted upon incubation with the bacteria, which may reflect the endothelial damage seen in vivo. Dose-dependent and saturable binding of L. interrogans to the purified VE-cadherin receptor was demonstrated and pretreatment of purified receptor or endothelial cells with function-blocking antibody against VE-cadherin significantly inhibited bacterial attachment. The contribution of VE-cadherin to leptospiral adherence to host endothelial cell surfaces is biologically significant because VE-cadherin plays an important role in maintaining the barrier properties of the vasculature. Attachment of L. interrogans to the vasculature via VE-cadherin may result in vascular damage, facilitating the escape of the pathogen from the bloodstream into different tissues during disseminated infection, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to describe a mammalian cell surface protein as a receptor for L. interrogans. PMID:24498454

  6. Silibinin Synergizes with Histone Deacetylase and DNA Methyltransferase Inhibitors in Upregulating E-cadherin Expression Together with Inhibition of Migration and Invasion of Human Non-small Cell Lung Cancer Cells

    PubMed Central

    Mateen, Samiha; Raina, Komal; Agarwal, Chapla; Chan, Daniel

    2013-01-01

    Aggressive cancers in the epithelial-to-mesenchymal transition (EMT) phase are characterized by loss of cell adhesion, repression of E-cadherin, and increased cell mobility. Non-small cell lung cancer (NSCLC) differs in basal level of E-cadherin; predominantly exhibiting silenced expression due to epigenetic-related modifications. Accordingly, effective treatments are needed to modulate these epigenetic events that in turn can positively regulate E-cadherin levels. Herein, we investigated silibinin, a natural flavonolignan with anticancer efficacy against lung cancer, either alone or in combination with epigenetic therapies to modulate E-cadherin expression in a panel of NSCLC cell lines. Silibinin combined with HDAC inhibitor Trichostatin A [TSA; 7-[4-(dimethylamino)phenyl]-N-hydroxy-4,6-dimethyl-7-oxohepta-2,4-dienamide] or DNMT inhibitor 5′-Aza-deoxycytidine (Aza) significantly restored E-cadherin levels in NSCLC cells harboring epigenetically silenced E-cadherin expression. These combination treatments also strongly decreased the invasion/migration of these cells, which further emphasized the biologic significance of E-cadherin restoration. Treatment of NSCLC cells, with basal E-cadherin levels, by silibinin further increased the E-cadherin expression and inhibited their migratory and invasive potential. Additional studies showed that silibinin alone as well as in combination with TSA or Aza downmodulate the expression of Zeb1, which is a major transcriptional repressor of E-cadherin. Overall these findings demonstrate the potential of combinatorial treatments of silibinin with HDAC or DNMT inhibitor to modulate EMT events in NSCLC cell lines, leading to a significant inhibition in their migratory and invasive potentials. These results are highly significant, since loss of E-cadherin and metastatic spread of the disease via EMT is associated with poor prognosis and high mortalities in NSCLC. PMID:23461975

  7. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    PubMed

    Norris, S; White, M; Mankan, A K; Lawless, M W

    2010-04-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  8. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow.

    PubMed

    Turhan, Hasan; Saydam, Gul Sevim; Erbay, Ali Riza; Ayaz, Selime; Yasar, Ayse Saatci; Aksoy, Yuksel; Basar, Nurcan; Yetkin, Ertan

    2006-04-04

    Inflammation has been reported to be a major contributing factor to many cardiovascular events. In the present study, we aimed to evaluate plasma soluble adhesion molecules; intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin as possible indicators of endothelial activation or inflammation in patients with slow coronary flow. Study population included 17 patients with angiographically proven normal coronary arteries and slow coronary flow in all three coronary vessels (group I, 11 male, 6 female, mean age=48+/-9 years), and 20 subjects with angiographically proven normal coronary arteries without associated slow coronary flow (group II, 11 male, 9 female, mean age=50+/-8 years). Coronary flow rates of all patients and control subjects were documented by Thrombolysis In Myocardial Infarction frame count (TIMI frame count). All patients in group I had TIMI frame counts greater than two standard deviation above those of control subjects (group II) and, therefore, were accepted as exhibiting slow coronary flow. Serum levels of ICAM-1, VCAM-1, and E-selectin were measured in all patients and control subjects using commercially available ELISA kits. Serum ICAM-1, VCAM-1, and E-selectin levels of patients with slow coronary flow were found to be significantly higher than those of control subjects with normal coronary flow (ICAM-1: 545+/-198 ng/ml vs. 242+/-113 ng/ml respectively, p<0.001, VCAM-1: 2040+/-634 ng/ml vs. 918+/-336 ng/ml respectively, p<0.001, E-selectin: 67+/-9 ng/ml vs. 52+/-8 ng/ml respectively, p<0.001). Average TIMI frame count was detected to be significantly correlated with plasma soluble ICAM-1 (r=0.550, p<0.001), VCAM-1 (r=0.569, p<0.001) and E-selectin (r=0.443, p=0.006). Increased levels of soluble adhesion molecules in patients with slow coronary flow may be an indicator of endothelial activation and inflammation and are likely to be in the causal pathway leading to slow coronary flow.

  9. Arf6 regulates EGF-induced internalization of E-cadherin in breast cancer cells.

    PubMed

    Xu, Rui; Zhang, Yujie; Gu, Luo; Zheng, Jianchao; Cui, Jie; Dong, Jing; Du, Jun

    2015-01-01

    E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6 on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml. Meanwhile, EGF treatment markedly increased Arf6 activation. Arf6 was involved in complexes of E-cadherin, and more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6 siRNA suppressed EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arf6 on promoting breast cancer cell metastasis.

  10. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.

    PubMed

    Wagner, Roselyne Y; Luciani, Flavie; Cario-André, Muriel; Rubod, Alain; Petit, Valérie; Benzekri, Laila; Ezzedine, Khaled; Lepreux, Sébastien; Steingrimsson, Eirikur; Taieb, A; Gauthier, Yvon; Larue, Lionel; Delmas, Véronique

    2015-07-01

    Vitiligo is the most common depigmenting disorder resulting from the loss of melanocytes from the basal epidermal layer. The pathogenesis of the disease is likely multifactorial and involves autoimmune causes, as well as oxidative and mechanical stress. It is important to identify early events in vitiligo to clarify pathogenesis, improve diagnosis, and inform therapy. Here, we show that E-cadherin (Ecad), which mediates the adhesion between melanocytes and keratinocytes in the epidermis, is absent from or discontinuously distributed across melanocyte membranes of vitiligo patients long before clinical lesions appear. This abnormality is associated with the detachment of the melanocytes from the basal to the suprabasal layers in the epidermis. Using human epidermal reconstructed skin and mouse models with normal or defective Ecad expression in melanocytes, we demonstrated that Ecad is required for melanocyte adhesiveness to the basal layer under oxidative and mechanical stress, establishing a link between silent/preclinical, cell-autonomous defects in vitiligo melanocytes and known environmental stressors accelerating disease expression. Our results implicate a primary predisposing skin defect affecting melanocyte adhesiveness that, under stress conditions, leads to disappearance of melanocytes and clinical vitiligo. Melanocyte adhesiveness is thus a potential target for therapy aiming at disease stabilization.

  11. Matrilysin (Matrix Metalloproteinase-7) Mediates E-Cadherin Ectodomain Shedding in Injured Lung Epithelium

    PubMed Central

    McGuire, John K.; Li, Qinglang; Parks, William C.

    2003-01-01

    Matrilysin (matrix metalloproteinase-7) is highly expressed in lungs of patients with pulmonary fibrosis and other conditions associated with airway and alveolar injury. Although matrilysin is required for closure of epithelial wounds ex vivo, the mechanism of its action in repair is unknown. We demonstrate that matrilysin mediates shedding of E-cadherin ectodomain from injured lung epithelium both in vitro and in vivo. In alveolar-like epithelial cells, transfection of activated matrilysin resulted in shedding of E-cadherin and accelerated cell migration. In vivo, matrilysin co-localized with E-cadherin at the basolateral surfaces of migrating tracheal epithelium, and the reorganization of cell-cell junctions seen in wild-type injured tissue was absent in matrilysin-null samples. E-cadherin ectodomain was shed into the bronchoalveolar lavage fluid of bleomycin-injured wild-type mice, but was not shed in matrilysin-null mice. These findings identify E-cadherin as a novel substrate for matrilysin and indicate that shedding of E-cadherin ectodomain is required for epithelial repair. PMID:12759241

  12. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice.

    PubMed

    Derksen, Patrick W B; Braumuller, Tanya M; van der Burg, Eline; Hornsveld, Marten; Mesman, Elly; Wesseling, Jelle; Krimpenfort, Paul; Jonkers, Jos

    2011-05-01

    Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30-40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10-15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.

  13. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways

    PubMed Central

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-01-01

    ABSTRACT Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial–monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  14. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    PubMed

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  15. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    PubMed

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  16. E-Cadherin as a Chemotherapy Resistance Mechanism on Metastatic Breast Cancer

    DTIC Science & Technology

    2011-01-01

    Gold Kit (Zymo, San Diego, CA) per the manufacturer’s specifications. MSP was performed in the way of Corn et al [62] or using the CpG WIZ E-cadherin...Amplification Kit per the manufacturer’s instructions (Millipore, Temecula, CA). Briefly, in the method of Corn , a nested PCR method was used, in...cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 92(11): 2786-95. 29. Corn , PG, BD Smith, ES Ruckdeschel et al (2000) E-cadherin

  17. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  18. A distinct profile of serum levels of soluble intercellular adhesion molecule-1 and intercellular adhesion molecule-3 in mycosis fungoides and Sézary syndrome.

    PubMed

    López-Lerma, Ingrid; Estrach, Maria Teresa

    2009-08-01

    Cell adhesion molecules (CAMs) play a pivotal role in cutaneous localization of T cells. Tissue-selective localization of T lymphocytes to the skin is crucial for immune surveillance and in the pathogenesis of skin disorders. To detect the profile of soluble CAMs in patients with cutaneous T-cell lymphoma (CTCL), we investigated the levels of intercellular adhesion molecule-1 (ICAM-1, soluble ICAM-1 [sICAM-1]); intercellular adhesion molecule-3 (sICAM-3); vascular cell adhesion molecule-1 (sVCAM-1); and E-selectin (sE-selectin) in sera from patients with T-cell-mediated skin diseases. Serum levels of the 4 CAMs were measured by enzyme-linked immunosorbent assay in 42 participants including 11 patients with early stages of CTCL; 7 with advanced stages of CTCL including Sézary syndrome; 12 with inflammatory skin diseases (psoriasis and atopic dermatitis); 8 with skin diseases that may evolve into CTCL; and healthy individuals. Levels were correlated with biological parameters known as prognostic factors in non-Hodgkin lymphomas. In patients with CTCL, significantly increased levels of sICAM-1 and sICAM-3 were found when compared with healthy individuals and patients with inflammatory dermatosis. Soluble E-selectin and sVCAM-1 levels were not increased. There were significant positive correlations between sICAM-1 and sICAM-3 levels and each of them with beta2-microglobulin levels. Limited number of patients was a limitation. There is a distinct profile of soluble CAMs in patients with CTCL. However, future studies with a larger group of patients are needed to confirm these findings. We propose that high sICAM-1 and sICAM-3 levels have important implications in the context of immune response and immune surveillance in these patients.

  19. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the

  20. CD8 T-cells and E-cadherin in host responses against oropharyngeal candidiasis

    PubMed Central

    Quimby, K.; Lilly, E.A.; Zacharek, M.; McNulty, K.; Leigh, J.E.; Vazquez, J.E.; Fidel, P.L.

    2011-01-01

    Oropharyngeal candidiasis (OPC) is the most common oral infection in HIV+ persons. Previous studies suggest a role for CD8+ T-cells against OPC when CD4+ T-cells are lost, but enhanced susceptibility to infection occurs when CD8+ T-cell migration is inhibited by reduced tissue E-cadherin. Objective Conduct a longitudinal study of tissue CD8+ T-cells and E-cadherin expression before, during, and after episodes of OPC. Methods Oral fungal burden was monitored and tissue was evaluated for CD8+ T-cells and E-cadherin over a one-year period in HIV+ persons with a history of, or an acute episode of OPC. Results While longitudinal analyses precluded formal interpretations, point prevalence analyses of the dataset revealed that when patients experiencing OPC were successfully treated, tissue E-cadherin expression was similar to patients who had not experienced OPC, and higher numbers of CD8+ T-cells were distributed throughout OPC− tissue under normal expression of E-cadherin. Conclusion These results suggest that 1) reduction in tissue E-cadherin expression in OPC+ patients is not permanent, and 2) high numbers of CD8+ T-cells can be distributed throughout OPC− tissue under normal E-cadherin expression. Together these results extend our previous studies and continue to support a role for CD8+ T-cells in host defense against OPC. PMID:21958417

  1. Connections between cadherin-catenin proteins, spindle misorientation, and cancer

    PubMed Central

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2015-01-01

    Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance. PMID:26451345

  2. [Expression of cell adhesion molecules in acute leukemia cell].

    PubMed

    Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang

    2002-11-01

    To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.

  3. Correlation of leukocyte adhesiveness, adhesion molecule expression and leukocyte-induced contraction following balloon angioplasty

    PubMed Central

    Kennedy, Simon; McPhaden, Allan R; Wadsworth, Roger M; Wainwright, Cherry L

    2000-01-01

    The aim of this study was to examine the changes in leukocyte adhesion and leukocyte-induced contraction in balloon-injured rabbit subclavian artery and to correlate these changes with vessel morphology and expression of adhesion molecules on the injured arteries.Rabbits were anaesthetized and their left subclavian arteries were injured by balloon inflation and withdrawal followed by sacrifice at 2, 24, 48 h or 8 days after injury. The left and right subclavian arteries were removed and leukocytes were isolated from autologous rabbit blood. Leukocyte-induced contraction was measured in 5-HT precontracted artery rings and leukocyte adhesion was measured using 51Cr-labelled leukocytes. Immunocytochemistry using paraffin-embedded tissue was employed to detect changes in the expression of adhesion molecules on injured arteries.Autologous leukocytes caused a contraction of rabbit subclavian artery rings, which was prevented by L-NAME (10−3 M). Balloon-induced injury abolished the contractile response to leukocytes, which correlated with loss of carbachol-induced relaxationBalloon injury markedly enhanced the adhesiveness of the subclavian artery for leukocytes, most notably at 24 and 48 h after injury (1.7 and 1.8 fold respectively). Increased leukocyte adhesion at these two time points correlated with an upregulation of E-selectin, P-selectin and VCAM-1 expression on the remaining endothelium of the injured artery.Vessel morphology revealed that balloon inflation had induced an infiltration of inflammatory cells into the vessel wall, the greatest increase being seen at 24 h after injury.It is concluded that an increase in the expression of E-selectin, P-selectin and VCAM-1 following balloon-induced injury leads to enhanced leukocyte adhesion and migration into the injured vessel. PMID:10781003

  4. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1.

    PubMed Central

    Johnson-Tidey, R. R.; McGregor, J. L.; Taylor, P. R.; Poston, R. N.

    1994-01-01

    P-selectin (GMP-140) is an adhesion molecule present within endothelial cells that is rapidly translocated to the cell membrane upon activation, where it mediates endothelial-leukocyte interactions. Immunohistochemical analysis of human atherosclerotic plaques has shown strong expression of P-selectin by the endothelium overlying active atherosclerotic plaques. P-selectin is not, however, detected in normal arterial endothelium or in endothelium overlying inactive fibrous plaques. Color image analysis was used to quantitate the degree of P-selectin expression in the endothelium and demonstrates a statistically significant increase in P-selectin expression by atherosclerotic endothelial cells. Double immunofluorescence shows that some of this P-selectin is expressed on the luminal surface of the endothelial cells. Previous work has demonstrated a significant up-regulation in the expression of the intercellular adhesion molecule-1 in atherosclerotic endothelium and a study on the expression of intercellular adhesion molecule-1 and P-selectin in atherosclerosis shows a highly positive correlation. These results suggest that the selective and cooperative expression of P-selectin and intercellular adhesion molecule-1 may be involved in the recruitment of monocytes into sites of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:7513951

  5. HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo.

    PubMed

    Hu, Dongxiao; Zhou, Jiansong; Wang, Fenfen; Shi, Haiyan; Li, Yang; Li, Baohua

    2015-12-01

    Cadherin switch, as a key hallmark of epithelial-mesenchymal transition (EMT), is characterized by reduced E-cadherin expression and increased N-cadherin or P-cadherin expression, and has been implicated in many aggressive tumors, but the importance and regulatory mechanism of cadherin switch in cervical cancer have not been investigated. Our study aimed to explore the role of cadherin switch by regulation of HPV-16 E6/E7 in progression and metastasis of cervical cancer. The expressions of E-cadherin and P-cadherin were examined by immunohistochemical staining in 40 cases of high-grade cervical lesions with HPV-16 infection only in which HPV-16 E6 and E7 expression had been detected using qRT-PCR method. Through modulating E6 and E7 expression using HPV-16 E6/E7 promoter-targeting siRNAs or expressed vector in vitro, cell growth, migration, and invasion were separately tested by MTT, wound-healing and transwell invasion assays, as well as the expressions of these cadherins by western blot analyses. Finally, the expressions of these cadherins in cancerous tissues of BALB/c-nu mouse model inoculated with the stable HPV-16 E6/E7 gene silencing Siha and Caski cells were also measured by immunohistochemical staining. Pearson correlation coefficient analyses showed the strongly inverse correlation of E-cadherin expression and strongly positive correlation of P-cadherin expression with E6/E7 level in 40 cases of high-grade cervical lesions. Furthermore, the modulation of HPV-16 E6/E7 expression remarkably influenced cell proliferation, migration, and invasion, as well as the protein levels of E-cadherin and P-cadherin in cervical cell lines. Finally, the reduction of HPV-16 E6/E7 expression led to up-regulated expression of E-cadherin and down-regulated expression of P-cadherin in BALB/c-nu mouse model in vivo assay. Our results unraveled the possibility that HPV-16 E6/E7 could promote cell invasive potential via regulating cadherin switching, and consequently contribute

  6. Expression of P-aPKC-iota, E-cadherin, and beta-catenin related to invasion and metastasis in hepatocellular carcinoma.

    PubMed

    Du, Guang-Sheng; Wang, Jian-Ming; Lu, Jin-Xi; Li, Qiang; Ma, Chao-Qun; Du, Ji-Tao; Zou, Sheng-Quan

    2009-06-01

    Atypical protein kinase C iota (aPKC-iota) and its associated intracellular molecules, E-cadherin and beta-catenin, are important for cell polarization in tumorigenesis and progression. Expression of aPKC-iota, P-aPKC-iota (activated aPKC-iota), E-cadherin, and beta-catenin in hepatocellular carcinoma (HCC) was measured, and correlation with clinicopathological characteristics of HCC was analyzed. Paraffin-embedded tumor tissue was obtained from patients with HCC after resection without preoperative radiotherapy or chemotherapy. Gene expression was detected by polymerase chain reaction (PCR), and protein expression was detected by immunohistochemistry and Western blot analysis. Expressions of aPKC-iota, P-aPKC-iota, E-cadherin, and beta-catenin were analyzed with relation to the clinicopathological data. The gene and protein expression of aPKC-iota are obviously higher in HCC tissues than that in peritumoral tissues and normal tissues by semiquantitative PCR and immunohistochemistry methods. Accumulation of aPKC-iota in HCC cytoplasm and nucleolus inhibited the later formation of belt-like adherens junctions (AJs) and/or tight junctions (TJs) in cell-cell contact. E-cadherin was reduced and accumulation of cytoplasm beta-catenin was increased in HCC. The expression of aPKC-iota was closely related to pathological differentiation, tumor size, invasion, and metastasis of HCC. Accumulation of cytoplasm aPKC-iota may reflect pathological differentiation, invasion, and metastasis potential of HCC. In this regard, our study on HCC revealed the potential usefulness of aPKC-iota, E-cadherin, and beta-catenin as a prognostic marker, closely related to pathological differentiation, invasion, metastasis, and prognosis of HCC.

  7. Application of APTES-Anti-E-cadherin film for early cancer monitoring.

    PubMed

    Ben Ismail, Manel; Carreiras, Franck; Agniel, Rémy; Mili, Donia; Sboui, Dejla; Zanina, Nahla; Othmane, Ali

    2016-10-01

    Cancer staging is a way to classify cancer according to the extent of the disease in the body. The stage is usually determined by several factors such as the location of the primary tumor, the tumor size, the degree of spread in the surrounding tissues, etc. The study of E-cadherin (EC) expression on cancerous cells of patients has revealed variations in the molecular expression patterns of primary tumors and metastatic tumors. The detection of these cells requires a long procedure involving conventional techniques, thus, the requirement for development of new rapid devices that permit direct and highly sensitive detection stimulates the sensing field progress. Here, we explore if E-cadherin could be used as a biomarker to bind and detect epithelial cancer cells. Hence, the sensitive and specific detection of E-cadherin expressed on epithelial cells is approached by immobilizing anti-E-cadherin antibody (AEC) onto aminosilanized indium-tin oxide (ITO) surface. The immunosensing surfaces have been characterized by electrochemical measurements, wettability and confocal microscopy and their performance has been assessed in the presence of cancer cell lines. Under optimal conditions, the resulting immunosensor displayed a selective detection of E-cadherin expressing cells, which could be detected either by fluorescence or electrochemical techniques. The developed immunosensing surface could provide a simple tool that can be applied to cancer staging. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells with high lymph node metastasis potential preferentially via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) and E-cadherin.

    PubMed

    Sun, Xujuan; Wei, Bin; Liu, Shuqing; Guo, Chunmei; Wu, Na; Liu, Qinlong; Sun, Ming-Zhong

    2016-12-01

    Annexin A5 (Anxa5) is associated with the progression of some cancers, while its role and regulation mechanism in tumor lymphatic metastasis is rarely reported. This study aims to investigate the influence of Anxa5 knockdown on the malignant behaviours of murine hepatocarcinoma Hca-F cell line with high lymph node metastatic (LNM) potential and the underlying regulation mechanism. RNA interfering was performed to silence Anxa5 in Hca-F. Monoclonal shRNA-Anxa5- Hca-F cells were obtained via G418 screening by limited dilution method. Quantitative real-time RT-PCR (qRT-PCR) and Western blotting (WB) were applied to measure Anxa5 expression levels. CCK-8, Boyden transwell-chamber and in situ LN adhesion assays were performed to explore the effects of Anxa5 on the proliferation, migration, invasion and adhesion capacities of Hca-F. WB and qRT-PCR were used to detect the level changes of key molecules in corresponding signal pathways. We obtained two monoclonal shRNA-Anxa5-transfected Hca-F cell lines with stable knockdowns of Anxa5. Anxa5 knockdown resulted in significantly reduced proliferation, migration, invasion and in situ LN adhesion potentials of Hca-F in proportion to its knockdown extent. Anxa5 downregulation enhanced E-cadherin levels in Hca-F. Moreover, Anxa5 affected Hca-F behaviours specifically via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) instead of p38MAPK/c-Jun, Jnk/c-Jun and AKT/c-Jun pathways. Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells via ERK2/c-Jun/p-c-Jun(Ser73) and ERK2/E-cadherin pathways. It is an important molecule in metastasis (especially LNM) and a potential therapeutic target for hepatocarcinoma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Increased soluble vascular cell adhesion molecule-1 plasma levels and soluble intercellular adhesion molecule-1 during antiretroviral therapy interruption and retention of elevated soluble vascular cellular adhesion molecule-1 levels following resumption of antiretroviral therapy.

    PubMed

    Papasavvas, Emmanouil; Azzoni, Livio; Pistilli, Maxwell; Hancock, Aidan; Reynolds, Griffin; Gallo, Cecile; Ondercin, Joe; Kostman, Jay R; Mounzer, Karam; Shull, Jane; Montaner, Luis J

    2008-06-19

    We investigated the effect of short viremic episodes on soluble markers associated with endothelial stress and cardiovascular disease risk in chronically HIV-1-infected patients followed during continuous antiretroviral therapy, antiretroviral therapy interruption and antiretroviral therapy resumption. We assessed changes in plasma levels of von Willebrand factor, soluble vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 by enzyme-linked immunosorbent assay, as well as T-cell activation (CD8+/CD38+, CD8+/HLA-DR+ and CD3+/CD95+) by flow cytometry, in 36 chronically HIV-1-infected patients participating in a randomized study. Patients were divided into the following three groups: a, on continuous antiretroviral therapy; b, on a 6-week antiretroviral therapy interruption; or c, on antiretroviral therapy interruption extended to the achievement of viral set point. Although all measurements remained stable over a 40-week follow-up on antiretroviral therapy, plasma levels of soluble vascular cell adhesion molecule-1 (P < 0.0001) and soluble intercellular adhesion molecule-1 (P = 0.003) increased during treatment interruption in correlation with viral rebound and T-cell activation. No significant changes in von Willebrand factor were observed in any of the groups. After resuming antiretroviral therapy, soluble vascular cell adhesion molecule-1 levels remained elevated even after achievement of viral suppression to less than 50 copies/ml. The prompt rise in plasma soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1 upon viral rebound suggests an acute increase in endothelial stress upon treatment interruption, which may persists after viral resuppression of virus. Thus, viral replication during short-term treatment interruption may increase the overall cardiovascular risk during and beyond treatment interruption.

  10. Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix.

    PubMed

    Mayer, A; Höckel, M; Schlischewsky, N; Schmidberger, H; Horn, L-C; Vaupel, P

    2013-02-05

    Experimental studies have established a causal connection between tumour hypoxia, hypoxia-associated proteome changes and downregulation of E-cadherin, the final common pathway of epithelial-to-mesenchymal transition (EMT). Our study aimed at elucidating the interrelationship of these processes in cancers of the uterine cervix in vivo. Tumour oxygenation was assessed in 48 squamous cell carcinomas (SCC) of the uterine cervix using polarographic needle electrodes. The expression pattern of E-cadherin was investigated by immunohistochemistry and western blotting, and was compared with that of the hypoxia-inducible proteins glucose transporter (GLUT)-1 and carbonic anhydrase (CA) IX in biopsy specimens of the oxygenation measurement tracks. The majority of cervical cancers (52%) were E-cadherin positive, with a complete absence of the antigen in only 10% of the tumours. No correlation was found between the level of E-cadherin expression and the oxygenation status (mean pO(2), median pO(2) and hypoxic fractions). In patients showing partial expression of E-cadherin (38%), staining was not preferentially diminished in GLUT-1- or CA IX-positive areas, and loss of E-cadherin occurred independently of tumour cell scattering. Our data provide no evidence in favour of a hypoxia-induced EMT as a mechanistic basis of cervical cancer invasiveness.

  11. Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix

    PubMed Central

    Mayer, A; Höckel, M; Schlischewsky, N; Schmidberger, H; Horn, L-C; Vaupel, P

    2013-01-01

    Background: Experimental studies have established a causal connection between tumour hypoxia, hypoxia-associated proteome changes and downregulation of E-cadherin, the final common pathway of epithelial-to-mesenchymal transition (EMT). Our study aimed at elucidating the interrelationship of these processes in cancers of the uterine cervix in vivo. Methods: Tumour oxygenation was assessed in 48 squamous cell carcinomas (SCC) of the uterine cervix using polarographic needle electrodes. The expression pattern of E-cadherin was investigated by immunohistochemistry and western blotting, and was compared with that of the hypoxia-inducible proteins glucose transporter (GLUT)-1 and carbonic anhydrase (CA) IX in biopsy specimens of the oxygenation measurement tracks. Results: The majority of cervical cancers (52%) were E-cadherin positive, with a complete absence of the antigen in only 10% of the tumours. No correlation was found between the level of E-cadherin expression and the oxygenation status (mean pO2, median pO2 and hypoxic fractions). In patients showing partial expression of E-cadherin (38%), staining was not preferentially diminished in GLUT-1- or CA IX-positive areas, and loss of E-cadherin occurred independently of tumour cell scattering. Conclusion: Our data provide no evidence in favour of a hypoxia-induced EMT as a mechanistic basis of cervical cancer invasiveness. PMID:23322209

  12. Relevance of MET activation and genetic alterations of KRAS and E-cadherin for cetuximab sensitivity of gastric cancer cell lines.

    PubMed

    Heindl, Stefan; Eggenstein, Evelyn; Keller, Simone; Kneissl, Julia; Keller, Gisela; Mutze, Kathrin; Rauser, Sandra; Gasteiger, Georg; Drexler, Ingo; Hapfelmeier, Alexander; Höfler, Heinz; Luber, Birgit

    2012-05-01

    The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated. Reliable biomarkers for the identification of patients who are likely to benefit from the treatment are not available. The aim of the study was to examine the drug sensitivity of five gastric cancer cell lines towards cetuximab as a single agent and to establish predictive markers for chemosensitivity in this cell culture model. The effect of a combination of cetuximab with chemotherapy was compared between a sensitive and a nonsensitive cell line. EGFR expression, activation and localisation, the presence and subcellular localisation of the cell adhesion molecule E-cadherin as well as MET activation were examined by Western blot analysis, flow cytometry and immunofluorescence staining. Cells were treated with varying concentrations of cetuximab and cisplatin and 5-fluorouracil in tumour-relevant concentrations. The biological endpoint was cell viability, which was measured by XTT cell proliferation assay. Response to treatment was evaluated using statistical methods. We assessed the activity of cetuximab in five gastric cancer cell lines (AGS, KATOIII, MKN1, MKN28 and MKN45). The viability of two cell lines, MKN1 and MKN28, was significantly reduced by cetuximab treatment. High EGFR expression and low levels of receptor activation were associated with cetuximab responsiveness. MET activation as well as mutations of KRAS and CDH1 (gene encoding E-cadherin) was associated with cetuximab resistance. These data indicate that our examinations may be clinically relevant, and the candidate markers should therefore be tested in clinical studies.

  13. [Effect of Golgi α-mannosidase 2 (GM2) gene knockdown on adhesion abilities of human gastric carcinoma cell line BGC-823 and its mechanism].

    PubMed

    Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying

    2017-06-01

    Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.

  14. Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinoma.

    PubMed

    Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Pawagi, Sujata; Prabhu, Padmaja; Cao, Jian; Zucker, Stanley; Pfeiffer, Laurence; Garfield, Jacqueline; Fusenig, Norbert E; Garlick, Jonathan A

    2006-02-15

    The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd-Ecad). Three-dimensional human tissue constructs harboring either H-2Kd-Ecad-expressing or control II-4 cells (pBabe, H-2Kd-EcadDeltaC25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd-Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 gamma2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease.

  15. Expression of galectin-3, cytokeratin 19, neural cell adhesion molecule and E-cadhedrin in certain variants of papillary thyroid carcinoma.

    PubMed

    Laco, J; Ryska, A; Cáp, J; Celakovský, P

    2008-10-01

    The immunohistochemical expression of galectin-3 (Gal3), cytokeratin 19 (CK19), neural cell adhesion molecule (NCAM), and E-cadherin (Ecad) was evaluated to assess their use in diagnostics of papillary thyroid carcinoma (PTC). A total of 84 PTCs - 36 classical variants (cPTCs), 26 follicular variants (fPTCs), and 22 papillary microcarcinomas (mPTCs) were studied. Expression of Gal3 was found in 36/36 (100%) cPTCs, 24/26 (92%) fPTCs, and 19/22 (86%) mPTCs. CK19 expression was detected in 34/36 (94%) cPTCs, 17/26 (65%) fPTCs, and 13/22 (59%) mPTCs. Expression of NCAM was seen in 5/36 (14%) cPTCs, 7/26 (27%) fPTCs, and 9/22 (41%) mPTCs. Ecad expression was found in 23/36 (64%) cPTCs, 17/26 (65%) fPTCs, and 18/22 (82%) mPTCs. A significant difference in CK19 expression was observed between cPTC and both fPTC and mPTC (p < 0.001). Furthermore, extrathyroid tumor spread significantly correlated with both level of CK19 expression and loss of Ecad expression (p = 0.001, p = 0.04). Our findings suggest that Gal3 and CK19 are useful markers for PTC, although decreased CK19 expression in mPTC and fPTC must be considered. Furthermore, CK19 and Ecad may play a role in extrathyroid tumor spread.

  16. Circulating soluble adhesion molecules in patients with giant cell arteritis. Correlation between soluble intercellular adhesion molecule-1 (sICAM-1) concentrations and disease activity

    PubMed Central

    Coll-Vinent, B.; Vilardell, C.; Font, C.; Oristrell, J.; Hernandez-Rodrigu..., J.; Yague, J.; Urbano-Marquez, A.; Grau, J.; Cid, M.

    1999-01-01

    OBJECTIVE—To evaluate whether changes in concentrations of circulating adhesion molecules are related to disease activity in patients with giant cell arteritis (GCA).
METHODS—A sandwich ELISA was used to measure soluble intercellular adhesion molecule-1 (sICAM-1), sICAM-3, vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-selectin), and L-selectin (sL-selectin) in serum and plasma samples from patients with GCA. A cross sectional study was performed on 64 GCA patients at different activity stages and on 35 age and sex matched healthy donors. Thirteen of these patients were evaluated at the time of diagnosis and serially during follow up.
RESULTS—At the time of diagnosis, sICAM-1 concentrations were significantly higher in active GCA patients than in controls (mean (SD) 360.55 (129.78) ng/ml versus 243.25 (47.43) ng/ml, p<0.001). In contrast, sICAM-3, sVCAM-1, sE-selectin, and sL-selectin values did not differ from those obtained in normal donors. With corticosteroid administration, a decrease in sICAM-1 concentrations was observed, reaching normal values when clinical remission was achieved (263.18 (92.7) ng/ml globally, 293.59 (108.39) ng/ml in the group of patients in recent remission, and 236.83 (70.02) ng/ml in those in long term remission). In the 13 patients followed up longitudinally, sICAM-1 values also normalised with clinical remission (225.87 (64.25) ng/ml in patients in recent remission, and 256.29 (75.15) ng/ml in those in long term remission).
CONCLUSIONS—Circulating sICAM-1 concentrations clearly correlate with clinically apparent disease activity in GCA patients. Differences with results previously found in patients with other vasculitides may indicate that different pathogenic mechanisms contribute to vascular inflammation in different disorders.

 Keywords: adhesion molecules; giant cell arteritis; inflammation PMID:10364919

  17. Impact of pH on the structure and function of neural cadherin.

    PubMed

    Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan

    2014-12-02

    Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.

  18. Mucinous Colorectal Adenocarcinoma: Influence of EGFR and E-Cadherin Expression on Clinicopathologic Features and Prognosis.

    PubMed

    Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I

    2015-08-01

    Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA.

  19. SASH1 regulates melanocyte transepithelial migration through a novel Gαs-SASH1-IQGAP1-E-Cadherin dependent pathway.

    PubMed

    Zhou, Ding'an; Wei, Zhiyun; Deng, Shanshan; Wang, Teng; Zai, Meiqing; Wang, Honglian; Guo, Luo; Zhang, Junyu; Zhong, Hailei; He, Lin; Xing, Qinghe

    2013-06-01

    One important function of melanocytes (MCs) is to produce and transfer melanin to neighbouring keratinocytes (KCs) to protect epithelial cells from UV radiation. The mechanisms regulating the specific migration and localisation of the MC lineage remain unknown. We have found three heterozygous mutations that cause amino acid substitutions in the SASH1 gene in individuals with a kind of dyschromatosis. In epidermal tissues from an affected individual, we observed the increased transepithelial migration of melanocytes. Functional analyses indicate that these SASH1 mutations not only cause the increased migration of A375 cells and but also induce intensive bindings with two novel cell adhesion partners IQGAP1 and Gαs. Further, SASH1 mutations induce uniform loss of E-Cadherin in human A375 cells. Our findings suggest a new scaffold protein SASH1 to regulate IQGAP1-E-Cadherin signalling and demonstrate a novel crosstalking between GPCR signalling, calmodulin signalling for the modulation of MCs invasion. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Structural and functional diversity of cadherin at the adherens junction

    PubMed Central

    2011-01-01

    Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell–cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals. PMID:21708975

  1. M-cadherin and its sisters in development of striated muscle.

    PubMed

    Kaufmann, U; Martin, B; Link, D; Witt, K; Zeitler, R; Reinhard, S; Starzinski-Powitz, A

    1999-04-01

    Cadherins are calcium-dependent, transmembrane intercellular adhesion proteins with morphoregulatory functions in the development and maintenance of tissues. In the development of striated muscle, the expression and function of mainly M-, N-, and R-cadherin has been studied so far. While these three cadherins are expressed in skeletal muscle cells, of these only N-cadherin is expressed in cardiac muscle. In this review, M-, N-, and R-cadherin are discussed as important players in the terminal differentiation and possibly also in the commitment of skeletal muscle cells. Furthermore, reports are described which evaluate the essential role of N-cadherin in the formation of heart tissue.

  2. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  3. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less

  4. Dynamic pattern of endothelial cell adhesion molecule expression in muscle and perineural vessels from patients with classic polyarteritis nodosa.

    PubMed

    Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M

    1998-03-01

    To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.

  5. Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway.

    PubMed

    Wang, Yu; Ma, Jun; Shen, Haoran; Wang, Chengjie; Sun, Yueping; Howell, Stephen B; Lin, Xinjian

    2014-11-01

    Reactive oxygen species (ROS) can drive the de‑differentiation of tumor cells leading to the process of epithelial-to-mesenchymal transition (EMT) to enhance invasion and metastasis. The invasive and metastatic phenotype of malignant cells is often linked to loss of E-cadherin expression, a hallmark of EMT. Recent studies have demonstrated that hypoxic exposure causes HIF-1-dependent repression of E-cadherin. However, the mechanism by which ROS and/or HIF suppresses E-cadherin expression remains less clear. In the present study, we found that ROS accumulation in ovarian carcinoma cells upregulated HIF-1α expression and subsequent transcriptional induction of lysyl oxidase (LOX) which repressed E-cadherin. Loss of E-cadherin facilitated ovarian cancer (OC) cell migration in vitro and promoted tumor growth in vivo. E-cadherin immunoreactivity correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, tumor differentiation and metastasis. Negative E-cadherin expression along with FIGO stage, tumor differentiation and metastasis significantly predicted for a lower 5-year survival rate. These findings suggest that ROS play an important role in the initiation of metastatic growth of OC cells and support a molecular pathway from ROS to aggressive transformation which involves upregulation of HIF-1α and its downstream target LOX to suppress E-cadherin expression leading to an increase in cell motility and invasiveness.

  6. Cell adhesion molecules in context

    PubMed Central

    2011-01-01

    Cell adhesion molecules (CAMs) are now known to mediate much more than adhesion between cells and between cells and the extracellular matrix. Work by many researchers has illuminated their roles in modulating activation of molecules such as receptor tyrosine kinases, with subsequent effects on cell survival, migration and process extension. CAMs are also known to serve as substrates for proteases that can create diffusible fragments capable of signaling independently from the CAM. The diversity of interactions is further modulated by membrane rafts, which can co-localize or separate potential signaling partners to affect the likelihood of a given signaling pathway being activated. Given the ever-growing number of known CAMs and the fact that their heterophilic binding in cis or in trans can affect their interactions with other molecules, including membrane-bound receptors, one would predict a wide range of effects attributable to a particular CAM in a particular cell at a particular stage of development. The function(s) of a given CAM must therefore be considered in the context of the history of the cell expressing it and the repertoire of molecules expressed both by that cell and its neighbors. PMID:20948304

  7. Adherens Junctions Revisualized: Organizing Cadherins as Nanoassemblies.

    PubMed

    Yap, Alpha S; Gomez, Guillermo A; Parton, Robert G

    2015-10-12

    This Perspective considers how classical cadherin cell-cell adhesion receptors are organized at the nanoscale to generate lateral clusters. Recent advances in optical microscopy reveal that clustering constitutes a general feature of cadherin organization, but one that takes diverse forms. Here we consider the molecular mechanisms responsible for cadherin clustering and their functional implications. We frame our discussion in light of what is known about how nanoscale organization is conferred upon the plasma membrane, through protein-protein interactions, regulation of the cortical actin cytoskeleton, and the lipid environment of the membrane. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Role of E-cadherin in membrane-cortex interaction probed by nanotube extrusion.

    PubMed

    Tabdanov, Erdem; Borghi, Nicolas; Brochard-Wyart, Françoise; Dufour, Sylvie; Thiery, Jean-Paul

    2009-03-18

    This study aims to define the role of E-cadherin (Ecad) engagement in cell-cell contact during membrane-cortex interaction. As a tool, we used a hydrodynamic membrane tube extrusion technique to characterize the mechanical interaction between the plasma membrane and the underlying cortical cytoskeleton. Cells were anchored on 4.5 microm beads coated with polylysine (PL) to obtain nonspecific cell adhesion or with an antibody against Ecad to mimic specific Ecad-mediated cell adhesion. We investigated tube length dynamics L(t) over time and through successive extrusions applied to the cell at regular time intervals. A constant slow velocity was observed for the first extrusion, for PL-attached cells. Subsequent extrusions had two phases: an initial high-velocity regime followed by a low-velocity regime. Successive extrusions gradually weakened the binding of the membrane around the tube neck to the underlying cortical cytoskeleton. Cells specifically attached via Ecad first exhibited a very low extrusion velocity regime followed by a faster extrusion regime similar to nonspecific extrusion. This indicates that Ecad strengthens the membrane-cortical cytoskeleton interaction, but only in a restricted area corresponding to the site of contact between the cell and the bead. Occasional giant "cortex" tubes were extruded with specifically anchored cells, demonstrating that the cortex remained tightly bound to the membrane through Ecad-mediated adhesion at the contact site.

  9. Role of E-Cadherin in Membrane-Cortex Interaction Probed by Nanotube Extrusion

    PubMed Central

    Tabdanov, Erdem; Borghi, Nicolas; Brochard-Wyart, Françoise; Dufour, Sylvie; Thiery, Jean-Paul

    2009-01-01

    This study aims to define the role of E-cadherin (Ecad) engagement in cell-cell contact during membrane-cortex interaction. As a tool, we used a hydrodynamic membrane tube extrusion technique to characterize the mechanical interaction between the plasma membrane and the underlying cortical cytoskeleton. Cells were anchored on 4.5 μm beads coated with polylysine (PL) to obtain nonspecific cell adhesion or with an antibody against Ecad to mimic specific Ecad-mediated cell adhesion. We investigated tube length dynamics L(t) over time and through successive extrusions applied to the cell at regular time intervals. A constant slow velocity was observed for the first extrusion, for PL-attached cells. Subsequent extrusions had two phases: an initial high-velocity regime followed by a low-velocity regime. Successive extrusions gradually weakened the binding of the membrane around the tube neck to the underlying cortical cytoskeleton. Cells specifically attached via Ecad first exhibited a very low extrusion velocity regime followed by a faster extrusion regime similar to nonspecific extrusion. This indicates that Ecad strengthens the membrane-cortical cytoskeleton interaction, but only in a restricted area corresponding to the site of contact between the cell and the bead. Occasional giant “cortex” tubes were extruded with specifically anchored cells, demonstrating that the cortex remained tightly bound to the membrane through Ecad-mediated adhesion at the contact site. PMID:19289070

  10. The Epithelial Cell Adhesion Molecule EpCAM Is Required for Epithelial Morphogenesis and Integrity during Zebrafish Epiboly and Skin Development

    PubMed Central

    Slanchev, Krasimir; Carney, Thomas J.; Stemmler, Marc P.; Koschorz, Birgit; Amsterdam, Adam; Schwarz, Heinz; Hammerschmidt, Matthias

    2009-01-01

    The aberrant expression of the transmembrane protein EpCAM is associated with tumor progression, affecting different cellular processes such as cell–cell adhesion, migration, proliferation, differentiation, signaling, and invasion. However, the in vivo function of EpCAM still remains elusive due to the lack of genetic loss-of-function studies. Here, we describe epcam (tacstd) null mutants in zebrafish. Maternal-zygotic mutants display compromised basal protrusive activity and epithelial morphogenesis in cells of the enveloping layer (EVL) during epiboly. In partial redundancy with E-cadherin (Ecad), EpCAM made by EVL cells is further required for cell–cell adhesion within the EVL and, possibly, for proper attachment of underlying deep cells to the inner surface of the EVL, thereby also affecting deep cell epiboly movements. During later development, EpCAM per se becomes indispensable for epithelial integrity within the periderm of the skin, secondarily leading to disrupted morphology of the underlying basal epidermis and moderate hyper-proliferation of skin cells. On the molecular level, EVL cells of epcam mutant embryos display reduced levels of membranous Ecad, accompanied by an enrichment of tight junction proteins and a basal extension of apical junction complexes (AJCs). Our data suggest that EpCAM acts as a partner of E-cadherin to control adhesiveness and integrity as well as plasticity and morphogenesis within simple epithelia. In addition, EpCAM is required for the interaction of the epithelia with underlying cell layers. PMID:19609345

  11. Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion.

    PubMed

    Morris, Eduardo A Rios; Bodin, Stéphane; Delaval, Bénédicte; Comunale, Franck; Georget, Virginie; Costa, Manoel L; Lutfalla, Georges; Gauthier-Rouvière, Cécile

    2017-05-01

    Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  12. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

    PubMed

    Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N

    2018-06-19

    Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

  13. Single molecule force spectroscopy reveals the adhesion mechanism of hydrophobins

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Li, Bing; Qin, Meng; Wang, Wei

    Hydrophobins are a special class of amphiphilic proteins produced by filamentous fungi. They show outstanding interfacial self-assembly and adhesion properties, which are critical to their biological function. Such feature also inspires their broad applications in bio-engineering, surface modification, and nanotechnology. However, the biophysical properties of hydrophobins are not well understood. We combined atomic force microscopy based single molecule force spectroscopy and protein engineering to directly quantify the adhesion strength of a hydorphobin (HFB1) to various surfaces in both the monomer and oligomer states to reveal the molecular determinant of the adhesion strength of hydrophobins. We found that the monomer HFB1 showed distinct adhesion properties towards hydrophobic and hydrophilic surfaces. The adhesion to hydrophobic surfaces (i.e. graphite and gold) was significantly higher than that to the hydrophilic ones (e.g. mica and silicon). However, when self-assembled monolayers were formed, the adhesion strengths to various surfaces were similar and were ubiquitously stronger than the monomer cases. We hypothesized that the interactions among hydrophobins in the monolayer played significant roles for the enhance adhesion strengths. Extracting any single hydrophobin monomers from the surface required the break of interactions not only with the surface but also with the neighboring units. We proposed that such a mechanism may be widely explored in nature for many biofilms for surface adhesion. May also inspire the design of novel adhesives.

  14. Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition.

    PubMed

    Kakihana, Masatoshi; Ohira, Tatsuo; Chan, Daniel; Webster, Robin B; Kato, Harubumi; Drabkin, Harry A; Gemmill, Robert M

    2009-12-01

    Loss of E-cadherin confers a poor prognosis in lung cancer patients and is associated with in vitro resistance to endothelial growth factor receptor inhibitors. Zinc finger E box-binding homeobox (ZEB)-1, the predominant transcriptional suppressor of E-cadherin in lung tumor lines, recruits histone deacetylases (HDACs) as co-repressors. NSCLC cell lines were treated with HDAC inhibitors and analyzed for E-cadherin induction, growth inhibition and apoptosis. National Cancer Institute-H157 cells expressing ectopic E-cadherin were tested for tumorigenicity in murine xenografts. We found that treatment with MS-275, compared to vorinostat (SAHA), valproic acid or trichostatin A, was most effective in E-cadherin up-regulation and persistence in non-small cell lung cancers. As with other tumor types and HDAC inhibitors, MS-275 inhibited growth and induced apoptosis. Importantly, blocking E-cadherin induction by short hairpin RNA resulted in less inhibition by MS-275, implicating the epithelial to mesenchymal phenotype process as a contributing factor. In contrast to H460 and H661, H157 cells were resistant to E-cadherin up-regulation by HDAC inhibitors. However, E-cadherin was restored, in a synergistic manner, by combined knockdown of ZEB-1 and ZEB-2. In addition, H157 cells stably transfected with E-cadherin were markedly attenuated in their tumor forming ability. Lastly, combining MS-275 with the microtubule stabilizing agent, paclitaxel, or 17-(allylamino)-17-demethoxygeldanamycin, a heat shock protein 90 inhibitor, resulted in synergistic growth inhibition. Since MS-275 has no reported activity against HDAC6, which regulates both microtubule and heat shock protein 90 functions, other mechanisms of synergy are anticipated. These results support the role of ZEB proteins and HDAC inhibitors in the pathogenesis and treatment of lung cancer.

  15. Soluble E-cadherin is an independent pretherapeutic factor for long-term survival in gastric cancer.

    PubMed

    Chan, Annie On-On; Chu, Kent-Man; Lam, Shiu-Kum; Wong, Benjamin Chun-Yu; Kwok, Ka-Fai; Law, Simon; Ko, Samuel; Hui, Wai-Mo; Yueng, Yui-Hung; Wong, John

    2003-06-15

    To evaluate whether pretherapeutic serum soluble E-cadherin is an independent factor predicting long-term survival in gastric cancer. Gastric cancer remains the second leading cause of cancer-related deaths in the world, but a satisfactory tumor marker is currently unavailable for gastric cancer. Soluble E-cadherin has recently been found to have prognostic value in gastric cancer. One hundred sixteen patients with histologically proven gastric adenocarcinoma were included in the trial. Pretherapeutic serum was collected, and soluble E-cadherin was assayed using a commercially available enzyme-linked immunosorbent assay kit. The patients were followed up prospectively at the outpatient clinic. There were 75 men and 41 women, with a mean (+/- SD) age of 66 +/- 14 years. Forty-eight percent of tumors were located in the gastric antrum. The median survival time was 11 months. The mean pretherapeutic value of soluble E-cadherin was 9,159 ng/mL (range, 6,002 to 10,025 ng/mL), and the mean pretherapeutic level of carcinoembryonic antigen was 11 ng/mL (range, 0.3 to 4,895 ng/mL). On multivariate analysis, soluble E-cadherin is an independent factor predicting long-term survival. Ninety percent of patients with a serum level of E-cadherin greater than 10,000 ng/mL had a survival time of less than 3 years (P =.009). Soluble E-cadherin is a potentially valuable pretherapeutic prognostic factor in patients with gastric cancer.

  16. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT

    PubMed Central

    Rogers, Crystal D.; Saxena, Ankur

    2013-01-01

    The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT. PMID:24297751

  17. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  18. Cytokine and adhesion molecule expression evolves between the neutrophilic and lymphocytic phases of viral meningitis.

    PubMed

    Makis, Alexandros; Shipway, David; Hatzimichael, Eleftheria; Galanakis, Emmanouil; Pshezhetskiy, Dmitry; Chaliasos, Nikolaos; Stebbing, Justin; Siamopoulou, Antigone

    2010-09-01

    Viral meningitis is characterized by cerebrospinal fluid (CSF) lymphocyte pleocytosis, although neutrophils may predominate in the early phase. The T helper 1 (Th1)/Th2 cytokine balance and expression of adhesion molecules seem to be involved in the CSF chemotaxis. We aimed to determine expression of cytokines and adhesion molecules in enteroviral meningitis. We investigated the serum and CSF levels of adhesion molecules (E-selectin, L-selectin, vascular cell adhesion molecule-1 [VCAM-1], and intracellular adhesion molecule-1 [ICAM-1]) and cytokines (interleukin-12 [IL-12] and IL-4) in 105 children during an outbreak of enteroviral meningitis. Diagnosis was confirmed with positive polymerase chain reaction (PCR) and/or serology for echovirus or Coxsackie virus, and matched with control subjects for clinical features but with negative PCR and/or serology. Apart from VCAM-1, the CSF levels of all investigated inflammatory molecules were significantly increased. In serum, sL-selectin and ICAM-1 levels were significantly higher than control subjects. Serum and CSF L-selectin, serum VCAM-1, and CSF IL-12 were all observed to be expressed in significantly higher levels in the neutrophil-dominant subgroup (72% had duration of symptoms <24 h) than in the lymphocyte-dominant group (87.5% had duration of symptoms >24 h). Serum and CSF ICAM-1 was found at significantly higher levels in the latter group. Evolving expression of adhesion molecules and cytokines indicates a shift from Th1 to Th2 immune responses as infection progresses.

  19. Tre1 GPCR initiates germ cell transepithelial migration by regulating Drosophila melanogaster E-cadherin

    PubMed Central

    Kunwar, Prabhat S.; Sano, Hiroko; Renault, Andrew D.; Barbosa, Vitor; Fuse, Naoyuki; Lehmann, Ruth

    2008-01-01

    Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion. PMID:18824569

  20. Low-level laser irradiation modifies the effect of hyperglycemia on adhesion molecule levels.

    PubMed

    Góralczyk, Krzysztof; Szymańska, Justyna; Gryko, Łukasz; Fisz, Jacek; Rość, Danuta

    2018-05-03

    Endothelium plays a key role in maintaining vascular homeostasis by secreting active factors involved in many biological processes such as hemostasis, angiogenesis, and inflammation. Hyperglycemia in diabetic patients causes dysfunction of endothelial cells. Soluble fractions of adhesion molecules like sE-selectin and vascular cell adhesion molecule (sVCAM) are considered as markers of endothelial damage. The low-level laser therapy (LLLT) effectively supports the conventional treatment of vascular complications in diabetes, for example hard-to-heal wounds in patients with diabetic foot syndrome. The aim of our study was to evaluate the effect of low-energy laser at the wavelength of 635 nm (visible light) and 830 nm (infrared) on the concentration of adhesion molecules: sE-selectin and sVCAM in the supernatant of endothelial cell culture of HUVEC line. Cells were cultured under high-glucose conditions of 30 mM/L. We have found an increase in sE-selectin and sVCAM levels in the supernatant of cells cultured under hyperglycemic conditions. This fact confirms detrimental influence of hyperglycemia on vascular endothelial cell cultures. LLLT can modulate the inflammation process. It leads to a decrease in sE-selectin and sVCAM concentration in the supernatant and an increase in the number of endothelial cells cultured under hyperglycemic conditions. The influence of LLLT is greater at the wavelength of 830 nm.

  1. Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion.

    PubMed

    Lacal, Pedro Miguel; Petrillo, Maria Grazia; Ruffini, Federica; Muzi, Alessia; Bianchini, Rodolfo; Ronchetti, Simona; Migliorati, Graziella; Riccardi, Carlo; Graziani, Grazia; Nocentini, Giuseppe

    2013-10-01

    The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.

  2. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells

    PubMed Central

    Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.

    2016-01-01

    Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169

  3. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin

    PubMed Central

    Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.

    2014-01-01

    Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125

  4. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin.

    PubMed

    Wakae-Takada, N; Xuan, S; Watanabe, K; Meda, P; Leibel, R L

    2013-04-01

    In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.

  5. The juxtamembrane domain of the E-cadherin cytoplasmic tail contributes to its interaction with Myosin VI

    PubMed Central

    Mangold, Sabine; Norwood, Suzanne J.; Yap, Alpha S.; Collins, Brett M.

    2012-01-01

    We recently identified the atypical myosin, Myosin VI, as a component of epithelial cell-cell junctions that interacts with E-cadherin. Recombinant proteins bearing the cargo-binding domain of Myosin VI (Myo VI-CBD) or the cytoplasmic tail of E-cadherin can interact directly with one another. In this report we further investigate the molecular requirements of the interaction between Myo VI-CBD and E-cadherin combining truncation mutation analysis with in vitro binding assays. We report that a short (28 amino acid) juxtamembrane region of the cadherin cytoplasmic tail is sufficient to bind Myo VI-CBD. However, central regions of the cadherin tail adjacent to the juxtamembrane sequence also display binding activity for Myo VI-CBD. It is therefore possible that the cadherin tail bears two binding sites for Myosin VI, or an extended binding site that includes the juxtamembrane region. Nevertheless, our biochemical data highlight the capacity for the juxtamembrane region to interact with functionally-significant cytoplasmic proteins. PMID:23007415

  6. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, Paola; Matteucci, Emanuela; Drago, Lorenzo

    identified Wwox as a novel molecule in the HIF-1α-HDM2 regulatory loop, necessary for the dynamic regulation of the HIF-1α amount, and we suggested that the reduction of endogenous Wwox free pool under hypoxia might also be due to the interaction with HDM2, sequestering the E3 ubiquitin ligase. We highlighted the importance of nuclear HIF-1α in the biology of metastasis for the mesenchymal-epithelial transition: this phenotype was regulated by Wwox plus hypoxia through E-cadherin target gene, playing a pivotal role in bone metastasis colonization. - Highlights: • E-cadherin accumulates in hypoxic bone metastasis opposite to primary carcinoma. • HIF-1 and PPARγ cooperate in inducing E-cadherin under hypoxia in metastatic cells. • Wwox regulates HIF-1α phosphorylation and nuclear translocation. • Hypoxia plus Wwox prevent HIF-1α degradation via HDM2 forming a regulatory loop.« less

  7. Thermo-chemotherapy Induced miR-218 upregulation inhibits the invasion of gastric cancer via targeting Gli2 and E-cadherin.

    PubMed

    Ruan, Qiang; Fang, Zhi-Yuan; Cui, Shu-Zhong; Zhang, Xiang-Liang; Wu, Yin-Bing; Tang, Hong-Sheng; Tu, Yi-Nuo; Ding, Yan

    2015-08-01

    Thermo-chemotherapy has been proven to reduce the invasion capability of cancer cells. However, the molecular mechanism underlying this anti-invasion effect is still unclear. In this study, the role of thermo-chemotherapy in the inhibition of tumor invasion was studied. The results demonstrated that expression of miR-218 was downregulated in gastric cancer tissues, which had a positive correlation with tumor invasion and metastasis. In vitro thermo-chemotherapy increased miR-218 expression in SGC7901 cells and inhibited both proliferation and invasion of cancer cells. Gli2 was identified as a downstream target of miR-218, and its expression was negatively regulated by miR-218. The thermo-chemotherapy induced miR-218 upregulation was also accompanied by increasing of E-cadherin expression. In conclusion, the present study indicates that thermo-chemotherapy can effectively decrease the invasion capability of cancer cells and increase cell-cell adhesion. miR-218 and its downstream target Gli2, as well as E-cadherin, participate in the anti-invasion process.

  8. Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins

    PubMed Central

    Jones, Kelly A.; Kopeikina, Katherine J.; Burette, Alain C.; Copits, Bryan A.; Forrest, Marc P.; Fawcett-Patel, Jessica M.

    2017-01-01

    Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions. SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for

  9. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  10. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  11. Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture.

    PubMed

    Scholz, D; Devaux, B; Hirche, A; Pötzsch, B; Kropp, B; Schaper, W; Schaper, J

    1996-06-01

    The time course of expression of the adhesion molecules E-selectin, VCAM-1, ICAM-1 and PECAM-1 was studied in interleukin-1 beta-stimulated human umbilical vein cells (HUVEC) and the subcellular sites of synthesis were determined by means of fluorescence immunohistochemistry. The maximal number of cells labelled for E-selectin was observed at 2-4 h, for VCAM-1 at 4-8 h and ICAM-1 at 6-72 h. At 8 h, E-selectin and VCAM-1 started to disappear, but ICAM-1-positive cells persisted. PECAM-1 was constitutively expressed. De novo synthesis for E-selectin started at 1 h and for both, VCAM-1 and ICAM-1 at 1.5-2 h. Maximal synthetic activity was observed at 2.5-4 h for E-selectin and at 4-6 h for VCAM-1 and ICAM-1; thereafter, synthesis slowly decreased. Transport granules occurred at 1.5 h for E-selectin and 4 h for VCAM-1; they were absent for ICAM-1. Diffuse cellular and membrane labelling indicative of the functional activity of the adhesion molecules began at 2-4 h for E-selectin, and 4 h for VCAM, but was constitutively present for ICAM-1. In conclusion, each adhesion molecule shows a specific time-dependent course of appearance and disappearance in interleukin-1 beta-stimulated HUVECs in accordance with their physiological role in vivo. These morphological results confirm data obtained by flow cytometry and Western blotting, but they provide new information about the behaviour of individual cells with regard to the sites of synthesis and cellular localization of the adhesion molecules.

  12. Nuclear translocation of β-catenin and decreased expression of epithelial cadherin in human papillomavirus-positive tonsillar cancer: an early event in human papillomavirus-related tumour progression?

    PubMed

    Stenner, Markus; Yosef, Basima; Huebbers, Christian U; Preuss, Simon F; Dienes, Hans-Peter; Speel, Ernst-Jan M; Odenthal, Margarete; Klussmann, Jens P

    2011-06-01

    High-risk human papillomaviruses (HPVs) constitute an important risk factor for tonsillar cancer. This study describes changes in cell adhesion molecules during metastasis of HPV-related and HPV-unrelated tonsillar carcinomas. We examined 48 primary tonsillar carcinoma samples (25 HPV-16 DNA-positive, 23 HPV-16 DNA-negative) and their respective lymph node metastases for their HPV status and for the expression of p16, epithelial cadherin (E-cadherin), β-catenin, and vimentin. A positive HPV-specific polymerase chain reaction finding correlated significantly with p16 overexpression in both primary tumours and their metastases (P<0.0001 for both). In HPV-unrelated carcinomas, the expression of E-cadherin was significantly lower in metastases than in primary tumours (P<0.001). In contrast, the expression of nuclear β-catenin was significantly higher in metastases than in primary tumours (P=0.016). In HPV-related carcinomas, nuclear localization of β-catenin expression was already apparent in primary tumours (P=0.030). The expression of vimentin significantly correlated with the grading of the primary tumour (P=0.021). Our data indicate that the down-regulation of E-cadherin and the up-regulation of nuclear β-catenin expression might be crucial steps during tumour progression of tonsillar carcinomas, being already present in primary tumours in HPV-driven carcinomas, but becoming apparent in HPV-unrelated tumours later in the process of metastasis. © 2011 Blackwell Publishing Limited.

  13. Surface engineered magnetic nanoparticles for specific immunotargeting of cadherin expressing cells

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Delhaes, Flavien; Puertas, Sara; Saez, Berta; de la Fuente, Jesús M.; Grazú, Valeria; Feracci, Helene

    2016-02-01

    In spite of historic advances in cancer biology and recent development of sophisticated chemotherapeutics, the outlook for patients with advanced cancer is still grim. In this sense nanoparticles (NPs), through their unique physical properties, enable the development of new approaches for cancer diagnosis and treatment. Thus far the most used active targeting scheme involves NPs functionalization with antibodies specific to molecules overexpressed on cancer cell’s surface. Therefore, such active targeting relies on differences in NPs uptake kinetics rates between tumor and healthy cells. Many cancers of epithelial origin are associated with the inappropriate expression of non-epithelial cadherins (e.g. N-, P-, -11) with concomitant loss of E-cadherin. Such phenomenon named cadherin switching favors tumor development and metastasis via interactions of tumor cells with stromal components. That is why we optimized the oriented functionalization of fluorescently labelled magnetic NPs with a novel antibody specific for the extracellular domain of cadherin-11. The obtained Ab-NPs exhibited high specificity when incubated with two cell lines used as models of tumor and healthy cells. Thus, cadherin switching offers a great opportunity for the development of active targeting strategies aimed to improve the early detection and treatment of cancer.

  14. [The expression and clinical significance of EphA2 and E-cadherin in papillary thyroid carcinoma].

    PubMed

    Liu, Yan; Miao, Yuhua; Li, Xiaoming

    2015-06-01

    To investigate the expression and clinical significance of EphA2 and E cadherin proteins in papillary thyroid carcinoma tissues, and to explore the relationship between them. Using immunohistochemical SP/PV method, we detected the expression of EphA2 and E cadherin in tumors of 43 papillary thyroid carcinomas, 11 thyroid adenoma and 10 normal thyroid tissues, then studied their relationships with clinic pathological factors. The total positive rates of EphA2 and E cadherin expression were 58. 14% and 32. 56% in papillary thyroid carcinoma tissues, 18. 18% and 81. 81% in thyroid adenoma.tissues and they were 10. 00% and 100. 00% in normal thyroid tissues respectively. The positive expression of EphA2 in carcinoma tissues was higher than in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05) and the positive expression of E cadherin in carcinoma tissues was lower than that in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05). The positive expression of EphA2 and E cadherin was associated with lymph node metastasis and histological grade (P<0. 05), but it was not associated with all the clinic-pathological factors including age, sex and the tumor size (P>0. 05). In papillary thyroid carcinoma tissues, the expression of EphA2 was negatively correlated with the expression of E cadherin protein (r= -0. 416, P<0. 01). EphA2 and E cadherin may be involved in carcinogenesis and development of papillary thyroid carcinoma.

  15. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma

    PubMed Central

    Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-01-01

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion. PMID:28212546

  16. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma.

    PubMed

    Xiong, Ye; Liu, Liyun; Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-04-11

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion.

  17. The Nonreceptor Protein Tyrosine Phosphatase PTP1B Binds to the Cytoplasmic Domain of N-Cadherin and Regulates the Cadherin–Actin Linkage

    PubMed Central

    Balsamo, Janne; Arregui, Carlos; Leung, TinChung; Lilien, Jack

    1998-01-01

    Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion. PMID:9786960

  18. E-cadherin Is Critical for Collective Sheet Migration and Is Regulated by the Chemokine CXCL12 Protein During Restitution*

    PubMed Central

    Hwang, Soonyean; Zimmerman, Noah P.; Agle, Kimberle A.; Turner, Jerrold R.; Kumar, Suresh N.; Dwinell, Michael B.

    2012-01-01

    Chemokines and other immune mediators enhance epithelial barrier repair. The intestinal barrier is established by highly regulated cell-cell contacts between epithelial cells. The goal of these studies was to define the role for the chemokine CXCL12 in regulating E-cadherin during collective sheet migration during epithelial restitution. Mechanisms regulating E-cadherin were investigated using Caco2BBE and IEC-6 model epithelia. Genetic knockdown confirmed a critical role for E-cadherin in in vitro restitution and in vivo wound repair. During restitution, both CXCL12 and TGF-β1 tightened the monolayer by decreasing the paracellular space between migrating epithelial cells. However, CXCL12 differed from TGF-β1 by stimulating the significant increase in E-cadherin membrane localization during restitution. Chemokine-stimulated relocalization of E-cadherin was paralleled by an increase in barrier integrity of polarized epithelium during restitution. CXCL12 activation of its cognate receptor CXCR4 stimulated E-cadherin localization and monolayer tightening through Rho-associated protein kinase activation and F-actin reorganization. These data demonstrate a key role for E-cadherin in intestinal epithelial restitution. PMID:22549778

  19. E-cadherin genetic variants predict survival outcome in breast cancer patients.

    PubMed

    Memni, Hager; Macherki, Yosra; Klayech, Zahra; Ben-Haj-Ayed, Ahlem; Farhat, Karim; Remadi, Yassmine; Gabbouj, Sallouha; Mahfoudh, Wijden; Bouzid, Nadia; Bouaouina, Noureddine; Chouchane, Lotfi; Zakhama, Abdelfattah; Hassen, Elham

    2016-11-16

    E-cadherin is a major component of adherens junctions that regulates cell shape and maintains tissue integrity. A complete loss or any decrease in cell surface expression of E-cadherin will interfere with the cell-to-cell junctions' strength and leads to cell detachment and escape from the primary tumor site. In this prospective study, three functional single nucleotide polymorphisms (-347G/GA, rs5030625; -160C/A, rs16260; +54C/T, rs1801026), were found to modulate E-cadherin expression. 577 DNA samples from breast cancer (BC) cases were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). We detected no significant correlations between each polymorphism and the clinical parameters of the patients whereas the GACC haplotype was significantly associated with low SBR grading. Overall survival analysis showed that both -347G/G and +54C/C wild (wt) genotypes had a significantly worse effect compared to the other genotypes (non-wt). Moreover, carrying simultaneously both the -347 and +54 wt genotypes confers a significantly higher risk of death. However, with metastatic recurrence, the death-rate was null in patients carrying the non-wt genotypes, and attained 37% in those carrying the wt genotype. A multivariate analysis showed that these two polymorphisms are independent prognostic factors for overall survival in BC patients. Our results support the fact that E-cadherin genetic variants control disease severity and progression and could be a marker of disease outcome. These findings could be useful in selecting patients that should be monitored differently.

  20. Role of epithelial-mesenchymal transition involved molecules in the progression of cutaneous melanoma.

    PubMed

    Murtas, Daniela; Maxia, Cristina; Diana, Andrea; Pilloni, Luca; Corda, Claudia; Minerba, Luigi; Tomei, Sara; Piras, Franca; Ferreli, Caterina; Perra, Maria Teresa

    2017-12-01

    Epithelial-mesenchymal transition (EMT) has been suggested to have a driving role in the acquisition of a metastatic potential by melanoma cells. Important hallmarks of EMT include both E-cadherin downregulation and increased expression of N-cadherin. This switch in distinct classes of adhesion molecules leads melanoma cells to lose contact with adjacent keratinocytes and interact instead with stromal fibroblasts and endothelial cells, thus promoting dermal and vascular melanoma invasion. Consequently, tumor cells migrate to distant host tissues and establish metastases. A key regulator in the induction of EMT in melanoma is the Notch1 signaling pathway that, when activated, is prompt to upregulate N-cadherin expression. By means of this strategy, melanoma cells gain enhanced survival, proliferation and invasion properties, driving the tumor toward a more aggressive phenotype. On the basis of these statements, the present study aimed to investigate the possible association between N-cadherin and Notch1 presence in primary cutaneous melanomas and lymph node metastases. Our results from immunohistochemical analysis confirmed a positive correlation between N-cadherin and Notch1 presence in the same tumor samples. Moreover, this study highlighted that a concomitant high expression of N-cadherin and Notch1, both in primary lesions and in lymph node metastases, predicts an adverse clinical outcome in melanoma patients. Therefore, N-cadherin and Notch1 co-presence can be monitored as a predictive factor in early- and advanced-stage melanomas and open additional therapeutic targets for the restraint of melanoma metastasis.

  1. Cytoplasmic and nuclear localization of cadherin in honey bee (Apis mellifera L.) gonads.

    PubMed

    Florecki, Mônica M; Hartfelder, Klaus

    2011-01-01

    Cadherins are crucial molecules mediating cell-cell interactions between somatic and germline cells in insect and mammalian male and female gonads. We analysed the presence and localization of cadherins in ovaries of honeybee queens and in testes of drones. Transcripts representing two classical cadherins, E-cadherin (shotgun) and N-cadherin, as well as three protocadherins (Starry night, Fat and Fat-like) were detected in gonads of both sexes. Pan-cadherin antibodies, which most probably detect a honeybee N-cadherin, were used in immunolocalization analyses. In the germarium of ovarioles, cadherin-IR (cadherin immunoreactivity) was evidenced as homogeneously distributed in the cytoplasm and as nuclear foci, in both germline and somatic cells. It was also detected in polyfusomes and ring canals. In testiolar tubules, cadherin-IR showed a cytoplasmic and nuclear distributon alike in ovaries. The unexpected nuclear localization and cytoplasmic distribution in ovaries and testes were corroborated by immunogold electron microscopy, which revealed cadherin aggregates associated with electron-dense nuclear structures. With respect to cadherin localization, the honeybee differs from Drosophila, the model for gametogenesis in insects, raising the question as to how differences among solitary and social species may be built into and generated from the general architecture of polytrophic meroistic ovaries. It also indicates the possibility of divergent roles for cadherin in the functional architecture of insect gonads, in general, especially in taxa with high reproductive output.

  2. Effects of thalidomide on the expression of adhesion molecules in rat liver cirrhosis.

    PubMed

    Lv, Peng; Paul, Shelley Chireyath; Xiao, Yanjv; Liu, Shiquan; Luo, Hesheng

    2006-01-01

    This study was to evaluate the effects of thalidomide on expression of adhesion molecules in liver cirrhosis. The cirrhosis was induced in Wistar rats by intraperitoneal injection of CCl(4), and thalidomide (10 mg/kg/day or 100 mg/kg/day) was given by intragastric administration for 8 weeks. Liver histopathology and immunohistochemistry were significantly improved and the expressions of ICAM-1, VCAM-1, E-selectin, and TNF-alpha mRNA and protein were decreased significantly in rats treated with a high dose of thalidomide. Close positive correlation was observed in the expression of the TNF-alpha mRNA and that of ICAM-1, VCAM-1, and E-selectin mRNA, respectively. These results indicate that thalidomide exerts its effect on the downregulation of adhesion molecules via TNF-alpha signaling pathway to inhibit liver fibrosis.

  3. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  4. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    PubMed Central

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  5. E-cadherin interactions regulate beta-cell proliferation in islet-like structures.

    PubMed

    Carvell, Melanie J; Marsh, Phil J; Persaud, Shanta J; Jones, Peter M

    2007-01-01

    Islet function is dependent on cells within the islet interacting with each other. E-cadherin (ECAD) mediates Ca(2+)-dependent homophilic cell adhesion between b-cells within islets and has been identified as a tumour suppressor. We generated clones of the MIN6 beta-cell line that stably over- (S) and under-express (alphaS) ECAD. Modified expression of ECAD was confirmed by quantitative RT-PCR, immunoblotting and immunocytochemistry. Preproinsulin mRNA, insulin content and basal rates of insulin secretion were higher in S cells compared to aS and control (V) cells. However, stimulated insulin secretory responses were unaffected by ECAD expression levels. ECAD expression did affect proliferation, with enhanced ECAD expression being associated with reduced proliferation and vice versa. Formation of islet-like structures was associated with a significant reduction in proliferation of V and S cells but not alphaS cells. These data suggest that ECAD expression levels do not modulate insulin secretory function but are consistent with a role for ECAD in the regulation of beta-cell proliferation. Copyright (c) 2007 S. Karger AG, Basel.

  6. Isoform-specific function of calpains in cell adhesion disruption: studies in postlactational mammary gland and breast cancer.

    PubMed

    Rodríguez-Fernández, Lucía; Ferrer-Vicens, Iván; García, Concha; Oltra, Sara S; Zaragozá, Rosa; Viña, Juan R; García-Trevijano, Elena R

    2016-09-15

    Cleavage of adhesion proteins is the first step for physiological clearance of undesired cells during postlactational regression of the mammary gland, but also for cell migration in pathological states such as breast cancer. The intracellular Ca(2+)-dependent proteases, calpains (CAPNs), are known to cleave adhesion proteins. The isoform-specific function of CAPN1 and CAPN2 was explored and compared in two models of cell adhesion disruption: mice mammary gland during weaning-induced involution and breast cancer cell lines according to tumor subtype classification. In both models, E-cadherin, β-catenin, p-120, and talin-1 were cleaved as assessed by western blot analysis. Both CAPNs were able to cleave adhesion proteins from lactating mammary gland in vitro Nevertheless, CAPN2 was the only isoform found to co-localize with E-cadherin in cell junctions at the peak of lactation. CAPN2/E-cadherin in vivo interaction, analyzed by proximity ligation assay, was dramatically increased during involution. Calpain inhibitor administration prevented the cytosolic accumulation of truncated E-cadherin cleaved by CAPN2. Conversely, in breast cancer cells, CAPN2 was restricted to the nuclear compartment. The isoform-specific expression of CAPNs and CAPN activity was dependent on the breast cancer subtype. However, CAPN1 and CAPN2 knockdown cells showed that cleavage of adhesion proteins and cell migration was mediated by CAPN1, independently of the breast cancer cell line used. Data presented here suggest that the subcellular distribution of CAPN1 and CAPN2 is a major issue in target-substrate recognition; therefore, it determines the isoform-specific role of CAPNs during disruption of cell adhesion in either a physiological or a pathological context. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Homeoprotein Six2 promotes breast cancer metastasis via transcriptional and epigenetic control of E-cadherin expression

    PubMed Central

    Wang, Chu-An; Drasin, David; Pham, Catherine; Jedlicka, Paul; Zaberezhnyy, Vadym; Guney, Michelle; Li, Howard; Nemenoff, Raphael; Costello, James C.; Tan, Aik-Choon; Ford, Heide L.

    2014-01-01

    Misexpression of developmental transcription factors occurs often in human cancers, where embryonic programs may be reinstated in a context that promotes or sustains malignant development. In this study, we report the involvement of the kidney development transcription factor Six2 in the metastatic progression of human breast cancer. We found that Six2 promoted breast cancer metastasis by a novel mechanism involving both transcriptional and epigenetic regulation of E-cadherin. Downregulation of E-cadherin by Six2 was necessary for its ability to increase soft agar growth and in vivo metastasis in an immune competent mouse model of breast cancer. Mechanistic investigations showed that Six2 represses E-cadherin expression by upregulating Zeb2, in part through a microRNA-mediated mechanism, and by stimulating promoter methylation of the E-cadherin gene (Cdh1). Clinically, SIX2 expression correlated inversely with CDH1 expression in human breast cancer specimens, corroborating the disease relevance of their interaction. Our findings establish Six2 as a regulator of metastasis in human breast cancers and demonstrate an epigenetic function for SIX family transcription factors in metastatic progression through the regulation of E-cadherin. PMID:25348955

  8. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube

    PubMed Central

    Kerosuo, Laura; Bronner, Marianne E.

    2014-01-01

    Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein. PMID:24307680

  9. Effects of Thalidomide on the Expression of Adhesion Molecules in Rat Liver Cirrhosis

    PubMed Central

    Lv, Peng; Paul, Shelley Chireyath; Xiao, Yanjv; Liu, Shiquan; Luo, Hesheng

    2006-01-01

    This study was to evaluate the effects of thalidomide on expression of adhesion molecules in liver cirrhosis. The cirrhosis was induced in Wistar rats by intraperitoneal injection of CCl4, and thalidomide (10 mg/kg/day or 100 mg/kg/day) was given by intragastric administration for 8 weeks. Liver histopathology and immunohistochemistry were significantly improved and the expressions of ICAM-1, VCAM-1, E-selectin, and TNF-α mRNA and protein were decreased significantly in rats treated with a high dose of thalidomide. Close positive correlation was observed in the expression of the TNF-α mRNA and that of ICAM-1, VCAM-1, and E-selectin mRNA, respectively. These results indicate that thalidomide exerts its effect on the downregulation of adhesion molecules via TNF-α signaling pathway to inhibit liver fibrosis. PMID:17047296

  10. CDH4 suppresses the progression of salivary adenoid cystic carcinoma via E-cadherin co-expression.

    PubMed

    Xie, Jian; Feng, Yan; Lin, Ting; Huang, Xiao-Yu; Gan, Rui-Huan; Zhao, Yong; Su, Bo-Hua; Ding, Lin-Can; She, Lin; Chen, Jiang; Lin, Li-Song; Lin, Xu; Zheng, Da-Li; Lu, You-Guang

    2016-12-13

    The cadherin-4 gene (CDH4) of the cadherin family encodes non-epithelial R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. In this study, we found higher expression of CDH4 mRNA in a salivary adenoid cystic carcinoma (SACC) cell line with low metastatic potential (SACC-83) than in a cell line with high metastatic potential (SACC-LM). By analyzing 67 samples of SACC tissues and 40 samples of paraneoplastic normal tissues, we found R-cad highly expressed in 100% of normal paraneoplastic tissue but only expressed in 64% of SACC tumor tissues (P<0.001). Knockdown of CDH4 expression in vitro promoted the growth, mobility and invasion of SACC cells, and in vivo experiments showed that decreased CDH4 expression enhanced SACC tumorigenicity. Furthermore, CDH4 suppression resulted in down-regulation of E-cadherin (E-cad), which is encoded by CDH1 gene and is a well-known tumor suppressor gene by inhibition of cell proliferation and migration. These results indicate that CDH4 may play a negative role in the growth and metastasis of SACC via co-expression with E-cadherin.

  11. The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox.

    PubMed

    Moh, Mei Chung; Shen, Shali

    2009-01-01

    In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.

  12. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity

    PubMed Central

    Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus

    2014-01-01

    P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor. PMID:25337260

  13. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity.

    PubMed

    Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus

    2014-01-01

    P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor.

  14. Flamingo, a seven-pass transmembrane cadherin, cooperates with Netrin/Frazzled in Drosophila midline guidance.

    PubMed

    Organisti, Cristina; Hein, Irina; Grunwald Kadow, Ilona C; Suzuki, Takashi

    2015-01-01

    During central nervous system development, several guidance cues and receptors, as well as cell adhesion molecules, are required for guiding axons across the midline and along the anterior-posterior axis. In Drosophila, commissural axons sense the midline attractants Netrin A and B (Net) through Frazzled (Fra) receptors. Despite their importance, lack of Net or fra affects only some commissures, suggesting that additional molecules can fulfill this function. Recently, planar cell polarity (PCP) proteins have been implicated in midline axon guidance in both vertebrate and invertebrate systems. Here, we report that the atypical cadherin and PCP molecule Flamingo/Starry night (Fmi/Stan) acts jointly with Net/Fra signaling during midline development. Additional removal of fmi strongly increases the guidance defects in Net/fra mutants. Rescue and domain deletion experiments suggest that Fmi signaling facilitates commissural pathfinding potentially by mediating axonal fasciculation in a partly homophilic manner. Altogether, our results indicate that contact-mediated cell adhesion via Fmi acts in addition to the Net/Fra guidance system during axon pathfinding across the midline, underlining the importance of PCP molecules during vertebrates and invertebrates midline development. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  15. Pirfenidone induces intercellular adhesion molecule-1 (ICAM-1) down-regulation on cultured human synovial fibroblasts

    PubMed Central

    Kaneko, M; Inoue, H; Nakazawa, R; Azuma, N; Suzuki, M; Yamauchi, S; Margolin, S B; Tsubota, K; Saito, I

    1998-01-01

    Pirfenidone has been shown to modify some cytokine regulatory actions and inhibit fibroblast biochemical reactions resulting in inhibition of proliferation and collagen matrix synthesis by fibroblast. We have investigated the effect of pirfenidone on the expression of cell adhesion molecules. The synovial fibroblasts were treated with IL-1α in the presence or absence of pirfenidone (range 0–1000 μm), and assayed for the expression of adhesion molecules such as ICAM-1 and endothelial-leucocyte adhesion molecule-1 (E-selectin) by cell ELISA. Pirfenidone significantly down-regulated the expression of ICAM-1 on cultured synovial fibroblasts in a dose-dependent manner. In contrast, expression of E-selectin was not affected. Furthermore, we examined whether pirfenidone affects the cellular binding between cultured lymphocytes and IL-1α-stimulated synovial fibroblasts by in vitro binding assay and found their mutual binding was significantly suppressed in a dose-dependent manner by pirfenidone. It is speculated that down-regulation of ICAM-1 might be one of the novel mechanisms of action of pirfenidone. These data indicate a novel mechanism of action for pirfenidone to reduce the activation of synovial fibroblasts. PMID:9697986

  16. Nickel-induced Epithelial-Mesenchymal Transition by Reactive Oxygen Species Generation and E-cadherin Promoter Hypermethylation*

    PubMed Central

    Wu, Chih-Hsien; Tang, Sheau-Chung; Wang, Po-Hui; Lee, Huei; Ko, Jiunn-Liang

    2012-01-01

    Epithelial-mesenchymal transition (EMT) is considered a critical event in the pathogenesis of lung fibrosis and tumor metastasis. During EMT, the expression of differentiation markers switches from cell-cell junction proteins such as E-cadherin to mesenchymal markers such as fibronectin. Although nickel-containing compounds have been shown to be associated with lung carcinogenesis, the role of nickel in the EMT process in bronchial epithelial cells is not clear. The aim of this study was to examine whether nickel contributes to EMT in human bronchial epithelial cells. We also attempted to clarify the mechanisms involved in NiCl2-induced EMT. Our results showed that NiCl2 induced EMT phenotype marker alterations such as up-regulation of fibronectin and down-regulation of E-cadherin. In addition, the potent antioxidant N-acetylcysteine blocked EMT and expression of HIF-1α induced by NiCl2, whereas the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine restored the down-regulation of E-cadherin induced by NiCl2. Promoter hypermethylation of E-cadherin, determined by quantitative real time methyl-specific PCR and bisulfate sequencing, was also induced by NiCl2. These results shed new light on the contribution of NiCl2 to carcinogenesis. Specifically, NiCl2 induces down-regulation of E-cadherin by reactive oxygen species generation and promoter hypermethylation. This study demonstrates for the first time that nickel induces EMT in bronchial epithelial cells. PMID:22648416

  17. Cooperativity of E-cadherin and Smad4 loss to promote diffuse-type gastric adenocarcinoma and metastasis.

    PubMed

    Park, Jun Won; Jang, Seok Hoon; Park, Dong Min; Lim, Na Jung; Deng, Chuxia; Kim, Dae Yong; Green, Jeffrey E; Kim, Hark Kyun

    2014-08-01

    Loss of E-cadherin (CDH1), Smad4, and p53 has been shown to play an integral role in gastric, intestinal, and breast cancer formation. Compound conditional knockout mice for Smad4, p53, and E-cadherin were generated to define and compare the roles of these genes in gastric, intestinal, and breast cancer development by crossing with Pdx-1-Cre, Villin-Cre, and MMTV-Cre transgenic mice. Interestingly, gastric adenocarcinoma was significantly more frequent in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice than in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(+/+) mice, demonstrating that Cdh1 heterozygosity accelerates the development and progression of gastric adenocarcinoma, in combination with loss of Smad4 and p53. Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice developed gastric adenocarcinomas without E-cadherin expression. However, intestinal and mammary adenocarcinomas with the same genetic background retained E-cadherin expression and were phenotypically similar to mice with both wild-type Cdh1 alleles. Lung metastases were identified in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice, but not in the other genotypes. Nuclear β-catenin accumulation was identified at the invasive tumor front of gastric adenocarcinomas arising in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice. This phenotype was less prominent in mice with intact E-cadherin or Smad4, indicating that the inhibition of β-catenin signaling by E-cadherin or Smad4 downregulates signaling pathways involved in metastases in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice. Knockdown of β-catenin significantly inhibited the migratory activity of Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) cell lines. Thus, loss of E-cadherin and Smad4 cooperates with p53 loss to promote the development and metastatic progression of gastric adenocarcinomas, with similarities to human gastric adenocarcinoma. This study demonstrates that inhibition of β-catenin is a converging node for the antimetastatic signaling

  18. Involvement of microRNAs-MMPs-E-cadherin in the migration and invasion of gastric cancer cells infected with Helicobacter pylori.

    PubMed

    Yang, Yongmei; Li, Xiaohui; Du, Jie; Yin, Youcong; Li, Yuanjian

    2018-06-15

    It has been found that Helicobacter pylori (H. pylori)is not only the main cause of gastric cancer, but also closely related to its metastasis. E-cadherin cleavage induced by matrix metalloproteinases (MMPs) plays an important role in the tumor metastasis. In the present study, we investigated the role of microRNAs-MMPs-E-cadherin in migration and invasion of gastric cancer cells treated with H. pylori. The results showed that H. pylori induced migration and invasion of SGC-7901 cells with a down-regulation of E-cadherin expression, which were abolished by MMPs knock down, E-cadherin overexpression, mimics of miR128 and miR148a. MiR128/miR148a inhibitors restored MMP-3/MMP-7 expression, down-regulated E-cadherin level, and accelerated cellular migration and invasion. This study suggests that H. pylori induces migration and invasion of gastric cancer cells through reduction of E-cadherin function by activation of MMP-3, - 7. The present results also suggest that the activated MMPs/E-cadherin pathway is related with down-regulation of miR128/miR148a in the human gastric cancer cells infected with H. pylori. Copyright © 2018. Published by Elsevier Inc.

  19. Magnolol Inhibits Human Glioblastoma Cell Migration by Regulating N-Cadherin.

    PubMed

    Cheng, Yu-Chen; Tsao, Min-Jen; Chiu, Chen-Yang; Kan, Po-Chieh; Chen, Ying

    2018-06-01

    Glioblastoma is a primary malignant brain tumor with a poor prognosis. An effective treatment for glioblastoma is needed. Magnolol is a natural compound from Magnolia officinalis suggested to have antiproliferative activity. The aim of this research was to investigate the anticancer effects of magnolol in glioma, with an emphasis on migration and the underlying mechanism. Magnolol decreased the expression of focal adhesion-related proteins and inhibited LN229 and U87MG glioma cell migration. The levels of phosphorylated myosin light chain (p-MLC), phosphorylated myosin light chain kinase and myosin phosphatase target subunit 1 were reduced in response to magnolol treatment. In addition, immunostaining and membrane fractionation showed that the distribution of N-cadherin at the glioma cell membrane was decreased by magnolol. In an orthotropic xenograft animal model, magnolol treatment not only inhibited tumor progression but also reduced p-MLC and N-cadherin protein expression. In conclusion, magnolol reduces cell migration, potentially through regulating focal adhesions and N-cadherin in glioma cells. Magnolol is a potential candidate for glioma treatment.

  20. The effect of soy protein beverages on serum cell adhesion molecule concentrations in prehypertensive/stage 1 hypertensive individuals.

    PubMed

    Dettmer, Michelle; Alekel, D Lee; Lasrado, Joanne A; Messina, Mark; Carriquiry, Alicia; Heiberger, Kevin; Stewart, Jeanne W; Franke, Warren

    2012-04-01

    Prehypertensive and hypertensive individuals are at increased risk of atherosclerotic cardiovascular disease (CVD), in part because hypertension contributes to endothelial dysfunction and increased cell adhesion molecule expression. Soy protein and isoflavones may favorably alter CVD risk factors, and hence the aim of this study was to determine whether intake of cow's milk compared with soy beverage prepared from whole soy bean (WSB) or soy protein isolate (SPI) would lower soluble cell adhesion molecule concentrations as a means of decreasing CVD risk. We enrolled healthy prehypertensive/stage 1 hypertensive men (n = 60; 18-63 years) and premenopausal women (n = 8; 20-48 years). Participants were randomized to 1 of 3 groups for 8 weeks: cow's milk (600 mL/d), SPI beverage (840 mL/d; 30.1 mg total isoflavones/d), or WSB beverage (840 mL/d; 91.4 mg total isoflavones/d). We measured soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1 (E-selectin) concentrations at baseline and week 8. Soluble CAM concentrations were not altered by treatment and did not differ between prehypertensive and hypertensive participants. However, analysis of variance indicated a treatment × gender interaction (gender effect) for ICAM-1 (p = 0.0037) but not for E-selectin (p = 0.067) or VCAM-1 (p = 0.16). Men had higher concentrations of ICAM-1 and E-selectin, respectively, at baseline (p = 0.0071, p = 0.049) and week 8 (p = 0.0054, p = 0.038) than women did. Neither intake of cow's milk nor soy beverage for 8 weeks altered soluble CAM concentrations in prehypertensive/stage 1 hypertensive individuals, suggesting that neither type of beverage diminished atherosclerotic CVD risk in mildly hypertensive individuals by way of improving circulating CAM concentrations.

  1. The tip link protein Cadherin-23: From Hearing Loss to Cancer.

    PubMed

    Vanniya S, Paridhy; Srisailapathy, C R Srikumari; Kunka Mohanram, Ramkumar

    2018-04-01

    Cadherin-23 is an atypical member of the cadherin superfamily, with a distinctly long extracellular domain. It has been known to be a part of the tip links of the inner ear mechanosensory hair cells. Several studies have been carried out to understand the role of Cadherin-23 in the hearing mechanism and defects in the CDH23 have been associated with hearing impairment resulting from defective or absence of tip links. Recent studies have highlighted the role of Cadherin-23 in several pathological conditions, including cancer, suggesting the presence of several unknown functions. Initially, it was proposed that Cadherin-23 represents a yet unspecified subtype of Cadherins; however, no other proteins with similar characteristics have been identified, till date. It has a unique cytoplasmic domain that does not bear a β-catenin binding region, but has been demonstrated to mediate cell-cell adhesions. Several protein interacting partners have been identified for Cadherin-23 and the roles of their interactions in various cellular mechanisms are yet to be explored. This review summarizes the characteristics of Cadherin-23 and its roles in several pathologies including cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin

    PubMed Central

    Dias, Ana M.; Oliveira, Patrícia; Cabral, Joana; Seruca, Raquel; Oliveira, Carla; Morgado-Díaz, José Andrés; Reis, Celso A.; Pinho, Salomé S.

    2013-01-01

    Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications. PMID:24282611

  3. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less

  4. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  5. Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier.

    PubMed

    McGuire, Paul G; Rangasamy, Sampathkumar; Maestas, Joann; Das, Arup

    2011-12-01

    The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Human retinal microvascular endothelial cells were cocultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte-conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate. Sphingosine 1-phosphate aids in maintenance of microvascular stability by upregulating the expression of N-cadherin and VE-cadherin, and downregulating the expression of angiopoietin 2. Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of sphingosine 1-phosphate. Alteration of pericyte-derived sphingosine 1-phosphate production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability.

  6. Ezrin and E-cadherin expression profile in cervical cytology: a prognostic marker for tumor progression in cervical cancer.

    PubMed

    Zacapala-Gómez, Ana E; Navarro-Tito, Napoleón; Alarcón-Romero, Luz Del C; Ortuño-Pineda, Carlos; Illades-Aguiar, Berenice; Castañeda-Saucedo, Eduardo; Ortiz-Ortiz, Julio; Garibay-Cerdenares, Olga L; Jiménez-López, Marco A; Mendoza-Catalán, Miguel A

    2018-03-27

    Cervical cancer (CC) is the fourth cause of mortality by neoplasia in women worldwide. The use of immunomarkers is an alternative tool to complement currently used algorithms for detection of cancer, and to improve selection of therapeutic schemes. Aberrant expression of Ezrin and E-cadherin play an important role in tumor invasion. In this study we analyzed Ezrin and E-cadherin expression in liquid-based cervical cytology samples, and evaluated their potential use as prognostic immunomarkers. Immunocytochemical staining of Ezrin and E-cadherin was performed in cervical samples of 125 patients. The cytological or histological diagnostic was performed by Papanicolaou staining or H&E staining, respectively. HPV genotyping was determined using INNO-LIPA Genotyping Extra kit and the HPV physical status by in situ hybridization. Ezrin expression in HaCaT, HeLa and SiHa cell lines was determined by immunocytochemistry, immunofluorescence and Western blot. High Ezrin expression was observed in cervical cancer samples (70%), samples with multiple infection by HR-HPV (43%), and samples with integrated viral genome (47%). High Ezrin expression was associated with degree of SIL, viral genotype and physical status. In contrast, low E-cadherin expression was found in cervical cancer samples (95%), samples with multiple infection by HR-HPV/LR-HPV (87%) and integrated viral genome (72%). Low E-cadherin expression was associated with degree of SIL and viral genotype. Interestingly, Ezrin nuclear staining was associated with degree of SIL and viral genotype. High Ezrin expression, high percent of nuclear Ezrin and low E-cadherin expression behaved as risk factors for progression to HSIL and cervical cancer. Ezrin and E-cadherin expression profile in cervical cytology samples could be a potential prognostic marker, useful for identifying cervical lesions with a high-risk of progression to cervical cancer.

  7. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin.

    PubMed

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2018-01-01

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. © 2017 Wiley Periodicals, Inc.

  8. Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular adhesion molecule-1.

    PubMed

    Neelamegham, S; Taylor, A D; Burns, A R; Smith, C W; Simon, S I

    1998-09-01

    The binding of neutrophil beta2 integrin to intercellular adhesion molecule-1 (ICAM-1) expressed on the inflamed endothelium is critical for neutrophil arrest at sites of tissue inflammation. To quantify the strength and kinetics of this interaction, we measured the adhesion between chemotactically stimulated neutrophils and ICAM-1-transfected mouse cells (E3-ICAM) in suspension in a cone-plate viscometer at shear rates typical of venular blood flow (100 s-1 to 500 s-1). The kinetics of aggregation were fit with a mathematical model based on two-body collision theory. This enabled estimation of adhesion efficiency, defined as the probability with which collisions between cells resulted in firm adhesion. The efficiency of beta2-integrin-dependent adhesion was highest ( approximately 0.2) at 100 s-1 and it decreased to approximately zero at 400 s-1. Both LFA-1 and Mac-1 contributed equally to adhesion efficiency over the initial 30 seconds of stimulation, but adhesion was entirely Mac-1-dependent by 120 seconds. Two hydrodynamic parameters were observed to influence integrin-dependent adhesion efficiency: the level of shear stress and the intercellular contact duration. Below a critical shear stress (<2 dyn/cm2), contact duration predominantly limited adhesion efficiency. The estimated minimum contact duration for beta2-integrin binding was approximately 6.5 ms. Above the critical shear stress (>2 dyn/cm2), the efficiency of neutrophil adhesion to E3-ICAM was limited by both the contact duration and the tensile stress. We conclude that at low shear, neutrophil adhesion is modulated independently through either LFA-1 or Mac-1, which initially contribute with equal efficiency, but differ over the duration of chemotactic stimulation. Copyright 1998 by The American Society of Hematology.

  9. Expression of Inapproptriate Cadherins in Human Breast Carcinomas

    DTIC Science & Technology

    2000-08-01

    fibroblast growth factor receptor signaling. * We showed that cadherin 11 acts in a manner... fibroblast growth factor receptor signaling; and that cadherin 11 promotes epithelial cell motility in a manner similar to N-cadherin. 28 N-Cadherin...levels of E-cadherin; and that N- cadherin-dependent motility may be mediated by fibroblast growth factor receptor signaling. 14. SUBJECT TERMS

  10. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion.

    PubMed

    Fogel, Adam I; Li, Yue; Giza, Joanna; Wang, Qing; Lam, Tukiet T; Modis, Yorgo; Biederer, Thomas

    2010-11-05

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  11. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion*

    PubMed Central

    Fogel, Adam I.; Li, Yue; Giza, Joanna; Wang, Qing; Lam, TuKiet T.; Modis, Yorgo; Biederer, Thomas

    2010-01-01

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn60. Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn70/Asn104 flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn60 reduces adhesion, N-glycans at Asn70/Asn104 of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion. PMID:20739279

  12. EGFR and ADAMs Cooperate to Regulate Shedding and Endocytic Trafficking of the Desmosomal Cadherin Desmoglein 2

    PubMed Central

    Klessner, Jodi L.; Desai, Bhushan V.; Amargo, Evangeline V.; Getsios, Spiro

    2009-01-01

    Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell–cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically. PMID:18987342

  13. Discovery and Characterization of Cadherin Domains in Saccharophagus degradans 2-40▿ †

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Weiner, Ronald M.; Lamed, Raphael

    2010-01-01

    Saccharophagus degradans strain 2-40 is a prominent member of newly discovered group of marine and estuarine bacteria that recycle complex polysaccharides. The S. degradans 2-40 genome codes for 15 extraordinary long polypeptides, ranging from 274 to 1,600 kDa. Five of these contain at least 52 cadherin (CA) and cadherin-like (CADG) domains, the types of which were reported to bind calcium ions and mediate protein/protein interactions in metazoan systems. In order to evaluate adhesive features of these domains, recombinant CA doublet domains (two neighboring domains) from CabC (Sde_3323) and recombinant CADG doublet domains from CabD (Sde_0798) were examined qualitatively and quantitatively for homophilic and heterophilic interactions. In addition, CA and CADG doublet domains were tested for adhesion to the surface of S. degradans 2-40. Results showed obvious homophilic and heterophilic, calcium ion-dependent interactions between CA and CADG doublet domains. Likewise, CA and CADG doublet domains adhered to the S. degradans 2-40 surface of cells that were grown on xylan from birch wood or pectin, respectively, as a sole carbon source. This research shows for the first time that bacterial cadherin homophilic and heterophilic interactions may be similar in their nature to cadherin domains from metazoan lineages. We hypothesize that S. degradans 2-40 cadherin and cadherin-like multiple domains contribute to protein-protein interactions that may mediate cell-cell contact in the marine environment. PMID:20023015

  14. Thrombomodulin reduces tumorigenic and metastatic potential of lung cancer cells by up-regulation of E-cadherin and down-regulation of N-cadherin expression.

    PubMed

    Zheng, Nana; Huo, Zihe; Zhang, Bin; Meng, Mei; Cao, Zhifei; Wang, Zhiwei; Zhou, Quansheng

    2016-08-05

    Thrombomodulin (TM) is an endothelial cell membrane protein and plays critical roles in anti-thrombosis, anti-inflammation, vascular endothelial protection, and is traditionally regarded as a "vascular protection god". In recent years, although TM has been reported to be down-regulated in a variety of malignant tumors including lung cancer, the role and mechanism of TM in lung cancer are enigmatic. In this study, we found that induction of TM overexpression by cholesterol-reducing drug atorvastatin significantly diminished the tumorigenic capability of the lung cancer cells. Moreover, we demonstrated that TM overexpression caused G0/G1 phase arrest and markedly reduced the colony forming capability of the cells. Furthermore, overexpression of TM inhibited cell migration and invasion. Consistently, depletion of TM promoted cell growth, reduced the cell population at the G0/G1 phase, and enhanced cell migratory ability. Mechanistic study revealed that TM up-regulated E-cadherin but down-regulated N-cadherin expression, resulting in reversal of epithelial-mesenchymal transition (EMT) in the lung cancer cells. Moreover, silencing TM expression led to decreased E-cadherin and increased N-cadherin. Taken together, our study suggests that TM functions as a tumor suppressive protein, providing a conceptual framework for inducing TM overexpression as a sensible strategy and approach for novel anti-lung cancer drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Surface Expression of Precursor N-cadherin Promotes Tumor Cell Invasion12

    PubMed Central

    Maret, Deborah; Gruzglin, Eugenia; Sadr, Mohamad Seyed; Siu, Vincent; Shan, Weisong; Koch, Alexander W; Seidah, Nabil G; Del Maestro, Rolando F; Colman, David R

    2010-01-01

    The expression of N-cadherin (NCAD) has been shown to correlate with increased tumor cell motility and metastasis. However, NCAD-mediated adhesion is a robust phenomenon and therefore seems to be inconsistent with the “release” from intercellular adhesion required for invasion. We show that in the most invasive melanoma and brain tumor cells, altered posttranslational processing results in abundant nonadhesive precursor N-cadherin (proNCAD) at the cell surface, although total NCAD levels remain constant. We demonstrate that aberrantly processed proNCAD promotes cell migration and invasion in vitro. Furthermore, in human tumor specimens, we find high levels of proNCAD as well, supporting an overall conclusion that proNCAD and mature NCAD coexist on these tumor cell surfaces and that it is the ratio between these functionally antagonistic moieties that directly correlates with invasion potential. Our work provides insight into what may be a widespread mechanism for invasion and metastasis and challenges the current dogma of the functional roles played by classic cadherins in tumor progression. PMID:21170270

  16. Cell density and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear.

    PubMed

    Warchol, Mark E

    2002-04-01

    Sensory hair cells in the inner ears of nonmammalian vertebrates can regenerate after injury. In many species, replacement hair cells are produced by the proliferation of epithelial supporting cells. Thus, the ability of supporting cells to undergo renewed proliferation is a key determinant of regenerative ability. The present study used cultures of isolated inner ear sensory epithelia to identify cellular signals that regulate supporting cell proliferation. Small pieces of sensory epithelia from the chicken utricle were cultured in glass microwells. Under those conditions, cell proliferation was inversely related to local cell density. The signaling molecules N-cadherin, beta-catenin, and focal adhesion kinase were immunolocalized in the cultured epithelial cells, and high levels of phosphotyrosine immunoreactivity were present at cell-cell junctions and focal contacts of proliferating cells. Binding of microbeads coated with a function-blocking antibody to N-cadherin inhibited ongoing proliferation. The growth of epithelial cells was also affected by the density of extracellular matrix molecules. The results suggest that cell density, cell-cell contact, and the composition of the extracellular matrix may be critical influences on the regulation of sensory regeneration in the inner ear.

  17. Inhibitory effects of clotrimazole on TNF-alpha-induced adhesion molecule expression and angiogenesis.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Min-A; Cho, Mi-Yeon; Park, Young-Joon; Choi, Han Gon; Jeong, Tae Cheon; Kim, Jung-Ae

    2009-04-01

    Cell adhesion molecules play a pivotal role in chronic inflammation and pathological angiogenesis. In the present study, we investigated the inhibitory effects of clotrimazole (CLT) on tumor necrosis factor (TNF)-alpha-induced changes in adhesion molecule expression. CLT dose-dependently inhibited monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expressions in TNF-alpha-stimulated HT29 colonic epithelial cells. This inhibitory action of CLT correlated with a significant reduction in TNF-alpha-induced adhesion of monocytes to HT29 cells, which was comparable to the inhibitory effects of anti-ICAM-1 and VCAM-1 monoclonal antibodies on monocyte-epithelial adhesion. These inhibitory actions of CLT were, at least in part, attributable to the inhibition of redox sensitive NF-kappaB activation, as CLT inhibited TNF-alpha-induced ROS generation as well as NF-kappaB nuclear translocation and activation in HT29 cells. Furthermore, the inhibition of TNF-alpha-induced monocyte adhesion was also mimicked by the specific NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). Inflammatory mediators including TNF-alpha have known to promote angiogenesis, which in turn further contributes to inflammatory pathology. Therefore, we additionally evaluated whether CLT modulates TNF-alpha-induced angiogenesis using in vivo chick chorioallantoic membrane (CAM) assay. The CAM assay showed that CLT dose-dependently attenuated TNF-alpha-induced angiogenesis, and the effect was correlated with decreased inflammation of the CAM tissue. In conclusion, our results suggest that CLT can inhibit TNF-alpha-triggered expression of adhesion molecules, ICAM-1 and VCAM-1, and angiogenesis during inflammation.

  18. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

  19. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces.

    PubMed

    Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto

    2015-08-24

    Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces

    PubMed Central

    Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto

    2015-01-01

    Summary Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. PMID:26235046

  1. Cell-adhesion molecules in memory formation.

    PubMed

    Schmidt, R

    1995-01-23

    After learning events the CNS of higher organisms selects, which acquired informations are permanently stored as a memory trace. This period of memory consolidation is susceptible to interference by biochemical inhibitors of transcription and translation. Ependymin is a specific CNS glycoprotein functionally involved in memory consolidation in goldfish: after active shock-avoidance conditioning ependymin mRNA is rapidly induced in meningeal fibroblasts followed by enhanced synthesis and secretion of several closely related forms of the protein. Intracranial injections of anti-ependymin antisera or antisense oligodeoxynucleotides interfere specifically with memory consolidation, indicating that only de novo synthesized ependymin molecules are involved. Ependymin is capable of directing the growth of central axons in vitro and participates in neuronal regeneration in situ, presumably by its HNK-1 cell-adhesion epitope. Experiments reviewed in this article suggest a model that involves two regulation mechanisms for the function of ependymin in behavioural plasticity: while hormones appear to determine, how much of this cell adhesion molecule is synthesized after learning, local changes of metal cation concentrations in the micro-environment of activated neurons may polymerize ependymin at those synapses, that have to be consolidated to improve their efficacy for future use.

  2. Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion.

    PubMed

    Yamazaki, Daisuke; Oikawa, Tsukasa; Takenawa, Tadaomi

    2007-01-01

    During cadherin-dependent cell-cell adhesion, the actin cytoskeleton undergoes dynamic reorganization in epithelial cells. Rho-family small GTPases, which regulate actin dynamics, play pivotal roles in cadherin-dependent cell-cell adhesion; however, the precise molecular mechanisms that underlie cell-cell adhesion formation remain unclear. Here we show that Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE)-mediated reorganization of actin, downstream of Rac plays an important role in normal development of cadherin-dependent cell-cell adhesions in MDCK cells. Rac-induced development of cadherin-dependent adhesions required WAVE2-dependent actin reorganization. The process of cell-cell adhesion is divided into three steps: formation of new cell-cell contacts, stabilization of these new contacts and junction maturation. WAVE1 and WAVE2 were expressed in MDCK cells. The functions of WAVE1 and WAVE2 were redundant in this system but WAVE2 appeared to play a more significant role. During the first step, WAVE2-dependent lamellipodial protrusions facilitated formation of cell-cell contacts. During the second step, WAVE2 recruited actin filaments to new cell-cell contacts and stabilized newly formed cadherin clusters. During the third step, WAVE2-dependent actin reorganization was required for organization and maintenance of mature cell-cell adhesions. Thus, Rac-WAVE-dependent actin reorganization is not only involved in formation of cell-cell adhesions but is also required for their maintenance.

  3. Intercellular Adhesion Molecule-5 Induces Dendritic Outgrowth by Homophilic Adhesion

    PubMed Central

    Tian, Li; Nyman, Henrietta; Kilgannon, Patrick; Yoshihara, Yoshihiro; Mori, Kensaku; Andersson, Leif C.; Kaukinen, Sami; Rauvala, Heikki; Gallatin, W. Michael; Gahmberg, Carl G.

    2000-01-01

    Intercellular adhesion molecule-5 (ICAM-5) is a dendritically polarized membrane glycoprotein in telencephalic neurons, which shows heterophilic binding to leukocyte β2-integrins. Here, we show that the human ICAM-5 protein interacts in a homophilic manner through the binding of the immunoglobulin domain 1 to domains 4–5. Surface coated ICAM-5-Fc promoted dendritic outgrowth and arborization of ICAM- 5–expressing hippocampal neurons. During dendritogenesis in developing rat brain, ICAM-5 was in monomer form, whereas in mature neurons it migrated as a high molecular weight complex. The findings indicate that its homophilic binding activity was regulated by nonmonomer/monomer transition. Thus, ICAM-5 displays two types of adhesion activity, homophilic binding between neurons and heterophilic binding between neurons and leukocytes. PMID:10893271

  4. Low-calorie cranberry juice supplementation reduces plasma oxidized LDL and cell adhesion molecule concentrations in men.

    PubMed

    Ruel, Guillaume; Pomerleau, Sonia; Couture, Patrick; Lemieux, Simone; Lamarche, Benoît; Couillard, Charles

    2008-02-01

    Elevated circulating concentrations of oxidized LDL (OxLDL) and cell adhesion molecules are considered to be relevant markers of oxidative stress and endothelial activation which are implicated in the development of CVD. On the other hand, it has been suggested that dietary flavonoid consumption may be cardioprotective through possible favourable impacts on LDL particle oxidation and endothelial activation. The present study was undertaken to determine the effect of the daily consumption of low-calorie cranberry juice cocktail on plasma OxLDL, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin concentrations in men. Thirty men (mean age 51 (sd 10) years) were recruited and asked to consume increasing daily doses of cranberry juice cocktail (125, 250 and 500 ml/d) over three successive periods of 4 weeks. Plasma OxLDL and adhesion molecule concentrations were measured by ELISA before and after each phase. We noted a significant decrease in plasma OxLDL concentrations following the intervention (P < 0.0001). We also found that plasma ICAM-1 (P < 0.0001) and VCAM-1 (P < 0.05) concentrations decreased significantly during the course of the study. In summary, the present results show that daily cranberry juice cocktail consumption is associated with decreases in plasma OxLDL, ICAM-1 and VCAM-1 concentrations in men.

  5. P21, COX-2, and E-cadherin are potential prognostic factors for esophageal squamous cell carcinoma.

    PubMed

    Lin, Yao; Shen, Lu-Yan; Fu, Hao; Dong, Bin; Yang, He-Li; Yan, Wan-Pu; Kang, Xiao-Zheng; Dai, Liang; Zhou, Hai-Tao; Yang, Yong-Bo; Liang, Zhen; Chen, Ke-Neng

    2017-02-01

    Much research effort has been devoted to identifying prognostic factors for esophageal squamous cell carcinoma (ESCC) by immunohistochemistry; however, no conclusive findings have been reached thus far. We hypothesized that certain molecules identified in previous studies might serve as useful prognostic markers for ESCC. Therefore, the aim of the current study was to validate the most relevant markers showing potential for ESCC prognosis in our prospective esophageal cancer database. A literature search was performed using the PubMed database for papers published between 1980 and 2015 using the following key words: 'esophageal cancer,' 'prognosis,' and 'immunohistochemistry.' Literature selection criteria were established to identify the most widely studied markers, and we further validated the selected markers in a cohort from our single-surgeon team, including 153 esophageal cancer patients treated from 2000 to 2010. A total of 1799 articles were identified, 82 of which met the selection criteria. Twelve markers were found to be the most widely studied, and the validation results indicated that only P21, COX-2, and E-cadherin were independent prognostic factors for ESCC patients in this series. The systemic review and cohort validation suggest that P21, COX-2, and E-cadherin are potential prognostic factors for ESCC, paving the way for more targeted prospective validation in the future. © 2016 International Society for Diseases of the Esophagus.

  6. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration

    PubMed Central

    Sumagin, Ronen; Parkos, Charles A

    2014-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  7. Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function.

    PubMed

    Fernández-Martín, Laura; Marcos-Ramiro, Beatriz; Bigarella, Carolina L; Graupera, Mariona; Cain, Robert J; Reglero-Real, Natalia; Jiménez, Anaïs; Cernuda-Morollón, Eva; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime

    2012-08-01

    Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins β-catenin and p120-catenin. β-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased β-catenin phosphorylation, without altering the actomyosin cytoskeleton. We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.

  8. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer.

    PubMed

    Chae, Young Kwang; Choi, Wooyoung M; Bae, William H; Anker, Jonathan; Davis, Andrew A; Agte, Sarita; Iams, Wade T; Cruz, Marcelo; Matsangou, Maria; Giles, Francis J

    2018-01-18

    Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infiltration in the tumor microenvironment. However, little is known regarding how these molecules affect immune cells in patients with lung cancer. We demonstrated for the first time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to differential infiltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with significantly lower infiltration of activated CD4 and CD8 T-cells, but higher infiltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with significantly higher infiltration of activated CD4 and CD8 T-cells, but lower infiltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infiltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.

  9. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells

    PubMed Central

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B.; Biliran, Hector

    2016-01-01

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental

  10. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    PubMed

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  11. E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium.

    PubMed

    Horne, Hisani N; Oh, Hannah; Sherman, Mark E; Palakal, Maya; Hewitt, Stephen M; Schmidt, Marjanka K; Milne, Roger L; Hardisson, David; Benitez, Javier; Blomqvist, Carl; Bolla, Manjeet K; Brenner, Hermann; Chang-Claude, Jenny; Cora, Renata; Couch, Fergus J; Cuk, Katarina; Devilee, Peter; Easton, Douglas F; Eccles, Diana M; Eilber, Ursula; Hartikainen, Jaana M; Heikkilä, Päivi; Holleczek, Bernd; Hooning, Maartje J; Jones, Michael; Keeman, Renske; Mannermaa, Arto; Martens, John W M; Muranen, Taru A; Nevanlinna, Heli; Olson, Janet E; Orr, Nick; Perez, Jose I A; Pharoah, Paul D P; Ruddy, Kathryn J; Saum, Kai-Uwe; Schoemaker, Minouk J; Seynaeve, Caroline; Sironen, Reijo; Smit, Vincent T H B M; Swerdlow, Anthony J; Tengström, Maria; Thomas, Abigail S; Timmermans, A Mieke; Tollenaar, Rob A E M; Troester, Melissa A; van Asperen, Christi J; van Deurzen, Carolien H M; Van Leeuwen, Flora F; Van't Veer, Laura J; García-Closas, Montserrat; Figueroa, Jonine D

    2018-04-26

    E-cadherin (CDH1) is a putative tumor suppressor gene implicated in breast carcinogenesis. Yet, whether risk factors or survival differ by E-cadherin tumor expression is unclear. We evaluated E-cadherin tumor immunohistochemistry expression using tissue microarrays of 5,933 female invasive breast cancers from 12 studies from the Breast Cancer Consortium. H-scores were calculated and case-case odds ratios (OR) and 95% confidence intervals (CIs) were estimated using logistic regression. Survival analyses were performed using Cox regression models. All analyses were stratified by estrogen receptor (ER) status and histologic subtype. E-cadherin low cases (N = 1191, 20%) were more frequently of lobular histology, low grade, >2 cm, and HER2-negative. Loss of E-cadherin expression (score < 100) was associated with menopausal hormone use among ER-positive tumors (ever compared to never users, OR = 1.24, 95% CI = 0.97-1.59), which was stronger when we evaluated complete loss of E-cadherin (i.e. H-score = 0), OR = 1.57, 95% CI = 1.06-2.33. Breast cancer specific mortality was unrelated to E-cadherin expression in multivariable models. E-cadherin low expression is associated with lobular histology, tumor characteristics and menopausal hormone use, with no evidence of an association with breast cancer specific survival. These data support loss of E-cadherin expression as an important marker of tumor subtypes.

  12. Pericyte Derived Sphinogosine 1-Phosphate Induces the Expression of Adhesion Proteins and Modulates the Retinal Endothelial Cell Barrier

    PubMed Central

    McGuire, P.G.; Rangasamy, S.; Maestas, J.; Das, A.

    2011-01-01

    Objective The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Methods and Results Human retinal microvascular endothelial cells were co-cultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate (S1P). S1P aids in maintenance of microvascular stability by up-regulating the expression of N-cadherin and VE-cadherin, and down-regulating the expression of angiopoietin 2. Conclusion Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of S1P. Alteration of pericyte-derived S1P production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability. PMID:21940944

  13. The profiles of soluble adhesion molecules in the "great obstetrical syndromes".

    PubMed

    Docheva, Nikolina; Romero, Roberto; Chaemsaithong, Piya; Tarca, Adi L; Bhatti, Gaurav; Pacora, Percy; Panaitescu, Bogdan; Chaiyasit, Noppadol; Chaiworapongsa, Tinnakorn; Maymon, Eli; Hassan, Sonia S; Erez, Offer

    2018-02-01

    The objective of this study was to determine the profiles of maternal plasma soluble adhesion molecules in patients with preeclampsia, small-for-gestational-age (SGA) fetuses, acute pyelonephritis, preterm labor with intact membranes (PTL), preterm prelabor rupture of the membranes (preterm PROM), and fetal death. A cross-sectional study was conducted to determine maternal plasma concentrations of sE-selectin, sL-selectin, and sP-selectin as well as sICAM-1, sVCAM-1, and sPECAM-1 in patients with (1) an uncomplicated pregnancy (control, n = 100); (2) preeclampsia (n = 94); (3) SGA fetuses (in women without preeclampsia/hypertension, n = 45); (4) acute pyelonephritis (n = 25); (5) PTL (n = 53); (6) preterm PROM (n = 24); and (7) fetal death (n = 34). Concentrations of soluble adhesion molecules and inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-8) were determined with sensitive and specific enzyme-linked immunoassays. In comparison to women with a normal pregnancy, (1) women with preeclampsia had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1, and a lower concentration of sL-selectin (all p values < .001); (2) patients with SGA fetuses had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1 (all p values < .05); (3) patients with a fetal death had higher median concentrations of sE-selectin and sP-selectin (all p values < .05); (4) patients with acute pyelonephritis had higher median plasma concentrations of sE-selectin, sICAM-1, and sVCAM-1 (all p values < .001); (5) patients with preeclampsia and acute pyelonephritis, plasma concentrations of sVCAM-1, sE-selectin, and sP-selectin correlated with those of the proinflammatory cytokines TNF-α and interleukin (IL)-8 (all p values < .05); (6) patients with PTL had a higher median concentration of sP-selectin and a lower median concentration of VCAM-1 (all p values < .05); and (7) women with preterm

  14. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS.

    PubMed

    Wilcz-Villega, E; McClean, S; O'Sullivan, M

    2014-03-01

    Increased intestinal permeability and altered expression of tight junction (TJ) proteins may be implicated in the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the expression of adherens junction (AJ) protein E-cadherin and TJ proteins zonula occludens (ZO)-1 and claudin (CLD)-1 and associations with IBS symptoms. Junctional proteins were immunostained in cecal biopsy tissue of Rome II IBS patients (n = 34) comprising both alternating (IBS-A) and diarrhea predominant (IBS-D) subtypes, and controls (n = 12). IBS symptom duration, abdominal pain severity and stool frequency were assessed for IBS patients. Protein expression was determined by immunofluorescence. E-cadherin and ZO-1 protein expression was significantly lower (p = 0.03 and p = 0.016, respectively) in the cecal surface epithelium of the IBS group comprising both IBS-A and IBS-D subtypes. CLD-1 expression was not significantly altered compared with controls. On subtype analysis, ZO-1 expression was significantly reduced in both IBS-A and IBS-D compared with controls, whereas E-cadherin was reduced only in IBS-A. Lower E-cadherin expression was associated with longer symptoms duration specifically in IBS-A patients (rs = -0.76, p = 0.004). Reduced E-cadherin associated with abdominal pain severity in the overall IBS group (rs = -0.36, p = 0.041), but this association was unrelated to IBS subtype. E-cadherin protein expression in the cecum was significantly lower in IBS-A compared with controls and associated with longstanding symptoms. E-cadherin was further associated with abdominal pain severity in the IBS group overall, but unrelated to IBS subtype. Altered E-cadherin expression may provide novel insights into mechanisms underlying intestinal barrier dysfunction in IBS. © 2013 John Wiley & Sons Ltd.

  15. Quantitative genetic analysis of cellular adhesion molecules: the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Demerath, Ellen W; Sun, Shumei S; Chumlea, Wm C; Towne, Bradford; Siervogel, Roger M

    2006-03-01

    Circulating concentrations of inflammatory markers predict cardiovascular disease (CVD) risk and are closely associated with obesity. However, little is known concerning genetic influences on serum levels of inflammatory markers. In this study, we estimated the heritability (h2) of soluble cellular adhesion molecule (sCAM) concentrations and examined the correlational architecture between different sCAMs. The study population included 234 men and 270 women aged 18-76 years, belonging to 121 families participating in the Fels Longitudinal Study. Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sESEL-1) and P-selectin (sPSEL-1) were assayed using commercially available kits. A variance components-based maximum likelihood method was used to estimate the h2 of the different serum inflammatory markers while simultaneously adjusting for the effects of known CVD risk factors, such as age and smoking. Additionally, we used bivariate extensions of these methods to estimate genetic and random environmental correlations among sCAMs. Levels of sCAMs were significantly heritable: h2=0.24+/-0.10 for sICAM-1, h2=0.22+/-0.10 for sVCAM-1, h2=0.50+/-0.11 for sESEL-1, and h2=0.46+/-0.10 for sPSEL-1. In addition, a significant genetic correlation (rho(G)=0.63) was found between sICAM-1 and sVCAM-1 indicating some degree of shared genetic control. In the Fels Longitudinal Study, the levels of four sCAMs are significantly influenced by genetic effects, and sICAM-1 shares a common genetic background with sVCAM-1.

  16. Deep analysis of N-cadherin/ADH-1 interaction: a computational survey.

    PubMed

    Eslami, Mahboobeh; Nezafat, Navid; Khajeh, Sahar; Mostafavi-Pour, Zohreh; Bagheri Novir, Samaneh; Negahdaripour, Manica; Ghasemi, Younes; Razban, Vahid

    2018-01-19

    Due to the considerable role of N-cadherin in cancer metastasis, tumor growth, and progression, inhibition of this protein has been highly regarded in recent years. Although ADH-1 has been known as an appropriate inhibitor of N-cadherin in clinical trials, its chemical nature and binding mode with N-cadherin have not been precisely specified yet. Accordingly, in this study, quantum mechanics calculations were used to investigate the chemical nature of ADH-1. These calculations clarify the molecular properties of ADH-1 and determine its reactive sites. Based on the results, the oxygen atoms are suitable for electrophilic reactivity, while the hydrogen atoms that are connected to nitrogen atoms are the favorite sites for nucleophilic reactivity. The higher electronegativity of the oxygen atoms makes them the most reactive portions in this molecule. Molecular docking and molecular dynamics (MD) simulation have also been applied to specify the binding mode of ADH-1 with N-cadherin and determine the important residues of N-cadherin involving in the interaction with ADH-1. Moreover, the verified model by MD simulation has been studied to extract the free energy value and find driving forces. These calculations and molecular electrostatic potential map of ADH-1 indicated that hydrophobic and electrostatic interactions are almost equally involved in the implantation of ADH-1 in the N-cadherin binding site. The presented results not only enable a closer examination of N-cadherin in complex with ADH-1 molecule, but also are very beneficial in designing new inhibitors for N-cadherin and can help to save time and cost in this field.

  17. Occludin confers adhesiveness when expressed in fibroblasts.

    PubMed

    Van Itallie, C M; Anderson, J M

    1997-05-01

    Occludin is an integral membrane protein specifically associated with tight junctions. Previous studies suggest it is likely to function in forming the intercellular seal. In the present study, we expressed occludin under an inducible promotor in occludin-null fibroblasts to determine whether this protein confers intercellular adhesion. When human occludin is stably expressed in NRK and Rat-1 fibroblasts, which lack endogenous occludin and tight junctions but do have well developed ZO-1-containing adherens-like junctions, occludin colocalizes with ZO-1 to points of cell-cell contact. In contrast, L-cell fibroblasts which lack cadherin-based adherens junctions, target neither ZO-1 nor occludin to sites of cell contact. Occludin-induced adhesion was next quantified using a suspended cell assay. In NRK and Rat-1 cells, occludin expression induces adhesion in the absence of calcium, thus independent of cadherin-cadherin contacts. In contrast, L-cells are nonadhesive in this assay and show no increase in adhesion after induction of occludin expression. Binding of an antibody to the first of the putative extracellular loops of occludin confirmed that this sequence was exposed on the cell surface, and synthetic peptides containing the amino acid sequence of this loop inhibit adhesion induced by occludin expression. These results suggest that the extracellular surface of occludin is directly involved in cell-cell adhesion and the ability to confer adhesiveness correlates with the ability to colocalize with its cytoplasmic binding protein, ZO-1.

  18. Opposite Roles of Furin and PC5A in N-Cadherin Processing12

    PubMed Central

    Maret, Deborah; Sadr, Mohamad Seyed; Sadr, Emad Seyed; Colman, David R; Del Maestro, Rolando F; Seidah, Nabil G

    2012-01-01

    We recently demonstrated that lack of Furin-processing of the N-cadherin precursor (proNCAD) in highly invasive melanoma and brain tumor cells results in the cell-surface expression of a nonadhesive protein favoring cell migration and invasion in vitro. Quantitative polymerase chain reaction analysis of malignant human brain tumor cells revealed that of all proprotein convertases (PCs) only the levels of Furin and PC5A are modulated, being inversely (Furin) or directly (PC5A) correlated with brain tumor invasive capacity. Intriguingly, the N-terminal sequence following the Furin-activated NCAD site (RQKR↓DW161, mouse nomenclature) reveals a second putative PC-processing site (RIRSDR↓DK189) located in the first extracellular domain. Cleavage at this site would abolish the adhesive functions of NCAD because of the loss of the critical Trp161. This was confirmed upon analysis of the fate of the endogenous prosegment of proNCAD in human malignant glioma cells expressing high levels of Furin and low levels of PC5A (U343) or high levels of PC5A and negligible Furin levels (U251). Cellular analyses revealed that Furin is the best activating convertase releasing an ∼17-kDa prosegment, whereas PC5A is the major inactivating enzyme resulting in the secretion of an ∼20-kDa product. Like expression of proNCAD at the cell surface, cleavage of the NCAD molecule at RIRSDR↓DK189 renders the U251 cancer cells less adhesive to one another and more migratory. Our work modifies the present view on posttranslational processing and surface expression of classic cadherins and clarifies how NCAD possesses a range of adhesive potentials and plays a critical role in tumor progression. PMID:23097623

  19. Colorectal adenocarcinoma with mucinous component: relation of MMP-13, EGFR, and E-cadherin expressions to clinicopathological features and prognosis.

    PubMed

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira Kamal; Aziz, Azza Abdel

    2015-06-01

    The aim of this study was to compare colorectal adenocarcinoma with mucinous component, ordinary adenocarcinoma (OA) and mucinous adenocarcinoma (MA) regarding clinicopathological parameters, survival, EGFR, MMP-13, and E-cadherin. We studied tumor tissue specimens from 28 patients with adenocarcinoma with mucinous component, 47 with OA, and 56 with MA, who underwent radical surgery from January 2007 to January 2012 at the Gastroenterology Centre, Mansoura University, Egypt. High density manual tissue microarrays were constructed and immunohistochemistry for EGFR, MMP-13, and E-cadherin was done. Colorectal adenocarcinoma with mucinous component (AWMC) was significantly associated with more perineural invasion, lower EGFR, and MMP-13 expressions than OA, with no difference in E-cadherin expression. Conversely, only microscopic abscess formation was significantly more with colorectal AWMC than MC with no difference in EGFR, MMP-13 and E-cadherin expression between both groups. Colorectal AWMC showed a better survival than MA with no difference with OA. In a univariate analysis, EGFR, MMP-13, and E-cadherin expressions did not show a significant impact on disease-free or overall survival in patients with colorectal AWMC. Colorectal AWMC remains a vague entity that resembles OA in some clinicopathological and molecular respects as well as MA. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  20. Characterization of the intronic portion of cadherin superfamily members, common cancer orchestrators

    PubMed Central

    Oliveira, Patrícia; Sanges, Remo; Huntsman, David; Stupka, Elia; Oliveira, Carla

    2012-01-01

    Cadherins are cell–cell adhesion proteins essential for the maintenance of tissue architecture and integrity, and their impairment is often associated with human cancer. Knowledge regarding regulatory mechanisms associated with cadherin misexpression in cancer is scarce. Specific features of the intronic-structure and intronic-based regulatory mechanisms in the cadherin superfamily are unidentified. This study aims at systematically characterizing the intronic portion of cadherin superfamily members and the identification of intronic regions constituting putative targets/triggers of regulation, using a bioinformatic approach and biological data mining. Our study demonstrates that the cadherin superfamily genes harbour specific characteristics in comparison to all non-cadherin genes, both from the genomic and transcriptional standpoints. Cadherin superfamily genes display higher average total intron number and significantly longer introns than other genes and across the entire vertebrate lineage. Moreover, in the human genome, we observed an uncommon high frequency of MIR (mammalian-wide interspersed repeats) and MaLR (mammalian-wide interspersed repeats, a subtype of LTR) regulatory-associated repetitive elements at 5′-located introns, concomitantly with increased de novo intronic transcription. Using this approach, we identified cadherin intronic-specific sites that may constitute novel targets/triggers of cadherin superfamily expression regulation. These findings pinpoint the need to identify mechanisms affecting particularly MIR and MaLR elements located in introns 2 and 3 of human cadherin genes, possibly important in the expression modulation of this superfamily in homeostasis and cancer. PMID:22317972

  1. Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity.

    PubMed

    Bosco, Domenico; Rouiller, Dominique G; Halban, Philippe A

    2007-07-01

    The aim of this study was to assess whether the expression of E-cadherin at the surface of rat beta-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all beta-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two beta-cell sub-populations were sorted: one that was poorly labeled ('ECad-low') and another that was highly labeled ('ECad-high'). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high beta-cells was higher than that from ECad-low beta-cells. Ca2+-dependent beta-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of beta-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochalasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet beta-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of beta-cell function.

  2. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Ming, Jia; Xu, Yan

    2015-02-06

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we foundmore » that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.« less

  3. Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Eckardt, Dominik; Ritson, Sarah; Eastham, Angela M; Bobola, Nicoletta; Russell, Angela; Davies, Steve; Kemler, Rolf; Merry, Catherine L R; Ward, Christopher M

    2009-09-01

    We have previously demonstrated that differentiation of embryonic stem (ES) cells is associated with downregulation of cell surface E-cadherin. In this study, we assessed the function of E-cadherin in mouse ES cell pluripotency and differentiation. We show that inhibition of E-cadherin-mediated cell-cell contact in ES cells using gene knockout (Ecad(-/-)), RNA interference (EcadRNAi), or a transhomodimerization-inhibiting peptide (CHAVC) results in cellular proliferation and maintenance of an undifferentiated phenotype in fetal bovine serum-supplemented medium in the absence of leukemia inhibitory factor (LIF). Re-expression of E-cadherin in Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells restores cellular dependence to LIF supplementation. Although reversal of the LIF-independent phenotype in Ecad(-/-) ES cells is dependent on the beta-catenin binding domain of E-cadherin, we show that beta-catenin null (betacat(-/-)) ES cells also remain undifferentiated in the absence of LIF. This suggests that LIF-independent self-renewal of Ecad(-/-) ES cells is unlikely to be via beta-catenin signaling. Exposure of Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells to the activin receptor-like kinase inhibitor SB431542 led to differentiation of the cells, which could be prevented by re-expression of E-cadherin. To confirm the role of transforming growth factor beta family signaling in the self-renewal of Ecad(-/-) ES cells, we show that these cells maintain an undifferentiated phenotype when cultured in serum-free medium supplemented with Activin A and Nodal, with fibroblast growth factor 2 required for cellular proliferation. We conclude that transhomodimerization of E-cadherin protein is required for LIF-dependent ES cell self-renewal and that multiple self-renewal signaling networks subsist in ES cells, with activity dependent upon the cellular context.

  4. Brain endothelial adhesion molecule expression in experimental colitis.

    PubMed

    Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J

    2001-04-01

    1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.

  5. N-cadherin is required for cytodifferentiation during zebrafish odontogenesis.

    PubMed

    Verstraeten, B; van Hengel, J; Sanders, E; Van Roy, F; Huysseune, A

    2013-04-01

    N-cadherin is a well-studied classic cadherin involved in multiple developmental processes and is also known to have a signaling function. Using the zebrafish (Danio rerio) as a model, we tested the hypothesis that tooth morphogenesis is accompanied by dynamic changes in N-cadherin distribution and that absence of N-cadherin disturbs tooth development. N-cadherin, encoded by the gene cdh2, is absent during the initiation and morphogenesis stages of both primary (first-generation) and replacement teeth, as demonstrated by immunohistochemistry. However, N-cadherin is up-regulated at the onset of differentiation of cells of the inner dental epithelium and the dental papilla, i.e., the ameloblasts and odontoblasts, respectively. In the inner dental epithelium, N-cadherin is co-expressed with E-cadherin, excluding the occurrence of cadherin switching such as observed during human tooth development. While early lethality of N-cadherin knockout mice prevents any functional study of N-cadherin in mouse odontogenesis, zebrafish parachute (pac) mutants, deficient for N-cadherin, survive beyond the age when primary teeth normally start to form. In these mutants, the first tooth forms, but its development stops at the early cytodifferentiation stage. N-cadherin deficiency also completely inhibits the development of the other first-generation teeth, possibly due to the absence of N-cadherin signaling once the first tooth has differentiated.

  6. Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis

    PubMed Central

    Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.

    2001-01-01

    Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188

  7. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae.

    PubMed

    Luo, Wen-Wei; Wang, Xin-Wei; Ma, Rui; Chi, Fang-Lu; Chen, Ping; Cong, Ning; Gu, Yu-Yan; Ren, Dong-Dong; Yang, Juan-Mei

    2018-01-01

    Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  8. Comparative study of the Ar and He atmospheric pressure plasmas on E-cadherin protein regulation for plasma-mediated transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June

    2018-05-01

    The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.

  9. The invasive phenotype of placenta accreta extravillous trophoblasts associates with loss of E-cadherin.

    PubMed

    Duzyj, C M; Buhimschi, I A; Motawea, H; Laky, C A; Cozzini, G; Zhao, G; Funai, E F; Buhimschi, C S

    2015-06-01

    Epithelial-to-mesenchymal transition (EMT) is a process of molecular and phenotypic epithelial cell alteration promoting invasiveness. Loss of E-cadherin (E-CAD), a transmembrane protein involved in cell adhesion, is a marker of EMT. Proteolysis into N- and C-terminus fragments by ADAM10 and presenilin-1 (PSEN-1) generates soluble (sE-CAD) and transcriptionally active forms. We studied the protein expression patterns of E-CAD in the serum and placenta of women with histologically-confirmed over-invasive placentation. The patterns of expression and levels of sE-CAD were analyzed by Western blot, immunoassay, and immunoprecipitation. Tissue immunostaining for E-CAD, cytokeratin-7 (epithelial marker), vimentin (mesenchymal marker), ADAM10, PSEN-1 and β-catenin expression were investigated in parallel. N-terminus cleaved 80 kDa sE-CAD fragments were present in serum of pregnant women with gestational age regulation of the circulatory levels. Women with advanced trophoblast invasion did not display circulatory levels of sE-CAD different from those of women with normal placentation. Histologically, extravillous trophoblasts (EVT) closer to the placental-myometrial interface demonstrated less E-CAD staining than those found deeper in the myometrium. These cells expressed both vimentin and cytokeratin, an additional feature of EMT. EVT of placentas with advanced invasion displayed intracellular E-CAD C-terminus immunoreactivity predominating over that of the extracellular N-terminus, a pattern consistent with preferential PSEN-1 processing. Local processing of E-CAD may be an important molecular mechanism controlling the invasive phenotype of accreta EVT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  11. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma

    PubMed Central

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-01-01

    Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. PMID:28854563

  12. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  13. Serum levels of endothelial and neural cell adhesion molecules in prostate cancer.

    PubMed

    Lynch, D F; Hassen, W; Clements, M A; Schellhammer, P F; Wright, G L

    1997-08-01

    Tumorigenesis and progression to metastatic disease are accompanied by changes in the expression of cell adhesion molecules (CAMs). Normally expressed CAMs, such as E-cadherin, are lost, while others, i.e., ICAM-1, VCAM-1, NCAM, and E-selectin, are altered and overexpressed in progressive disease and metastases. Abnormal levels of these latter CAMs have been observed in melanoma and carcinomas of the colon and breast, and NCAM is overexpressed in small-cell lung carcinoma (SCLC). The objective of this study was to determine if serum levels of ICAM-1, VCAM-1, NCAM, and E-selectin could differentiate patients with benign prostate hypertrophy (BPH) from those with prostate carcinoma (CaP) and identify prostate cancers with high potential for progression to metastatic disease. Serum levels of these CAMs were determined by ELISA in serum from normal males and females and from patients with BPH and CaP before and after treatment. Sera from patients with breast carcinoma, colon carcinoma, melanoma, and small-cell lung carcinoma were also evaluated, as soluble CAMs have been reported to be elevated in these cancer patients. ICAM-1 levels were elevated in sera from patients with breast carcinoma (P = 0.0004) and melanoma (P = 0.0001). VCAM-1 levels were elevated in sera from patients with colon carcinoma (P = 0.0001). NCAM levels were elevated in the sera of patients with SCLC (P = 0.0001). Normal levels of ICAM-1, E-selectin, and NCAM were found in both BPH and pretreatment CaP patients. Median NCAM levels in hormone-refractive CaP patients were significantly greater than in BPH (P = 0.0005) and CaP patients with pathologically determined organ-confined (P = 0.0014) or nonorgan-confined disease (P = 0.0385). VCAM-1 levels were significantly elevated in both BPH patients (P = 0.0002) and CaP patients (P = 0.0002) when compared with levels for normal age-matched donors. None of the CAMs were found to offer an advantage over prostatic-specific antigen (PSA) for monitoring Ca

  14. Establishment of cell-cell junctions depends on the oligomeric states of VE-cadherin

    PubMed Central

    Bibert, Stéphanie; Ayari, Hélène; Riveline, Daniel; Concord, Evelyne; Hermant, Bastien; Vernet, Thierry; Gulino-Debrac, Danièle

    2008-01-01

    Specifically expressed at intercellular adherens junctions of endothelial cells, VE-cadherin is a receptor that exhibits particular self-association properties. Indeed, in vitro studies demonstrated that the extracellular part of VE-cadherin elaborates Ca++-dependent hexameric structures. We hypothesized that this assembly could be at the basis of a new cadherin-mediated cell-cell adhesion mechanism. To verify this assumption, we first demonstrated that VE-cadherin can elaborate hexamers at the cell surface of confluent endothelial cells. Second, mutations were introduced within the extracellular part of VE-cadherin to destabilize the hexamer. Following an in vitro screening, three mutants were selected, among which, one is able to elaborate only dimers. The selected mutations were expressed as C-terminal Green Fluorescent Protein fusions in CHO cells. Despite their capacity to elaborate nascent cell-cell contacts, the mutants seem to be rapidly degraded and or internalized. Altogether, our results suggest that the formation of VE-cadherin hexamers protects this receptor and might allow the elaboration of mature endothelial cell-cell junctions. PMID:18343874

  15. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    PubMed

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  16. WAVE2 Protein Complex Coupled to Membrane and Microtubules.

    PubMed

    Takahashi, Kazuhide

    2012-01-01

    E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion.

  17. WAVE2 Protein Complex Coupled to Membrane and Microtubules

    PubMed Central

    Takahashi, Kazuhide

    2012-01-01

    E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion. PMID:22315597

  18. Fragments of e-Cadherin as Biomarkers of Non-erosive Reflux Disease.

    PubMed

    Jovov, Biljana; Reed, Craig C; Shaheen, Nicholas J; Pruitt, Amy; Ferrell, Kathleen; Orlando, Geraldine S; Djukic, Zorka; Orlando, Roy C

    2018-03-01

    Approximately, 20% of patients with heartburn and normal endoscopic findings do not symptomatically improve on proton pump inhibitor (PPI) therapy making diagnosis and treatment uncertain. A biomarker distinguishing PPI-responsive from PPI-refractory heartburn is desirable. We performed a pilot study assessing whether carboxy(C)-terminal fragments (CTFs) of e-cadherin in esophageal biopsies or amino(N)-terminal fragments (NTFs) of e-cadherin in serum could serve this purpose. Twenty-nine patients with endoscopy-negative heartburn had esophageal biopsies for CTFs on Western blot and blood for serum NTFs on ELISA. All patients received dexlansoprazole 30 mg daily for 4 weeks, and heartburn was assessed by daily diary entry. Post-treatment blood samples were obtained for serum NTFs. A control group without GERD symptoms (n = 6) had biopsies for CTFs and a second control group (n = 20) blood serum for serum NTFs. Twenty-seven of 29 patients (93.1%) with endoscopy-negative heartburn, but 0 of 6 controls, were positive for CTFs. All patients and controls had measureable serum NTFs, but mean NTFs were significantly higher in those with PPI-responsive heartburn compared to those with PPI-refractory heartburn and controls. Following treatment, 24 of 29 (82.8) patients had relief of heartburn, which associated with a decline in mean NTFs compared to controls. NTFs in PPI-refractory patients (n = 5) were similar to controls before and after PPI therapy. When heartburn responds to PPI, elevated serum NTFs decline to normal. These data suggest that cleaved products of e-cadherin may serve as biomarkers of NERD. Further data are needed to assess and confirm this concept.

  19. [Effect of genetics, epigenetics and variations in the transcriptional expression of cadherin-E in breast cancer susceptibility].

    PubMed

    Aristizábal-Pachón, Andrés Felipe; Takahashi, Catarina Satie

    2016-12-01

    Cadherin-E (CDH1) is an important regulator of epithelial-mesenchymal transition, invasion and metastasis in many carcinomas. However, germinal epimutations and mutations effect in breast cancer susceptibility is not clear. To evaluate rs334558 polymorphism, promoter methylation status and CDH1 expression profile in breast cancer patients. We collected peripheral blood samples from 102 breast cancer patients and 102 healthy subjects. The identification of rs334558 polymorphism was performed using PCR-RFLP, while methylation-specific PCR (MSP) and methylation-sensitive high-resolution melting (MS-HRM) were used to explore CDH1 methylation status; finally, CDH1 transcriptional expression profile was evaluated using RT-qPCR. We found no association between rs334558 polymorphism and breast cancer. Aberrant promoter methylation profile was found in breast cancer patients and it was related with early cancer stages. CDH1 down-regulation was significantly associated with metastasis and promoter methylation. CDH1 alterations were associated with invasion and metastasis in breast cancer. Our results offer further evidence of CDH1 relevance in breast cancer development and progression.

  20. Amino acid sequence of bovine muzzle epithelial desmocollin derived from cloned cDNA: a novel subtype of desmosomal cadherins.

    PubMed

    Koch, P J; Goldschmidt, M D; Walsh, M J; Zimbelmann, R; Schmelz, M; Franke, W W

    1991-05-01

    Desmosomes are cell-type-specific intercellular junctions found in epithelium, myocardium and certain other tissues. They consist of assemblies of molecules involved in the adhesion of specific cell types and in the anchorage of cell-type-specific cytoskeletal elements, the intermediate-size filaments, to the plasma membrane. To explore the individual desmosomal components and their functions we have isolated DNA clones encoding the desmosomal glycoprotein, desmocollin, using antibodies and a cDNA expression library from bovine muzzle epithelium. The cDNA-deduced amino-acid sequence of desmocollin (presently we cannot decide to which of the two desmocollins, DC I or DC II, this clone relates) defines a polypeptide with a calculated molecular weight of 85,000, with a single candidate sequence of 24 amino acids sufficiently long for a transmembrane arrangement, and an extracellular aminoterminal portion of 561 amino acid residues, compared to a cytoplasmic part of only 176 amino acids. Amino acid sequence comparisons have revealed that desmocollin is highly homologous to members of the cadherin family of cell adhesion molecules, including the previously sequenced desmoglein, another desmosome-specific cadherin. Using riboprobes derived from cDNAs for Northern-blot analyses, we have identified an mRNA of approximately 6 kb in stratified epithelia such as muzzle epithelium and tongue mucosa but not in two epithelial cell culture lines containing desmosomes and desmoplakins. The difference may indicate drastic differences in mRNA concentration or the existence of cell-type-specific desmocollin subforms. The molecular topology of desmocollin(s) is discussed in relation to possible functions of the individual molecular domains.

  1. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin

    PubMed Central

    Farr, Glen A.; Hull, Michael; Stoops, Emily H.; Bateson, Rosalie; Caplan, Michael J.

    2015-01-01

    Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking. PMID:26424804

  2. [Value of adhesion molecules for evaluating the efficiency of therapy for ulcerative colitis and Crohn's disease].

    PubMed

    Parfenov, A I; Boldyreva, O N; Ruchkina, I N; Knyazev, O V; Sagynbaeva, V E; Shcherbakov, P L; Khomeriki, S G; Lazebnik, L B; Konoplyannikov, A G

    2014-01-01

    To define the value of adhesion molecules (sVCAM-1 integrin, P-selectin, E-selectin, and L-selectin) for the prediction and evaluation of the efficiency of treatment in patients with ulcerative colitis (UC) and Crohn's disease. Twenty-six patients with UC and 14 patients with CD were examined. Of them, 16 patients took infliximab (INF) in a dose of 5 mg/kg of body weight according to the standard scheme; 14 patients received cultured mesenchymal stem stromal cells (MSSCs) in a quantity of 150 x 10(8) cells, and 10 had azathioprine (AZA) 2 mg/kg and glucocorticosteroids (GCS) 1 mg/kg of body weight. Enzyme immunoassay was used to determine the serum concentration of the adhesion molecules (L-selectin, E-selectin, P-selectin, and sVCAM-1 integrin) before and 2 months after treatment. The signs of bowel inflammatory disease activity and the elevated levels of adhesion molecules whose synthesis did not occur under normal conditions remained in the patients receiving GCS and AZA. INF treatment caused a decrease in P-selectin, E-selectin, and sVCAM-1 levels to 8.9 +/- 1.0, 5.5 +/- 1.7, and 9.5 +/- 4.4 ng/ml, respectively (p < 0.001). Incorporation of MSSCs was followed by a reduction of the concentrations of P-selectin and E-selectin to 6.9 +/- 1.1 and 5.7 +/- 1.3 ng/ml, respectively (p < 0.001). The level of integrin (cVCAM-1) fell to 12.2 +/- 2.2 ng/ml (p > 0.1); that of L-selectin did not drop after MSSC administration and INF induction therapy. P-selectin, E-selectin, L-selectin, and sVCAM-1 integrin are current inflammatory markers and may be used to evaluate the efficiency of standard and biological therapies for inflammatory bowel diseases and to predict disease course.

  3. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    PubMed Central

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  4. E-cadherin germline mutation carriers: clinical management and genetic implications.

    PubMed

    Corso, Giovanni; Figueiredo, Joana; Biffi, Roberto; Trentin, Chiara; Bonanni, Bernardo; Feroce, Irene; Serrano, Davide; Cassano, Enrico; Annibale, Bruno; Melo, Soraia; Seruca, Raquel; De Lorenzi, Francesca; Ferrara, Francesco; Piagnerelli, Riccardo; Roviello, Franco; Galimberti, Viviana

    2014-12-01

    Hereditary diffuse gastric cancer is an autosomic dominant syndrome associated with E-cadherin protein (CDH1) gene germline mutations. Clinical criteria for genetic screening were revised in 2010 by the International Gastric Cancer Linkage Consortium at the Cambridge meeting. About 40 % of families fulfilling clinical criteria for this inherited disease present deleterious CDH1 germline mutations. Lobular breast cancer is a neoplastic condition associated with hereditary diffuse gastric cancer syndrome. E-cadherin constitutional mutations have been described in both settings, in gastric and breast cancers. The management of CDH1 asymptomatic mutation carriers requires a multidisciplinary approach; the only life-saving procedure is the prophylactic total gastrectomy after thorough genetic counselling. Several prophylactic gastrectomies have been performed to date; conversely, no prophylactic mastectomies have been described in CDH1 mutant carriers. However, the recent discovery of novel germline alterations in pedigree clustering only for lobular breast cancer opens up a new debate in the management of these individuals. In this critical review, we describe the clinical management of CDH1 germline mutant carriers providing specific recommendations for genetic counselling, clinical criteria, surveillance and/ or prophylactic surgery.

  5. Epithelial-type and neural-type cadherin expression in malignant noncarcinomatous neoplasms with epithelioid features that involve the soft tissues.

    PubMed

    Laskin, William B; Miettinen, Markku

    2002-04-01

    Transmembrane adhesion molecules, epithelial-type cadherin (ECAD) and neural-type cadherin (NCAD), help in regulating transformations between epithelial and mesenchymal cells in the developing embryo and in maintaining the epithelioid phenotype. Consequently, the presence of epithelioid cells in certain malignant noncarcinomatous neoplasms raises speculation that the expression of ECAD and NCAD in these neoplasms may have diagnostic significance. To investigate the utility of ECAD and NCAD immunoexpression in distinguishing malignant (noncarcinomatous) neoplasms with epithelioid features that involve the soft tissues. Membranous immunoreactivity of anti-ECAD and anti-NCAD was evaluated on archived cases selected from the files of the Armed Forces Institute of Pathology. Epithelial-type cadherin was found in biphasic synovial sarcoma (35 of 35 cases), malignant melanoma (13/21), monophasic fibrous synovial sarcoma (13/26), clear cell sarcoma (4/9), poorly differentiated synovial sarcoma (3/13), diffuse mesothelioma (4/20), malignant epithelioid peripheral nerve sheath tumor (1/6), and epithelioid sarcoma (5/62). Neural-type cadherin was observed in chordoma (11/11), biphasic synovial sarcoma (30/35), diffuse mesothelioma (14/20), malignant melanoma (14/25), epithelioid sarcoma (24/63), epithelioid angiosarcoma (1/4), poorly differentiated synovial sarcoma (2/13), clear cell sarcoma (1/10), and monophasic fibrous synovial sarcoma (1/26). Eighteen cases of primary cutaneous squamous cell carcinomas all tested positive for ECAD, whereas NCAD was focally observed in 5 cases. No expression of either molecule was observed in cases of epithelioid hemangioendothelioma (n = 9), alveolar soft part sarcoma (n = 8), and extraskeletal myxoid chondrosarcoma (n = 7). Epithelial-type and neural-type cadherins are found in a variety of noncarcinomatous neoplasms with epithelioid features that involve the soft tissues and can be utilized, in association with other immunomarkers, in

  6. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Intercellular adhesion molecules (ICAMs) and spermatogenesis

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Cheng, C. Yan

    2013-01-01

    BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli–Sertoli and Sertoli–germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move ‘up and down’ the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood–testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)—BTB—basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial

  8. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin.

    PubMed

    Hoh, Brian L; Rojas, Kelley; Lin, Li; Fazal, Hanain Z; Hourani, Siham; Nowicki, Kamil W; Schneider, Matheus B; Hosaka, Koji

    2018-04-13

    Estrogen deficiency is associated with the development of cerebral aneurysms; however, the mechanism remains unknown. We explored the pathway of cerebral aneurysm development by investigating the potential link between estrogen deficiency and inflammatory factors. First, we established the role of interleukin-17 (IL-17)A. We performed a cytokine screen demonstrating that IL-17A is significantly expressed in mouse and human aneurysms ( P =0.03). Likewise, IL-17A inhibition was shown to prevent aneurysm formation by 42% ( P =0.02) and rupture by 34% ( P <0.05). Second, we found that estrogen deficiency upregulates T helper 17 cells and IL-17A and promotes aneurysm rupture. Estrogen-deficient mice had more ruptures than control mice (47% versus 7%; P =0.04). Estradiol supplementation or IL-17A inhibition decreased the number of ruptures in estrogen-deficient mice (estradiol 6% versus 37%; P =0.04; IL-17A inhibition 18% versus 47%; P =0.018). Third, we found that IL-17A-blockade protects against aneurysm formation and rupture by increased E-cadherin expression. IL-17-inhibited mice had increased E-cadherin expression ( P =0.003). E-cadherin inhibition reversed the protective effect of IL-17A inhibition and increased the rate of aneurysm formation (65% versus 28%; P =0.04) and rupture (12% versus 0%; P =0.22). However, E-cadherin inhibition alone does not significantly increase aneurysm formation in normal mice or in estrogen-deficient mice. In cell migration assays, E-cadherin inhibition promoted macrophage infiltration across endothelial cells ( P <0.05), which may be the mechanism for the estrogen deficiency/IL-17/E-cadherin aneurysm pathway. Our data suggest that estrogen deficiency promotes cerebral aneurysm rupture by upregulating IL-17A, which downregulates E-cadherin, encouraging macrophage infiltration in the aneurysm vessel wall. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells.

    PubMed

    Gillard, Ghislain; Shafaq-Zadah, Massiullah; Nicolle, Ophélie; Damaj, Raghida; Pécréaux, Jacques; Michaux, Grégoire

    2015-05-01

    E-cadherin (E-cad) is the main component of epithelial junctions in multicellular organisms, where it is essential for cell-cell adhesion. The localisation of E-cad is often strongly polarised in the apico-basal axis. However, the mechanisms required for its polarised distribution are still largely unknown. We performed a systematic RNAi screen in vivo to identify genes required for the strict E-cad apical localisation in C. elegans epithelial epidermal cells. We found that the loss of clathrin, its adaptor AP-1 and the AP-1 interactor SOAP-1 induced a basolateral localisation of E-cad without affecting the apico-basal diffusion barrier. We further found that SOAP-1 controls AP-1 localisation, and that AP-1 is required for clathrin recruitment. Finally, we also show that AP-1 controls E-cad apical delivery and actin organisation during embryonic elongation, the final morphogenetic step of embryogenesis. We therefore propose that a molecular pathway, containing SOAP-1, AP-1 and clathrin, controls the apical delivery of E-cad and morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  10. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    PubMed Central

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  11. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp; Fujiwara, Yuki; Yamaguchi, Hideki

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however,more » its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.« less

  13. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma.

    PubMed

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-08-01

    Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. © The Author 2017. Published by Oxford University Press.

  14. An epigenetic signature of adhesion molecules predicts poor prognosis of ovarian cancer patients

    PubMed Central

    Chang, Ping-Ying; Liao, Yu-Ping; Wang, Hui-Chen; Chen, Yu-Chih; Huang, Rui-Lan; Wang, Yu-Chi; Yuan, Chiou-Chung; Lai, Hung-Cheng

    2017-01-01

    DNA methylation is a promising biomarker for cancer. The epigenetic effects of cell adhesion molecules may affect the therapeutic outcome and the present study examined their effects on survival in ovarian cancer. We integrated methylomics and genomics datasets in The Cancer Genome Atlas (n = 391) and identified 106 highly methylated adhesion-related genes in ovarian cancer tissues. Univariate analysis revealed the methylation status of eight genes related to progression-free survival. In multivariate Cox regression analysis, four highly methylated genes (CD97, CTNNA1, DLC1, HAPLN2) and three genes (LAMA4, LPP, MFAP4) with low methylation were significantly associated with poor progression-free survival. Low methylation of VTN was an independent poor prognostic factor for overall survival after adjustment for age and stage. Patients who carried any two of CTNNA1, DLC1 or MFAP4 were significantly associated with poor progression-free survival (hazard ratio: 1.59; 95% confidence interval: 1.23, 2.05). This prognostic methylation signature was validated in a methylomics dataset generated in our lab (n = 37, hazard ratio: 16.64; 95% confidence interval: 2.68, 103.14) and in another from the Australian Ovarian Cancer Study (n = 91, hazard ratio: 2.43; 95% confidence interval: 1.11, 5.36). Epigenetics of cell adhesion molecules is related to ovarian cancer prognosis. A more comprehensive methylomics of cell adhesion molecules is needed and may advance personalized treatment with adhesion molecule-related drugs. PMID:28881822

  15. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  16. Expression of p27Kip1 and E-cadherin in Head and Neck Squamous Cell Carcinoma of Indonesian Patients.

    PubMed

    E I, Auerkari; V, Joewono; D R, Handjari; A T, Sarwono; A W, Suhartono; K, Eto; M A, Ikeda

    2014-01-01

    Cancer cells exhibit characteristic damage of DNA and its expression. The expression of the tumor suppressors E-cadherin and p27(Kip1) has been tested on 57 head and neck squamous cell carcinomas (HNSCC) of Indonesian subjects. HNSCC tumor samples including both primary and (unrelated) nodal cases were obtained from the archives of Indonesian hospitals, in accordance with acknowledged ethical requirements. Only modest correlation was found between reduced expression of E-cadherin or p27(Kip1) with increased malignancy of primary and nodal growth. The observed strong correlation regardless of malignancy between the expressed levels of E-cadherin and p27(Kip1) suggests that also in combination these would not help to better predict the outcome of HNSCC.

  17. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma.

    PubMed

    Teoh, G; Anderson, K C

    1997-02-01

    Adhesion molecules play an important role in the growth regulation and migration of multiple myeloma (MM) cells. They mediate homing of MM cells to the bone marrow and MM cell to bone marrow stromal cell adhesion, with resultant interleukin-6 related autocrine and paracine growth and antiapoptotic affects. Their pattern of expression on tumor cells correlates with the development of plasma cell leukemia or extramedullary disease. Clinically, expression of adhesion molecules on tumor cells or in the serum has already shown prognostic utility. Finally, since adhesion molecules are involved at multiple steps in the pathogenesis of MM, therapeutic studies may target these molecules.

  18. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma.

    PubMed

    Cappellesso, Rocco; Marioni, Gino; Crescenzi, Marika; Giacomelli, Luciano; Guzzardo, Vincenza; Mussato, Alessio; Staffieri, Alberto; Martini, Alessandro; Blandamura, Stella; Fassina, Ambrogio

    2015-10-01

    Laryngeal squamous cell carcinoma (LSCC) prognosis is definitely related to lymph node metastasis. Epithelial-mesenchymal transition (EMT) allows neoplastic cells to gain the plasticity and motility required for tumour progression and metastasis. The aim of this study was to investigate the role of EMT in the prognosis of LSCC. Immunohistochemical analysis of E-cadherin, N-cadherin, Snail, Slug, ZEB1, and ZEB2 was performed in 37 consecutive LSCC cases. Low E-cadherin levels and high Slug levels correlated with both disease recurrence (P = 0.02 and P =0.01, respectively) and shorter disease-free survival (DFS) (P = 0.04 and P = 0.02, respectively). Relative expression levels of CDH1, SNAI2, miR-1 and the miR-200 family were also evaluated. CDH1, miR-200a and miR-200c down-regulation and SNAI2 overexpression were significantly associated with disease recurrence (P = 0.03, P = 0.02, P = 0.04, and P = 0.04, respectively). EMT increases tumour recurrence risk and shortens DFS in LSCC. E-cadherin and Slug immunohistochemical analysis could be useful for identifying patients requiring more aggressive treatment after surgery. © 2015 John Wiley & Sons Ltd.

  19. Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule

    PubMed Central

    1984-01-01

    By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal

  20. Erythroid Adhesion Molecules in Sickle Cell Anaemia Infants: Insights Into Early Pathophysiology.

    PubMed

    Brousse, Valentine; Colin, Yves; Pereira, Catia; Arnaud, Cecile; Odièvre, Marie Helene; Boutemy, Anne; Guitton, Corinne; de Montalembert, Mariane; Lapouméroulie, Claudine; Picot, Julien; Le Van Kim, Caroline; El Nemer, Wassim

    2015-01-01

    Sickle cell anaemia (SCA) results from a single mutation in the β globin gene. It is seldom symptomatic in the first semester of life. We analysed the expression pattern of 9 adhesion molecules on red blood cells, in a cohort of 54 SCA and 17 non-SCA very young infants of comparable age (median 144 days, 81-196). Haemoglobin F (HbF) level was unsurprisingly elevated in SCA infants (41.2% ± 11.2) and 2-4 fold higher than in non-SCA infants, yet SCA infants presented significantly decreased Hb level and increased reticulocytosis. Cytometry analysis evidenced a specific expression profile on reticulocytes of SCA infants, with notably an increased expression of the adhesion molecules Lu/BCAM, ICAM-4 and LFA-3, both in percentage of positive cells and in surface density. No significant difference was found on mature red cells. Our findings demonstrate the very early onset of reticulocyte membrane modifications in SCA asymptomatic infants and allow an insight into the first pathological changes with the release of stress reticulocytes expressing a distinctive profile of adhesion molecules.

  1. Relationships between immunophenotype, Ki-67 index, microvascular density, Ep-CAM/P-cadherin, and MMP-2 expression in early-stage invasive ductal breast cancer.

    PubMed

    Niemiec, Joanna A; Adamczyk, Agnieszka; Małecki, Krzysztof; Majchrzyk, Kaja; Ryś, Janusz

    2012-12-01

    There is still a lack of complete consensus on immunohistochemical surrogate markers for luminal A (LA) and luminal B (LB), HER2, and basal-like subtypes of breast carcinomas and their correlation with cancer cell adhesion and invasion-promoting factors. Therefore, early-stage invasive ductal breast cancer patients (N=209) were recruited to the study and divided into 4 subtypes, on the basis of the expression of the estrogen/progesterone receptor and HER2 (LA: 74.4% of cases; LB: 7.8%; HER2: 5.6%; and triple-negative phenotype: 12.2%). Regardless of the above-mentioned classification, we divided all carcinomas into 2 groups: carcinomas expressing at least 1 basal marker [cytokeratine (CK)5/6, CK5, vimentin, epidermal growth factor receptor, or aberrant CK8/18 expression-membranous or in <10% of cells] versus carcinomas negative for basal markers. Then we studied the relationships between the above subtypes (2 classifications) and (i) the expression of adhesion molecules (Ep-CAM, P-cadherin), (ii) matrix metalloproteinases (MMP)-2, (iii) the proliferation index (MIB-1 LI), and (iv) the microvascular density. We confirmed that triple-negative phenotypes are characterized by basal marker expression, a high tumor grade, and high MIB-1 LI. In this subtype, we found MMP-2 expression in stromal leukocytes less frequently. Both LA carcinomas and carcinomas negative for basal markers were more often negative for epithelial cell adhesion molecule (Ep-CAM) and P-cadherin. Moreover, we noted a higher mean value of microvascular density in CK5/6 and Ep-CAM-immunopositive tumors, carcinomas with aberrant CK8/18 expression, and carcinomas with no or strong expression of MMP-2 in stromal fibroblast-like cells. These results might suggest that mechanisms of stroma remodeling and carcinogenesis (Ep-CAM is the suggested marker of breast progenitors) may differ between breast cancer subtypes.

  2. Levels of Soluble Adhesion Molecules PECAM-1 and P-Selectin are Decreased in Children with Autism Spectrum Disorder

    PubMed Central

    Onore, Charity E.; Nordahl, Christine Wu; Young, Gregory S.; Van de Water, Judy A.; Rogers, Sally J.; Ashwood, Paul

    2012-01-01

    Background Although the etiopathology of Autism Spectrum Disorder (ASD) is not clear there is increasing evidence that dysfunction in the immune system affects many children with ASD. Findings of immune dysfunction in ASD include increases in inflammatory cytokines, chemokines and microglial activity in brain tissue and CSF, as well as abnormal peripheral immune cell function. Methods Adhesion molecules, such as platelet endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), P-Selectin, and L-Selectin, function to facilitate leukocyte transendothelial migration. We assessed concentrations of soluble adhesion molecules, sPECAM-1, sICAM-1, sVCAM-1, sP-Selectin, and sL-Selectin in the plasma of 49 participants with ASD, and 31 typically developing controls of the same age, all of whom were enrolled as part of the Autism Phenome Project (APP). Behavioral assessment, the levels of soluble adhesion molecules, head circumference and MRI measurements of brain volume were compared in the same subjects. Results Levels of sPECAM-1 and sP-Selectin were significantly reduced in the ASD group compared to typically developing controls (p < 0.02). Soluble PECAM-1 levels were negatively associated with repetitive behavior and abnormal brain growth in children with ASD (p=0.03). Conclusions As adhesion molecules modulate the permeability and signaling at the blood brain barrier as well as leukocyte infiltration into the CNS, current data suggests a role for these molecules in the complex pathophysiology of ASD. PMID:22717029

  3. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    PubMed

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P < .001) before but not after delivery. Expression of the integrin counter receptors on leukocytes was similarly increased in preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i

  4. Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model.

    PubMed

    Reher, David; Klink, Barbara; Deutsch, Andreas; Voss-Böhme, Anja

    2017-08-11

    Cancer cell invasion, dissemination, and metastasis have been linked to an epithelial-mesenchymal transition (EMT) of individual tumour cells. During EMT, adhesion molecules like E-cadherin are downregulated and the decrease of cell-cell adhesion allows tumour cells to dissociate from the primary tumour mass. This complex process depends on intracellular cues that are subject to genetic and epigenetic variability, as well as extrinsic cues from the local environment resulting in a spatial heterogeneity in the adhesive phenotype of individual tumour cells. Here, we use a novel mathematical model to study how adhesion heterogeneity, influenced by intrinsic and extrinsic factors, affects the dissemination of tumour cells from an epithelial cell population. The model is a multiscale cellular automaton that couples intracellular adhesion receptor regulation with cell-cell adhesion. Simulations of our mathematical model indicate profound effects of adhesion heterogeneity on tumour cell dissemination. In particular, we show that a large variation of intracellular adhesion receptor concentrations in a cell population reinforces cell dissemination, regardless of extrinsic cues mediated through the local cell density. However, additional control of adhesion receptor concentration through the local cell density, which can be assumed in healthy cells, weakens the effect. Furthermore, we provide evidence that adhesion heterogeneity can explain the remarkable differences in adhesion receptor concentrations of epithelial and mesenchymal phenotypes observed during EMT and might drive early dissemination of tumour cells. Our results suggest that adhesion heterogeneity may be a universal trigger to reinforce cell dissemination in epithelial cell populations. This effect can be at least partially compensated by a control of adhesion receptor regulation through neighbouring cells. Accordingly, our findings explain how both an increase in intra-tumour adhesion heterogeneity and the

  5. VE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers.

    PubMed

    Bartolomé, Rubén A; Torres, Sofía; Isern de Val, Soledad; Escudero-Paniagua, Beatriz; Calviño, Eva; Teixidó, Joaquín; Casal, J Ignacio

    2017-01-03

    We have investigated the role of vascular-endothelial (VE)-cadherin in melanoma and breast cancer metastasis. We found that VE-cadherin is expressed in highly aggressive melanoma and breast cancer cell lines. Remarkably, inactivation of VE-cadherin triggered a significant loss of malignant traits (proliferation, adhesion, invasion and transendothelial migration) in melanoma and breast cancer cells. These effects, except transendothelial migration, were induced by the VE-cadherin RGD motifs. Co-immunoprecipitation experiments demonstrated an interaction between VE-cadherin and α2β1 integrin, with the RGD motifs found to directly affect β1 integrin activation. VE-cadherin-mediated integrin signaling occurred through specific activation of SRC, ERK and JNK, including AKT in melanoma. Knocking down VE-cadherin suppressed lung colonization capacity of melanoma or breast cancer cells inoculated in mice, while pre-incubation with VE-cadherin RGD peptides promoted lung metastasis for both cancer types. Finally, an in silico study revealed the association of high VE-cadherin expression with poor survival in a subset of melanoma patients and breast cancer patients showing low CD34 expression. These findings support a general role for VE-cadherin and other RGD cadherins as critical regulators of lung and liver metastasis in multiple solid tumours. These results pave the way for cadherin-specific RGD targeted therapies to control disseminated metastasis in multiple cancers.

  6. Drospirenone and levonorgestrel in combination with either 30 or 20 mcg ethinylestradiol reduce soluble adhesion molecules in Brazilian women; cross-sectional study.

    PubMed

    Stocco, Bianca; Fumagalli, Helen Figueiredo; Franceschini, Silvio Antônio; Martinez, Edson Zangiacomi; Marzocchi-Machado, Cleni Mara; Toloi, Maria Regina Torqueti

    2012-11-01

    The objective of this study was to evaluate the effect of three contraceptive pills containing ethinylestradiol (EE) (20 or 30 mcg) in combination with drospirenone (DRSP) and levonorgestrel (LNG) on plasma concentration of adhesion molecules vascular cell adhesion molecule -1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin. A cross-sectional study was conducted with 72 participants (18-30 years old) distributed into three groups that used oral contraceptives containing EE 20 or 30 mcg combined with DRSP 3 mg or EE 30 mcg/LNG 150 mcg for at least 6 months. The control group was comprised of nonusers of contraceptives. Soluble VCAM-1, soluble ICAM-1 and soluble E-selectin were evaluated by enzyme-linked immunosorbent assay. Compared to the control group, a significant decrease was found in VCAM-1 and ICAM-1 concentrations with use of DRSP/20 EE and LNG/30 EE. DRSP/20 EE and LNG/30 EE induce favorable changes in endothelial function. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells.

    PubMed

    Williams, Michael J

    2009-03-25

    When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes) to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg) is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1) 1. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1) fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At the cell periphery of haemocytes Neuroglian may be

  8. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells

    PubMed Central

    Williams, Michael J

    2009-01-01

    Background When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes) to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Results Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg) is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1) [1]. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1) fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. Conclusion The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At the cell periphery of

  9. Serological level of ICAM and ELAM adhesion molecules in allergic vascularitis.

    PubMed

    Alecu, M; Coman, G; Gălăţescu, E

    1997-01-01

    A 24-patient lot with hypersensitivity vasculitis was investigated for serological determinations of ICAM and ELAM adhesion molecules. Determinations were made in attack and in remission. Over two thirds of the cases presented elevated serological levels of ICAM and ELAM in attack, with twofold higher values than normal. In remission, in the absence of clinical signs, ICAM and ELAM values were normal in 19 cases (ICAM) and 22 cases (ELAM). Serological level of ICAM and ELAM was concordant with serological level of IL-2, IL-6, circulating immune complexes and clinical status. The increased values of ICAM and ELAM are due to the expression of these molecules both on the surface of endothelial cells and on immune cells. The adherence of leukocytes on the endothelial cells, by adhesion molecules involvement, followed by their extravasation represents an important event in the vascular lesion pathogeny of the hypersensitivity vasculitis.

  10. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  11. Sarcoptes scabiei (Acari: Sarcoptidae) Mite Extract Modulates Expression of Cytokines and Adhesion Molecules by Human Dermal Microvascular Endothelial Cells.

    PubMed Central

    Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.

    2007-01-01

    The inflammatory and immune responses seen with the worldwide disease scabies (caused by the mite Sarcoptes scabiei) are complex. Clinical symptoms are delayed for weeks in patients when they are infested with scabies for the first time. This study was undertaken to elucidate the role of the human dermal microvascular endothelial cell (HMVEC-D) in modulating the inflammatory and immune responses in the skin to S. scabiei. Extracts of S. scabiei were incubated with HMVEC-D and the expression of adhesion molecules and chemokine receptors on the cells and the secretion of selected cytokines were determined by ELISA. S. scabiei extract was found to inhibit HMVEC-D expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) although not intercellular adhesion molecule-1 (ICAM-1). The secretion of interleukin-8 (IL-8) was also inhibited by S. scabiei extract. S. scabiei extract increased expression of the chemokine receptor CXCR-1, and both down-regulated and up-regulated expression of CXCR-2 depending on the concentration tested. These findings help explain the delayed inflammatory reaction to infestation with S. scabiei. PMID:17017228

  12. Nonagonal cadherins: A new protein family found within the Stramenopiles.

    PubMed

    Fletcher, Kyle I G; van West, Pieter; Gachon, Claire M M

    2016-11-15

    Cadherins, a group of molecules typically associated with planar cell polarity and Wnt signalling, have been little reported outside of the animal kingdom. Here, we identify a new family of cadherins in the Stramenopiles, termed Nonagonal after their 9 transmembrane passes, which contrast to the one or seven passes found in other known cadherin families. Manual curation and experimental validation reveal two subclasses of nonagonal cadherins, depending on the number of uninterrupted extracellular cadherin (EC) modules presented. Firstly, shorter mono-exonic, unimodular, protein models, with 3 to 12 EC domains occur as duplicate paralogs in the saprotrophic Labyrinthulomycetes Aurantiochytrium limanicum and Schizochytrium aggregatum, the gastrointestinal Blastocystis hominis (Blastocystae) and as a single copy gene in the autotrophic Pelagophyte Aureococcus anophagefferens. Larger, single copy, multi-exonal, tri-modular protein models, with up to 72 EC domain in total, are found in the Oomycete genera Albugo, Phytophthora, Pythium and Eurychasma. No homolog was found in the closely related autotrophic Phaeophyceae (brown algae) or Bacillariophyceae (diatoms), nor in several genera of plant and animal pathogenic oomycetes (Aphanomyces, Saprolegnia and Hyaloperonospora). This potential absence was further investigated by synteny analysis of the genome regions flanking the cadherin gene models, which are found to be highly variable. Novel to this new cadherin family is the presence of intercalated laminin and putative carbohydrate binding in tri-modular oomycete cadherins and at the N-terminus of thraustochytrid proteins. As we were unable to detect any homologs of proteins involved in signalling pathways where other cadherin families are involved, we present a conceptual hypothesis on the function of nonagonal cadherin based around the presence of putative carbohydrate binding domains. Copyright © 2016. Published by Elsevier B.V.

  13. HOXA9 Methylation by PRMT5 Is Essential for Endothelial Cell Expression of Leukocyte Adhesion Molecules

    PubMed Central

    Bandyopadhyay, Smarajit; Harris, Daniel P.; Adams, Gregory N.; Lause, Gregory E.; McHugh, Anne; Tillmaand, Emily G.; Money, Angela; Willard, Belinda; Fox, Paul L.

    2012-01-01

    The induction of proinflammatory proteins in stimulated endothelial cells (EC) requires activation of multiple transcription programs. The homeobox transcription factor HOXA9 has an important regulatory role in cytokine induction of the EC-leukocyte adhesion molecules (ELAM) E-selectin and vascular cell adhesion molecule 1 (VCAM-1). However, the mechanism underlying stimulus-dependent activation of HOXA9 is completely unknown. Here, we elucidate the molecular mechanism of HOXA9 activation by tumor necrosis factor alpha (TNF-α) and show an unexpected requirement for arginine methylation by protein arginine methyltransferase 5 (PRMT5). PRMT5 was identified as a TNF-α-dependent binding partner of HOXA9 by mass spectrometry. Small interfering RNA (siRNA)-mediated depletion of PRMT5 abrogated stimulus-dependent HOXA9 methylation with concomitant loss in E-selectin or VCAM-1 induction. Chromatin immunoprecipitation analysis revealed that PRMT5 is recruited to the E-selectin promoter following transient HOXA9 binding to its cognate recognition sequence. PRMT5 induces symmetric dimethylation of Arg140 on HOXA9, an event essential for E-selectin induction. In summary, PRMT5 is a critical coactivator component in a newly defined, HOXA9-containing transcription complex. Moreover, stimulus-dependent methylation of HOXA9 is essential for ELAM expression during the EC inflammatory response. PMID:22269951

  14. Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1

    PubMed Central

    Khare, Vineeta; Lyakhovich, Alex; Dammann, Kyle; Lang, Michaela; Borgmann, Melanie; Tichy, Boris; Pospisilova, Sarka; Luciani, Gloria; Campregher, Christoph; Evstatiev, Rayko; Pflueger, Maren; Hundsberger, Harald; Gasche, Christoph

    2013-01-01

    Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and β-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and β-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APCmin polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APCmin polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action. PMID:23146664

  15. E-cadherin expression in sporadic gastric cancer from Mexico: exon 8 and 9 deletions are infrequent events associated with poor survival.

    PubMed

    Gamboa-Dominguez, Armando; Dominguez-Fonseca, Claudia; Chavarri-Guerra, Yanin; Vargas, Roberto; Reyes-Gutierrez, Edgardo; Green, Dan; Quintanilla-Martinez, Leticia; Luber, Birgit; Busch, Raymonde; Becker, Karl-Friedrich; Becker, Ingrid; Höfler, Heinz; Fend, Falko

    2005-01-01

    Aberrant expression and mutation of E-cadherin is frequent in gastric carcinoma (GC) especially of the diffuse type. The frequency of CDH1 (gene encoding E-cadherin) mutation in populations with high incidence of diffuse GC and its prognostic significance is unknown. One hundred seventy-seven gastrectomies from Mexican mestizo patients with intestinal (53), mixed (55), or diffuse (69) GC were included. In addition, 101 endoscopic biopsies from patients with GC not subjected to surgery were analyzed. Immunohistochemistry against wild-type E-cadherin (clone 36) and against 2 mutation-specific antibodies (MSA) recognizing mutant CDH1 lacking exon-8 (del 8) or exon-9 (del 9) were performed. Staining was correlated with histotype, tumor node metastasis stage, and follow-up. Abnormal or absent E-cadherin expression (clone 36) was identified in 84% GC, predominantly in diffuse or mixed tumors (P = 0.004) in advanced stages (P = 0.003). No survival differences at 1 and 2 years were observed among patients showing normal, abnormal, or absent wild type E-cadherin expression. Overall reactivity with the MSA was observed in 10 (5.6%) patients who were treated with surgery. In 140 patients, dead from the disease or alive with the disease, the survival at 1 and 2 years was 37% versus 17% and 14% versus 0 for patients without and with del 8/9 positivity, respectively (log rank P = 0.01). Biopsies from patients with inoperable-GC (101) rendered 5 (4.95%) with del 8 or 9 immunoreactivity. Abnormal E-cadherin expression is frequent in GC. However, exon 8 or 9 deletions were observed in only 5.3% tumors in this series from Mexico, at a lower rate than previously published, but associated with a worse prognosis.

  16. Efficacy of an inhibitor of adhesion molecule expression (GI270384X) in the treatment of experimental colitis.

    PubMed

    Panés, Julián; Aceituno, Montserrat; Gil, Fèlix; Miquel, Rosa; Piqué, Josep M; Salas, Azucena; McLean, Peter

    2007-10-01

    Modulation of adhesion molecule expression or function is regarded as a promising therapy for inflammatory conditions. This study evaluates the effects of an inhibitor of adhesion molecule expression (GI270384X) in two experimental models of colitis. Colitis of different severity was induced in C57BL/6J mice by administering 1, 2, or 3% dextran sulfate sodium (DSS). GI270384X (3, 10, or 25 mg.kg(-1).day(-1)) was administered as pretreatment or started 3 days after colitis induction. In IL-10-deficient mice, the highest dose was given for 2 wk. The clinical course of colitis, pathological changes, serum inflammatory biomarkers, expression of adhesion molecules, and leukocyte-endothelial cell interactions in colonic venules were measured in mice treated with vehicle or with active drug. In the most severe forms of colitis (2% and 3% DSS and IL-10-deficient mice), the magnitude of colonic inflammation was not modified by treatment with GI270384X. In a less severe form of colitis (1% DSS), GI270384X treatment dose dependently ameliorated the clinical signs of colitis, colonic pathological changes, and serum levels of biomarkers (IL-6 and serum amyloid A). Administration of 25 mg.kg(-1).day(-1) GI270384X abrogated upregulation of ICAM-1 in the inflamed colon but had no effect on VCAM-1 or E-selectin expression. This was associated with a significant reduction in number of rolling and firmly adherent leukocytes in colonic venules. These results indicate that GI270384X is effective in the treatment of experimental colitis of moderate severity. Reduced adhesion molecule expression and leukocyte recruitment to the inflamed intestine contribute to this beneficial effect.

  17. E-cadherin Mediates the Preventive Effect of Vitamin D3 in Colitis-associated Carcinogenesis.

    PubMed

    Xin, Yu; He, Longmei; Luan, Zijian; Lv, Hong; Yang, Hong; Zhou, Ying; Zhao, Xinhua; Zhou, Weixun; Yu, Songlin; Tan, Bei; Wang, Hongying; Qian, Jiaming

    2017-09-01

    Vitamin D3 is beneficial in ameliorating or preventing inflammation and carcinogenesis. Here, we evaluated if vitamin D3 has a preventive effect on colitis-associated carcinogenesis. Administration of azoxymethane (AOM), followed with dextran sulfate sodium (DSS), was used to simulate colitis-associated colon cancer in mice. The supplement of vitamin D3 at different dosages (15, 30, 60 IU·g·w), started before AOM or immediately after DSS treatment (post 60), was sustained to the end of the experiment. Dietary vitamin D3 significantly reduced the number of tumors and tumor burden in a dose-dependent manner. Of note, vitamin D3 in high doses showed significant preventive effects on carcinogenesis regardless of administration before or after AOM-DSS treatment. Cell proliferation decreased in vitamin D3 groups compared with the control group after inhibition of expression of β-catenin and its downstream target gene cyclin D1 in the colon. In vitro, vitamin D3 reduced the transcriptional activity and nuclear level of β-catenin, and it also increased E-cadherin expression and its binding affinity for β-catenin. Moreover, repression of E-cadherin was rescued by supplemental vitamin D3 in mouse colons. Taken together, our results indicate that vitamin D3 effectively suppressed colonic carcinogenesis in the AOM-DSS mouse model. Our findings further suggest that upregulation of E-cadherin contributes to the preventive effect of vitamin D3 on β-catenin activity.

  18. ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma.

    PubMed

    Romero-Pérez, Laura; López-García, M Ángeles; Díaz-Martín, Juan; Biscuola, Michele; Castilla, M Ángeles; Tafe, Laura J; Garg, Karuna; Oliva, Esther; Matias-Guiu, Xavier; Soslow, Robert A; Palacios, José

    2013-11-01

    Undifferentiated endometrial carcinomas are very aggressive high-grade endometrial carcinomas that are frequently under-recognized. This study aimed to analyze the molecular alterations underlying the development of these endometrial carcinomas, focusing on those related to dedifferentiation. We assessed a series of 120 tumors: 57 grade 1 and 2 endometrioid endometrial carcinomas, 15 grade 3 endometrioid endometrial carcinomas, 27 endometrial serous carcinomas, and 21 undifferentiated endometrial carcinomas. We found a high frequency of DNA mismatch repair deficiency (38%) and moderate rate of p53 overexpression (∼33%) in undifferentiated carcinomas. In contrast to the characteristic endometrioid phenotype, there was a dramatic downregulation of E-cadherin expression in the undifferentiated subtype. Quantitative methylation studies dismissed CDH1 promoter hypermethylation as the mechanism responsible for this change in gene expression, while immunohistochemistry revealed that the E-cadherin repressor ZEB1 was frequently overexpressed (62%) in undifferentiated endometrial carcinomas. This finding was accompanied by a sharp downregulation in the expression of the miR-200 family of microRNAs, well-known targets of ZEB1. Furthermore, there was enhanced expression of epithelial-to-mesenchymal transition markers in undifferentiated endometrial carcinomas, such as N-cadherin, cytoplasmic p120, and osteonectin. In addition, HMGA2, a regulator of epithelial-to-mesenchymal transition that is expressed in aggressive endometrial tumors, such as endometrial serous carcinomas and carcinosarcomas, was expressed in >20% of undifferentiated carcinomas. These results suggest that ZEB1 overexpression, associated with E-cadherin and miR-200s downregulation, and the expression of mesenchymal markers might enhance the metastatic potential of undifferentiated endometrial carcinomas, leading to a poor prognosis. In addition, our observations suggest that the immnohistochemical analysis

  19. N-cadherin expression in palisade nerve endings of rat vellus hairs.

    PubMed

    Kaidoh, Toshiyuki; Inoué, Takao

    2008-02-01

    Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes. (c) 2007 Wiley-Liss, Inc.

  20. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri

    PubMed Central

    MATSUO, Yosuke; MIYOSHI, Yukihiro; OKADA, Sanae; SATOH, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion. PMID:24936355

  1. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons.

    PubMed

    Castañeda, Patricia; Muñoz, Mauricio; García-Rojo, Gonzalo; Ulloa, José L; Bravo, Javier A; Márquez, Ruth; García-Pérez, M Alexandra; Arancibia, Damaris; Araneda, Karina; Rojas, Paulina S; Mondaca-Ruff, David; Díaz-Véliz, Gabriela; Mora, Sergio; Aliaga, Esteban; Fiedler, Jenny L

    2015-10-01

    Chronic stress promotes cognitive impairment and dendritic spine loss in hippocampal neurons. In this animal model of depression, spine loss probably involves a weakening of the interaction between pre- and postsynaptic cell adhesion molecules, such as N-cadherin, followed by disruption of the cytoskeleton. N-cadherin, in concert with catenin, stabilizes the cytoskeleton through Rho-family GTPases. Via their effector LIM kinase (LIMK), RhoA and ras-related C3 botulinum toxin substrate 1 (RAC) GTPases phosphorylate and inhibit cofilin, an actin-depolymerizing molecule, favoring spine growth. Additionally, RhoA, through Rho kinase (ROCK), inactivates myosin phosphatase through phosphorylation of the myosin-binding subunit (MYPT1), producing actomyosin contraction and probable spine loss. Some micro-RNAs negatively control the translation of specific mRNAs involved in Rho GTPase signaling. For example, miR-138 indirectly activates RhoA, and miR-134 reduces LIMK1 levels, resulting in spine shrinkage; in contrast, miR-132 activates RAC1, promoting spine formation. We evaluated whether N-cadherin/β-catenin and Rho signaling is sensitive to chronic restraint stress. Stressed rats exhibit anhedonia, impaired associative learning, and immobility in the forced swim test and reduction in N-cadherin levels but not β-catenin in the hippocampus. We observed a reduction in spine number in the apical dendrites of CA1 pyramidal neurons, with no effect on the levels of miR-132 or miR-134. Although the stress did not modify the RAC-LIMK-cofilin signaling pathway, we observed increased phospho-MYPT1 levels, probably mediated by RhoA-ROCK activation. Furthermore, chronic stress raises the levels of miR-138 in accordance with the observed activation of the RhoA-ROCK pathway. Our findings suggest that a dysregulation of RhoA-ROCK activity by chronic stress could potentially underlie spine loss in hippocampal neurons. © 2015 Wiley Periodicals, Inc.

  2. E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade

    PubMed Central

    Caldeira, Joana; Figueiredo, Joana; Brás-Pereira, Catarina; Carneiro, Patrícia; Moreira, Ana M.; Pinto, Marta T.; Relvas, João B.; Carneiro, Fátima; Barbosa, Mário; Casares, Fernando; Janody, Florence; Seruca, Raquel

    2015-01-01

    Epithelial-cadherin (Ecad) deregulation affects cell–cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell–matrix interactions could play an important role during this process. Thus, we focussed on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis; nonetheless, at the invasive front, cells ectopically expressed Laminin A and βPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), β1 and β4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signalling regulators as molecular targets to impair gastric cancer progression. PMID:26246502

  3. Premature Osteoblast Clustering by Enamel Matrix Proteins Induces Osteoblast Differentiation through Up-Regulation of Connexin 43 and N-Cadherin

    PubMed Central

    Miron, Richard J.; Hedbom, Erik; Ruggiero, Sabrina; Bosshardt, Dieter D.; Zhang, Yufeng; Mauth, Corinna; Gemperli, Anja C.; Iizuka, Tateyuki; Buser, Daniel; Sculean, Anton

    2011-01-01

    In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo. PMID:21858092

  4. Adhesion molecules, chemokines and matrix metallo-proteinases response after albendazole and albendazole plus steroid therapy in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Singh, Amrita; Tripathi, Mukesh; Gupta, Rakesh K

    2017-11-01

    The treatment of neurocysticercosis (NCC) varies with location, number and stage of the Taenia solium cysticerci (cysts). Albendazole (ABZ) effectively kills cysticerci, and subsequently induces neuro-inflammation facilitated by leukocyte infiltration. We hypothesize that immune response varies around drug responder (degenerating/dying) and non-responder (viable) cysts after ABZ and ABZ plus steroid (ABZS) therapy, which may determine the disease pathogenesis. Twenty cysticercotic swine were treated with ABZ (n = 10; group1) and ABZS (n = 10; group2). Expression of adhesion molecules, chemokines and matrix metallo-proteinases (MMPs) was measured by qRT-PCR (quantitative reverse transcriptase-polymerase chain reaction) and ELISA. Gelatin gel zymography was performed to detect the activity of MMP-2 and -9. In group1, ABZ therapy induced higher expressions of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), E-selectin, MCP-1 (monocyte chemotactic protein-1), Eotaxin-1, MIP-1α (macrophage inflammatory protein-1α), RANTES (regulated on activation, normal T cell expressed and secreted), MMP-2 and MMP-9 around ABZ responder (AR) cysts. Three pigs with cyst burdens ≥10 died following ABZ therapy. However, in group2, moderate expressions of ICAM-1, VCAM-1, E-selectin, RANTES and MMP-9 were associated with ABZS responder (ASR), whereas low expressions of these molecules were associated with ABZS non-responder (ASNR) cysts. In conclusion, ABZ alone therapy is not safe since it causes death of pigs due to higher inflammatory immune response around dying cysts. However, combination therapy is an effective treatment regimen even with the high cyst burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Variants in members of the cadherin-catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome.

    PubMed

    Kievit, Anneke; Tessadori, Federico; Douben, Hannie; Jordens, Ingrid; Maurice, Madelon; Hoogeboom, Jeannette; Hennekam, Raoul; Nampoothiri, Sheela; Kayserili, Hülya; Castori, Marco; Whiteford, Margo; Motter, Connie; Melver, Catherine; Cunningham, Michael; Hing, Anne; Kokitsu-Nakata, Nancy M; Vendramini-Pittoli, Siulan; Richieri-Costa, Antonio; Baas, Annette F; Breugem, Corstiaan C; Duran, Karen; Massink, Maarten; Derksen, Patrick W B; van IJcken, Wilfred F J; van Unen, Leontine; Santos-Simarro, Fernando; Lapunzina, Pablo; Gil-da Silva Lopes, Vera L; Lustosa-Mendes, Elaine; Krall, Max; Slavotinek, Anne; Martinez-Glez, Victor; Bakkers, Jeroen; van Gassen, Koen L I; de Klein, Annelies; van den Boogaard, Marie-José H; van Haaften, Gijs

    2018-02-01

    Blepharocheilodontic syndrome (BCDS) consists of lagophthalmia, ectropion of the lower eyelids, distichiasis, euryblepharon, cleft lip/palate and dental anomalies and has autosomal dominant inheritance with variable expression. We identified heterozygous variants in two genes of the cadherin-catenin complex, CDH1, encoding E-cadherin, and CTNND1, encoding p120 catenin delta1 in 15 of 17 BCDS index patients, as was recently described in a different publication. CDH1 plays an essential role in epithelial cell adherence; CTNND1 binds to CDH1 and controls the stability of the complex. Functional experiments in zebrafish and human cells showed that the CDH1 variants impair the cell adhesion function of the cadherin-catenin complex in a dominant-negative manner. Variants in CDH1 have been linked to familial hereditary diffuse gastric cancer and invasive lobular breast cancer; however, no cases of gastric or breast cancer have been reported in our BCDS cases. Functional experiments reported here indicated the BCDS variants comprise a distinct class of CDH1 variants. Altogether, we identified the genetic cause of BCDS enabling DNA diagnostics and counseling, in addition we describe a novel class of dominant negative CDH1 variants.

  6. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells

    PubMed Central

    Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C

    2012-01-01

    BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973

  7. Pharmacological modulation of endothelial cell-associated adhesion molecule expression: implications for future treatment of dermatological diseases.

    PubMed

    Foster, C A; Dreyfuss, M; Mandak, B; Meingassner, J G; Naegeli, H U; Nussbaumer, A; Oberer, L; Scheel, G; Swoboda, E M

    1994-11-01

    Skin diseases with an inflammatory component, regardless of their etiology, are characterized at some point by the extravasation and subsequent infiltration of leukocytes into the dermal and/or epidermal compartments. This trafficking pattern is determined by a complex series of events whereby the leukocytes interact with cell adhesion molecules (CAM), particularly those induced on endothelial cells following activation with various inflammatory mediators. Vascular CAMs belonging to the selectin family (i.e., P-selectin and E-selectin) are thought to mediate early and reversible events involving leukocyte rolling and margination along the lumenal surface of microvascular cells (post-capillary venules). Certain members of the immunoglobulin supergene family (i.e., VCAM-1 and ICAM-1) regulate later and irreversible steps which lead to firm attachment and subsequent diapedesis of leukocytes. Accumulating evidence suggests that if one blocks the ligand-binding sites between leukocytes and endothelial cells, or inhibits vascular CAM expression, hematopoietic cell extravasation and progressive inflammatory events can be greatly diminished. To identify such inhibitors we developed a cell-based Elisa using the human microvascular cell line HMEC-1. As reported in the present paper, this approach yielded a naturally-occurring, low molecular weight compound which potently inhibits cytokine-induced adhesion molecule expression on cultured endothelial cells, without modulating "house-keeping" proteins.

  8. Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC.

    PubMed

    Andrade, C M de; Sá, M F Silva de; Toloi, M R Torqueti

    2012-04-01

    The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. HUVEC were cultured in medium EBM(2), pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.

  9. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    PubMed

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  10. Expression of Inflammation-related Intercellular Adhesion Molecules in Cardiomyocytes In Vitro and Modulation by Pro-inflammatory Agents.

    PubMed

    El-Battrawy, Ibrahim; Tülümen, Erol; Lang, Siegfried; Akin, Ibrahim; Behnes, Michael; Zhou, Xiabo; Mavany, Martin; Bugert, Peter; Bieback, Karen; Borggrefe, Martin; Elmas, Elif

    2016-01-01

    Cell-surface adhesion molecules regulate multiple intercellular and intracellular processes and play important roles in inflammation by facilitating leukocyte endothelial transmigration. Whether cardiomyocytes express surface-adhesion molecules related to inflammation and the effect of pro-inflammatory mediators remain unknown. In the present study, the expression of different cell-adhesion molecules (CD11a, CD11b, CD31, CD62P, CD162, F11 receptor and mucosal vascular addressin cell adhesion molecule 1 (MADCAM1)) and the effect of pro-inflammatory mediators were investigated in an in vitro model of human cardiomyocytes. Cells were supplied as a primary culture of cardiac alpha actin-positive cells from human heart tissue. The cells were incubated for 24 h with 1 U/ml thrombin or 700 ng/ml lipopolysaccharide (LPS) or with a combination of both. The expression of the cell adhesion molecules was measured by flow cytometry. In cultured human cardiomyocytes, 22.8% of cells expressed CD31, 7.1% MADCAM1 and 2.6% F11R. CD11a, CD11b, CD62P and CD162 were expressed by fewer than 2% of the cells at baseline. CD31 expression increased on incubation of cardiomyocytes with thrombin by 26% (p<0.05) and with LPS by 26% (p=0.06). The combination of thrombin and LPS did not result in increased levels of CD31 (p>0.10). The pro-inflammatory agents LPS and thrombin had no effect on the expression of MADCAM1 and F11R. Inflammation-related cell-adhesion molecules CD31, MADCAM1 and F11R were shown to be expressed on the surface of human cardiomyocytes in an in vitro model. Incubation with LPS or thrombin resulted in increased expression of CD31, however, it did not modify the expression of the cell adhesion molecules MADCAM1 and F11R. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules.

    PubMed

    Wang, Yu-Ling; Kuo, Je-Hung; Lee, Shao-Chen; Liu, Jai-Shin; Hsieh, Yin-Cheng; Shih, Yu-Tsung; Chen, Chun-Jung; Chiu, Jeng-Jiann; Wu, Wen-Guey

    2010-11-26

    Cysteine-rich secretory proteins (CRISPs) have been identified as a toxin family in most animal venoms with biological functions mainly associated with the ion channel activity of cysteine-rich domain (CRD). CRISPs also bind to Zn(2+) at their N-terminal pathogenesis-related (PR-1) domain, but their function remains unknown. Interestingly, similar the Zn(2+)-binding site exists in all CRISP family, including those identified in a wide range of organisms. Here, we report that the CRISP from Naja atra (natrin) could induce expression of vascular endothelial cell adhesion molecules, i.e. intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin, to promote monocytic cell adhesion in a heparan sulfate (HS)- and Zn(2+)-dependent manner. Using specific inhibitors and small interfering RNAs, the activation mechanisms are shown to involve both mitogen-activated protein kinases and nuclear factor-κB. Biophysical characterization of natrin by using fluorescence, circular dichroism, and x-ray crystallographic methods further reveals the presence of two Zn(2+)-binding sites for natrin. The strong binding site is located near the putative Ser-His-Glu catalytic triad of the N-terminal domain. The weak binding site remains to be characterized, but it may modulate HS binding by enhancing its interaction with long chain HS. Our results strongly suggest that natrin may serve as an inflammatory modulator that could perturb the wound-healing process of the bitten victim by regulating adhesion molecule expression in endothelial cells. Our finding uncovers a new aspect of the biological role of CRISP family in immune response and is expected to facilitate future development of new therapeutic strategy for the envenomed victims.

  12. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations.

    PubMed

    Nguyen, Thao; Mège, René Marc

    2016-11-01

    Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    PubMed

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  14. Soluble intercellular adhesion molecule-1 and interleukin-6 levels reflect endothelial dysfunction in patients with primary hypercholesterolaemia treated with atorvastatin.

    PubMed

    Nawawi, H; Osman, N S; Annuar, R; Khalid, B A K; Yusoff, K

    2003-08-01

    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.

  15. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules.

    PubMed

    Kibler, C; Schermutzki, F; Waller, H D; Timpl, R; Müller, C A; Klein, G

    1998-06-01

    Multiple myeloma represents a human B cell malignancy which is characterized by a predominant localization of the malignant cell clone within the bone marrow. With the exception of the terminal stage of the disease the myeloma tumor cells do not circulate in the peripheral blood. The bone marrow microenvironment is believed to play an important role in homing, proliferation and terminal differentiation of myeloma cells. Here we have studied the expression of several extracellular matrix (ECM) molecules in the bone marrow of multiple myeloma patients and analyzed their adhesive capacities with four different human myeloma-derived cell lines. All ECM molecules analyzed (tenascin, laminin, fibronectin, collagen types I, III, V and VI) could be detected in bone marrow cryostat sections of multiple myeloma patients. Adhesion assays showed that only laminin, the microfibrillar collagen type VI and fibronectin were strong adhesive components for the myeloma cell lines U266, IM-9, OPM-2 and NCI-H929. Tenascin and collagen type I were only weak adhesive substrates for these myeloma cells. Adhesion to laminin and fibronectin was beta 1-integrin-mediated since addition of anti-beta 1-integrin antibodies could inhibit the binding of the four different cell types to both matrix molecules. In contrast, integrins do not seem to be involved in binding of the myeloma cells to collagen type VI. Instead, inhibition of binding by heparin suggested that membrane-bound heparan sulfate proteoglycans are responsible ligands for binding to collagen type VI. Adhesion assays with several B-cell lines resembling earlier differentiation stages revealed only weak interactions with tenascin and no interactions with collagen type VI, laminin or fibronectin. In summary, the interactions of human myeloma cells with the extracellular matrix may explain the specific retention of the plasma cells within the bone marrow.

  16. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  17. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells.

    PubMed Central

    Rollo, Benjamin N.; Zhang, Dongcheng; Simkin, Johanna E.; Menheniott, Trevelyan R.; Newgreen, Donald F.

    2015-01-01

    The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca 2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates.  This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface. PMID:26064478

  18. Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1.

    PubMed

    Khare, Vineeta; Lyakhovich, Alex; Dammann, Kyle; Lang, Michaela; Borgmann, Melanie; Tichy, Boris; Pospisilova, Sarka; Luciani, Gloria; Campregher, Christoph; Evstatiev, Rayko; Pflueger, Maren; Hundsberger, Harald; Gasche, Christoph

    2013-01-15

    Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and β-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and β-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APC(min) polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APC(min) polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Does infection with Chlamydia pneumoniae and/or Helicobacter pylori increase the expression of endothelial cell adhesion molecules in humans?

    PubMed

    Schumacher, A; Seljeflot, I; Lerkerød, A B; Sommervoll, L; Otterstad, J E; Arnesen, H

    2002-10-01

    To investigate if Chlamydia pneumoniae and/or Helicobacter pylori seropositivity is associated with elevated levels of soluble endothelial cell adhesion molecules (sCAMs) as markers of atherosclerotic activity. Immunoglobulin A (IgA) and IgG antibodies to the two bacteria, soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1) and E-selectin were measured in coronary heart disease (CHD) patients (n = 193) and age- and sex-matched controls (n = 193). Two different serological methods were used for the detection of Chlamydia antibodies: Labsystems microimmunofluorescence to detect species-specific C. pneumoniae antibodies and Medac's recombinant enzyme-linked immunosorbent assay to detect genus-specific lipopolysaccharide antibodies. The concentrations of sICAM-1 and E-selectin were higher in CHD patients with positive vs. negative Chlamydia lipopolysaccharide IgA (P = 0.044 for both). H. pylori antibodies alone did not predict raised levels of sCAMs, but in CHD patients sICAM-1 was increased with IgA seropositivity to both bacteria compared to double seronegativity (P = 0.034). Concentrations of sVCAM-1 were elevated in CHD patients with double IgA seropositivity compared to those with Chlamydia lipopolysaccharide IgA seropositivity alone (P = 0.018). Our results may indicate that C. pneumoniae contributes to increased inflammation in CHD, and that this contribution is even more pronounced when present in combination with H. pylori IgA antibodies.

  20. E-Cadherin Antagonizes Transforming Growth Factor β1 Gene Induction in Hepatic Stellate Cells by Inhibiting RhoA–Dependent Smad3 Phosphorylation

    PubMed Central

    Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A.; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon

    2011-01-01

    Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD’s potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Conclusion Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. PMID:20890948

  1. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol hasmore » anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.« less

  2. Levels of soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-2 in plasma of patients with hemorrhagic fever with renal syndrome, and significance of the changes in level.

    PubMed

    Qi, Bao-Tai; Wang, Ping; Li, Jie; Ren, Hui-Xun; Xie, Ming

    2006-01-01

    Hemorrhagic fever with renal syndrome (HFRS) is an acute viral disease characterized by endothelial dysfunction. Vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-2 provide costimulatory signals for the activation of T lymphocytes; these adhesion molecules play key roles in leukocyte adherence and propagation of inflammatory responses. They may be involved in the immunologic response that leads to vascular endothelial cell (VEC) and kidney damage of HFRS patients, and increased levels of soluble (s)VCAM-1 and sICAM-2 in plasma may indicate the severity of HFRS. We examined the presence of sVCAM-1 and sICAM-2 in 52 plasma samples collected from 52 patients. We tested these plasma samples for sVCAM-1 and sICAM-2 by double-antibody sandwich ELISA. We found variable, but persistently elevated, levels of sVCAM-1 and sICAM-2 throughout the various phases and types of the disease, which suggested sVCAM-1 may play an important role in the immunopathological lesions of HFRS and is closely correlated to the severity of HFRS and the degree of kidney damage. sICAM-2 may be associated with the hyperfunctioning of the cellular immune response.

  3. Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration.

    PubMed

    Jonas, Jost B; Tao, Yong; Neumaier, Michael; Findeisen, Peter

    2010-10-01

    To examine intraocular concentrations of monocyte chemoattractant protein 1 (MCP-1), soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), and vascular endothelial growth factor (VEGF) in eyes with exudative age-related macular degeneration (AMD). The investigation included a study group of 28 patients (28 eyes) with exudative AMD and a control group of 25 patients (25 eyes) with cataract. The concentrations of MCP-1, sICAM-1, sVCAM-1, and VEGF in aqueous humor samples obtained during surgery were measured using a solid-phase chemiluminescence immunoassay. The study group as compared with the control group had higher aqueous concentrations of sICAM-1 (mean [SD], 844 [2073] vs 246 [206] pg/mL, respectively; P < .001), sVCAM-1 (mean [SD], 7978 [7120] vs 2999 [1426] pg/mL, respectively; P < .001), and MCP-1 (mean [SD], 587 [338] vs 435 [221] pg/mL, respectively; P = .07). The concentration of VEGF did not vary significantly between the groups (P = .76). The MCP-1 concentration was significantly associated with macular thickness (r = 0.40; P = .004). It decreased significantly with the type of subfoveal neovascular membrane (classic membrane type, occult membrane, retinal pigment epithelium detachment) (P = .009). The concentrations of sICAM-1, sVCAM-1, and VEGF were not significantly associated with membrane type and macular thickness (P ≥ .18). Concentrations of MCP-1, sICAM-1, and sVCAM-1 are significantly associated with exudative AMD, even in the presence of normal VEGF concentrations. Intraocular MCP-1 concentrations are correlated with the subfoveal neovascular membrane type and the amount of macular edema. One may infer that MCP-1, sICAM-1, and sVCAM-1 could potentially be additional target molecules in therapy for exudative AMD.

  4. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    PubMed

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  5. E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade.

    PubMed

    Caldeira, Joana; Figueiredo, Joana; Brás-Pereira, Catarina; Carneiro, Patrícia; Moreira, Ana M; Pinto, Marta T; Relvas, João B; Carneiro, Fátima; Barbosa, Mário; Casares, Fernando; Janody, Florence; Seruca, Raquel

    2015-10-15

    Epithelial-cadherin (Ecad) deregulation affects cell-cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell-matrix interactions could play an important role during this process. Thus, we focussed on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis; nonetheless, at the invasive front, cells ectopically expressed Laminin A and βPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), β1 and β4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signalling regulators as molecular targets to impair gastric cancer progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Con-nectin axons and dendrites.

    PubMed

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  7. Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells.

    PubMed Central

    Prieto, J; Beatty, P G; Clark, E A; Patarroyo, M

    1988-01-01

    Leucocytes interact with vascular endothelial cells (EC), and adhesion between these two cell types in vitro is modulated by phorbol ester. Monocytes were found to display the highest basal adhesion to EC, followed by Epstein-Barr virus-immortalized normal B cells (EBV-B), T cells and granulocytes. Phorbol ester treatment increased the adhesion of all types of leucocytes, except monocytes. In the presence of this compound, monoclonal antibody 60.3 to GP90 (CD18, a leucocyte-adhesion protein which is non-covalently associated to either GP160, GP155, or GP130) was found to inhibit the adhesion of the four types of leucocytes to a considerable extent, while anti-lymphocyte function-associated antigen-1 (LFA-1) antibody to GP160 (CD11a) inhibited the adhesion of T and B cells only. Antibody 60.1 to GP155 (CD11b) had a major inhibitory activity exclusively on granulocytes, while antibody LB-2, which recognizes a distinct adhesion molecule (GP84) and, in contrast to the previous antibodies, reacts with EC, mainly inhibited adhesion of EBV-B and did not increase the inhibition obtained with antibody 60.3 alone. Fab fragments of antibody 60.3 inhibited leucocyte adhesion more efficiently, in either the absence or presence of phorbol ester, than the intact antibody molecule. It is concluded the GP90, either alone or associated to the larger glycoproteins, mediates the adhesion in all types of leucocytes, while GP84 mediates the adhesion of the activated B cells. Images Figure 2 PMID:3259203

  8. An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin.

    PubMed

    Vergara, Daniele; Bianco, Monica; Pagano, Rosanna; Priore, Paola; Lunetti, Paola; Guerra, Flora; Bettini, Simona; Carallo, Sonia; Zizzari, Alessandra; Pitotti, Elena; Giotta, Livia; Capobianco, Loredana; Bucci, Cecilia; Valli, Ludovico; Maffia, Michele; Arima, Valentina; Gaballo, Antonio

    2018-06-11

    Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred μl of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Soluble endothelium-associated adhesion molecules in patients with Graves' disease.

    PubMed Central

    Wenisch, C; Myskiw, D; Parschalk, B; Hartmann, T; Dam, K; Graninger, W

    1994-01-01

    The targeting and recruitment of inflammatory cells to vascular endothelium in Graves' disease (GD) is mediated by intercellular adhesion molecule-1 (ICAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1), and vascular cell adhesion molecule-1 (VCAM-1). We have studied serum levels of soluble ICAM-1 (sICAM-1), soluble ELAM-1 (sELAM-1), and soluble VCAM-1 (sVCAM-1) in patients with GD (n = 21) and in patients with iodine-deficient goitre (IDG) (n = 23). The serum levels of sICAM-1 were markedly elevated in patients with GD before treatment with thiamazole (median 560 ng/ml versus 185 ng/ml in patients with IDG). In addition, elevated serum concentrations of sELAM-1 (median 85 ng/ml versus 33 ng/ml, respectively) and sVCAM-1 (median 42 ng/ml versus 15 ng/ml, respectively) were observed in patients with GD (P < 0.01 for all). The serum levels of sELAM-1 and sVCAM-1 dropped significantly after initiation of therapy and were within the normal range after 4, and 8 weeks of therapy, respectively. Serum levels of sICAM-1 were elevated even after 8 weeks of therapy. Serum levels of sVACM-1 and sICAM-1 correlated with the serum concentrations of anti-thyroid-stimulating hormone (TSH)-receptor antibodies (TSHR-R) (n = 21; r = 0.929 and r = 0.810, respectively) and anti-thyroid peroxidase antibodies (TPO-Ab) (n = 21; r = 0.673 and r = 0.750, respectively). However, no correlation between sELAM-1 and TPO-Ab, TSHR-R, and anti-thyroglobulin antibodies (Tg-Ab), respectively, could be found. In addition to thyroid hormones and autoantibodies, serum concentrations of sELAM-1 and sVCAM-1, but not sICAM-1, could be useful as clinical markers for disease activity. PMID:7525128

  10. Branched actin networks push against each other at adherens junctions to maintain cell-cell adhesion.

    PubMed

    Efimova, Nadia; Svitkina, Tatyana M

    2018-05-07

    Adherens junctions (AJs) are mechanosensitive cadherin-based intercellular adhesions that interact with the actin cytoskeleton and carry most of the mechanical load at cell-cell junctions. Both Arp2/3 complex-dependent actin polymerization generating pushing force and nonmuscle myosin II (NMII)-dependent contraction producing pulling force are necessary for AJ morphogenesis. Which actin system directly interacts with AJs is unknown. Using platinum replica electron microscopy of endothelial cells, we show that vascular endothelial (VE)-cadherin colocalizes with Arp2/3 complex-positive actin networks at different AJ types and is positioned at the interface between two oppositely oriented branched networks from adjacent cells. In contrast, actin-NMII bundles are located more distally from the VE-cadherin-rich zone. After Arp2/3 complex inhibition, linear AJs split, leaving gaps between cells with detergent-insoluble VE-cadherin transiently associated with the gap edges. After NMII inhibition, VE-cadherin is lost from gap edges. We propose that the actin cytoskeleton at AJs acts as a dynamic push-pull system, wherein pushing forces maintain extracellular VE-cadherin transinteraction and pulling forces stabilize intracellular adhesion complexes. © 2018 Efimova and Svitkina.

  11. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation.

    PubMed

    Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura

    2015-12-10

    Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.

  12. CpG site hypermethylation of E-cadherin and Connexin26 genes in hepatocellular carcinomas induced by a choline-deficient L-Amino Acid-defined diet in rats.

    PubMed

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Itsuzaki, Yumi; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Honoki, Kanya

    2007-04-01

    We investigated DNA methylation patterns of E-cadherin and Connexin26 (Cx26) genes in rat hepatocellular carcinomas (HCCs) induced by a choline-deficient L-Amino Acid-defined (CDAA) diet. Six-wks-old F344 male rats were continuously fed with a CDAA diet for 75 wks, and were then killed. A total of five HCCs were obtained, and genomic DNA was extracted from each HCC for assessment of methylation status in the 5' upstream regions of E-cadherin and Cx26 genes by bisulfite sequencing, comparing to two normal liver tissues. The five HCCs showed highly methylated E-cadherin and Cx26 genes, while these genes in two normal liver tissues were all unmethylated. For analysis of gene expression, real-time quantitative reverse transcription (RT)-polymerase chain reaction (PCR) was performed. Expressions of E-cadherin and Cx26 genes were significantly reduced in the five HCCs (P < 0.0001 and P < 0.001, respectively) compared to normal liver tissues, correlating with their methylation statuses. These results suggested that hypermethylation of E-cadherin and Cx26 genes may be involved in the development of HCCs induced by a CDAA diet in rats.

  13. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin.

    PubMed

    Lecuit, Marc; Nelson, D Michael; Smith, Steve D; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I; Cossart, Pascale

    2004-04-20

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA-E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA-E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand-receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously.

  14. High expression of P-cadherin is significantly associated with poor prognosis in patients with non-small-cell lung cancer.

    PubMed

    Imai, Sachiko; Kobayashi, Masashi; Takasaki, Chihiro; Ishibashi, Hironori; Okubo, Kenichi

    2018-04-01

    Placental (P)-cadherin expression is associated with malignant phenotype of cancer cell. The loss of E-cadherin has been thought to play a key role in tumor progression in several cancers. In this study, we aimed to clarify the role of P-cadherin expression in non-small-cell lung cancer (NSCLC). NSCLC patients (n = 172) were enrolled in this study; among them, 107 harbored adenocarcinomas, and 65 had squamous cell carcinomas. We examined P-cadherin and E-cadherin expression by immunohistochemical analysis and assessed the associations between each cadherin expression and both cadherin expression patterns with clinicopathological factors and prognosis. To investigate the pathway to acquire tumor progression associated with P-cadherin and E-cadherin, we examined p120 catenin localization by immunohistochemical analysis. High P-cadherin expression was significantly associated with lymphatic metastasis, pathological stage, and Ki-67 proliferation index (P < .05, respectively). Low E-cadherin expression was significantly associated with maximum standardized uptake value, lymphatic metastasis, and pathological stage (P < .05, respectively). The cytoplasmic p120 catenin localization was associated with the low E-cadherin and high P-cadherin expression group (P < .001). High P-cadherin expression was associated with shorter disease-free survival (P = .044) and shorter overall survival (OS; P = .044). The low E-cadherin and high P-cadherin expression group was associated with shorter OS (P = .024). High P-cadherin expression was associated with tumor progression and poor patient survival in NSCLC. In these patients, the low E-cadherin expression might be associated with tumor progression involving cytoplasmic p120 catenin. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Cadherin-2 Is Required Cell Autonomously for Collective Migration of Facial Branchiomotor Neurons.

    PubMed

    Rebman, Jane K; Kirchoff, Kathryn E; Walsh, Gregory S

    2016-01-01

    Collective migration depends on cell-cell interactions between neighbors that contribute to their overall directionality, yet the mechanisms that control the coordinated migration of neurons remains to be elucidated. During hindbrain development, facial branchiomotor neurons (FBMNs) undergo a stereotypic tangential caudal migration from their place of birth in rhombomere (r)4 to their final location in r6/7. FBMNs engage in collective cell migration that depends on neuron-to-neuron interactions to facilitate caudal directionality. Here, we demonstrate that Cadherin-2-mediated neuron-to-neuron adhesion is necessary for directional and collective migration of FBMNs. We generated stable transgenic zebrafish expressing dominant-negative Cadherin-2 (Cdh2ΔEC) driven by the islet1 promoter. Cell-autonomous inactivation of Cadherin-2 function led to non-directional migration of FBMNs and a defect in caudal tangential migration. Additionally, mosaic analysis revealed that Cdh2ΔEC-expressing FBMNs are not influenced to migrate caudally by neighboring wild-type FBMNs due to a defect in collective cell migration. Taken together, our data suggest that Cadherin-2 plays an essential cell-autonomous role in mediating the collective migration of FBMNs.

  16. A conserved phosphorylation switch controls the interaction between cadherin and β-catenin in vitro and in vivo

    DOE PAGES

    Choi, Hee -Jung; Loveless, Timothy; Lynch, Allison M.; ...

    2015-04-06

    In metazoan adherens junctions, β-catenin links the cytoplasmic tail of classical cadherins to the F-actin-binding protein α-catenin. Phosphorylation of a Ser/Thr-rich region in the cadherin tail dramatically enhances affinity for β-catenin and promotes cell-cell adhesion in cell culture systems, but its importance has not been demonstrated in vivo. In this paper, we identify a critical phosphorylated serine in the C. elegans cadherin HMR-1 required for strong binding to the β-catenin homolog HMP-2. Ablation of this phosphoserine interaction produces developmental defects that resemble full loss-of-function (Hammerhead and Humpback) phenotypes. Most metazoans possess a single gene for β-catenin, which is also amore » transcriptional coactivator in Wnt signaling. Nematodes and planaria, however, have a set of paralogous β-catenins; for example, C. elegans HMP-2 functions only in cell-cell adhesion, whereas SYS-1 mediates transcriptional activation through interactions with POP-1/Tcf. Finally, our structural data define critical sequence differences responsible for the unique ligand specificities of these two proteins.« less

  17. Embedding of polyaniline molecules on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique

    NASA Astrophysics Data System (ADS)

    Pamatmat, J. K.; Gillado, A. V.; Herrera, M. U.

    2017-05-01

    Polyaniline molecules are embedded on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique. The infrared spectrum shows the existence of molecular vibrational modes associated with the presence of polyaniline molecules on the sample. With the addition of polyaniline molecules, the conductivity of adhesive tape increases. Surface conductivity increases with number of dipping cycle until it reaches a certain value. Beyond this value, surface conductivity begins to decrease. The surface conductivity of the sample is associated with the connectivity of the embedded polyaniline molecules. The connectivity increases as the number of dipping cycle progresses. Meanwhile, the decrease in surface conductivity is attributed to the eroding of existing embedded structure at higher number of dipping cycle.

  18. Inhibition of TNFα-induced adhesion molecule expression by (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl,1-methyl).

    PubMed

    Chen, Caixia; Jin, Xin; Meng, Xianglan; Zheng, Chengwei; Shen, Yanhui; Wang, Yiqing

    2011-06-25

    Inflammation is a primary event in atherogenesis. Oleoylethanolamide (OEA), a naturally occurring fatty-acid ethanolamide, lowers lipid levels in liver and blood through activation of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARα). We designed and synthesized (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl, 1-methyl) (OPA), an OEA analog. The present study investigated the effect of OPA on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVEC). OPA inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) stimulated by Tumor Necrosis Factor-α (TNF-α) via activation of PPARα. This inhibition of VCAM-1 and ICAM-1 expression decreased adhesion of monocyte-like cells to stimulated endothelial cells. These results demonstrate that OPA may have anti-inflammatory properties. Our results thus provide new insights into possible future therapeutic approaches to the treatment of atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Pax-5 is a potent regulator of E-cadherin and breast cancer malignant processes

    PubMed Central

    Benzina, Sami; Beauregard, Annie-Pier; Guerrette, Roxann; Jean, Stéphanie; Faye, Mame Daro; Laflamme, Mark; Maïcas, Emmanuel; Crapoulet, Nicolas; Ouellette, Rodney J.; Robichaud, Gilles A.

    2017-01-01

    Pax-5, an essential transcription factor for B lymphocyte development, has been linked with the development and progression of lymphoid cancers and carcinoma. In contrast to B-cell cancer lesions, the specific expression signatures and roles of Pax-5 in breast cancer progression are relatively unknown. In the present study, we set out to profile Pax-5 expression in mammary tissues and elucidate the cellular and molecular roles of Pax-5 in breast cancer processes. Using immunohistology on mammary tissue arrays, Pax-5 was detected in a total of 298/306 (97.6%) samples tested. Interestingly, our studies reveal that Pax-5 inhibits aggressive features and confers anti-proliferative effects in breast carcinoma cells in contrast to its oncogenic properties in B cell cancers. More precisely, Pax-5 suppressed breast cancer cell migration, invasion and tumor spheroid formation while concomitantly promoting cell adhesion properties. We also observed that Pax-5 inhibited and reversed breast cancer epithelial to mesenchymal phenotypic transitioning. Mechanistically, we found that the Pax-5 transcription factor binds and induces gene expression of E-cadherin, a pivotal regulator of epithelialisation. Globally, we demonstrate that Pax-5 is predominant expressed factor in mammary epithelial cells. We also present an important role for Pax-5 in the phenotypic transitioning processes and aggressive features associated with breast cancer malignancy and disease progression. PMID:28076843

  20. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway.

    PubMed

    Hsueh, Tun-Pin; Sheen, Jer-Ming; Pang, Jong-Hwei S; Bi, Kuo-Wei; Huang, Chao-Chun; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2016-02-05

    Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect.

  1. Dynamics between actin and the VE-cadherin/catenin complex

    PubMed Central

    Abu Taha, Abdallah; Schnittler, Hans-J

    2014-01-01

    Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through α-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, α-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis. PMID:24621569

  2. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    PubMed

    Hanemann, João Adolfo Costa; Oliveira, Denise Tostes; Nonogaki, Suely; Nishimoto, Inês Nobuko; de Carli, Marina Lara; Landman, Gilles; Kowalski, Luiz Paulo

    2014-06-03

    Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas.

  3. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  4. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation between primary and metastatic nodal lesion in colorectal cancer.

    PubMed

    Jang, Tae Jung

    2016-02-01

    O-GlcNAcylation is an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the side chain hydroxyl of a serine or threonine residue. The E-cadherin/β-catenin system, an integral component of epithelial to mesenchymal transition (EMT)/mesenchymal to epithelial transition (MET), is affected through O-GlcNAcylation. The current study examined the status of EMT/MET in both the tumor center and invasive front of the primary colorectal carcinoma (CRC) and metastatic nodal lesions, which were compared to O-GlcNAcylation expression levels in those areas. In addition, the cliniopathological significance of O-GlcNAcylation was studied Immunohistochemical staining for E-cadherin, β-catenin, Snail, O-GlcNAc and Ki67 was performed in 40 primary CRC tissues, 40 nonneoplastic colons, and 17 nodal metastatic lesions. Western blot was also conducted in primary CRC tissue Membranous E-cadherin expression was lowest in the invasive front, but showed greater increases in metastatic nodal lesions. Moreover, its expression level was negatively correlated with that of nuclear β-catenin and Snail. The Ki67 labeling index (LI) was lowest in the invasive front, and increased in metastatic nodal lesions. Primary CRC showed higher expression of O-GlcNAcylation and O-GlcNAc-transferase (OGT) than nonneoplastic colons. O-GlcNAcylation expression decreased in metastatic nodal lesions compared to the invasive front and tumor center, and was inversely correlated with Ki67 LI. However, O-GlcNAcylation expression was only slightly changed between tumor center and invasive front. In addition, there was no correlation between its expression and the level of nuclear β-catenin, membranous E-cadherin and Snail. No significant relationship was observed between O-GlcNAcylation level and cliniopathological parameters. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation in metastatic nodal lesion compared to primary CRC may play role in establishing its lesions

  5. E-selectin: sialyl Lewis, a dependent adhesion of colon cancer cells, is inhibited differently by antibodies against E-selectin ligands.

    PubMed

    Srinivas, U; Påhlsson, P; Lundblad, A

    1996-09-01

    Recent studies have demonstrated that selectins, a new family of cell-adhesion molecules with similar domain structures, mediate the adhesion of peripheral blood cells to interleukin-1 (IL-1)-activated endothelium. In the present study the authors evaluated the role of E-selectin-Sialyl Lewis x (SLe(x))/ Sialyl Lewis a (SLe(a)) interaction in mediating in vitro adhesion of two colon cancer cell lines, HT-29 and COLO 201, to human umbilical cord endothelial cells (HUVEC). Colon cancer cell lines had a strong expression of blood group-related carbohydrate epitopes as evaluated by fluorescence-activated cell sorter (FACS) analysis. It was established that adhesion of HT-29 and COLO 201 cells to IL-1 stimulated HUVEC was calcium dependent and could be inhibited by a monoclonal antibody directed against E-selectin. Prior incubation of cells with two different antibodies directed against SLe(x) and antibodies directed against related Lewis epitopes, Le(x) and Le(a), had no significant effect on adhesion. Three antibodies directed against SLe(a) differed in their capacity to inhibit the adhesion of HT-29 and COLO 201 cells to HUVEC. Only one antibody directed against the SLe(a) structure was effective in inhibiting adhesion of both COLO 201 and HT-29 cells. The difference could not be attributed to titre, the type or number of glycoproteins, or to a difference in the amount of SLe(a) present on individual proteins, suggesting that presence and right presentation of SLe(a) epitope might be important for adhesion of colon cancer cells. Finally, in the in vitro system used, adhesion of HT-29 and COLO 201 cells to activated HUVEC is mediated predominantly by E-selectin/SLe(a) interaction. SLe(x) and related epitopes, Le(x) and Le(a), seem to have limited relevance for colon cancer cell recognition of E-selectin.

  6. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  7. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of β-catenin/E-cadherin signaling.

    PubMed

    Cho, Sun Wook; Kim, Young A; Sun, Hyun Jin; Ahn, Hwa Young; Lee, Eun Kyung; Yi, Ka Hee; Oh, Byung-Chul; Park, Do Joon; Cho, Bo Youn; Park, Young Joo

    2014-09-01

    Aberrant activation of the Wnt/β-catenin pathway is a common pathogenesis of various human cancers. We investigated the role of the Wnt inhibitor, Dkk-1, in papillary thyroid cancer (PTC). Immunohistochemical β-catenin staining was performed in tissue microarray containing 148 PTCs and five normal thyroid tissues. In vivo effects of Dkk-1 were explored using ectopic tumors with BHP10-3SC cells. In 27 PTC patients, 60% of patients showed β-catenin up-regulation and Dkk-1 down-regulation in tumor vs normal tissues. Tissue microarray analysis showed that 14 of 148 PTC samples exhibited cytoplasmic-dominant β-catenin expression compared to membranous-dominant expression in normal tissues. Aberrant β-catenin expression was significantly correlated with higher rates of the loss of membranous E-cadherin expression and poor disease-free survival than that in the normal membranous expression group over a median follow-up period of 14 years. Implantation of Dkk-1-overexpressing BHP10-3SC cells revealed delayed tumor growth, resulting from the rescue of membranous β-catenin and E-cadherin expressions. Furthermore, tissue microarray analysis demonstrated that BRAF(WT) patients had higher rates of aberrant expressions of β-catenin and E-cadherin than BRAF(V600E) patients. Indeed, the inhibitory effects of Dkk-1 on cell survival were more sensitive in BRAF(WT) (BHP10-3SC and TPC-1) than in BRAF(V600E) (SNU-790 and BCPAP) cells. Overexpression of BRAF(V600E) in normal thyroid epithelial (H tori) cells also reduced the effects of Dkk-1 on cell survival. A subset of PTC patients showed aberrant expression of β-catenin/E-cadherin signaling and poor disease-free survival. Dkk-1 might have a therapeutic role, particularly in BRAF(WT) patients.

  8. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  9. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin

    PubMed Central

    Lecuit, Marc; Nelson, D. Michael; Smith, Steve D.; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I.; Cossart, Pascale

    2004-01-01

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA–E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA–E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand–receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously. PMID:15073336

  10. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    PubMed Central

    2011-01-01

    Self-assembled monolayer (SAM) with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry. PMID:21812994

  11. Downregulation of endothelial adhesion molecules by dimethylfumarate, but not monomethylfumarate, and impairment of dynamic lymphocyte-endothelial cell interactions.

    PubMed

    Wallbrecht, Katrin; Drick, Nora; Hund, Anna-Carina; Schön, Michael P

    2011-12-01

    Although fumaric acid esters (FAE) have a decade-long firm place in the therapeutic armamentarium for psoriasis, their pleiotropic mode of action is not yet fully understood. While most previous studies have focused on the effects of FAE on leucocytes, we have addressed their activity on macro- and microvascular endothelial cells. As detected both on mRNA and protein levels, dimethylfumarate effected a profound reduction of TNFα-induced expression of E-selectin (CD62E), ICAM-1 (CD54) and VCAM-1 (CD106) on two different endothelial cell populations in a concentration-dependent manner. This reduction of several endothelial adhesion molecules was accompanied by a dramatic diminution of both rolling and firm adhesive interactions between endothelial cells and lymphocytes in a dynamic flow chamber system. Dimethylfumarate, at a concentration of 50 μm, reduced lymphocyte rolling on endothelial cells by 85.9% (P<0.001 compared to untreated controls), and it diminished the number of adherent cells by 88% (P<0.001). In contrast, monomethylfumarate (MMF) influenced neither surface expression of adhesion molecules nor interactions between endothelial cells and lymphocytes. These observations demonstrate that endothelial cells, in addition to the known effects on leucocytes, undergo profound functional changes in response to dimethylfumarate. These changes are accompanied by severely impaired dynamic interactions with lymphocytes, which constitute the critical initial step of leucocyte recruitment to inflamed tissues in psoriasis and other TNF-related inflammatory disorders. © 2011 John Wiley & Sons A/S.

  12. Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture

    PubMed Central

    1983-01-01

    Previous studies in this laboratory have described a cell surface glycoprotein, called neural cell adhesion molecule or N-CAM, that appears to be a ligand in the adhesion between neural membranes. N-CAM antigenic determinants were also shown to be present on embryonic muscle and an N-CAM-dependent adhesion was demonstrated between retinal cell membranes and muscle cells in short-term assays. The present studies indicate that these antigenic determinants are associated with the N-CAM polypeptide, and that rapid adhesion mediated by this molecule occurs between spinal cord membranes and muscle cells. Detailed examination of the effects of anti-(N-CAM) Fab' fragments in cultures of spinal cord with skeletal muscle showed that the Fab' fragments specifically block adhesion of spinal cord neurites and cells to myotubes. The Fab' did not affect binding of neurites to fibroblasts and collagen substrate, and did not alter myotube morphology. These results indicate that N-CAM adhesion is essential for the in vitro establishment of physical associations between nerve and muscle, and suggest that binding involving N-CAM may be an important early step in synaptogenesis. PMID:6863388

  13. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    PubMed Central

    2014-01-01

    Background Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Methods Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. Results For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. Conclusions The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas. PMID:24893577

  14. Preoperative chemoradiotherapy alters the expression and prognostic significance of adhesion molecules in Barrett's-associated adenocarcinoma.

    PubMed

    Turner, J R; Torres, C M; Wang, H H; Shahsafaei, A; Richards, W G; Sugarbaker, D; Odze, R D

    2000-03-01

    A variety of prognostic markers have been related to decreased patient survival in patients with epithelial malignancies. These include expression of the homotypic adhesion molecule E-cadherin (ECAD) and the hyaluronic acid receptor CD44. Expression of ECAD and CD44 was evaluated in Barrett's-associated adenocarcinoma (BAd) from 67 patients. Expression was determined by immunoperoxidase staining and graded semiquantitatively based on the proportion of positively stained cells. These data were then correlated with clinical and pathological parameters, including the presence or absence of chemoradiotherapy (chemrad) and patient survival. There were 56 men and 11 women (mean age, 62 years). Thirty-nine (58%) patients received preoperative chemrad. ECAD expression was detected in all (100%) tumors. The ECAD staining grade did not correlate with other pathological features of the tumors. However, ECAD staining was significantly increased in BAd of patients who received chemrad (P = .003), in comparison with those who did not, and in individual patients when prechemrad biopsies and postchemrad resection specimens were compared (P = .04). In terms of prognosis, increased ECAD expression was associated with shortened patient survival only in BAd patients who had received chemrad (univariate analysis of chemrad patients with stage I and II BAd, P = .02). ECAD expression was not significantly associated with survival in BAd patients who did not receive chemrad. CD44 expression was detected in 88% of cases. CD44 expression did not correlate with any of the pathological features of the tumors or with chemrad status. Increased expression of CD44 was significantly associated with shortened patient survival in chemrad patients only (univariate analysis P = .03, multivariate analysis P = .04), although a strong trend was observed when all patients were analyzed regardless of chemrad status (P = .07). The results of this study indicate that chemrad alters the expression of ECAD in

  15. New Fluorescent Reporter Systems for Evaluation of the Expression of E- and N-Cadherins.

    PubMed

    Burmistrova, O A; Nikulin, S V; Zakharova, G S; Fomicheva, K A; Alekseev, B Ya; Shkurnikov, M Yu

    2018-05-24

    During metastatic growth, cells of solid tumors undergo phenotypical changes related to epithelial-mesenchymal transition. Epithelial-mesenchymal transition is regarded as a potential target for prospective antitumor drugs. Fluorescent reporter systems for evaluation of the expression of markers of epithelial and mesenchymal status (E- and N-cadherins) were created. The described approaches can be used for creation of analogous reporter systems.

  16. Cytokines, chemokines and soluble adhesion molecules in aqueous humor of children with uveitis.

    PubMed

    Sijssens, Karen M; Rijkers, Ger T; Rothova, Aniki; Stilma, Jan S; Schellekens, Peter A W J F; de Boer, Joke H

    2007-10-01

    Uveitis in childhood is a visual threatening disease with a complication rate of more than 75%. Despite extensive research, the etiology of uveitis is still unclear although the general opinion is now that uveitis is a T-cell mediated disease. The purpose of this study was to investigate the profile of cytokines, chemotactic cytokines (chemokines) and soluble adhesion molecules in the aqueous humor (AqH) of children with uveitis in order to identify the factors that control the immune response in the eye. In this clinical laboratory investigation we analyzed, with a multiplex immunoassay, 16 immune mediators in the AqH of 25 children with uveitis and 6 children without uveitis. Increased levels of interleukin-2 (IL-2), IL-6, IL-10, IL-13, IL-18, interferon-gamma, tumor necrosis factor-alpha, soluble intercellular adhesion molecule-1, RANTES, IL-8 and interferon-inducible 10-kDa protein were found in the AqH of children with uveitis compared with controls. No significant differences were found for IL-1 beta, IL-4, IL-12 p-70, soluble vascular cell adhesion molecule 1 and Eotaxin. Lower levels of IL-10 and IL-8 were found in quiet stage uveitis (surgical) samples compared with active uveitis (diagnostic) samples and in samples of patients treated with methotrexate (MTX) compared with samples of patients not treated with MTX. Lower levels of IL-10 were as well found in samples taken during the first 3 months after the diagnosis of uveitis than samples taken later during the disease process. No significant differences were found between patients treated with or without topical or systemic (perioperative and long term) corticosteroids. In conclusion, in children with uveitis, multiple intraocular cytokines, chemokines and soluble adhesion molecules are increased in the AqH regardless of active or inactive inflammation. Whether the IL-8 and IL-10 levels in AqH of children with uveitis are correlated with uveitis activity, early or late phase of the course of the disease

  17. The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus

    PubMed Central

    Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel

    2011-01-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931

  18. Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development.

    PubMed

    Horsfield, Julia; Ramachandran, Anassuya; Reuter, Katja; LaVallie, Edward; Collins-Racie, Lisa; Crosier, Kathryn; Crosier, Philip

    2002-07-01

    We have isolated a zebrafish cadherin that is orthologous to human LI-cadherin (CDH17). Zebrafish cdh17 is expressed exclusively in the pronephric ducts during embryogenesis, and in the mesonephros during larval development and adulthood. Like its mammalian ortholog, cdh17 is also expressed in liver and intestine in adult zebrafish. We show that cdh17-positive mesodermal cells do not contribute to the hematopoietic system. Consistent with a cell adhesion role for Cdh17, depletion of Cdh17 function using antisense morpholino oligonucleotides compromised cell cohesion during pronephric duct formation. Our results indicate that Cdh17 is necessary for maintaining the integrity of the pronephric ducts during zebrafish embryogenesis. This finding contrasts with the role of mammalian CDH17, which does not appear to be involved in nephric development.

  19. A Pathway for the Control of Anoikis Sensitivity by E-Cadherin and Epithelial-to-Mesenchymal Transition▿‡

    PubMed Central

    Kumar, Sanjeev; Park, Sun Hee; Cieply, Benjamin; Schupp, Jane; Killiam, Elizabeth; Zhang, Fan; Rimm, David L.; Frisch, Steven M.

    2011-01-01

    Detachment of epithelial cells from matrix or attachment to an inappropriate matrix engages an apoptotic response known as anoikis, which prevents metastasis. Cellular sensitivity to anoikis is compromised during the oncogenic epithelial-to-mesenchymal transition (EMT), through unknown mechanisms. We report here a pathway through which EMT confers anoikis resistance. NRAGE (neurotrophin receptor-interacting melanoma antigen) interacted with a component of the E-cadherin complex, ankyrin-G, maintaining NRAGE in the cytoplasm. Oncogenic EMT downregulated ankyrin-G, enhancing the nuclear localization of NRAGE. The oncogenic transcriptional repressor protein TBX2 interacted with NRAGE, repressing the tumor suppressor gene p14ARF. P14ARF sensitized cells to anoikis; conversely, the TBX2/NRAGE complex protected cells against anoikis by downregulating this gene. This represents a novel pathway for the regulation of anoikis by EMT and E-cadherin. PMID:21746881

  20. E-cadherin antagonizes transforming growth factor β1 gene induction in hepatic stellate cells by inhibiting RhoA-dependent Smad3 phosphorylation.

    PubMed

    Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon

    2010-12-01

    Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD's potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. Copyright © 2010 American Association for the Study of Liver

  1. Purification of fetal mouse hepatoblasts by magnetic beads coated with monoclonal anti-e-cadherin antibodies and their in vitro culture.

    PubMed

    Nitou, Miho; Sugiyama, Yoshinori; Ishikawa, Katsutoshi; Shiojiri, Nobuyoshi

    2002-10-01

    A simple, rapid, and reproducible method of fetal hepatoblast purification was established to investigate mechanisms controlling interactions between hepatoblasts and nonparenchymal cells during liver development. Because E-cadherin is exclusively expressed on the cell membrane of hepatoblasts, magnetic beads coated with monoclonal antibodies to an extracellular epitope of its molecule were used to purify hepatoblasts from a cell suspension prepared from 12.5-day fetal mouse livers. The purity and yield in the hepatoblast fraction prepared in our protocol were more than 90% and approximately 30%, respectively. The nonparenchymal fraction rarely contained hepatoblasts; the rate of hepatoblast contamination in this fraction was less than 1%. Separate cultures of these two fractions were compared with cocultures of both fractions. In culture of the hepatoblast fraction, hepatoblasts formed aggregates similar to a bunch of grapes via their loose adhesion, floating in the medium after 24 h, and dissociated into single cells from the aggregates after 120 h of culture. By contrast, in the mixed culture, the majority of hepatoblasts formed multicellular spheroids after 24 h, and these spheroids changed into monolayer cell sheets after 120 h of culture. The cells comprising these monolayer sheets abundantly expressed albumin and carbamoylphosphate synthase I. In the mixed culture, fibroblastic cells also proliferated extensively with spreading on glass slides and surrounded the hepatoblast or hepatocyte colonies. On the other hand, fibroblastic cells spreading on glass slides decreased gradually in cultures of the nonparenchymal cell fraction alone. These findings indicated that the coexistence of hepatoblasts and nonparenchymal cells may be essential for their mutual survival, proliferation, differentiation, and morphogenesis. The conditioned medium of fetal liver cell cultures could partially replace the effects of the nonparenchymal cells on hepatoblasts in vitro. Our

  2. A complex of α6 integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6.

    PubMed

    Marchiò, Serena; Soster, Marco; Cardaci, Sabrina; Muratore, Andrea; Bartolini, Alice; Barone, Vanessa; Ribero, Dario; Monti, Maria; Bovino, Paola; Sun, Jessica; Giavazzi, Raffaella; Asioli, Sofia; Cassoni, Paola; Capussotti, Lorenzo; Pucci, Piero; Bugatti, Antonella; Rusnati, Marco; Pasqualini, Renata; Arap, Wadih; Bussolino, Federico

    2012-11-01

    Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α(6) integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α(6) integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α(6) integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC. Copyright © 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  3. A complex of α6 integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6

    PubMed Central

    Marchiò, Serena; Soster, Marco; Cardaci, Sabrina; Muratore, Andrea; Bartolini, Alice; Barone, Vanessa; Ribero, Dario; Monti, Maria; Bovino, Paola; Sun, Jessica; Giavazzi, Raffaella; Asioli, Sofia; Cassoni, Paola; Capussotti, Lorenzo; Pucci, Piero; Bugatti, Antonella; Rusnati, Marco; Pasqualini, Renata; Arap, Wadih; Bussolino, Federico

    2012-01-01

    Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α6 integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α6 integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α6 integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC. PMID:23070965

  4. Acetaldehyde dissociates the PTP1B–E-cadherin–β-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism

    PubMed Central

    Sheth, Parimal; Seth, Ankur; Atkinson, Katherine J.; Gheyi, Tarun; Kale, Gautam; Giorgianni, Francesco; Desiderio, Dominic M.; Li, Chunying; Naren, Anjaparavanda; Rao, Radhakrishna

    2006-01-01

    Interactions between E-cadherin, β-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell–cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, β-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and β-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and β-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and β-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of β-catenin on tyrosine residues, and abolished the interaction of β-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of β-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and β-catenin was reduced by tyrosine phosphorylation of β-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)–PTP1B. The pairwise binding study showed that GST–E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of β-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, β-catenin and PTP1B by a phosphorylation-dependent mechanism. PMID:17087658

  5. High expression of SALL4 and fascin, and loss of E-cadherin expression in undifferentiated/dedifferentiated carcinomas of the endometrium

    PubMed Central

    Onder, Semen; Taskin, Orhun Cig; Sen, Fatma; Topuz, Samet; Kucucuk, Seden; Sozen, Hamdullah; Ilhan, Ridvan; Tuzlali, Sitki; Yavuz, Ekrem

    2017-01-01

    Abstract Undifferentiated/dedifferentiated endometrial carcinomas (UCE/DCEs) of the endometrium are rare tumors with poor prognosis. There are few clinicopathologic studies with detailed immunohistochemical analysis regarding UCE/DCEs. We evaluated the diagnostic value of a selected tumor stem-cell marker and epithelial-mesenchymal transition (EMT) markers, in addition to previously studied markers in identifying UCE/DCEs from other types of high-grade endometrial carcinomas. Eleven cases of UCE/DCEs with complete clinical follow-up that were diagnosed between 2006 and 2015 were included in the study. For immunohistochemical comparison, 11 clinically matched cases for each type of other high-grade endometrial carcinomas (high-grade endometrioid (F3-EC), serous [SC], and clear cell carcinoma [CCC]) were used as a control group. An immunohistochemical analysis including fascin, SALL4, E-cadherin, and β-catenin, in addition to epithelial and neuroendocrine markers was performed in each case. The majority of UCE/DCEs displayed diffuse expression of fascin (81.9%) and loss of E-cadherin expression (54.5%). SALL4 expression was detected in 36.3% of the UCE/DCE cases. SALL4 expression was significantly more frequent in UCE/DCEs than all other high-grade carcinomas (P < 0.001). Loss of E-cadherin and fascin expression was significantly more frequent in UCE/DCEs than high-grade endometrioid and clear cell adenocarcinomas (P = 0.012, 0.014 and P = 0.01, 0.003, respectively). We suggest that loss of E-cadherin expression together with fascin and SALL4 immunopositivity in addition to morphologic features have an impact in differential diagnosis of UCE/DCEs from other high-grade endometrial carcinomas. PMID:28272224

  6. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles.

    PubMed

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K; Saber, Anne T; Wallin, Håkan; Loft, Steffen; Vogel, Ulla; Møller, Peter

    2013-03-01

    Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species. In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis.

  7. Diesel Exhaust Particle Exposure Causes Redistribution of Endothelial Tube VE-Cadherin

    PubMed Central

    Chao, Ming-Wei; Kozlosky, John; Po, Iris P.; Strickland, Pamela Ohman; Svoboda, Kathy K. H.; Cooper, Keith; Laumbach, Robert; Gordon, Marion K.

    2010-01-01

    Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24 hr. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions. PMID:20887764

  8. Evidence for Post-Translational Processing of Vascular Endothelial (VE)-Cadherin in Brain Tumors: Towards a Candidate Biomarker

    PubMed Central

    Vilgrain, Isabelle; Sidibé, Adama; Polena, Helena; Cand, Francine; Mannic, Tiphaine; Arboleas, Mélanie; Boccard, Sandra; Baudet, Antoine; Gulino-Debrac, Danielle; Bouillet, Laurence; Quesada, Jean-Louis; Mendoza, Christophe; Lebas, Jean-François; Pelletier, Laurent; Berger, François

    2013-01-01

    Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p≤0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology. PMID:24358106

  9. Loss of the endothelial glycocalyx is associated with increased E-selectin mediated adhesion of lung tumour cells to the brain microvascular endothelium.

    PubMed

    Rai, Srijana; Nejadhamzeeigilani, Zaynab; Gutowski, Nicholas J; Whatmore, Jacqueline L

    2015-09-25

    Arrest of metastasising lung cancer cells to the brain microvasculature maybe mediated by interactions between ligands on circulating tumour cells and endothelial E-selectin adhesion molecules; a process likely to be regulated by the endothelial glycocalyx. Using human cerebral microvascular endothelial cells and non-small cell lung cancer (NSCLC) cell lines, we describe how factors secreted by NSCLC cells i.e. cystatin C, cathepsin L, insulin-like growth factor-binding protein 7 (IGFBP7), vascular endothelial growth factor (VEGF) and tumour necrosis factor-alpha (TNF-α), damage the glycocalyx and enhance initial contacts between lung tumour and cerebral endothelial cells. Endothelial cells were treated with tumour secreted-proteins or lung tumour conditioned medium (CM). Surface levels of E-selectin were quantified by ELISA. Adhesion of A549 and SK-MES-1 cells was examined under flow conditions (1 dyne/cm(2)). Alterations in the endothelial glycocalyx were quantified by binding of fluorescein isothiocyanate-linked wheat germ agglutinin (WGA-FITC). A549 and SK-MES-1 CM and secreted-proteins significantly enhanced endothelial surface E-selectin levels after 30 min and 4 h and tumour cell adhesion after 30 min, 4 and 24 h. Both coincided with significant glycocalyx degradation; A549 and SK-MES-1 CM removing 55 ± 12 % and 58 ± 18.7 % of WGA-FITC binding, respectively. Inhibition of E-selectin binding by monoclonal anti-E-selectin antibody completely attenuated tumour cell adhesion. These data suggest that metastasising lung cancer cells facilitate their own adhesion to the brain endothelium by secreting factors that damage the endothelial glycocalyx, resulting in exposure of the previously shielded adhesion molecules and engagement of the E-selectin-mediated adhesion axis.

  10. Unfavorable cytokine and adhesion molecule profiles during and after pregnancy, in women with gestational diabetes mellitus.

    PubMed

    Roca-Rodríguez, María Del Mar; López-Tinoco, Cristina; Fernández-Deudero, Álvaro; Murri, Mora; García-Palacios, María Victoria; García-Valero, María Del Amor; Tinahones, Francisco José; Aguilar-Diosdado, Manuel

    2017-01-01

    Gestational diabetes mellitus is a significant risk factor for metabolic syndrome and cardiovascular disease. To assess the relationships between components of the metabolic syndrome and cytokine and adhesion molecule levels in women with GDM during pregnancy and after delivery. A prospective case-control study on a sample of 126 pregnant women (63 with and 63 without gestational diabetes mellitus). In an intra-subject analysis, 41 women with history of gestational diabetes mellitus and 21 controls were re-assessed in the postpartum period. Clinical data and levels of cytokines and adhesion molecules were recorded during weeks 24-29 of pregnancy and 12 months after delivery. In the postpartum period, there were significantly higher levels of tumor necrosis factor alpha in both cases and controls, and of adiponectin in controls. Cases showed higher leptin levels, with no significant differences during and after pregnancy. No significant differences were seen in adhesion molecules and interleukin-6 between cases and controls during pregnancy and in the postpartum period, but levels of both were higher in cases. During pregnancy and after delivery, adiponectin decreased in cases and increased in controls. Significant positive correlations were seen between adiponectin and fasting blood glucose levels and vascular cell adhesion molecule-1, and also between leptin and tumor necrosis factor alpha levels. The results suggest that increased inflammation and transient hyperglycemia during pregnancy would represent a latent form of metabolic syndrome, with an increased risk for type 2 diabetes mellitus and future cardiovascular disease. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.

    PubMed

    Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  13. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions*

    PubMed Central

    Yuan, Li; Seong, Eunju; Beuscher, James L.; Arikkath, Jyothi

    2015-01-01

    The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome. PMID:25724647

  14. The Differential Expression of Adhesion Molecule and Extracellular Matrix Genes in Mesenchymal Stromal Cells after Interaction with Cord Blood Hematopoietic Progenitors.

    PubMed

    Buravkova, L B; Andreeva, E R; Lobanova, M V; Cotnezova, E V; Grigoriev, A I

    2018-03-01

    The dynamics of the expression of genes encoding adhesion molecules, molecules of the connective tissue matrix, and its remodeling enzymes was studied in multipotent mesenchymal stromal cells (MSCs) from human adipose tissue after interaction with cord blood hematopoietic progenitors (HSPCs). An upregulation of ICAM1 and VCAM1, directly proportional to the coculture time (24-72 h), was found. After 72 h of culturing, a downregulation of the genes encoding the majority of matrix molecules (SPP1; COL6A2,7A1; MMP1,3; TIMP1,3; and HAS1) and cell-matrix adhesion molecules (ITGs) was revealed. The detected changes may ensure the realization of the stromal MSC function due to improvement of adhesion and transmigration of HSPCs into the subcellular space.

  15. A Regulatory Network Involving β-Catenin, e-Cadherin, PI3k/Akt, and Slug Balances Self-Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling.

    PubMed

    Huang, Tyng-Shyan; Li, Li; Moalim-Nour, Lilian; Jia, Deyong; Bai, Jian; Yao, Zemin; Bennett, Steffany A L; Figeys, Daniel; Wang, Lisheng

    2015-05-01

    The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self-renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self-renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two-layer regulatory circuit involving β-catenin, E-cadherin, PI3K/Akt, and Slug in a time-dependent manner. Short-term upregulation of β-catenin does not lead to the activation of T-cell factor (TCF)-eGFP Wnt reporter in hESCs. Instead, it enhances E-cadherin expression on the cell membrane, thereby enhancing hESC self-renewal through E-cadherin-associated PI3K/Akt signaling. Conversely, long-term Wnt activation or loss of E-cadherin intracellular β-catenin binding domain induces TCF-eGFP activity and promotes hESC differentiation through β-catenin-induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E-cadherin that serves as a β-catenin "sink" sequestering free cytoplasmic β-catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self-renewal associated with short-term Wnt/β-catenin activation to definitive differentiation. Stem Cells 2015;33:1419-1433. © 2015 AlphaMed Press.

  16. Junctional adhesion molecule-C promotes metastatic potential of HT1080 human fibrosarcoma.

    PubMed

    Fuse, Chiaki; Ishida, Yuuki; Hikita, Tomoya; Asai, Tomohiro; Oku, Naoto

    2007-03-16

    The junctional adhesion molecule (JAM) family is a key molecule in a process called transendothelial migration or diapedesis. Here, we report implications of JAM-C in cancer metastasis. We first determined the mRNA expression of JAMs in 19 kinds of cancer cell lines. JAM-C was expressed in most of tumors having potent metastatic properties. Especially in murine K-1735 melanoma cell lines, the highly metastatic sublines (M2 and X21) strongly expressed JAM-C when compared with the poorly metastatic ones (C-10 and C23). Next, we investigated the role of JAM-C in cancer metastasis by using human JAM-C (hJAM-C) gene-transfected HT1080 fibrosarcoma cells. In comparison with mock-transfected HT1080 cells, these cells showed a significant increase in the adhesion to various extracellular substrates and the invasion across a Matrigel-coated membrane. The knockdown of hJAM-C using small interfering RNA resulted in the suppression of both the adhesion and the invasion of HT1080 cells, suggesting that endogenous hJAM-C might be involved in tumor metastasis. Finally, we studied the role of hJAM-C in an in vivo experimental metastatic model. The results showed that the overexpression of hJAM-C in HT1080 cells significantly decreased the life spans of the tumorbearing mice. In contrast, the knockdown of hJAM-C in HT1080 cells suppressed the weight gain of the lungs with metastatic colonies. We conclude that the expression of JAM-C promotes metastasis by enhancing both the adhesion of cancer cells to extracellular matrices and the subsequent invasion.

  17. Cortactin scaffolds Arp2/3 and WAVE2 at the epithelial zonula adherens.

    PubMed

    Han, Siew Ping; Gambin, Yann; Gomez, Guillermo A; Verma, Suzie; Giles, Nichole; Michael, Magdalene; Wu, Selwin K; Guo, Zhong; Johnston, Wayne; Sierecki, Emma; Parton, Robert G; Alexandrov, Kirill; Yap, Alpha S

    2014-03-14

    Cadherin junctions arise from the integrated action of cell adhesion, signaling, and the cytoskeleton. At the zonula adherens (ZA), a WAVE2-Arp2/3 actin nucleation apparatus is necessary for junctional tension and integrity. But how this is coordinated with cadherin adhesion is not known. We now identify cortactin as a key scaffold for actin regulation at the ZA, which localizes to the ZA through influences from both E-cadherin and N-WASP. Using cell-free protein expression and fluorescent single molecule coincidence assays, we demonstrate that cortactin binds directly to the cadherin cytoplasmic tail. However, its concentration with cadherin at the apical ZA also requires N-WASP. Cortactin is known to bind Arp2/3 directly (Weed, S. A., Karginov, A. V., Schafer, D. A., Weaver, A. M., Kinley, A. W., Cooper, J. A., and Parsons, J. T. (2000) J. Cell Biol. 151, 29-40). We further show that cortactin can directly bind WAVE2, as well as Arp2/3, and both these interactions are necessary for actin assembly at the ZA. We propose that cortactin serves as a platform that integrates regulators of junctional actin assembly at the ZA.

  18. Cortactin Scaffolds Arp2/3 and WAVE2 at the Epithelial Zonula Adherens*♦

    PubMed Central

    Han, Siew Ping; Gambin, Yann; Gomez, Guillermo A.; Verma, Suzie; Giles, Nichole; Michael, Magdalene; Wu, Selwin K.; Guo, Zhong; Johnston, Wayne; Sierecki, Emma; Parton, Robert G.; Alexandrov, Kirill; Yap, Alpha S.

    2014-01-01

    Cadherin junctions arise from the integrated action of cell adhesion, signaling, and the cytoskeleton. At the zonula adherens (ZA), a WAVE2-Arp2/3 actin nucleation apparatus is necessary for junctional tension and integrity. But how this is coordinated with cadherin adhesion is not known. We now identify cortactin as a key scaffold for actin regulation at the ZA, which localizes to the ZA through influences from both E-cadherin and N-WASP. Using cell-free protein expression and fluorescent single molecule coincidence assays, we demonstrate that cortactin binds directly to the cadherin cytoplasmic tail. However, its concentration with cadherin at the apical ZA also requires N-WASP. Cortactin is known to bind Arp2/3 directly (Weed, S. A., Karginov, A. V., Schafer, D. A., Weaver, A. M., Kinley, A. W., Cooper, J. A., and Parsons, J. T. (2000) J. Cell Biol. 151, 29–40). We further show that cortactin can directly bind WAVE2, as well as Arp2/3, and both these interactions are necessary for actin assembly at the ZA. We propose that cortactin serves as a platform that integrates regulators of junctional actin assembly at the ZA. PMID:24469447

  19. Deregulation of E-cadherin, β-catenin, APC and Caveolin-1 expression occurs in canine prostate cancer and metastatic processes.

    PubMed

    Kobayashi, Priscila E; Fonseca-Alves, Carlos E; Rivera-Calderón, Luis G; Carvalho, Márcio; Kuasne, Hellen; Rogatto, Silvia R; Laufer-Amorim, Renée

    2018-06-01

    Prostate cancer is a heterogeneous disease with high levels of clinical and gene heterogeneity, consequently offering several targets for therapy. Dogs with naturally occurring prostate cancer are useful models for molecular investigations and studying new treatment efficacy. Three genes and proteins associated with the WNT pathway (β-catenin, APC and E-cadherin) and Caveolin-1 (CAV-1) were evaluated in canine pre-neoplastic proliferative inflammatory atrophy (PIA), prostate cancer and metastatic disease. The APC gene methylation status was also investigated. As in human prostate cancer, cytoplasmic and nuclear β-catenin, which are fundamental for activating the canonical WNT pathway, were found in canine prostate cancer and metastasis. Membranous E-cadherin was also lost in these lesions, allowing cellular migration to the stroma and nuclear localization of β-catenin. In contrast to human prostate tumours, no APC downregulation or hypermethylation was found in canine prostate cancer. The CAV-1 gene and protein overexpression were found in canine prostate cancer, and as in humans, the highest levels were found in Gleason scores ≥8. In conclusion, as with human prostate cancer, β-catenin and E-cadherin in the WNT pathway, as well as Caveolin-1, are molecular drivers in canine prostate cancer. These findings provide additional evidence that dogs are useful models for studying new therapeutic targets in prostate cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. New functions for alpha-catenins in health and disease: from cancer to heart regeneration.

    PubMed

    Vite, Alexia; Li, Jifen; Radice, Glenn L

    2015-06-01

    Strong cell-cell adhesion mediated by adherens junctions is dependent on anchoring the transmembrane cadherin molecule to the underlying actin cytoskeleton. To do this, the cadherin cytoplasmic domain interacts with catenin proteins, which include α-catenin that binds directly to filamentous actin. Originally thought to be a static structure, the connection between the cadherin/catenin adhesion complex and the actin cytoskeleton is now considered to be dynamic and responsive to both intercellular and intracellular signals. Alpha-catenins are mechanosensing proteins that undergo conformational change in response to cytoskeletal tension thus modifying the linkage between the cadherin and the actin cytoskeleton. There are three α-catenin isoforms expressed in mouse and human: αE-catenin (CTNNA1), αN-catenin (CTNNA2) and αT-catenin (CTNNA3). This review summarizes recent progress in understanding the in vivo function(s) of α-catenins in tissue morphogenesis, homeostasis and disease. The role of α-catenin in the regulation of cellular proliferation will be discussed in the context of cancer and regeneration.

  1. Cell Adhesion Molecule L1 in Folded (Horseshoe) and Extended Conformations

    PubMed Central

    Schürmann, Gregor; Haspel, Jeffrey; Grumet, Martin; Erickson, Harold P.

    2001-01-01

    We have investigated the structure of the cell adhesion molecule L1 by electron microscopy. We were particularly interested in the conformation of the four N-terminal immunoglobulin domains, because x-ray diffraction showed that these domains are bent into a horseshoe shape in the related molecules hemolin and axonin-1. Surprisingly, rotary-shadowed specimens showed the molecules to be elongated, with no indication of the horseshoe shape. However, sedimentation data suggested that these domains of L1 were folded into a compact shape in solution; therefore, this prompted us to look at the molecules by an alternative technique, negative stain. The negative stain images showed a compact shape consistent with the expected horseshoe conformation. We speculate that in rotary shadowing the contact with the mica caused a distortion of the protein, weakening the bonds forming the horseshoe and permitting the molecule to extend. We have thus confirmed that the L1 molecule is primarily in the horseshoe conformation in solution, and we have visualized for the first time its opening into an extended conformation. Our study resolves conflicting interpretations from previous electron microscopy studies of L1. PMID:11408583

  2. The lateral mobility of cell adhesion molecules is highly restricted at septate junctions in Drosophila.

    PubMed

    Laval, Monique; Bel, Christophe; Faivre-Sarrailh, Catherine

    2008-07-18

    A complex of three cell adhesion molecules (CAMs) Neurexin IV(Nrx IV), Contactin (Cont) and Neuroglian (Nrg) is implicated in the formation of septate junctions between epithelial cells in Drosophila. These CAMs are interdependent for their localization at septate junctions and e.g. null mutation of nrx IV or cont induces the mislocalization of Nrg to the baso-lateral membrane. These mutations also result in ultrastructural alteration of the strands of septate junctions and breakdown of the paracellular barrier. Varicose (Vari) and Coracle (Cora), that both interact with the cytoplasmic tail of Nrx IV, are scaffolding molecules required for the formation of septate junctions. We conducted photobleaching experiments on whole living Drosophila embryos to analyze the membrane mobility of CAMs at septate junctions between epithelial cells. We show that GFP-tagged Nrg and Nrx IV molecules exhibit very stable association with septate junctions in wild-type embryos. Nrg-GFP is mislocalized to the baso-lateral membrane in nrx IV or cont null mutant embryos, and displays increased mobile fraction. Similarly, Nrx IV-GFP becomes distributed to the baso-lateral membrane in null mutants of vari and cora, and its mobile fraction is strongly increased. The loss of Vari, a MAGUK protein that interacts with the cytoplasmic tail of Nrx IV, has a stronger effect than the null mutation of nrx IV on the lateral mobility of Nrg-GFP. The strands of septate junctions display a stable behavior in vivo that may be correlated with their role of paracellular barrier. The membrane mobility of CAMs is strongly limited when they take part to the multimolecular complex forming septate junctions. This restricted lateral diffusion of CAMs depends on both adhesive interactions and clustering by scaffolding molecules. The lateral mobility of CAMs is strongly increased in embryos presenting alteration of septate junctions. The stronger effect of vari by comparison with nrx IV null mutation supports

  3. Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wenbin; Cui Zhihong; Ao Lin

    To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. Themore » prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.« less

  4. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1.

    PubMed

    Muro, Silvia; Dziubla, Thomas; Qiu, Weining; Leferovich, John; Cui, Xiumin; Berk, Erik; Muzykantov, Vladimir R

    2006-06-01

    Targeting of diagnostic and therapeutic agents to endothelial cells (ECs) provides an avenue to improve treatment of many maladies. For example, intercellular adhesion molecule 1 (ICAM-1), a constitutive endothelial cell adhesion molecule up-regulated in many diseases, is a good determinant for endothelial targeting of therapeutic enzymes and polymer nanocarriers (PNCs) conjugated with anti-ICAM (anti-ICAM/PNCs). However, intrinsic and extrinsic factors that control targeting of anti-ICAM/PNCs to ECs (e.g., anti-ICAM affinity and PNC valency and flow) have not been defined. In this study we tested in vitro and in vivo parameters of targeting to ECs of anti-ICAM/PNCs consisting of either prototype polystyrene or biodegradable poly(lactic-coglycolic) acid polymers (approximately 200 nm diameter spheres carrying approximately 200 anti-ICAM molecules). Anti-ICAM/PNCs, but not control IgG/PNCs 1) rapidly (t1/2 approximately 5 min) and specifically bound to tumor necrosis factor-activated ECs in a dose-dependent manner (Bmax approximately 350 PNC/cell) at both static and physiological shear stress conditions and 2) bound to ECs and accumulated in the pulmonary vasculature after i.v. injection in mice. Anti-ICAM/PNCs displayed markedly higher EC affinity versus naked anti-ICAM (Kd approximately 80 pM versus approximately 8 nM) in cell culture and, probably because of this factor, higher value (185.3 +/- 24.2 versus 50.5 +/- 1.5% injected dose/g) and selectivity (lung/blood ratio 81.0 +/- 10.9 versus 2.1 +/- 0.02, in part due to faster blood clearance) of pulmonary targeting. These results 1) show that reformatting monomolecular anti-ICAM into high-affinity multivalent PNCs boosts their vascular immuno-targeting, which withstands physiological hydrodynamics and 2) support potential anti-ICAM/PNCs utility for medical applications.

  5. Crossroads of integrins and cadherins in epithelia and stroma remodeling

    PubMed Central

    Epifano, Carolina; Perez-Moreno, Mirna

    2012-01-01

    Adhesion events mediated by cadherin and integrin adhesion receptors have fundamental roles in the maintenance of the physiological balance of epithelial tissues, and it is well established that perturbations in their normal functional activity and/or changes in their expression are associated with tumorigenesis. Over the last decades, increasing evidence of a dynamic collaborative interaction between these complexes through their shared interactions with cytoskeletal proteins and common signaling pathways has emerged not only as an important regulator of several aspects of epithelial cell behavior, but also as a coordinated adhesion module that senses and transmits signals from and to the epithelia surrounding microenvironment. The tight regulation of their crosstalk is particularly important during epithelial remodeling events that normally take place during morphogenesis and tissue repair, and when defective it leads to cell transformation and aggravated responses of the tumor microenvironment that contribute to tumorigenesis. In this review we highlight some of the interactions that regulate their crosstalk and how this could be implicated in regulating signals across epithelial tissues to sustain homeostasis. PMID:22568988

  6. N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes.

    PubMed

    Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M

    1996-01-01

    The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the

  7. Choroid plexus epithelial cells express the adhesion protein P-cadherin at cell-cell contacts and syntaxin-4 in the luminal membrane domain.

    PubMed

    Christensen, Inga Baasch; Mogensen, Esben Nees; Damkier, Helle Hasager; Praetorius, Jeppe

    2018-05-01

    The choroid plexus epithelial cells (CPECs) belong to a small group of polarized cells, where the Na + -K + -ATPase is expressed in the luminal membrane. The basic polarity of the cells is, therefore, still debated. We investigated the subcellular distribution of an array of proteins known to play fundamental roles either in establishing and maintaining basic cell polarity or in the polarized delivery and recycling of plasma membrane proteins. Immunofluorescence histochemical analysis was applied to determine the subcellular localization of apical and basolateral membrane determinants. Mass spectrometry analysis of CPECs isolated by fluorescence-activated cell sorting was applied to determine the expression of specific forms of the proteins. CPECs mainly express the cell-adhesive P-cadherin, which is localized to the lateral membranes. Proteins belonging to the Crumbs and partitioning defective (Par) protein complexes were all localized to the luminal membrane domain. Par-1 and the Scribble complex were localized to the basolateral membrane domain. Lethal(2) giant larvae homolog 2 (Lgl2) labeling was preferentially observed in the luminal membrane domain. Phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ) was immunolocalized to the basolateral membrane domain, while phosphatidylinositol 4,5-bisphosphate (PIP 2 ) staining was most prominent in the luminal membrane domain along with the PIP 3 phosphatase, Pten. The apical target-SNARE syntaxin-3 and the basolateral target-SNARE syntaxin-4 were both localized to the apical membrane domain in CPECs, which lack cellular expression of the clathrin adaptor protein AP-1B for basolateral protein recycling. In conclusion, the CPECs are conventionally polarized, but express P-cadherin at cell-cell contacts, and Lgl2 and syntaxin-4 in the luminal plasma membrane domain.

  8. RapA2 Is a Calcium-binding Lectin Composed of Two Highly Conserved Cadherin-like Domains That Specifically Recognize Rhizobium leguminosarum Acidic Exopolysaccharides*

    PubMed Central

    Abdian, Patricia L.; Caramelo, Julio J.; Ausmees, Nora; Zorreguieta, Angeles

    2013-01-01

    In silico analyses have revealed a conserved protein domain (CHDL) widely present in bacteria that has significant structural similarity to eukaryotic cadherins. A CHDL domain was shown to be present in RapA, a protein that is involved in autoaggregation of Rhizobium cells, biofilm formation, and adhesion to plant roots as shown by us and others. Structural similarity to cadherins suggested calcium-dependent oligomerization of CHDL domains as a mechanistic basis for RapA action. Here we show by circular dichroism spectroscopy, light scattering, isothermal titration calorimetry, and other methods that RapA2 from Rhizobium leguminosarum indeed exhibits a cadherin-like β-sheet conformation and that its proper folding and stability are dependent on the binding of one calcium ion per protein molecule. By further in silico analysis we also reveal that RapA2 consists of two CHDL domains and expand the range of CHDL-containing proteins in bacteria and archaea. However, light scattering assays at various concentrations of added calcium revealed that RapA2 formed neither homo-oligomers nor hetero-oligomers with RapB (a distinct CHDL protein), indicating that RapA2 does not mediate cellular interactions through a cadherin-like mechanism. Instead, we demonstrate that RapA2 interacts specifically with the acidic exopolysaccharides (EPSs) produced by R. leguminosarum in a calcium-dependent manner, sustaining a role of these proteins in the development of the biofilm matrix made of EPS. Because EPS binding by RapA2 can only be attributed to its two CHDL domains, we propose that RapA2 is a calcium-dependent lectin and that CHDL domains in various bacterial and archaeal proteins confer carbohydrate binding activity to these proteins. PMID:23235153

  9. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    PubMed

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  10. Intercellular adhesion molecule, plasma adiponectin and albuminuria in type 2 diabetic patients.

    PubMed

    Lenghel, Alina Ramona; Kacso, Ina Maria; Bondor, Cosmina Ioana; Rusu, Crina; Rahaian, Rodica; Gherman Caprioara, Mirela

    2012-01-01

    Our study addressed the influence of early inflammatory stages of diabetic kidney disease: leukocyte adhesion and monocyte activation (as assessed by intercellular leukocyte adhesion molecule-ICAM-1 and monocyte chemoatractant protein-MCP-1) on the degree of albuminuria. Plasma levels of adiponectin, a possible anti-inflammatory counteracting mechanism, were also studied in correlation to the above-mentioned cytokines. 79 consecutive type 2 diabetic outpatients and 46 controls were included. Routine laboratory analysis, urinary albumin to creatinine ratio (uACR), plasma adiponectin, plasma ICAM-1 and urinary MPC-1 were assessed. In multiple regression ICAM-1 (p=0.004) and adiponectin (p=0.04) were the main determinants of uACR. Plasma adiponectin positively correlated to ICAM-1 (p=0.03, r=0.24). In albuminuric patients (uACR ≥30 mg/g) plasma adiponectin was significantly higher compared to normoalbuminuric ones (uACR <30 mg/g). In albuminuric patients the main determinants of uACR were plasma ICAM-1 and adiponectin. In multiple regression ICAM-1 is the only one that retains statistical significance (p=0.02). Urinary MCP-1 did not correlate to uACR. In our type 2 diabetic patients, plasma levels of ICAM-1 and adiponectin are predictive for albuminuria. Urinary MCP-1 does not correlated to uACR. Plasma adiponectin positively correlates to adhesion molecule ICAM-1 in our cohort. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    PubMed

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration

    PubMed Central

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Background & Aims Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). Methods C57BL/6J mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. Results ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with down-regulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4+ and CD8+ T-lymphocytes in blood and MLN and regulatory T-cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. Conclusions We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. PMID:20236740

  13. Epidermal E-Cadherin Dependent β-Catenin Pathway Is Phytochemical Inducible and Accelerates Anagen Hair Cycling.

    PubMed

    Ahmed, Noha S; Ghatak, Subhadip; El Masry, Mohamed S; Gnyawali, Surya C; Roy, Sashwati; Amer, Mohamed; Everts, Helen; Sen, Chandan K; Khanna, Savita

    2017-11-01

    Unlike the epidermis, which regenerates continually, hair follicles anchored in the subcutis periodically regenerate by spontaneous repetitive cycles of growth (anagen), degeneration (catagen), and rest (telogen). The loss of hair follicles in response to injuries or pathologies such as alopecia endangers certain inherent functions of the skin. Thus, it is of interest to understand mechanisms underlying follicular regeneration in adults. In this work, a phytochemical rich in the natural vitamin E tocotrienol (TRF) served as a productive tool to unveil a novel epidermal pathway of hair follicular regeneration. Topical TRF application markedly induced epidermal hair follicle development akin to that during fetal skin development. This was observed in the skin of healthy as well as diabetic mice, which are known to be resistant to anagen hair cycling. TRF suppressed epidermal E-cadherin followed by 4-fold induction of β-catenin and its nuclear translocation. Nuclear β-catenin interacted with Tcf3. Such sequestration of Tcf3 from its otherwise known function to repress pluripotent factors induced the plasticity factors Oct4, Sox9, Klf4, c-Myc, and Nanog. Pharmacological inhibition of β-catenin arrested anagen hair cycling by TRF. This work reports epidermal E-cadherin/β-catenin as a novel pathway capable of inducing developmental folliculogenesis in the adult skin. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  14. Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules.

    PubMed

    Davis, J Q; Bennett, V

    1994-11-04

    Neurofascin, L1, NrCAM, NgCAM, and neuroglian are membrane-spanning cell adhesion molecules with conserved cytoplasmic domains that are believed to play important roles in development of the nervous system. This report presents biochemical evidence that the cytoplasmic domains of these molecules associate directly with ankyrins, a family of spectrin-binding proteins located on the cytoplasmic surface of specialized plasma membrane domains. Rat neurofascin and NrCAM together comprise over 0.5% of the membrane protein in adult brain tissue. Linkage of these ankyrin-binding cell adhesion molecules to spectrin-based structures may provide a major class of membrane-cytoskeletal connections in adult brain as well as earlier stages of development.

  15. Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells.

    PubMed

    Oh, Jung Hwa; Kwon, Taeg Kyu

    2009-05-01

    We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.

  16. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul

    2012-01-01

    Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  17. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions.

    PubMed

    Yuan, Li; Seong, Eunju; Beuscher, James L; Arikkath, Jyothi

    2015-04-24

    The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Cytoadherence of Plasmodium falciparum to intercellular adhesion molecule 1 and chondroitin-4-sulfate expressed by the syncytiotrophoblast in the human placenta.

    PubMed Central

    Maubert, B; Guilbert, L J; Deloron, P

    1997-01-01

    Late stages of Plasmodium falciparum-infected erythrocytes (IRBCs) frequently sequester in the placentas of pregnant women, a phenomenon associated with low birth weight of the offspring. To investigate the physiological mechanism of this sequestration, we developed an in vitro assay for studying the cytoadherence of IRBCs to cultured term human trophoblasts. The capacity for binding to the syncytiotrophoblast varied greatly among P. falciparum isolates and was mediated by intercellular adhesion molecule 1 (ICAM-1), as binding was totally inhibited by 84H10, a monoclonal antibody specific for ICAM-1. Binding of the P. falciparum line RP5 to the syncytiotrophoblast involves chondroitin-4-sulfate (CSA), as this binding was dramatically impaired by addition of free CSA to the binding medium or by preincubation of the syncytiotrophoblast with chondroitinase ABC. ICAM-1 and CSA were visualized on the syncytiotrophoblast by immunofluorescence, while CD36, E-selectin, and vascular cell adhesion molecule 1 were not expressed even on tumor necrosis factor alpha (TNF-alpha)-stimulated syncytiotrophoblast tissue, and monoclonal antibodies against these cell adhesion molecules did not inhibit cytoadherence. ICAM-1 expression and cytoadherence of wild isolates was upregulated by TNF-alpha, a cytokine that can be secreted by the numerous mononuclear phagocytes present in malaria-infected placentas. These results suggest that cytoadherence may be involved in the placental sequestration and broaden the understanding of the physiopathology of the malaria-infected placenta. PMID:9119459

  19. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation,more » myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes

  20. Structural Requirements for Outside-In and Inside-Out Signaling by Drosophila Neuroglian, a Member of the L1 Family of Cell Adhesion Molecules

    PubMed Central

    Hortsch, Michael; Homer, Diahann; Malhotra, Jyoti Dhar; Chang, Sherry; Frankel, Jason; Jefford, Gregory; Dubreuil, Ronald R.

    1998-01-01

    Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction. PMID:9660878

  1. Structural requirements for outside-in and inside-out signaling by Drosophila neuroglian, a member of the L1 family of cell adhesion molecules.

    PubMed

    Hortsch, M; Homer, D; Malhotra, J D; Chang, S; Frankel, J; Jefford, G; Dubreuil, R R

    1998-07-13

    Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction.

  2. Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer's dementia.

    PubMed

    Huang, Chi-Wei; Tsai, Meng-Han; Chen, Nai-Ching; Chen, Wei-Hsi; Lu, Yan-Ting; Lui, Chun-Chung; Chang, Ya-Ting; Chang, Wen-Neng; Chang, Alice Y W; Chang, Chiung-Chih

    2015-11-25

    Endothelial dysfunction leads to worse cognitive performance in Alzheimer's dementia (AD). While both cerebrovascular risk factors and endothelial dysfunction lead to activation of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, it is not known whether these biomarkers extend the diagnostic repertoire in reflecting intracerebral structural damage or cognitive performance. A total of 110 AD patients and 50 age-matched controls were enrolled. Plasma levels of VCAM-1, ICAM-1 and E-selectin were measured and correlated with the cognitive performance, white matter macro-structural changes, and major tract-specific fractional anisotropy quantification. The AD patients were further stratified by clinical dementia rating score (mild dementia, n=60; moderate-to-severe dementia, n=50). Compared with the controls, plasma levels of VCAM-1 (p< 0.001), ICAM-1 (p=0.028) and E-selectin (p=0.016) were significantly higher in the patients, but only VCAM-1 levels significantly reflected the severity of dementia (p< 0.001). In addition, only VCAM-1 levels showed an association with macro- and micro- white matter changes especially in the superior longitudinal fasciculus (p< 0.001), posterior thalamic radiation (p=0.002), stria terminalis (p=0.002) and corpus callosum (p=0.009), and were independent of, age and cortical volume. These tracts show significant association with MMSE, short term memory and visuospatial function. Meanwhile, while VCAM-1 level correlated significantly with short-term memory (p=0.026) and drawing (p=0.025) scores in the AD patients after adjusting for age and education, the significance disappeared after adjusting for global FA. Endothelial activation, especially VCAM-1, was of clinical significance in AD that reflects macro- and micro-structural changes and poor short term memory and visuospatial function.

  3. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanismmore » of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.« less

  4. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways.

    PubMed Central

    Montefort, S; Gratziou, C; Goulding, D; Polosa, R; Haskard, D O; Howarth, P H; Holgate, S T; Carroll, M P

    1994-01-01

    We have examined the mucosal changes occurring in bronchial biopsies from six atopic asthmatics 5-6 h after local endobronchial allergen challenge and compared them with biopsies from saline-challenged segments from the same subjects at the same time point. All the subjects developed localized bronchoconstriction in the allergen-challenged segment and had a decrease in forced expiratory volume in 1 s (FEV1) (P < 0.01) and a decrease in their methacholine provocative concentration of agonist required to reduce FEV1 from baseline by 20% (P < 0.05) 24 h postchallenge. At 6 h we observed an increase in neutrophils (P = 0.03), eosinophils (P = 0.025), mast cells (P = 0.03), and CD3+ lymphocytes (P = 0.025), but not in CD4+ or CD8+ lymphocyte counts. We also detected an increase in endothelial intercellular adhesion molecule type 1 (P < 0.05) and E-selectin (P < 0.005), but not vascular cell adhesion molecule type 1 expression with a correlative increase in submucosal and epithelial LFA+ leucocytes (P < 0.01). Thus, in sensitized asthmatics, local endobronchial allergen instillation leads to an increased inflammatory cell infiltrate of the airway mucosa that involves upregulation of specific adhesion molecules expressed on the microvasculature. Images PMID:7512980

  5. Inhibition of tumor necrosis factor-{alpha}-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Young; Kim, Dong Hee; Kim, Hyung Gyun

    2006-01-15

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNF{alpha}-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited themore » TNF{alpha}-induced production of intracellular reactive oxygen species (ROS) and activation of NF-{kappa}B by preventing I{kappa}B degradation and inhibiting I{kappa}B kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-{kappa}B activation, and cell adhesion molecule expression in endothelial cells.« less

  6. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  7. Effect of 10-Week Supervised Moderate-Intensity Intermittent vs. Continuous Aerobic Exercise Programs on Vascular Adhesion Molecules in Patients with Heart Failure.

    PubMed

    Aksoy, Sibel; Findikoglu, Gulin; Ardic, Fusun; Rota, Simin; Dursunoglu, Dursun

    2015-10-01

    Abnormal expression of cellular adhesion molecules may be related to endothelial dysfunction, a key feature in chronic heart failure. This study compares the effects of 10-wk supervised moderate-intensity continuous aerobic exercise (CAE) and intermittent aerobic exercise (IAE) programs on markers of endothelial damage, disease severity, functional and metabolic status, and quality-of-life in chronic heart failure patients. Fifty-seven patients between 41 and 81 yrs with New York Heart Association class II-III chronic heart failure and with a left ventricular ejection fraction of 35%-55% were randomized into three groups: nonexercising control, CAE, and IAE, which exercised three times a week for 10 wks. Endothelial damage was assessed by serum markers of vascular cell adhesion molecule-1, serum intercellular adhesion molecule-1, and nitric oxide; disease severity was measured by left ventricular ejection fraction and N-terminal probrain natriuretic peptide; metabolic status was evaluated by body composition analysis and lipid profile levels; functional status was evaluated by cardiorespiratory exercise stress test and 6-min walking distance; quality-of-life was assessed with Left Ventricular Dysfunction-36 and Short-Form 36 questionnaires at the baseline and at the end of the 10th week. Significant decreases in serum vascular cell adhesion molecule-1 or serum intercellular adhesion molecule-1 in IAE and CAE groups after training were found, respectively. Resting systolic and diastolic blood pressure, peak systolic and diastolic blood pressure, 6-min walking distance, and the mental health and vitality components of Short-Form 36 improved in the CAE group, whereas left ventricular ejection fraction and 6-min walking distance improved in the IAE group compared with the control group. Both moderate-intensity CAE and IAE programs significantly reduced serum markers of adhesion molecules and prevented the change in VO2 in patients with chronic heart failure.

  8. Induction of Cell Scattering by Expression of β1 Integrins in β1-Deficient Epithelial Cells Requires Activation of Members of the Rho Family of Gtpases and Downregulation of Cadherin and Catenin Function

    PubMed Central

    Gimond, Clotilde; van der Flier, Arjan; van Delft, Sanne; Brakebusch, Cord; Kuikman, Ingrid; Collard, John G.; Fässler, Reinhard; Sonnenberg, Arnoud

    1999-01-01

    Adhesion receptors, which connect cells to each other and to the surrounding extracellular matrix (ECM), play a crucial role in the control of tissue structure and of morphogenesis. In this work, we have studied how intercellular adhesion molecules and β1 integrins influence each other using two different β1-null cell lines, epithelial GE11 and fibroblast-like GD25 cells. Expression of β1A or the cytoplasmic splice variant β1D, induced the disruption of intercellular adherens junctions and cell scattering in both GE11 and GD25 cells. In GE11 cells, the morphological change correlated with the redistribution of zonula occluden (ZO)-1 from tight junctions to adherens junctions at high cell confluency. In addition, the expression of β1 integrins caused a dramatic reorganization of the actin cytoskeleton and of focal contacts. Interaction of β1 integrins with their respective ligands was required for a complete morphological transition towards the spindle-shaped fibroblast-like phenotype. The expression of an interleukin-2 receptor (IL2R)-β1A chimera and its incorporation into focal adhesions also induced the disruption of cadherin-based adhesions and the reorganization of ECM–cell contacts, but failed to promote cell migration on fibronectin, in contrast to full-length β1A. This indicates that the disruption of cell–cell adhesion is not simply the consequence of the stimulated cell migration. Expression of β1 integrins in GE11 cells resulted in a decrease in cadherin and α-catenin protein levels accompanied by their redistribution from the cytoskeleton-associated fraction to the detergent-soluble fraction. Regulation of α-catenin protein levels by β1 integrins is likely to play a role in the morphological transition, since overexpression of α-catenin in GE11 cells before β1 prevented the disruption of intercellular adhesions and cell scattering. In addition, using biochemical activity assays for Rho-like GTPases, we show that the expression of β1A

  9. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Fang, Chih-Yeu; Wu, Chung-Chun; Hsu, Hui-Yu; Chuang, Hsin-Ying; Huang, Sheng-Yen; Tsai, Ching-Hwa; Chang, Yao; Tsao, George Sai-Wah; Chen, Chi-Long; Chen, Jen-Yang

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC), yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK) phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC. PMID:25625511

  10. The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration

    PubMed Central

    Mathavan, Ketan; Khedgikar, Vikram; Bartolo, Vanessa

    2017-01-01

    During development, a multi-potent group of cells known as the cranial neural crest (CNC) migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3) is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors. PMID:29190819

  11. Dimethoxy Curcumin Induces Apoptosis by Suppressing Survivin and Inhibits Invasion by Enhancing E-Cadherin in Colon Cancer Cells.

    PubMed

    Chen, Dong; Dai, Fang; Chen, Zhehang; Wang, Saisai; Cheng, Xiaobin; Sheng, Qinsong; Lin, Jianjiang; Chen, Wenbin

    2016-09-11

    BACKGROUND Dimethoxy curcumin (DMC) is a kind of lipophilic analog of curcumin with great improvement in chemical and metabolic stability. DMC has been studied in breast and renal cancer, but no research in colon cancer has been found yet. MATERIAL AND METHODS Two colon cancer cells (HT-29 and SW480) and one normal human colon mucosal epithelial cell (NCM460) were used in this study. We studied the effect of DMC on the proliferation in vitro and in vivo. Transwell migration assay was used to estimate the inhibition of DMC on invasion. Moreover, the expressions of PARP, caspase-3, survivin and E-cadherin were detected to uncover the related signaling pathways by western blotting assay both in vitro and in vivo. RESULTS DMC significantly inhibited the growth of colon cancer cells in dose-dependent manner; IC50 for DMC was calculated to be 43.4, 28.2 and 454.8µM on HT-29, SW480 and NCM460. DMC significantly increased the apoptosis in both HT-29 (p=0.0051) and SW480 (p=0.0013) cells in vitro, and significantly suppressed the growth of both cell lines in vivo. Moreover, DMC reduced the number of migrated cells in both HT-29 (p=0.007) and SW480 (p=0.004) cells. By western blotting analysis, the cleavage of pro-caspases-3 and PARP were clearly induced by DMC to their active form, while the expression of survivin was reduced and E-cadherin was enhanced in both cells in vitro and in vivo. CONCLUSIONS DMC may exert an effective anti-tumor effect in colon cancer cells by down-regulating survivin and upregulating E-cadherin.

  12. Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons.

    PubMed

    Triana-Baltzer, Gallen B; Liu, Zhaoping; Gounko, Natalia V; Berg, Darwin K

    2008-09-01

    Neuroligin, SynCAM, and L1-CAM are cell adhesion molecules with synaptogenic roles in glutamatergic pathways. We show here that SynCAM is expressed in the chick ciliary ganglion, embedded in a nicotinic pathway, and, as shown previously for neuroligin and L1-CAM, acts transcellularly to promote synaptic maturation on the neurons in culture. Moreover, we show that electroporation of chick embryos with dominant negative constructs disrupting any of the three molecules in vivo reduces the total amount of presynaptic SV2 overlaying the neurons expressing the constructs. Only disruption of L1-CAM and neuroligin, however, reduces the number of SV2 puncta specifically overlaying nicotinic receptor clusters. Disrupting L1-CAM and neuroligin together produces no additional decrement, indicating that they act on the same subset of synapses. SynCAM may affect synaptic maturation rather than synapse formation. The results indicate that individual neurons can express multiple synaptogenic molecules with different effects on the same class of nicotinic synapses.

  13. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  14. Getting to the core of cadherin complex function in Caenorhabditis elegans.

    PubMed

    Hardin, Jeff

    2015-01-01

    The classic cadherin-catenin complex (CCC) mediates cell-cell adhesion in metazoans. Although substantial insights have been gained by studying the CCC in vertebrate tissue culture, analyzing requirements for and regulation of the CCC in vertebrates remains challenging. Caenorhabditis elegans is a powerful system for connecting the molecular details of CCC function with functional requirements in a living organism. Recent data, using an "angstroms to embryos" approach, have elucidated functions for key residues, conserved across all metazoans, that mediate cadherin/β-catenin binding. Other recent work reveals a novel, potentially ancestral, role for the C. elegans p120ctn homologue in regulating polarization of blastomeres in the early embryo via Cdc42 and the partitioning-defective (PAR)/atypical protein kinase C (aPKC) complex. Finally, recent work suggests that the CCC is trafficked to the cell surface via the clathrin adaptor protein complex 1 (AP-1) in surprising ways. These studies continue to underscore the value of C. elegans as a model system for identifying conserved molecular mechanisms involving the CCC.

  15. Rapid detection of urinary soluble intercellular adhesion molecule-1 for determination of lupus nephritis activity.

    PubMed

    Wang, Yanyun; Tao, Ye; Liu, Yi; Zhao, Yi; Song, Chao; Zhou, Bin; Wang, Tao; Gao, Linbo; Zhang, Lin; Hu, Huaizhong

    2018-06-01

    The current methods of monitoring the activity of lupus nephritis (LN) may cause unnecessary hospital visits or delayed immunosuppressive therapy. We aimed to find a urinary biomarker that could be developed as a home-based test for monitoring the activity of LN.Urine samples were collected immediately before a renal biopsy from patients of suspected active LN, and also from patients with inactive LN, systemic lupus erythematous without LN or healthy controls. Biomarker search was conducted on a cytokine antibody array and confirmation was done by quantitative evaluation with enzyme-linked immunosorbent assay. The Mann-Whiney test or Student t test was used to compare the levels of 9 cytokines between different groups. The sensitivity and specificity of each cytokine for diagnosis of LN was evaluated by receiver operating characteristic curve. A rapid test based on colloidal gold immunochromatography was then developed for bedside or home use. Furthermore, an experimental e-healthcare system was constructed for recording and sharing the results of the rapid test a cloud-assisted internet of things (IoT) consisting of a sensing device, an IoT device and a cloud server.Adiponectin (Acrp30), soluble intercellular cell adhesion molecule-1 (sICAM-1), neural cell adhesion molecule 1 (NCAM-1), and CD26 were significantly higher in urine samples of active LN patients. sICAM-1 appeared more sensitive and specific among these candidates. When the cut-off value of sICAM-1 was set at 1.44 ng/mL, the sensitivity reached 98.33% with a specificity at 85.71%. The sICAM-1 strip test showed comparable sensitivity of 95% and a specificity of 83.3% for assessing the LN activity. Meanwhile, the e-healthcare system was able to conveniently digitize and share the sICAM-1 rapid test results.sICAM-1 appeared to be an excellent biomarker for monitoring LN activity. The e-healthcare system with cloud-assisted IoT could assist the digitalization and sharing of the bedside or home-based s

  16. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    NASA Astrophysics Data System (ADS)

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  17. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  18. Mechanical Properties of β-Catenin Revealed by Single-Molecule Experiments

    PubMed Central

    Valbuena, Alejandro; Vera, Andrés Manuel; Oroz, Javier; Menéndez, Margarita; Carrión-Vázquez, Mariano

    2012-01-01

    β-catenin is a central component of the adaptor complex that links cadherins to the actin cytoskeleton in adherens junctions and thus, it is a good candidate to sense and transmit mechanical forces to trigger specific changes inside the cell. To fully understand its molecular physiology, we must first investigate its mechanical role in mechanotransduction within the cadherin system. We have studied the mechanical response of β-catenin to stretching using single-molecule force spectroscopy and molecular dynamics. Unlike most proteins analyzed to date, which have a fixed mechanical unfolding pathway, the β-catenin armadillo repeat region (ARM) displays low mechanostability and multiple alternative unfolding pathways that seem to be modulated by its unstructured termini. These results are supported by steered molecular dynamics simulations, which also predict its mechanical stabilization and unfolding pathway restrictions when the contiguous α-helix of the C-terminal unstructured region is included. Furthermore, simulations of the ARM/E-cadherin cytosolic tail complex emulating the most probable stress geometry occurring in vivo show a mechanical stabilization of the interaction whose magnitude correlates with the length of the stretch of the cadherin cytosolic tail that is in contact with the ARM region. PMID:23083718

  19. Engrailed negatively regulates the expression of cell adhesion molecules connectin and neuroglian in embryonic Drosophila nervous system.

    PubMed

    Siegler, M V; Jia, X X

    1999-02-01

    Engrailed is expressed in subsets of interneurons that do not express Connectin or appreciable Neuroglian, whereas other neurons that are Engrailed negative strongly express these adhesion molecules. Connectin and Neuroglian expression are virtually eliminated in interneurons when engrailed expression is driven ubiquitously in neurons, and greatly increased when engrailed genes are lacking in mutant embryos. The data suggest that Engrailed is normally a negative regulator of Connectin and neuroglian. These are the first two "effector" genes identified in the nervous system of Drosophila as regulatory targets for Engrailed. We argue that differential Engrailed expression is crucial in determining the pattern of expression of cell adhesion molecules and thus constitutes an important determinant of neuronal shape and perhaps connectivity.

  20. Soy-Leaf Extract Exerts Atheroprotective Effects via Modulation of Krüppel-Like Factor 2 and Adhesion Molecules

    PubMed Central

    Han, Jong-Min; Li, Hua; Cho, Moon-Hee; Baek, Seung-Hwa; Lee, Chul-Ho; Park, Ho-Yong; Jeong, Tae-Sook

    2017-01-01

    Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR−/−) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR−/− mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively. PMID:28208647

  1. Downregulation of Bit1 expression promotes growth, anoikis resistance, and transformation of immortalized human bronchial epithelial cells via Erk activation-dependent suppression of E-cadherin.

    PubMed

    Yao, Xin; Gray, Selena; Pham, Tri; Delgardo, Mychael; Nguyen, An; Do, Stephen; Ireland, Shubha Kale; Chen, Renwei; Abdel-Mageed, Asim B; Biliran, Hector

    2018-01-01

    The mitochondrial Bit1 protein exerts tumor-suppressive function in NSCLC through induction of anoikis and inhibition of EMT. Having this dual tumor suppressive effect, its downregulation in the established human lung adenocarcinoma A549 cell line resulted in potentiation of tumorigenicity and metastasis in vivo. However, the exact role of Bit1 in regulating malignant growth and transformation of human lung epithelial cells, which are origin of most forms of human lung cancers, has not been examined. To this end, we have downregulated the endogenous Bit1 expression in the immortalized non-tumorigenic human bronchial epithelial BEAS-2B cells. Knockdown of Bit1 enhanced the growth and anoikis insensitivity of BEAS-2B cells. In line with their acquired anoikis resistance, the Bit1 knockdown BEAS-2B cells exhibited enhanced anchorage-independent growth in vitro but failed to form tumors in vivo. The loss of Bit1-induced transformed phenotypes was in part attributable to the repression of E-cadherin expression since forced exogenous E-cadherin expression attenuated the malignant phenotypes of the Bit1 knockdown cells. Importantly, we show that the loss of Bit1 expression in BEAS-2B cells resulted in increased Erk activation, which functions upstream to promote TLE1-mediated transcriptional repression of E-cadherin. These collective findings indicate that loss of Bit1 expression contributes to the acquisition of malignant phenotype of human lung epithelial cells via Erk activation-induced suppression of E-cadherin expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less

  3. Outer membrane protein A of Escherichia coli K1 selectively enhances the expression of intercellular adhesion molecule-1 in brain microvascular endothelial cells.

    PubMed

    Selvaraj, Suresh K; Periandythevar, Parameswaran; Prasadarao, Nemani V

    2007-04-01

    Escherichia coli K1 meningitis is a serious central nervous system disease with unchanged mortality and morbidity rates for last few decades. Intercellular adhesion molecule 1 (ICAM-1) is a cell adhesion molecule involved in leukocyte trafficking toward inflammatory stimuli at the vascular endothelium; however, the effect of E. coli invasion of endothelial cells on the expression of ICAM-1 is not known. We demonstrate here that E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) selectively up-regulates the expression of ICAM-1, which occurs only in HBMEC invaded by the bacteria. The interaction of outer membrane protein A (OmpA) of E. coli with its receptor, Ecgp, on HBMEC was critical for the up-regulation of ICAM-1 and was depend on PKC-alpha and PI3-kinase signaling. Of note, the E. coli-induced up-regulation of ICAM-1 was not due to the cytokines secreted by HBMEC upon bacterial infection. Activation of NF-kappaB was required for E. coli mediated expression of ICAM-1, which was significantly inhibited by over-expressing the dominant negative forms of PKC-alpha and p85 subunit of PI3-kinase. The increased expression of ICAM-1 also enhanced the binding of THP-1 cells to HBMEC. Taken together, these data suggest that localized increase in ICAM-1 expression in HBMEC invaded by E. coli requires a novel interaction between OmpA and its receptor, Ecgp.

  4. Davallia bilabiata inhibits TNF-α-induced adhesion molecules and chemokines by suppressing IKK/NF-kappa B pathway in vascular endothelial cells.

    PubMed

    Yang, Rong-Chi; Chang, Cheng-Chieh; Sheen, Jer-Ming; Wu, Hsiao-Ting; Pang, Jong-Hwei S; Huang, Sheng-Teng

    2014-01-01

    Davallia bilabiata (D. bilabiata) is also called GuSuiBu in Taiwan and is used as a substitute for Drynaria fortunei J. Sm. It is often used for trauma and bone repair. The inhibitory effect of D. bilabiata on inflammatory activity has not been reported. In the present study, we aimed to study the mechanism of anti-inflammation of D. bilabiata on the adhesion of leukocytes to vascular endothelial cells. The results showed that D. bilabiata, at concentrations without cytotoxic effect, inhibited the adhesion of monocytes (THP-1) to the TNF-α-stimulated human umbilical vascular endothelial cells (HUVECs). D. bilabiata suppressed the expression of the adhesion molecules ICAM, VCAM, and E-selectin at both the mRNA and protein level. In addition, both of the TNF-α-induced mRNA and protein expression of chemokines including fractalkine/CX3CL1, MCP-1 and RANTES as well as the level of secreted soluble fractalkine were decreased by D. bilabiata. We also verified that D. bilabiata inhibited the TNF-α-induced nuclear translocation of NF-κB through the inhibitory process on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. All together, we concluded that the D. bilabiata affected the canonical pathway of TNF-α-induced NF-κB activation and down-regulated cell adhesion molecules and chemokine expression through inhibition of the NF-κB/IκBα/IKK signaling pathway. These findings strongly indicated that D. bilabiata might be a promising alternative/adjunct treatment for inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.

  5. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition.

    PubMed

    Rivero, O; Selten, M M; Sich, S; Popp, S; Bacmeister, L; Amendola, E; Negwer, M; Schubert, D; Proft, F; Kiser, D; Schmitt, A G; Gross, C; Kolk, S M; Strekalova, T; van den Hove, D; Resink, T J; Nadif Kasri, N; Lesch, K P

    2015-10-13

    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.

  6. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    PubMed

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  7. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines.

    PubMed

    Sandquist, Elizabeth J; Somji, Seema; Dunlevy, Jane R; Garrett, Scott H; Zhou, Xu Dong; Slusser-Nore, Andrea; Sens, Donald A

    2016-01-01

    Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition

  8. Streptococcus pyogenes Phospholipase A2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice.

    PubMed

    Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2017-01-01

    The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.

  9. Prognostic role of integrin β1, E-cadherin, and rac1 expression in small cell lung cancer.

    PubMed

    Chang, Myung Hee; Lee, Kyungji; Lee, Kyo-Young; Kim, Yeon Sil; Kim, Young Kyoon; Kang, Jin-Hyoung

    2012-01-01

    Integrin β(1) mediates cellular adhesion to the extracellular matrix (ECM) and is correlated with highly invasive and metastatic behavior in small cell lung cancer (SCLC). E-cadherin (ECAD) is a calcium-dependent cell-cell adhesion receptor that restricts invasion of cells and reduces metastasis. Rac1 is involved in the regulation of the actin cytoskeleton, adhesion, migration, invasion, and tumor metastasis. The aim of this study was to examine integrin β(1) , ECAD and rac1 expression in SCLC and to analyze the prognostic value of these markers in patients with SCLC. We analyzed integrin β(1) , ECAD, and rac1 expression in 112 SCLC tissues by immunohistochemical staining. Correlative analyses between integrin β(1) , ECAD, and rac1 expression and cliniopathological factors were performed. A total of 65 patients had extensive disease (ED) (58%), and 47 had limited disease (LD) (42%). The median follow-up duration was 61 months (range: 14-117 months), and the median progression free survival (PFS) and overall survival (OS) were 6.1 months (range: 4.8-7.4 months) and 9.7 months (range: 8.1-11.3 months), respectively. The expression of integrin β(1) , ECAD, and rac1 protein was observed in 64, 73, and 99 of SCLC tissues, respectively. The correlative analyses between integrin β(1) , ECAD, or rac1 expression and various clinical parameters did not show any statistical significance. However, the ECAD expression was associated with OS in the entire cohort. In contrast, the expression of integrin β(1) and rac1 was not associated with PFS or OS. In a subgroup analysis, patients with less than two metastasis had significantly longer OS (p = 0.047) if their tumors expressed integrin β(1) compared to those without integrin β(1) expression. In addition, OS was longer for patients with ECAD positive tumors compared to those whose tumors did not express ECAD in males (p = 0.032) and patients who never smoked (p < 0.001). Multivariate analysis showed that LD (p = 0

  10. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2013-10-01

    4A, TGFbeta decreased E- cadherin expression and increase Col1a1 expression in MLE12 cells. Soluble Cad11 Fc fusion protein inhibited EMT induced by...TGFbeta as noted my higher E-cadherin levels and a significant reduction in Col1a1 mRNA. In contrast, when Cad11 Fc fusion protein was immobilized...Fc fusion protein alone was able to induce Col1a1 expression at the 50 ug/ml concentration, although E-cadherin expression was also increased. In

  11. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives.

    PubMed

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-03-21

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.

  12. The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca2+-dependent cell adhesion.

    PubMed Central

    Ringwald, M; Schuh, R; Vestweber, D; Eistetter, H; Lottspeich, F; Engel, J; Dölz, R; Jähnig, F; Epplen, J; Mayer, S

    1987-01-01

    We have determined the amino acid sequence of the Ca2+-dependent cell adhesion molecule uvomorulin as it appears on the cell surface. The extracellular part of the molecule exhibits three internally repeated domains of 112 residues which are most likely generated by gene duplication. Each of the repeated domains contains two highly conserved units which could represent putative Ca2+-binding sites. Secondary structure predictions suggest that the putative Ca2+-binding units are located in external loops at the surface of the protein. The protein sequence exhibits a single membrane-spanning region and a cytoplasmic domain. Sequence comparison reveals extensive homology to the chicken L-CAM. Both uvomorulin and L-CAM are identical in 65% of their entire amino acid sequence suggesting a common origin for both CAMs. Images Fig. 1. Fig. 4. Fig. 7. PMID:3501370

  13. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    PubMed

    Roe, Kelsey; Orillo, Beverly; Verma, Saguna

    2014-01-01

    Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  14. Cadherin genes and evolutionary novelties in the octopus.

    PubMed

    Wang, Z Yan; Ragsdale, Clifton W

    2017-09-01

    All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    PubMed Central

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  16. E-Selectin Mediates Stem Cell Adhesion and Formation of Blood Vessels in a Murine Model of Infantile Hemangioma

    PubMed Central

    Smadja, David M.; Mulliken, John B.; Bischoff, Joyce

    2013-01-01

    Hemangioma stem cells (HemSCs) are multipotent cells isolated from infantile hemangioma (IH), which form hemangioma-like lesions when injected subcutaneously into immune-deficient mice. In this murine model, HemSCs are the primary target of corticosteroid, a mainstay therapy for problematic IH. The relationship between HemSCs and endothelial cells that reside in IH is not clearly understood. Adhesive interactions might be critical for the preferential accumulation of HemSCs and/or endothelial cells in the tumor. Therefore, we studied the interactions between HemSCs and endothelial cells (HemECs) isolated from IH surgical specimens. We found that HemECs isolated from proliferating phase IH, but not involuting phase, constitutively express E-selectin, a cell adhesion molecule not present in quiescent endothelial cells. E-selectin was further increased when HemECs were exposed to vascular endothelial growth factor–A or tumor necrosis factor–α. In vitro, HemSC migration and adhesion was enhanced by recombinant E-selectin but not P-selectin; both processes were neutralized by E-selectin–blocking antibodies. E-selectin–positive HemECs also stimulated migration and adhesion of HemSCs. In vivo, neutralizing antibodies to E-selectin strongly inhibited formation of blood vessels when HemSCs and HemECs were co-implanted in Matrigel. These data suggest that endothelial E-selectin could be a major ligand for HemSCs and thereby promote cellular interactions and vasculogenesis in IH. We propose that constitutively expressed E-selectin on endothelial cells in the proliferating phase is one mediator of the stem cell tropism in IH. PMID:23041613

  17. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  18. Different cytokeratin and neuronal cell adhesion molecule staining patterns in focal nodular hyperplasia and hepatic adenoma and their significance

    PubMed Central

    Iyer, Anita; Robert, Marie E.; Bifulco, Carlo B.; Salem, Ronald R.; Jain, Dhanpat

    2013-01-01

    Summary Differentiating focal nodular hyperplasia from hepatic adenoma can be challenging. Cytokeratin 7, neuronal cell adhesion molecule, and cytokeratin 19 are differentially expressed in hepatocytes, biliary epithelium, and possibly hepatic progenitor/stem cells. CD34 is known to have altered expression patterns in the hepatic endothelium in conditions associated with abnormal perfusion and in hepatocellular carcinoma. The purpose of this study was to examine the expression pattern of these markers in focal nodular hyperplasia and hepatic adenoma and assess their diagnostic use. Ten resection specimens each of hepatic adenoma and focal nodular hyperplasia (including a case of telangiectatic focal nodular hyperplasia) were selected for the study. Immunohistochemical analysis was performed using antibodies against cytokeratin 7, cytokeratin 19, neuronal cell adhesion molecule, and CD34 on formalin-fixed, paraffin-embedded sections from each case. The staining patterns and intensity for each marker were analyzed. In hepatic adenoma, the cytokeratin 7 stain revealed strong positivity in hepatocytes in patches, with a gradual decrease in the staining intensity as the cells differentiated towards mature hepatocytes. Although bile ducts were typically absent in hepatic adenoma, occasional ductules could be identified with cytokeratin 7 stain. In focal nodular hyperplasia, cytokeratin 7 showed strong staining of the biliary epithelium within the fibrous septa and staining of the peripheral hepatocytes of most lobules that was focal and weaker than hepatic adenoma. Cytokeratin 19 and neuronal cell adhesion molecule showed patchy and moderate staining in the biliary epithelium of the ductules in focal nodular hyperplasia. While in the hepatic adenoma, cytokeratin 19 showed only rare positivity in occasional cells within ductules, and neuronal cell adhesion molecule marked occasional isolated cells in the lesion. CD34 showed staining of sinusoids in the inflow areas

  19. RP1 Is a Phosphorylation Target of CK2 and Is Involved in Cell Adhesion

    PubMed Central

    Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association. PMID:23844040

  20. RP1 is a phosphorylation target of CK2 and is involved in cell adhesion.

    PubMed

    Stenner, Frank; Liewen, Heike; Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236) in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236) show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236) by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.