Science.gov

Sample records for adhesion molecule-1 expression

  1. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    SciTech Connect

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. )

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  2. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  3. Drug-induced expression of intercellular adhesion molecule-1 on lesional keratinocytes in fixed drug eruption.

    PubMed Central

    Teraki, Y.; Moriya, N.; Shiohara, T.

    1994-01-01

    The mechanism(s) and the factor(s) that contribute to preferential localization of fixed drug eruption (FDE) lesions to certain skin sites remain speculative. Previous studies suggested that populations of T cells residing in the lesional epidermis may be involved in selective destruction of the epidermis in FDE. In this study, to define the earliest cellular and molecular events with potential relevance to activation of the epidermal T cells, expression of adhesion molecules on keratinocytes (KC) and vascular endothelium was examined sequentially in the lesional skin of FDE patients after challenge with the causative drug. Rapid and intense intercellular adhesion molecule-1 (ICAM-1) expression was induced on the vascular endothelium and KC as early as 1.5 hours after challenge, at which time E-selectin and vascular cell adhesion molecule-1 (VCAM-1) were not up-regulated. In vitro studies using skin organ culture showed that the lesional KC and endothelium responded more rapidly and intensely to express ICAM-1 to tumor necrosis factor-alpha or interferon-gamma compared with those in the nonlesional skin. Surprisingly, such selective induction of KC ICAM-1 restricted to the lesional skin was also observed after exposure to the causative drug alone in skin organ culture. Pretreatment of the lesional skin with anti-tumor necrosis factor completely abrogated in vitro induction of KC ICAM-1 expression by the drug. Drug-induced, TNF-alpha-dependent KC ICAM-1 expression in the lesional skin suggests that induction of ICAM-1 expression by the lesional KC after ingestion of the drug would probably provide a localized initiating stimulus for activation of the disease-associated epidermal T cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7915886

  4. CCN4 induces vascular cell adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion.

    PubMed

    Liu, Ju-Fang; Hou, Sheng-Mou; Tsai, Chun-Hao; Huang, Chun-Yin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-05-01

    CCN4 is a cysteine-rich protein that belongs to the Cyr61, CTGF, Nov family of matricellular proteins. Here, we investigated the intracellular signaling pathways involved in CCN4-induced vascular cell adhesion molecule-1 expression in human osteoarthritis synovial fibroblasts. Stimulation of OASFs with CCN4 induced VCAM-1 expression. CCN4-induced VCAM-1 expression was attenuated by αvβ5 or α6β1 integrin antibody, Syk inhibitor, PKCδ inhibitor (rottlerin), JNK inhibitor (SP600125), and AP-1 inhibitors (curcumin and tanshinone). Stimulation of cells with CCN4 increased Syk, PKCδ, and JNK activation. Treatment of OASFs with CCN4 also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element in the VCAM-1 promoter. Moreover, up-regulation of VCAM-1 increased the adhesion of monocytes to OASF monolayers, and this adhesion was attenuated by transfection with a VCAM-1 siRNA. Our results suggest that CCN4 increases VCAM-1 expression in human OASFs via the Syk, PKCδ, JNK, c-Jun, and AP-1 signaling pathways. The CCN4-induced VCAM-1 expression promoted monocyte adhesion to human OASFs. PMID:23313051

  5. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  6. Arsenite enhances tumor necrosis factor-{alpha}-induced expression of vascular cell adhesion molecule-1

    SciTech Connect

    Tsou, T.-C. . E-mail: tctsou@nhri.org.tw; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-11-15

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-{alpha} (TNF-{alpha}), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-{alpha}-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-{kappa}B (NF-{kappa}B). To elucidate the role of GSH in regulation of AP-1, NF-{kappa}B, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific {gamma}-glutamylcysteine synthetase ({gamma}-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-{alpha}-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-{kappa}B activations by TNF-{alpha}. Moreover, we found that depletion of GSH would also attenuate the TNF-{alpha}-induced VCAM-1 expression with a down-regulation of the TNF-{alpha}-induced NF-{kappa}B activation and without significant effect on AP-1. On the other hand, the TNF-{alpha}-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-{kappa}B activity, suggesting that activation of both AP-1 and NF-{kappa}B was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-{alpha}-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-{kappa}B activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions

  7. Carcinoembryonic antigen-related cell adhesion molecule 1 is expressed and as a function histotype in ovarian tumors.

    PubMed

    Li, Ning; Yang, Jing-Yan; Wang, Xiao-Ying; Wang, Hai-Tao; Guan, Bing-Xin; Zhou, Cheng-Jun

    2016-02-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell-cell adhesion receptor and is implicated in several cellular functions. It is rarely reported in ovarian tumors. The aim of this study is to determine the expression of CEACAM1 in ovarian tumors, trying to see whether CEACAM1 has different expression patterns as a function of histotype. Antigen expression was examined by immunohistochemistry with mouse anti-human antibody for CEACAM1. Immunohistochemistry was performed using avidin-biotin-diaminobenzide staining. The results were expressed as average score ± SD (0, negative; 8, highest) for each histotype. In ovarian tumors, the benign serous and mucinous cystadenoma negatively or weakly expressed CEACAM1, the malignant epithelial tumors strongly expressed CEACAM1, and there was significant difference between benign epithelial tumor and adenocarcinoma (P < .05). The well-differentiated serous adenocarcinoma expressed CEACAM1 mainly with membrane pattern, and the intermediately and poorly differentiated serous adenocarcinomas expressed CEACAM1 mainly with cytoplasmic pattern (P < .05). In addition, CEACAM1 expression is elevated in solid tumors of ovary but variable as a function of histotype. Compared with membranous expression, the cytoplasmic expression was observed almost in metastatic carcinoma that might decrease the adhesive interactions of the carcinoma cells with the surrounding cells, especially with tumor cells, and this could facilitate the tumor cells to metastasize to distant regions. So, we thought that cytoplasmic CEACAM1 might play an important role in tumor progression, especially in tumor metastasis. PMID:26653024

  8. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  9. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  10. S fimbriae of uropathogenic Escherichia coli bind to primary human renal proximal tubular epithelial cells but do not induce expression of intercellular adhesion molecule 1.

    PubMed Central

    Kreft, B; Placzek, M; Doehn, C; Hacker, J; Schmidt, G; Wasenauer, G; Daha, M R; van der Woude, F J; Sack, K

    1995-01-01

    We have recently reported an increase of expression of the intercellular adhesion molecule 1 by renal carcinoma cells in response to S fimbriae of Escherichia coli. Now we demonstrate that E. coli expressing S and P fimbriae strongly binds to human proximal tubular epithelial cells. However, in primary and simian virus 40-transfected renal tubular epithelial cells S fimbriae do not enhance the expression of intercellular adhesion molecule 1. PMID:7622256

  11. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection

    PubMed Central

    Gong, Ai-Yu; Hu, Guoku; Zhou, Rui; Liu, Jun; Feng, Yaoyu; Soukup, Garrett A.; Chen, Xian-Ming

    2011-01-01

    Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrheal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia, a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3′-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3′-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection. PMID:21236259

  12. A heat-stable component of Bartonella henselae upregulates intercellular adhesion molecule-1 expression on vascular endothelial cells.

    PubMed

    Maeno, N; Yoshiie, K; Matayoshi, S; Fujimura, T; Mao, S; Wahid, M R; Oda, H

    2002-04-01

    Bartonella henselae upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). The induction level of ICAM-1 depended on the inoculation bacterial dose. ICAM-1 expression began increasing 4 h after infection and reached a sustained peak beginning at 12 h after B. henselae infection; this time course was similar to that of lipopolysaccharide (LPS) of Escherichia coli. The stimulatory effect was abolished when live B. henselae were separated from HUVECs by a filter membrane. The nonpiliated strain, which is unable to invade endothelial cells, induced ICAM-1 expression to the same extent as the piliated strain. Inactivation of B. henselae by ultraviolet (UV) irradiation, heat (56 degrees C, 30 min), or sonication did not alter its stimulatory activity. Polymyxin B, which strongly inhibited the effect of LPS, did not exert any influence on the stimulatory activity of B. henselae. Furthermore, the effect of sonicated B. henselae was not inhibited even by boiling, which was also the case with LPS. Our data suggest that some heat-stable component of B. henselae binds to the endothelial cell surface, inducing ICAM-1 expression. Though the participation of LPS could not be completely ruled out, we suppose that some unidentified heat-stable proteins, lipids, or polysaccharides may be the stimulatory factor(s). The ability of B. henselae to enhance the expression of adhesion molecules on endothelial cells may be an important mechanism in the pathogenesis of B. henselae infection. PMID:11967118

  13. Carboxylated, heteroaryl-substituted chalcones as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases.

    PubMed

    Meng, Charles Q; Ni, Liming; Worsencroft, Kimberly J; Ye, Zhihong; Weingarten, M David; Simpson, Jacob E; Skudlarek, Jason W; Marino, Elaine M; Suen, Ki-Ling; Kunsch, Charles; Souder, Amy; Howard, Randy B; Sundell, Cynthia L; Wasserman, Martin A; Sikorski, James A

    2007-03-22

    Starting from a simple chalcone template, structure-activity relationship (SAR) studies led to a series of carboxylated, heteroaryl-substituted chalcone derivatives as novel, potent inhibitors of vascular cell adhesion molecule-1 (VCAM-1) expression. Correlations between lipophilicity determined by calculated logP values and inhibitory efficacy were observed among structurally similar compounds of the series. Various substituents were found to be tolerated at several positions of the chalcone backbone as long as the compounds fell into the right range of lipophilicity. The chalcone alpha,beta-unsaturated ketone moiety seemed to be the pharmacophore required for inhibition of VCAM-1 expression. Compound 19 showed significant antiinflammatory effects in a mouse model of allergic inflammation, indicating that this series of compounds might have therapeutic value for human asthma and other inflammatory disorders. PMID:17323940

  14. The CO donor CORM-2 inhibits LPS-induced vascular cell adhesion molecule-1 expression and leukocyte adhesion in human rheumatoid synovial fibroblasts

    PubMed Central

    Chi, Pei-Ling; Chuang, Yu-Chen; Chen, Yu-Wen; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2014-01-01

    BACKGROUND AND PURPOSE Infection with Gram-negative bacteria has been recognized as an initiator of rheumatoid arthritis, which is characterized by chronic inflammation and infiltration of immune cells. Carbon monoxide (CO) exhibits anti-inflammatory properties. Here we have investigated the detailed mechanisms of vascular cell adhesion molecule-1 (VCAM-1) expression induced by LPS and if CO inhibited LPS-induced leukocyte adhesion to synovial fibroblasts by suppressing VCAM-1 expression. EXPERIMENTAL APPROACH Human rheumatoid arthritis synovial fibroblasts (RASFs) were incubated with LPS and/or the CO-releasing compound CORM-2. Effects of LPS on VCAM-1 levels were determined by analysing mRNA expression, promoter activity, protein expression, and immunohistochemical staining. The molecular mechanisms were investigated by determining the expression, activation, and binding activity of transcriptional factors using target signal antagonists. KEY RESULTS CORM-2 significantly inhibited inflammatory responses in LPS-treated RASFs by down-regulating the expression of adhesion molecule VCAM-1 and leukocyte infiltration. The down-regulation of LPS-induced VCAM-1 expression involved inhibition of the expression of phosphorylated-NF-κB p65 and AP-1 (p-c-Jun, c-Jun and c-Fos mRNA levels). These results were confirmed by chromatin immunoprecipitation assay to detect NF-κB and AP-1 DNA binding activity. CONCLUSIONS AND IMPLICATIONS LPS-mediated formation of the TLR4/MyD88/TRAF6/c-Src complex regulated NF-κB and MAPKs/AP-1 activation leading to VCAM-1 expression and leukocyte adhesion. CORM-2, which liberates CO to elicit direct biological activities, attenuated LPS-induced VCAM-1 expression by interfering with NF-κB and AP-1 activation, and significantly reduced LPS-induced immune cell infiltration of the synovium. PMID:24628691

  15. Discovery of novel phenolic antioxidants as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases.

    PubMed

    Meng, Charles Q; Somers, Patricia K; Hoong, Lee K; Zheng, X Sharon; Ye, Zhihong; Worsencroft, Kimberly J; Simpson, Jacob E; Hotema, Martha R; Weingarten, M David; MacDOnald, Mathew L; Hill, Russell R; Marino, Elaine M; Suen, Ki-Ling; Luchoomun, Jayraz; Kunsch, Charles; Landers, Laura K; Stefanopoulos, Dimitria; Howard, Randy B; Sundell, Cynthia L; Saxena, Uday; Wasserman, Martin A; Sikorski, James A

    2004-12-01

    Vascular cell adhesion molecule-1 (VCAM-1) mediates recruitment of leukocytes to endothelial cells and is implicated in many inflammatory conditions. Since part of the signal transduction pathway that regulates the activation of VCAM-1 expression is redox-sensitive, compounds with antioxidant properties may have inhibitory effects on VCAM-1 expression. Novel phenolic compounds have been designed and synthesized starting from probucol (1). Many of these compounds demonstrated potent inhibitory effects on cytokine-induced VCAM-1 expression and displayed potent antioxidant effects in vitro. Some of these derivatives (4o, 4p, 4w, and 4x) inhibited lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and IL-6 from human peripheral blood mononuclear cells (hPBMCs) in a concentration-dependent manner in vitro and showed antiinflammatory effects in an animal model. Compounds 4ad and 4ae are currently in clinical trials for the treatment of rheumatoid arthritis (RA) and prevention of chronic organ transplant rejection, respectively. PMID:15566311

  16. In situ expression of intercellular adhesion molecule-1 (ICAM-1) mRNA in calves with acute Pasteurella haemolytica pneumonia.

    PubMed

    Radi, Z A; Register, K B; Lee, E K; Kehrli, M E; Brogden, K A; Gallup, J M; Ackermann, M R

    1999-09-01

    The in situ expression of intercellular adhesion molecule-1 (ICAM-1) mRNA in normal and pneumonic lung tissues of Holstein calves with bovine leukocyte adhesion deficiency (BLAD) was compared with that of age-matched non-BLAD Holstein calves by in situ hybridization. Twenty-four Holstein calves (both BLAD and non-BLAD) were randomly assigned to one of two experimental groups and inoculated intrabronchially with Pasteurella haemolytica or pyrogen-free saline. Lung tissues were collected and fixed in 10% neutral formalin at 2 or 4 hours postinoculation (PI). The expression and distribution of ICAM-1 mRNA in the different cell types of the lung tissue was detected by in situ hybridization with a 307-base-pair bovine ICAM-1 riboprobe. In lungs of both non-BLAD and BLAD saline-inoculated calves, ICAM-1 expression was present in epithelial cells but occurred in <30% of cells in bronchi, bronchioles, and alveoli. ICAM-1 expression in vascular endothelial cells was present in <30% of cells in pulmonary arteries and veins. The expression of ICAM-1 was significantly greater (>60% of cells) in bronchiolar and alveolar epithelial cells and pulmonary endothelial cells of arteries and veins in both BLAD and non-BLAD calves inoculated with P. haemolytica. Bronchiolar epithelium had the highest intensity of mRNA expression and highest percentage of cells that were stained, whereas bronchial epithelium had the lowest intensity and percentage of cells stained. Most alveolar macrophages and neutrophils in infected lungs also expressed ICAM-1. ICAM-1 expression was generally increased in infected BLAD calves at 2 hours PI as compared with non-BLAD calves but not at 4 hours PI. The increased expression of ICAM-1 during acute P. haemolytica pneumonia in calves suggests that ICAM-1 is upregulated and may play a role in leukocyte infiltration. The extent of ICAM-1 expression in P. haemolytica-inoculated calves with BLAD was initially enhanced but otherwise similar to that in non

  17. Expression of a Soluble Isoform of Cell Adhesion Molecule 1 in the Brain and Its Involvement in Directional Neurite Outgrowth

    PubMed Central

    Hagiyama, Man; Ichiyanagi, Naoki; Kimura, Keiko B.; Murakami, Yoshinori; Ito, Akihiko

    2009-01-01

    Cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is expressed on superior cervical ganglion neurites and mediates cell–cell adhesion by trans-homophilic binding. In addition to the membrane-bound form, we have previously shown that a soluble form (sCADM1) generated by alternative splicing possesses a stop codon immediately downstream of the immunoglobulin-like domain. Here, we demonstrate the presence of sCADM1 in vivo and its possible role in neurite extension. sCADM1 appears to be a stromal protein because extracellular-restricted, but not intracellular-restricted, anti-CADM1 antibody stained stromal protein-rich extract from mouse brains. Murine plasmacytoma cells, P3U1, were modified to secrete sCADM1 fused with either immunoglobulin (Ig)G Fc portion (sCADM1-Fc) or its deletion form that lacks the immunoglobulin-like domain (ΔsCADM1-Fc). When P3U1 derivatives expressing sCADM1-Fc or ΔsCADM1-Fc were implanted into collagen gels, Fc-fused proteins were present more abundantly around the cells. Superior cervical ganglion neurons, parental P3U1, and either derivative were implanted into collagen gels separately, and co-cultured for 4 days. Bodian staining of the gel sections revealed that most superior cervical ganglion neurites turned toward the source of sCADM1-Fc, but not ΔsCADM1-Fc. Furthermore, immunofluorescence signals for sCADM1-Fc and membrane-bound CADM1 were co-localized on the neurite surface. These results show that sCADM1 appears to be involved in directional neurite extension by serving as an anchor to which membrane-bound CADM1 on the neurites can bind. PMID:19435791

  18. Prognostic prediction and diagnostic role of intercellular adhesion molecule-1 (ICAM1) expression in clear cell renal cell carcinoma.

    PubMed

    Shi, Xuebing; Jiang, Jifa; Ye, Xiaobing; Liu, Yanyan; Wu, Qiong; Wang, Lu

    2014-08-01

    The intercellular adhesion molecule-1 (ICAM1) has been reported to function in multiple malignancies, but its effect on clear cell renal cell carcinoma (ccRCC) hasn't been discussed yet. This study aimed to identify the potential role of ICAM1 in prognostic prediction and early diagnosis of ccRCC. ICAM1 expression was inspected by immunohistochemistry and correlated with clinicopathologic variables. Association between protein expression and cancer-specific survival (CSS) of ccRCC patients was evaluated and the value of area under the receiver operating characteristics (ROC) curve (AUC) was calculated to measure the protein's diagnostic accuracy. ICAM1 was positively immunostained in 83.2% of 173 ccRCC tissues, but negatively immunostained in all the para-cancerous normal epitheliums of renal tubules. High ICAM1 expression was significantly related to male sex (P = 0.00241), T3/T4 stage (P = 0.02249), non-N0M0 stage (P = 0.03797) and positive renal pelvis invasion (P = 0.04227). Kaplan-Meier survival analysis illustrated that high ICAM1 expression was significantly correlated to a decreased CSS (P = 0.00006). Multivariate Cox analysis indicated that ICAM1 was an independent predictor for CSS of patients (P = 0.00451). Furthermore, the AUC value of ICAM1 in diagnosing ccRCC was 0.916 (P < 0.00001). In conclusion, high ICAM1 expression on tumor cells indicates a poor outcome of patients and ICAM1 is likely to be an independent predictor for the prognosis of ccRCC. Moreover, ICAM1 has a high AUC value and may be a potential and useful diagnostic marker. PMID:24535541

  19. Late and persistent up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression by ionizing radiation in human endothelial cells in vitro.

    PubMed

    Gaugler, M H; Squiban, C; van der Meeren, A; Bertho, J M; Vandamme, M; Mouthon, M A

    1997-08-01

    Adhesion molecules play a key role in cellular traffic through vascular endothelium, in particular during the inflammatory response when leukocytes migrate from blood into tissues. Since inflammation is one of the major consequences of radiation injury, we investigated the effect of ionizing radiation on cell-surface expression of the intercellular adhesion molecule-1 (ICAM-1), the vascular cell adhesion molecule-1 (VCAM-1) and E-selectin in cultured human umbilical vein endothelial cells (HUVEC). Flow cytometry performed on irradiated HUVEC revealed both a time- (from 2 to 10 days) and dose- (from 2 to 10 Gy) dependent up-regulation of basal expression of ICAM-1, and no induction of VCAM-1 or E-selectin. The radiation-induced increase in ICAM-1 expression on HUVEC was correlated with augmented adhesion of neutrophils on irradiated endothelial cells. Interleukin-6 (Il-6) or other soluble factors released by irradiation were not involved in the enhanced ICAM-1 expression by irradiation. Northern blot analysis showed an overexpression of ICAM-1 mRNA from 1 to 6 days after a 10 Gy exposure. Our data suggest that ICAM-1 participates in the radiation-induced inflammatory reaction of the endothelium. PMID:9269313

  20. TNF-α enhances vascular cell adhesion molecule-1 expression in human bone marrow mesenchymal stem cells via the NF-κB, ERK and JNK signaling pathways

    PubMed Central

    LU, ZI-YUAN; CHEN, WAN-CHENG; LI, YONG-HUA; LI, LI; ZHANG, HANG; PANG, YAN; XIAO, ZHI-FANG; XIAO, HAO-WEN; XIAO, YANG

    2016-01-01

    The migration of circulating mesenchymal stem cells (MSCs) to injured tissue is an important step in tissue regeneration and requires adhesion to the microvascular endothelium. The current study investigated the underlying mechanism of MSC adhesion to endothelial cells during inflammation. In in vitro MSC culture, tumor necrosis factor-α (TNF-α) increased the level of vascular cell adhesion molecule-1 (VCAM-1) expression in a dose-dependent manner. The nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathway inhibitors, pyrrolidine dithiocarbamate (PDTC), U0126 and SP600125, respectively, suppressed VCAM-1 expression induced by TNF-α at the mRNA and protein levels (P<0.05). TNF-α augmented the activation of NF-κB, ERK and JNK, and promoted MSC adhesion to human umbilical vein endothelial cells; however, the inhibitors of NF-κB, ERK and JNK did not affect this process in these cells. The results of the current study indicate that adhesion of circulating MSCs to the endothelium is regulated by TNF-α-induced VCAM-1 expression, which is potentially mediated by the NF-κB, ERK and JNK signaling pathways. PMID:27221006

  1. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia.

    PubMed

    Hoyte, Lisa C; Brooks, Keith J; Nagel, Simon; Akhtar, Asim; Chen, Ruoli; Mardiguian, Sylvie; McAteer, Martina A; Anthony, Daniel C; Choudhury, Robin P; Buchan, Alastair M; Sibson, Nicola R

    2010-06-01

    The pathogenesis of stroke is multifactorial, and inflammation is thought to have a critical function in lesion progression at early time points. Detection of inflammatory processes associated with cerebral ischemia would be greatly beneficial in both designing individual therapeutic strategies and monitoring outcome. We have recently developed a new approach to imaging components of the inflammatory response, namely endovascular adhesion molecule expression on the brain endothelium. In this study, we show specific imaging of vascular cell adhesion molecule (VCAM)-1 expression in a mouse model of middle cerebral artery occlusion (MCAO), and a reduction in this inflammatory response, associated with improved behavioral outcome, as a result of preconditioning. The spatial extent of VCAM-1 expression is considerably greater than the detectable lesion using diffusion-weighted imaging (25% versus 3% total brain volume), which is generally taken to reflect the core of the lesion at early time points. Thus, VCAM-1 imaging seems to reveal both core and penumbral regions, and our data implicate VCAM-1 upregulation and associated inflammatory processes in the progression of penumbral tissue to infarction. Our findings indicate that such molecular magnetic resonance imaging (MRI) approaches could be important clinical tools for patient evaluation, acute monitoring of therapy, and design of specific treatment strategies. PMID:20087364

  2. Cytoadherence of Plasmodium falciparum to intercellular adhesion molecule 1 and chondroitin-4-sulfate expressed by the syncytiotrophoblast in the human placenta.

    PubMed Central

    Maubert, B; Guilbert, L J; Deloron, P

    1997-01-01

    Late stages of Plasmodium falciparum-infected erythrocytes (IRBCs) frequently sequester in the placentas of pregnant women, a phenomenon associated with low birth weight of the offspring. To investigate the physiological mechanism of this sequestration, we developed an in vitro assay for studying the cytoadherence of IRBCs to cultured term human trophoblasts. The capacity for binding to the syncytiotrophoblast varied greatly among P. falciparum isolates and was mediated by intercellular adhesion molecule 1 (ICAM-1), as binding was totally inhibited by 84H10, a monoclonal antibody specific for ICAM-1. Binding of the P. falciparum line RP5 to the syncytiotrophoblast involves chondroitin-4-sulfate (CSA), as this binding was dramatically impaired by addition of free CSA to the binding medium or by preincubation of the syncytiotrophoblast with chondroitinase ABC. ICAM-1 and CSA were visualized on the syncytiotrophoblast by immunofluorescence, while CD36, E-selectin, and vascular cell adhesion molecule 1 were not expressed even on tumor necrosis factor alpha (TNF-alpha)-stimulated syncytiotrophoblast tissue, and monoclonal antibodies against these cell adhesion molecules did not inhibit cytoadherence. ICAM-1 expression and cytoadherence of wild isolates was upregulated by TNF-alpha, a cytokine that can be secreted by the numerous mononuclear phagocytes present in malaria-infected placentas. These results suggest that cytoadherence may be involved in the placental sequestration and broaden the understanding of the physiopathology of the malaria-infected placenta. PMID:9119459

  3. Schwann cell differentiation inhibits interferon-gamma induction of expression of major histocompatibility complex class II and intercellular adhesion molecule-1.

    PubMed

    Lisak, Robert P; Bealmear, Beverly; Benjamins, Joyce A

    2016-06-15

    Interferon-gamma (IFN-γ) upregulates major histocompatibility complex class II (MHC class II) antigens and intercellular adhesion molecule-1 (ICAM-1) on Schwann cells (SC) in vitro, but in nerves of animals and patients MHC class II is primarily expressed on inflammatory cells. We investigated whether SC maturation influences their expression. IFN-γ induced MHC class II and upregulated ICAM-1; the axolemma-like signal 8-bromo cyclic adenosine monophosphate (8 Br cAMP) with IFN-γ inhibited expression. Delaying addition of 8 Br cAMP to SC already exposed to IFN-γ inhibited ongoing expression; addition of IFN-γ to SC already exposed to 8 Br cAMP resulted in minimal expression. Variability of cytokine-induced MHC class II and ICAM-1 expression by SC in vivo may represent the variability of signals from axolemma. PMID:27235355

  4. Monocyte Trafficking to Hepatic Sites of Bacterial Infection Is Chemokine Independent and Directed by Focal Intercellular Adhesion Molecule-1 Expression

    PubMed Central

    Shi, Chao; Velázquez, Peter; Hohl, Tobias M.; Leiner, Ingrid; Dustin, Michael L.; Pamer, Eric G.

    2010-01-01

    Recruitment of CCR2+Ly6Chigh monocytes to sites of infection is essential for efficient clearance of microbial pathogens. Although CCR2-mediated signals promote monocyte emigration from bone marrow, the contribution of CCR2 to later stages of monocyte recruitment remains unresolved. In this article, we show that CCR2 deficiency markedly worsens hepatic Listeria monocytogenes infection because Ly6Chigh monocytes are retained in the bone marrow. Intravenously transferred, CCR2-deficient Ly6Chigh monocytes traffic normally to hepatic foci of infection and contribute to bacterial clearance. Pertussis toxin treatment of adoptively transferred monocytes does not impair their intrahepatic trafficking, suggesting that chemokine signaling, once CCR2+ Ly6Chigh monocytes emigrate from the bone marrow, is not required for monocyte localization to sites of bacterial infection in the liver. Expression of ICAM-1 is induced in close proximity to foci of bacterial infection in the liver, including on CD31+ endothelial cells, and blockade of CD11b and CD44 diminishes monocyte localization to these hepatic foci. Our studies demonstrated that Ly6Chigh monocyte recruitment from the bloodstream to the L. monocytogenes-infected liver does not require chemokine receptor-mediated signals but instead is principally dependent on integrin- and extracellular matrix-mediated monocyte adhesion. PMID:20435926

  5. Allergen-stimulated T lymphocytes from allergic patients induce vascular cell adhesion molecule-1 (VCAM-1) expression and IL-6 production by endothelial cells.

    PubMed Central

    Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B

    1995-01-01

    Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574

  6. Simple modifications to Methimazole that enhance its inhibitory effect on Tumor Necrosis Factor-α-induced Vascular Cell Adhesion Molecule-1 expression by human endothelial cells

    PubMed Central

    Alapati, Anuja; Deosarkar, Sudhir P.; Lanier, Olivia L.; Qi, Chunyan; Carlson, Grady E.; Burdick, Monica M.; Schwartz, Frank L.; McCall, Kelly D.; Bergmeier, Stephen C.; Goetz, Douglas J.

    2015-01-01

    The expression of vascular cell adhesion molecule-1 (VCAM-1) on the vascular endothelium can be increased by pro-inflammatory cytokines [e.g. tumor necrosis factor – α (TNF-α)]. VCAM-1 contributes to leukocyte adhesion to, and emigration from, the vasculature which is a key aspect of pathological inflammation. As such, a promising therapeutic approach for pathological inflammation is to inhibit the expression of VCAM-1. Methimazole [3-methyl-1, 3 imidazole-2 thione (MMI)] is routinely used for the treatment of Graves’ disease and patients treated with MMI have decreased levels of circulating VCAM-1. In this study we used cultured human umbilical vein endothelial cells (HUVEC) to investigate the effect of MMI structural modifications on TNF-α induced VCAM-1 expression. We found that addition of a phenyl ring at the 4-nitrogen of MMI yields a compound that is significantly more potent than MMI at inhibiting 24 h TNF-α-induced VCAM-1 protein expression. Addition of a para methoxy to the appended phenyl group increases the inhibition while substitution of a thiazole ring for an imidazole ring in the phenyl derivatives yields no clear difference in inhibition. Addition of the phenyl ring to MMI appears to increase toxicity as does substitution of a thiazole ring for an imidazole ring in the phenyl MMI derivatives. Each of the compounds reduced TNF-α-induced VCAM-1 mRNA expression and had a functional inhibitory effect, i.e. each inhibited monocytic cell adhesion to 24 h TNF-α-activated HUVEC under fluid flow conditions. Combined, these studies provide important insights into the design of MMI-related anti-inflammatory compounds. PMID:25641748

  7. Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from interleukin-18-activated hepatic sinusoidal endothelium: implications for circulating cancer cell arrest in the murine liver.

    PubMed

    Mendoza, L; Carrascal, T; De Luca, M; Fuentes, A M; Salado, C; Blanco, J; Vidal-Vanaclocha, F

    2001-08-01

    The mechanism of intrasinusoidal arrest of circulating cancer cells, which is a critical step in liver metastasis, appears to be facilitated by tumor-derived proinflammatory factors that increase sinusoidal cell adhesion receptors for cancer cells. However, how this prometastatic microenvironment is up-regulated remains unknown. Using intrasplenically injected B16 melanoma (B16M) cells, we show that the expression of vascular cell adhesion molecule-1 (VCAM-1) significantly increased in hepatic sinusoidal endothelium (HSE) cells over physiologic baseline within the first 24 hours of metastatic cancer cell infiltration in the liver. This correlated with increased in vitro adhesion of B16M cells to HSE cells isolated from B16M cell-injected mice. In vivo VCAM-1 blockade with specific antibodies before B16M cell injection decreased sinusoidal retention of luciferase-transfected B16M cells by 85%, and metastasis development by 75%, indicating that VCAM-1 expression on tumor-activated HSE cells had a prometastatic contribution. Because VCAM-1 expression is oxidative stress-inducible, recombinant catalase was in vivo administered, resulting in a complete abrogation of both VCAM-1 expression and B16M cell adhesion increases in HSE cells isolated from B16M cell-injected mice. Catalase also abrogated the proadhesive response of HSE cells to B16M-conditioned medium (B16M-CM) in vitro, although this did not affect the concomitant release of major proinflammatory cytokines by HSE cells. HSE cells treated with B16M-CM released interleukin (IL)-18 via tumor necrosis factor-alpha (TNF-alpha)-dependent IL-1beta in vitro. In turn, H(2)O(2) production from B16M-CM-treated HSE cells was regulated by IL-18. Thus, liver-infiltrating B16M cells activated their adhesion to HSE through a sequential process involving TNF-alpha-dependent IL-1beta, which induced IL-18 to up-regulate VCAM-1 via H(2)O(2). The pivotal position of H(2)O(2) was further supported by the fact that incubation of HSE

  8. Cocaine-associated retiform purpura: a C5b-9-mediated microangiopathy syndrome associated with enhanced apoptosis and high levels of intercellular adhesion molecule-1 expression.

    PubMed

    Magro, Cynthia M; Wang, Xuan

    2013-10-01

    Cocaine-associated retiform purpura is a recently described entity characterized by striking hemorrhagic necrosis involving areas of skin associated with administration of cocaine. Levamisole, an adulterant in cocaine, has been suggested as the main culprit pathogenetically. Four cases of cocaine-associated retiform purpura were encountered in the dermatopathology practice of C. M. Magro. The light microscopic findings were correlated with immunohistochemical and immunofluorescence studies. All 4 cases showed a very striking thrombotic diathesis associated with intravascular macrophage accumulation. Necrotizing vasculitis was noted in 1 case. Striking intercellular adhesion molecule-1 (ICAM-1)/CD54 expression in vessel wall along with endothelial expression of caspase 3 and extensive vascular C5b-9 deposition was observed in all biopsies examined. Cocaine-induced retiform purpura is a C5b-9-mediated microvascular injury associated with enhanced apoptosis and prominent vascular expression of ICAM-1, all of which have been shown in prior in vitro and in vivo murine models to be a direct effect of cocaine metabolic products. Antineutrophilic cytoplasmic antibody and antiphospholipid antibodies are likely the direct sequelae of the proapoptotic microenvironment. The inflammatory vasculitic lesion could reflect the downstream end point reflective of enhanced ICAM-1 expression and the development of antineutrophilic cytoplasmic antibody. Levamisole likely works synergistically with cocaine in the propagation of this syndromic complex. PMID:23392134

  9. Interleukin-6 and intercellular cell adhesion molecule-1 expression remains elevated in revived live endothelial cells following spaceflight.

    PubMed

    Muid, S; Froemming, G R A; Ali, A M; Nawawi, H

    2013-12-01

    The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications. PMID:24362480

  10. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    SciTech Connect

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-12-10

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs.

  11. Early and long-term effects of radiation on intercellular adhesion molecule 1 (ICAM-1) expression in mouse urinary bladder endothelium.

    PubMed

    Jaal, J; Dörr, W

    2005-05-01

    The aim was to assess the effect of irradiation on intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells of vessels in mouse urinary bladder and to compare endothelial ICAM-1 expression with changes in bladder function (storage capacity) during the early and late radiation response phases. Female C3H/Neu mice were irradiated with doses of either 20 or 0 Gy. For assessment of ICAM-1 expression, which was measured by the intensity of the immunohistochemical staining signal in bladder endothelium, an arbitrary semiquantitative score (0 - 3) was applied. Bladder storage function was assessed by transurethral cystotonometry. A positive functional radiation response, defined as a reduction in bladder capacity by > 50%, between days 0 and 15 or 16 and 30 was found in 40 and 64% of the animals, respectively. A late functional response was observed in 71% of the animals sacrificed after day 180. Minor constitutive expression of ICAM-1 was observed in bladder endothelial cells. After irradiation, an increase in staining signal by day 2, with a maximum on day 4, and on days 16 - 28 was found, which preceded the functional radiation effects. A permanent increase in ICAM-1 staining signal was observed in the late phase on top of an age-related rise. ICAM-1 expression was significantly higher in animals with a positive late response on day 90, i.e. during the initial late phase. Irradiation induces significant early and chronic variations in ICAM-1 expression in bladder endothelium, which preceded the functional response. This suggests that endothelial ICAM-1 is involved in the pathogenesis of both the early and late phases of radiation-induced urinary bladder effects. PMID:16076754

  12. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (VCAM-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion.

    PubMed

    Zheng, Yanhua; Yang, Weiwei; Aldape, Kenneth; He, Jie; Lu, Zhimin

    2013-11-01

    Activated EGF receptor (EGFR) signaling plays an instrumental role in glioblastoma (GBM) progression. However, how EGFR activation regulates the tumor microenvironment to promote GBM cell invasion remains to be clarified. Here, we demonstrate that the levels of EGFR activation in tumor cells correlated with the levels of macrophage infiltration in human GBM specimens. This was supported by our observation that EGFR activation enhanced the interaction between macrophages and GBM cells. In addition, EGF treatment induced up-regulation of vascular cell adhesion molecule-1 (VCAM-1) expression in a PKCε- and NF-κB-dependent manner. Depletion of VCAM-1 interrupted the binding of macrophages to GBM cells and inhibited EGF-induced and macrophage-promoted GBM cell invasion. These results demonstrate an instrumental role for EGF-induced up-regulation of VCAM-1 expression in EGFR activation-promoted macrophage-tumor cell interaction and tumor cell invasion and indicate that VCAM-1 is a potential molecular target for improving cancer therapy. PMID:24045955

  13. Ionizing radiation induces human intercellular adhesion molecule-1 in vitro.

    PubMed

    Behrends, U; Peter, R U; Hintermeier-Knabe, R; Eissner, G; Holler, E; Bornkamm, G W; Caughman, S W; Degitz, K

    1994-11-01

    Intercellular adhesion molecule-1 (ICAM-1) plays a central role in various inflammatory reactions and its expression is readily induced by inflammatory stimuli such as cytokines or ultraviolet irradiation. We have investigated the effect of ionizing radiation (IR) on human ICAM-1 expression in human cell lines and skin cultures. ICAM-1 mRNA levels in HL60, HaCaT, and HeLa cells were elevated at 3-6 h after irradiation and increased with doses from 10-40 Gy. The rapid induction of ICAM-1 occurred at the level of transcription, was independent of de novo protein synthesis, and did not involve autocrine stimuli including tumor necrosis factor-alpha and interleukin-1. IR also induced ICAM-1 cell surface expression within 24 h. Immunohistologic analysis of cultured human split skin revealed ICAM-1 upregulation on epidermal keratinocytes and dermal microvascular endothelial cells 24 h after exposure to 6 Gy. In conclusion, we propose ICAM-1 as an important radiation-induced enhancer of immunologic cell adhesion, which contributes to inflammatory reactions after local and total body irradiation. PMID:7963663

  14. Maternal serum uric acid concentration is associated with the expression of tumour necrosis factor-α and intercellular adhesion molecule-1 in patients with preeclampsia.

    PubMed

    Zhao, J; Zheng, D-Y; Yang, J-M; Wang, M; Zhang, X-T; Sun, L; Yun, X-G

    2016-07-01

    We aimed to investigate whether there is a correlation between elevated serum uric acid (SUA) concentration and endothelial inflammatory response in women with preeclampsia (PE). On the basis of clinical and laboratory findings, patients were assigned to three groups: normal blood pressure (Control (Con)), gestational hypertension (GH) and PE (n=50 in each group). SUA concentration was measured by spectrophotometry, and serum tumour necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) levels were measured by enzyme-linked immunosorbent assay. Western blotting and immunohistochemical staining were also used to detect the changes in TNF-α and ICAM-1 expression in subcutaneous fat tissue. PE patients showed significantly higher systolic and diastolic blood pressures compared with Con and GH pregnant women (P=0.02 and P=0.02, respectively). The changes of body mass index (ΔBMI) before and after pregnancy and 24-h urine protein were significantly different among the three groups (P<0.001). Maternal SUA, TNF-α and soluble ICAM-1 (sICAM-1) levels were significantly increased in the patients with PE (P<0.05) compared with the other two groups. Scatterplot analysis revealed that elevated SUA concentration positively correlated with TNF-α and sICAM-1 in pregnant women. Moreover, vessels in subcutaneous fat tissues of preeclamptic patients showed intense TNF-α and ICAM-1 staining compared with Con and GH patients. The results support that, to a certain extent, elevated SUA concentration is significantly associated with inflammation of maternal systemic vasculature as indicated by increased TNF-α and ICAM-1 expression in women with PE. PMID:26511169

  15. Ultraviolet radiation can either suppress or induce expression of intercellular adhesion molecule 1 (ICAM-1) on the surface of cultured human keratinocytes

    SciTech Connect

    Norris, D.A.; Lyons, M.B.; Middleton, M.H.; Yohn, J.J.; Kashihara-Sawami, M. )

    1990-08-01

    Interactions of the ligand/receptor pair LFA-1(CD11a/CD18) and ICAM-1(CD54) initiate and control the cell-cell interactions of leukocytes and interactions of leukocytes with parenchymal cells in all phases of the immune response. Induction of the intercellular adhesion molecule 1 (ICAM-1) on the surface of epidermal keratinocytes has been proposed as an important regulator of contact-dependent aspects of cutaneous inflammation. Ultraviolet radiation (UVR) also modifies cutaneous inflammation, producing both up- and down-regulation of contact hypersensitivity. We have found that UVR has a biphasic effect on the induction of keratinocyte CD54. Using immunofluorescence and FACS techniques to quantitate cell-surface CD54 staining, we have shown that UVR significantly (p less than 0.01) inhibits keratinocyte CD54 induction by gamma interferon 24 h after irradiation. However, at 48, 72, and 96 h after UVR, CD54 expression is significantly induced to levels even greater than are induced by gamma interferon (20 U/ml). In addition, at 48, 72, or 96 h following UVR (30-100 mJ/cm2), the gamma-interferon-induced CD54 expression on human keratinocytes is also strongly (p less than 0.05 to p less than 0.001) enhanced. In this cell-culture system, gamma interferon and TNF-alpha are both strong CD54 inducers and are synergistic, but GM-CSF, TFG-beta, and IL-1 have no direct CD54-inducing effects. Thus the effects of UVR on CD54 induction are biphasic, producing inhibition at 24 h and induction at 48, 72, and 96 h. This effect on CD54 may contribute to the biphasic effects of UVR on delayed hypersensitivity in vivo. The early inhibition of ICAM-1 by UVR may also contribute to the therapeutic effects of UVR. We also speculate that the late induction of ICAM-1 by UVR might be an important step in the induction of photosensitive diseases such as lupus erythematosus.

  16. Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis

    PubMed Central

    Laudes, Ines J.; Guo, Ren-Feng; Riedemann, Niels C.; Speyer, Cecilia; Craig, Ron; Sarma, J. Vidya; Ward, Peter A.

    2004-01-01

    Cecal ligation and puncture (CLP)-induced sepsis in mice was associated with perturbations in vascular adhesion molecules. In CLP mice, lung vascular binding of 125I-monoclonal antibodies to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 revealed sharp increases in binding of anti-ICAM-1 and significantly reduced binding of anti-VCAM-1. In whole lung homogenates, intense ICAM-1 up-regulation was found (both in mRNA and in protein levels) during sepsis, whereas very little increase in VCAM-1 could be measured although some increased mRNA was found. During CLP soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) appeared in the serum. When mouse dermal microvascular endothelial cells (MDMECs) were incubated with serum from CLP mice, constitutive endothelial VCAM-1 fell in association with the appearance of sVCAM-1 in the supernatant fluids. Under the same conditions, ICAM-1 cell content increased in MDMECs. When MDMECs were evaluated for leukocyte adhesion, exposure to CLP serum caused increased adhesion of neutrophils and decreased adhesion of macrophages and T cells. The progressive build-up in lung myeloperoxidase after CLP was ICAM-1-dependent and independent of VLA-4 and VCAM-1. These data suggest that sepsis disturbs endothelial homeostasis, greatly favoring neutrophil adhesion in the lung microvasculature, thereby putting the lung at increased risk of injury. PMID:15039231

  17. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  18. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-10

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  19. Circulating intercellular adhesion molecule-1 in patients with systemic sclerosis.

    PubMed

    Sfikakis, P P; Tesar, J; Baraf, H; Lipnick, R; Klipple, G; Tsokos, G C

    1993-07-01

    In view of recent data demonstrating increased expression of intercellular adhesion molecule-1 (ICAM-1) in the skin of patients with systemic sclerosis (SSc) we studied whether levels of soluble ICAM-1 (s-ICAM-1) shed into the circulation are increased in patients with this disorder. We also compared blood levels of s-ICAM-1 in SSc with those in systemic lupus erythematosus (SLE) and we investigated any possible association of s-ICAM-1 with soluble IL-2 receptor (s-IL 2R) levels, the latter being considered as a marker of lymphocyte activation. Patients with SSc had increased levels of sICAM-1 compared with healthy control subjects (mean +/- SEM, 587 +/- 34 versus 373 +/- 27 ng/ml, P < 0.0001). Patients with diffuse rapidly progressive disease had the highest s-ICAM-1 levels. No association was observed between the extent of skin or internal organ involvement and s-ICAM-1 levels. Patients with digital ulcers had significantly elevated s-ICAM-1, but not s-IL 2R, levels. No correlation was detected between individual s-ICAM-1 and S-IL 2R levels in SSc patients. These novel findings suggest that circulating s-ICAM-1 levels may be a useful marker of endothelial activation in SSc; however, further studies are needed to determine the role of ICAM-1 in the pathogenesis of this disorder. PMID:8099861

  20. Pathogenic Actions of Cell Adhesion Molecule 1 in Pulmonary Emphysema and Atopic Dermatitis

    PubMed Central

    Yoneshige, Azusa; Hagiyama, Man; Fujita, Mitsugu; Ito, Akihiko

    2015-01-01

    Cell adhesion mediated by adhesion molecules is of central importance in the maintenance of tissue homeostasis. Therefore, altered expression of adhesion molecules leads to the development of various tissue disorders involving cell activation, degeneration, and apoptosis. Nevertheless, it still remains unclear what initiates the altered expression of adhesion molecules and how the subsequent pathological cascades proceed. In this regard, cell adhesion molecule 1 (CADM1) is one of the candidates that is involved in the development of pathological lesions; it is an intercellular adhesion molecule that is expressed in various types of cells such as pulmonary cells, neurons, and mast cells. Recent studies have revealed that alterations in the transcriptional or post-transcriptional expressions of CADM1 correlate with the pathogenesis of pulmonary diseases and allergic diseases. In this review, we specifically focus on how CADM1 is involved in the development of pathological lesions in pulmonary emphysema and atopic dermatitis. PMID:26636084

  1. Hypoxia-induced mitogenic factor promotes vascular adhesion molecule-1 expression via the PI-3K/Akt-NF-kappaB signaling pathway.

    PubMed

    Tong, Qiangsong; Zheng, Liduan; Lin, Li; Li, Bo; Wang, Danming; Li, Dechun

    2006-10-01

    Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone 1), is an important player in lung inflammation. However, the effects of HIMF on cell adhesion molecules involved in lung inflammation remain largely unknown. In the present work, we tested whether HIMF modulates vascular adhesion molecule (VCAM)-1 expression, and dissected the possible signaling pathways that link HIMF to VCAM-1 upregulation. Recombinant HIMF protein, instilled intratracheally into adult mouse lungs, results in a significant increase of VCAM-1 production in vascular endothelial, alveolar type II, and airway epithelial cells. In cultured mouse endothelial SVEC 4-10 and lung epithelial MLE-12 cells, we demonstrated that HIMF induces VCAM-1 expression via the phosphatidylinositol-3 kinase (PI-3K)/Akt-nuclear factor (NF)-kappaB signaling pathway. Knockdown of HIMF expression by small interference RNA attenuated LPS-induced VCAM-1 expression in vitro. We showed that HIMF induced phosphorylation of the IkappaB kinase signalsome and, subsequently, IkappaBalpha, leading to activation of NF-kappaB. Meanwhile, VCAM-1 production was correspondingly upregulated. Blocking NF-kappaB signaling pathway by expression of dominant-negative mutants of IkappaB kinase and IkappaBalpha suppressed HIMF-induced VCAM-1 upregulation. HIMF also strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Deltap85, as well as PI-3K inhibitor, LY294002, also blocked HIMF-induced NF-kappaB activation and attenuated VCAM-1 production. Furthermore, LY294002 pretreatment abolished HIMF-enhanced mononuclear cells adhesion to endothelial and epithelial cells. Our findings connect HIMF to signaling pathways that regulate inflammation, and thus reveal the critical roles that HIMF plays in lung inflammation. PMID:16709959

  2. Expression profile of vascular cell adhesion molecule-1 (CD106) in inflammatory foci using rhenium-188 labelled monoclonal antibody in mice.

    PubMed

    Kairemo, K J; Strömberg, S; Nikula, T K; Karonen, S L

    1998-06-01

    Rhenium (Re)-188 is a generator (W-188/Re-188) produced high energy beta-emitter suitable for radionuclide therapy (T1/2 is 16.9 hrs and Emax 2.1 MeV (range 11 mm)). We have labelled monoclonal antibody (MAb) raised against vascular cell adhesion molecule-1 (VCAM-1) with Re-188 using glucoheptonate chelation technique and SnCl2 as reducing agent. The labelling efficiency, free perrhenate and reduced Re were controlled with thin layer chromatography and the purification of Re-188-MoAbs was performed using gel filtration. Our results indicate that Re-188-labelled antibodies remain in vitro stable and the labelling purity is > 90%. We also have applied these Re-188-MoAbs for detection of inflammatory disease in a mouse. The effective half-lives of organs of interest after an injection of Re-188-anti-VCAM1 were as follows: blood 5.2 hr, kidney 4.7 hr, and liver 9.6 hr. Re-188-anti-VCAM-1 was found to accumulate mainly in kidney and liver. One hour after the injection, the kidney contained in average as high as 12.5% and the liver 2.8 ID/g tissue. After 6 hr, the kidney contained 5.5% ID/g and the liver 2.6% ID/g. At 24 hr, the kidney uptake was 0.5% ID/g and the liver uptake 0.8% ID/g, respectively. The inflamed foci, subcutaneous lesions in the footpad skin, were visualized using gamma camera. From the distribution data the uptakes in the inflamed foci as follows: at 1 hr 2.18 (inflammation) and 1.72% ID/g (control), at 6 hr 1.42 (inflammation) and 0.85% ID/g (control), and at 24 hr 0.17 (inflammation) and 0.084% ID/g (control), respectively. Anti-VCAM-1 MAb showed better targeting as compared to control MoAbs in inflammation (caused by E.coli lipoplysaccaride). In conclusion, Re-188 is suitable for MAb labelling, and MAb against VCAM-1 may be used for detection of local inflammatory disease. PMID:9762472

  3. Nuclear factor-kappa B directs carcinoembryonic antigen-related cellular adhesion molecule 1 receptor expression in Neisseria gonorrhoeae-infected epithelial cells.

    PubMed

    Muenzner, Petra; Billker, Oliver; Meyer, Thomas F; Naumann, Michael

    2002-03-01

    The human-specific pathogen Neisseria gonorrhoeae expresses opacity-associated (Opa) protein adhesins that bind to various members of the carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. In this study, we have analyzed the mechanism underlying N. gonorrhoeae-induced CEACAM up-regulation in epithelial cells. Epithelial cells represent the first barrier for the microbial pathogen. We therefore characterized CEACAM expression in primary human ovarian surface epithelial (HOSE) cells and found that CEACAM1-3 (L, S) and CEACAM1-4 (L, S) splice variants mediate an increased Opa(52)-dependent gonoccocal binding to HOSE cells. Up-regulation of these CEACAM molecules in HOSE cells is a direct process that takes place within 2 h postinfection and depends on close contact between microbial pathogen and HOSE cells. N. gonorrhoeae-triggered CEACAM1 up-regulation involves activation of the transcription factor nuclear factor kappaB (NF-kappaB), which translocates as a p50/p65 heterodimer into the nucleus, and an NF-kappaB-specific inhibitory peptide inhibited CEACAM1-receptor up-regulation in N. gonorrhoeae-infected HOSE cells. Bacterial lipopolysaccharides did not induce NF-kappaB and CEACAM up-regulation, which corresponds to our findings that HOSE cells do not express toll-like receptor 4. The ability of N. gonorrhoeae to up-regulate its epithelial receptor CEACAM1 through NF-kappaB suggests an important mechanism allowing efficient bacterial colonization during the initial infection process. PMID:11751883

  4. Carbohydrate ligands for endothelial - Leukocyte adhesion molecule 1

    SciTech Connect

    Tiemeyer, M.; Swiedler, S.J.; Ishihara, Masayuki; Moreland, M.; Schweingruber, H.; Hirtzer, P.; Brandley, B.K. )

    1991-02-15

    The acute inflammatory response requires that circulating leukocytes bind to and penetrate the vascular wall to access the site of injury. Several receptors have been implicated in this interaction, including a family of putative carbohydrate-binding proteins. The authors report here the identification of an endogenous carbohydrate ligand for one of these receptors, endothelial-leukocyte adhesion molecule 1 (ELAM-1). Radiolabeled COS cells transfected with a plasmid containing the cDNA for ELAM-1 were used as probes to screen glycolipids extracted from human leukocytes. COS cells transfected with this plasmid adhered to a subset of sialylated glycolipids resolved on TLC plates or adsorbed on polyvinyl chloride microtiter wells. Adhesion to these glycolipids required calcium but was not inhibited by heparin, chondroitin sulfate, keratan sulfate, or yeast phosphomannan. Monosaccharide composition, linkage analysis, and fast atom bombardment mass spectrometry of the glycolipids indicate that the ligands for ELAM-1 are terminally sialylated lactosylceramides with a variable number of N-acetyllactosamine repeats and at least one fucosylated N-acetylglucosamine residue.

  5. Suppression of development of glomerulonephritis in NZB x NZWF1 mice by persistent infection with lactic dehydrogenase virus: relations between intercellular adhesion molecule-1 expression on endothelial cells and leucocyte accumulation in glomeruli.

    PubMed Central

    Kameyama, Y.; Hayashi, T.

    1994-01-01

    The development of glomerulonephritis (GN) in autoimmune NZB x NZWF1 mice was suppressed by persistent lactic dehydrogenase virus (LDV) infection. In this study the expression of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells in glomeruli was examined during the development of GN. ICAM-1 expression on endothelial cells preceded the accumulation of leucocytes within glomeruli. The uninfected mice exhibited an age-related and profound increase in ICAM-1 expression associated with the development of a GN as evidenced by deposits of IgG and C3. Uninfected mice also showed increased accumulation of leucocytes, such as polymorphonuclear leucocytes (PMNs), macrophages, T and CD4+ cells, which express the lymphocyte function-associated antigen-1 (LFA-1) within glomeruli during the development of GN. These changes were strongly suppressed by LDV infection. Our findings suggest that the expression of ICAM-1 in glomerular endothelial cells may, at least in part, contribute to the development of GN. Suppressed expression of ICAM-1 in LDV-infected mice may be responsible for the suppression of GN seen in these animals. Thus there may be a pathogenetic role for ICAM-1 expression and for intraglomerular accumulation of leucocytes, especially PMNs, which express LFA-1 in the development of GN. Images Figure 1 Figure 2 Figure 7 Figure 9 Figure 11 PMID:7947231

  6. Intercellular Adhesion Molecule-1 (ICAM-1) in the Pathogenesis of Asthma

    NASA Astrophysics Data System (ADS)

    Wesgner, Craig D.; Gundel, Robert H.; Reilly, Patricia; Haynes, Nancy; Letts, L. Gordon; Rothlein, Robert

    1990-01-01

    Airway eosinophilia, epithelial desquamation, and hyperresponsiveness are characteristics of the airway inflammation underlying bronchial asthma. The contribution of intercellular adhesion molecule-1 (ICAM-1) to eosinophil migration and airway responsiveness was studied. ICAM-1 partially mediated eosinophil adhesion to endothelium in vitro and was upregulated on inflamed bronchial endothelium in vivo. ICAM-1 expression was also upregulated on inflamed airway epithelium in vitro and in vivo. In a primate model of asthma, a monoclonal antibody to ICAM-1 attenuated airway eosinophilia and hyperresponsiveness. Thus, antagonism of ICAM-1 may provide a therapeutic approach to reducing airway inflammation, hyperresponsiveness, and asthma symptoms.

  7. Cloning and Stable Expression of cDNA Coding For Platelet Endothelial Cell Adhesion Molecule -1 (PECAM-1, CD31) in NIH-3T3 Cell Line

    PubMed Central

    Salehi-Lalemarzi, Hamed; Shanehbandi, Dariush; Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Baradaran, Behzad; Movassaghpour, Ali Akbar; Kazemi, Tohid

    2015-01-01

    Purpose: PECAM-1 (CD31) is a glycoprotein expressed on endothelial and bone marrow precursor cells. It plays important roles in angiogenesis, maintenance and integration of the cytoskeleton and direction of leukocytes to the site of inflammation. We aimed to clone the cDNA coding for human CD31 from KG1a for further subcloning and expression in NIH-3T3 mouse cell line. Methods: CD31 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 2235 bp specific band was aligned completely to human CD31 reference sequence in NCBI database. Transient and stable expression of human CD31 on transfected NIH-3T3 mouse fibroblast cells was achieved (23% and 96%, respectively) as shown by flow cytometry. Conclusion: Due to murine origin of NIH-3T3 cell line, CD31-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD31, with no need for purification of recombinant proteins. PMID:26236664

  8. P2Y2 receptor-mediated lymphotoxin-α secretion regulates intercellular cell adhesion molecule-1 expression in vascular smooth muscle cells.

    PubMed

    Seye, Cheikh I; Agca, Yuksel; Agca, Cansu; Derbigny, Wilbert

    2012-03-23

    The proinflammatory cytokine lymphotoxin-α (LTA) is thought to contribute to the pathogenesis of atherosclerosis. However, the mechanisms that regulate its expression in vascular smooth muscle cells (VSMC) are poorly understood. The ability of exogenous nucleotides to stimulate LTA production was evaluated in VSMC by ELISA. The P2Y(2) nucleotide receptor (P2Y(2)R) agonist UTP stimulates a strong and sustained release of LTA from WT but not P2Y(2)R(-/-) SMC. Assessment of LTA gene transcription by LTA promoter-luciferase construct indicated that LTA levels are controlled at the level of transcription. We show using RNAi techniques that knockdown of the actin-binding protein filamin-A (FLNa) severely impaired nucleotide-induced Rho activation and consequent Rho-mediated LTA secretion. Reintroduction of FLNa in FLNa RNAi SMC rescued UTP-induced LTA expression. In addition, we found that UTP-stimulated LTA secretion is not sensitive to brefeldin A, which blocks the formation of vesicles involved in protein transport from the endoplasmic reticulum to the Golgi apparatus, suggesting that P2Y(2)R/filamin-mediated secretion of LTA is independent of the endoplasmic reticulum/Golgi secretory vesicle route. Furthermore, UTP selectively induces ICAM-1 expression in WT but not SMC expressing a truncated P2Y(2)R deficient in LTA secretion. These data suggest that P2Y(2)R recruits FLNa to provide a cytoskeletal scaffold necessary for Rho signaling pathway upstream of LTA release and subsequent stimulation of ICAM-1 expression on vascular smooth muscle cells. PMID:22298782

  9. CKIP-1 ameliorates high glucose-induced expression of fibronectin and intercellular cell adhesion molecule-1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.

    PubMed

    Gong, Wenyan; Chen, Cheng; Xiong, Fengxiao; Yang, Zhiying; Wang, Yu; Huang, Junying; Liu, Peiqing; Huang, Heqing

    2016-09-15

    Glucose and lipid metabolism disorders as well as oxidative stress (OSS) play important roles in diabetic nephropathy (DN). Glucose and lipid metabolic dysfunctions are the basic pathological changes of chronic microvascular complications of diabetes mellitus, such as DN. OSS can lead to the accumulation of extracellular matrix and inflammatory factors which will accelerate the progress of DN. Casein kinase 2 interacting protein-1 (CKIP-1) mediates adipogenesis, cell proliferation and inflammation under many circumstances. However, whether CKIP-1 is involved in the development of DN remains unknown. Here, we show that CKIP-1 is a novel regulator of resisting the development of DN and the underlying molecular mechanism is related to activating the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) antioxidative stress pathway. The following findings were obtained: (1) The treatment of glomerular mesangial cells (GMCs) with high glucose (HG) decreased CKIP-1 levels in a time-dependent manner; (2) CKIP-1 overexpression dramatically reduced fibronectin (FN) and intercellular adhesionmolecule-1 (ICAM-1) expression. Depletion of CKIP-1 further induced the production of FN and ICAM-1; (3) CKIP-1 promoted the nuclear accumulation, DNA binding, and transcriptional activity of Nrf2. Moreover, CKIP-1 upregulated the expression of Nrf2 downstream genes, heme oxygenase (HO-1) and superoxide dismutase 1 (SOD1); and ultimately decreased the levels of reactive oxygen species (ROS). The molecular mechanisms clarify that the advantageous effect of CKIP-1 on DN are well connected with the activation of the Nrf2/ARE antioxidative stress pathway. PMID:27481061

  10. Serum levels of soluble intercellular adhesion molecule-1 (ICAM-1, CD54) in patients with non-small-cell lung cancer: correlation with histological expression of ICAM-1 and tumour stage.

    PubMed Central

    Grothey, A.; Heistermann, P.; Philippou, S.; Voigtmann, R.

    1998-01-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1, CD54) seems to have an influence on the metastatic behaviour of tumour cells via immunological mechanisms. Recently, a soluble form of ICAM-1 was identified in physiological fluids. We analysed the serum levels of sICAM-1 in patients with non-small-cell lung cancer (NSCLC) and healthy individuals using a sandwich ELISA technique. Sera from 51 patients with NSCLC were tested for sICAM-1 (46 male, five female; age 38-81 years, median 64 years), 29 of whom presented with localized and 26 with metastatic disease. The control group consisted of 40 healthy individuals (20 smokers, 20 non-smokers). Immunohistochemical analysis of ICAM-1 in tumour cells was performed in 20 cases. Patients with NSCLC had significantly higher serum levels of sICAM-1 compared with healthy non-smokers (P = 0.00001) and smokers (P= 0.0328). Metastatic disease was associated with higher sICAM-1 than localized tumours (P = 0.0013). Only 11 out of 23 patients with localized NSCLC had sICAM-1 levels >300 ng ml(-1), compared with 25 out of 28 patients with metastatic disease. Histological expression of ICAM-1 was positively correlated with serum slCAM-1 (P = 0.0399). No difference was observed between histological tumour types with regard to sICAM-1 or NSCLC expression of ICAM-1. In sequential analysis (13 patients), rising sICAM-1 levels predicted a short-term fatal outcome (P = 0.0054) but, overall, sICAM-1 levels did not correlate with prognosis. In the control group, smokers showed significantly higher levels than non-smokers (P = 0.0016). In contrast to patients with NSCLC, sICAM-1 in the control group was correlated to the leucocyte count (r = 0.580, P = 0.003). In conclusion, serum levels of sICAM-1 seem to be associated with tumour burden and histological expression of ICAM-1 in patients with NSCLC. However, the (patho-) physiological role of ICAM-1 in NSCLC remains to be determined. PMID:9514061

  11. Early Growth Response Protein 1 Promotes Restenosis by Upregulating Intercellular Adhesion Molecule-1 in Vein Graft

    PubMed Central

    Zhang, Kui; Cao, Jian; Dong, Ran; Du, Jie

    2013-01-01

    Objectives. To verify the relationship between Egr-1 and vein graft restenosis and investigate the related mechanisms. Methods. Mouse vein graft models were established in Egr-1 knockout (KO) and wild-type (WT) mice. The vein grafts in the mice were taken for pathological examination and immunohistochemical analysis. The endothelial cells (ECs) were stimulated by using a computer-controlled cyclic stress unit. BrdU staining and PCR were used to detect ECs proliferation activity and Egr-1 and ICAM-1 mRNA expression, respectively. Western-blot analysis was also used to detect expression of Egr-1 and intercellular adhesion molecule-1 (ICAM-1) proteins. Results. The lumens of vein grafts in Egr-1 KO mice were wider than in WT mice. ECs proliferation after mechanical stretch stimulation was suppressed by Egr-1 knockout (P < 0.05). Both in vein grafts and ECs from WT mice after mechanical stretch stimulation, mRNA expression and protein of Egr-1 and ICAM-1 showed increases (P < 0.05). However, ICAM-1 expression was significantly suppressed in ECs from Egr-1 knockout mice (P < 0.05). Conclusions. Egr-1 may promote ECs proliferation and result in vein graft restenosis by upregulating the expression of ICAM-1. As a key factor of vein graft restenosis, it could be a target for the prevention of restenosis after CABG surgery. PMID:24386503

  12. Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer.

    PubMed

    Arabzadeh, A; Chan, C; Nouvion, A-L; Breton, V; Benlolo, S; DeMarte, L; Turbide, C; Brodt, P; Ferri, L; Beauchemin, N

    2013-02-14

    Liver metastasis is the predominant cause of colorectal cancer (CRC)-related mortality in developed countries. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell adhesion molecule with reduced expression in early phases of CRC development and thus functions as a tumor growth inhibitor. However, CEACAM1 is upregulated in metastatic colon cancer, suggesting a bimodal role in CRC progression. To investigate the role of this protein in the host metastatic environment, Ceacam1(-/-) mice were injected intrasplenically with metastatic MC38 mouse CRC cells. A significant reduction in metastatic burden was observed in Ceacam1(-/-) compared with wild-type (WT) livers. Intravital microscopy showed decreased early survival of MC38 cells in Ceacam1(-/-) endothelial environment. Metastatic cell proliferation within the Ceacam1(-/-) livers was also diminished. Bone marrow-derived cell recruitment, attenuation of immune infiltrates and diminished CCL2, CCL3 and CCL5 chemokine production participated in the reduced Ceacam1(-/-) metastatic phenotype. Transplantations of WT bone marrow (BM) into Ceacam1(-/-) mice fully rescued metastatic development, whereas Ceacam1(-/-) BM transfer into WT mice showed reduced metastatic burden. Chimeric immune cell profiling revealed diminished recruitment of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs) to Ceacam1(-/-) metastatic livers and adoptive transfer of MDSCs confirmed the involvement of these immune cells in reduction of liver metastasis. CEACAM1 may represent a novel metastatic CRC target for treatment. PMID:22469976

  13. α4-Integrin Antibody Treatment Blocks Monocyte/Macrophage Traffic to, Vascular Cell Adhesion Molecule-1 Expression in, and Pathology of the Dorsal Root Ganglia in an SIV Macaque Model of HIV-Peripheral Neuropathy.

    PubMed

    Lakritz, Jessica R; Thibault, Derek M; Robinson, Jake A; Campbell, Jennifer H; Miller, Andrew D; Williams, Kenneth C; Burdo, Tricia H

    2016-07-01

    Traffic of activated monocytes into the dorsal root ganglia (DRG) is critical for pathology in HIV peripheral neuropathy. We have shown that accumulation of recently recruited (bromodeoxyuridine(+) MAC387(+)) monocytes is associated with severe DRG pathology and loss of intraepidermal nerve fibers in SIV-infected macaques. Herein, we blocked leukocyte traffic by treating animals with natalizumab, which binds to α4-integrins. SIV-infected CD8-depleted macaques treated with natalizumab either early (the day of infection) or late (28 days after infection) were compared with untreated SIV-infected animals sacrificed at similar times. Histopathology showed diminished DRG pathology with natalizumab treatment, including decreased inflammation, neuronophagia, and Nageotte nodules. Natalizumab treatment resulted in a decrease in the number of bromodeoxyuridine(+) (early), MAC387(+) (late), CD68(+) (early and late), and SIVp28(+) (late) macrophages in DRG tissues. The number of CD3(+) T lymphocytes in DRGs was not affected by natalizumab treatment. Vascular cell adhesion molecule 1, an adhesion molecule that mediates leukocyte traffic, was diminished in DRGs of all natalizumab-treated animals. These data show that blocking monocyte, but not T lymphocyte, traffic to the DRG results in decreased inflammation and pathology, supporting a role for monocyte traffic and activation in HIV peripheral neuropathy. PMID:27157989

  14. Role of Intercellular Adhesion Molecule-1 in Radiation-Induced Brain Injury

    SciTech Connect

    Wu, K.-L.; Tu Ba; Li Yuqing; Wong, C. Shun

    2010-01-15

    Purpose: To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). Methods and Materials: We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. Results: There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. Conclusion: There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.

  15. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal

    PubMed Central

    Su, Yang; Lei, Xi; Wu, Lingyun; Liu, Lixin

    2012-01-01

    Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4·0–5·5 hr, with 84–92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications. PMID:22681228

  16. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells.

    PubMed Central

    Ryan, D H; Nuccie, B L; Abboud, C N; Winslow, J M

    1991-01-01

    Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment. Images PMID:1715889

  17. Differential up-regulation of circulating soluble and endothelial cell intercellular adhesion molecule-1 in mice.

    PubMed Central

    Komatsu, S.; Flores, S.; Gerritsen, M. E.; Anderson, D. C.; Granger, D. N.

    1997-01-01

    Although circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1) are frequently used as an indicator of the severity of different immune, inflammatory, or neoplastic diseases, little is known about the factors that govern plasma sICAM-1 concentration and its relationship to the membranous form of ICAM-1 (mICAM-1) expressed on vascular endothelial cells. Plasma sICAM-1 concentration (measured by enzyme-linked immunosorbent assay) and mICAM-1 expression (measured using the dual radiolabeled monoclonal antibody technique) in different vascular beds (eg, lung, small intestine, and spleen) were monitored in wild-type (C57BL) and ICAM-1-deficient mice, before and after administration of tumor necrosis factor (TNF)-alpha. In wild-type mice, TNF-alpha elicited time-dependent increases in lung and intestine mICAM-1 (plateau achieved at 12 hours), with a corresponding increase in plasma sICAM-1 (peaked at 5 hours and then declined). The initial increases in mICAM-1 and pulmonary leukocyte sequestration (measured as lung myeloperoxidase activity) induced by TNF-alpha preceded any detectable elevation in sICAM-1. In ICAM-1-deficient mice, plasma sICAM-1 was reduced by approximately 70%, with > 95% reductions of mICAM-1 in lung and intestine, and > 75% reduction in splenic accumulation of anti-ICAM-1 antibody. Although TNF-alpha doubled plasma sICAM-1 in ICAM-1-deficient mice, mICAM-1 was unaffected in all tissues. Either splenectomy or pretreatment with cycloheximide resulted in an attenuated TNF-induced increase in sICAM-1, without affecting mICAM-1 expression. These findings indicate that plasma sICAM-1 concentration does not accurately reflect the level of ICAM-1 expression on endothelial cells in different vascular beds. PMID:9212746

  18. Carcinoembryonic Antigen Cell Adhesion Molecule 1 long isoform modulates malignancy of poorly differentiated colon cancer cells

    PubMed Central

    Arabzadeh, Azadeh; Dupaul-Chicoine, Jeremy; Breton, Valérie; Haftchenary, Sina; Yumeen, Sara; Turbide, Claire; Saleh, Maya; McGregor, Kevin; Greenwood, Celia M T; Akavia, Uri David; Blumberg, Richard S; Gunning, Patrick T; Beauchemin, Nicole

    2015-01-01

    Objective Nearly 20%–29% of patients with colorectal cancer (CRC) succumb to liver or lung metastasis and there is a dire need for novel targets to improve the survival of patients with metastasis. The long isoform of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-L or CC1-L) is a key regulator of immune surveillance in primary CRC, but its role in metastasis remains largely unexplored. We have examined how CC1-L expression impacts on colon cancer liver metastasis. Design Murine MC38 transfected with CC1-L were evaluated in vitro for proliferation, migration and invasion, and for in vivo experimental liver metastasis. Using shRNA silencing or pharmacological inhibition, we delineated the role in liver metastasis of Chemokine (C-C motif) Ligand 2 (CCL2) and Signal Transducer and Activator of Transcription 3 (STAT3) downstream of CC1-L. We further assessed the clinical relevance of these findings in a cohort of patients with CRC. Results MC38-CC1-L-expressing cells exhibited significantly reduced in vivo liver metastasis and displayed decreased CCL2 chemokine secretion and reduced STAT3 activity. Down-modulation of CCL2 expression and pharmacological inhibition of STAT3 activity in MC38 cells led to reduced cell invasion capacity and decreased liver metastasis. The clinical relevance of our findings is illustrated by the fact that high CC1 expression in patients with CRC combined with some inflammation-regulated and STAT3-regulated genes correlate with improved 10-year survival. Conclusions CC1-L regulates inflammation and STAT3 signalling and contributes to the maintenance of a less-invasive CRC metastatic phenotype of poorly differentiated carcinomas. PMID:25666195

  19. Release of soluble intercellular adhesion molecule 1 into bile and serum in murine endotoxin shock.

    PubMed

    Jaeschke, H; Essani, N A; Fisher, M A; Vonderfecht, S L; Farhood, A; Smith, C W

    1996-03-01

    Neutrophil-induced liver injury during endotoxemia is dependent on the adhesion molecules Mac-1 (CD11b/CD18) on neutrophils and its counterreceptor on endothelial cells and hepatocytes, intercellular adhesion molecule 1 (ICAM-1). To investigate a potential release of a soluble form of ICAM-1 (sICAM-1), animals received 100 micrograms/kg Salmonella abortus equi endotoxin alone or in combination with 700 mg/kg galactosamine. In endotoxin-sensitive mice (C3Heb/FeJ), injection of endotoxin did not cause liver injury but induced a time-dependent increase of sICAM-1 in serum (300%) and in bile (615%) without affecting bile flow. In galactosamine/endotoxin-treated animals, which developed liver injury, the increase in both compartments was only 97% and 104%, respectively. In either case, the increase in sICAM-1 concentrations paralleled the enhanced ICAM-1 expression in the liver. The endotoxin-resistant strain (C3H/HeJ) did not show elevated sICAM-1 levels in serum or bile after endotoxin administration. In contrast, the intravenous injection of murine tumor necrosis factor alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha) or IL-1 beta (13-23 micrograms/kg) into endotoxin-resistant mice induced a 225% to 364% increase in serum sICAM-1 and a 370% elevation of the biliary efflux of sICAM-1, again independent of changes in bile flow. These data indicate that cytokines are major inducers of sICAM-1 formation during endotoxemia in vivo. The described experimental model can be used to investigate the role of sICAM-1 in the pathophysiology of inflammatory liver disease. PMID:8617433

  20. Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction

    PubMed Central

    Wensing, Kristina U.; Eggert, Hendrik; Scharsack, Jörn P.

    2016-01-01

    Down syndrome cell adhesion molecule 1 (Dscam1) has wide-reaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives. PMID:27152227

  1. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding.

    PubMed

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A; Chan, Andrew M

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5'-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras-/-). An examination of the lymphoid organs of Rras-/- mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras-/- mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras-/- mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras-/- T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras-/- T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras-/- T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  2. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression.

    PubMed

    Ren, Guangwen; Zhao, Xin; Zhang, Liying; Zhang, Jimin; L'Huillier, Andrew; Ling, Weifang; Roberts, Arthur I; Le, Anh D; Shi, Songtao; Shao, Changshun; Shi, Yufang

    2010-03-01

    Cell-cell adhesion mediated by ICAM-1 and VCAM-1 is critical for T cell activation and leukocyte recruitment to the inflammation site and, therefore, plays an important role in evoking effective immune responses. However, we found that ICAM-1 and VCAM-1 were critical for mesenchymal stem cell (MSC)-mediated immunosuppression. When MSCs were cocultured with T cells in the presence of T cell Ag receptor activation, they significantly upregulated the adhesive capability of T cells due to the increased expression of ICAM-1 and VCAM-1. By comparing the immunosuppressive effect of MSCs toward various subtypes of T cells and the expression of these adhesion molecules, we found that the greater expression of ICAM-1 and VCAM-1 by MSCs, the greater the immunosuppressive capacity that they exhibited. Furthermore, ICAM-1 and VCAM-1 were found to be inducible by the concomitant presence of IFN-gamma and inflammatory cytokines (TNF-alpha or IL-1). Finally, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo when the adhesion molecules were genetically deleted or functionally blocked, which corroborated the importance of cell-cell contact in immunosuppression by MSCs. Taken together, these findings reveal a novel function of adhesion molecules in immunoregulation by MSCs and provide new insights for the clinical studies of antiadhesion therapies in various immune disorders. PMID:20130212

  3. Association between two single base polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease

    PubMed Central

    Habibi, Manijeh; Naderi, Nosratllah; Farnood, Alma; Balaii, Hedieh; Dadaei, Tahereh; Almasi, Shohreh; Zojaji, Homayoun; Asadzadeh Aghdae, Hamid; Zali, Mohammad Reza

    2016-01-01

    Aim: The present study evaluated the association between G241R and K469E polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease in Iranian population. Background: Inflammatory bowel disease including ulcerative colitis and Crohn’s disease, is a chronic idiopathic inflammatory disease of the gastrointestinal tract. There are two single base polymorphisms of intercellular adhesion molecule 1gene, G241R and K469E, reported to be associated with inflammatory disorders. Patients and methods: In this case-control study, 156 inflammatory bowel disease patients (110 ulcerative colitis and 46 Crohn’s disease patients) and 131 healthy controls were enrolled. Two polymorphisms of intercellular adhesion molecule 1 gene, including G241R and K469E, were assessed by polymerase chain reaction followed by restriction fragment length polymorphism. Results: The E469 allele of K469E polymorphism was significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 1.83; 95% CI: 1.13 to 2.96). The mutant homozygote genotype of K469E polymorphism (E/E) was also significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 4.23; 95% CI: 1.42 to 12.59). No difference was observed in the frequency of K469E polymorphism among ulcerative colitis patients compared to controls. There were no significant differences in genotype and allele frequencies of G241R polymorphism among ulcerative colitis and Crohn’s disease patients compared to control subjects. Conclusion: According to our findings, K469E polymorphism of intercellular adhesion molecule 1 gene may probably participate in the pathogenesis of Crohn’s disease in Iran. PMID:27099667

  4. Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1.

    PubMed Central

    Walsh, L J; Trinchieri, G; Waldorf, H A; Whitaker, D; Murphy, G F

    1991-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-alpha within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-alpha protein and TNF-alpha mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-alpha. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion. Images PMID:1709737

  5. Association of intercellular adhesion molecule 1 with the multichain high-affinity interleukin 2 receptor.

    PubMed Central

    Burton, J; Goldman, C K; Rao, P; Moos, M; Waldmann, T A

    1990-01-01

    Previously, using flow cytometric resonance energy transfer and lateral diffusion measurements, we demonstrated that a 95-kDa protein identified by two monoclonal antibodies (OKT27 and OKT27b) interacts physically with the 55-kDa alpha protein of the high-affinity interleukin 2 (IL-2) receptor. In the present study, this 95-kDa protein (p95) was purified and amino acid sequence data were obtained that showed strong homology to the human intercellular adhesion molecule 1 (ICAM-1). The identity of the p95 protein with ICAM-1 was confirmed by sequential immunoprecipitations using OKT27 and an antibody, WEHI-CAM-1, that is directed toward ICAM-1. We confirmed the physical proximity of p95/ICAM-1 to the IL-2 receptor alpha subunit by demonstrating that radiolabeled IL-2 could be cross-linked to this protein expressed on activated T cells. In functional studies, the antibodies OKT27 and OKT27b inhibited T-cell proliferative responses to OKT3, to soluble antigen, and to heterologous cells (mixed lymphocyte reaction). However, these antibodies did not inhibit IL-2-induced proliferation of an IL-2-dependent T-cell line. Taken together with our previous observations, the present studies suggest that ICAM-1 is in proximity and interacts physically with the high-affinity IL-2 receptor. The association of ICAM-1 with the IL-2 receptor may facilitate the paracrine IL-2-mediated stimulation of T cells expressing IL-2 receptors by augmenting homotypic T-T-cell interaction, by receptor-directed focusing of IL-2 release by helper T cells, and by focusing IL-2 receptors of the physically linked cells to the site of lymphocyte function-associated antigen 1-ICAM-1-IL-2 receptor interaction. Images PMID:1976256

  6. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis.

    PubMed

    Kotteas, Elias A; Boulas, Panagiotis; Gkiozos, Ioannis; Tsagkouli, Sofia; Tsoukalas, George; Syrigos, Konstantinos N

    2014-09-01

    The intercellular cell-adhesion molecule-1 (ICAM-1) is a transmembrane molecule and a distinguished member of the Immunoglobulin superfamily of proteins that participates in many important processes, including leukocyte endothelial transmigration, cell signaling, cell-cell interaction, cell polarity and tissue stability. ICAM-1and its soluble part are highly expressed in inflammatory conditions, chronic diseases and a number of malignancies. In the present article we present the implications of ICAM-1 in the progression and prognosis of one of the major global killers of our era: lung cancer. PMID:25202042

  7. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding

    PubMed Central

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A.; Chan, Andrew M.

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras−/−). An examination of the lymphoid organs of Rras−/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras−/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras−/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras−/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras−/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras−/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  8. Regulation of platelet biology by platelet endothelial cell adhesion molecule-1.

    PubMed

    Jones, Chris I; Moraes, Leonardo A; Gibbins, Jonathan M

    2012-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoreceptor tyrosine-based inhibitory motif containing receptor, plays diverse and apparently contradictory roles in regulating the response of platelets to stimuli; inhibiting platelet response to immunoreceptor tyrosine-based activation motif and G protein-coupled receptor signalling following stimulation with collagen, adenosine diphosphate, and thrombin, as well as enhancing integrin outside-in signalling. These dual, and opposing, roles suggest an important and complex role for PECAM-1 in orchestrating platelet response to vascular damage. Indeed, during thrombus formation, the influence of PECAM-1 on the multiple signalling pathways combines leading to a relatively large inhibitory effect on thrombus formation. PMID:22035359

  9. Effects of cytokines and periodontopathic bacteria on the leukocyte function-associated antigen 1/intercellular adhesion molecule 1 pathway in gingival fibroblasts in adult periodontitis.

    PubMed

    Hayashi, J; Saito, I; Ishikawa, I; Miyasaka, N

    1994-12-01

    We investigated the effects of inflammatory cytokines and periodontopathic bacteria on expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1, and E-selectin (endothelial leukocyte adhesion molecule 1) in cultured human gingival fibroblasts (HGF). Cell surface ICAM-1 was upregulated on HGF under transcriptional control by exposure not only to interleukin-1 beta, tumor necrosis factor alpha, and gamma interferon but also to sonic extracts prepared from Porphyromonas gingivalis and Prevotella intermedia (nigrescens) and lipopolysaccharides from Escherichia coli. However, these stimuli induced only minimal expression of vascular cell adhesion molecule 1 and E-selectin on HGF. Binding assays using HGF and Molt 4, the human T-cell leukemia cell line, showed induced ICAM-1 to be functional, and the increased binding was blocked by a combination of monoclonal antibodies against ICAM-1 and leukocyte function-associated antigen 1. Furthermore, gingival tissues from adult periodontitis patients showed increased mRNA expression of ICAM-1 compared with that in tissues from normal healthy donors. In immunohistological analysis, we also observed in vivo that the expression of ICAM-1 on fibroblasts in adult periodontitis tissues was greater than that in normal gingiva. Thus, the overexpression of ICAM-1 on gingival fibroblasts induced by cytokines and periodontopathic bacteria is speculated to be deeply involved in the accumulation and retention of leukocyte function-associated antigen 1-bearing leukocytes in adult periodontitis lesions. PMID:7525481

  10. Intercellular adhesion molecule 1 serves as a primary cognate receptor for the Type IV pilus of nontypeable Haemophilus influenzae.

    PubMed

    Novotny, Laura A; Bakaletz, Lauren O

    2016-08-01

    Nontypeable Haemophilus influenzae (NTHI) utilizes the Type IV pilus (Tfp) to adhere to respiratory tract epithelial cells thus colonizing its human host; however, the host cell receptor to which this adhesive protein binds is unknown. From a panel of receptors engaged by Tfp expressed by other bacterial species, we showed that the majority subunit of NTHI Tfp, PilA, bound to intercellular adhesion molecule 1 (ICAM1) and that this interaction was both specific and of high affinity. Further, Tfp-expressing NTHI inoculated on to polarized respiratory tract epithelial cells that expressed ICAM1 were significantly more adherent compared to Tfp-deficient NTHI or NTHI inoculated on to epithelial cells to which ICAM1 gene expression was silenced. Moreover, pre-incubation of epithelial cells with recombinant soluble PilA (rsPilA) blocked adherence of NTHI, an outcome that was abrogated by admixing rsPilA with ICAM1 prior to application on to the target cells. Epithelial cells infected with adenovirus or respiratory syncytial virus showed increased expression of ICAM1; this outcome supported augmented adherence of Tfp-expressing NTHI. Collectively, these data revealed the cognate receptor for NTHI Tfp as ICAM1 and promote continued development of a Tfp-targeted vaccine for NTHI-induced diseases of the airway wherein upper respiratory tract viruses play a key predisposing role. PMID:26857242

  11. Determining β2-Integrin and Intercellular Adhesion Molecule 1 Binding Kinetics in Tumor Cell Adhesion to Leukocytes and Endothelial Cells by a Gas-driven Micropipette Assay*

    PubMed Central

    Fu, Changliang; Tong, Chunfang; Wang, Manliu; Gao, Yuxin; Zhang, Yan; Lü, Shouqin; Liang, Shile; Dong, Cheng; Long, Mian

    2011-01-01

    Interactions between polymorphonuclear neutrophils (PMNs) and tumor cells have been reported to facilitate the adhesion and subsequent extravasation of tumor cells through the endothelium under blood flow, both of which are mediated by binding β2-integrin to intercellular adhesion molecule 1 (ICAM-1). Here the adhesions between human WM9 metastatic melanoma cells, PMNs, and human pulmonary microvascular endothelial cells (HPMECs) were quantified by a gas-driven micropipette aspiration technique (GDMAT). Our data indicated that the cellular binding affinity of PMN-WM9 pair was 3.9-fold higher than that of the PMN-HPMEC pair. However, the effective binding affinities per molecular pair were comparable between the two cell pairs no matter whether WM9 cells or HPMECs were quiescent or cytokine-activated, indicating that the stronger adhesion between PMN-WM9 pair is mainly attributed to the high expression of ICAM-1 on WM9 cells. These results proposed an alternative mechanism, where WM9 melanoma cells adhere first with PMNs near vessel-wall regions and then bind to endothelial cells via PMNs under blood flow. In contrast, the adhesions between human MDA-MB-231 metastatic breast carcinoma cells and PMNs showed a comparable cellular binding affinity to PMN-HPMEC pair because the ICAM-1 expressions on MDA-MB-231 cells and HPMECs are similar. Furthermore, differences were observed in the intrinsic forward and reverse rates of the β2-integrin-ICAM-1 bond between PMN-TC and PMN-EC pairs. This GDMAT assay enables us to quantify the binding kinetics of cell adhesion molecules physiologically expressed on nucleated cells. The findings also further the understanding of leukocyte-facilitated tumor cell adhesion from the viewpoint of molecular binding kinetics. PMID:21840991

  12. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1.

    PubMed

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G; Higgins, Matthew K

    2013-02-22

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  13. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    SciTech Connect

    Oesterling, Elizabeth; Toborek, Michal; Hennig, Bernhard

    2008-10-15

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist {beta}-naphthoflavone ({beta}-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist {alpha}-naphthoflavone ({alpha}-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with {beta}-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis.

  14. Tie2 Signaling Enhances Mast Cell Progenitor Adhesion to Vascular Cell Adhesion Molecule-1 (VCAM-1) through α4β1 Integrin

    PubMed Central

    Kanemaru, Kazumasa; Noguchi, Emiko; Tokunaga, Takahiro; Nagai, Kei; Hiroyama, Takashi; Nakamura, Yukio; Tahara-Hanaoka, Satoko; Shibuya, Akira

    2015-01-01

    Mast cell (MC) activation contributes considerably to immune responses, such as host protection and allergy. Cell surface immunoreceptors expressed on MCs play an important role in MC activation. Although various immunoreceptors on MCs have been identified, the regulatory mechanism of MC activation is not fully understood. To understand the regulatory mechanisms of MC activation, we used gene expression analyses of human and mouse MCs to identify a novel immunoreceptor expressed on MCs. We found that Tek, which encodes Tie2, was preferentially expressed in the MCs of both humans and mice. However, Tie2 was not detected on the cell surface of the mouse MCs of the peritoneal cavity, ear skin, or colon lamina propria. In contrast, it was expressed on mouse bone marrow–derived MCs and bone marrow MC progenitors (BM-MCps). Stimulation of Tie2 by its ligand angiopoietin-1 induced tyrosine phosphorylation of Tie2 in MEDMC-BRC6, a mouse embryonic stem cell-derived mast cell line, and enhanced MEDMC-BRC6 and mouse BM-MCp adhesion to vascular cell adhesion molecule-1 (VCAM-1) through α4β1 integrin. These results suggest that Tie2 signaling induces α4β1 integrin activation on BM-MCps for adhesion to VCAM-1. PMID:26659448

  15. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells.

    PubMed

    Fujiwara, K

    2006-04-01

    Endothelial cells are known to respond to mechanical forces such as fluid shear stress and cyclic stretch, but elucidating the mechanism for mechanosensing has been difficult. Experimental data indicate that there are probably several sensing mechanisms. We have recently proposed a novel mechanoresponse mechanism that involves platelet endothelial cell adhesion molecule-1 (PECAM-1). When endothelial cells are stimulated by fluid shear stress, PECAM-1 is tyrosine phosphorylated and activates the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling cascade. The same signalling events occurred when we applied pulling force directly on PECAM-1 on the endothelial cell surface using magnetic beads coated with antibodies against the external domain of PECAM-1. These results appear to indicate that PECAM-1 is a mechanotransduction molecule. To our knowledge, this is the first mammalian molecule that is shown to respond to mechanical force directly exerted to it. PMID:16594905

  16. Ambient but not incremental oxidant generation effects intercellular adhesion molecule 1 induction by tumour necrosis factor alpha in endothelium.

    PubMed

    Arai, T; Kelly, S A; Brengman, M L; Takano, M; Smith, E H; Goldschmidt-Clermont, P J; Bulkley, G B

    1998-05-01

    Proinflammatory cytokines upregulate endothelial adhesion molecule expression, thereby initiating the microvascular inflammatory response. We re-evaluated the reported role of reactive oxygen metabolites (ROMs) in signalling upregulation of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells by tumour necrosis factor alpha (TNF-alpha) in vitro. TNF-alpha upregulation of endothelial-cell ICAM-1 expression was inhibited by the cell-permeable antioxidants, or by the adenovirus-mediated intracellular overexpression of Cu,Zn-superoxide dismutase, but not by the exogenous (extracellular) administration of the cell-impermeable antioxidants, superoxide dismutase and/or catalase. This ICAM-1 upregulation was also inhibited by inhibitors of NADH dehydrogenase, cytochrome bc1 complex and NADPH oxidase. However, a measurable increase in net cellular ROM generation in response to TNF-alpha was not seen using four disparate sensitive ROM assays. Moreover, the stimulation of exogenous or endogenous ROM generation did not upregulate ICAM-1, nor enhance ICAM-1 upregulation by TNF-alpha. These findings suggest that an ambient background flux of ROMs, generated intracellularly, but not their net incremental generation, is necessary for TNF-alpha to induce ICAM-1 expression in endothelium in vitro. PMID:9560314

  17. Organization, regulatory sequences, and alternatively spliced transcripts of the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) gene

    SciTech Connect

    Sampaio, S.O.; Mei, C.; Butcher, E.C.

    1995-09-01

    The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereas the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.

  18. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  19. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  20. Endothelial leukocyte adhesion molecule-1 mediates antigen-induced acute airway inflammation and late-phase airway obstruction in monkeys.

    PubMed Central

    Gundel, R H; Wegner, C D; Torcellini, C A; Clarke, C C; Haynes, N; Rothlein, R; Smith, C W; Letts, L G

    1991-01-01

    This study examines the role of endothelial leukocyte adhesion molecule-1 (ELAM-1) in the development of the acute airway inflammation (cell influx) and late-phase airway obstruction in a primate model of extrinsic asthma. In animals sensitive to antigen, a single inhalation exposure induced the rapid expression of ELAM-1 (6 h) exclusively on vascular endothelium that correlated with the influx of neutrophils into the lungs and the onset of late-phase airway obstruction. In contrast, basal levels of ICAM-1 was constitutively expressed on vascular endothelium and airway epithelium before antigen challenge. After the single antigen exposure, changes in ICAM-1 expression did not correlate with neutrophil influx or the change in airway caliber. This was confirmed by showing that pretreatment with a monoclonal antibody to ICAM-1 did not inhibit the acute influx of neutrophils associated with late-phase airway obstruction, whereas a monoclonal antibody to ELAM-1 blocked both the influx of neutrophils and the late-phase airway obstruction. This study demonstrates a functional role for ELAM-1 in the development of acute airway inflammation in vivo. We conclude that, in primates, the late-phase response is the result of an ELAM-1 dependent influx of neutrophils. Therefore, the regulation of ELAM-1 expression may provide a novel approach to controlling the acute inflammatory response, and thereby, affecting airway function associated with inflammatory disorders, including asthma. Images PMID:1717514

  1. Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies.

    PubMed Central

    Banks, R. E.; Gearing, A. J.; Hemingway, I. K.; Norfolk, D. R.; Perren, T. J.; Selby, P. J.

    1993-01-01

    Cellular adhesion molecules have been implicated in tumour progression and metastasis. This study examines for the first time the serum concentrations of circulating VCAM-1 and E-selectin in a consecutive series of 110 cancer patients seen in a general medical oncology clinic, and confirms and extends previous studies reporting measurement of circulating ICAM-1. Soluble ICAM-1 and VCAM-1 levels were significantly higher in all the patient groups compared with the controls whereas soluble E-selectin was significantly higher in the ovarian, breast and GI cancer groups and lower in the myeloma group. The significance of these results together with the possible sources and stimuli for release of these adhesion molecules are discussed. PMID:7686390

  2. Interaction of Intercellular Adhesion Molecule 1 (ICAM1) Polymorphisms and Environmental Tobacco Smoke on Childhood Asthma

    PubMed Central

    Li, Yu-Fen; Lin, Che-Chen; Tai, Chien-Kuo

    2014-01-01

    Asthma is a chronic disease that is particularly common in children. The association between polymorphisms of the gene encoding intercellular adhesion molecule 1 (ICAM1) and gene-environment interactions with childhood asthma has not been fully investigated. A cross-sectional study was undertaken to investigate these associations among children in Taiwan. The effects of two functional single-nucleotide polymorphisms (SNPs) of ICAM1, rs5491 (K56M) and rs5498 (K469E), and exposure to environmental tobacco smoke (ETS) were studied. Two hundred and eighteen asthmatic and 877 nonasthmatic children were recruited from elementary schools. It was found that the genetic effect of each SNP was modified by the other SNP and by exposure to ETS. The risk of asthma was higher for children carrying the rs5491 AT or TT genotypes and the rs5498 GG genotype (odds ratio = 1.68, 95% confidence interval 1.09–2.59) than for those with the rs5491 AA and rs5498 AA or AG genotypes (the reference group). The risk for the other two combinations of genotypes did not differ significantly from that of the reference group (p of interaction = 0.0063). The two studied ICAM1 SNPs were associated with childhood asthma among children exposed to ETS, but not among those without ETS exposure (p of interaction = 0.05 and 0.01 for rs5491 and rs5498, respectively). Both ICAM1 and ETS, and interactions between these two factors are likely to be involved in the development of asthma in childhood. PMID:25003170

  3. Soluble intracellular adhesion molecule 1 in bronchoalveolar lavage fluid of allergic subjects following segmental antigen challenge.

    PubMed

    Takahashi, N; Liu, M C; Proud, D; Yu, X Y; Hasegawa, S; Spannhake, E W

    1994-09-01

    This study was undertaken to determine the relationship of soluble intercellular adhesion molecule 1 (sICAM-1) levels in bronchoalveolar lavage (BAL) fluid during allergic airway inflammation to those in the vascular compartment and to cellular components in the BAL fluids. A group of 11 allergic subjects underwent initial bronchoscopy during which a control BAL was performed and normal saline (NS) and specific antigen (Ag) were administered to two sublobar segments. A second bronchoscopy was performed 17 to 21 h later, and the NS and Ag segments were lavaged. Blood was drawn before each bronchoscopic procedure. The mean concentration of sICAM-1 in BAL fluid from NS-challenged segments was 59.2 +/- 7.6 ng/ml and was not different from that in unchallenged segments (51.5 +/- 5.6 ng/ml). In BAL fluid from Ag-challenged segments, mean concentrations of sICAM-1 increased significantly to 97.5 +/- 12.5 ng/ml. Segmental antigen challenge was associated with a small but statistically significant increase in sICAM-1 concentrations in serum. The concentrations of sICAM-1 in BAL fluid after antigen challenge exceeded levels that could be accounted for by passive transudation from the circulation, based upon the magnitude of increases in BAL albumin concentrations. The levels of sICAM-1 in BAL from Ag-challenged segments were correlated significantly with the total white cell, lymphocyte, neutrophil, and eosinophil counts in BAL fluids. These results are supportive of the notion that the local release of sICAM-1 may play a role in allergen-induced inflammatory processes in the airways. PMID:7916246

  4. Intercellular Adhesion Molecule-1 (ICAM-1) Polymorphisms and Cancer Risk: A Meta-Analysis

    PubMed Central

    CHENG, Daye; LIANG, Bin

    2015-01-01

    Background: Intercellular adhesion molecule-1 (ICAM-1) Lys469Glu (K469E) polymorphism and Gly 241Arg (G241R) polymorphism might play important roles in cancer development and progression. However, the results of previous studies are inconsistent. The aim of this study was to evaluate the association between ICAM-1 K469E and G241R polymorphisms and the risk of cancer by meta-analysis. Methods: A comprehensive literature search (last search updated in November 2013) was conducted to identify case-control studies that investigated the association between ICAM-1 K469E and G241R polymorphisms and cancer risk. Results: A total of 18 case-control studies for ICAM-1 polymorphisms were included in the meta-analysis, including 4,844 cancer cases and 5,618 healthy controls. For K469E polymorphism, no significant association was found between K469E polymorphism and cancer risk. However, subgroup analysis by ethnicity revealed one genetic comparison (GG vs. AA) presented the relationship with cancer risk in Asian subgroup, and two genetic models (GG+GA vs. AA and GA vs. AA) in European subgroup, respectively. For G241R polymorphism, G241R polymorphism was significantly association with cancer risk in overall analysis. The subgroup analysis by ethnicity showed that G241R polymorphism was significantly associated with cancer risk in European subgroup. Conclusion: ICAM-1 G241R polymorphism might be associated with cancer risk, especially in European populations, but the results doesn’t support ICAM-1 K469E polymorphism as a risk factor for cancer. PMID:26284202

  5. Milk IgA responses are augmented by antigen delivery to the mucosal addressin cellular adhesion molecule 1.

    PubMed

    Johnson, Susan; Bourges, Dorothee; Wijburg, Odilia; Strugnell, Richard A; Lew, Andrew M

    2006-07-01

    The mucosal addressin cellular adhesion molecule 1 (MAdCAM) is expressed on the venules of the gut associated lymphoid tissue (GALT); it is also expressed on the venules of the lobules of the mammary gland. We have previously found that MAdCAM-targeting using a rat anti-MAdCAM monoclonal Ab as both antigen and targeting moiety resulted in an enhanced local IgA gut response. We therefore surmised that such targeting may also enhance IgA responses in the mammary gland. We show that our model antigen localizes to the lobules of the mammary glands as well as the GALT, but not to the draining lymph nodes and that targeting MAdCAM results in secretory IgA responses in the milk. We provide evidence that this milk IgA Ab is of a secretory nature and is consistent with derivation from gut plasmablasts that have migrated to the mammary gland. Targeting MAdCAM may be a way for a novel vaccine strategy that affords protection to the mammary gland and the suckling neonate. PMID:16723174

  6. Soluble Vascular Cell Adhesion Molecule-1 (VCAM-1) as a Biomarker in the Mouse Model of Experimental Autoimmune Myocarditis (EAM)

    PubMed Central

    Grabmaier, U.; Kania, G.; Kreiner, J.; Grabmeier, J.; Uhl, A.; Huber, B. C.; Lackermair, K.; Herbach, N.; Todica, A.; Eriksson, U.; Weckbach, L. T.; Brunner, S.

    2016-01-01

    Vascular cell adhesion molecule-1 (VCAM-1) is strongly upregulated in hearts of mice with coxsackie virus-induced as well as in patients with viral infection-triggered dilated cardiomyopathy. Nevertheless, the role of its soluble form as a biomarker in inflammatory heart diseases remains unclear. Therefore, we investigated whether plasma levels of soluble VCAM-1 (sVCAM-1) directly correlated with disease activity and progression of cardiac dysfunction in the mouse model of experimental autoimmune myocarditis (EAM). EAM was induced by immunization of BALB/c mice with heart-specific myosin-alpha heavy chain peptide together with complete Freund`s adjuvant. ELISA revealed strong expression of cardiac VCAM-1 (cVCAM-1) throughout the course of EAM in immunized mice compared to control animals. Furthermore, sVCAM-1 was elevated in the plasma of immunized compared to control mice at acute and chronic stages of the disease. sVCAM-1 did not correlate with the degree of acute cardiac inflammation analyzed by histology or cardiac cytokine expression investigated by ELISA. Nevertheless, heart to body weight ratio correlated significantly with sVCAM-1 at chronic stages of EAM. Cardiac systolic dysfunction studied with positron emission tomography indicated a weak relationship with sVCAM-1 at the chronic stage of the disease. Our data provide evidence that plasma levels of sVCAM-1 are elevated throughout all stages of the disease but showed no strong correlation with the severity of EAM. PMID:27501319

  7. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    PubMed

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation. PMID:24470464

  8. Soluble intercellular adhesion molecule-1 for stable and acute phases of idiopathic pulmonary fibrosis.

    PubMed

    Okuda, Ryo; Matsushima, Hidekazu; Aoshiba, Kazutetsu; Oba, Tomohiro; Kawabe, Rie; Honda, Koujiro; Amano, Masako

    2015-01-01

    The levels of soluble intercellular adhesion molecule-1 (sICAM-1) have been reported to increase in patients with idiopathic pulmonary fibrosis. However, the utility of sICAM-1 has not been reported in detail. The aim of this study was to investigate whether sICAM-1 was a useful biomarker for stable idiopathic pulmonary fibrosis (IPF) and early phase of acute exacerbation of IPF. The patients who were diagnosed with IPF between 2013 and 2015 were enrolled. The levels of sICAM-1 and other interstitial pneumonia markers were measured. In this study, 30 patients with stable IPF and 11 patients with acute exacerbation of IPF were collected. Mean sICAM-1 levels were 434 ± 139 ng/mL for the stable phase of IPF, 645 ± 247 ng/mL for early phase of acute exacerbation of IPF, 534 ± 223 ng/mL for connective tissue disease-associated interstitial pneumonia, 221 ± 42 for chronic obstructive pulmonary disease, and 150 ± 32 ng/mL in healthy volunteers. For the stable phase of IPF, sICAM-1 levels correlated with Krebs von den Lungen-6 (KL-6) (r value: 0.41; p value: 0.036). Mean sICAM-1 levels were significantly higher in patients with early phase of acute exacerbation of IPF than with stable phase of IPF (p = 0.0199). Multiple logistic analyses indicated that the predictors for early phase of acute exacerbation of IPF were only sICAM-1 and C-reactive protein (odds ratio: 1.0093; 1.6069). In patients with stable IPF, sICAM-1 levels correlated with KL-6; sICAM-1 might be a predictive indicator for prognosis. In the early phase of acute exacerbation of IPF, sICAM-1 might be more useful for diagnosis than other interstitial pneumonia markers. PMID:26543791

  9. Soluble platelet-endothelial cell adhesion molecule-1, a biomarker of ventilator-induced lung injury

    PubMed Central

    2014-01-01

    Introduction Endothelial cell injury is an important component of acute lung injury. Platelet-endothelial cell adhesion molecule-1 (PECAM1) is a transmembrane protein that connects endothelial cells to one another and can be detected as a soluble, truncated protein (sPECAM1) in serum. We hypothesized that injurious mechanical ventilation (MV) leads to shedding of PECAM1 from lung endothelial cells resulting in increasing sPECAM1 levels in the systemic circulation. Methods We studied 36 Sprague–Dawley rats in two prospective, randomized, controlled studies (healthy and septic) using established animal models of ventilator-induced lung injury. Animals (n = 6 in each group) were randomized to spontaneous breathing or two MV strategies: low tidal volume (VT) (6 ml/kg) and high-VT (20 ml/kg) on 2 cmH2O of positive end-expiratory pressure (PEEP). In low-VT septic animals, 10 cmH2O of PEEP was applied. We performed pulmonary histological and physiological evaluation and measured lung PECAM1 protein content and serum sPECAM1 levels after four hours ventilation period. Results High-VT MV caused severe lung injury in healthy and septic animals, and decreased lung PECAM1 protein content (P < 0.001). Animals on high-VT had a four- to six-fold increase of mean sPECAM1 serum levels than the unventilated counterpart (35.4 ± 10.4 versus 5.6 ± 1.7 ng/ml in healthy rats; 156.8 ± 47.6 versus 35.6 ± 12.6 ng/ml in septic rats) (P < 0.0001). Low-VT MV prevented these changes. Levels of sPECAM1 in healthy animals on high-VT MV paralleled the sPECAM1 levels of non-ventilated septic animals. Conclusions Our findings suggest that circulating sPECAM1 may represent a promising biomarker for the detection and monitoring of ventilator-induced lung injury. PMID:24588994

  10. Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry.

    PubMed Central

    Shafren, D R; Dorahy, D J; Ingham, R A; Burns, G F; Barry, R D

    1997-01-01

    It is becoming increasingly apparent that many viruses employ multiple receptor molecules in their cell entry mechanisms. The human enterovirus coxsackievirus A21 (CAV21) has been reported to bind to the N-terminal domain of intercellular adhesion molecule 1 (ICAM-1) and undergo limited replication in ICAM-1-expressing murine L cells. In this study, we show that in addition to binding to ICAM-1, CAV21 binds to the first short consensus repeat (SCR) of decay-accelerating factor (DAF). Dual antibody blockade using both anti-ICAM-1 (domain 1) and anti-DAF (SCR1) monoclonal antibodies (MAbs) is required to completely abolish binding and replication of high-titered CAV21. However, the binding of CAV21 to DAF, unlike that to ICAM-1, does not initiate a productive cell infection. The capacity of an anti-DAF (SCR3) MAb to block CAV21 infection but not binding, coupled with immunoprecipitation data from chemical cross-linking studies, indicates that DAF and ICAM-1 are closely associated on the cell surface. It is therefore suggested that DAF may function as a low-affinity attachment receptor either enhancing viral presentation or providing a viral sequestration site for subsequent high-affinity binding to ICAM-1. PMID:9151867

  11. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome.

    PubMed

    Palomo, Iván G; Jaramillo, Julio C; Alarcón, Marcelo L; Gutiérrez, César L; Moore-Carrasco, Rodrigo; Segovia, Fabián M; Leiva, Elba M; Mujica, Verónica E; Icaza, Gloria; Dí, Nora S

    2009-01-01

    Metabolic syndrome (MS) is associated with a high incidence rate of cardiovascular disease. It is characterized by abdominal obesity, elevated blood pressure, atherogenic dyslipidemia [high LDL-c (low density lipoprotein cholesterol) and low HDL-c (high density lipoprotein cholesterol)] and insulin resistance or glucose intolerance. In the context of MS, alterations in the plasmatic levels of some soluble forms of cell adhesion molecules can appear, e.g., soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin) and soluble CD40L (sCD40L). The objective of this study was to compare the serum levels of sVCAM-1, sE-selectin and sCD40L in MS and non-MS groups and to associate these molecules with the diagnostic criteria of MS. A total of 185 non-smokers between 45 and 64 years of age were included. Of these, 93 corresponded to the MS group and the remaining 92 to a non-MS group (according to modified ATP III criteria). The serum concentration of sVCAM-1, sE-selectin and sCD40L was determined by commercial solid phase ELISA. The results were expressed as a median and interquartile range. The MS group showed high levels of sVCAM-1 (558.9 ng/ml; 481.3-667.6 ng/ml) compared with the non-MS group (405.2 ng/ml; 361.0-470.5 ng/ml) (p<0.0001). As well, the median level of sCD40L (3.0 ng/ml; 2.1l-11.7 ng/ml) was significantly higher in the MS group than that in the non-MS group (2.6 ng/ml; 2.3-3.4 ng/ml) (p=0.0061). sE-selectin levels did not differ significantly between the groups: 73.9 ng/ml (58.3-87.0 ng/ml) and 68.5 ng/ml (51.6-97.5 ng/ml) in the MS and non-MS group, respectively. In conclusion, the serum levels of sVCAM-1 and sCD40L, but not sE-selectin, were significantly higher in patients with MS than in subjects that did not present MS. MS may therefore increase the expression of cell adhesion molecules, probably through endothelial activation. PMID:21475854

  12. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  13. Intercellular adhesion molecule 1: recent findings and new concepts involved in mammalian spermatogenesis

    PubMed Central

    Mruk, Dolores D.; Xiao, Xiang; Lydka, Marta; Li, Michelle W.M.; Bilinska, Barbara; Cheng, C. Yan

    2013-01-01

    Spermatogenesis, the process of spermatozoa production, is regulated by several endocrine factors, including testosterone, follicle stimulating hormone, luteinizing hormone and estradiol 17β. For spermatogenesis to reach completion, developing germ cells must traverse the seminiferous epithelium while remaining transiently attached to Sertoli cells. If germ cell adhesion were to be compromised for a period of time longer than usual, germ cells would slough the seminiferous epithelium and infertility would result. Presently, Sertoli-germ cell adhesion is known to be mediated largely by classical and desmosomal cadherins. More recent studies, however, have begun to expand long-standing concepts and to examine the roles of other proteins such as intercellular adhesion molecules. In this review, we focus on the biology of intercellular adhesion molecules in the mammalian testis, hoping that this information is useful in the design of future studies. PMID:23942142

  14. Intercellular Adhesion Molecule-1–Dependent Neutrophil Adhesion to Endothelial Cells Induces Caveolae-Mediated Pulmonary Vascular Hyperpermeability

    PubMed Central

    Hu, Guochang; Vogel, Stephen M.; Schwartz, David E.; Malik, Asrar B.; Minshall, Richard D.

    2009-01-01

    We investigated the role of caveolae in the mechanism of increased pulmonary vascular permeability and edema formation induced by the activation of polymorphonuclear neutrophils (PMNs). We observed that the increase in lung vascular permeability induced by the activation of PMNs required caveolin-1, the caveolae scaffold protein. The permeability increase induced by PMN activation was blocked in caveolin-1 knockout mice and by suppressing caveolin-1 expression in rats. The response was also dependent on Src phosphorylation of caveolin-1 known to activate caveolae-mediated endocytosis in endothelial cells. To address the role of PMN interaction with endothelial cells, we used an intercellular adhesion molecule (ICAM)-1 blocking monoclonal antibody. Preventing the ICAM-1–mediated PMN binding to endothelial cells abrogated Src phosphorylation of caveolin-1, as well as the increase in endothelial permeability. Direct ICAM-1 activation by crosslinking recapitulated these responses, suggesting that ICAM-1 activates caveolin-1 signaling responsible for caveolae-mediated endothelial hyperpermeability. Our results provide support for the novel concept that a large component of pulmonary vascular hyperpermeability induced by activation of PMNs adherent to the vessel wall is dependent on signaling via caveolin-1 and increased caveolae-mediated transcytosis. Thus, it is important to consider the role of the transendothelial vesicular permeability pathway that contributes to edema formation in developing therapeutic interventions against PMN-mediated inflammatory diseases such as acute lung injury. PMID:18511851

  15. The neutrophil-specific antigen CD177 is a counter-receptor for platelet endothelial cell adhesion molecule-1 (CD31).

    PubMed

    Sachs, Ulrich J H; Andrei-Selmer, Cornelia L; Maniar, Amudhan; Weiss, Timo; Paddock, Cathy; Orlova, Valeria V; Choi, Eun Young; Newman, Peter J; Preissner, Klaus T; Chavakis, Triantafyllos; Santoso, Sentot

    2007-08-10

    Human neutrophil-specific CD177 (NB1 and PRV-1) has been reported to be up-regulated in a number of inflammatory settings, including bacterial infection and granulocyte-colony-stimulating factor application. Little is known about its function. By flow cytometry and immunoprecipitation studies, we identified platelet endothelial cell adhesion molecule-1 (PECAM-1) as a binding partner of CD177. Real-time protein-protein analysis using surface plasmon resonance confirmed a cation-dependent, specific interaction between CD177 and the heterophilic domains of PECAM-1. Monoclonal antibodies against CD177 and against PECAM-1 domain 6 inhibited adhesion of U937 cells stably expressing CD177 to immobilized PECAM-1. Transendothelial migration of human neutrophils was also inhibited by these antibodies. Our findings provide direct evidence that neutrophil-specific CD177 is a heterophilic binding partner of PECAM-1. This interaction may constitute a new pathway that participates in neutrophil transmigration. PMID:17580308

  16. Nitric oxide pretreatment enhances atheroma component highlighting in vivo with intercellular adhesion molecule-1-targeted echogenic liposomes.

    PubMed

    Kee, Patrick H; Kim, Hyunggun; Huang, Shaoling; Laing, Susan T; Moody, Melanie R; Vela, Deborah; Klegerman, Melvin E; McPherson, David D

    2014-06-01

    We present an ultrasound technique for the detection of inflammatory changes in developing atheromas. We used contrast-enhanced ultrasound imaging with (i) microbubbles targeted to intercellular adhesion molecule-1 (ICAM-1), a molecule of adhesion involved in inflammatory processes in lesions of atheromas in New Zealand White rabbits, and (ii) pretreatment with nitric oxide-loaded microbubbles and ultrasound activation at the site of the endothelium to enhance the permeability of the arterial wall and the penetration of ICAM-1-targeted microbubbles. This procedure increases acoustic enhancement 1.2-fold. Pretreatment with nitric oxide-loaded echogenic liposomes and ultrasound activation can potentially facilitate the subsequent penetration of targeted echogenic liposomes into the arterial wall, thus allowing improved detection of inflammatory changes in developing atheromas. PMID:24613216

  17. Breast cancer cells compete with hematopoietic stem and progenitor cells for intercellular adhesion molecule 1-mediated binding to the bone marrow microenvironment.

    PubMed

    Dhawan, Abhishek; Friedrichs, Jens; Bonin, Malte von; Bejestani, Elham Peshali; Werner, Carsten; Wobus, Manja; Chavakis, Triantafyllos; Bornhäuser, Martin

    2016-08-01

    Adhesion-based cellular interactions involved in breast cancer metastasis to the bone marrow remain elusive. We identified that breast cancer cells directly compete with hematopoietic stem and progenitor cells (HSPCs) for retention in the bone marrow microenvironment. To this end, we established two models of competitive cell adhesion-simultaneous and sequential-to study a potential competition for homing to the niche and displacement of the endogenous HSPCs upon invasion by tumor cells. In both models, breast cancer cells but not non-tumorigenic cells competitively reduced adhesion of HSPCs to bone marrow-derived mesenchymal stromal cells (MSCs) in a tumor cell number-dependent manner. Higher adhesive force between breast cancer cells and MSCs, as compared with HSPCs, assessed by quantitative atomic force microscopy-based single-cell force spectroscopy could partially account for tumor cell mediated reduction in HSPC adhesion to MSCs. Genetic inactivation and blockade studies revealed that homophilic interactions between intercellular adhesion molecule 1 (ICAM-1) expressed on tumor cells and MSCs, respectively, regulate the competition between tumor cells and HSPCs for binding to MSCs. Moreover, tumor cell-secreted soluble ICAM-1(sICAM-1) also impaired HSPC adhesion via blocking CD18-ICAM-1 binding between HSPCs and MSCs. Xenotransplantation studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice revealed reduction of human HSPCs in the bone marrow via metastatic breast cancer cells. These findings point to a direct competitive interaction between disseminated breast cancer cells and HSPCs within the bone marrow micro environment. This interaction might also have implications on niche-based tumor support. Therefore, targeting this cross talk may represent a novel therapeutic strategy. PMID:27207667

  18. The relationship between platelet endothelial cell adhesion molecule-1 and paraquat-induced lung injury in rabbits

    PubMed Central

    Shi, Jing; Hu, Chun-lin; Gao, Yu-feng; Liao, Xiao-xing; Xu, Hope

    2012-01-01

    BACKGROUND: Platelet endothelial cell adhesion molecule-1 (PECAM-1), also known as CD31, is mainly distributed in vascular endothelial cells. Studies have shown that PECAM-1 is a very significant indicator of angiogenesis, and has been used as an indicator for vascular endothelial cells. The present study aimed to explore the relationship between the expression of PECAM-1 and the degree of acute lung injury (ALI) and fibrosis in paraquat (PQ) induced lung injury in rabbits. METHODS: Thirty-six adult New Zealand rabbits were randomly divided into three groups (12 rabbits in each group) according to PQ dosage: 8 mg/kg (group A), 16 mg/kg (group B), and 32 mg/kg (group C). After PQ infusion, the rabbits were monitored for 7 days and then euthanized. The lungs were removed for histological evaluation. Masson staining was used to determine the degree of lung fibrosis (LF), and semi-quantitative immune-histochemistry analysis to determine the expression of PECAM-1. Pearson’s product-moment correlation analysis was performed to evaluate the relationship between the expression of PECAM-1 and the extent of lung injuries expressed by ALI score and degree of LF. RESULTS: Rabbits in the three groups showed apparent poisoning. The rabbits survived longer in group A than in groups B and C (6.47±0.99 days vs. 6.09±1.04 days vs. 4.77±2.04 days) (P<0.05). ALI score was lower in group A than in groups B and C (8.33±1.03 vs. 9.83±1.17 vs. 11.50±1.38) (P<0.05), and there was statistically significant difference between group B and group C (P=0.03). LF was slighter in group A than in groups B and C (31.09%±2.05 % vs. 34.37%±1.62 % vs. 36.54%±0.44%) (P<0.05), and there was statistically significant difference between group B and group C (P=0.026). The PEACAM-1 expression was higher in group A than in groups B and C (20.31%±0.70% vs. 19.34%±0.68% vs. 18.37%±0.46%) (P<0.05), and there was statistically significant difference between group B and group C (P=0.017). Pearson

  19. Expression of adhesion molecules in leprosy lesions.

    PubMed Central

    Sullivan, L; Sano, S; Pirmez, C; Salgame, P; Mueller, C; Hofman, F; Uyemura, K; Rea, T H; Bloom, B R; Modlin, R L

    1991-01-01

    Leprosy presents as a clinical spectrum that is precisely paralleled by a spectrum of immunological reactivity. The disease provides a useful and accessible model, in this case in the skin, in which to study the dynamics of cellular immune responses to an infectious pathogen, including the role of adhesion molecules in those responses. In lesions characterized by strong delayed-type hypersensitivity against Mycobacterium leprae (tuberculoid, reversal reaction, and Mitsuda reaction), the overlying epidermis exhibited pronounced keratinocyte intracellular adhesion molecule 1 (ICAM-1) expression and contained lymphocytes expressing the ICAM-1 ligand, LFA-1. Conversely, in lesions in which delayed-type hypersensitivity was lacking (lepromatous), keratinocyte ICAM-1 expression was low and LFA-1+ lymphocytes were rare. Expression of these adhesion molecules on the cells within the dermal granulomas was equivalent throughout the spectrum of leprosy. The percentage of lymphocytes in these granulomas containing mRNA coding for gamma interferon and tumor necrosis factor alpha, synergistic regulators of ICAM-1 expression, paralleled epidermal ICAM-1 expression. In lesions of erythema nodosum leprosum, a reactional state of lepromatous leprosy thought to be due to immune complex deposition, keratinocyte ICAM-1 expression and gamma interferon mRNA+ cells were both prominent. Antibodies to LFA-1 and ICAM-1 blocked the response of both alpha beta and gamma delta T-cell clones in vitro to mycobacteria. Overall, the expression of adhesion molecules by immunocompetent epidermal cells, as well as the cytokines which regulate such expression, correlates with the outcome of the host response to infection. Images PMID:1718871

  20. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  1. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    PubMed Central

    Wang, Ping; Xue, Yi-Xue; Yao, Yi-Long; Yu, Bo; Liu, Yun-Hui

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma cells were treated with artemether at various concentrations and shRNA interfering technology was employed to silence the expression of VCAM-1. Cell viability, migration, invasiveness and apoptosis were assessed with MTT, wound healing, Transwell and Annexin V-FITC/PI staining. The expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylated Akt (p-Akt) was checked by Western blot assay. Results showed that artemether and shRNA-VCAM-1 not only significantly inhibited the migration, invasiveness and expression of MMP-2/9 and p-Akt, but also promoted the apoptosis of U87 cells. Combined treatment of both displayed the maximum inhibitory effects on the malignant biological behavior of glioma cells. Our work revealed the potential therapeutic effects of artemether and antiVCAM-1 in the treatments of gliomas. PMID:23593320

  2. Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of beta 2 integrins and intercellular adhesion molecule-1.

    PubMed

    Jaeschke, H; Farhood, A; Fisher, M A; Smith, C W

    1996-11-01

    Antibodies against cellular adhesion molecules protect against neutrophil-induced hepatic injury during ischemia-reperfusion and endotoxemia. To test if beta 2 integrins on neutrophils and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells are involved in neutrophil sequestration in the hepatic vasculature, neutrophil accumulation in the liver was characterized during the early phase of endotoxemia. Intravenous injection of Salmonella enteritidis endotoxin induced a dose-dependent activation of complement, tumor necrosis factor-alpha (TNF-alpha) formation, and an increase of hepatic neutrophils with maximal numbers at 5 mg/kg (90 min: 339 +/- 14 cells/50 high power fields; controls: 18 +/- 2). Administration of 15 micrograms/kg TNF-alpha and intravascular complement activation with cobra venom factor (75 micrograms/kg) had additive effects on hepatic neutrophil accumulation compared with each mediator alone. Monoclonal antibodies (2 mg/kg) to ICAM-1 and the alpha-chain (CD11a, CD11b) or the beta-chain (CD18) of beta 2 integrins had no significant effect on hepatic neutrophil count after endotoxin. In contrast, these antibodies inhibited peritoneal neutrophil infiltration in response to glycogen administration by 28% (CD11b), 60% (CD11a, ICAM-1), and 92% (CD18). Our data suggest that TNF-alpha and complement factors contribute to hepatic neutrophil sequestration during the early phase of endotoxemia. Despite the fact that these inflammatory mediators can up-regulate integrins and ICAM-1, these adhesion molecules are not necessary for neutrophil accumulation in hepatic sinusoids. The protective effect of these antibodies against neutrophil-induced liver injury appears to be due to inhibition of transendothelial migration and adherence to parenchymal cells. PMID:8946651

  3. Novel association of soluble intercellular adhesion molecule 1 and soluble P-selectin with the ABO blood group in a Chinese population

    PubMed Central

    Zhang, Wenjing; Xu, Qun; Zhuang, Yunlong; Chen, Yuanfeng

    2016-01-01

    Recent studies have reported that the ABO gene can affect circulating expression levels of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble P-selectin (sP-selectin) in Caucasians. However, several factors may affect the association, including the distribution and variations of the ABO gene, ethnic diversity and the inflammatory response status. The aim of the present study was to investigate this issue in Asian subjects of various blood groups. A total of 800 blood samples were randomly selected from healthy blood donors. The ABO blood groups were examined using standard serological tests, and ABO genotypes of group A and group AB specimens were analyzed. Plasma concentrations of sICAM-1 and sP-selectin were detected by standard enzyme-linked immunosorbent assays. In healthy Chinese individuals, blood group A was detected to be significantly associated with lower circulating expression levels of sICAM-1 and sP-selectin, compared with group O. Individuals with ≥1 A1 allele had significantly lower expression levels of sICAM-1 and sP-selectin compared with all other ABO groups. The data indicate the significant association of ABO blood group antigens with sICAM-1 and sP-selectin expression levels in a healthy Chinese population, independent of the specific variations and distributions of ABO blood groups among ethnic populations. This result provides evidence for the previously unidentified role of ABO blood group antigens in the regulation of the inflammatory adhesion process. Accordingly, it can be proposed that ABO blood groups may require consideration when soluble adhesion molecules are identified as predictors for cardiovascular disease. PMID:27446295

  4. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands. PMID:7511663

  5. Regulation of local and metastatic host-mediated anti-tumour mechanisms by l-selectin and intercellular adhesion molecule-1

    PubMed Central

    Yamada, M; Yanaba, K; Hasegawa, M; Matsushita, Y; Horikawa, M; Komura, K; Matsushita, T; Kawasuji, A; Fujita, T; Takehara, K; Steeber, D A; Tedder, T F; Sato, S

    2006-01-01

    Malignant melanoma is often accompanied by a host response of inflammatory cell infiltration that is highly regulated by multiple adhesion molecules. To assess the role of adhesion molecules, including l-selectin and intercellular adhesion molecule-1 (ICAM-1), in this process, subcutaneous primary growth and metastasis to the lung of B16 melanoma cells not expressing l-selectin, ICAM-1 or their ligands were examined in mice lacking l-selectin, ICAM-1 or both. Primary subcutaneous growth of B16 melanoma was augmented by loss of l-selectin, ICAM-1 or both, while pulmonary metastasis was enhanced by the loss of l-selectin or combined loss of l-selectin and ICAM-1. In both situations, the combined loss of l-selectin and ICAM-1 exhibited the greatest effect. This enhancement was associated generally with a reduced accumulation of natural killer (NK) cells, CD4+ T cells and CD8+ T cells and also with a diminished release of interferon (IFN)-γ and tumour necrosis factor (TNF)-α but not interleukin (IL)-6. Cytotoxicity against melanoma was not defective by the absence of ICAM-1, l-selectin or both, suggesting that the enhancement of tumour growth and metastasis caused by the loss of adhesion molecules results from an impaired migration of effector cells into the tissue rather than from a suppression of the cytotoxic response. The results indicate that l-selectin and ICAM-1 contribute co-operatively to the anti-tumour reaction by regulating lymphocyte infiltration to the tumour. PMID:16412045

  6. Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.

    PubMed

    Gratzinger, Dita; Canosa, Sandra; Engelhardt, Britta; Madri, Joseph A

    2003-08-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoglobulin family vascular adhesion molecule, is involved in endothelial cell migration and angiogenesis (1, 2). We found that endothelial cells lacking PECAM-1 exhibit increased single cell motility and extension formation but poor wound healing migration, reminiscent of cells in which Rho activity has been suppressed by overexpressing a GTPase-activating protein (3). The ability of PECAM-1 to restore wound healing migration to PECAM-1-deficient cells was independent of its extracellular domain or signaling via its immunoreceptor tyrosine-based inhibitory motif. PECAM-1-deficient endothelial cells had a selective defect in RhoGTP loading, and inhibition of Rho activity mimicked the PECAM-1-deficient phenotype of increased chemokinetic single cell motility at the expense of coordinated wound healing migration. The wound healing advantage of PECAM-1-positive endothelial cells was not only Rho mediated but pertussis toxin inhibitable, characteristic of migration mediated by heterotrimeric G-protein-linked seven-transmembrane receptor signaling such as signaling in response to the serum sphingolipid sphingosine-1-phosphate (S1P) (4, 5). Indeed, we found that the wound healing defect of PECAM-1 null endothelial cells is minimized in sphingolipid-depleted media; moreover, PECAM-1 null endothelial cells fail to increase their migration in response to S1P. We have also found that PECAM-1 localizes to rafts and that in its absence heterotrimeric G-protein components are differentially recruited to rafts, providing a potential mechanism for PECAM-1-mediated coordination of S1P signaling. PECAM-1 may thus support the effective S1P/RhoGTP signaling required for wound healing endothelial migration by allowing for the spatially directed, coordinated activation of Galpha signaling pathways. PMID:12890700

  7. Association between the Polymorphisms in Intercellular Adhesion Molecule-1 and the Risk of Coronary Atherosclerosis: A Case-Controlled Study

    PubMed Central

    Zhang, Qingjiang; Xin, Yu; Chen, Yanjun; Tian, Ye

    2014-01-01

    Intercellular adhesion molecule-1 (ICAM-1), an important immune adhesion molecule, is related to the atherosclerosis. We explored the association between the polymorphisms of the ICAM-1 gene and coronary atherosclerotic stenosis to determine whether any risk factors correlate with genetic polymorphisms in Chinese patients with coronary atherosclerosis. Using the SNaPshot assay, we examined six SNPs of rs5491, rs281428, rs281432, rs5496, rs5498 and rs281437 in 604 patients diagnosed with coronary atherosclerotic stenosis by angiography and in 468 controls. We found that AG genotype of rs5498 had higher frequency in the coronary atherosclerotic stenosis patients (41.56% to 34.19%, P = 0.017, OR = 1.368,95%CI 1.057–1.770) and that the haplotype Ars5491Crs281428Grs281432 had higher frequency in patients (13.8% to 12.1%, P = 0.048). When analyzing the clinical risk factors for coronary atherosclerosis, we found that the rs5498 locus was associated with the levels of apolipoprotein A (APOA) (P = 0.0002) and triglycerides (TG) (P = 0.002). Furthermore, the levels of triglycerides (TG) were also associated with rs281432 (P = 0.040). Additionally, the TT genotype of rs281437 was associated with a higher level of apolipoprotein A (APOA) (P = 0.039) and apolipoprotein B (APOB) (P = 0.003). Finally, among those with coronary atherosclerosis, we found no differences in the haplotype analysis of polymorphisms of the ICAM-1 gene from individuals with hypertension or those who smoked. According to our results, the ICAM-1 polymorphisms were associated with risk of coronary atherosclerotic stenosis in Chinese individuals. PMID:25310099

  8. Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology.

    PubMed Central

    Hildreth, J E; Subramanium, A; Hampton, R A

    1997-01-01

    While studying the potential role of vascular cell adhesion molecule-1 (VCAM-1) in infection of endothelial cells by human immunodeficiency virus (HIV), we found that VCAM-1 can mediate human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation. Both expression-vector-encoded and endogenously expressed VCAM-1 supported fusion of uninfected cells with HTLV-1-infected cells. Fusion was obtained with cell lines carrying the HTLV-1 genome and expressing viral proteins but not with an HTLV-1-transformed cell line that does not express viral proteins. In clones of VCAM-1-transfected cells, the degree of syncytium formation observed directly reflected the level of VCAM-1 expression. Syncytium formation between HTLV-1-expressing cells and VCAM-1+ cells could be blocked with antiserum against HTLV-1 gp46 and with a monoclonal antibody (MAb) against VCAM-1. Fusion was not blocked by antiserum against HIV or a MAb against VLA-4, the physiological counter-receptor for VCAM-1. The results indicate that VCAM-1 can serve as an accessory molecule or potential coreceptor for HTLV-1-induced cell fusion and provide direct evidence of a role for cell adhesion molecules in the biology of HTLV-1. PMID:8995639

  9. Nitric Oxide-Enhanced Molecular Imaging of Atheroma using Vascular Cellular Adhesion Molecule-1 Targeted Echogenic Immunoliposomes

    PubMed Central

    Kim, Hyunggun; Kee, Patrick H.; Rim, Yonghoon; Moody, Melanie R.; Klegerman, Melvin E.; Vela, Deborah; Huang, Shao-Ling; McPherson, David D.; Laing, Susan T.

    2015-01-01

    This study aimed to demonstrate whether pretreatment with nitric-oxide loaded echogenic liposomes (NO-ELIP) plus ultrasound can improve highlighting by molecularly targeted [anti-vascular cell adhesion molecule-1 (VCAM-1)] ELIP of atheroma components. Atherosclerotic animals were treated with anti-VCAM-1 ELIP or immunoglobulin (IgG)-ELIP. Each group was randomized to receive pretreatment with standard ELIP plus ultrasound, NO-ELIP without ultrasound, or NO-ELIP plus ultrasound. Intravascular ultrasound highlighting data of the same arterial segments were collected before and after treatment. Pretreatment with NO-ELIP plus ultrasound demonstrated a significant increase in acoustic enhancement by anti-VCAM-1 ELIP (21.3 ± 1.5% for gray scale value, 53.9 ± 3.1% for radiofrequency data; p<0.001 vs. IgG-ELIP, p<0.05 vs. pretreatment with standard ELIP plus ultrasound or NO-ELIP without ultrasound). NO-ELIP plus ultrasound can improve highlighting of atheroma by anti-VCAM-1 ELIP. This NO pretreatment strategy may be useful for optimizing contrast agent delivery to the vascular wall for both diagnostic and therapeutic applications. PMID:25819469

  10. Nitric Oxide-Enhanced Molecular Imaging of Atheroma using Vascular Cellular Adhesion Molecule 1-Targeted Echogenic Immunoliposomes.

    PubMed

    Kim, Hyunggun; Kee, Patrick H; Rim, Yonghoon; Moody, Melanie R; Klegerman, Melvin E; Vela, Deborah; Huang, Shao-Ling; McPherson, David D; Laing, Susan T

    2015-06-01

    The aim of this study was to determine whether pre-treatment with nitric oxide-loaded echogenic liposomes (NO-ELIP) plus ultrasound can improve highlighting by molecularly targeted (anti-vascular cell adhesion molecule 1 [VCAM-1]) ELIP of atheroma components. Atherosclerotic animals were treated with anti-VCAM-1-ELIP or immunoglobulin (IgG)-ELIP. Each group was selected at random to receive pre-treatment with standard ELIP plus ultrasound, NO-ELIP without ultrasound and NO-ELIP plus ultrasound. Intravascular ultrasound highlighting data for the same arterial segments were collected before and after treatment. Pre-treatment with NO-ELIP plus ultrasound resulted in a significant increase in acoustic enhancement by anti-VCAM-1-ELIP (21.3 ± 1.5% for gray-scale value, 53.9 ± 3.1% for radiofrequency data; p < 0.001 vs. IgG-ELIP, p < 0.05 vs. pre-treatment with standard ELIP plus ultrasound or NO-ELIP without ultrasound). NO-ELIP plus ultrasound can improve highlighting of atheroma by anti-VCAM-1 ELIP. This NO pre-treatment strategy may be useful in optimizing contrast agent delivery to the vascular wall for both diagnostic and therapeutic applications. PMID:25819469

  11. Neutrophils lacking platelet-endothelial cell adhesion molecule-1 exhibit loss of directionality and motility in CXCR2-mediated chemotaxis.

    PubMed

    Wu, Yue; Stabach, Paul; Michaud, Michael; Madri, Joseph A

    2005-09-15

    Time-lapsed videomicroscopy was used to study the migration of platelet-endothelial cell adhesion molecule-1-deficient (PECAM-1(-/-)) murine neutrophils undergoing chemotaxis in Zigmond chambers containing IL-8, KC, or fMLP gradients. PECAM-1(-/-) neutrophils failed to translocate up the IL-8, KC, and fMLP gradients. Significant reductions in cell motility and cell spreading were also observed in IL-8 or KC gradients. In wild-type neutrophils, PECAM-1 and F-actin were colocalized at the leading fronts of polarized cells toward the gradient. In contrast, in PECAM-1(-/-) neutrophils, although F-actin also localized to the leading front of migrating cells, F-actin polymerization was unstable, and cycling was remarkably increased compared with that of wild-type neutrophils. This may be due to the decreased cytokine-induced mobilization of the actin-binding protein, moesin, into the cytoskeleton of PECAM-1(-/-) neutrophils. PECAM-1(-/-) neutrophils also exhibited intracellularly dislocalized Src homology 2 domain containing phosphatase 1 (SHP-1) and had less IL-8-induced SHP-1 phosphatase activity. These results suggest that PECAM-1 regulates neutrophil chemotaxis by modulating cell motility and directionality, in part through its effects on SHP-1 localization and activation. PMID:16148090

  12. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma

    PubMed Central

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M.; Messerer, David A. C.; Radermacher, Peter; Weiss, Manfred; Kalbitz, Miriam; Ehrnthaller, Christian; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction. PMID:26556956

  13. Coupling factor 6 downregulates platelet endothelial cell adhesion molecule-1 via c-Src activation and acts as a proatherogenic molecule.

    PubMed

    Kumagai, Akiko; Osanai, Tomohiro; Katoh, Chisato; Tanaka, Makoto; Tomita, Hirofumi; Morimoto, Takeshi; Murakami, Reiichi; Magota, Koji; Okumura, Ken

    2008-09-01

    Coupling factor 6 (CF6), a component of ATP synthase, suppresses the generation of prostacyclin and nitric oxide (NO). Platelet endothelial cell adhesion molecule-1 (PECAM-1) is involved in shear-induced NO production. To investigate the linkage between the actions of CF6 and PECAM-1, we examined the effects of CF6 on PECAM-1 expression and shear-mediated NO release, comparatively with those of angiotensin II (AngII). Treatment of human umbilical vein endothelial cells (HUVEC) and aortic endothelial cells (HAEC) with CF6 at 10(-7)M or AngII at 10(-7)M for 24h suppressed PECAM-1 gene and protein expression. CF6 or AngII activated c-Src at 15 min in HUVEC, and blockade of c-Src with PP1, its specific inhibitor, restored them. Efrapeptin, an inhibitor of ATPase, attenuated CF6-induced suppression of PECAM-1 gene expression by blockade of acidification, whereas superoxide dismutase or apocinin, an inhibitor of NADPH oxidase, blocked AngII-induced suppression of PECAM-1. Exposure of the cells to shear stress at 25 dynes/cm(2) for 30 min enhanced phosphorylation of eNOS at Ser(1177) and NO release. Pretreatment with CF6 or AngII for 24h attenuated them in HUVEC and HAEC. These suggest that CF6 downregulates PECAM-1 expression via c-Src activation and attenuates shear-induced NO release presumably by suppressing eNOS phosphorylation. PMID:18243211

  14. FRET Based Quantification and Screening Technology Platform for the Interactions of Leukocyte Function-Associated Antigen-1 (LFA-1) with InterCellular Adhesion Molecule-1 (ICAM-1)

    PubMed Central

    Chakraborty, Sandeep; Núñez, David; Hu, Shih-Yang; Domingo, María Pilar; Pardo, Julian; Karmenyan, Artashes; Chiou, Arthur

    2014-01-01

    The interaction between leukocyte function-associated antigen-1(LFA-1) and intercellular adhesion molecule-1 (ICAM-1) plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple ‘in solution’ steady state fluorescence resonance energy transfer (FRET) technique to obtain the dissociation constant (Kd) of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc) as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction. PMID:25032811

  15. Leptin Resistance Contributes to Obesity in Mice with Null Mutation of Carcinoembryonic Antigen-related Cell Adhesion Molecule 1.

    PubMed

    Heinrich, Garrett; Russo, Lucia; Castaneda, Tamara R; Pfeiffer, Verena; Ghadieh, Hilda E; Ghanem, Simona S; Wu, Jieshen; Faulkner, Latrice D; Ergün, Süleyman; McInerney, Marcia F; Hill, Jennifer W; Najjar, Sonia M

    2016-05-20

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid β-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice. PMID:27002145

  16. Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement.

    PubMed

    Chacko, Ann-Marie; Han, Jingyan; Greineder, Colin F; Zern, Blaine J; Mikitsh, John L; Nayak, Madhura; Menon, Divya; Johnston, Ian H; Poncz, Mortimer; Eckmann, David M; Davies, Peter F; Muzykantov, Vladimir R

    2015-07-28

    Nanocarriers (NCs) coated with antibodies (Abs) to extracellular epitopes of the transmembrane glycoprotein PECAM (platelet endothelial cell adhesion molecule-1/CD31) enable targeted drug delivery to vascular endothelial cells. Recent studies revealed that paired Abs directed to adjacent, yet distinct epitopes of PECAM stimulate each other's binding to endothelial cells in vitro and in vivo ("collaborative enhancement"). This phenomenon improves targeting of therapeutic fusion proteins, yet its potential role in targeting multivalent NCs has not been addressed. Herein, we studied the effects of Ab-mediated collaborative enhancement on multivalent NC spheres coated with PECAM Abs (Ab/NC, ∼180 nm diameter). We found that PECAM Abs do mutually enhance endothelial cell binding of Ab/NC coated by paired, but not "self" Ab. In vitro, collaborative enhancement of endothelial binding of Ab/NC by paired Abs is modulated by Ab/NC avidity, epitope selection, and flow. Cell fixation, but not blocking of endocytosis, obliterated collaborative enhancement of Ab/NC binding, indicating that the effect is mediated by molecular reorganization of PECAM molecules in the endothelial plasmalemma. The collaborative enhancement of Ab/NC binding was affirmed in vivo. Intravascular injection of paired Abs enhanced targeting of Ab/NC to pulmonary vasculature in mice by an order of magnitude. This stimulatory effect greatly exceeded enhancement of Ab targeting by paired Abs, indicating that '"collaborative enhancement"' effect is even more pronounced for relatively large multivalent carriers versus free Abs, likely due to more profound consequences of positive alteration of epitope accessibility. This phenomenon provides a potential paradigm for optimizing the endothelial-targeted nanocarrier delivery of therapeutic agents. PMID:26153796

  17. Platelet endothelial cell adhesion molecule-1 (PECAM-1) inhibits low density lipoprotein-induced signaling in platelets.

    PubMed

    Relou, Ingrid A M; Gorter, Gertie; Ferreira, Irlando Andrade; van Rijn, Herman J M; Akkerman, Jan-Willem N

    2003-08-29

    At physiological concentrations, low density lipoprotein (LDL) increases the sensitivity of platelets to aggregation- and secretion-inducing agents without acting as an independent activator of platelet functions. LDL sensitizes platelets by inducing a transient activation of p38MAPK, a Ser/Thr kinase that is activated by the simultaneous phosphorylation of Thr180 and Tyr182 and is an upstream regulator of cytosolic phospholipase A2 (cPLA2). A similar transient phosphorylation of p38MAPK is induced by a peptide mimicking amino acids 3359-3369 in apoB100 called the B-site. Here we report that the transient nature of p38MAPK activation is caused by platelet endothelial cell adhesion molecule 1 (PECAM-1), a receptor with an immunoreceptor tyrosine-based inhibitory motif. PECAM-1 activation by cross-linking induces tyrosine phosphorylation of PECAM-1 and a fall in phosphorylated p38MAPK and cPLA2. Interestingly, LDL and the B-site peptide also induce tyrosine phosphorylation of PECAM-1, and studies with immunoprecipitates indicate the involvement of c-Src. Inhibition of the Ser/Thr phosphatases PP1/PP2A (okadaic acid) makes the transient p38MAPK activation by LDL and the B-site peptide persistent. Inhibition of Tyr-phosphatases (vanadate) increases Tyr-phosphorylated PECAM-1 and blocks the activation of p38MAPK. Together, these findings suggest that, following a first phase in which LDL, through its B-site, phosphorylates and thereby activates p38MAPK, a second phase is initiated in which LDL activates PECAM-1 and induces dephosphorylation of p38MAPK via activation of the Ser/Thr phosphatases PP1/PP2A. PMID:12775720

  18. Polymorphisms in the ICAM1 gene predict circulating soluble intercellular adhesion molecule-1(sICAM-1)

    PubMed Central

    Bielinski, Suzette J.; Reiner, Alex P.; Nickerson, Deborah; Carlson, Chris; Bailey, Kent R.; Thyagarajan, Bharat; Lange, Leslie A.; Boerwinkle, Eric A.; Jacobs, David R.; Gross, Myron D.

    2012-01-01

    Objective Polymorphisms within the ICAM1 structural gene have been shown to influence circulating levels of soluble intercellular adhesion molecule -1 (sICAM-1) but their relation to atherosclerosis has not been clearly established. We sought to determine whether ICAM1 SNPs are associated with circulating sICAM-1 concentration, coronary artery calcium (CAC), and common and internal carotid intima medial thickness (IMT). Methods and Results 3,550 black and white Coronary Artery Risk Development in Young Adults (CARDIA) Study subjects who participated in the year 15 and/or 20 examinations and were part of the Young Adult Longitudinal Study of Antioxidants (YALTA) ancillary study were included in this analysis. In whites, rs5498 was significantly associated with sICAM-1 (p < 0.001) and each G-allele of rs5498 was associated with 5% higher sICAM-1 concentration. In blacks, each C-allele of rs5490 was associated with 6 % higher sICAM-1 level; this SNP was in strong linkage disequilibrium with rs5491, a functional variant. Subclinical measurements of atherosclerosis in either year 15 or year 20 were not significantly related to ICAM1 SNPs. Conclusions In CARDIA, ICAM1 DNA segment variants were associated with sICAM-1 protein level including the novel finding that levels differ by the functional variant rs5491. However, ICAM1 SNPs were not strongly related to either IMT or CAC. Our findings in CARDIA suggest that ICAM1 variants are not major early contributors to subclinical atherosclerosis. PMID:21392767

  19. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1.

    PubMed

    Carman, Christopher V; Jun, Chang-Duk; Salas, Azucena; Springer, Timothy A

    2003-12-01

    Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure. PMID:14634129

  20. Transcriptional activation of vascular cell adhesion molecule-1 gene in vivo and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock.

    PubMed

    Essani, N A; Bajt, M L; Farhood, A; Vonderfecht, S L; Jaeschke, H

    1997-06-15

    Polymorphonuclear leukocytes (neutrophils) can cause hepatic parenchymal cell injury during endotoxin (ET) shock. Because adhesion molecules are critical for inflammatory cell damage, the role of vascular cell adhesion molecule-1 (VCAM-1) was studied in the pathophysiology of ET shock. ET-sensitive mice (C3Heb/FeJ) were treated with 700 mg/kg galactosamine in combination with 100 microg/kg Salmonella abortus equi ET, 15 microg/kg TNF-alpha, or 13 to 23 microg/kg IL-1. VCAM-1 mRNA formation was strongly activated in animals treated with ET, TNF-alpha, or IL-1. In contrast, only TNF-alpha and IL-1, not ET, induced VCAM-1 gene transcription in livers of ET-resistant mice (C3H/HeJ). Immunohistochemistry and isolation of liver cells during endotoxemia indicated that VCAM-1 mRNA and protein were only formed in endothelial cells and Kupffer cells, not in hepatocytes. Galactosamine/ET induced neutrophil accumulation in sinusoids (515 +/- 30 neutrophils/50 high power fields) followed by transmigration at 7 h. At that time, severe liver injury was observed (necrosis, 53 +/- 5%). An anti-VCAM-1 Ab (3 mg/kg) attenuated the area of necrosis by 60%. The Ab reduced neutrophil transmigration by 84%, but had no effect on the total number of cells in the liver vasculature. Flow cytometric analysis identified the presence of very late Ag-4 on mouse peripheral neutrophils. Our data demonstrated cytokine-dependent VCAM-1 gene transcription and protein expression in the liver during endotoxemia. Neutrophils were able to use very late Ag-4/VCAM-1 interactions to transmigrate into liver parenchyma in vivo. Preventing transmigration by blocking VCAM-1 protected hepatocytes against neutrophil-induced injury. PMID:9190948

  1. Anti-interleukin-33 Reduces Ovalbumin-Induced Nephrotoxicity and Expression of Kidney Injury Molecule-1

    PubMed Central

    2016-01-01

    Purpose: To evaluate the effect of anti-interleukin-33 (anti-IL-33) on a mouse model of ovalbumin (OVA)-induced acute kidney injury (AKI). Methods: Twenty-four female BALB/c mice were assigned to 4 groups: group A (control, n=6) was administered sterile saline intraperitoneally (i.p.) and intranasally (i.n.); group B (allergic, n=6) was administered i.p./i.n. OVA challenge; group C (null treatment, n=6) was administered control IgG i.p. before OVA challenge; and group D (anti-IL-33, n=6) was pretreated with 3.6 µg of anti-IL-33 i.p. before every OVA challenge. The following were evaluated after sacrifice: serum blood urea nitrogen and creatinine levels, Kidney injury molecule-1 gene (Kim-1) and protein (KIM-1) expression in renal parenchyma, and expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), phosphorylated endothelial NOS (p-eNOS), and phosphorylated AMP kinase (p-AMPK) proteins in renal parenchyma. Results: After OVA injection and intranasal challenge, mice in groups B and C showed significant increases in the expression of Kim-1 at both the mRNA and protein levels. After anti-IL-33 treatment, mice in group D showed significant Kim-1 down-regulation at the mRNA and protein levels. Group D also showed significantly lower COX-2 protein expression, marginally lesser iNOS expression than groups B and C, and p-eNOS and p-AMPK expression at baseline levels. Conclusions: Kim-1 could be a useful marker for detecting early-stage renal injury in mouse models of OVA-induced AKI. Further, anti-IL-33 might have beneficial effects on these mouse models. PMID:27377943

  2. Identification of Fer tyrosine kinase localized on microtubules as a platelet endothelial cell adhesion molecule-1 phosphorylating kinase in vascular endothelial cells.

    PubMed

    Kogata, Naoko; Masuda, Michitaka; Kamioka, Yuji; Yamagishi, Akiko; Endo, Akira; Okada, Masato; Mochizuki, Naoki

    2003-09-01

    Platelet endothelial adhesion molecule-1 (PECAM-1) is a part of intercellular junctions and triggers intracellular signaling cascades upon homophilic binding. The intracellular domain of PECAM-1 is tyrosine phosphorylated upon homophilic engagement. However, it remains unclear which tyrosine kinase phosphorylates PECAM-1. We sought to isolate tyrosine kinases responsible for PECAM-1 phosphorylation and identified Fer as a candidate, based on expression cloning. Fer kinase specifically phosphorylated PECAM-1 at the immunoreceptor tyrosine-based inhibitory motif. Notably, Fer induced tyrosine phosphorylation of SHP-2, which is known to bind to the immunoreceptor tyrosine-based inhibitory motif of PECAM-1, and Fer also induced tyrosine phosphorylation of Gab1 (Grb2-associated binder-1). Engagement-dependent PECAM-1 phosphorylation was inhibited by the overexpression of a kinase-inactive mutant of Fer, suggesting that Fer is responsible for the tyrosine phosphorylation upon PECAM-1 engagement. Furthermore, by using green fluorescent protein-tagged Fer and a time-lapse fluorescent microscope, we found that Fer localized at microtubules in polarized and motile vascular endothelial cells. Fer was dynamically associated with growing microtubules in the direction of cell-cell contacts, where p120catenin, which is known to associate with Fer, colocalized with PECAM-1. These results suggest that Fer localized on microtubules may play an important role in phosphorylation of PECAM-1, possibly through its association with p120catenin at nascent cell-cell contacts. PMID:12972546

  3. The diagnostic, predictive, and prognostic role of serum epithelial cell adhesion molecule (EpCAM) and vascular cell adhesion molecule-1 (VCAM-1) levels in breast cancer.

    PubMed

    Karabulut, S; Tas, F; Tastekin, D; Karabulut, M; Yasasever, C T; Ciftci, R; Güveli, M; Fayda, M; Vatansever, S; Serilmez, M; Disci, R; Aydıner, A

    2014-09-01

    The purpose of this study was to determine the clinical significance of vascular cell adhesion molecule-1 (VCAM-1) and epithelial cell adhesion molecule (EpCAM) in breast cancer (BC) patients. Ninety-six BC patients and 30 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich (enzyme-linked immunosorbent assay (ELISA)). The median age at diagnosis was 48 years (range 29-80 years). Majority of the patients (71 %) had luminal subtype, and 38.5 % had metastatic disease. Twenty-nine (30 %) patients showed tumor progression, and 20 (21 %) patients died during follow-up. Median progression-free survival (PFS) and overall survival (OS) were 8.6 ± 1.7 and 35.5 ± 1.5 months, respectively. The baseline serum EpCAM levels of the patients were significantly higher than those of the controls (p < 0.001). There was no significant difference in the serum levels of VCAM-1 between the patients and controls (p = 0.47). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p > 0.05). Patients with HER-2-positive and triple-negative tumors had significantly poorer PFS (p = 0.04 and p = 0.001, respectively), while metastatic disease and chemotherapy unresponsiveness had significantly adverse effect on OS analysis (p < 0.001 and p < 0.001, respectively). Neither serum VCAM-1 levels nor serum EpCAM levels were identified to have a prognostic role on either PFS or OS (VCAM-1 p = 0.76 and p = 0.32; EpCAM p = 0.16 and p = 0.69, respectively). Even though any predictive or prognostic role could not be determined for both markers, serum levels of EpCAM were found to have diagnostic value in BC patients. PMID:24891186

  4. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    PubMed Central

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  5. Elevated pretreatment serum levels of soluble vascular cell adhesion molecule 1 and lactate dehydrogenase as predictors of survival in cutaneous metastatic malignant melanoma.

    PubMed Central

    Franzke, A.; Probst-Kepper, M.; Buer, J.; Duensing, S.; Hoffmann, R.; Wittke, F.; Volkenandt, M.; Ganser, A.; Atzpodien, J.

    1998-01-01

    Very rapid progression of disease with a median survival of 6-9 months is a common feature of metastatic cutaneous malignant melanoma. Nevertheless, substantial variability of survival suggests that metastatic cutaneous malignant melanoma can be divided into several biological subgroups. Pretreatment serum levels of soluble adhesion molecules and various clinical parameters in cutaneous metastatic malignant melanoma were evaluated to determine their prognostic value. In this study pretreatment serum levels of soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble intercellular cell adhesion molecule 1 (sICAM-1), soluble endothelial leukocyte adhesion molecule 1 (sE-selectin) and multiple clinical factors were assessed in relation to overall survival of 97 consecutive patients with metastatic cutaneous malignant melanoma seen at our institution between May 1990 and April 1996. For statistical analysis, both univariate and multivariate Cox proportional-hazards models were used. Elevated pretreatment serum levels of sVCAM-1 (P < 0.005) and of lactate dehydrogenase (P < 0.002) were rendered statistically independent and were significantly associated with unfavourable outcome. Patients were assigned to one of three risk categories (low, intermediate and high) according to a cumulative risk score defined as the function of the sum of these two variables. There were significant differences in overall survival (P < 0.0001) between low- (n = 53, 5-year survival probability of 23.3%), intermediate- (n = 29, 5-year survival probability of 9.9%) and high-risk (n = 15) patients. Elevated pretreatment serum levels of sVCAM-1 and of lactate dehydrogenase correlate with poor outcome in metastatic cutaneous malignant melanoma. These data support risk stratification for future therapeutic trials and identify factors that need to be validated in prospective studies and may potentially influence decision-making in palliative management of patients with disseminated cutaneous

  6. Differential transactivation of the intercellular adhesion molecule 1 gene promoter by Tax1 and Tax2 of human T-cell leukemia viruses.

    PubMed Central

    Tanaka, Y; Hayashi, M; Takagi, S; Yoshie, O

    1996-01-01

    Previously, we showed that surface expression of intercellular adhesion molecule 1 (ICAM-1) was strongly upregulated in T cells carrying proviral human T-cell leukemia virus type 1 (HTLV-1) and that the viral transactivator protein Tax1 was capable of inducing the ICAM-1 gene. To determine the responsive elements in the human ICAM-1 gene promoter, a reporter construct in which the 5'-flanking 4.4-kb region of the ICAM-1 gene was linked to the promoterless chloramphenicol acetyltransferase (CAT) gene was cotransfected with expression vectors for Tax1 and Tax2, both of which were separately confirmed to be potent transactivators of the HTLV-1 long terminal repeat (LTR). Tax1 strongly activated the ICAM-1 promoter in all the cell lines tested: three T-cell lines (Jurkat, MOLT-4, and CEM), one monocytoid cell line (U937), and HeLa. Unexpectedly, Tax2 activated the ICAM-1 promoter only in HeLa. By deletion and mutation analyses of the 1.3-kb 5'-flanking region, we found that Tax1 transactivated the ICAM-1 promoter mainly via a cyclic AMP-responsive element (CRE)-like site at -630 to -624 in the Jurkat T-cell line and via an NF-kappaB site at -185 to -177 and an SP-1 site at -59 to -54 in HeLa. On the other hand, Tax2 was totally inactive on the ICAM-1 promoter in Jurkat but transactivated the promoter via the NF-kappaB site at -185 to -177 in HeLa. Gel mobility shift assays demonstrated proteins specifically binding to the CRE-like site at -630 to -624 in Tax1-expressing T-cell lines. Stable expression of Tax1 but not Tax2 in Jurkat subclones enhanced the surface expression of ICAM-1. The differential ability of Tax1 and Tax2 in transactivation of the ICAM-1 gene may be related to the differential pathogenicity of HTLV-1 and HTLV-2. PMID:8970974

  7. Intercellular Adhesion Molecule-1 Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells and Impairs Bio-Scaffold-Mediated Bone Regeneration In Vivo

    PubMed Central

    Xu, Fen-Fen; Li, Xi-Mei; Yang, Fei; Chen, Ji-De; Tang, Bo; Sun, Hong-Guang; Chu, Ya-Nan; Zheng, Rong-Xiu; Liu, Yuan-Lin

    2014-01-01

    Mesenchymal stem cell (MSC) loaded bio-scaffold transplantation is a promising therapeutic approach for bone regeneration and repair. However, growing evidence shows that pro-inflammatory mediators from injured tissues suppress osteogenic differentiation and impair bone formation. To improve MSC-based bone regeneration, it is important to understand the mechanism of inflammation mediated osteogenic suppression. In the present study, we found that synovial fluid from rheumatoid arthritis patients and pro-inflammatory cytokines including interleukin-1α, interleukin-1β, and tumor necrosis factor α, stimulated intercellular adhesion molecule-1(ICAM-1) expression and impaired osteogenic differentiation of MSCs. Interestingly, overexpression of ICAM-1 in MSCs using a genetic approach also inhibited osteogenesis. In contrast, ICAM-1 knockdown significantly reversed the osteogenic suppression. In addition, after transplanting a traceable MSC-poly(lactic-co-glycolic acid) construct in rat calvarial defects, we found that ICAM-1 suppressed MSC osteogenic differentiation and matrix mineralization in vivo. Mechanistically, we found that ICAM-1 enhances MSC proliferation but causes stem cell marker loss. Furthermore, overexpression of ICAM-1 stably activated the MAPK and NF-κB pathways but suppressed the PI3K/AKT pathway in MSCs. More importantly, specific inhibition of the ERK/MAPK and NF-κB pathways or activation of the PI3K/AKT pathway partially rescued osteogenic differentiation, while inhibition of the p38/MAPK and PI3K/AKT pathway caused more serious osteogenic suppression. In summary, our findings reveal a novel function of ICAM-1 in osteogenesis and suggest a new molecular target to improve bone regeneration and repair in inflammatory microenvironments. PMID:24702024

  8. Association of susceptibility to septic shock with platelet endothelial cell adhesion molecule-1 gene Leu125Val polymorphism and serum sPECAM-1 levels in sepsis patients

    PubMed Central

    Sun, Wei; Li, Fang-Shun; Zhang, Yuan-Huai; Wang, Xiao-Ping; Wang, Chao-Rong

    2015-01-01

    Sepsis is a systemic inflammatory response to infection and includes severe sepsis, septic shock and death. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is one cell adhesion molecule expressed on platelets and leukocytes. It regulates platelet activation and mediates transendothelial migration of leukocytes, thus maintaining the integrity of the vasculature. There are some animal experiments associated with the protective role of PECAM-1 against septic shock. However few host genetic risk factors have been identified for sepsis severity and susceptibility to septic shock. A case-control study was conducted, which included 217 patients with sepsis and 90 control subjects recruited from our hospital. One single nucleotide polymorphisms (SNP) of PECAM-1 gene Leu125Val (C373G) was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Serum soluble PECAM-1 (sPECAM-1) levels were determined by enzyme-linked immunosorbent assay (ELISA). Our results showed that the CG and GG genotypes of SNP in Leu125Val of PECAM-1 (rs668: C>G) was significantly associated with increased susceptibility to septic shock compared with CC genotype in sepsis patients (CG genotype, OR: 2.493, 95% CI: 1.175~5.287, P = 0.016; GG genotype: OR: 3.328, 95% CI: 1.445~7.666, P = 0.004). The serum levels of sPECAM-1 in the sepsis patients (47.1 ± 17.5 ng/ml) were significantly higher than those in the healthy controls (61.3 ± 20.9 ng/ml, P<0.01). Among sepsis patients, the serum levels of sPECAM-1 were significantly higher in CG and GG genotype than in CC genotype. In septic shock patients, nonsurvivors (83.7 ± 12.6 ng/ml, n = 69) had a significantly higher serum sPECAM-1 level than the survivors (76.9 ± 12.7 ng/ml, n = 53) (P<0.01). In conclusion, PECAM-1 Leu125Val polymorphism and its sPECAM-1 levels are associated with sepsis severity and susceptibility to septic shock. PMID:26884965

  9. Association of susceptibility to septic shock with platelet endothelial cell adhesion molecule-1 gene Leu125Val polymorphism and serum sPECAM-1 levels in sepsis patients.

    PubMed

    Sun, Wei; Li, Fang-Shun; Zhang, Yuan-Huai; Wang, Xiao-Ping; Wang, Chao-Rong

    2015-01-01

    Sepsis is a systemic inflammatory response to infection and includes severe sepsis, septic shock and death. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is one cell adhesion molecule expressed on platelets and leukocytes. It regulates platelet activation and mediates transendothelial migration of leukocytes, thus maintaining the integrity of the vasculature. There are some animal experiments associated with the protective role of PECAM-1 against septic shock. However few host genetic risk factors have been identified for sepsis severity and susceptibility to septic shock. A case-control study was conducted, which included 217 patients with sepsis and 90 control subjects recruited from our hospital. One single nucleotide polymorphisms (SNP) of PECAM-1 gene Leu125Val (C373G) was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Serum soluble PECAM-1 (sPECAM-1) levels were determined by enzyme-linked immunosorbent assay (ELISA). Our results showed that the CG and GG genotypes of SNP in Leu125Val of PECAM-1 (rs668: C>G) was significantly associated with increased susceptibility to septic shock compared with CC genotype in sepsis patients (CG genotype, OR: 2.493, 95% CI: 1.175~5.287, P = 0.016; GG genotype: OR: 3.328, 95% CI: 1.445~7.666, P = 0.004). The serum levels of sPECAM-1 in the sepsis patients (47.1 ± 17.5 ng/ml) were significantly higher than those in the healthy controls (61.3 ± 20.9 ng/ml, P<0.01). Among sepsis patients, the serum levels of sPECAM-1 were significantly higher in CG and GG genotype than in CC genotype. In septic shock patients, nonsurvivors (83.7 ± 12.6 ng/ml, n = 69) had a significantly higher serum sPECAM-1 level than the survivors (76.9 ± 12.7 ng/ml, n = 53) (P<0.01). In conclusion, PECAM-1 Leu125Val polymorphism and its sPECAM-1 levels are associated with sepsis severity and susceptibility to septic shock. PMID:26884965

  10. Fluorescence in situ hybridization mapping of the mouse platelet endothelial cell adhesion molecule-1 (PECAM1) to mouse chromosome 6, region F3-G1

    SciTech Connect

    Xie, Yong; Muller, W.A.

    1996-10-15

    Human platelet/endothelial cell adhesion molecule-1 (PECAM1), an important member of the immunoglobulin gene superfamily, is widely distributed on cells of the vascular system and mediates cellular interactions through both homophilic and heterophilic adhesive mechanisms. The function of PECAM1 in vitro has begun to be understood, but its function in vivo is yet to be established. To study the function of PECAM1 in vivo, its mouse counterpart was identified and its cDNA gene isolated and characterized. In this study, the mouse chromosomal localization was determined for the mouse gene encoding Pecam. Fluorescence in situ hybridization was used to map the Pecam gene on mouse chromosome 6, region F3-G1. 12 refs., 2 figs.

  11. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    PubMed

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release. PMID:27454856

  12. Sphingosine 1-phosphate induces platelet/endothelial cell adhesion molecule-1 phosphorylation in human endothelial cells through cSrc and Fyn.

    PubMed

    Huang, Yu-Ting; Chen, Shee-Uan; Chou, Chia-Hong; Lee, Hsinyu

    2008-08-01

    Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells. PMID:18502612

  13. Targeting Rapamycin to Podocytes Using a Vascular Cell Adhesion Molecule-1 (VCAM-1)-Harnessed SAINT-Based Lipid Carrier System

    PubMed Central

    Visweswaran, Ganesh Ram R.; Gholizadeh, Shima; Ruiters, Marcel H. J.; Molema, Grietje; Kok, Robbert J.; Kamps, Jan. A. A. M.

    2015-01-01

    Together with mesangial cells, glomerular endothelial cells and the basement membrane, podocytes constitute the glomerular filtration barrier (GFB) of the kidney. Podocytes play a pivotal role in the progression of various kidney-related diseases such as glomerular sclerosis and glomerulonephritis that finally lead to chronic end-stage renal disease. During podocytopathies, the slit-diaphragm connecting the adjacent podocytes are detached leading to severe loss of proteins in the urine. The pathophysiology of podocytopathies makes podocytes a potential and challenging target for nanomedicine development, though there is a lack of known molecular targets for cell selective drug delivery. To identify VCAM-1 as a cell-surface receptor that is suitable for binding and internalization of nanomedicine carrier systems by podocytes, we investigated its expression in the immortalized podocyte cell lines AB8/13 and MPC-5, and in primary podocytes. Gene and protein expression analyses revealed that VCAM-1 expression is increased by podocytes upon TNFα-activation for up to 24 h. This was paralleled by anti-VCAM-1 antibody binding to the TNFα-activated cells, which can be employed as a ligand to facilitate the uptake of nanocarriers under inflammatory conditions. Hence, we next explored the possibilities of using VCAM-1 as a cell-surface receptor to deliver the potent immunosuppressant rapamycin to TNFα-activated podocytes using the lipid-based nanocarrier system Saint-O-Somes. Anti-VCAM-1-rapamycin-SAINT-O-Somes more effectively inhibited the cell migration of AB8/13 cells than free rapamycin and non-targeted rapamycin-SAINT-O-Somes indicating the potential of VCAM-1 targeted drug delivery to podocytes. PMID:26407295

  14. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells.

    PubMed

    Osawa, M; Masuda, M; Harada, N; Lopes, R B; Fujiwara, K

    1997-03-01

    Fluid flow triggers signal transducing events, modulates gene expression, and remodels cytoskeletal structures in vascular endothelial cells (ECs). However, the primary steps of mechanoreception are still unknown. We have recently reported that a glycoprotein is rapidly tyrosine-phosphorylated in bovine ECs exposed to fluid flow or osmotic shock. Here were cloned a 3.4 kb cDNA encoding this protein and found that this was bovine PECAM-1. The tyrosine-phosphorylation level of PECAM-1 immunoprecipitated from mechanically stimulated bovine or human ECs increased. The PECAM-1 phosphorylation was not induced by reagents that triggered Ca2+ mobilization in ECs. An autophosphorylatable band comigrating with c-Src was co-immunoprecipitated with anti-PECAM-1, and c-Src phosphorylated and bound to a GST fusion protein containing the PECAM-1 cytoplasmic domain. A spliced mRNA form lacking amino acid residues 703-721 in the cytoplasmic domain was also expressed in bovine ECs, c-Src neither phosphorylated nor bound to the fusion protein containing the spliced PECAM-1 cytoplasmic domain which lacked one (Tyr 713) of the six tyrosine residues in the PECAM-1 cytoplasmic domain. These results suggest that the YSEI motif containing Tyr 713 is the Src phosphorylation/binding site. Our study is the first demonstration of inducible tyrosine phosphorylation of PECAM-1 and suggests involvement of PECAM-1 and Src family kinases in the sensing/signal transduction of mechanical stimuli in ECs. PMID:9084985

  15. A novel and critical role for tyrosine 663 in platelet endothelial cell adhesion molecule-1 trafficking and transendothelial migration.

    PubMed

    Dasgupta, Bidisha; Dufour, Eric; Mamdouh, Zahra; Muller, William A

    2009-04-15

    PECAM-1/CD31 is required for leukocyte transendothelial migration (TEM) under most inflammatory conditions. A critical pool of PECAM-1 resides in the lateral border recycling compartment (LBRC). During TEM, membrane from the LBRC is redirected to surround the leukocyte, and this targeted recycling per se is required for TEM. The cytoplasmic domain of PECAM-1 contains two tyrosine residues that have been implicated in PECAM-1 signaling in other cells but never examined in the context of TEM. We found that expression of PECAM-1 imparts on cells the ability to support TEM and that tyrosine 663 (but not tyrosine 686) is required. Furthermore, tyrosine 663 is required for PECAM-1 to efficiently enter and exit the LBRC. Most important, mutation of tyrosine 663 abolishes the ability of the endothelial cells to support targeted recycling of the LBRC. These data define a novel role for tyrosine 663 and suggest that it is part of a recognition motif for trafficking to and/or from the LBRC. PMID:19342684

  16. Increase in interleukin-8 and soluble intercellular adhesion molecule-1 in bronchoalveolar lavage fluid from premature infants who develop chronic lung disease.

    PubMed Central

    Kotecha, S.; Chan, B.; Azam, N.; Silverman, M.; Shaw, R. J.

    1995-01-01

    Interleukin-8 (IL-8), soluble intercellular adhesion molecule-1 (sICAM), elastase and neutrophils were assessed in bronchoalveolar lavage fluid from nine infants who developed chronic lung disease (CLD) after respiratory distress syndrome (RDS), seven who had recovered from RDS, and in four control infants. IL-8, sICAM, elastase and neutrophils in bronchoalveolar lavage fluid were increased in the CLD group, the differences being most pronounced at 10 days of age. When babies with and without CLD were compared at 10 days of age, bronchoalveolar lavage fluid from the babies with CLD had significantly increased IL-8 (114.0 vs 12.7 ng/ml), sICAM (19.0 vs 1.1 micrograms/ml), elastase (6.9 vs 0.9 micrograms/ml) and neutrophils (1.9 vs 0.4 x 10(9)/l). In serum the increased concentration of IL-8 observed at birth in the CLD (247 pg/ml) and RDS (192 pg/ml) groups decreased over three weeks to the concentrations observed in the controls (< 70 pg/ml). Persistent inflammation could be a major contributory factor in the development of CLD. PMID:7712280

  17. An association analysis between a silent C558T polymorphism at the pig vascular cell adhesion molecule 1 locus and sow reproduction and piglet survivability traits.

    PubMed

    Ramirez, O; Tomàs, A; Casellas, J; Blanch, M; Noguera, J L; Amills, M

    2008-10-01

    The vascular cell adhesion molecule 1 (VCAM1) has a strong influence on embryonic development and on the formation of the umbilical cord and placenta. These developmental processes are crucial to ensure the success of pregnancy. In this work, we have identified two T306A and C558T single nucleotide polymorphisms (SNP) at exons 2 and 3 of the pig VCAM1 locus, respectively. The T306A substitution involves a non conservative Asn to Lys replacement at amino acid position 102, whereas the C558T polymorphism is synonymous. An in silico prediction of the consequences of the Asn(102)-->Lys(102) mutation with the PolyPhen software revealed that it is not deleterious. The T306A SNP segregated in the Iberian, Piétrain, Duroc, Large White and Landrace breeds as well as in European wild boars. The C558T SNP also segregated and most of commercial standard breeds. The genotyping of the C558T SNP in an Iberian x Meishan intercross allowed to find a suggestive association (Bonferroni threshold, p < 0.004) between C558T genotype and time the newborn piglet needs to reach the udder (p = 0.013) as well as a significant one with time to make the first ingestion of colostrum (p = 0.003). The biological basis of these associations remains unclear and they should be interpreted with caution. PMID:18312487

  18. Breakdown of paraendothelial barrier function during Marburg virus infection is associated with early tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1.

    PubMed

    Böckeler, Michael; Ströher, Ute; Seebach, Jochen; Afanasieva, Tatiana; Suttorp, Norbert; Feldmann, Heinz; Schnittler, Hans-Joachim

    2007-11-15

    Marburg virus (MARV) infection often causes fulminant shock due to pathologic immune responses and alterations of the vascular system. Cytokines released from virus-infected monocytes/macrophages provoke endothelial activation and vascular hyperpermeability and contribute to the development of shock. Tyrosine phosphorylation of cell-junction proteins is important for the regulation of paraendothelial barrier function. We showed that mediators released from MARV-infected monocytes/macrophages, as well as recombinant tumor necrosis factor (TNF)- alpha /H2O2 and interferon (IFN)- gamma , caused tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1) but not of the vascular endothelial (VE) cadherin/catenin complex proteins. Tyrosine phosphorylation of PECAM-1 was associated with delayed opening of interendothelial junctions. Interestingly, we observed an early increase in water permeability in response to TNF- alpha /H2O2 that was not due to an opening of the interendothelial junctions. These data indicate 2 distinct mechanisms for the TNF- alpha /H2O2-mediated decrease in endothelial barrier function involving tyrosine phosphorylation of PECAM-1 but not requiring tyrosine phosphorylation of VE-cadherin or catenin proteins. PMID:17940969

  19. Effect of ultraviolet light on the expression of adhesion molecules and T lymphocyte adhesion to human dermal microvascular endothelial cells.

    PubMed

    Chung, Kee Yang; Chang, Nam Soo; Park, Yoon Kee; Lee, Kwang Hoon

    2002-04-01

    In order to determine the effect of ultraviolet radiation (UVR) on the cell adhesion molecules expressed in human dermal microvascular endothelial cells (HDMEC), the cells were exposed to varying UVR doses and the cell surface was examined for expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM- 1), and E-selectin. The effect of UVB irradiation on the binding of T lymphocytes to HDMEC was also examined. UVA irradiation did not affect the surface expression of ICAM-1, VCAM-1, or E-selectin on the HDMEC. However, following UVB exposure, ELISA demonstrated a significant increase in the baseline ICAM-1 cell surface expression on the HDMEC. However, no induction of either E-selectin or VCAM-1 was noted. UVB also significantly augmented ICAM-1 induction by IL-1alpha and TNF-alpha. VCAM-1 was induced by stimulating HDMEC with IL-1alpha following a UVB irradiation dose of 100 mJ/cm2. Flow cytometric analysis of the HDMEC stimulated with IL-1alpha for 24h demonstrated that 12% of the cells expressed VCAM-1 but either IL-1alpha or UVB irradiation alone failed to induce VCAM-1 expression. Enhancement of T cell-HDMEC binding by IL-1alpha or TNF-alpha treatment was not significantly affected after UVB irradiation. This study demonstrated that UVB irradiation can alter ICAM-1 and VCAM-1 expression on the HDMEC surface and that augmentation of ICAM-1 expression and the IL-1alpha-dependent induction of VCAM-1 following UVB exposure might be important steps in the pathogenesis of sunburn. PMID:11971210

  20. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion

    PubMed Central

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor

    2016-01-01

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN. PMID:26943029

  1. A stromal interaction molecule 1 variant up-regulates matrix metalloproteinase-2 expression by strengthening nucleoplasmic Ca2+ signaling.

    PubMed

    Chen, Fengrong; Zhu, Liping; Cai, Lei; Zhang, Jiwei; Zeng, Xianqin; Li, Jiansha; Su, Yuan; Hu, Qinghua

    2016-04-01

    Very recent studies hold promise to reveal the role of stromal interaction molecule 1 (STIM1) in non-store-operated Ca2+ entry. Here we showed that in contrast to cytoplasmic membrane redistribution as previously noted, human umbilical vein endothelial STIM1 with a T-to-C nucleotide transition resulting in an amino acid substitution of leucine by proline in the signal peptide sequence translocated to perinuclear membrane upon intracellular Ca2+ depletion, amplified nucleoplasmic Ca2+ signaling through ryanodine receptor-dependent pathway, and enhanced the subsequent cAMP responsive element binding protein activity, matrix metalloproteinase-2 (MMP-2) gene expression, and endothelial tube forming. The abundance of mutated STIM1 and the MMP-2 expression were higher in native human umbilical vein endothelial cells of patients with gestational hypertension than controls and were significantly correlated with blood pressure. These findings broaden our understanding about structure-function bias of STIM1 and offer unique insights into its application in nucleoplasmic Ca2+, MMP-2 expression, endothelial dysfunction, and pathophysiological mechanism(s) of gestational hypertension. PMID:26775216

  2. Vascular cell adhesion molecule 1 and alpha 4 and beta 1 integrins in lymphocyte aggregates in Sjögren's syndrome and rheumatoid arthritis.

    PubMed Central

    Edwards, J C; Wilkinson, L S; Speight, P; Isenberg, D A

    1993-01-01

    OBJECTIVES--Interactions between vascular cell adhesion molecule 1 (VCAM-1) and its ligand, the alpha 4/beta 1 integrin, have been shown to be important in a number of cellular events in vitro. To assess the importance of such interactions in the development of lymphocytic infiltration in diseased tissue the distribution of the two ligands has been studied immunohistochemically. METHODS--Cryostat sections of labial tissue from patients with Sjögren's syndrome, normal labial tissues, rheumatoid synovia, and normal tonsils were stained using antibodies to VCAM-1, alpha 4 and beta 1 integrin chains, and markers for T cells, B cells, macrophages, and follicular dendritic reticulum cells (FDRCs), visualised using alkaline phosphatase and fast red. RESULTS--Staining patterns for VCAM-1 and integrin chains in lymphocyte aggregates in synovial and labial tissues were similar. VCAM-1 staining was found on both vascular and ramifying dendritic cells at the centre of large T cell aggregates and in all aggregates where there was a central clustering of B cells. VCAM-1 colocalised with, but also extended beyond, staining for the FDRC marker R4/23. Staining for the alpha 4 and beta 1 integrin chains was more widespread than staining for VCAM-1, with no significant increase in staining at sites of maximum VCAM-1 staining. In tonsils VCAM-1 and R4/23 codistributed in germinal centres, but staining for the alpha 4 and beta 1 integrin chains was chiefly seen in T lymphocyte areas. CONCLUSIONS--VCAM-1 may be more important in determining the distribution of B than T lymphocytes in lymphocytic infiltration of non-lymphoid tissue. Unlike the follicles of lymphoid tissue, ectopic follicle-like structures in non-lymphoid tissues may form by immigration of B cells via VCAM-1+ vessels at the centre of T cell aggregates. Images PMID:7504438

  3. Heparan Sulfates Mediate the Interaction between Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) and the Gαq/11 Subunits of Heterotrimeric G Proteins*

    PubMed Central

    dela Paz, Nathaniel G.; Melchior, Benoît; Shayo, Francisca Y.; Frangos, John A.

    2014-01-01

    The endothelial cell-cell junction has emerged as a major cell signaling structure that responds to shear stress by eliciting the activation of signaling pathways. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and heterotrimeric G protein subunits Gαq and 11 (Gαq/11) are junctional proteins that have been independently proposed as mechanosensors. Our previous findings suggest that they form a mechanosensitive junctional complex that discriminates between different flow profiles. The nature of the PECAM-1·Gαq/11 interaction is still unclear although it is likely an indirect association. Here, we investigated the role of heparan sulfates (HS) in mediating this interaction and in regulating downstream signaling in response to flow. Co-immunoprecipitation studies show that PECAM-1·Gαq/11 binding is dramatically decreased by competitive inhibition with heparin, pharmacological inhibition with the HS antagonist surfen, and enzymatic removal of HS chains with heparinase III treatment as well as by site-directed mutagenesis of basic residues within the extracellular domain of PECAM-1. Using an in situ proximity ligation assay, we show that endogenous PECAM-1·Gαq/11 interactions in endothelial cells are disrupted by both competitive inhibition and HS degradation. Furthermore, we identified the heparan sulfate proteoglycan syndecan-1 in complexes with PECAM-1 that are rapidly decreased in response to flow. Finally, we demonstrate that flow-induced Akt activation is attenuated in endothelial cells in which PECAM-1 was knocked down and reconstituted with a binding mutant. Taken together, our results indicate that the PECAM-1·Gαq/11 mechanosensitive complex contains an endogenous heparan sulfate proteoglycan with HS chains that is critical for junctional complex assembly and regulating the flow response. PMID:24497640

  4. Serum Interleukin-18, Fetuin-A, Soluble Intercellular Adhesion Molecule-1, and Endothelin-1 in Ankylosing Spondylitis, Psoriatic Arthritis, and SAPHO Syndrome

    PubMed Central

    Przepiera-Będzak, Hanna; Fischer, Katarzyna; Brzosko, Marek

    2016-01-01

    To examine serum interleukin 18 (IL-18), fetuin-A, soluble intercellular adhesion molecule-1 (sICAM-1), and endothelin-1 (ET-1) levels in ankylosing spondylitis (AS), psoriatic arthritis (PsA), and Synovitis Acne Pustulosis Hyperostosis Osteitis syndrome (SAPHO). We studied 81 AS, 76 PsA, and 34 SAPHO patients. We measured serum IL-18, fetuin-A, sICAM-1, ET-1, IL-6, IL-23, vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). IL-18 levels were higher in AS (p = 0.001), PsA (p = 0.0003), and SAPHO (p = 0.01) than in controls, and were positively correlated with CRP (p = 0.03), VEGF (p = 0.03), and total cholesterol (TC, p = 0.006) in AS and with IL-6 (p = 0.03) in PsA. Serum fetuin-A levels were lower in AS (p = 0.001) and PsA (p = 0.001) than in controls, and negatively correlated with C-reactive protein (CRP) in AS (p = 0.04) and SAPHO (p = 0.03). sICAM-1 positively correlated with CRP (p = 0.01), erythrocyte sedimentation rate (ESR, p = 0.01), and IL-6 (p = 0.008) in AS, and with IL-6 (p = 0.001) in SAPHO. Serum ET-1 levels were lower in AS (p = 0.0005) than in controls. ET-1 positively correlated with ESR (p = 0.04) and Disease Activity Score 28 (DAS28, p = 0.003) in PsA. In spondyloarthritis, markers of endothelial function correlated with disease activity and TC. PMID:27527149

  5. Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis.

    PubMed

    Riser, B L; Varani, J; Cortes, P; Yee, J; Dame, M; Sharba, A K

    2001-01-01

    Intraglomerular hypertension is a primary causal factor in the progressive glomerulosclerosis that characterizes diabetic nephropathy or severe renal ablation. However, inflammation of the glomerular mesangium also participates in at least the early phase of these diseases. In glomerulonephritis, where inflammation is thought to be the predominant causal factor, intraglomerular hypertension is also often present. Mesangial cells (MCs) are critical in orchestrating key functions of the glomerulus including extracellular matrix metabolism, cytokine production, and interaction with leukocytes. Because MCs are subject to increased stretching when intraglomerular hypertension is present, and in glomerulonephritis MC/leukocyte interactions seem to be mediated primarily via the up-regulation of intercellular adhesion molecule-1 (ICAM-1), we examine the possibility that cyclic stretching is a stimulus for increased MC ICAM-1 activity. We demonstrate that the normal low levels of MC ICAM-1 mRNA and protein are dramatically up-regulated by even short intervals of cyclic stretch. This effect is dose- and time-dependent, and requires little amplitude and a brief period of elongation for significant induction. Stretch-induced MC ICAM-1 also leads to a marked elevation in phagocytic leukocyte adherence. This stimulated adherence is equal or greater than that induced by the inflammatory cytokine tumor necrosis factor-alpha, whereas an additive effect occurs when both are applied in combination. Our results indicate that stretch-induced ICAM-1 may provide a direct link between hypertension and inflammation in the progression of injury and glomerulosclerosis in diabetes, renal ablation, and other forms of glomerulonephritis. PMID:11141473

  6. Serum Interleukin-18, Fetuin-A, Soluble Intercellular Adhesion Molecule-1, and Endothelin-1 in Ankylosing Spondylitis, Psoriatic Arthritis, and SAPHO Syndrome.

    PubMed

    Przepiera-Będzak, Hanna; Fischer, Katarzyna; Brzosko, Marek

    2016-01-01

    To examine serum interleukin 18 (IL-18), fetuin-A, soluble intercellular adhesion molecule-1 (sICAM-1), and endothelin-1 (ET-1) levels in ankylosing spondylitis (AS), psoriatic arthritis (PsA), and Synovitis Acne Pustulosis Hyperostosis Osteitis syndrome (SAPHO). We studied 81 AS, 76 PsA, and 34 SAPHO patients. We measured serum IL-18, fetuin-A, sICAM-1, ET-1, IL-6, IL-23, vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). IL-18 levels were higher in AS (p = 0.001), PsA (p = 0.0003), and SAPHO (p = 0.01) than in controls, and were positively correlated with CRP (p = 0.03), VEGF (p = 0.03), and total cholesterol (TC, p = 0.006) in AS and with IL-6 (p = 0.03) in PsA. Serum fetuin-A levels were lower in AS (p = 0.001) and PsA (p = 0.001) than in controls, and negatively correlated with C-reactive protein (CRP) in AS (p = 0.04) and SAPHO (p = 0.03). sICAM-1 positively correlated with CRP (p = 0.01), erythrocyte sedimentation rate (ESR, p = 0.01), and IL-6 (p = 0.008) in AS, and with IL-6 (p = 0.001) in SAPHO. Serum ET-1 levels were lower in AS (p = 0.0005) than in controls. ET-1 positively correlated with ESR (p = 0.04) and Disease Activity Score 28 (DAS28, p = 0.003) in PsA. In spondyloarthritis, markers of endothelial function correlated with disease activity and TC. PMID:27527149

  7. Major histocompatibility complex class I-intercellular adhesion molecule-1 association on the surface of target cells: implications for antigen presentation to cytotoxic T lymphocytes.

    PubMed

    Lebedeva, Tatiana; Anikeeva, Nadja; Kalams, Spyros A; Walker, Bruce D; Gaidarov, Ibragim; Keen, James H; Sykulev, Yuri

    2004-12-01

    Polarization and segregation of the T-cell receptor (TCR) and integrins upon productive cytotoxic T-lymphocyte (CTL) target cell encounters are well documented. Much less is known about the redistribution of major histocompatibility complex class I (MHC-I) and intercellular adhesion molecule-1 (ICAM-1) proteins on target cells interacting with CTLs. Here we show that human leucocyte antigen-A2 (HLA-A2) MHC-I and ICAM-1 are physically associated and recovered from both the raft fraction and the fraction of soluble membranes of target cells. Conjugation of target cells with surrogate CTLs, i.e. polystyrene beads loaded with antibodies specific for HLA-A2 and ICAM-1, induced the accumulation of membrane rafts, and beads loaded with ICAM-1-specific antibodies caused the selective recruitment of HLA-A2 MHC-I at the contact area of the target cells. Disruption of raft integrity on target cells led to a release of HLA-A2 and ICAM-1 from the raft fraction, abatement of HLA-A2 polarization, and diminished the ability of target cells bearing viral peptides to induce a Ca(2+) flux in virus-specific CTLs. These data suggest that productive engagement of ICAM-1 on target cells facilitates the polarization of MHC-I at the CTL-target cell interface, augmenting presentation of cognate peptide-MHC (pMHC) complexes to CTLs. We propose that ICAM-1-MHC-I association on the cell membrane is a mechanism that enhances the linkage between antigen recognition and early immunological synapse formation. PMID:15554924

  8. Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-01

    Inflammatory cell infiltration of the lung is a predominant histopathological change that occurs during radiation pneumonitis. Emigration of inflammatory cells from the circulation requires the interaction between cell adhesion molecules on the vascular endothelium and molecules on the surface of leukocytes. We studied the immunohistochemical pattern of expression of cell adhesion molecules in lungs from mice treated with thoracic irradiation. After X-irradiation, the endothelial leukocyte adhesion molecule 1 (ELAM-1; E-selectin) was primarily expressed in the pulmonary endothelium of larger vessels and minimally in the microvascular endothelium. Conversely, the intercellular adhesion molecule 1 (ICAM-1; CD54) was expressed in the pulmonary capillary endothelium and minimally in the endothelium of larger vessels. Radiation-mediated E-selectin expression was first observed at 6 h, whereas ICAM-1 expression initially increased at 24 h after irradiation. ICAM-1 and E-selectin expression persisted for several days. P-selectin is constitutively expressed in Weibel-Palade bodies in the endothelium, which moved to the vascular lumen within 30 min after irradiation. P-selectin was not detected in the pulmonary endothelium at 6 h after irradiation. The radiation dose required for increased cell adhesion molecule expression within the pulmonary vascular endothelium was 2 Gy, and expression increased in a dose-dependent manner. These data demonstrate that ICAM-1 and E-selectin expression is increased in the pulmonary endothelium following thoracic irradiation. The pattern of expression of E-selectin, P-selectin, and ICAM-1 is distinct from one another. PMID:9187101

  9. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  10. Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells.

    PubMed

    Ma, Zeng-Chun; Hong, Qian; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Cai, Shao-Hua; Gao, Yue

    2010-01-01

    Radiation induces an important inflammatory response in the irradiated organs, characterized by leukocyte infiltration and vascular changes. Since adhesion molecules play an important role in facilitating the immune response at the inflammation sites, interfering with the expression of these molecules may be an important therapeutic target of radiation induced inflammation. Many adhesion molecules such as intercellular cell adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) have been identified in radiation. Ferulic acid (FA), an effective radioprotector during radiotherapy, is widely used in endothelium protection. The present study examined the effect of FA on the induction of adhesion molecules by gamma-radiation and the mechanisms of its effect in gamma-irradiated human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 18 h with FA and then exposed to 10 Gy radiation. The result of cell adhesion assay showed FA inhibited radiation-induced U937 adhesion to HUVECs. FA prevented induction of ICAM-1 and VCAM-1 expression in a concentration-dependent manner after stimulation with radiation at the level of mRNA and protein. Inhibitors of the extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways were used to determine which pathway was involved in FA action; the result showed that the inhibitory effect of FA on adhesion molecule expression was mediated by the blockade of JNK. FA appears to be a potential therapeutic agent for treating various inflammatory disorders including radiation induced inflammation. PMID:20460750

  11. Specific acceptance of fetal bowel allograft in mice after combined treatment with anti-intercellular adhesion molecule-1 and leukocyte function-associated antigen-1 antibodies.

    PubMed Central

    Kato, Y; Yamataka, A; Yagita, H; Okumura, K; Fujiwara, T; Miyano, T

    1996-01-01

    OBJECTIVE: The aim of this study was to see whether tolerance could be induced by simultaneous administration of monoclonal antibodies (MoAbs) to intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1 (LFA-1) after transplantation of fetal small bowel between fully incompatible mice strains. METHODS: Fetal small bowel from either BALB/c (H-2d) or C3H/He (H-2k) mice was transplanted into the space between the peritoneum and rectus abdominis of adult C3H/He recipient mice. Syngeneic (n = 6) and two allogeneic transplant groups were made. In one of the allogeneic groups (n = 8), no immunosuppressant was given. In the other allogeneic group (n = 13), both anti-LFA-1 and anti-ICAM-1 MoAbs (50 micrograms each/mouse/day) were given intraperitoneally after transplantation for the first 4 weeks. In the syngeneic and untreated allogeneic groups, all mice were killed 4 weeks after transplantation. In the treated allogeneic group, eight mice were killed 6 weeks after cessation of the MoAb treatment. At the time the mice were killed, the bowel graft as well as the recipient spleen were taken for histologic analysis and cytotoxic T-lymphocyte (CTL) assay, respectively. Each mouse in the remaining treated five mice was transplanted with BALB/c and C57BL/6 (as third-party) full-thickness skin simultaneously 8 weeks after cessation of the MoAb treatment. RESULTS: All grafts in the syngeneic group survived with normally developing villi, whereas all grafts in the untreated allogeneic group disappeared. In the treated allogeneic group, all allografts developed normal mucosa without any sign of rejection. Splenocytes from the recipient mice in the untreated allogeneic group showed increased CTL induction against donor-type alloantigen (p < 0.005), compared with that in the syngeneic group. Suppressed CTL induction against donor-type alloantigen was observed in the treated allografted recipient (p < 0.001), whereas CTL induction against third

  12. Neutrophil transmigration mediated by the neutrophil-specific antigen CD177 is influenced by the endothelial S536N dimorphism of platelet endothelial cell adhesion molecule-1.

    PubMed

    Bayat, Behnaz; Werth, Silke; Sachs, Ulrich J H; Newman, Debra K; Newman, Peter J; Santoso, Sentot

    2010-04-01

    The human neutrophil-specific adhesion molecule CD177 (also known as the NB1 alloantigen) becomes upregulated on the cell surface in a number of inflammatory settings. We recently showed that CD177 functions as a novel heterophilic counterreceptor for the endothelial junctional protein PECAM-1 (CD31), an interaction that is mediated by membrane-proximal PECAM-1 IgD 6, which is known to harbor an S(536)N single nucleotide polymorphism of two major isoforms V(98)N(536)G(643) and L(98)S(536)R(643) and a yet-to-be-determined region on CD177. In vitro transendothelial migration experiments revealed that CD177(+) neutrophils migrated significantly faster through HUVECs expressing the LSR, compared with the VNG, allelic variant of PECAM-1 and that this correlated with the decreased ability of anti-PECAM-1 Ab of ITIM tyrosine phosphorylation in HUVECs expressing the LSR allelic variant relative to the VNG allelic variant. Moreover, engagement of PECAM-1 with rCD177-Fc (to mimic heterophilic CD177 binding) suppressed Ab-induced tyrosine phosphorylation to a greater extent in cells expressing the LSR isoform compared with the VNG isoform, with a corresponding increased higher level of beta-catenin phosphorylation. These data suggest that heterophilic PECAM-1/CD177 interactions affect the phosphorylation state of PECAM-1 and endothelial cell junctional integrity in such a way as to facilitate neutrophil transmigration in a previously unrecognized allele-specific manner. PMID:20194726

  13. Mechanistic Control of Carcinoembryonic Antigen-related Cell Adhesion Molecule-1 (CEACAM1) Splice Isoforms by the Heterogeneous Nuclear Ribonuclear Proteins hnRNP L, hnRNP A1, and hnRNP M*

    PubMed Central

    Dery, Kenneth J.; Gaur, Shikha; Gencheva, Marieta; Yen, Yun; Shively, John E.; Gaur, Rajesh K.

    2011-01-01

    Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is expressed in a variety of cell types and is implicated in carcinogenesis. Alternative splicing of CEACAM1 pre-mRNA generates two cytoplasmic domain splice variants characterized by the inclusion (L-isoform) or exclusion (S-isoform) of exon 7. Here we show that the alternative splicing of CEACAM1 pre-mRNA is regulated by novel cis elements residing in exon 7. We report the presence of three exon regulatory elements that lead to the inclusion or exclusion of exon 7 CEACAM1 mRNA in ZR75 breast cancer cells. Heterologous splicing reporter assays demonstrated that the maintenance of authentic alternative splicing mechanisms were independent of the CEACAM1 intron sequence context. We show that forced expression of these exon regulatory elements could alter CEACAM1 splicing in HEK-293 cells. Using RNA affinity chromatography, three members of the heterogeneous nuclear ribonucleoprotein family (hnRNP L, hnRNP A1, and hnRNP M) were identified. RNA immunoprecipitation of hnRNP L and hnRNP A1 revealed a binding motif located central and 3′ to exon 7, respectively. Depletion of hnRNP A1 or L by RNAi in HEK-293 cells promoted exon 7 inclusion, whereas overexpression led to exclusion of the variable exon. By contrast, overexpression of hnRNP M showed exon 7 inclusion and production of CEACAM1-L mRNA. Finally, stress-induced cytoplasmic accumulation of hnRNP A1 in MDA-MB-468 cells dynamically alters the CEACAM1-S:CEACAM1:L ratio in favor of the l-isoform. Thus, we have elucidated the molecular factors that control the mechanism of splice-site recognition in the alternative splicing regulation of CEACAM1. PMID:21398516

  14. Fer and Fps/Fes participate in a Lyn-dependent pathway from FcepsilonRI to platelet-endothelial cell adhesion molecule 1 to limit mast cell activation.

    PubMed

    Udell, Christian M; Samayawardhena, Lionel A; Kawakami, Yuko; Kawakami, Toshiaki; Craig, Andrew W B

    2006-07-28

    Mast cells express the high affinity IgE receptor FcepsilonRI, which upon aggregation by multivalent antigens elicits signals that cause rapid changes within the mast cell and in the surrounding tissue. We previously showed that FcepsilonRI aggregation caused a rapid increase in phosphorylation of both Fer and Fps/Fes kinases in bone marrow-derived mast cells. In this study, we report that FcepsilonRI aggregation leads to increased Fer/Fps kinase activities and that Fer phosphorylation downstream of FcepsilonRI is independent of Syk, Fyn, and Gab2 but requires Lyn. Activated Fer/Fps readily phosphorylate the C terminus of platelet-endothelial cell adhesion molecule 1 (Pecam-1) on immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a non-ITIM residue (Tyr(700)) in vitro and in transfected cells. Mast cells devoid of Fer/Fps kinase activities display a reduction in FcepsilonRI aggregation-induced tyrosine phosphorylation of Pecam-1, with no defects in recruitment of Shp1/Shp2 phosphatases observed. Lyn-deficient mast cells display a dramatic reduction in Pecam-1 phosphorylation at Tyr(685) and a complete loss of Shp2 recruitment, suggesting a role as an initiator kinase for Pecam-1. Consistent with previous studies of Pecam-1-deficient mast cells, we observe an exaggerated degranulation response in mast cells lacking Fer/Fps kinases at low antigen dosages. Thus, Lyn and Fer/Fps kinases cooperate to phosphorylate Pecam-1 and activate Shp1/Shp2 phosphatases that function in part to limit mast cell activation. PMID:16731527

  15. Characterization of the inflammatory infiltrate and expression of endothelial cell adhesion molecules in lupus erythematosus tumidus.

    PubMed

    Kuhn, Annegret; Sonntag, Monika; Lehmann, Percy; Megahed, Mosaad; Vestweber, Dietmar; Ruzicka, Thomas

    2002-03-01

    Lupus erythematosus tumidus (LET) is a disease with characteristic clinical and histopathologic features that has not always been considered a subset of cutaneous lupus erythematosus (CLE). Although LET was first mentioned in the literature in 1930, it has rarely been documented, and immunohistochemical studies have never been performed. The aim of the present study was to characterize the inflammatory infiltrate and to analyze the expression of endothelial cell adhesion molecules in skin specimens from patients with LET and to compare the results with those from patients with other variants of CLE, such as discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE). Cryostat sections of lesional skin specimens from ten patients with LET demonstrated an infiltrate composed of more than 75% CD4+, CD8+, and HLA-DR+ cells. Interestingly, CD45RO+ cells, in contrast to CD45RA+ cells, were the prevailing inflammatory cell population. Compared with skin specimens from patients with DLE and SCLE, the mean expression of CD4+ and CD8+ cells was higher (but not significantly so) in LET, and no differences were observed with the other three antibodies. Furthermore, in contrast to controls, intercellular adhesion molecule-1, vascular adhesion molecule-1, E-selectin, and P-selectin showed the same expression pattern in skin specimens from patients with DLE, SCLE, and LET. In conclusion, the inflammatory infiltrate of LET primarily consists of CD4+/CD8+ lymphocytes. Furthermore, expression of endothelial cell adhesion molecules was equally upregulated in LET compared with the expression in DLE and SCLE, suggesting a similar immunopathomechanism of these subtypes of CLE. PMID:12071156

  16. Combined Treatment with Amlodipine and Atorvastatin Calcium Reduces Circulating Levels of Intercellular Adhesion Molecule-1 and Tumor Necrosis Factor-α in Hypertensive Patients with Prediabetes

    PubMed Central

    Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian

    2016-01-01

    Objective: To assess the effect of amlodipine and atorvastatin on intercellular adhesion molecule (ICAM)-1 and tumor necrosis factor (TNF)-α expression, as endothelial function and inflammation indicators, respectively, in hypertensive patients with and without prediabetes. Methods: Forty-five consecutive patients with hypertension, diagnosed according to JNC7, were divided into two groups based on the presence (HD group, n = 23) or absence (H group, n = 22) of prediabetes, diagnosed according to 2010 ADA criteria, including impaired glucose tolerance (IGT) and fasting glucose tests. All patients simultaneously underwent 12-week treatment with daily single-pill amlodipine besylate/atorvastatin calcium combination (5/10 mg; Hisun-Pfizer Pharmaceuticals Co. Ltd). Serum isolated before and after treatment from overnight fasting blood samples was analyzed by ELISA. Results: In the HD and H groups after vs. before 12-week amlodipine/atorvastatin treatment, there were significantly (all P < 0.01) lower levels of ICAM-1 (3.06 ± 0.34 vs. 4.07 ± 0.70 pg/ml; 3.26 ± 0.32 vs. 3.81 ± 0.60 pg/ml, respectively) and TNF-α (78.71 ± 9.19 vs. 110.94 ± 10.71 pg/ml; 80.95 ± 9.33 vs. 101.79 ± 11.72 pg/ml, respectively), with more pronounced reductions in HD vs. H group (ICAM-1Δ: 1.01 ± 0.80 vs. 0.55 ± 0.64 pg/ml, respectively, P = 0.037; TNF-αΔ: 32.23 ± 14.33 vs. 20.84 ± 14.89 pg/ml, respectively, P = 0.011), independent of the blood pressure (BP) and cholesterol level reduction. Conclusions: Amlodipine/atorvastatin improved endothelial function and inflammation, as reflected by lower circulating levels of ICAM-1 and TNF-α, more prominently in hypertensives with than without prediabetes. Starting statin treatment before overt diabetes in hypertensives might thus improve cardiovascular outcomes. PMID:27610083

  17. Constitutive and cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes.

    PubMed Central

    Michaelis, D.; Goebels, N.; Hohlfeld, R.

    1993-01-01

    Understanding the immunobiology of muscle is relevant to muscular autoimmune diseases and to gene therapies based on myoblast transfer. We have investigated the constitutive and cytokine-induced intra- and extracellular expression of histocompatibility human leukocyte antigens (HLA) and cell adhesion molecules by multinucleated human myotubes using immunofluorescence microscopy. Myotubes constitutively expressed HLA class I but not HLA class II. Exposure to interferon-gamma, but not tumor necrosis factor-alpha, induced HLA-DR in the cytoplasm and on the surface membrane of approximately 40 to 95% of cultured myotubes. Surface expression was strongest in perinuclear membrane areas, and cytoplasmic expression was strongest at branching points and at the tips of myotubes. HLA-DP and HLA-DQ were not expressed in detectable amounts. Both interferon-gamma and tumor necrosis factor-alpha induced the intercellular adhesion molecule-1 (CD54) in the cytoplasm and on the surface of nearly all myotubes. The distribution of intercellular adhesion molecule-1 and HLA-DR was similar but not identical in double-positive myotubes. The leukocyte function-associated (LFA) adhesion molecules LFA-1 (CD11a/CD18), LFA-2 (CD2), and LFA-3 (CD58) could not be detected in the cytoplasm or on the surface. Our results indicate that cytokine-induced myotubes can participate in immune interactions with T lymphocytes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8214008

  18. Functional Mineralocorticoid Receptors in Human Vascular Endothelial Cells Regulate ICAM-1 Expression and Promote Leukocyte Adhesion

    PubMed Central

    Caprio, Massimiliano; Newfell, Brenna G.; la Sala, Andrea; Baur, Wendy; Fabbri, Andrea; Rosano, Giuseppe; Mendelsohn, Michael E.; Jaffe, Iris Z.

    2008-01-01

    In clinical trials, aldosterone antagonists decrease cardiovascular mortality and ischemia by unknown mechanisms. The steroid hormone aldosterone acts by binding to the mineralocorticoid receptor (MR), a ligand-activated transcription factor. In humans, aldosterone causes MR-dependent endothelial cell (EC) dysfunction and in animal models, aldosterone increases vascular macrophage infiltration and atherosclerosis. MR antagonists inhibit these effects without changing blood pressure, suggesting a direct role for vascular MR in EC function and atherosclerosis. Whether human vascular EC express functional MR is not known. Here we show that human coronary artery and aortic EC express MR mRNA and protein and that EC MR mediates aldosterone-dependent gene transcription. Human EC also express the enzyme 11-beta hydroxysteroid dehydrogenase-2(11βHSD2) and inhibition of 11βHSD2 in aortic EC enhances gene transactivation by cortisol, supporting that EC 11βHSD2 is functional. Furthermore, aldosterone stimulates transcription of the proatherogenic leukocyte-EC adhesion molecule Intercellular Adhesion Molecule-1(ICAM1) gene and protein expression on human coronary artery EC, an effect inhibited by the MR antagonist spironolactone and by MR knock-down with siRNA. Cell adhesion assays demonstrate that aldosterone promotes leukocyte-EC adhesion, an effect that is inhibited by spironolactone and ICAM1 blocking antibody, supporting that aldosterone induction of EC ICAM1 surface expression via MR mediates leukocyte-EC adhesion. These data show that aldosterone activates endogenous EC MR and proatherogenic gene expression in clinically important human EC. These studies describe a novel mechanism by which aldosterone may influence ischemic cardiovascular events and support a new explanation for the decrease in ischemic events in patients treated with aldosterone antagonists. PMID:18467630

  19. [Allergens-induced sensitization alters airway epithelial adhesion molecules expression in mice].

    PubMed

    Zeng, Dan; Tan, Mei-Ling; Xiang, Yang; Qin, Xiao-Qun; Zhu, Li-Ming; Dai, Ai-Guo

    2015-12-25

    To explore the relationship between the epithelial adhesion molecules and immune responses of airway epithelium, we observed the expression of integrin β4 and intercellular adhesion molecule-1 (ICAM-1) in the mice airway epithelium after sensitization with allergens. BALB/c mice were sensitized with intraperitoneal injection of ovalbumin (OVA) or house dust mite (HDM) and then developed airway hyper-responsiveness as determined by barometric whole-body plethysmography. Both OVA and HDM sensitization led to increases of the number of peripheral leukocytes as well as inflammatory cells infiltration in lungs. OVA sensitized mice showed more severe inflammatory cells infiltration than HDM sensitized mice. Immunohistochemistry analysis of mice lung tissues revealed that sensitization with both allergens also led to a decrease of integrin β4 expression and an increase of ICAM-1 expression in airway epithelia. OVA sensitized mice showed a more significant increase of ICAM-1 expression compared with HDM sensitized mice. siRNA mediated silencing of integrin β4 gene in 16HBE cells resulted in an up-regulation of ICAM-1 expression. Our results indicate a possible role of airway epithelial adhesion molecules in allergen-induced airway immune responses. PMID:26701635

  20. Tenomodulin expression in the periodontal ligament enhances cellular adhesion.

    PubMed

    Komiyama, Yuske; Ohba, Shinsuke; Shimohata, Nobuyuki; Nakajima, Keiji; Hojo, Hironori; Yano, Fumiko; Takato, Tsuyoshi; Docheva, Denitsa; Shukunami, Chisa; Hiraki, Yuji; Chung, Ung-Il

    2013-01-01

    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain. PMID:23593173

  1. Tenomodulin Expression in the Periodontal Ligament Enhances Cellular Adhesion

    PubMed Central

    Komiyama, Yuske; Ohba, Shinsuke; Shimohata, Nobuyuki; Nakajima, Keiji; Hojo, Hironori; Yano, Fumiko; Takato, Tsuyoshi; Docheva, Denitsa; Shukunami, Chisa; Hiraki, Yuji; Chung, Ung-il

    2013-01-01

    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain. PMID:23593173

  2. Pentosan polysulfate treatment ameliorates motor function with increased serum soluble vascular cell adhesion molecule-1 in HTLV-1-associated neurologic disease.

    PubMed

    Nakamura, Tatsufumi; Satoh, Katsuya; Fukuda, Taku; Kinoshita, Ikuo; Nishiura, Yoshihiro; Nagasato, Kunihiko; Yamauchi, Atsushi; Kataoka, Yasufumi; Nakamura, Tadahiro; Sasaki, Hitoshi; Kumagai, Kenji; Niwa, Masami; Noguchi, Mitsuru; Nakamura, Hideki; Nishida, Noriyuki; Kawakami, Atsushi

    2014-06-01

    The main therapeutic strategy against human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) characterized by lower extremity motor dysfunction is immunomodulatory treatment, with drugs such as corticosteroid hormone and interferon-α, at present. However, there are many issues in long-term treatment with these drugs, such as insufficient effects and various side effects. We now urgently need to develop other therapeutic strategies. The heparinoid, pentosan polysulfate sodium (PPS), has been safely used in Europe for the past 50 years as a thrombosis prophylaxis and for the treatment of phlebitis. We conducted a clinical trial to test the effect of subcutaneous administration of PPS in 12 patients with HAM/TSP in an open-labeled design. There was a marked improvement in lower extremity motor function, based on reduced spasticity, such as a reduced time required for walking 10 m and descending a flight of stairs. There were no significant changes in HTLV-I proviral copy numbers in peripheral blood contrary to the inhibitory effect of PPS in vitro for intercellular spread of HTLV-I. However, serum soluble vascular cell adhesion molecule (sVCAM)-1 was significantly increased without significant changes of serum level of chemokines (CXCL10 and CCL2). There was a positive correlation between increased sVCAM-1and reduced time required for walking 10 m. PPS might induce neurological improvement by inhibition of chronic inflammation in the spinal cord, through blocking the adhesion cascade by increasing serum sVCAM-1, in addition to rheological improvement of the microcirculation. PPS has the potential to be a new therapeutic tool for HAM/TSP. PMID:24671717

  3. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  4. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways.

    PubMed

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-05-01

    Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial-monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  5. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    PubMed

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation. PMID:17294835

  6. Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression

    PubMed Central

    Sanz, María-Jesús; Nabah, Yafa Naim Abu; Cerdá-Nicolás, Miguel; O'Connor, José-Enrique; Issekutz, Andrew C; Cortijo, Julio; Morcillo, Esteban J

    2004-01-01

    Macrolides have long been used as anti-bacterial agents; however, there is some evidence that may exert anti-inflammatory activity. Therefore, erythromycin was used to characterize the mechanisms involved in their in vivo anti-inflammatory activity. Erythromycin pretreatment (30 mg kg−1 day−1 for 1 week) reduced the lipopolysaccharide (LPS; intratracheal, 0.4 mg kg−1)-induced increase in neutrophil count and elastase activity in the bronchoalveolar lavage fluid (BALF) and lung tissue myeloperoxidase activity, but failed to decrease tumor necrosis factor-α and macrophage-inflammatory protein-2 augmented levels in BALF. Erythromycin pretreatment also prevented lung P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) mRNA upregulation in response to airway challenge with LPS. Mesentery superfusion with LPS (1 μg ml−1) induced a significant increase in leukocyte–endothelial cell interactions at 60 min. Erythromycin pretreatment abolished the increases in these parameters. LPS exposure of the mesentery for 4 h caused a significant increase in leukocyte rolling flux, adhesion and emigration, which were inhibited by erythromycin by 100, 93 and 95%, respectively. Immunohistochemical analysis showed that LPS exposure of the mesentery for 4 h caused a significant enhancement in P-selectin, E-selectin, ICAM-1 and VCAM-1 expression that was downregulated by erythromycin pretreatment. Flow cytometry analysis indicated that erythromycin pretreatment inhibited LPS-induced CD11b augmented expression in rat neutrophils. In conclusion, erythromycin inhibits leukocyte recruitment in the lung and this effect appears mediated through downregulation of CAM expression. Therefore, macrolides may be useful in the control of neutrophilic pulmonary diseases. PMID:15665859

  7. Potential of mZD7349-conjugated PLGA nanoparticles for selective targeting of vascular cell-adhesion molecule-1 in inflamed endothelium.

    PubMed

    Imanparast, Fatemeh; Paknejad, Maliheh; Faramarzi, Mohammad Ali; Kobarfard, Farzad; Amani, Amir; Doosti, Mahmood

    2016-07-01

    Early diagnosis and restoring normal function of dysfunctional endothelium is an attractive strategy for prevention of inflammatory diseases such as atherosclerosis. Inhibition of cell adhesion in the process of atherosclerosis plaque formation, mediated by peptide antagonists of very late antigen-4 (VLA-4) has already been developed and evaluated both in vitro and in vivo. In this study, for the first time, modified ZD7349 (mZD7349) peptide, as an antagonist for VLA-4, was used for targeting fluorescein isothiocyanate-loaded poly (DL-lactic-co-glycolic acid) nanoparticles (FITC-PLGA NPs). Rate of binding and internalization of mZD7349-NPs to activated human umbilical vein endothelial cells (HUVECs) were compared with that of untargeted. Effects of temperature reduction and clathrin-mediated endocytosis inhibitor (0.45M sucrose) were also studied on the binding and internalization of mZD7349-NPs and NPs. Results showed that binding of the conjugated NPs could be significantly blocked by pre-incubating cells with the free peptide, suggesting that the binding of NPs is mediated by attaching the surface peptide to VCAM-1 on HUVECs. Also, conjugated FITC-loaded NPs were shown to be rapidly endocytosized to a greater extent than the unconjugated ones. The binding and internalization of mZD7349-NPs and NPs were slowed down at low temperature and in the presence of sucrose with greater reductions for mZD7349-NPs. To conclude, the peptide-NPs targeting the VCAM-1 is suggested as a theranostic carrier for lesions upregulating VCAM-1. PMID:27105996

  8. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is associated with a naïve B-cell phenotype in human tonsils.

    PubMed

    Jackson, D E; Gully, L M; Henshall, T L; Mardell, C E; Macardle, P J

    2000-08-01

    In B cells, signaling through the B-cell antigen receptor (BCR) is negatively modulated by the co-ligation of immunoglobulin (Ig)-immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing molecules such as FcgammaRIIB1, B-cell transmembrane protein CD72, paired immunoglobulin-like receptor PIR-B, leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), Ig-like transcript ILT2, biliary glycoprotein BGP-1 and B-cell co-receptor CD22. The co-expression of multiple Ig-ITIM receptors may provide B cells with different mechanisms of regulating inhibitory pathways at different stages of differentiation. In this study, we have examined the expression of a newly defined Ig-ITIM receptor, PECAM-1 (CD31) on human B-cells. Human tonsillar B cells were purified using negative selection by depleting T cells with a combination of monoclonal antibodies and magnetic bead separation. Following purification, the pattern of PECAM-1 expression was analyzed in B-cell subpopulations using two- and three-colour fluorescence. To complement this work, PECAM-1 localization in the context of distinct areas of human tonsil was defined by immunohistochemical analysis of tonsil sections. Finally to investigate somatic mutation, Ig variable (V) region genes belonging to the nonpolymorphic VH6 family were amplified by polymerase chain reaction (PCR), subcloned and sequenced from sort-purified CD19+ PECAM-1+ and CD19+ PECAM-1- B cells. Our results demonstrate that PECAM-1 is associated with an unstimulated resting B-cell phenotype, localization to the follicular mantle and marginal zones of human tonsil and expression of unmutated Ig V region genes. These studies suggest that PECAM-1 appears on the cell surface at the naive B-cell stage and is lost as B cells differentiate into memory cells, indicating that PECAM-1 is primarily involved in naive or immature B-cell function. PMID:11019910

  9. Glycated serum albumin stimulates expression of endothelial cell specific molecule-1 in human umbilical vein endothelial cells: Implication in diabetes mediated endothelial dysfunction.

    PubMed

    Nirala, Bikesh K; Perumal, Vivekanandan; Gohil, Nivedita K

    2015-07-01

    Pro-inflammatory conditions induced by products of protein glycation in diabetes substantially enhance the risk of endothelial dysfunction and related vascular complications. Endothelial cell specific molecule-1 (ESM-1) or endocan has been demonstrated as a potential biomarker in cancer and sepsis. Its role in diabetes-induced pathologies remains unknown. The expression of ESM-1 gene is under cytokine regulation, indicating its role in endothelium-dependent pathological disorders. In this study, we investigated the effect of advanced glycated human serum albumin (AGE-HSA) on the production of ESM-1. We show that AGE-HSA exerts a modulating role on the expression of ESM-1 in human umbilical vein endothelial cells. It up-regulates expression of ESM-1 protein in a dose-dependent manner which correlates with its messenger RNA (mRNA) transcription. RAGE and galectin-3, both AGE receptors, show antagonistic action on its expression. While gene silencing of RAGE has down-regulatory effect, that of galectin-3 has up-regulatory effect on AGE-induced expression of ESM-1. Inhibition of MAPKKK and JNK pathways did not alter the expression. In contrast, phosphatidylinositol 3 kinase (PI3K) inhibition significantly up-regulated ESM-1 expression. In conclusion, these results suggest that AGE-induced activation of human umbilical vein endothelial cells promotes formation of endocan which is an endothelial dysfunction marker and may be related to vascular disease in diabetes. PMID:25963575

  10. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. PMID:26412140

  11. Kidney Injury Molecule-1 Is Specifically Expressed in Cystically-Transformed Proximal Tubules of the PKD/Mhm (cy/+) Rat Model of Polycystic Kidney Disease

    PubMed Central

    Gauer, Stefan; Urbschat, Anja; Gretz, Norbert; Hoffmann, Sigrid C.; Kränzlin, Bettina; Geiger, Helmut; Obermüller, Nicholas

    2016-01-01

    Expression of kidney injury molecule-1 (Kim-1) is rapidly upregulated following tubular injury, constituting a biomarker for acute kidney damage. We examined the renal localization of Kim-1 expression in PKD/Mhm (polycystic kidney disease, Mannheim) (cy/+) rats (cy: mutated allel, +: wild type allel), an established model for autosomal dominant polycystic kidney disease, with chronic, mainly proximal tubulointerstitial alterations. For immunohistochemistry or Western blot analysis, kidneys of male adult heterozygously-affected (cy/+) and unaffected (+/+) littermates were perfusion-fixed or directly removed. Kim-1 expression was determined using peroxidase- or fluorescence-linked immunohistochemistry (alone or in combination with markers for tubule segments or differentiation). Compared to (+/+), only in (cy/+) kidneys, a chronic expression of Kim-1 could be detected by Western blot analysis, which was histologically confined to an apical cellular localization in areas of cystically-transformed proximal tubules with varying size and morphology, but not in distal tubular segments. Kim-1 was expressed by cystic epithelia exhibiting varying extents of dedifferentiation, as shown by double labeling with aquaporin-1, vimentin or osteopontin, yielding partial cellular coexpression. In this model, in contrast to other known molecules indicating renal injury and/or repair mechanisms, the chronic renal expression of Kim-1 is strictly confined to proximal cysts. Its exact role in interfering with tubulo-interstitial alterations in polycystic kidney disease warrants future investigations. PMID:27231899

  12. Kidney Injury Molecule-1 Is Specifically Expressed in Cystically-Transformed Proximal Tubules of the PKD/Mhm (cy/+) Rat Model of Polycystic Kidney Disease.

    PubMed

    Gauer, Stefan; Urbschat, Anja; Gretz, Norbert; Hoffmann, Sigrid C; Kränzlin, Bettina; Geiger, Helmut; Obermüller, Nicholas

    2016-01-01

    Expression of kidney injury molecule-1 (Kim-1) is rapidly upregulated following tubular injury, constituting a biomarker for acute kidney damage. We examined the renal localization of Kim-1 expression in PKD/Mhm (polycystic kidney disease, Mannheim) (cy/+) rats (cy: mutated allel, +: wild type allel), an established model for autosomal dominant polycystic kidney disease, with chronic, mainly proximal tubulointerstitial alterations. For immunohistochemistry or Western blot analysis, kidneys of male adult heterozygously-affected (cy/+) and unaffected (+/+) littermates were perfusion-fixed or directly removed. Kim-1 expression was determined using peroxidase- or fluorescence-linked immunohistochemistry (alone or in combination with markers for tubule segments or differentiation). Compared to (+/+), only in (cy/+) kidneys, a chronic expression of Kim-1 could be detected by Western blot analysis, which was histologically confined to an apical cellular localization in areas of cystically-transformed proximal tubules with varying size and morphology, but not in distal tubular segments. Kim-1 was expressed by cystic epithelia exhibiting varying extents of dedifferentiation, as shown by double labeling with aquaporin-1, vimentin or osteopontin, yielding partial cellular coexpression. In this model, in contrast to other known molecules indicating renal injury and/or repair mechanisms, the chronic renal expression of Kim-1 is strictly confined to proximal cysts. Its exact role in interfering with tubulo-interstitial alterations in polycystic kidney disease warrants future investigations. PMID:27231899

  13. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    SciTech Connect

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  14. Fructus Corni extract-induced neuritogenesis in PC12 cells is associated with the suppression of stromal interaction molecule 1 expression and inhibition of Ca2+ influx

    PubMed Central

    WANG, XUSHI; LIU, JIAQI; JIN, NA; XU, DAN; WANG, JUNYU; HAN, YONGMING; YIN, NINA

    2015-01-01

    Fructus Corni (Cornus officinalis Sieb. et Zucc.) is commonly prescribed as a traditional Chinese herbal medicine that possesses pharmacological actions against inflammation, diabetic nephropathy, tumors, oxidation and aging. However, its function and mode of action within the nervous system remain largely unclear. In this study, the effects of Fructus Corni extract (FCE) on neuronal differentiation were investigated. It was found that FCE significantly increased the percentage of PC12 cells bearing neurites (P<0.001). Following the generation of neurite outgrowth, FCE treatment decreased the mRNA expression of stromal interaction molecule 1 (STIM1; P<0.05) and suppressed the expression of STIM1 protein (P<0.001). In addition, extracellular calcium (Ca2+) influx was inhibited resulting in a reduction in the intracellular Ca2+ level, suggesting that the inhibition of Ca2+ influx may be involved in the FCE-promoted neurite outgrowth of PC12 cells. These results demonstrate that FCE induces neurite outgrowth in PC12 cells and that this is associated with the suppression of STIM1 expression and the inhibition of Ca2+ influx, which may partially explain the FCE-induced neuritogenesis. PMID:26136892

  15. Evaluation of photodynamic therapy in adhesion protein expression

    PubMed Central

    PACHECO-SOARES, CRISTINA; MAFTOU-COSTA, MAIRA; DA CUNHA MENEZES COSTA, CAROLINA GENÚNCIO; DE SIQUEIRA SILVA, ANDREZA CRISTINA; MORAES, KAREN C.M.

    2014-01-01

    Photodynamic therapy (PDT) is a treatment modality that has clinical applications in both non-neoplastic and neoplastic diseases. PDT involves a light-sensitive compound (photosensitizer), light and molecular oxygen. This procedure may lead to several different cellular responses, including cell death. Alterations in the attachment of cancer cells to the substratum and to each other are important consequences of photodynamic treatment. PDT may lead to changes in the expression of cellular adhesion structure and cytoskeleton integrity, which are key factors in decreasing tumor metastatic potential. HEp-2 cells were photosensitized with aluminum phthalocyanine tetrasulfonate and zinc phthalocyanine, and the proteins β1-integrin and focal adhesion kinase (FAK) were assayed using fluorescence microscopy. The verification of expression changes in the genes for FAK and β1 integrin were performed by reverse transcription-polymerase chain reaction (RT-PCR). The results revealed that HEp-2 cells do not express β-integrin or FAK 12 h following PDT. It was concluded that the PDT reduces the adhesive ability of HEp-2 cells, inhibiting their metastatic potential. The present study aimed to analyze the changes in the expression and organization of cellular adhesion elements and the subsequent metastatic potential of HEp-2 cells following PDT treatment. PMID:25013490

  16. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    PubMed Central

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  17. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    PubMed

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-01-01

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis. PMID:26393541

  18. House dust mite extracts activate cultured human dermal endothelial cells to express adhesion molecules and secrete cytokines.

    PubMed

    Arlian, Larry G; Elder, B Laurel; Morgan, Marjorie S

    2009-05-01

    The human skin contacts molecules from house dust mites that are ubiquitous in many environments. These mite-derived molecules may penetrate the skin epidermis and dermis and contact microvascular endothelial cells and influence their function. The purpose of this study was to determine the response of normal human dermal microvascular endothelial cells to extracts of the dust mites, Dermatophagoides farinae, D. pteronyssinus, and Euroglyphus maynei with and without endotoxin (lipopolysaccharide). Endothelial cells were stimulated with mite extracts and the expression of surface molecules and the secretion of cytokines were measured in the absence and presence of polymyxin B to bind endotoxin. All three mite extracts stimulated endothelial cells to express intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin and to secrete interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP-1), and granulocyte/macrophage colony stimulating factor (GM-CSF). Euroglyphus maynei-induced expression of all the cell surface molecules was not inhibited when the endotoxin activity in the mite extract was inhibited. In contrast, endothelial cells challenged with D. farinae or D. pteronyssinus extract depleted of endotoxin activity expressed only constitutive levels of ICAM-1, VCAM-1, and E-selectin. D. farinae and E. maynei extracts depleted of endotoxin activity still induced secretion of IL-8 and MCP-1 but at reduced levels. Only constitutive amounts of IL-6, G-CSF, and GM-CSF were secreted in response to any of the endotoxin-depleted mite extracts. Extracts of D. farinae, D. pteronyssinus, and E. maynei contain both endotoxins and other molecules that can stimulate expression of cell adhesion molecules and chemokine receptors and the secretion of cytokines by normal human microvascular endothelial cells. PMID:19496432

  19. HOXA9 Methylation by PRMT5 Is Essential for Endothelial Cell Expression of Leukocyte Adhesion Molecules

    PubMed Central

    Bandyopadhyay, Smarajit; Harris, Daniel P.; Adams, Gregory N.; Lause, Gregory E.; McHugh, Anne; Tillmaand, Emily G.; Money, Angela; Willard, Belinda; Fox, Paul L.

    2012-01-01

    The induction of proinflammatory proteins in stimulated endothelial cells (EC) requires activation of multiple transcription programs. The homeobox transcription factor HOXA9 has an important regulatory role in cytokine induction of the EC-leukocyte adhesion molecules (ELAM) E-selectin and vascular cell adhesion molecule 1 (VCAM-1). However, the mechanism underlying stimulus-dependent activation of HOXA9 is completely unknown. Here, we elucidate the molecular mechanism of HOXA9 activation by tumor necrosis factor alpha (TNF-α) and show an unexpected requirement for arginine methylation by protein arginine methyltransferase 5 (PRMT5). PRMT5 was identified as a TNF-α-dependent binding partner of HOXA9 by mass spectrometry. Small interfering RNA (siRNA)-mediated depletion of PRMT5 abrogated stimulus-dependent HOXA9 methylation with concomitant loss in E-selectin or VCAM-1 induction. Chromatin immunoprecipitation analysis revealed that PRMT5 is recruited to the E-selectin promoter following transient HOXA9 binding to its cognate recognition sequence. PRMT5 induces symmetric dimethylation of Arg140 on HOXA9, an event essential for E-selectin induction. In summary, PRMT5 is a critical coactivator component in a newly defined, HOXA9-containing transcription complex. Moreover, stimulus-dependent methylation of HOXA9 is essential for ELAM expression during the EC inflammatory response. PMID:22269951

  20. Comparison of changes in endothelial adhesion molecule expression following UVB irradiation of skin and a human dermal microvascular cell line (HMEC-1).

    PubMed

    Rhodes, L E; Joyce, M; West, D C; Strickland, I; Friedmann, P S

    1996-06-01

    We have assessed the pattern of dermal endothelial adhesion molecule expression following broadband UVB irradiation in vivo and in vitro. Skin biopsies were taken from 4 human volunteers at baseline and at 4, 8 and 24 h post-irradiation with 2.5 minimal erythema doses of UVB. Sections were stained immunohistochemically for E-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1). CD31 and neutrophil elastase. The effect of direct UVB irradiation on E-selectin, ICAM-1 and VCAM-1 was examined in a human dermal microvascular endothelial cell line, HMEC-1. Cultured HMEC-1 were irradiated with 2.5-40 mJ/cm2 of UVB, and assessed for adhesion molecule expression by immunofluorescence microscopy and fluorescence-activated cell sorter analysis. In vivo, E-selectin was minimally expressed on EC at baseline and was induced by 4 h following irradiation, P < 0.01. ICAM-1 was moderately expressed at baseline and appeared mildly induced at 24 h, although this did not reach statistical significance. VCAM-1 was weakly expressed in unirradiated skin while CD31 was moderately expressed, but neither was induced by UVB irradiation. A significant neutrophilic infiltrate appeared by 8 h and was maximal at 24 h, P < 0.05. Neutrophil infiltration correlated with E-selectin expression, r = 0.96. In HMEC-1, ICAM-1 was upregulated at 24 h post-irradiation, with an increase in mean channel fluorescence from 100% at baseline to 145 (SD12)% at 24 h, P < 0.05. No change was seen in expression of E-selectin, VCAM-1 or CD31. These studies support the involvement of endothelial adhesion molecules E-selectin and ICAM-1 in UVB-induced inflammation. Whereas ICAM-1 is upregulated by direct irradiation of endothelial cells, E-selectin stimulation appears to be an indirect effect. PMID:8956361

  1. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  2. Expression of epithelial adhesion proteins and integrins in chronic inflammation.

    PubMed Central

    Haapasalmi, K.; Mäkelä, M.; Oksala, O.; Heino, J.; Yamada, K. M.; Uitto, V. J.; Larjava, H.

    1995-01-01

    Epithelial cell behavior in chronic inflammation is poorly characterized. During inflammation of tooth-supporting structures (periodontal disease), increased proliferation of epithelial cells into the inflamed connective tissue stroma is commonly seen. In some areas ulceration and degeneration take place. We studied alterations in the expression of adhesion molecules and integrins during chronic periodontal inflammation. In inflamed tissue, laminin-1 and type IV collagen were still present in the basement membrane and surrounding blood vessels, but they were also found extravascularly in inflamed connective tissue stroma. Type VII collagen and laminin-5 (also known as kalinin, epiligrin, or nicein) were poorly preserved in the basement membrane zone, but both were found in unusual streak-like distributions in the subepithelial connective tissue stroma in inflamed tissue. Both fibronectin and tenascin were substantially decreased in chronically inflamed connective tissue, showing only punctate staining at the basement membrane zone. Integrins of the beta 1 family showed two distinct staining patterns in epithelial cells during chronic inflammation; focal losses of beta 1 integrins (alpha 2 beta 1 and alpha 3 beta 1) were found in most areas, while in other areas the entire pocket epithelium was found to be strongly positive for beta 1 integrins. No members of the alpha v integrin family were found in any epithelia studied. Expression of the alpha 6 beta 4 integrin was high in basal cells of healthy tissue, but weak in epithelium associated with chronic inflammation. Chronic inflammation therefore involves alterations in both adhesion proteins and integrins expressed by epithelial cells. Basement membrane components found at abnormal sites in stroma in chronic inflammation might serve as new adhesive ligands for various cell types in inflamed stroma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7541610

  3. Rolling adhesion kinematics of yeast engineered to express selectins.

    PubMed

    Bhatia, Sujata K; Swers, Jeffrey S; Camphausen, Raymond T; Wittrup, K Dane; Hammer, Daniel A

    2003-01-01

    Selectins are cell adhesion molecules that mediate capture of leukocytes on vascular endothelium as an essential component of the inflammatory response. Here we describe a method for yeast surface display of selectins, together with a functional assay that measures rolling adhesion of selectin-expressing yeast on a ligand-coated surface. E-selectin-expressing yeast roll specifically on surfaces bearing sialyl-Lewis-x ligands. Observation of yeast rolling dynamics at various stages of their life cycle indicates that the kinematics of yeast motion depends on the ratio of the bud radius to the parent radius (B/P). Large-budded yeast "walk" across the surface, alternately pivoting about bud and parent. Small-budded yeast "wobble" across the surface, with bud pivoting about parent. Tracking the bud location of budding yeast allows measurement of the angular velocity of the yeast particle. Comparison of translational and angular velocities of budding yeast demonstrates that selectin-expressing cells are rolling rather than slipping across ligand-coated surfaces. PMID:12790675

  4. Sequential expression of adhesion and costimulatory molecules in graft-versus-host disease target organs after murine bone marrow transplantation across minor histocompatibility antigen barriers.

    PubMed

    Eyrich, Matthias; Burger, Gudrun; Marquardt, Katja; Budach, Wilfried; Schilbach, Karin; Niethammer, Dietrich; Schlegel, Paul G

    2005-05-01

    Graft-versus-host disease (GVHD) is a potentially fatal complication after allogeneic bone marrow transplantation. However, few data exist thus far on the molecular signals governing leukocyte trafficking during the disease. We therefore investigated the sequential pattern of distinct adhesion, costimulatory, and apoptosis-related molecules in GVHD organs (ileum, colon, skin, and liver) after transplantation across minor histocompatibility barriers (B10.D2 --> BALB/c, both H-2d). To distinguish changes induced by the conditioning regimen from effects achieved by allogeneic cell transfer, syngeneic transplant recipients (BALB/c --> BALB/c) and irradiated nontransplanted mice were added as controls. Irradiation upregulated the expression of vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-l, and B7-2 in ileum, as well as VCAM-1 and B7-2 in colon, on day 3 in all animals. Whereas in syngeneic mice these effects were reversed from day 9 on, allogeneic recipients showed further upregulation of VCAM-1, ICAM-1, B7-1, and B7-2 in these organs on day 22, when GVHD became clinically evident. Infiltration of CD4+ and CD8+ donor T cells was noted on day 9 in skin and liver and on day 22 in ileum and colon. Surprisingly, the expression of several other adhesion molecules, such as ICAM-2, platelet-endothelial cell adhesion molecule 1, E-selectin, and mucosal addressin cell adhesion molecule 1, did not change. Proapoptotic and antiapoptotic markers were balanced in GVHD organs with the exception of spleen, in which a preferential expression of the proapoptotic Bax could be noted. Our results indicate that irradiation-induced upregulation of VCAM-1, ICAM-1, and B7-2 provides early costimulatory signals to incoming donor T cells in the intestine, followed by a cascade of proinflammatory signals in other organs once the alloresponse is established. PMID:15846291

  5. Adhesion Molecule Expression in Human Endothelial Cells under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Rudimov, E. G.; Andreeva, E. R.; Buravkova, L. B.

    2013-02-01

    High gravisensitivity of endothelium is now well recognized. Therefore, the microgravity can be one of the main factors affecting the endothelium in space flight. In this work we studied the effects of gravity vector randomization (3D-clinorotation in RPM) on the viability of endothelial cells from human umbilical vein (HUVEC) and the expression of adhesion molecules on its surface. After RPM exposure, HUVEC conditioning medium was collected for cytokines evaluation, a part of vials was used for immunocytochemistry and other one - for cytofluorimetric analysis of ICAM-I, VCAM-I, PECAM-I, E-selectin, Endoglin, VE-cadherin expression. The viability of HUVEC and constitutive expression of EC marker molecules PECAM-I and Endoglin were similar in all experimental groups both after 6 and 24 hrs of exposure. There were no differences in ICAM-I and E-selectin expression on HUVEC in 3 groups after 6 hrs of exposure. 24 hrs incubation has provoked decrease in ICAM-I and E-selectin expression. Thus, gravity vector randomization can lead to the disruption of ECs monolayer.

  6. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells.

    PubMed

    Chen, Cai-Xia; Yang, Li-Chao; Xu, Xu-Dong; Wei, Xiao; Gai, Ya-Ting; Peng, Lu; Guo, Han; Hao-Zhou; Wang, Yi-Qing; Jin, Xin

    2015-06-01

    Oleoylethanolamide (OEA), an endogenous agonist of PPARα, has been reported to have anti-atherosclerotic properties. However, OEA can be enzymatically hydrolyzed to oleic acid and ethanolamine and, thus, is not expected to be orally active. In the present study, we designed and synthesized an OEA analog, propane-2-sulfonic acid octadec-9-enyl-amide (N15), which is resistant to enzymatic hydrolysis. The purpose of this study was to investigate the effects of N15 on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results showed that N15 inhibited TNFα-induced production of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and the adhesion of monocytes to TNFα-induced HUVECs. Furthermore, the protective effect of N15 on inflammation is dependent upon a PPAR-α/γ-mediated mechanism. In conclusion, N15 protects against TNFα-induced vascular endothelial inflammation. This anti-inflammatory effect of N15 is dependent on PPAR-α/γ dual targets. PMID:25797284

  7. MAPKs (ERK1/2, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells.

    PubMed

    Sumpio, Bauer E; Yun, Sangseob; Cordova, Alfredo C; Haga, Masae; Zhang, Jin; Koh, Yongbok; Madri, Joseph A

    2005-03-25

    PECAM-1 (CD31) is a member of the Ig superfamily of cell adhesion molecules and is expressed on endothelial cells (EC) as several circulating blood elements including platelets, polymorphonuclear leukocytes, monocytes, and lymphocytes. PECAM-1 tyrosine phosphorylation has been observed following mechanical stimulation of EC but its role in mechanosensing is still incompletely understood. The aim of this study was to investigate the involvement of PECAM-1 in signaling cascades in response to fluid shear stress (SS) in vascular ECs. PECAM-1-deficient (KO) and PECAM-reconstituted murine microvascular ECs, 50 and 100% confluent bovine aortic EC (BAEC), and human umbilical vein EC (HUVEC) transfected with antisense PECAM-1 oligonucleotides were exposed to oscillatory SS (14 dynes/cm2) for 0, 5, 10, 30 or 60 min. The tyrosine phosphorylation level of PECAM-1 immunoprecipitated from SS-stimulated PECAM-reconstituted, but not PECAM-1-KO, murine ECs increased. Although PECAM-1 was phosphorylated in 100% confluent BAEC and HUVEC, its phosphorylation level in 50% confluent BAECs or HUVEC was not detected by SS. Likewise PECAM-1 phosphorylation was robust in the wild type and scrambled-transfected HUVEC but not in the PECAM-1 antisense-HUVEC. ERK(1/2), p38 MAPK, and AKT were activated by SS in all cell types tested, including the PECAM-1-KO murine ECs, 50% confluent BAECs, and HUVEC transfected with antisense PECAM-1. This suggests that PECAM-1 may not function as a major mechanoreceptor for activation of MAPK and AKT in ECs and that there are likely to be other mechanoreceptors in ECs functioning to detect shear stress and trigger intercellular signals. PMID:15668248

  8. Focal adhesion linker proteins expression of fibroblast related to adhesion in response to different transmucosal abutment surfaces

    PubMed Central

    Moon, Yeon-Hee; Yoon, Mi-Kyeong; Moon, Jung-Sun; Kang, Jee-Hae; Kim, Sun-Hun; Yang, Hong-Seo

    2013-01-01

    PURPOSE To evaluate adherence of human gingival fibroblasts (HGFs) to transmucosal abutment of dental implant with different surface conditions with time and to investigate the roles of focal adhesion linker proteins (FALPs) involved in HGFs adhesion to abutment surfaces. MATERIALS AND METHODS Morphologies of cultured HGFs on titanium and ceramic discs with different surface were observed by scanning electron microscopy. Biocompatibility and focal adhesion were evaluated by ultrasonic wave application and cell viability assay. FALPs expression levels were assessed by RT-PCR and western blot. RESULTS There seemed to be little difference in biocompatibility and adhesion strength of HGFs depending on the surface conditions and materials. In all experimental groups, the number of cells remaining on the disc surface after ultrasonic wave application increased more than 2 times at 3 days after seeding compared to 1-day cultured cells and this continued until 7 days of culture. FALPs expression levels, especially of vinculin and paxillin, also increased in 5-day cultured cells compared to 1-day cultured fibroblasts on the disc surface. CONCLUSION These results might suggest that the strength of adhesion of fibroblasts to transmucosal abutment surfaces increases with time and it seemed to be related to expressions of FALPs. PMID:24049577

  9. TNF-α increases endothelial progenitor cell adhesion to the endothelium by increasing bond expression and affinity

    PubMed Central

    Prisco, Anthony R.; Prisco, Michael R.; Carlson, Brian E.

    2014-01-01

    Endothelial progenitor cells (EPCs) are a rare population of cells that participate in angiogenesis. To effectively use EPCs for regenerative therapy, the mechanisms by which they participate in tissue repair must be elucidated. This study focused on the process by which activated EPCs bind to a target tissue. It has been demonstrated that EPCs can bind to endothelial cells (ECs) through the tumore necrosis factor-α (TNF-α)-regulated vascular cell adhesion molecule 1/very-late antigen 4 (VLA4) interaction. VLA4 can bind in a high or low affinity state, a process that is difficult to experimentally isolate from bond expression upregulation. To separate these processes, a new parallel plate flow chamber was built, a detachment assay was developed, and a mathematical model was created that was designed to analyze the detachment assay results. The mathematical model was developed to predict the relative expression of EPC/EC bonds made for a given bond affinity distribution. EPCs treated with TNF-α/vehicle were allowed to bind to TNF-α/vehicle-treated ECs in vitro. Bound cells were subjected to laminar flow, and the cellular adherence was quantified as a function of shear stress. Experimental data were fit to the mathematical model using changes in bond expression or affinity as the only free parameter. It was found that TNF-α treatment of ECs increased adhesion through bond upregulation, whereas TNF-α treatment of EPCs increased adhesion by increasing bond affinity. These data suggest that injured tissue could potentially increase recruitment of EPCs for tissue regeneration via the secretion of TNF-α. PMID:25539711

  10. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA

    PubMed Central

    2012-01-01

    Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC) lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant bifidobacteria with improved adhesive

  11. Modulation of adhesion molecule expression on endothelial cells during the late asthmatic reaction: role of macrophage-derived tumour necrosis factor-alpha.

    PubMed Central

    Lassalle, P; Gosset, P; Delneste, Y; Tsicopoulos, A; Capron, A; Joseph, M; Tonnel, A B

    1993-01-01

    In a previous work we have demonstrated that in patients exhibiting a late allergic reaction (LAR), alveolar macrophages (AM) collected 18 h after bronchial allergen challenge produced high levels of IL-6 and tumour necrosis factor-alpha (TNF) which is known to up-regulate the endothelial cell expression of adhesion molecules participating in the development of the inflammatory reaction in bronchial asthma. For these reasons, we evaluated the effect of AM supernatants from asthmatic patients developing an LAR on intercellular adhesion molecule-1 (ICAM-1) and endothelial leucocyte adhesion molecule-1 (ELAM-1) expression by human endothelial cells. The expression of adhesion molecules was assessed by an ELISA method and compared with the effect of an optimal dose of human recombinant (hr) TNF. Results showed that AM supernatants, from challenged asthmatics developing an LAR, increased significantly the ICAM-1 and ELAM-1 expression on endothelial cells to a level similar to that obtained in the presence of hrTNF (500 U/ml) (P < 0.001 in both cases, respectively 90.4% and 75.2% of the level obtained with hrTNF). In contrast, AM supernatants from asthmatics at baseline or exhibiting, after challenge, a single early reaction had no significant effect on these parameters (P = NS in both cases, respectively 23.5% and 24.7% of the ICAM-1 expression, 22.7% and 15.3% of the ELAM-1 expression obtained with hrTNF). AM-derived TNF present in these supernatants was thought to play a key role in endothelial cell stimulation, since: (i) TNF concentration in AM supernatants correlated with its effect on ICAM-1 (r = 0.80, P < 10(-4)) and ELAM-1 expression (r = 0.88, P < 10(-5)); and (ii) a neutralizing anti-TNF antibody decreased their effect (68% and 80% respectively on ICAM-1 and ELAM-1 expression). Moreover, the role of IL-6 was excluded on the basis both of the hrIL-6 inefficiency to induce ICAM-1 and ELAM-1 synthesis, even in costimulation with hrTNF, and of anti-IL-6 antibody

  12. 2,3-Dimethoxy-2′-hydroxychalcone ameliorates TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells

    PubMed Central

    Kim, Hyejin; Youn, Gi Soo; An, Soo Yeon; Kwon, Hyeok Yil; Choi, Soo Young; Park, Jinseu

    2016-01-01

    Up-regulation of adhesion molecules plays an important role in the infiltration of leukocytes into the skin during the development of various inflammatory skin diseases, such as atopic dermatitis. In this study, we investigated the modulatory effects of 2,3-dimethoxy-2′-hydroxychalcone (DMHC) on tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesiveness, as well as the molecular mechanisms underlying its action in the HaCaT human keratinocyte cell line. Pre-treating HaCaT cells with DMHC significantly suppressed TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness. DMHC inhibited TNF-α-induced activation of NF-ᴋB. In addition, DMHC induced HO-1 expression as well as NRF2 activation. Furthermore, HO-1 knockdown using siRNA reversed the inhibitory effect of DMHC on TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that DMHC may inhibit TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes by suppressing the signaling cascades leading to NF-ᴋB activation and inducing HO-1 expression in keratinocytes. [BMB Reports 2016; 49(1): 57-62] PMID:26277982

  13. Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth muscle cells through MAPK and PADI4-dependent NF-kB and AP-1 pathways.

    PubMed

    Park, Bongkyun; Yim, Joung-Han; Lee, Hong-Kum; Kim, Byung-Oh; Pyo, Suhkneung

    2015-01-01

    Cell adhesion molecules play a critical role in inflammatory processes and atherosclerosis. In this study, we investigated the effect of ramalin, a chemical compound from the Antarctic lichen Ramalina terebrata, on vascular cell adhesion molecule-1 (VCAM-1) expression induced by TNF-α in vascular smooth muscular cells (VSMCs). Pretreatment of VSMCs with ramalin (0.1-10 μg/mL) concentration-dependently inhibited TNF-α-induced VCAM-1 expression. Additionally, ramalin inhibited THP-1 (human acute monocytic leukemia cell line) cell adhesion to TNF-α-stimulated VSMCs. Ramalin suppressed TNF-α-induced production of reactive oxygen species (ROS), PADI4 expression, and phosphorylation of p38, ERK, and JNK. Moreover, ramalin inhibited TNF-α-induced translocation of NF-κB and AP-1. Inhibition of PADI4 expression by small interfering RNA or the PADI4-specific inhibitor markedly attenuated TNF-α-induced activation of NF-κB and AP-1 and VCAM-1 expression in VSMCs. Our study provides insight into the mechanisms underlying ramalin activity and suggests that ramalin may be a potential therapeutic agent to modulate inflammation within atherosclerosis. PMID:25494680

  14. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    PubMed Central

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  15. Expression and cell distribution of the intercellular adhesion molecule, vascular cell adhesion molecule, endothelial leukocyte adhesion molecule, and endothelial cell adhesion molecule (CD31) in reactive human lymph nodes and in Hodgkin's disease.

    PubMed Central

    Ruco, L. P.; Pomponi, D.; Pigott, R.; Gearing, A. J.; Baiocchini, A.; Baroni, C. D.

    1992-01-01

    The immunocytochemical expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelial leukocyte adhesion molecule (ELAM-1), endothelial cell adhesion molecule (EndoCAM CD31), and HLA-DR antigens was investigated in sections of 24 reactive lymph nodes and in 15 cases of Hodgkin's disease. ICAM-1 was detected in sinus macrophages, follicular dendritic reticulum cells (FDRCs), interdigitating reticulum cells (IDRCs), epithelioid macrophages, Hodgkin's cells (HCs), and vascular endothelium. ICAM-1 expression was often associated with that of HLA-DR antigens. VCAM-1 was detected in FDRCs, in fibroblast reticulum cells (FRCs), in macrophages, and in rare blood vessels. EndoCAM (CD31) was constitutively expressed in all types of endothelial cells, sinus macrophages, and in epithelioid granulomas. ELAM-1 was selectively expressed by activated endothelial cells of high endothelium venules (HEVs). When expression of the inducible adhesion molecules ICAM-1, VCAM-1 and ELAM-1 was comparatively evaluated in HEVs, it was found that ICAM-1 + HEVs were present in all reactive and HD nodes, whereas ELAM-1 and/or VCAM-1 were expressed only in those pathologic conditions characterized by high levels of interleukin-1/tumor necrosis factor (IL-1/TNF) production, such as granulomatosis and Hodgkin's disease. In Hodgkin's disease, the expression of ELAM-1/VCAM-1 was more pronounced in cases of nodular sclerosis and was associated with a significantly higher content of perivascular neutrophils. Images Figure 1 Figure 2 PMID:1605306

  16. Adhesion molecules in cutaneous inflammation.

    PubMed

    Barker, J N

    1995-01-01

    As in other organs, leukocyte adhesion molecules and their ligands play a major role in cutaneous inflammatory events both by directing leukocyte trafficking and by their effects on antigen presentation. Skin biopsies of inflamed skin from patients with diseases such as as psoriasis or atopic dermatitis reveal up-regulation of endothelial cell expression of P- and E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Studies of evolving lesions following UVB irradiation, Mantoux reaction or application of contact allergen, demonstrate that expression of these adhesion molecules parallels leukocyte infiltration into skin. When cutaneous inflammation is widespread (e.g. in erythroderma), soluble forms of these molecules are detectable in serum. In vitro studies predict that peptide mediators are important regulatory factors for endothelial adhesion molecules. Intradermal injection of the cytokines interleukin 1, tumour necrosis factor alpha and interferon gamma into normal human skin leads to induction of endothelial adhesion molecules with concomitant infiltration of leukocytes. In addition, neuropeptides rapidly induce P-selectin translocation to the cell membrane and expression of E-selectin. Adhesion molecules also play a crucial role as accessory molecules in the presentation of antigen to T lymphocytes by Langerhans' cells. Expression of selectin ligands by Langerhans' cells is up-regulated by various inflammatory stimuli, suggesting that adhesion molecules may be important in Langerhans' cell migration. The skin, because of its accessibility, is an ideal organ in which to study expression of adhesion molecules and their relationship to inflammatory events. Inflammatory skin diseases are common and inhibition of lymphocyte accumulation in skin is likely to prove of great therapeutic benefit. PMID:7587640

  17. Proinflammatory Cytokine, Chemokine, and Cellular Adhesion Molecule Expression during the Acute Phase of Experimental Brain Abscess Development

    PubMed Central

    Kielian, Tammy; Hickey, William F.

    2000-01-01

    Brain abscess represents the infectious disease sequelae associated with the influx of inflammatory cells and activation of resident parenchymal cells in the central nervous system. However, the immune response leading to the establishment of a brain abscess remains poorly defined. In this study, we have characterized cytokine and chemokine expression in an experimental brain abscess model in the rat during the acute stage of abscess development. RNase protection assay revealed the induction of the proinflammatory cytokines interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α as early as 1 to 6 hours after Staphylococcus aureus exposure. Evaluation of chemokine expression by reverse transcription-polymerase chain reaction demonstrated enhanced levels of the CXC chemokine KC 24 hours after bacterial exposure, which correlated with the appearance of neutrophils in the abscess. In addition, two CC chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α were induced within 24 hours after S. aureus exposure and preceded the influx of macrophages and lymphocytes into the brain. Analysis of abscess lesions by in situ hybridization identified CD11b+ cells as the source of IL-1β in response to S. aureus. Both intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule expression were enhanced on microvessels in S. aureus but not sterile bead-implanted tissues at 24 and 48 hours after treatment. These results characterize proinflammatory cytokine and chemokine expression during the early response to S. aureus in the brain and provide the foundation to assess the functional significance of these mediators in brain abscess pathogenesis. PMID:10934167

  18. Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury

    SciTech Connect

    Prozialeck, Walter C. Edwards, Joshua R.; Lamar, Peter C.; Liu, Jie; Vaidya, Vishal S.; Bonventre, Joseph V.

    2009-08-01

    Cadmium (Cd) is a nephrotoxic industrial and environmental pollutant that causes a generalized dysfunction of the proximal tubule. Kim-1 is a transmembrane glycoprotein that is normally not detectable in non-injured kidney, but is up-regulated and shed into the urine during the early stages of Cd-induced proximal tubule injury. The objective of the present study was to examine the relationship between the Cd-induced increase in Kim-1 expression and the onset of necrotic and apoptotic cell death in the proximal tubule. Adult male Sprague-Dawley rats were treated with 0.6 mg (5.36 {mu}mol) Cd/kg, subcutaneously, 5 days per week for up to 12 weeks. Urine samples were analyzed for levels of Kim-1 and the enzymatic markers of cell death, lactate dehydrogenase (LDH) and alpha-glutathione-S-transferase ({alpha}-GST). In addition, necrotic cells were specifically labeled by perfusing the kidneys in situ with ethidium homodimer using a procedure that has been recently developed and validated in the Prozialeck laboratory. Cryosections of the kidneys were also processed for the immunofluorescent visualization of Kim-1 and the identification of apoptotic cells by TUNEL labeling. Results showed that significant levels of Kim-1 began to appear in the urine after 6 weeks of Cd treatment, whereas the levels of total protein, {alpha}-GST and LDH were not increased until 8-12 weeks. Results of immunofluorescence labeling studies showed that after 6 weeks and 12 weeks, Kim-1 was expressed in the epithelial cells of the proximal tubule, but that there was no increase in the number of necrotic cells, and only a modest increase in the number of apoptotic cells at 12 weeks. These results indicate that the Cd-induced increase in Kim-1 expression occurs before the onset of necrosis and at a point where there is only a modest level of apoptosis in the proximal tubule.

  19. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    PubMed

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process. PMID:26706037

  20. Macrophage function in alloxan diabetic mice: expression of adhesion molecules, generation of monokines and oxygen and NO radicals

    PubMed Central

    Ptak, W; Klimek, M; Bryniarski, K; Ptak, M; Majcher, P

    1998-01-01

    The increased incidence of bacterial and mycotic infections in poorly controlled diabetic patients or animals is frequently attributed to impaired activities of professional phagocytes (granulocytes, macrophages) in hypoinsulinaemic milieu. We measured production of monokines (IL-6 and tumour necrosis factor-alpha (TNF-α)), active NO and reactive oxygen intermediates (ROIs), as well as expression of several cell surface adhesion molecules (Mac-1, -2 and -3, intercellular adhesion molecule-1 (ICAM-1) and FcγRII), by thioglycollate medium-induced peritoneal macrophages of normoglycaemic and alloxan diabetic CBA/J mice (blood glucose level in the range 300 or 500 mg/dl). Macrophages of animals with moderate diabetes (300 mg/dl) produced significantly more IL-6 and TNF-α and ROIs than cells of control mice and showed an increased expression of all cell surface molecules, except Mac-3. NO/NO2 production was not affected. Administration of insulin restored enhanced values to normal levels, except for the production of ROIs which remained unusually high. We conclude that two separate mechanisms influence macrophage physiology in diabetes—lack of saturation of insulin receptors on macrophages and an indirect effect due to formation of advanced glycosylation endproducts (AGE) on their surfaces. The latter is possibly responsible for increased generation of ROIs, since it cannot be down-regulated by prolonged insulin treatment. How the increased activity of macrophages of moderately diabetic mice (enhanced production of proinflammatory monokines and oxygen radicals as well as expression of molecules) is related to their ability to kill bacteria is now under investigation. PMID:9764597

  1. Leucocyte cellular adhesion molecules.

    PubMed

    Yong, K; Khwaja, A

    1990-12-01

    adhesion molecule-1 (LAM-1), which is the human homologue of the murine homing receptor, MEL-14, is expressed on leucocytes, while endothelial leucocyte adhesion molecule-1 (ELAM-1) and granule membrane protein (GMP-140) are expressed on stimulated endothelial cells and activated platelets. This review will be confined to adhesion receptors found on leucocytes, with particular emphasis on the leucocyte integrins. PMID:1706206

  2. Elevated expression in situ of selectin and immunoglobulin superfamily type adhesion molecules in retroocular connective tissues from patients with Graves' ophthalmopathy.

    PubMed Central

    Heufelder, A E; Bahn, R S

    1993-01-01

    Activation of certain adhesion molecules within vascular endothelium and the surrounding extravascular space is a critical event in the recruitment and targeting of an inflammatory response or autoimmune attack to a particular tissue site. We have recently demonstrated that the adhesion of lymphocytes to cultured retroocular fibroblasts obtained from patients with Graves' ophthalmopathy (GO) is mediated predominantly by the interaction of lymphocyte function-associated antigen-1 (LFA-1), expressed on lymphocytes, with intercellular adhesion molecule-1 (ICAM-1), expressed by these cells following exposure to interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), IL-1 alpha or purified thyroid-stimulating immunoglobulins. We now report the expression and localization in situ of several adhesion molecules, ICAM-1, endothelial leucocyte adhesion molecule-1 (ELAM-1), vascular cell adhesion molecule-1 (VCAM-1), and LFA-3 in retroocular tissues derived from patients with severe GO (n = 4) and normal individuals (n = 3). Serial cryostat sections of tissue specimens were processed for immunoperoxidase staining using various MoAbs against ICAM-1, ELAM-1, VCAM-1 and LFA-3. In addition, consecutive sections were stained with MoAbs against LFA-1, CD45RO (UCHL-1)DR-human leucocyte antigen (HLA-DR), CD11b/CD18 (Mac-1), and CD11c/CD18 (p150,95). In GO-retroocular tissues, strong immunoreactivity for ICAM-1 and LFA-3 was detected in blood vessels (> 90%), in perimysial fibroblasts surrounding extraocular muscle fibres, and in connective tissue distinct from extraocular muscle. No ICAM-1 or LFA-3 immunoreactivity was present in extraocular muscle cells themselves. ICAM-1 and LFA-3 immunoreactivity in normal tissues was minimal or absent both in connective and muscle tissues. Vascular endothelium was strongly positive for ELAM-1 and VCAM-1 in GO-retroocular tissues, while VCAM-1 immunoreactivity was minimal (< 5% of blood vessels) and ELAM-1 immunoreactivity was

  3. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.

    PubMed

    Hallahan, D; Kuchibhotla, J; Wyble, C

    1996-11-15

    The predominant early histological changes in irradiated tissues are edema and leukocyte infiltration. Cell adhesion molecules (CAMs) are required for the extravasation of leukocytes from the circulation. To study the role of CAMs in the pathogenesis of radiation-mediated inflammation, we quantified the expression of P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 glycoproteins on the surface of irradiated human endothelial cells. We found that E-selectin and ICAM-1 expression increased after irradiation, whereas there was no increased expression of other cytokine-inducible adhesion molecules (P-selectin or vascular cell adhesion molecule-1). We found a dose- and time-dependent increase in radiation-induced expression of both E-selectin and ICAM-1. Furthermore, the threshold dose for E-selectin expression was 1 Gy, whereas the threshold dose for ICAM-1 synthesis was 5 Gy of X-rays. Northern blot analysis of RNA from irradiated endothelial cells demonstrated that ICAM-1 is expressed at 3-6 h following irradiation. No de novo protein synthesis was required for increased ICAM-1 mRNA expression. The 1.1-kb segment of the 5' untranslated region of the ICAM-1 gene was sufficient for X-ray induction of chloramphenicol acetyltransferase reporter gene expression. We measured whether ICAM-1 mediates adhesion of leukocyte to the irradiated endothelium and found that leukocyte adhesion occurred concurrently with ICAM-1 induction. Radiation-mediated leukocyte adhesion was prevented by anti-ICAM-1 blocking antibodies. These data indicate that ICAM-1 participates in the inflammatory response to ionizing radiation. Moreover, radiation induction of these CAMs occurs in the absence of tumor necrosis factor and interleukin 1 production. PMID:8912850

  4. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    PubMed Central

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

  5. The roles of Tenascin C and Fibronectin 1 in adhesive capsulitis: a pilot gene expression study

    PubMed Central

    Cohen, Carina; Leal, Mariana Ferreira; Belangero, Paulo Santoro; Figueiredo, Eduardo Antônio; Smith, Marília Cardoso; Andreoli, Carlos Vicente; de Castro Pochini, Alberto; Cohen, Moises; Ejnisman, Benno; Faloppa, Flávio

    2016-01-01

    OBJECTIVES: We evaluated mRNA expression levels of genes that encode TGF-β1; the TGF-β1 receptor; the collagen-modifying enzymes LOX, PLOD1, and PLOD2; and the extracellular matrix proteins COMP, FN1, TNC and TNXB in synovial/capsule specimens from patients with idiopathic adhesive capsulitis. Possible associations between the measured mRNA levels and clinical parameters were also investigated. METHODS: We obtained glenohumeral joint synovium/capsule specimens from 9 patients with idiopathic adhesive capsulitis who had not shown improvement in symptoms after 5 months of physiotherapy. Adhesive capsulitis was confirmed in all patients by magnetic resonance imaging. We also obtained specimens from 8 control patients who had underwent surgery for acute acromioclavicular joint dislocation and who had radiological indication of glenohumeral capsule alteration based on arthroscopic evaluation. mRNA expression in the synovium/capsule specimens was analyzed by quantitative reverse transcription PCR. The B2M and HPRT1 genes were used as references to normalize target gene expression in the shoulder tissue samples. RESULTS: The synovium/capsule samples from the patients with adhesive capsulitis had significantly higher TNC and FN1 expression than those from the controls. Additionally, symptom duration directly correlated with expression of TGFβ1 receptor I. CONCLUSION: Elevated levels of TNC and FN1 expression may be a marker of capsule injury. Upregulation of TGFβ1 receptor I seems to be dependent on symptom duration; therefore, TGFβ signaling may be involved in adhesive capsulitis. As such, TNC, FN1 and TGFβ1 receptor I may also play roles in adhesive capsulitis by contributing to capsule inflammation and fibrosis. PMID:27438566

  6. Fibroblast adhesion to recombinant tropoelastin expressed as a protein A-fusion protein.

    PubMed Central

    Grosso, L E; Parks, W C; Wu, L J; Mecham, R P

    1991-01-01

    A bovine tropoelastin cDNA encoding exons 15-36 that includes the elastin-receptor binding site was expressed in Escherichia coli as a fusion protein with Protein A from Staphylococcus aureus. After isolation of the fusion protein by affinity chromatography on Ig-Sepharose, the tropoelastin domain was separated from plasmid-pR1T2T-encoded Protein A (Protein A') by CNBr cleavage. Cell-adhesion assays demonstrated specific adhesion to the recombinant tropoelastin. Furthermore, the data indicate that interactions involving the bovine elastin receptor mediate nuchalligament fibroblast adhesion to the recombinant protein. In agreement with earlier studies of fibroblast chemotaxis to bovine tropoelastin, nuchal-ligament fibroblast adhesion demonstrated developmental regulation of the elastin receptor. Images Fig. 2. Fig. 3. PMID:1996952

  7. [The expression level of adhesion molecules on neutrophils depending at segmentation of their nuclei].

    PubMed

    Kashutin, S L; Danilov, S I; Vereshchagina, E N; Kluchareva, S V

    2013-11-01

    The article deals with results of detection of expression level of adhesion molecules on neutrophils and segmentation of their nuclei. It is established that in conditions of absence of antigen stimulation neutrophils of circulating pool express molecules of L-selectin in 53.34%, LFA-1 molecules in 65.64%, ICAM-1 in 40.51%, LE4-3 in 58.72% and PECAM-1 in 59.74%. The full readiness to realization of phase of sliding, strong adhesion and immediately transmigration itselfis detected in neutrophils with five segments in nucleus. PMID:24640111

  8. Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo.

    PubMed

    Jin, Yong Chun; Kim, Chun Wook; Kim, Young Min; Nizamutdinova, Irina Tsoy; Ha, Yu Mi; Kim, Hye Jung; Seo, Han Geuk; Son, Kun Ho; Jeon, Su Jin; Kang, Sam Sik; Kim, Yeong Shik; Kam, Sung-Chul; Lee, Jea Heun; Chang, Ki Churl

    2009-07-01

    The aim of the present study was to evaluate the protective effect of cryptotanshinone (CTS), one of active ingredients of Salvia miltiorrhiza root, on myocardial ischemia-reperfusion injury in rat due to inhibition of some inflammatory events that occur by NF-kappaB-activation during ischemia and reperfusion. Myocardial ischemia and reperfusion injury was induced by occluding the left anterior descending coronary artery for 30 min followed by either 2 h (biochemical analysis) or 24 h (myocardial function and infarct size measurement) reperfusion. CTS injected (i.v.) 10 min before ischemia and reperfusion insult. CTS significantly reduced the infarct size and improved ischemia and reperfusion-induced myocardial contractile dysfunction. Furthermore, CTS inhibited NF-kappaB translocation, expression of pro-inflammatory cytokines (TNF-alpha, IL-1beta, IL-6), neutrophil infiltration and MPO activity in ischemic myocardial tissues. CTS also significantly reduced plasma levels of TNF-alpha, IL-1beta due to ischemia and reperfusion. Interestingly, H(2)O(2)-stimulated NF-kappaB-luciferase activity and TNF-alpha-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) expressions in human umbilical vein endothelial cells (HUVEC) were significantly inhibited by CTS. Taken together, it is concluded that CTS may attenuate ischemia and reperfusion-induced microcirculatory disturbances by inhibition of proinflammatory cytokine production, reduction of neutrophil infiltration and possibly inhibition of adhesion molecules through inhibition of NF-kappaB-activation during ischemia and reperfusion. PMID:19401198

  9. Biofilm-forming Staphylococcus epidermidis expressing vancomycin resistance early after adhesion to a metal surface.

    PubMed

    Sakimura, Toshiyuki; Kajiyama, Shiro; Adachi, Shinji; Chiba, Ko; Yonekura, Akihiko; Tomita, Masato; Koseki, Hironobu; Miyamoto, Takashi; Tsurumoto, Toshiyuki; Osaki, Makoto

    2015-01-01

    We investigated biofilm formation and time of vancomycin (VCM) resistance expression after adhesion to a metal surface in Staphylococcus epidermidis. Biofilm-forming Staphylococcus epidermidis with a VCM MIC of 1 μg/mL was used. The bacteria were made to adhere to a stainless steel washer and treated with VCM at different times and concentrations. VCM was administered 0, 2, 4, and 8 hours after adhesion. The amount of biofilm formed was evaluated based on the biofilm coverage rates (BCRs) before and after VCM administration, bacterial viability in biofilm was visually observed using the fluorescence staining method, and the viable bacterial count in biofilm was measured. The VCM concentration required to decrease BCR significantly compared with that of VCM-untreated bacteria was 4 μg/mL, even in the 0 hr group. In the 4 and 8 hr groups, VCM could not inhibit biofilm growth even at 1,024 μg/mL. In the 8 hr group, viable bacteria remained in biofilm at a count of 10(4) CFU even at a high VCM concentration (1,024 μg/mL). It was suggested that biofilm-forming Staphylococcus epidermidis expresses resistance to VCM early after adhesion to a metal surface. Resistance increased over time after adhesion as the biofilm formed, and strong resistance was expressed 4-8 hours after adhesion. PMID:25802873

  10. Human recombinant granulocyte-macrophage colony-stimulating factor increases cell-to-cell adhesion and surface expression of adhesion-promoting surface glycoproteins on mature granulocytes.

    PubMed Central

    Arnaout, M A; Wang, E A; Clark, S C; Sieff, C A

    1986-01-01

    Human granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to inhibit migration of mature granulocytes and to enhance their antibody-dependent cellular cytotoxicity. We found that human recombinant GM-CSF also enhanced granulocyte-granulocyte adhesion and increased by two- to threefold the surface expression of Mo1 and LeuM5 (P150, 95), two members of a family of leukocyte adhesion molecules (Leu-CAM). Increased Mo1 surface expression occurred within 15 min at 37 degrees C and was maximal at the migration inhibitory concentration of 500 pM. One-half maximal rise in the expression of Mo1 on the cell surface occurred at 5 pM. The chemotactic peptide f-Met-Leu-Phe produced a comparable rise in surface Mo1 with one-half maximal expression occurring at 7 nM. Both GM-CSF and f-Met-Leu-Phe produced optimal granulocyte-granulocyte adhesion at 500 pM and 100 nM, respectively. This adhesion-promoting effect induced by either stimulus was inhibited by a mouse monoclonal antibody directed against Mo1 antigen. These data indicate that GM-CSF promotes cell-to-cell adhesion, presumably through enhanced expression of leukocyte adhesion molecules. This mechanism may explain, in part, the known effects of GM-CSF on the function of mature granulocytes. Images PMID:3090106

  11. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation.

    PubMed

    Heckmann, M; Douwes, K; Peter, R; Degitz, K

    1998-01-10

    During cutaneous inflammatory reactions the recruitment of circulating leukocytes into the tissue critically depends on the regulated expression of endothelial cell adhesion molecules (CAMs). Various proinflammatory stimuli upregulate endothelial CAMs, including cytokines and UV irradiation. We have investigated the effects of ionizing radiation (IR) on endothelial CAM expression. Organ cultures of normal human skin as well as cultured human dermal microvascular endothelial cells (HDMEC) were exposed to IR. Expression of three major endothelial CAMs was studied in skin organ cultures by immunohistochemistry and in cell culture by Northern blot analysis and flow cytometry. In skin organ cultures vascular immunoreactivity for ICAM-1, E-selectin, and VCAM-1 was strongly induced 24 h after exposure to 5 or 10 Gy of IR, while immunoreactivity for CD31/PECAM-1, a constitutively expressed endothelial cell adhesion molecule, remained unchanged. In cultured HDMEC IR upregulated ICAM-1, VCAM-1, and E-selectin mRNAs and cell surface expression in a time- and dose-dependent fashion. Cellular morphology and viability remained unaltered by IR up to 24 h postirradiation. This study characterizes microvascular activation of adhesion molecule expression in response to ionizing radiation in a clinically relevant IR dose range. The findings also underscore the ability of endothelial cells to integrate environmental electromagnetic stimuli. PMID:9457067

  12. Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors

    PubMed Central

    Ramakrishnan, N.; Tourdot, Richard W.; Eckmann, David M.; Ayyaswamy, Portonovo S.; Muzykantov, Vladimir R.; Radhakrishnan, Ravi

    2016-01-01

    In order to achieve selective targeting of affinity–ligand coated nanoparticles to the target tissue, it is essential to understand the key mechanisms that govern their capture by the target cell. Next-generation pharmacokinetic (PK) models that systematically account for proteomic and mechanical factors can accelerate the design, validation and translation of targeted nanocarriers (NCs) in the clinic. Towards this objective, we have developed a computational model to delineate the roles played by target protein expression and mechanical factors of the target cell membrane in determining the avidity of functionalized NCs to live cells. Model results show quantitative agreement with in vivo experiments when specific and non-specific contributions to NC binding are taken into account. The specific contributions are accounted for through extensive simulations of multivalent receptor–ligand interactions, membrane mechanics and entropic factors such as membrane undulations and receptor translation. The computed NC avidity is strongly dependent on ligand density, receptor expression, bending mechanics of the target cell membrane, as well as entropic factors associated with the membrane and the receptor motion. Our computational model can predict the in vivo targeting levels of the intracellular adhesion molecule-1 (ICAM1)-coated NCs targeted to the lung, heart, kidney, liver and spleen of mouse, when the contributions due to endothelial capture are accounted for. The effect of other cells (such as monocytes, etc.) do not improve the model predictions at steady state. We demonstrate the predictive utility of our model by predicting partitioning coefficients of functionalized NCs in mice and human tissues and report the statistical accuracy of our model predictions under different scenarios. PMID:27429783

  13. The Effect of Glass Ionomer and Adhesive Cements on Substance P Expression in Human Dental Pulp

    PubMed Central

    Ariza-Garcia, German; Camelo, Patricia; Mejia, Monica; Ojeda, Karyn; Azuero-Holguin, Maria M.; Abad-Coronel, Dunia; Munoz, Hugo R.

    2013-01-01

    Objectives: The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP expression in healthy human dental pulp. Study Design: Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group II: Adhesive Cement was placed in the cavity. Positive control group: Class V cavities only. The remaining ten healthy premolars where extracted without treatment and served as a negative control group. All pulp samples were processed and SP was measured by radioimmunoassay. Results: Greater SP expression was found in the adhesive cement group, followed by the glass ionomer and the positive control groups. The lower SP values were for the negative control group. ANOVA showed statistically significant differences between groups (p<0.0001). Tukey HSD post hoc tests showed statistically significant differences in SP expression between negative control group and the 3 other groups (p<0.01). Differences between the cavity-only group and the two experimental groups were also statistically significant (p<0.05 and p<0.01 respectively). There is also a statistically significant difference between the two experimental groups (p<0.01). Conclusions: These findings suggest that adhesive cements provoke a greater SP expression when compared with glass ionomer. Key words:Glass Ionomer, adhesive cement, Substance P, human dental pulp. PMID:23722145

  14. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression.

    PubMed

    Cheung, Wing-Yee; Simmons, Craig A; You, Lidan

    2012-01-01

    Osteocyte apoptosis precedes osteoclast resorption, and may act as a critical signal to trigger bone remodeling. While osteoclast precursors are known to travel via the circulation, the specific mechanisms by which they accumulate at remodeling sites are unclear. We hypothesized that osteocyte apoptosis mediates osteoclast precursor adhesion to vascular endothelium by regulating osteocytic secretion of IL-6 and soluble IL-6 receptor (sIL-6R) to promote endothelial ICAM-1 expression. We found that conditioned media from TNF-α-induced apoptotic MLO-Y4 osteocytes promoted RAW264.7 osteoclast precursor adhesion onto D4T endothelial cells (P<0.05). Blocking osteocyte apoptosis with a pan-caspase inhibitor (ZVAD-FMK) reduced osteoclast precursor adhesion to baseline levels (P<0.001). Endothelial cells treated with apoptotic osteocyte conditioned media had elevated surface expression of ICAM-1 (P<0.05), and blocking ICAM-1 abolished apoptosis-induced osteoclast precursor adhesion. Apoptotic osteocyte conditioned media contained more IL-6 (P<0.05) and sIL-6R (P<0.05) than non-apoptotic osteocyte conditioned media. When added exogenously, both IL-6 and sIL-6R were required for endothelial activation, and blocking IL-6 reduced apoptosis-induced osteoclast precursor adhesion to baseline levels (P<0.05). Therefore, we conclude that osteocyte apoptosis can promote osteoclast precursor adhesion to endothelial cells via ICAM-1; this is likely through increased osteocytic IL-6 and sIL-6R secretion, both of which are indispensible to endothelial activation. PMID:21986000

  15. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    SciTech Connect

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.; Lin, C.-C.; Yang, C.-M.

    2008-04-15

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2, or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.

  16. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. PMID:7704836

  17. Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

    PubMed Central

    Murakami, Masato; Giampietro, Costanza; Giannotta, Monica; Corada, Monica; Torselli, Ilaria; Orsenigo, Fabrizio; Cocito, Andrea; d'Ario, Giovanni; Mazzarol, Giovanni; Confalonieri, Stefano; Di Fiore, Pier Paolo; Dejana, Elisabetta

    2011-01-01

    Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target. PMID:21695058

  18. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed Central

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. Images Fig. 2. Fig. 3. Fig. 4. PMID:7704836

  19. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  20. Expression of the cluster 1 antigen (neural cell adhesion molecule) in neuroectodermal tumours.

    PubMed Central

    Patel, K.; Frost, G.; Kiely, F.; Phimister, E.; Coakham, H. B.; Kemshead, J. T.

    1991-01-01

    In this study, we have investigated the expression of the neural cell adhesion molecule (NCAM) in the human brain, primary brain tumours and neuroblastoma. Adult brain was found to express discrete isoforms of 180, 170, 140 and 120 kDa, which on neuraminidase treatment resolved into bands of 180, 170, 140, 120 and 95 kDa. Primary brain tumours such as Schwannoma and medulloblastoma expressed embryonic NCAM characterised by a high level of glycosylation, whereas other tumours, e.g. astrocytoma, meningioma, glioma and oligodendroglioma expressed adult NCAM. Post-neuraminidase treatment, differential expression of the 180, 170, 140, 120 and 95 kDa isoforms were noted in these various tumour types. On the other hand, neuroblastoma cell lines were found to express only embryonic NCAM, which after neuraminidase treatment resulted in differential presence of only 180, 140 and 120 kDa proteins. Images Figure 1 Figure 2 PMID:2039710

  1. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    PubMed

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP. PMID:23910523

  2. Expression and structural studies of fasciclin I, an insect cell adhesion molecule.

    PubMed

    Wang, W C; Zinn, K; Bjorkman, P J

    1993-01-15

    Fasciclin I is a lipid-linked cell-surface glycoprotein that can act as a homophilic adhesion molecule in tissue culture cells. It is thought to be involved in growth cone guidance in the embryonic insect nervous system. To facilitate structure-function studies, we have generated Chinese hamster ovary (CHO) cell lines expressing high levels of cell surface grasshopper and Drosophila fasciclin I. Grasshopper fasciclin I released by phospholipase C cleavage was purified on an immunoaffinity column and single crystals were obtained that diffracted to approximately 5-A resolution. We also generated CHO and Drosophila S2 cell lines that produce a secreted form of fasciclin I. Fasciclin I expressed in S2 cells contains significantly less carbohydrate than the protein expressed in CHO cells, and may therefore be more suitable for crystallization. Biochemical characterization of purified fasciclin I indicates that the extracellular portion exists as a monomer in solution. Circular dichroism studies suggest that fasciclin I is primarily alpha-helical. Its structure is therefore different from other known cell adhesion molecules, which are predicted to be elongated beta-sheet structures. This suggests that fasciclin I may define a new structural motif used to mediate adhesive interactions between cell surfaces. PMID:8419345

  3. Bovine leukocyte adhesion deficiency: in vitro assessment of neutrophil function and leukocyte integrin expression.

    PubMed

    Olchowy, T W; Bochsler, P N; Neilsen, N R; Welborn, M G; Slauson, D O

    1994-04-01

    Bovine leukocyte adhesion deficiency (BLAD) was identified in a two-month-old Holstein heifer calf using DNA-polymerase chain reaction analysis of the affected calf and other clinical parameters. Neutrophil integrin expression (CD18, CD11a, CD11c), aggregation, and transendothelial migration were studied in vitro. Neutrophils were isolated from the affected calf and from normal, healthy, age-matched control Holstein calves. Neutrophils isolated from the affected BLAD calf had decreased expression of leukocyte integrins on their cell surface, decreased ability to aggregate in response to chemotactic stimuli, and decreased ability to migrate across bovine endothelial cell monolayers in vitro. Transendothelial migration of neutrophils from normal calves was reduced to levels comparable to the BLAD neutrophils by treatment with an anti-CD18 monoclonal antibody (MAb 60.3). Peripheral-blood lymphocytes from the BLAD calf also expressed negligible levels of leukocyte integrins, similar to their neutrophil counterparts. Our experimental findings in vitro correlate well with the clinical observations of decreased leukocyte trafficking and diminished host defense in leukocyte adhesion-deficient animals. The syndrome of BLAD may be a suitable model for one of the human leukocyte adhesion deficiency disorders. PMID:7911733

  4. Bovine leukocyte adhesion deficiency: in vitro assessment of neutrophil function and leukocyte integrin expression.

    PubMed Central

    Olchowy, T W; Bochsler, P N; Neilsen, N R; Welborn, M G; Slauson, D O

    1994-01-01

    Bovine leukocyte adhesion deficiency (BLAD) was identified in a two-month-old Holstein heifer calf using DNA-polymerase chain reaction analysis of the affected calf and other clinical parameters. Neutrophil integrin expression (CD18, CD11a, CD11c), aggregation, and transendothelial migration were studied in vitro. Neutrophils were isolated from the affected calf and from normal, healthy, age-matched control Holstein calves. Neutrophils isolated from the affected BLAD calf had decreased expression of leukocyte integrins on their cell surface, decreased ability to aggregate in response to chemotactic stimuli, and decreased ability to migrate across bovine endothelial cell monolayers in vitro. Transendothelial migration of neutrophils from normal calves was reduced to levels comparable to the BLAD neutrophils by treatment with an anti-CD18 monoclonal antibody (MAb 60.3). Peripheral-blood lymphocytes from the BLAD calf also expressed negligible levels of leukocyte integrins, similar to their neutrophil counterparts. Our experimental findings in vitro correlate well with the clinical observations of decreased leukocyte trafficking and diminished host defense in leukocyte adhesion-deficient animals. The syndrome of BLAD may be a suitable model for one of the human leukocyte adhesion deficiency disorders. Images Fig. 4. PMID:7911733

  5. ELMO1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMs.

    PubMed

    Shimazaki, A; Tanaka, Y; Shinosaki, T; Ikeda, M; Watada, H; Hirose, T; Kawamori, R; Maeda, S

    2006-11-01

    We have previously identified the engulfment and cell motility 1 (ELMO1) as a susceptibility gene for diabetic nephropathy. To elucidate the role of ELMO1 in the pathogenesis of chronic renal injury, we examined the expression of Elmo1 in the kidney of a rat model for chronic glomerulonephritis (uninephrectomy plus anti-Thy1.1 antibody [E30] injection). We found that the expression of the Elmo1 was significantly increased in the renal cortex and glomeruli of uninephrectomized rats injected with E30 compared to controls. By in situ hybridization, the expression of Elmo1 was shown to be elevated in the diseased kidney, especially in glomerular epithelial cells. In COS cells, the overexpression of ELMO1 resulted in a substantial increase in fibronectin expression, whereas the depletion of the ELMO1 by small interfering RNA (siRNA) targeting ELMO1 significantly suppressed the fibronectin expression in ELMO1 overexpressing and control cells. We also found that the expression of integrin-linked kinase (ILK) was significantly increased in ELMO1 overexpressing cells, and the ELMO1-induced increase in fibronectin was partially, but significantly, inhibited by siRNA targeting ILK. Furthermore, we identified that the cell adhesion to ECMs was considerably inhibited in cells overexpressing ELMO1. These results suggest that the ELMO1 contributes to the development and progression of chronic glomerular injury through the dysregulation of ECM metabolism and the reduction in cell adhesive properties to ECMs. PMID:17021600

  6. Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability.

    PubMed Central

    Hasan, N. M.; Adams, G. E.; Joiner, M. C.; Marshall, J. F.; Hart, I. R.

    1998-01-01

    The effects of acute hypoxia on integrin expression and adhesion to extracellular matrix proteins were investigated in two human melanoma cell lines, HMB-2 and DX3, and a human adenocarcinoma cell line, HT29. Exposure to hypoxia caused a significant down-regulation of cell surface integrins and an associated decrease in cell adhesion. Loss of cell adhesion and integrin expression were transient and levels returned to normal within 24 h of reoxygenation. Other cell adhesion molecules, such as CD44 and N-CAM, were also down-regulated after exposure of cells to hypoxia. Acute exposure to hypoxia of cells at confluence caused rapid cell detachment. Cell detachment preceded loss of viability. Detached HMB-2 and DX3 cells completely recovered upon reoxygenation, and floating cells re-attached and continued to grow irrespective of whether they were left in the original glass dishes or transferred to new culture vessels, while detached HT29 cells partly recovered upon reoxygenation. Cell detachment after decreased adhesion appears to be a stress response, which may be a factor enabling malignant cells to escape hypoxia in vivo, with the potential to form new foci of tumour growth. PMID:9667649

  7. Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture.

    PubMed Central

    Beauchamp, J. R.; Abraham, D. J.; Bou-Gharios, G.; Partridge, T. A.; Olsen, I.

    1992-01-01

    The infiltration of skeletal muscle by leukocytes occurs in a variety of myopathies and frequently accompanies muscle degeneration and regeneration. The latter involves development of new myofibers from precursor myoblasts, and so infiltrating cells may interact with muscle at all stages of differentiation. The authors have investigated the surface expression of ligands for T-cell adhesion during the differentiation of human skeletal muscle in vitro. Myoblasts expressed low levels of ICAM-1 (CD54), which remained constant during muscle cell differentiation and could be induced by cytokines such as gamma-interferon. It is therefore likely that ICAM-1 is involved in the invasive accumulation of lymphocytes during skeletal muscle inflammation. In contrast, LFA-3 (CD58) was expressed at higher levels than ICAM-1 on myoblasts, decreased significantly during myogenesis, and was unaffected by immune mediators. Both ICAM-1 and LFA-3 were able to mediate T cell binding to myoblasts, whereas adhesion to myotubes was independent of the LFA-3 ligand. Although expressed throughout myogenesis, human leukocyte antigen class I and CD44 did not appear to mediate T cell binding. The expression of ligands that facilitate interaction of myogenic cells with lymphocytes may have important implications for myoblast transplantation. Images Figure 1 Figure 3 Figure 4 PMID:1739132

  8. Inhibition of gamma-irradiation induced adhesion molecules and NO production by alginate in human endothelial cells.

    PubMed

    Son, E W; Cho, C K; Rhee, D K; Pyo, S

    2001-10-01

    Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with gamma-irradiation (gammaIR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that high mannuronic acid-containing alginate (HMA) inhibits gammaIR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose dependent manner. HMA also inhibited gammaIR induced production of Nitric oxide (NO). These data suggest that HMA has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules. PMID:11693551

  9. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  10. Functional expression of adhesive peptides as fusions to Escherichia coli flagellin.

    PubMed

    Westerlund-Wikström, B; Tanskanen, J; Virkola, R; Hacker, J; Lindberg, M; Skurnik, M; Korhonen, T K

    1997-11-01

    An expression system for studying epitopes of adhesion proteins based on fusion of gene fragments into fliC(H7) of Escherichia coli is described. We constructed the system by an in-frame insertion of DNA fragments encoding one, two or three of the fibronectin-binding D repeats present in the fibronectin-binding protein A (FnBPA) of Staphylococcus aureus, into the fliC(H7) gene region encoding the variable domain of the H7 flagellin. The constructs were expressed by in trans complementation in the E. coli strain JT1 which harbours knock-out mutations for the expression of FliC as well as of the mannoside-binding fimbrial adhesin. The resulting chimeric flagella, which contained 39, 77 or 115 heterologous amino acid residues, efficiently bound soluble and immobilized human plasma and cellular fibronectin, and the binding was most efficient with the flagella containing the three D repeats of FnBPA. The chimeric flagella bound to frozen sections of human kidney and to cultured human cells. Antibodies raised against the chimeric flagella bound to Protein A-deficient S. aureus cells and inhibited the binding of staphylococci to immobilized fibronectin. We also expressed peptides, ranging in size between 48 and 302 amino acids, of the collagen-binding YadA adhesin of Yersinia enterocolitica. A fragment of 302 amino acids representing the middle region of YadA was needed for collagen binding. Chimeric flagellar filaments expressing hundreds of intimately associated adhesive epitopes offer versatile tools to analyze adhesin-receptor interactions and functional epitopes of adhesion proteins. PMID:9514121

  11. Cellular Adhesion Gene SELP Is Associated with Rheumatoid Arthritis and Displays Differential Allelic Expression

    PubMed Central

    Petit-Teixeira, Elisabeth; Hugo Teixeira, Vitor; Steiner, Anke; Quente, Elfi; Wolfram, Grit; Scholz, Markus; Pierlot, Céline; Migliorini, Paola; Bombardieri, Stefano; Balsa, Alejandro; Westhovens, René; Barrera, Pilar; Radstake, Timothy R. D. J.; Alves, Helena; Bardin, Thomas; Prum, Bernard; Emmrich, Frank; Cornelis, François

    2014-01-01

    In rheumatoid arthritis (RA), a key event is infiltration of inflammatory immune cells into the synovial lining, possibly aggravated by dysregulation of cellular adhesion molecules. Therefore, single nucleotide polymorphisms of 14 genes involved in cellular adhesion processes (CAST, ITGA4, ITGB1, ITGB2, PECAM1, PTEN, PTPN11, PTPRC, PXN, SELE, SELP, SRC, TYK2, and VCAM1) were analyzed for association with RA. Association analysis was performed consecutively in three European RA family sample groups (Nfamilies = 407). Additionally, we investigated differential allelic expression, a possible functional consequence of genetic variants. SELP (selectin P, CD62P) SNP-allele rs6136-T was associated with risk for RA in two RA family sample groups as well as in global analysis of all three groups (ptotal = 0.003). This allele was also expressed preferentially (p<10−6) with a two- fold average increase in regulated samples. Differential expression is supported by data from Genevar MuTHER (p1 = 0.004; p2 = 0.0177). Evidence for influence of rs6136 on transcription factor binding was also found in silico and in public datasets reporting in vitro data. In summary, we found SELP rs6136-T to be associated with RA and with increased expression of SELP mRNA. SELP is located on the surface of endothelial cells and crucial for recruitment, adhesion, and migration of inflammatory cells into the joint. Genetically determined increased SELP expression levels might thus be a novel additional risk factor for RA. PMID:25147926

  12. Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues.

    PubMed Central

    Jin, L.; Hemperly, J. J.; Lloyd, R. V.

    1991-01-01

    The neural cell adhesion molecule (N-CAM) is a group of cell surface glycoproteins involved in direct cell--cell adhesion. N-CAM expression in normal and neoplastic tissues was examined with specific antibodies and oligonucleotide probes by immunohistochemistry and in situ hybridization. Most neuroendocrine cells and tumors with secretory granules expressed N-CAM protein and mRNA. Parathyroid adenomas (4) were somewhat unusual, because N-CAM mRNA, but not protein, was detected in some of these benign neoplasms. Most non-neuroendocrine cells and tumors did not express N-CAM, although uterine smooth muscle and an adrenal cortical carcinoma were both positive. Western blots disclosed proteins of 180, 140, and 120 kd in normal adult brain, whereas two pheochromocytomas, a null cell adenoma, and a gastrinoma had proteins of approximately 180 and 140 kd. These results indicate that N-CAM protein and mRNA are widely expressed in neuroendocrine cells and neoplasms. N-CAM oligonucleotide probes as well as antibodies against N-CAM can be used as broad-spectrum neuroendocrine markers. In addition, these molecular probes can be used to examine the role of N-CAM in the development and regulation of neuroendocrine tissues. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2012179

  13. The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions.

    PubMed

    Balcioglu, Hayri E; van Hoorn, Hedde; Donato, Dominique M; Schmidt, Thomas; Danen, Erik H J

    2015-04-01

    Integrin adhesion receptors connect the extracellular matrix (ECM) to the cytoskeleton and serve as bidirectional mechanotransducers. During development, angiogenesis, wound healing and cancer progression, the relative abundance of fibronectin receptors, including integrins α5β1 and αvβ3, changes, thus altering the integrin composition of cell-matrix adhesions. Here, we show that enhanced αvβ3 expression can fully compensate for loss of α5β1 and other β1 integrins to support outside-in and inside-out force transmission. α5β1 and αvβ3 each mediate actin cytoskeletal remodeling in response to stiffening or cyclic stretching of the ECM. Likewise, α5β1 and αvβ3 support cellular traction forces of comparable magnitudes and similarly increase these forces in response to ECM stiffening. However, cells using αvβ3 respond to lower stiffness ranges, reorganize their actin cytoskeleton more substantially in response to stretch, and show more randomly oriented traction forces. Centripetal traction force orientation requires long stress fibers that are formed through the action of Rho kinase (ROCK) and myosin II, and that are supported by α5β1. Thus, altering the relative abundance of fibronectin-binding integrins in cell-matrix adhesions affects the spatiotemporal organization of force transmission. PMID:25663698

  14. Expression and adhesive ability of gicerin, a cell adhesion molecule, in the pock lesions of chorioallantoic membranes infected with an avian poxvirus.

    PubMed Central

    Tsukamoto, Y; Kotani, T; Hiroi, S; Egawa, M; Ogawa, K; Sasaki, F; Taira, E

    2001-01-01

    The expression and adhesive activities of gicerin, a cell adhesion protein, in the pock lesions on chicken chorioallantoic membranes (CAM) infected with an avian poxvirus were studied. In normal CAMs, gicerin was found on the flattened epithelial cells, and neurite outgrowth factor (NOF) was in the basement membrane. However, in the pock lesions on infected CAMs, gicerin was overexpressed on the cell membranes of hyperplastic epithelial cells forming thick epithelial layers. Neurite outgrowth factor was also found mainly in the basement membrane, but occasionally showed aberrant expression among hyperplastic cells. In vitro analyses, using the dissociated cells from pock lesions, demonstrated that an anti-gicerin polyclonal antibody inhibit cell aggregation activity and cell adhesion to NOF. These results suggest that gicerin might promote the cell-cell and cell-extracellular matrix protein bindings of the hyperplastic epithelial cells by its homophilic and heterophilic adhesive activities, and contribute to pock formation on the infected CAMs. Images Figure 1. Figure 2. Figure 3. Figure 5. PMID:11768132

  15. Effect of PIP3 on Adhesion Molecules and Adhesion of THP-1 Monocytes to HUVEC Treated with High Glucose

    PubMed Central

    Su, Prasenjit Manna; Jain, shil K.

    2014-01-01

    Background Phosphatidylinositol-3,4,5-triphosphate (PIP3), a well-known lipid second messenger, plays a key role in insulin signaling and glucose homeostasis. Using human umbilical vein endothelial cells (HUVEC) and THP-1 monocytes, we tested the hypothesis that PIP3 can downregulate adhesion molecules and monocyte adhesion to endothelial cells. Methods HUVEC and monocytes were exposed to high glucose (HG, 25 mM, 20 h) with or without PIP3 (0-20 nM), or PIT-1 (25 μM), an inhibitor of PIP3. Results Both HG and PIT-1 caused a decrease in cellular PIP3 in monocytes and HUVEC compared to controls. Treatment with PIT-1 and HG also increased the ICAM-1 (intercellular adhesion molecule 1) total protein expression as well as its surface expression in HUVEC, CD11a (a subunit of lymphocyte function-associated antigen 1, LFA-1) total protein expression as well as its surface expression in monocytes, and adhesion of monocytes to HUVEC. Exogenous PIP3 supplementation restored the intracellular PIP3 concentrations, downregulated the expression of adhesion molecules, and reduced the adhesion of monocytes to HUVEC treated with HG. Conclusion This study reports that a decrease in cellular PIP3 is associated with increased expression of adhesion molecules and monocyte-endothelial cell adhesion, and may play a role in the endothelial dysfunction associated with diabetes. PMID:24752192

  16. Endothelial Japanese encephalitis virus infection enhances migration and adhesion of leukocytes to brain microvascular endothelia via MEK-dependent expression of ICAM1 and the CINC and RANTES chemokines.

    PubMed

    Lai, Ching-Yi; Ou, Yen-Chuan; Chang, Cheng-Yi; Pan, Hung-Chuan; Chang, Chen-Jung; Liao, Su-Lan; Su, Hong-Lin; Chen, Chun-Jung

    2012-10-01

    Currently, the underlying mechanisms and the specific cell types associated with Japanese encephalitis-associated leukocyte trafficking are not understood. Brain microvascular endothelial cells represent a functional barrier and could play key roles in leukocyte central nervous system trafficking. We found that cultured brain microvascular endothelial cells were susceptible to Japanese encephalitis virus (JEV) infection with limited amplification. This type of JEV infection had negligible effects on cell viability and barrier integrity. Instead, JEV-infected endothelial cells attracted more leukocytes adhesion onto surfaces and the supernatants promoted chemotaxis of leukocytes. Infection with JEV was found to elicit the elevated production of intercellular adhesion molecule-1, cytokine-induced neutrophil chemoattractant-1, and regulated-upon-activation normal T-cell expressed and secreted, contributing to the aforementioned leukocyte adhesion and chemotaxis. We further demonstrated that extracellular signal-regulated kinase was a key upstream regulator which stimulated extensive endothelial gene induction by up-regulating cytosolic phospholipase A₂, NF-κB, and cAMP response element-binding protein via signals involving phosphorylation. These data suggest that JEV infection could activate brain microvascular endothelial cells and modify their characteristics without compromising the barrier integrity, making them favorable for the recruitment and adhesion of circulating leukocytes, thereby together with other unidentified barrier-disrupting mechanisms contributing to Japanese encephalitis and associated neuroinflammation. PMID:22845610

  17. Organ-selective regulation of vascular adhesion protein-1 expression in man.

    PubMed

    Arvilommi, A M; Salmi, M; Jalkanen, S

    1997-07-01

    Vascular adhesion protein-1 (VAP-1) is an endothelial molecule which mediates lymphocyte binding to endothelium in peripheral lymph nodes and at certain sites of inflammation. The expression of VAP-1 in vivo is strongly up-regulated in inflamed tissues, such as gut and skin. The purpose of this work was to examine the factors responsible for this induction of VAP-1. Since the expression of VAP-1 could not be induced in cultured endothelial cells with a large panel of mediators, we used an organ culture technique for the investigation of the regulation of VAP-1 expression in a more physiological micromilieu. Indeed, we found that the expression of endothelial VAP-1 could be up-regulated in human tonsillar tissue with interleukin (IL)-1, IL-4, tumor necrosis factor (TNF-alpha), interferon (IFN)-gamma and lipopolysaccharide, whereas histamine, thrombin, dibutyryl cAMP, N-formyl-Met-Leu-Phe (fMLP) and phorbol 12-myristate 13-acetate (PMA) had no effect. The induced VAP-1 protein was similar in molecular weight to the non-induced VAP-1, suggesting that VAP-1 synthesized de novo carries appropriate carbohydrate moieties. In contrast to tonsil organ culture, similar inductions performed with human appendix showed no up-regulation of VAP-1 expression, indicating that the regulation of VAP-1 expression exhibits organ-selective characteristics. Furthermore, in these tissues the smooth muscle cells, which constitutively express VAP-1, could not be stimulated to alter their level of expression of this molecule. In conclusion, the expression of VAP-1 can be markedly up-regulated with several mediators in tonsil but not in appendix organ culture, whereas cultured endothelial cells cannot be induced to express VAP-1. These results indicate that the expression of VAP-1 is regulated in a tissue- and cell type-selective manner, and a correct micromilieu is required for the up-regulation to occur. PMID:9247594

  18. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-01

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth. PMID:26914234

  19. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  20. Influence of chlorhexidine on dentin adhesive interface micromorphology and nanoleakage expression of resin cements.

    PubMed

    Stape, Thiago Henrique Scarabello; Menezes, Murilo De Sousa; Barreto, Bruno De Castro Ferreira; Naves, Lucas Zago; Aguiar, Flávio Henrique Baggio; Quagliatto, Paulo Sérgio; Martins, Luís Roberto Marcondes

    2013-08-01

    This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty-two non-carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self-adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm(2) sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well-established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self-adhesive cements may adversely affect resin-dentin bond. PMID:23737406

  1. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating.

    PubMed

    Sun, Chi-Chin; Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung

    2016-06-01

    This study reports, for the first time, the regulation of corneal keratocyte adhesion, spreading, morphology, and integrin gene expression on chitosan coating due to the effects of deacetylation. The degree of deacetylation (DD) in chitosan materials was confirmed by elemental analysis, gel permeation chromatography, and Fourier transform infrared spectroscopy. In this study, chitosan samples with the same molecular weight level but varying DD (74.1±0.5%, 84.4±0.7%, and 94.2±0.5%) were obtained by heat-alkaline treatment under a nitrogen atmosphere. For higher DD groups, the biopolymer carried abundant amino groups since the deacetylation process removed larger amount of acetyl groups from the chitosan molecules. Results showed that the mechanical stability and crystallinity of the chitosan coatings significantly increased with increasing DD value. Fibronectin adsorption, keratocyte adhesion, and cell spreading exhibited a positive correlation with DD due to the chemical functionality of polysaccharides (bearing acetyl and amino groups) and increase of substrate stiffness and crystallinity. In particular, when adhered to chitosan coatings with a DD value of 74.1%, the keratocytes appeared to be fibroblastic, elongated, and spindle shape, indicating a loss of their characteristic dendritic morphology. Furthermore, the gene expression of integrin β1 (i.e., a cell-matrix adhesion molecule) was significantly up-regulated on the chitosan coatings with higher DD, which supports favorable attachment of corneal keratocytes. Our findings suggest that DD-mediated physicochemical properties of chitosan coatings greatly affect cell-substrate crosstalk during corneal keratocyte cultivation. PMID:27040214

  2. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    PubMed

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  3. Glucosyltransferases of Viridans Group Streptococci Modulate Interleukin-6 and Adhesion Molecule Expression in Endothelial Cells and Augment Monocytic Cell Adherence

    PubMed Central

    Yeh, Chiou-Yueh; Chen, Jen-Yang; Chia, Jean-San

    2006-01-01

    Recruitment of monocytes plays important roles during vegetation formation and endocardial inflammation in the pathogenesis of infective endocarditis (IE). Bacterial antigens or modulins can activate endothelial cells through the expression of cytokines or adhesion molecules and modulate the recruitment of leukocytes. We hypothesized that glucosyltransferases (GTFs), modulins of viridans group streptococci, may act directly to up-regulate the expression of adhesion molecules and also interleukin-6 (IL-6) to augment monocyte attachment to endothelial cells. Using primary cultured human umbilical vein endothelial cells (HUVECs) as an in vitro model, we demonstrated that GTFs (in the cell-bound or free form) could specifically modulate the expression of IL-6, and also adhesion molecules, in a dose- and time-dependent manner. Results of inhibition assays suggested that enhanced expression of adhesion molecules was dependent on the activation of nuclear factor κB (NF-κB) and extracellular signal-regulated kinase and that p38 mitogen-activated protein kinase pathways also contributed to the release of IL-6. Streptococcus-infected HUVECs or treatment with purified IL-6 plus soluble IL-6 receptor α enhanced the expression of ICAM-1 and the adherence of the monocytic cell line U937. These results suggest that streptococcal GTFs might play an important role in recruiting monocytic cells during inflammation in IE through induction of adhesion molecules and IL-6, a cytokine involved in transition from neutrophil to monocyte recruitment. PMID:16428777

  4. Prognostic value of melanoma cell adhesion molecule expression in cancers: a meta-analysis

    PubMed Central

    Zhu, Guoqing; Zhang, Xiao; Wang, Yulan; Xiong, Huizi; Zhao, Yinghui; Wang, Jiayi; Sun, Fenyong

    2015-01-01

    Melanoma cell adhesion molecule (MACM) has been reported in many studies as a novel bio-marker for its prognosis value in cancers. But the prognosis significance of MACM expression in cancer remains inconclusive. Therefore, we conducted a system review and meta-analysis to assess its prognosis value in cancers. A systematic search through Pubmed, EMBASE and Cochran Library database was conducted. Hazard Ratios (HRs) and 95% confidence intervals (CIs) were used to evaluate the prognosis value of MACM expression. Eleven studies with 2657 cases were included after sorting out 462 articles for this meta-analysis. The results of the fixed-model depending on the heterogeneity in studies demonstrated that MACM expression was significantly associated with overall survival (OS) in cancer (HR=2.84, 95% CI: 1.10-7.31, P<0.00001). Furthermore, subgroup analysis indicated that high expressed MACM predicted a poor OS in both Asian (HR=2.52, 95% CI: 1.80-3.52, P<0.00001) and Caucasian (HR=2.40, 95% CI: 2.01-2.88, P<0.00001). In conclusion, high expression of MACM was significantly associated with a poor prognostic outcome in cancer. MACM can be regarded as a novel bio-marker in different types of cancers and can be used to evaluate the prognosis of therapeutic effect during clinical practices. PMID:26550117

  5. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency.

    PubMed

    Maddox, J F; Aherne, K M; Reddy, C C; Sordillo, L M

    1999-05-01

    Leukocyte aggregation and activation on endothelial cells (EC) are important preliminary events in leukocyte migration into tissue and subsequent inflammation. Thus, an increase in leukocyte adherence has the potential to affect inflammatory disease outcome. Selenium (Se) is an integral part of the antioxidant enzyme glutathione peroxidase (GSH-Px) and plays an important role in the maintenance of the redox state of a cell. Se supplementation in the bovine has been shown to improve the outcome of acute mastitis caused by coliform bacteria, in part by enhancing the speed of neutrophil migration into the affected mammary gland. However, the mechanisms by which Se modulates neutrophil migration have not been elucidated. Therefore, an in vitro model of Se deficiency in primary bovine mammary artery EC was used to examine the impact of Se status on the adhesive properties of EC. The effect of Se on functional activities was examined by measuring neutrophil adherence to Se-deficient and Se-supplemented EC. Se-deficient EC showed significantly enhanced neutrophil adherence when stimulated with tumor necrosis factor alpha (TNF-alpha) for 4 or 24 h, interleukin-1 for 12 h, or H2O2 for 20 min (P < 0.05). To determine the mechanisms underlying these changes in neutrophil adherence, the expression of EC adhesion molecules, ICAM-1, E-selectin, and P-selectin were examined at the molecular level by a competitive reverse transcription-polymerase chain reaction. Results revealed higher mRNA expression for E-selectin and ICAM-1 in Se-deficient EC stimulated with TNF-alpha for 3 and 6 h, and greater expression of P-selectin mRNA in Se-supplemented EC with 3-h TNF-alpha stimulation. These studies provide new information to establish the role of Se nutrition in the initiation of leukocyte adherence to endothelium. PMID:10331495

  6. ΔNp63α Transcriptionally Regulates the Expression of CTEN That Is Associated with Prostate Cell Adhesion

    PubMed Central

    Chen, Ya-Chi; Lo, Su Hao; Liao, Yi-Chun

    2016-01-01

    p63 is a member of the p53 transcription factor family and a linchpin of epithelial development and homeostasis. p63 drives the expression of many target genes involved in cell survival, adhesion, migration and cancer. In this study, we identify C-terminal tensin-like (CTEN) molecule as a downstream target of ΔNp63α, the predominant p63 isoform expressed in epithelium. CTEN belongs to the tensin family and is mainly localized to focal adhesions, which mediate many biological events such as cell adhesion, migration, proliferation and gene expression. Our study demonstrate that ΔNp63 and CTEN are both highly expressed in normal prostate epithelial cells and are down-regulated in prostate cancer. In addition, reduced expression of CTEN and ΔNp63 is correlated with prostate cancer progression from primary tumors to metastatic lesions. Silencing of ΔNp63 leads to decreased mRNA and protein levels of CTEN. ΔNp63α induces transcriptional activity of the CTEN promoter and a 140-bp fragment upstream of the transcription initiation site is the minimal promoter region required for activation. A putative binding site for p63 is located between -61 and -36 within the CTEN promoter and mutations of the critical nucleotides in this region abolish ΔNp63α-induced promoter activity. The direct interaction of ΔNp63α with the CTEN promoter was demonstrated using a chromatin immunoprecipitation (ChIP) assay. Moreover, impaired cell adhesion caused by ΔNp63α depletion is rescued by over-expression of CTEN, suggesting that CTEN is a downstream effector of ΔNp63α-mediated cell adhesion. In summary, our findings demonstrate that ΔNp63α functions as a trans-activation factor of CTEN promoter and regulates cell adhesion through modulating CTEN. Our study further contributes to the potential regulatory mechanisms of CTEN in prostate cancer progression. PMID:26784942

  7. [Adhesion molecules in Wilm's tumor: expression and significance of beta-catenin (part II)].

    PubMed

    Basta-Jovanović, Gordana; Radojević, Sanja; Djuricić, Slavisa; Savin, Marina; Skodrić, Stevo; Bunjevacki, Gordana; Hadzi-Djokić, Jovan; Nesić, Vida

    2003-01-01

    Beta-catenin is a glicoprotein which has an important role in cell-cell adhesion, as well as in cell signal transmission, in u regulation of gen expression and in interaction with axin and APC (adenomatous poliposis coli). Its oncogenic role in several types of carcinomas in human population is well known. It is very likely that beta-catenin as an protooncogen plays an important role in genesis of Wilms tumor. It is well known that in 15% Wilms tumors there are beta-catenin mutations, which indicates that there is a disorder in Wnt signal path that plays an important role in Wilms tumor genesis. The aim of our study was to investigate b-catenin expression in Wilms tumor, to compare it with the expression in normal renal tissue as well as to see if there is a positive correlation between b-catenin expression in Wilms tumor with tumor stage, histologic type and/or prognostic group. PMID:14608868

  8. FGF inhibits neurite outgrowth over monolayers of astrocytes and fibroblasts expressing transfected cell adhesion molecules.

    PubMed

    Williams, E J; Mittal, B; Walsh, F S; Doherty, P

    1995-11-01

    We have cultured cerebellar neurons on monolayers of cortical astrocytes in control medium or medium containing recombinant basic fibroblast growth factor (FGF). FGF was found to inhibit neurite outgrowth, with a significant effect seen at 0.5 ng/ml and a maximal effect at 10 ng/ml. FGF increased the production of arachidonic acid (AA) in cerebellar neurons, and when added directly to cultures or generated endogenously via activation of phospholipase A2 using melittin, this second messenger could mimic the inhibitory effect of FGF. FGF and AA could also specifically inhibit neurite outgrowth stimulated by three cell adhesion molecules (NCAM, N-cadherin and L1) expressed in transfected fibroblasts, or in the case of L1 bound to a tissue culture substratum. These data demonstrate that, in certain cellular contexts, FGF can act as an inhibitory cue for axonal growth and that arachidonic acid is the second messenger responsible for this activity. We discuss the possibility that arachidonic acid inhibits neurite outgrowth by desensitising the second messenger pathway underlying neuronal responsiveness to cell adhesion molecules. PMID:8586663

  9. Intraepithelial p63-dependent expression of distinct components of cell adhesion complexes in normal esophageal mucosa and squamous cell carcinoma.

    PubMed

    Thépot, Amélie; Hautefeuille, Agnès; Cros, Marie-Pierre; Abedi-Ardekani, Behnoush; Pétré, Aurélia; Damour, Odile; Krutovskikh, Vladimir; Hainaut, Pierre

    2010-11-01

    TP63 gene is a member of TP53 tumor suppressor gene family that encodes several protein isoforms involved in the process of epithelial stratification and in epithelial-mesenchyme interactions. TP63 is amplified in a significant proportion of squamous cell carcinoma of the esophagus (ESCC), resulting in the hyper-expression of DeltaNp63 as the major p63 isoform. To better understand the contribution of this high expression to tumorigenesis, we have analyzed the impact of intraepithelial p63 expression on the expression of cell adhesion complexes in normal esophagus and in ESCC cell lines. Cells expressing p63 showed an adhesion pattern characterized by lack of tight junctions and presence of adherens junctions. Cell differentiation was accompanied by a decrease in p63 and by a shift to adhesion patterns involving tight junctions. Silencing of p63 mRNA in ESCC cell lines resulted in a similar shift, characterized by increased expression of component of tight junctions, decreased cell-to-cell communication and downregulation of cell proliferation. These results indicate that DeltaNp63 may contribute to esophageal squamous carcinogenesis by maintaining cell adhesion patterns compatible with cell proliferation. PMID:20127860

  10. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells.

    PubMed Central

    Gladson, C L; Cheresh, D A

    1991-01-01

    Glioblastoma multiforme, the most malignant astroglial-derived tumor, grows as an adherent mass and locally invades normal brain. An examination of adult cerebral glioblastoma biopsy material for the expression of adhesive proteins that might potentiate adhesion and invasion demonstrated tumor cell-associated vitronectin (5/5). In contrast, vitronectin was not detected associated with glial cells in low grade astroglial tumors (0/4), reactive astrogliosis (0/4), or in normal adult cortex and cerebral white matter (0/5). Also, a wide variety of other adhesive ligands were absent from the glioblastoma tumor parenchyma. The alpha v beta 3 integrin was the only vitronectin receptor identified in glioblastoma tumors in situ, and was also not expressed on low grade astroglial-derived tumors, reactive astrogliosis, or on glia or neurons in normal adult cortex and cerebral white matter. In a cell attachment assay, cultured glioblastoma cells attached to the parenchyma of glioblastoma tumor cryostat sections at the sites of vitronectin expression, but failed to attach to normal brain. This adhesion was inhibited by antibodies directed against vitronectin, the alpha v beta 3 integrin, and with an Arg-Gly-Asp-containing peptide. These data provide evidence for a cell adhesion mechanism in glioblastoma tumors that might potentiate glioblastoma cell invasion of normal brain. Images PMID:1721625