These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

N-cadherin Cell-Cell Adhesion Complexes Are Regulated by Fibronectin Matrix Assembly*  

PubMed Central

Fibronectin is a principal component of the extracellular matrix. Soluble fibronectin molecules are assembled into the extracellular matrix as insoluble, fibrillar strands via a cell-dependent process. In turn, the interaction of cells with the extracellular matrix form of fibronectin stimulates cell functions critical for tissue repair. Cross-talk between cell-cell and cell-extracellular matrix adhesion complexes is essential for the organization of cells into complex, functional tissue during embryonic development and tissue remodeling. Here, we demonstrate that fibronectin matrix assembly affects the organization, composition, and function of N-cadherin-based adherens junctions. Using fibronectin-null mouse embryonic myofibroblasts, we identified a novel quaternary complex composed of N-cadherin, ?-catenin, tensin, and actin that exists in the absence of a fibronectin matrix. In the absence of fibronectin, homophilic N-cadherin ligation recruited both tensin and ?5?1 integrins into nascent cell-cell adhesions. Initiation of fibronectin matrix assembly disrupted the association of tensin and actin with N-cadherin, released ?5?1 integrins and tensin from cell-cell contacts, stimulated N-cadherin reorganization into thin cellular protrusions, and decreased N-cadherin adhesion. Fibronectin matrix assembly has been shown to recruit ?5?1 integrins and tensin into fibrillar adhesions. Taken together, these studies suggest that tensin serves as a common cytoskeletal link for integrin- and cadherin-based adhesions and that the translocation of ?5?1 integrins from cell-cell contacts into fibrillar adhesions during fibronectin matrix assembly is a novel mechanism by which cell-cell and cell-matrix adhesions are coordinated. PMID:21084302

Lefort, Craig T.; Wojciechowski, Katherine; Hocking, Denise C.

2011-01-01

2

N-cadherin, a vascular smooth muscle cell-cell adhesion molecule: function and signaling for vasomotor control.  

PubMed

Cell-cell adhesion complexes are increasingly recognized as an important cell-signaling site, similar to integrin-extracellular matrix FA. Furthermore, cell-cell adhesions are involved in the regulation of multi-cellular/tissue organization and organ, tissue, and cellular level functional behavior. Although N-cadherin is the major cell-cell adhesion molecule in VSM, only limited studies have been undertaken to understand its function in VSM. In contrast, N-cadherin signaling and functions have been extensively studied in neurons, fibroblasts, and myocytes, as well as in the context of epithelial-mesenchymal-transitions. Increasing evidence has indicated that N-cadherin-mediated cell-cell adhesions are important for tissue integrity and cell proliferation. Relevant to VSM, N-cadherin's role in actin cytoskeleton organization and contraction, as well as its role in regulation of Rho family GTPases are of particular interest. This article briefly reviews the fundamentals of N-cadherin biology that help shape our current understanding of its function and signaling mechanisms. In particular, attention is given to applications of this knowledge to VSM. The review points to the need for more research effort that is directed at understanding the role of N-cadherins in the regulation of vascular function. PMID:24521477

Sun, Zhe; Parrish, Alan R; Hill, Michael A; Meininger, Gerald A

2014-04-01

3

Galectin-3 Protein Regulates Mobility of N-cadherin and GM1 Ganglioside at Cell-Cell Junctions of Mammary Carcinoma  

E-print Network

Galectin-3 Protein Regulates Mobility of N-cadherin and GM1 Ganglioside at Cell-Cell Junctions: Galectin-3-N-glycan binding forms a lattice that regulates cancer cell adhesion, migration, and signaling. Results: Galectin-3 destabilizes cell-cell junctions and increases junctional mobility of N

Gleeson, Joseph G.

4

Galectin-3 Protein Regulates Mobility of N-cadherin and GM1 Ganglioside at Cell-Cell Junctions of Mammary Carcinoma Cells*  

PubMed Central

Galectin-3 binding to cell surface glycoproteins, including branched N-glycans generated by N-acetylglucosaminyltransferase V (Mgat5) activity, forms a multivalent, heterogeneous, and dynamic lattice. This lattice has been shown to regulate integrin and receptor tyrosine kinase signaling promoting tumor cell migration. N-cadherin is a homotypic cell-cell adhesion receptor commonly overexpressed in tumor cells that contributes to cell motility. Here we show that galectin-3 and N-cadherin interact and colocalize with the lipid raft marker GM1 ganglioside in cell-cell junctions of mammary epithelial cancer cells. Disruption of the lattice by deletion of Mgat5, siRNA depletion of galectin-3, or competitive inhibition with lactose stabilizes cell-cell junctions. It also reduces, in a p120-catenin-dependent manner, the dynamic pool of junctional N-cadherin. Proteomic analysis of detergent-resistant membranes (DRMs) revealed that the galectin lattice opposes entry of many proteins into DRM rafts. N-cadherin and catenins are present in DRMs; however, their DRM distribution is not significantly affected by lattice disruption. Galectin lattice integrity increases the mobile fraction of the raft marker, GM1 ganglioside binding cholera toxin B subunit Ctb, at cell-cell contacts in a p120-catenin-independent manner, but does not affect the mobility of either Ctb-labeled GM1 or GFP-coupled N-cadherin in nonjunctional regions. Our results suggest that the galectin lattice independently enhances lateral molecular diffusion by direct interaction with specific glycoconjugates within the adherens junction. By promoting exchange between raft and non-raft microdomains as well as molecular dynamics within junction-specific raft microdomains, the lattice may enhance turnover of N-cadherin and other glycoconjugates that determine junctional stability and rates of cell migration. PMID:22846995

Boscher, Cécile; Zheng, Yu Zi; Lakshminarayan, Ramya; Johannes, Ludger; Dennis, James W.; Foster, Leonard J.; Nabi, Ivan R.

2012-01-01

5

N-cadherin antagonists as oncology therapeutics.  

PubMed

The cell adhesion molecule (CAM), N-cadherin, has emerged as an important oncology therapeutic target. N-cadherin is a transmembrane glycoprotein mediating the formation and structural integrity of blood vessels. Its expression has also been documented in numerous types of poorly differentiated tumours. This CAM is involved in regulating the proliferation, survival, invasiveness and metastasis of cancer cells. Disruption of N-cadherin homophilic intercellular interactions using peptide or small molecule antagonists is a promising novel strategy for anti-cancer therapies. This review discusses: the discovery of N-cadherin, the mechanism by which N-cadherin promotes cell adhesion, the role of N-cadherin in blood vessel formation and maintenance, participation of N-cadherin in cancer progression, the different types of N-cadherin antagonists and the use of N-cadherin antagonists as anti-cancer drugs. PMID:25533096

Blaschuk, Orest W

2015-02-01

6

Guidance of optic nerve fibres by N-cadherin adhesion molecules  

Microsoft Academic Search

The dendritic branches (neurites) of developing neurons migrate along specific pathways to reach their targets. It has been suggested that this migration is guided by factors present on the surface of other neurons or glial cells1,2. The molecular nature of such factors, however, remains to be elucidated. N-cadherin is a cell-surface glycoprotein which belongs to the cadherin family of cell-cell

Mayumi Matsunaga; Kohei Hatta; Akira Nagafuchi; Masatoshi Takeichi

1988-01-01

7

Regulation of homotypic cell-cell adhesion by branched N-glycosylation of N-cadherin extracellular EC2 and EC3 domains.  

PubMed

The effects of altering N-cadherin N-glycosylation on several cadherin-mediated cellular behaviors were investigated using small interfering RNA and site-directed mutagenesis. In HT1080 fibrosarcoma cells, small interfering RNA-directed knockdown of N-acetylglucosaminyltransferase V (GnT-V), a glycosyltransferase up-regulated by oncogene signaling, caused decreased expression of N-linked beta(1,6)-branched glycans expressed on N-cadherin, resulting in enhanced N-cadherin-mediated cell-cell adhesion, but had no effect on N-cadherin expression on the cell surface. This effect on adhesion was accompanied by decreased cell migration and invasion, opposite of the effects observed when GnT-V was overexpressed in these cells (Guo, H. B., Lee, I., Kamar, M., and Pierce, M. (2003) J. Biol. Chem. 278, 52412-52424). A detailed study using site-directed mutagenesis demonstrated that three of the eight putative N-glycosylation sites in the N-cadherin sequence showed N-glycan expression. Moreover, all three of these sites, located in the extracellular domains EC2 and EC3, were shown by leucoagglutinating phytohemagglutinin binding to express at least some beta(1,6)-branched glycans, products of GnT-V activity. Deletion of these sites had no effect on cadherin levels on the cell surface but led to increased stabilization of cell-cell contacts, cell-cell adhesion- mediated intracellular signaling, and reduced cell migration. We show for the first time that these deletions had little effect on formation of the N-cadherin-catenin complex but instead resulted in increased N-cadherin cis-dimerization. Branched N-glycan expression at three sites in the EC2 and -3 domains regulates N-cadherin-mediated cell-cell contact formation, outside-in signaling, and cell migration and is probably a significant contributor to the increase in the migratory/invasive phenotype of cancer cells that results when GnT-V activity is up-regulated by oncogene signaling. PMID:19846557

Guo, Hua-Bei; Johnson, Heather; Randolph, Matthew; Pierce, Michael

2009-12-11

8

Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development  

Microsoft Academic Search

Selective adhesive properties of cells are thought to have a key role in animal morphogenesis1, but the molecular bases underlying these properties remain to be determined. Our studies have demonstrated that cell-type-specific adhesiveness resides in a class of cell-cell adhesion molecules, termed cadherins, which were defined as the molecular components of the Ca2+-dependent cell adhesion system (CADS)2,3. For example, a

Kohei Hatta; Masatoshi Takeichi

1986-01-01

9

The cytoplasmic domain of N-cadherin modulates MMP-9 induction in oral squamous carcinoma cells  

PubMed Central

Oral squamous carcinoma is the sixth most common cancer worldwide, and one of the most common cancers in developing countries. Regional and distant metastases comprise the majority of cases at initial diagnosis and correlate with poor patient outcomes. Oral epithelia is one of many tissue types to exhibit a cadherin switch during tumor progression, in which endogenous cell adhesion proteins, such as E-cadherin, give way to those of mesenchymal origin. The mesenchymal cell adhesion protein N-cadherin is found at the invading front of oral squamous carcinomas and has been strongly correlated with poor patient prognosis. The goal of the present study was to elucidate the mechanism by which N-cadherin may increase extracellular matrix-associated proteolytic activity to facilitate invasiveness in oral tumor development. The overexpression of N-cadherin in two oral squamous carcinoma cell lines increased motility, invasive capacity and synthesis of matrix metalloproteinase-9 (MMP-9) in a manner that was independent of E-cadherin downregulation. The use of EN and NE chimeric cadherin molecules with reciprocally substituted cytoplasmic domains revealed that optimal induction of MMP-9 synthesis required the cytoplasmic region, but not the extracellular region, of N-cadherin. Utilizing an N-cadherin mutant with impaired p120 binding ability, we found that such mutation resulted in a 4-fold decrease in motility compared to wild-type N-cadherin, but did not affect either MMP-9 expression or motility-normalized invasion. Overexpression of wild-type N-cadherin produced a 27-fold increase in the transcriptional activity of ?-catenin, concomitant with increases in MMP-9 transcription. These results suggest that N-cadherin may promote motility and invasiveness through distinct mechanisms, and that ?-catenin may be an integral mediator of N-cadherin-dependent invasive signaling in oral epithelia. PMID:25175499

WALKER, ANDREW; FREI, RHET; LAWSON, KATHRYN R.

2014-01-01

10

N-cadherin expression in malignant germ cell tumours of the testis  

PubMed Central

Background Testicular germ cell tumours (TGCTs) are the most common malignancy in young men aged 18–35 years. They are clinically and histologically subdivided into seminomas and non-seminomas. Cadherins are calcium-dependent transmembrane proteins of the group of adhesion proteins. They play a role in the stabilization of cell-cell contacts, the embryonic morphogenesis, in the maintenance of cell polarity and signal transduction. N-cadherin (CDH2), the neuronal cadherin, stimulates cell-cell contacts during migration and invasion of cells and is able to suppress tumour cell growth. Methods Tumour tissues were acquired from 113 male patients and investigated by immunohistochemistry, as were the three TGCT cell lines NCCIT, NTERA-2 and Tcam2. A monoclonal antibody against N-cadherin was used. Results Tumour-free testis and intratubular germ cell neoplasias (unclassified) (IGCNU) strongly expressed N-cadherin within the cytoplasm. In all seminomas investigated, N-cadherin expression displayed a membrane-bound location. In addition, the teratomas and yolk sac tumours investigated also differentially expressed N-cadherin. In contrast, no N-cadherin could be detected in any of the embryonal carcinomas and chorionic carcinomas examined. This expression pattern was also seen in the investigated mixed tumours consisting of seminomas, teratomas, and embryonal carcinoma. Conclusions N-cadherin expression can be used to differentiate embryonal carcinomas and chorionic carcinomas from other histological subtypes of TGCT. PMID:23066729

2012-01-01

11

Premature Osteoblast Clustering by Enamel Matrix Proteins Induces Osteoblast Differentiation through Up-Regulation of Connexin 43 and N-Cadherin  

PubMed Central

In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo. PMID:21858092

Miron, Richard J.; Hedbom, Erik; Ruggiero, Sabrina; Bosshardt, Dieter D.; Zhang, Yufeng; Mauth, Corinna; Gemperli, Anja C.; Iizuka, Tateyuki; Buser, Daniel; Sculean, Anton

2011-01-01

12

GRIP1 interlinks N-cadherin and AMPA receptors at vesicles to promote combined cargo transport into dendrites  

PubMed Central

The GluA2 subunit of AMPA-type glutamate receptors (AMPARs) regulates excitatory synaptic transmission in neurons. In addition, the transsynaptic cell adhesion molecule N-cadherin controls excitatory synapse function and stabilizes dendritic spine structures. At postsynaptic membranes, GluA2 physically binds N-cadherin, underlying spine growth and synaptic modulation. We report that N-cadherin binds to PSD-95/SAP90/DLG/ZO-1 (PDZ) domain 2 of the glutamate receptor interacting protein 1 (GRIP1) through its intracellular C terminus. N-cadherin and GluA2-containing AMPARs are presorted to identical transport vesicles for dendrite delivery, and live imaging reveals cotransport of both proteins. The kinesin KIF5 powers GluA2/N-cadherin codelivery by using GRIP1 as a multilink interface. Notably, GluA2 and N-cadherin use different PDZ domains on GRIP1 to simultaneously bind the transport complex, and interference with either binding motif impairs the turnover of both synaptic cargoes. Depolymerization of microtubules, deletion of the KIF5 motor domain, or specific blockade of AMPAR exocytosis affects delivery of GluA2/N-cadherin vesicles. At the functional level, interference with this cotransport reduces the number of spine protrusions and excitatory synapses. Our data suggest the concept that the multi-PDZ-domain adaptor protein GRIP1 can act as a scaffold at trafficking vesicles in the combined delivery of AMPARs and N-cadherin into dendrites. PMID:24639525

Heisler, Frank F.; Lee, Han Kyu; Gromova, Kira V.; Pechmann, Yvonne; Schurek, Beate; Ruschkies, Laura; Schroeder, Markus; Schweizer, Michaela; Kneussel, Matthias

2014-01-01

13

N-cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer  

PubMed Central

Pancreatic ductal adenocarcinoma (PDA) is often detected at a late stage, hence the identification of new therapies that have potential to block tumor progression is critical for this lethal disease. N-cadherin upregulation has been observed in many cancers including PDA, however a causal role for this cell adhesion receptor in disease progression has yet to be defined. The concomitant expression of oncogenic KrasG12D and mutant p53 (Trp53R172H) in the murine pancreas results in metastatic PDA that recapitulates the cognate features of human pancreatic cancer providing an excellent animal model to identify genes required for tumor progression. Here we determine the consequences of genetically manipulating N-cadherin expression in a mouse model of PDA. Remarkably, mice with reduced N-cadherin expression (i.e. N-cad ?/+) survived 25% longer (177 vs. 142 days, p <0.05) than animals expressing two wild-type N-cadherin (Cdh2) alleles. The survival benefit is likely due to a cumulative effect of N-cadherin’s role in different aspects of tumorigenesis including tumor cell survival, growth, migration and invasion. Interestingly, reduced Hedgehog signaling may contribute to the better prognosis for the N-cad ?/+ mice. Moreover, the matrix metalloproteinase MMP-7, associated with poor prognosis in PDA, was reduced in N-cad ?/+ tumors. Finally, N-cad ?/+ tumor cells exhibited decreased FGF-stimulated ERK1/2 activation consistent with N-cadherin’s ability to promote FGFR signaling. These data support a critical role for N-cadherin in PDA and its potential prognostic value. Additionally, this study provides in vivo genetic evidence that the cell surface protein N-cadherin represents a promising therapeutic target for the treatment of pancreatic cancer. PMID:22158044

Su, Yanrong; Li, Jifen; Witkiewicz, Agnieszka K.; Brennan, Donna; Neill, Thomas; Talarico, Jennifer; Radice, Glenn L.

2013-01-01

14

ICAM-2 regulates vascular permeability and N-cadherin localization through ezrin-radixin-moesin (ERM) proteins and Rac-1 signalling  

PubMed Central

Background Endothelial junctions control functions such as permeability, angiogenesis and contact inhibition. VE-Cadherin (VECad) is essential for the maintenance of intercellular contacts. In confluent endothelial monolayers, N-Cadherin (NCad) is mostly expressed on the apical and basal membrane, but in the absence of VECad it localizes at junctions. Both cadherins are required for vascular development. The intercellular adhesion molecule (ICAM)-2, also localized at endothelial junctions, is involved in leukocyte recruitment and angiogenesis. Results In human umbilical vein endothelial cells (HUVEC), both VECad and NCad were found at nascent cell contacts of sub-confluent monolayers, but only VECad localized at the mature junctions of confluent monolayers. Inhibition of ICAM-2 expression by siRNA caused the appearance of small gaps at the junctions and a decrease in NCad junctional staining in sub-confluent monolayers. Endothelioma lines derived from WT or ICAM-2-deficient mice (IC2neg) lacked VECad and failed to form junctions, with loss of contact inhibition. Re-expression of full-length ICAM-2 (IC2 FL) in IC2neg cells restored contact inhibition through recruitment of NCad at the junctions. Mutant ICAM-2 lacking the binding site for ERM proteins (IC2 ?ERM) or the cytoplasmic tail (IC2 ?TAIL) failed to restore junctions. ICAM-2-dependent Rac-1 activation was also decreased in these mutant cell lines. Barrier function, measured in vitro via transendothelial electrical resistance, was decreased in IC2neg cells, both in resting conditions and after thrombin stimulation. This was dependent on ICAM-2 signalling to the small GTPase Rac-1, since transendothelial electrical resistance of IC2neg cells was restored by constitutively active Rac-1. In vivo, thrombin-induced extravasation of FITC-labeled albumin measured by intravital fluorescence microscopy in the mouse cremaster muscle showed that permeability was increased in ICAM-2-deficient mice compared to controls. Conclusions These results indicate that ICAM-2 regulates endothelial barrier function and permeability through a pathway involving N-Cadherin, ERMs and Rac-1. PMID:24593809

2014-01-01

15

N-CADHERIN REGULATES CYTOSKELETALLY-ASSOCIATED IQGAP1/ERK SIGNALING AND MEMORY FORMATION  

PubMed Central

Summary Cadherin-mediated interactions are integral to synapse formation and potentiation. Here we show that N-cadherin is required for memory formation and regulation of a subset of underlying biochemical processes. N-cadherin antagonistic peptide containing the His-Ala-Val motif (HAV-N) transiently disrupted hippocampal N-cadherin dimerization and impaired the formation of long-term contextual fear memory while sparing short-term memory, retrieval and extinction. HAV-N impaired the learning-induced phosphorylation of a distinctive, cytoskeletally-associated fraction of hippocampal Erk-1/2 and altered the distribution of IQGAP1, a scaffold protein linking cadherin-mediated cell adhesion to the cytoskeleton. This effect was accompanied by diminished of N-cadherin/IQGAP1/Erk-2 interactions. Similarly, in primary neuronal cultures, HAV-N prevented NMDA-induced dendritic Erk-1/2 phosphorylation and caused relocation of IQGAP1 from dendritic spines into the shafts. The data suggest that the newly identified role of hippocampal N-cadherin in memory consolidation may be mediated, at least in part, by cytoskeletal IQGAP1/Erk signaling. PMID:17785185

Schrick, Christina; Fischer, Andre; Srivastava, Deepak P.; Tronson, Natalie C.; Penzes, Peter; Radulovic, Jelena

2007-01-01

16

Neural Epidermal Growth Factor-Like Like Protein 2 (NELL2) Promotes Aggregation of Embryonic Carcinoma P19 Cells by Inducing N-Cadherin Expression  

PubMed Central

NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons. In this study, we identified NELL2 function during neural differentiation of mouse embryonic carcinoma P19 cells. Endogenous expression of NELL2 in the P19 cells increased in parallel with the neuronal differentiation induced by retinoic acid (RA). We found that the mouse NELL2 promoter contains RA response elements (RAREs) and that treatment with RA increased NELL2 promoter activity. Transfection of P19 cells with NELL2 expression vectors induced a dramatic increase in cell aggregation, resulting in the facilitation of neural differentiation. Moreover, NELL2 significantly increased N-cadherin expression in the P19 cell. These data suggest that NELL2 plays an important role in the regulation of neuronal differentiation via control of N-cadherin expression and cell aggregation. PMID:24465772

Choi, Eun Jung; Kim, Dong Yeol; Kim, Kwang Kon; Kim, Byung Sam; Park, Jeong Woo; Lee, Byung Ju

2014-01-01

17

N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells.  

PubMed

Osteoblasts expressing the homophilic adhesion molecule N-cadherin form a hematopoietic stem cell (HSC) niche. Therefore, we examined how N-cadherin expression in HSCs relates to their function. We found that bone marrow (BM) cells highly expressing N-cadherin (N-cadherin(hi)) are not stem cells, being largely devoid of a Lineage(-)Sca1(+)cKit(+) population and unable to reconstitute hematopoietic lineages in irradiated recipient mice. Instead, long-term HSCs form distinct populations expressing N-cadherin at intermediate (N-cadherin(int)) or low (N-cadherin(lo)) levels. The minority N-cadherin(lo) population can robustly reconstitute the hematopoietic system, express genes that may prime them to mobilize, and predominate among HSCs mobilized from BM to spleen. The larger N-cadherin(int) population performs poorly in reconstitution assays when freshly isolated but improves in response to overnight in vitro culture. Their expression profile and lower cell-cycle entry rate suggest N-cadherin(int) cells are being held in reserve. Thus, differential N-cadherin expression reflects functional distinctions between two HSC subpopulations. PMID:18397756

Haug, Jeffrey S; He, Xi C; Grindley, Justin C; Wunderlich, Joshua P; Gaudenz, Karin; Ross, Jason T; Paulson, Ariel; Wagner, Kathryn P; Xie, Yucai; Zhu, Ruihong; Yin, Tong; Perry, John M; Hembree, Mark J; Redenbaugh, Erin P; Radice, Glenn L; Seidel, Christopher; Li, Linheng

2008-04-10

18

N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO  

PubMed Central

Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.

2009-01-01

19

Cell Surface Localization of ?3?4 Nicotinic Acetylcholine Receptors Is Regulated by N-Cadherin Homotypic Binding and Actomyosin Contractility  

PubMed Central

Neuronal nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central and peripheral nervous system and are localized at synaptic and extrasynaptic sites of the cell membrane. However, the mechanisms regulating the localization of nicotinic receptors in distinct domains of the cell membrane are not well understood. N-cadherin is a cell adhesion molecule that mediates homotypic binding between apposed cell membranes and regulates the actin cytoskeleton through protein interactions with the cytoplasmic domain. At synaptic contacts, N-cadherin is commonly localized adjacent to the active zone and the postsynaptic density, suggesting that N-cadherin contributes to the assembly of the synaptic complex. To examine whether N-cadherin homotypic binding regulates the cell surface localization of nicotinic receptors, this study used heterologous expression of N-cadherin and ?3?4 nAChR subunits C-terminally fused to a myc-tag epitope in Chinese hamster ovary cells. Expression levels of ?3?4 nAChRs at cell-cell contacts and at contact-free cell membrane were analyzed by confocal microscopy. ?3?4 nAChRs were found distributed over the entire surface of contacting cells lacking N-cadherin. In contrast, N-cadherin-mediated cell-cell contacts were devoid of ?3?4 nAChRs. Cell-cell contacts mediated by N-cadherin-deleted proteins lacking the ?-catenin binding region or the entire cytoplasmic domain showed control levels of ?3?4 nAChRs expression. Inhibition of actin polymerization with latrunculin A and cytochalasin D did not affect ?3?4 nAChRs localization within N-cadherin-mediated cell-cell contacts. However, treatment with the Rho associated kinase inhibitor Y27632 resulted in a significant increase in ?3?4 nAChR levels within N-cadherin-mediated cell-cell contacts. Analysis of ?3?4 nAChRs localization in polarized Caco-2 cells showed specific expression on the apical cell membrane and colocalization with apical F-actin and the actin nucleator Arp3. These results indicate that actomyosin contractility downstream of N-cadherin homotypic binding regulates the cell surface localization of ?3?4 nAChRs presumably through interactions with a particular pool of F-actin. PMID:23626818

Brusés, Juan L.

2013-01-01

20

N-Cadherin Promotes Recruitment and Migration of Neural Progenitor Cells from the SVZ Neural Stem Cell Niche into Demyelinated Lesions  

PubMed Central

Discrete cellular microenvironments regulate stem cell pools and their development, as well as function in maintaining tissue homeostasis. Although the signaling elements modulating neural progenitor cells (NPCs) of the adult subventricular zone (SVZ) niche are fairly well understood, the pathways activated following injury and the resulting outcomes, are less clear. In the present study, we used mouse models of demyelination and proteomics analysis to identify molecular cues present in the adult SVZ niche during injury, and analyzed their role on NPCs in the context of promoting myelin repair. Proteomic analysis of SVZ tissue from mice with experimental demyelination identified several proteins that are known to play roles in NPC proliferation, adhesion, and migration. Among the proteins found to be upregulated were members of the N-cadherin signaling pathway. During the onset of demyelination in the subcortical white matter (SCWM), activation of epidermal growth factor receptor (EGFR) signaling in SVZ NPCs stimulates the interaction between N-cadherin and ADAM10. Upon cleavage and activation of N-cadherin signaling by ADAM10, NPCs undergo cytoskeletal rearrangement and polarization, leading to enhanced migration out of the SVZ into demyelinated lesions of the SCWM. Genetically disrupting either EGFR signaling or ADAM10 inhibits this pathway, preventing N-cadherin regulated NPC polarization and migration. Additionally, in vivo experiments using N-cadherin gain- and loss-of-function approaches demonstrated that N-cadherin enhances the recruitment of SVZ NPCs into demyelinated lesions. Our data revealed that EGFR-dependent N-cadherin signaling physically initiated by ADAM10 cleavage is the response of the SVZ niche to promote repair of the injured brain. PMID:25031401

Klingener, Michael; Chavali, Manideep; Singh, Jagdeep; McMillan, Nadia; Coomes, Alexandra; Dempsey, Peter J.; Chen, Emily I.

2014-01-01

21

Tissue and age-specificity of post-translational modifications of N-cadherin during chick embryo development.  

PubMed

Our previous studies indicated that regulation of N-cadherin expression differs spatially and temporally among tissues of the eye, possibly reflecting the distinct roles it has in the development and maintenance of eye tissues. To understand this regulation of N-cadherin expression and its function in different tissues during embryonic development, we investigated the post-translational modifications of N-cadherin and its association with the cytoskeleton. We show that N-cadherin is a sulfated and phosphorylated protein. The phosphorylation of N-cadherin occurs in an age- and tissue-specific pattern during development in the neural retina, brain, lens and heart. The extent of sulfation of N-cadherin is also age-dependent, and both sulfated and unsulfated pools of N-cadherin exist in the same tissue as indicated by two-dimensional electrophoresis. The degree of association of N-cadherin with the cytoskeleton differs from one tissue to another, as well as within a single tissue at different stages of development. A positive correlation was found between the extent, developmental timing, and tissue specificity of N-cadherin phosphorylation and the degree of N-cadherin association with the cytoskeleton. Our results suggest the existence of a microheterogeneous population of N-cadherin molecules, within which posttranslational modification of N-cadherin may affect its association with the cytoskeleton and its expression and function during development. PMID:1916067

Lagunowich, L A; Grunwald, G B

1991-05-01

22

p27Kip1 Acts Downstream of N-Cadherin-mediated Cell Adhesion to Promote Myogenesis beyond Cell Cycle RegulationD?  

PubMed Central

It is widely acknowledged that cultured myoblasts can not differentiate at very low density. Here we analyzed the mechanism through which cell density influences myogenic differentiation in vitro. By comparing the behavior of C2C12 myoblasts at opposite cell densities, we found that, when cells are sparse, failure to undergo terminal differentiation is independent from cell cycle control and reflects the lack of p27Kip1 and MyoD in proliferating myoblasts. We show that inhibition of p27Kip1 expression impairs C2C12 cell differentiation at high density, while exogenous p27Kip1 allows low-density cultured C2C12 cells to enter the differentiative program by regulating MyoD levels in undifferentiated myoblasts. We also demonstrate that the early induction of p27Kip1 is a critical step of the N-cadherin-dependent signaling involved in myogenesis. Overall, our data support an active role of p27Kip1 in the decision of myoblasts to commit to terminal differentiation, distinct from the regulation of cell proliferation, and identify a pathway that, reasonably, operates in vivo during myogenesis and might be part of the phenomenon known as “community effect”. PMID:15647380

Messina, Graziella; Blasi, Cristiana; La Rocca, Severina Anna; Pompili, Monica; Calconi, Attilio; Grossi, Milena

2005-01-01

23

N-Cadherin Relocalizes from the Periphery to the Center of the Synapse after Transient Synaptic Stimulation in Hippocampal Neurons  

PubMed Central

N-cadherin is a cell adhesion molecule which is enriched at synapses. Binding of N-cadherin molecules to each other across the synaptic cleft has been postulated to stabilize adhesion between the presynaptic bouton and the postsynaptic terminal. N-cadherin is also required for activity-induced changes at synapses, including hippocampal long term potentiation and activity-induced spine expansion and stabilization. We hypothesized that these activity-dependent changes might involve changes in N-cadherin localization within synapses. To determine whether synaptic activity changes the localization of N-cadherin, we used structured illumination microscopy, a super-resolution approach which overcomes the conventional resolution limits of light microscopy, to visualize the localization of N-cadherin within synapses of hippocampal neurons. We found that synaptic N-cadherin exhibits a spectrum of localization patterns, ranging from puncta at the periphery of the synapse adjacent to the active zone to an even distribution along the synaptic cleft. Furthermore, the N-cadherin localization pattern within synapses changes during KCl depolarization and after transient synaptic stimulation. During KCl depolarization, N-cadherin relocalizes away from the central region of the synaptic cleft to the periphery of the synapse. In contrast, after transient synaptic stimulation with KCl followed by a period of rest in normal media, fewer synapses have N-cadherin present as puncta at the periphery and more synapses have N-cadherin present more centrally and uniformly along the synapse compared to unstimulated cells. This indicates that transient synaptic stimulation modulates N-cadherin localization within the synapse. These results bring new information to the structural organization and activity-induced changes occurring at synapses, and suggest that N-cadherin relocalization may contribute to activity dependent changes at synapses. PMID:24223993

Yam, Patricia T.; Pincus, Zachary; Gupta, Gagan D.; Bashkurov, Mikhail; Charron, Frédéric; Pelletier, Laurence; Colman, David R.

2013-01-01

24

Single-Cell Adhesion Tests against Functionalized Microspheres Arrayed on AFM Cantilevers Confirm Heterophilic E-and N-Cadherin Binding  

E-print Network

Single-Cell Adhesion Tests against Functionalized Microspheres Arrayed on AFM Cantilevers Confirm of interest. Instead, our force probe allows us to assemble arrays of prefunctionalized microspheres (or other

Heinrich, Volkmar

25

Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion  

Microsoft Academic Search

E-cadherin is a transmembrane glycoprotein that mediates calcium-dependent, homotypic cell-cell adhesion and plays an important role in maintaining the normal phenotype of epithelial cells. Disruption of E-cadherin activity in epithelial cells correlates with formation of metastatic tumors. Decreased adhesive function may be implemented in a number of ways in- cluding: (a) decreased expression of E-cadherin; (b) mutations in the gene

Shahidul Islam; Thomas E. Carey; Gregory T. Wolf; Margaret J. Wheelock; Keith R. Johnson

1996-01-01

26

AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development  

PubMed Central

Background During cerebral cortical development, neural precursor-precursor interactions in the ventricular zone neurogenic niche coordinate signaling pathways that regulate proliferation and differentiation. Previous studies with shRNA knockdown approaches indicated that N-cadherin adhesion between cortical precursors regulates ?-catenin signaling, but the underlying mechanisms remained poorly understood. Results Here, with conditional knockout approaches, we find further supporting evidence that N-cadherin maintains ?-catenin signaling during cortical development. Using shRNA to N-cadherin and dominant negative N-cadherin overexpression in cell culture, we find that N-cadherin regulates Wnt-stimulated ?-catenin signaling in a cell-autonomous fashion. Knockdown or inhibition of N-cadherin with function-blocking antibodies leads to reduced activation of the Wnt co-receptor LRP6. We also find that N-cadherin regulates ?-catenin via AKT, as reduction of N-cadherin causes decreased AKT activation and reduced phosphorylation of AKT targets GSK3? and ?-catenin. Inhibition of AKT signaling in neural precursors in vivo leads to reduced ?-catenin-dependent transcriptional activation, increased migration from the ventricular zone, premature neuronal differentiation, and increased apoptotic cell death. Conclusions These results show that N-cadherin regulates ?-catenin signaling through both Wnt and AKT, and suggest a previously unrecognized role for AKT in neuronal differentiation and cell survival during cortical development. PMID:23618343

2013-01-01

27

N-cadherin impedes proliferation of the multiple myeloma cancer stem cells  

PubMed Central

Multiple myeloma (MM) is an incurable malignancy of the plasma cells localized to the bone marrow. A rare population of MM cancer stem cells (MM-CSCs) has been shown to be responsible for maintaining the pull of residual disease and to contribute to myeloma relapse. The stem cells are found in a bone marrow niche in contact with the stromal cells that are responsible for maintaining the proliferative quiescence of the MM-CSC and regulate its self-renewal and differentiation decisions. Here we show that both MM and bone marrow stromal cells express N-cadherin, a cell-cell adhesion molecule shown to maintain a pool of leukemic stem cells. Inhibition of N-cadherin using a neutralizing antibody led to an increase in the MM cell proliferation. A decrease in MM cell adhesion to the bone marrow stroma was observed in the first 24 hours of co-culture followed by a 2.3-30-fold expansion of the adherent cells. Moreover, inhibition of N-cadherin led to a 4.8-9.6-fold expansion of the MM-CSC population. Surprisingly, addition of the N-cadherin antagonist peptide resulted in massive death of the non-adherent MM cells, while the viability of the adherent cells and MM-CSCs remained unaffected. Interestingly, the proliferative effects of N-cadherin inhibition were not mediated by the nuclear translocation of ?-catenin. Taken together, our findings demonstrate the crucial role of N-cadherin in regulating MM cell proliferation and viability and open an interesting avenue of investigation to understand how structural modifications of N-cadherin can affect MM cell behavior. Our findings suggest that targeting N-cadherin may be a useful therapeutic strategy to treat MM in conjunction with an agent that has anti-MM-CSC activity. PMID:24396705

Sadler, Nicole M; Harris, Britney R; Metzger, Brittany A; Kirshner, Julia

2013-01-01

28

Dlg5 Regulates Dendritic Spine Formation and Synaptogenesis by Controlling Subcellular N-Cadherin Localization  

PubMed Central

Most excitatory synapses in the mammalian brain are formed on dendritic spines, and spine density has a profound impact on synaptic transmission, integration, and plasticity. Membrane-associated guanylate kinase (MAGUK) proteins are intracellular scaffolding proteins with well established roles in synapse function. However, whether MAGUK proteins are required for the formation of dendritic spines in vivo is unclear. We isolated a novel disc large-5 (Dlg5) allele in mice, Dlg5LP, which harbors a missense mutation in the DLG5 SH3 domain, greatly attenuating its ability to interact with the DLG5 GUK domain. We show here that DLG5 is a MAGUK protein that regulates spine formation, synaptogenesis, and synaptic transmission in cortical neurons. DLG5 regulates synaptogenesis by enhancing the cell surface localization of N-cadherin, revealing a key molecular mechanism for regulating the subcellular localization of this cell adhesion molecule during synaptogenesis. PMID:25232112

Wang, Shih-Hsiu J.; Celic, Ivana; Choi, Se-Young; Riccomagno, Martin; Wang, Qiang; Sun, Lu O.; Mitchell, Sarah P.; Vasioukhin, Valera; Huganir, Richard L.

2014-01-01

29

MT5-MMP, ADAM-10, and N-Cadherin Act in Concert To Facilitate Synapse Reorganization after Traumatic Brain Injury  

PubMed Central

Abstract Matrix metalloproteinases (MMPs) influence synaptic recovery following traumatic brain injury (TBI). Membrane type 5-matrix metalloproteinase (MT5-MMP) and a distintegrin and metalloproteinase-10 (ADAM-10) are membrane-bound MMPs that cleave N-cadherin, a protein critical to synapse stabilization. This study examined protein and mRNA expression of MT5-MMP, ADAM-10, and N-cadherin after TBI, contrasting adaptive and maladaptive synaptogenesis. The effect of MMP inhibition on MT5-MMP, ADAM-10, and N-cadherin was assessed during maladaptive plasticity and correlated with synaptic function. Rats were subjected to adaptive unilateral entorhinal cortical lesion (UEC) or maladaptive fluid percussion TBI+bilateral entorhinal cortical lesion (TBI+BEC). Hippocampal MT5-MMP and ADAM-10 protein was significantly elevated 2 and 7 days post-injury. At 15 days after UEC, each MMP returned to control level, while TBI+BEC ADAM-10 remained elevated. At 2 and 7 days, N-cadherin protein was below control. By the 15-day synapse stabilization phase, UEC N-cadherin rose above control, a shift not seen for TBI+BEC. At 7 days, increased TBI+BEC ADAM-10 transcript correlated with protein elevation. UEC ADAM-10 mRNA did not change, and no differences in MT5-MMP or N-cadherin mRNA were detected. Confocal imaging showed MT5-MMP, ADAM-10, and N-cadherin localization within reactive astrocytes. MMP inhibition attenuated ADAM-10 protein 15 days after TBI+BEC and increased N-cadherin. This inhibition partially restored long-term potentiation induction, but did not affect paired-pulse facilitation. Our results confirm time- and injury-dependent expression of MT5-MMP, ADAM-10, and N-cadherin during reactive synaptogenesis. Persistent ADAM-10 expression was correlated with attenuated N-cadherin level and reduced functional recovery. MMP inhibition shifted ADAM-10 and N-cadherin toward adaptive expression and improved synaptic function. PMID:22489706

Warren, Kelly M.; Reeves, Thomas M.

2012-01-01

30

Regulation and activity-dependence of N-cadherin, NCAM isoforms, and polysialic acid on chick myotubes during development  

PubMed Central

Muscle development in vivo involves a complex sequence of cell-cell interactions in which secondary myotubes first form in association with primary myotubes and subsequently separate from them. We show here that during this process N-cadherin and the different structural forms of NCAM are regulated in a pattern that involves both temporal changes in expression and localization to particular regions of the muscle cell surface. In particular, levels of N-cadherin on maturing myotubes are decreased, and the form of NCAM synthesized by the muscle changes from a transmembrane non-polysialylated to a lipid-linked polysialylated membrane protein. Moreover, while NCAM was distributed on all myotube surfaces, the polysialyated form of NCAM was restricted to regions of the myotube surface that had recently separated from neighboring cells. We previously found that blockade of nerve-induced activity by d- Tubocurarine perturbed muscle cell interactions, resulting in a failure of myotubes to separate. We now show that this activity blockade also alters adhesion molecule expression. First, N-cadherin was no longer down-regulated in maturing myotubes, and its persistence on the surfaces of mature myotubes may partly explain their failure to separate. Secondly, the developmental switch from transmembrane to lipid-linked NCAM did not occur, and polysialylated NCAM was no longer formed. As the unusual physical properties of PSA have been proposed to impede cell-cell interactions, this alteration would also be expected to compromise cell separation. Together, these results suggest that the regulated expression of both N-cadherin and NCAM isoforms including their polysialylation, is an essential mechanism for the normal separation of secondary myotubes from primary myotubes. PMID:8276904

1993-01-01

31

A role for the age?dependent loss of ?(E)?catenin in regulation of N?cadherin expression and cell migration  

PubMed Central

The aging kidney has a decreased ability to repair following acute kidney injury. Previous studies from our laboratory have demonstrated a loss in ??catenin expression in the aging rat kidney. We hypothesize that loss of ??catenin expression in tubular epithelial cells may induce changes that result in a decreased repair capacity. In these studies, we demonstrate that decreased ??catenin protein expression is detectable as early as 20 months of age in male Fischer 344 rats. Protein loss is also observed in aged nonhuman primate kidneys, suggesting that this is not a species?specific response. In an effort to elucidate alterations due to the loss of ??catenin, we generated NRK?52E cell lines with stable knockdown of ?(E)?catenin (C2 cells). Interestingly, C2 cells had decreased expression of N?cadherin, decreased cell–cell adhesion, and increased monolayer permeability. C2 had deficits in wound repair, due to alterations in cell migration. Analysis of gene expression in the migrating control cells indicated that expression of N?cadherin and N?CAM was increased during repair. In migrating C2 cells, expression of N?CAM was also increased, but the expression of N?cadherin was not upregulated. Importantly, a blocking antibody against N?cadherin inhibited repair in NRK?52E cells, suggesting an important role in repair. Taken together, these data suggest that loss of ??catenin, and the subsequent downregulation of N?cadherin expression, is a mechanism underlying the decreased migration of tubular epithelial cells that contributes to the inability of the aging kidney to repair following injury. PMID:24920123

Nichols, LaNita A.; Grunz?Borgmann, Elizabeth A.; Wang, Xinhui; Parrish, Alan R.

2014-01-01

32

Prognostic Significance of Twist and N-Cadherin Expression in NSCLC  

PubMed Central

Background Metastasis is the most common cause of disease failure and mortality for non-small cell lung cancer after surgical resection. Twist has been recently identified as a putative oncogene and a key regulator of carcinoma metastasis. N-cadherin is associated with a more aggressive behavior of cell lines and tumors. The aim of this study was to evaluate the clinical relevance of Twist and N-cadherin expression in NSCLC, and the effects of Twist1 knockdown on lung cancer cells. Methods We examined the expressions of Twist and N-cadherin by immunohistochemistry in 120 cases of non-small cell lung cancer (including 68 cases with follow-up records). We also analyzed Twist1 and N-cadherin mRNA expression in 30 non-small cell lung cancer tissues using quantitative reverse transcription polymerase chain reaction. The functional roles of Twist1 in lung cancer cell lines were evaluated by small interfering RNA-mediated depletion of the protein followed by analyses of cell apoptosis and invasion. Results In lung cancer tissues, the overexpression rate of Twist was 38.3% in lung cancer tissues. Overexpression of N-cadherin was shown in 40.83% of primary tumors. Moreover, Twist1 mRNA expression levels correlated with N-cadherin mRNA levels. Furthermore, overexpression of Twist1 or N-cadherin in primary non-small cell lung cancers was associated with a shorter overall survival (P<0.01, P<0.01, respectively). Depleting Twist expression inhibited cell invasion and increased apoptosis in lung cancer cell lines. Conclusions The overexpression of Twist and N-cadherin could be considered as useful biomarkers for predicting the prognosis of NSCLC. Twist1 could inhibit apoptosis and promote the invasion of lung cancer cells, and depletion of Twist1 in lung cancer cells led to inhibition of N-cadherin expression. PMID:23626784

Hui, Linping; Zhang, Siyang; Dong, Xinjun; Tian, Dali; Cui, Zeshi; Qiu, Xueshan

2013-01-01

33

Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7  

PubMed Central

Remodeling of central excitatory synapses is crucial for synapse maturation, plasticity, and contributes to neurodevelopmental and psychiatric disorders. Remodeling of dendritic spines and the associated synapses, has been postulated to require the coordination of adhesion with spine morphology and stability; however, the molecular mechanisms that functionally link adhesion molecules with regulators of dendritic spine morphology are largely unknown. Here we report that spine size and N-cadherin content are tightly coordinated. In rat mature cortical pyramidal neurons, N-cadherin-dependent adhesion modulates the morphology of existing spines by recruiting the Rac1 guanine-nucleotide exchange factor kalirin-7 to synapses through the scaffolding protein AF-6/afadin. In pyramidal neurons, N-cadherin, AF-6, and kalirin-7 colocalize at synapses and participate in the same multiprotein complexes. N-cadherin clustering promotes the reciprocal interaction and recruitment of N-cadherin, AF-6, and kalirin-7, increasing the content of Rac1 and in spines and PAK phosphorylation. N-cadherin-dependent spine enlargement requires AF-6 and kalirin-7 function. Conversely, disruption of N-cadherin leads to thin, long spines, with reduced Rac1 contact, caused by uncoupling of N-cadherin, AF-6, and kalirin-7 from each other. By dynamically linking N-cadherin with a regulator of spine plasticity, this pathway allows synaptic adhesion molecules to rapidly coordinate spine remodeling associated with synapse maturation and plasticity. This study hence identifies a novel mechanism whereby cadherins, a major class of synaptic adhesion molecules, signal to the actin cytoskeleton to control the morphology of dendritic spines, and outlines a mechanism that underlies the coordination of synaptic adhesion with spine morphology. PMID:18550750

Xie, Zhong; Photowala, Huzefa; Cahill, Michael E.; Srivastava, Deepak P.; Woolfrey, Kevin M.; Shum, Cassandra Y.; Huganir, Richard L.; Penzes, Peter

2009-01-01

34

Recruitment of ?-Catenin to N-Cadherin Is Necessary for Smooth Muscle Contraction.  

PubMed

?-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the ?-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of ?-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of ?-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by ?-catenin knockdown. In addition, the expression of the ?-catenin armadillo domain disrupted the recruitment of ?-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the ?-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of ?-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of ?-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of ?-catenin with N-cadherin is regulated by actin polymerization during contractile activation. PMID:25713069

Wang, Tao; Wang, Ruping; Cleary, Rachel A; Gannon, Olivia J; Tang, Dale D

2015-04-01

35

N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties  

PubMed Central

N-cadherin and HER2/neu were found to be co-expressed in invasive breast carcinomas. To test the contribution of N-cadherin and HER2 in mammary tumor metastasis, we targeted N-cadherin expression in the mammary epithelium of the MMTV-Neu mouse. In the context of ErbB2/Neu, N-cadherin stimulated carcinoma cell invasion, proliferation and metastasis. N-cadherin caused fibroblast growth factor receptor (FGFR) upmodulation, resulting in epithelial-to-mesenchymal transition (EMT) and stem/progenitor like properties, involving Snail and Slug upregulation, mammosphere formation and aldehyde dehydrogenase activity. N-cadherin potentiation of the FGFR stimulated extracellular signal regulated kinase (ERK) and protein kinase B (AKT) phosphorylation resulting in differential effects on metastasis. Although ERK inhibition suppressed cyclin D1 expression, cell proliferation and stem/progenitor cell properties, it did not affect invasion or EMT. Conversely, AKT inhibition suppressed invasion through Akt 2 attenuation, and EMT through Snail inhibition, but had no effect on cyclin D1 expression, cell proliferation or mammosphere formation. These findings suggest N-cadherin/FGFR has a pivotal role in promoting metastasis through differential regulation of ERK and AKT, and underscore the potential for targeting the FGFR in advanced ErbB2-amplified breast tumors. PMID:23975425

Qian, X; Anzovino, A; Kim, S; Suyama, K; Yao, J; Hulit, J; Agiostratidou, G; Chandiramani, N; McDaid, HM; Nagi, C; Cohen, HW; Phillips, GR; Norton, L; Hazan, RB

2014-01-01

36

N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties.  

PubMed

N-cadherin and HER2/neu were found to be co-expressed in invasive breast carcinomas. To test the contribution of N-cadherin and HER2 in mammary tumor metastasis, we targeted N-cadherin expression in the mammary epithelium of the MMTV-Neu mouse. In the context of ErbB2/Neu, N-cadherin stimulated carcinoma cell invasion, proliferation and metastasis. N-cadherin caused fibroblast growth factor receptor (FGFR) upmodulation, resulting in epithelial-to-mesenchymal transition (EMT) and stem/progenitor like properties, involving Snail and Slug upregulation, mammosphere formation and aldehyde dehydrogenase activity. N-cadherin potentiation of the FGFR stimulated extracellular signal regulated kinase (ERK) and protein kinase B (AKT) phosphorylation resulting in differential effects on metastasis. Although ERK inhibition suppressed cyclin D1 expression, cell proliferation and stem/progenitor cell properties, it did not affect invasion or EMT. Conversely, AKT inhibition suppressed invasion through Akt 2 attenuation, and EMT through Snail inhibition, but had no effect on cyclin D1 expression, cell proliferation or mammosphere formation. These findings suggest N-cadherin/FGFR has a pivotal role in promoting metastasis through differential regulation of ERK and AKT, and underscore the potential for targeting the FGFR in advanced ErbB2-amplified breast tumors. PMID:23975425

Qian, X; Anzovino, A; Kim, S; Suyama, K; Yao, J; Hulit, J; Agiostratidou, G; Chandiramani, N; McDaid, H M; Nagi, C; Cohen, H W; Phillips, G R; Norton, L; Hazan, R B

2014-06-26

37

N-cadherin negatively regulates collective Drosophila glial migration through actin cytoskeleton remodeling.  

PubMed

Cell migration is an essential and highly regulated process. During development, glia cells and neurons migrate over long distances - in most cases collectively - to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence, the real challenge is to analyze it in the entire organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration, by using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage-dependent manner, by negatively controlling actin nucleation and cytoskeleton remodeling through ?/? catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration. PMID:25593128

Kumar, Arun; Gupta, Tripti; Berzsenyi, Sara; Giangrande, Angela

2015-03-01

38

Lateral assembly of N-cadherin drives tissue integrity by stabilizing adherens junctions.  

PubMed

Cadherin interactions ensure the correct registry and anchorage of cells during tissue formation. Along the plasma membrane, cadherins form inter-junctional lattices via cis- and trans-dimerization. While structural studies have provided models for cadherin interactions, the molecular nature of cadherin binding in vivo remains unexplored. We undertook a multi-disciplinary approach combining live cell imaging of three-dimensional cell assemblies (spheroids) with a computational model to study the dynamics of N-cadherin interactions. Using a loss-of-function strategy, we demonstrate that each N-cadherin interface plays a distinct role in spheroid formation. We found that cis-dimerization is not a prerequisite for trans-interactions, but rather modulates trans-interfaces to ensure tissue stability. Using a model of N-cadherin junction dynamics, we show that the absence of cis-interactions results in low junction stability and loss of tissue integrity. By quantifying the binding and unbinding dynamics of the N-cadherin binding interfaces, we determined that mutating either interface results in a 10-fold increase in the dissociation constant. These findings provide new quantitative information on the steps driving cadherin intercellular adhesion and demonstrate the role of cis-interactions in junction stability. PMID:25589573

Garg, S; Fischer, S C; Schuman, E M; Stelzer, E H K

2015-03-01

39

N-cadherin prevents the premature differentiation of anterior heart field progenitors in the pharyngeal mesodermal microenvironment  

PubMed Central

The cardiac progenitor cells (CPCs) in the anterior heart field (AHF) are located in the pharyngeal mesoderm (PM), where they expand, migrate and eventually differentiate into major cell types found in the heart, including cardiomyocytes. The mechanisms by which these progenitors are able to expand within the PM microenvironment without premature differentiation remain largely unknown. Through in silico data mining, genetic loss-of-function studies, and in vivo genetic rescue studies, we identified N-cadherin and interaction with canonical Wnt signals as a critical component of the microenvironment that facilitates the expansion of AHF-CPCs in the PM. CPCs in N-cadherin mutant embryos were observed to be less proliferative and undergo premature differentiation in the PM. Notably, the phenotype of N-cadherin deficiency could be partially rescued by activating Wnt signaling, suggesting a delicate functional interaction between the adhesion role of N-cadherin and Wnt signaling in the early PM microenvironment. This study suggests a new mechanism for the early renewal of AHF progenitors where N-cadherin provides additional adhesion for progenitor cells in the PM, thereby allowing Wnt paracrine signals to expand the cells without premature differentiation. PMID:25367124

Soh, Boon-Seng; Buac, Kristina; Xu, Huansheng; Li, Edward; Ng, Shi-Yan; Wu, Hao; Chmielowiec, Jolanta; Jiang, Xin; Bu, Lei; Li, Ronald A; Cowan, Chad; Chien, Kenneth R

2014-01-01

40

Adhesives from modified soy protein  

DOEpatents

The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

Sun, Susan (Manhattan, KS); Wang, Donghai (Manhattan, KS); Zhong, Zhikai (Manhattan, KS); Yang, Guang (Shanghai, CN)

2008-08-26

41

Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling  

SciTech Connect

Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie [Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 (United States)] [Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 (United States); Oakley, Gregory G.; Wahl, James K. [Department of Oral Biology, University of Nebraska College of Dentistry, Lincoln, NE 68588 (United States)] [Department of Oral Biology, University of Nebraska College of Dentistry, Lincoln, NE 68588 (United States); Simpson, Melanie A., E-mail: msimpson2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 (United States); Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 (United States)

2011-05-01

42

Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta or wounding.  

PubMed

Invasion of stromal host cells, such as myofibroblasts, into the epithelial cancer compartment may precede epithelial cancer invasion into the stroma. We investigated how colon cancer-derived myofibroblasts invade extracellular matrices in vitro in the presence of colon cancer cells. Myofibroblast spheroids invade collagen type I in a stellate pattern to form a dendritic network of extensions upon co-culture with HCT-8/E11 colon cancer cells. Single myofibroblasts also invade Matrigel trade mark when stimulated by HCT-8/E11 colon cancer cells. The confrontation of cancer cells with extracellular matrices and myofibroblasts, showed that cancer-cell-derived transforming growth factor-beta (TGF-beta) is required and sufficient for invasion of myofibroblasts. In myofibroblasts, N-cadherin expressed at the tips of filopodia is upregulated by TGF-beta. Functional N-cadherin activity is implicated in TGF-beta stimulated invasion as evidenced by the neutralizing anti-N-cadherin monoclonal antibody (GC-4 mAb), and specific N-cadherin knock-down by short interference RNA (siRNA). TGF-beta1 stimulates Jun N-terminal kinase (also known as stress-activated protein kinase) (JNK) activity in myofibroblasts. Pharmacological inhibition of JNK alleviates TGF-beta stimulated invasion, N-cadherin expression and wound healing migration. Neutralization of N-cadherin activity by the GC-4 or by a 10-mer N-cadherin peptide or by siRNA reduces directional migration, filopodia formation, polarization and Golgi-complex reorientation during wound healing. Taken together, our study identifies a new mechanism in which cancer cells contribute to the coordination of invasion of stromal myofibroblasts. PMID:15331629

De Wever, Olivier; Westbroek, Wendy; Verloes, An; Bloemen, Nele; Bracke, Marc; Gespach, Christian; Bruyneel, Erik; Mareel, Marc

2004-09-15

43

Alterations in cell adhesion proteins and cardiomyopathy  

PubMed Central

Cell adhesive junction is specialized intercellular structure composed of cell adhesion proteins. They are essential to connect adjacent heart muscle cell and make heart contraction effectively and properly. Clinical and genetic studies have revealed close relationship between cell adhesive proteins and the occurrence of various cardiomyopathies. Here we will review recent development on the disease phenotype, potential cellular and molecular mechanism related to cell adhesion molecules, with particular disease pathogenesis learned from genetic manipulated murine models. PMID:24944760

Li, Jifen

2014-01-01

44

Involvement of N-cadherin/?-catenin interaction in the micro/nanotopography induced indirect mechanotransduction.  

PubMed

Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials, but the underlying molecular mechanism is poorly understood. The biomaterial topography modulates cell functions via mechanotransduction of direct and indirect. We propose that N-cadherin may play a role in the topographically induced indirect mechanotransduction by regulating the ?-catenin signaling. For confirmation, the cell functions, N-cadherin expression and ?-catenin signaling activation of osteoblasts on titanium (Ti) surfaces with micro- or/and nanotopography are systemically compared with naive and N-cadherin down-regulating MC3T3-E1 cells. We find that the N-cadherin expression is reversely related to the intracellular ?-catenin signaling and the N-cadherin/?-catenin signaling is modulated differentially by the micro- and nanotopography. The nanotopography significantly up-regulates the N-cadherin expression leading to lower ?-catenin signaling activity and consequently depressed differentiation, whereas the microtopography down-regulates the N-cadherin expression resulting in enhanced ?-catenin signaling and thus osteoblast differentiation. Artificial down-regulation of the N-cadherin expression can significantly up-regulate the ?-catenin signaling and consequently enhance the osteoblast differentiation on all the Ti surfaces. The study for the first time clarifies the involvement of the N-cadherin/?-catenin interaction in the micro/nanotopography induced indirect mechanotransduction and provides a potentially new approach for biomaterial modification and biofunctionalization by down-regulating the cell N-cadherin expression to achieve improved clinical performance. PMID:24818888

Liu, Qian; Wang, Wei; Zhang, Li; Zhao, Lingzhou; Song, Wen; Duan, Xiaohong; Zhang, Yumei

2014-08-01

45

Protein adhesion of block copolymer surfaces  

Microsoft Academic Search

Atomic force microscopy studies on the adhesion between various novel poly(methyl methacrylate)\\/poly(acrylic acid)-based block\\u000a copolymers and the proteins fibronectin and bovine serum albumin are presented for the first time. Random, diblock, and triblock\\u000a copolymers exhibit distinct adhesion profiles although their chemical compositions are identical, implying that biomaterial\\u000a nanomorphology can be used to control protein–polymer interactions and potentially cell adhesion.

Scott R. Schricker; Manuel L. B. Palacio; Bharat Bhushan

2011-01-01

46

Electrospinning protein nanofibers to control cell adhesion  

Microsoft Academic Search

The structural and mechanical properties of a surface often play an integral part in the determination of the cell adhesion strength and design parameters for creating a biodegradable electrospun scaffold. Nanofibers composed of the globular proteins bovine serum albumin (BSA) and fibronectin were produced by electrospinning with the electrospun protein scaffold serving as an extracellular matrix to which adhesion interaction

Cynthia Chinwe Nwachukwu

2010-01-01

47

Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets  

Microsoft Academic Search

Classical cadherins have been proposed to mediate interactions between pre- and postsynaptic cells that are necessary for synapse formation. We provide the first direct, genetic evidence in favor of this model by examining the role of N-cadherin in controlling the pattern of synaptic connections made by photoreceptor axons in Drosophila. N-cadherin is required in both individual photoreceptors and their target

Saurabh Prakash; Jason C Caldwell; Daniel F Eberl; Thomas R Clandinin

2005-01-01

48

Intervention Effects of Ganoderma Lucidum Spores on Epileptiform Discharge Hippocampal Neurons and Expression of Neurotrophin-4 and N-Cadherin  

PubMed Central

Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression. PMID:23637882

Wang, Shu-Qiu; Li, Xiao-Jie; Zhou, Shaobo; Sun, Di-Xiang; Wang, Hui; Cheng, Peng-Fei; Ma, Xiao-Ru; Liu, Lei; Liu, Jun-Xing; Wang, Fang-Fang; Liang, Yan-Feng; Wu, Jia-Mei

2013-01-01

49

Molecular mechanics of mussel adhesion proteins  

NASA Astrophysics Data System (ADS)

Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

Qin, Zhao; Buehler, Markus J.

2014-01-01

50

VIP and VIP Gene Silencing Modulation of Differentiation Marker N-Cadherin and Cell Shape of Corneal Endothelium in Human Corneas Ex Vivo  

PubMed Central

Purpose Vasoactive intestinal peptide (VIP) is expressed by corneal endothelial (CE) cells and is present in the aqueous humor, which bathes CE cells in vivo. This study demonstrated the role of CE cell VIP in maintaining the expression level of a CE differentiation marker, N-cadherin, and the hexagonal cell shape. Methods To determine the most effective VIP concentration, bovine corneoscleral explants were treated with 0 (control) and 10?12 to 10?6 M VIP. Paired human corneas (nine donors) from an eye bank were used as control; the other corneas were treated with VIP. To silence endogenous VIP, paired fresh human donor corneas (from seven cadavers) were transduced with VIP shRNA or the control lentiviral particles and then bisected/quartered for quantitative analysis by semiquantitative RT-PCR (for mRNA) and Western blot analysis/immunocytochemistry (for protein), whereas alizarin red S staining revealed CE cell shape. Results VIP concentration dependently increased bovine CE cell N-cadherin mRNA levels, with the maximal effect observed between 10?10 (1.47 ± 0.06-fold; P = 0.002) and 10?8 M VIP (1.48 ± 0.18-fold; P = 0.012). VIP (10?8 M) treatment increased N-cadherin protein levels in bovine and human CE cells to 1.98 ± 0.28-fold (P = 0.005) and 1.17 ± 0.10 (range, 0.91–187)-fold (P = 0.050) of their respective controls. VIP antagonist (SN)VIPhyb diminished the VIP effect. VIP silencing resulted in deterioration of the hexagonal cell shape and decreased levels of VIP protein and mRNA, N-cadherin (but not connexin-43) mRNA and protein, and the antiapoptotic Bcl-2 protein. Conclusions Through its autocrine VIP, CE cells play an active role in maintaining the differentiated state and suppressing apoptosis in the corneal endothelium in situ. PMID:18441300

Koh, Shay-Whey M.; Chandrasekara, Krish; Abbondandolo, Cara J.; Coll, Timothy J.; Rutzen, Allan R.

2008-01-01

51

The PX-RICS-14-3-3zeta/theta complex couples N-cadherin-beta-catenin with dynein-dynactin to mediate its export from the endoplasmic reticulum.  

PubMed

We have recently shown that beta-catenin-facilitated export of cadherins from the endoplasmic reticulum requires PX-RICS, a beta-catenin-interacting GTPase-activating protein for Cdc42. Here we show that PX-RICS interacts with isoforms of 14-3-3 and couples the N-cadherin-beta-catenin complex to the microtubule-based molecular motor dynein-dynactin. Similar to knockdown of PX-RICS, knockdown of either 14-3-3zeta or - resulted in the disappearance of N-cadherin and beta-catenin from the cell-cell boundaries. Furthermore, we found that PX-RICS and 14-3-3zeta/ are present in a large multiprotein complex that contains dynein-dynactin components as well as N-cadherin and beta-catenin. Both RNAi- and dynamitin-mediated inhibition of dynein-dynactin function also led to the absence of N-cadherin and beta-catenin at the cell-cell contact sites. Our results suggest that the PX-RICS-14-3-3zeta/ complex links the N-cadherin-beta-catenin cargo with the dynein-dynactin motor and thereby mediates its endoplasmic reticulum export. PMID:20308060

Nakamura, Tsutomu; Hayashi, Tomoatsu; Mimori-Kiyosue, Yuko; Sakaue, Fumika; Matsuura, Ken; Iemura, Shun-ichiro; Natsume, Toru; Akiyama, Tetsu

2010-05-21

52

NHERF Links the N-Cadherin\\/Catenin Complex to the Platelet-derived Growth Factor Receptor to Modulate the Actin Cytoskeleton and Regulate Cell Motility  

Microsoft Academic Search

Using phage display, we identified Na\\/H exchanger regulatory factor (NHERF)-2 as a novel binding partner for the cadherin-associated protein, -catenin. We showed that the second of two PSD-95\\/Dlg\\/ZO-1 (PDZ) domains of NHERF interacts with a PDZ-binding motif at the very carboxy terminus of -catenin. N-cadherin expression has been shown to induce motility in a number of cell types. The first

Christopher S. Theisen; James K. Wahl; Keith R. Johnson; Margaret J. Wheelock

2007-01-01

53

Biomimetic Adhesive Polymers Based on Mussel Adhesive Proteins  

Microsoft Academic Search

Nature provides many outstanding examples of adhesive strategies from which chemists and material scientists can draw inspiration in their pursuit of new adhesive materials. As described in other chapters of this book, detailed studies of the adhesive mechanisms of geckos, mussels and other organisms during the past several decades have enhanced our understanding of the underlying physicochemical principles to the

BRUCE P. LEE; JEFFREY L. DALSIN; PHILLIP B. MESSERSMITH

54

N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis  

SciTech Connect

Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.

Tillet, Emmanuelle [Laboratoire de Developpement et Vieillissement de l'Endothelium, INSERM EMI 0219, CEA, Joseph Fourier University, Grenoble (France)]. E-mail: emmanuelle.tillet@cea.fr; Vittet, Daniel [Laboratoire de Developpement et Vieillissement de l'Endothelium, INSERM EMI 0219, CEA, Joseph Fourier University, Grenoble (France); Feraud, Olivier [Laboratoire de Developpement et Vieillissement de l'Endothelium, INSERM EMI 0219, CEA, Joseph Fourier University, Grenoble (France); Moore, Robert [Max-Planck Institute for Immunobiology, Stuebeweg 51, D-79108 Freiburg (Germany); Kemler, Rolf [Max-Planck Institute for Immunobiology, Stuebeweg 51, D-79108 Freiburg (Germany); Huber, Philippe [Laboratoire de Developpement et Vieillissement de l'Endothelium, INSERM EMI 0219, CEA, Joseph Fourier University, Grenoble (France)

2005-11-01

55

Tissue adhesive using synthetic model adhesive proteins inspired by the marine mussel  

Microsoft Academic Search

The surface free energy and its dispersion and polar components of pigskin were determined by wettability measurements. The contact angles and work of adhesion of solutions of the synthetic model adhesive sequence poly(Gly-Tyr-Lys) inspired by marine adhesive proteins were measured on the epidermis and the dermis of pigskin. Also the surface free energy of pigskin was determined using contact angles

H. Tatehata; A. Mochizuki; K. Ohkawa; M. Yamada; H. Yamamoto

2001-01-01

56

Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics  

Microsoft Academic Search

Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results

Phillip Messersmith

2008-01-01

57

Halogenated DOPA in a Marine Adhesive Protein  

PubMed Central

The sandcastle worm Phragmatopoma californica, a marine polychaete, constructs a tube-like shelter by cementing together sand grains using a glue secreted from the building organ in its thorax. The glue is a mixture of post-translationally modified proteins, notably the cement proteins Pc-1 and Pc-2 with the amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA). Significant amounts of a halogenated derivative of DOPA were isolated from the worm cement following partial acid hydrolysis and capture of catecholic amino acids by phenylboronate affinity chromatography. Analysis by tandem mass spectrometry and 1H NMR indicates the DOPA derivative to be 2-chloro-4, 5-dihydroxyphenyl-L-alanine. The potential roles of 2-chloro-DOPA in chemical defense and underwater adhesion are considered. PMID:20126508

Sun, Cheng Jun; Srivastava, Aasheesh; Reifert, Jack R.; Waite, J. Herbert

2009-01-01

58

Vascular Adhesion Protein 1 in the Eye  

PubMed Central

Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1), a dual-function molecule with adhesive and enzymatic properties, is expressed on the surface of vascular endothelial cells of mammals. It also exists as a soluble form (sVAP-1), which is implicated in oxidative stress via its enzymatic activity and can be a prognostic biomarker. Recent evidence suggests that VAP-1 is an important therapeutic target for several inflammation-related ocular diseases, such as uveitis, age-related macular degeneration (AMD), and diabetic retinopathy (DR), by involving in the recruitment of leukocytes at sites of inflammation. Furthermore, VAP-1 plays an important role in the pathogenesis of conjunctival inflammatory diseases such as pyogenic granulomas and the progression of conjunctival lymphoma. VAP-1 may be an alternative therapeutic target in ocular diseases. The in vivo imaging of inflammation using VAP-1 as a target molecule is a novel approach with a potential for early detection and characterization of inflammatory diseases. This paper reviews the critical roles of VAP-1 in ophthalmological diseases which may provide a novel research direction or a potent therapeutic strategy. PMID:23840939

Luo, Wenting; Xie, Fang; Zhang, Zhongyu; Sun, Dawei

2013-01-01

59

c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution  

PubMed Central

During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research. PMID:23169788

Xiao, Xiang; Mruk, Dolores D.

2013-01-01

60

Mussel protein adhesion depends on thiol-mediated redox modulation  

PubMed Central

Mussel adhesion is mediated by foot proteins (mfp) rich in a catecholic amino acid, 3, 4-dihydroxyphenylalanine (dopa), capable of forming strong bidentate interactions with a variety of surfaces. A facile tendency toward auto-oxidation, however, often renders dopa unreliable for adhesion. Mussels limit dopa oxidation during adhesive plaque formation by imposing an acidic, reducing regime based on thiol-rich mfp-6, which restores dopa by coupling the oxidation of thiols to dopaquinone reduction. PMID:21804534

Yu, Jing; Wei, Wei; Danner, Eric; Ashley, Rebekah K.; Israelachvili, Jacob N.; Waite, J. Herbert

2011-01-01

61

Shear strength and water resistance of modified soy protein adhesives  

Microsoft Academic Search

Soy protein polymers recently have been considered as alternatives to petroleum polymers to ease environmental pollution.\\u000a The use of soy proteins as adhesives for plywood has been limited because of their low water resistance. The objective of\\u000a this research was to test the water resistance of adhesives containing modified soy proteins in walnut, maple, poplar, and\\u000a pine plywood applications. Gluing

Xiuzhi Sun; Ke Bian

1999-01-01

62

Soy protein isolate molecular level contributions to bulk adhesive properties  

NASA Astrophysics Data System (ADS)

Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical properties to produce an environmentally responsible, formaldehyde-free adhesive. It is also imperative to study the adhesion between protein and wood.

Shera, Jeanne Norton

63

Epigenetic activation of human kallikrein 13 enhances malignancy of lung adenocarcinoma by promoting N-cadherin expression and laminin degradation.  

PubMed

The tissue kallikrein (KLK) family contains 15 genes (KLK1-KLK15) tandemly arranged on chromosome 19q13.4 that forms the largest cluster of contiguous protease genes in the human genome. Here, we provide mechanistic evidence showing that the expression of KLK13, one of the most recently identified family members, is significantly up-regulated in metastatic lung adenocarcinoma. Whilst overexpression of KLK13 resulted in an increase in malignant cell behavior, knockdown of its endogenous gene expression caused a significant decrease in cell migratory and invasive properties. Functional studies further demonstrated that KLK13 is activated via demethylation of its upstream region. The elevated KLK13 protein then enhances the ability of tumor cells to degrade extracellular laminin that, subsequently, facilitates cell metastatic potential in the in vivo SCID mouse xenograft model. KLK13 was also found to induce the expression of N-cadherin to help promote tumor cell motility. Together, these results reveal the enhancing effects of KLK13 on tumor cell invasion and migration, and that it may serve as a diagnostic/prognostic marker and a potential therapeutic target for lung cancer. PMID:21596022

Chou, Ruey-Hwang; Lin, Sheng-Chieh; Wen, Hui-Chin; Wu, Cheng-Wen; Chang, Wun-Shaing Wayne

2011-06-10

64

Mussel-mimetic protein-based adhesive hydrogel.  

PubMed

Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe(3+)-mediated coordinative noncovalent cross-linking. Fe(3+)-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications. PMID:24650082

Kim, Bum Jin; Oh, Dongyeop X; Kim, Sangsik; Seo, Jeong Hyun; Hwang, Dong Soo; Masic, Admir; Han, Dong Keun; Cha, Hyung Joon

2014-05-12

65

Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics  

NASA Astrophysics Data System (ADS)

Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

Messersmith, Phillip

2008-03-01

66

E–N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells  

PubMed Central

Intercellular junctions play a pivotal role in tissue development and function and also in tumorigenesis. In epithelial cells, decrease or loss of E-cadherin, the hallmark molecule of adherens junctions (AJs), and increase of N-cadherin are widely thought to promote carcinoma progression and metastasis. In this paper, we show that this “cadherin switch” hypothesis does not hold for diverse endoderm-derived cells and cells of tumors derived from them. We show that the cadherins in a major portion of AJs in these cells can be chemically cross-linked in E–N heterodimers. We also show that cells possessing E–N heterodimer AJs can form semistable hemihomotypic AJs with purely N-cadherin–based AJs of mesenchymally derived cells, including stroma cells. We conclude that these heterodimers are the major AJ constituents of several endoderm-derived tissues and tumors and that the prevailing concept of antagonistic roles of these two cadherins in developmental and tumor biology has to be reconsidered. PMID:22105347

Straub, Beate K.; Rickelt, Steffen; Zimbelmann, Ralf; Grund, Christine; Kuhn, Caecilia; Iken, Marcus; Ott, Michael; Schirmacher, Peter

2011-01-01

67

The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites.  

PubMed

PINCH-1 is a LIM-only domain protein that forms a ternary complex with integrin-linked kinase (ILK) and parvin (to form the IPP complex) downstream of integrins. Here, we demonstrate that PINCH-1 (also known as Lims1) gene ablation in the epidermis of mice caused epidermal detachment from the basement membrane, epidermal hyperthickening and progressive hair loss. PINCH-1-deficient keratinocytes also displayed profound adhesion, spreading and migration defects in vitro that were substantially more severe than those of ILK-deficient keratinocytes indicating that PINCH-1 also exerts functions in an ILK-independent manner. By isolating the PINCH-1 interactome, the LIM-domain-containing and actin-binding protein epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) was identified as a new PINCH-1-associated protein. EPLIN localized, in a PINCH-1-dependent manner, to integrin adhesion sites of keratinocytes in vivo and in vitro and its depletion severely attenuated keratinocyte spreading and migration on collagen and fibronectin without affecting PINCH-1 levels in focal adhesions. Given that the low PINCH-1 levels in ILK-deficient keratinocytes were sufficient to recruit EPLIN to integrin adhesions, our findings suggest that PINCH-1 regulates integrin-mediated adhesion of keratinocytes through the interactions with ILK as well as EPLIN. PMID:25609703

Karaköse, Esra; Geiger, Tamar; Flynn, Kevin; Lorenz-Baath, Katrin; Zent, Roy; Mann, Matthias; Fässler, Reinhard

2015-03-01

68

Peroxinectin, a Novel Cell Adhesion Protein from Crayfish Blood  

Microsoft Academic Search

From blood cells of the crayfish Pacifastacus leniusculus a 76-kDa protein that mediated attachment and spreading of the crayfish blood cells was purified. The cDNA for this cell adhesion protein was isolated, cloned, and sequenced. The deduced protein sequence was significantly similar to one family of peroxidases, e.g.,myeloperoxidase. Consistently, the 76-kDa protein, for which we propose the name peroxinectin, had

M. W. Johansson; M. I. Lind; T. Holmblad; P. O. Thornqvist; K. Soderhall

1995-01-01

69

Nanoscale adhesion forces between enamel pellicle proteins and hydroxyapatite.  

PubMed

The acquired enamel pellicle (AEP) is important for minimizing the abrasion caused by parafunctional conditions as they occur, for instance, during bruxism. It is a remarkable feature of the AEP that a protein/peptide film can provide enough protection in normofunction to prevent teeth from abrasion and wear. Despite its obvious critical role in the protection of tooth surfaces, the essential adhesion features of AEP proteins on the enamel surface are poorly characterized. The objective of this study was to measure the adhesion force between histatin 5, a primary AEP component, and hydroxyapatite (HA) surfaces. Both biotinylated histatin 5 and biotinylated human serum albumin were allowed to adsorb to streptavidin-coated silica microspheres attached to atomic force microscope (AFM) cantilevers. A multimode AFM with a Nanoscope IIIa controller was used to measure the adhesion force between protein-functionalized silica microspheres attached to cantilever tips and the HA surface. The imaging was performed in tapping mode with a Si3N4 AFM cantilever, while the adhesion forces were measured in AFM contact mode. A collection of force-distance curves (~3,000/replicate) was obtained to generate histograms from which the adhesion forces between histatin 5 or albumin and the HA surface were measured. We found that histatin 5 exhibited stronger adhesion forces (90% >1.830 nN) to the HA surface than did albumin (90% > 0.282 nN). This study presents an objective approach to adhesion force measurements between histatin 5 and HA, and provides the experimental basis for measuring the same parameters for other AEP constituents. Such knowledge will help in the design of synthetic proteins and peptides with preventive and therapeutic benefits for tooth enamel. PMID:24591293

Vukosavljevic, D; Hutter, J L; Helmerhorst, E J; Xiao, Y; Custodio, W; Zaidan, F C; Oppenheim, F G; Siqueira, W L

2014-05-01

70

Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli  

Microsoft Academic Search

Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time.

Dong Soo Hwang; Hyo Jin Yoo; Jong Hyub Jun; Won Kyu Moon; Hyung Joon Cha

2004-01-01

71

Dancing to Another Tune—Adhesive Moonlighting Proteins in Bacteria  

PubMed Central

Biological moonlighting refers to proteins which express more than one function. Moonlighting proteins occur in pathogenic and commensal as well as in Gram-positive and Gram-negative bacteria. The canonical functions of moonlighting proteins are in essential cellular processes, i.e., glycolysis, protein synthesis, chaperone activity, and nucleic acid stability, and their moonlighting functions include binding to host epithelial and phagocytic cells, subepithelia, cytoskeleton as well as to mucins and circulating proteins of the immune and hemostatic systems. Sequences of the moonlighting proteins do not contain known motifs for surface export or anchoring, and it has remained open whether bacterial moonlighting proteins are actively secreted to the cell wall or whether they are released from traumatized cells and then rebind onto the bacteria. In lactobacilli, ionic interactions with lipoteichoic acids and with cell division sites are important for surface localization of the proteins. Moonlighting proteins represent an abundant class of bacterial adhesins that are part of bacterial interactions with the environment and in responses to environmental changes. Multifunctionality in bacterial surface proteins appears common: the canonical adhesion proteins fimbriae express also nonadhesive functions, whereas the mobility organelles flagella as well as surface proteases express adhesive functions. PMID:24833341

Kainulainen, Veera; Korhonen, Timo K.

2014-01-01

72

Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model  

SciTech Connect

Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 ?g/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ? Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ? Use of cultured seminiferous tubules in bicameral chambers ? Low concentrations of Cr(VI) (10 ?g/l) altered the trans-epithelial resistance. ? Cr(VI) did not alter claudin-11 and N-cadherin. ? Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

2013-04-01

73

Polymeric Thin Films That Resist the Adsorption of Proteins and the Adhesion of Bacteria  

E-print Network

Polymeric Thin Films That Resist the Adsorption of Proteins and the Adhesion of Bacteria Robert G of thin polymeric films that resist the adsorption of proteins and the adhesion of bacteria to an extent.Polyaminesfunctionalizedwithacetylchlorideproducedfilmsthatresistedtheadsorption of protein and the adhesion of bacteria to a useful extent. Functionalization of the polyamine with acyl

Prentiss, Mara

74

Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis.  

PubMed

The 3,4-dihydroxyphenyl-l-alanine (Dopa)-containing proteins of mussel byssus play a critical role in wet adhesion and have inspired versatile new synthetic strategies for adhesives and coatings. Apparently, however, not all mussel adhesive proteins are beholden to Dopa chemistry. The cDNA-deduced sequence of Pvfp-1, a highly aromatic and redox active byssal coating protein in the green mussel Perna viridis, suggests that Dopa may be replaced by a post-translational modification of tryptophan. The N-terminal tryptophan-rich domain of Pvfp-1 contains 42 decapeptide repeats with the consensus sequences ATPKPW(1)TAW(2)K and APPPAW(1)TAW(2)K. A small collagen domain (18 Gly-X-Y repeats) is also present. Tandem mass spectrometry of isolated tryptic decapeptides has detected both C(2)-hexosylated tryptophan (W(1)) and C(2)-hexosylated hydroxytryptophan (W(2)), the latter of which is redox active. The UV absorbance spectrum of W(2) is consistent with 7-hydroxytryptophan, which represents an intriguing new theme for bioinspired opportunistic wet adhesion. PMID:19584055

Zhao, Hua; Sagert, Jason; Hwang, Dong Soo; Waite, J Herbert

2009-08-28

75

Glycosylated Hydroxytryptophan in a Mussel Adhesive Protein from Perna viridis*  

PubMed Central

The 3,4-dihydroxyphenyl-l-alanine (Dopa)-containing proteins of mussel byssus play a critical role in wet adhesion and have inspired versatile new synthetic strategies for adhesives and coatings. Apparently, however, not all mussel adhesive proteins are beholden to Dopa chemistry. The cDNA-deduced sequence of Pvfp-1, a highly aromatic and redox active byssal coating protein in the green mussel Perna viridis, suggests that Dopa may be replaced by a post-translational modification of tryptophan. The N-terminal tryptophan-rich domain of Pvfp-1 contains 42 decapeptide repeats with the consensus sequences ATPKPW1TAW2K and APPPAW1TAW2K. A small collagen domain (18 Gly-X-Y repeats) is also present. Tandem mass spectrometry of isolated tryptic decapeptides has detected both C2-hexosylated tryptophan (W1) and C2-hexosylated hydroxytryptophan (W2), the latter of which is redox active. The UV absorbance spectrum of W2 is consistent with 7-hydroxytryptophan, which represents an intriguing new theme for bioinspired opportunistic wet adhesion. PMID:19584055

Zhao, Hua; Sagert, Jason; Hwang, Dong Soo; Waite, J. Herbert

2009-01-01

76

Mussel adhesive protein provides cohesive matrix for collagen type-1?.  

PubMed

Understanding the interactions between collagen and adhesive mussel foot proteins (mfps) can lead to improved medical and dental adhesives, particularly for collagen-rich tissues. Here we investigated interactions between collagen type-1, the most abundant load-bearing animal protein, and mussel foot protein-3 (mfp-3) using a quartz crystal microbalance and surface forces apparatus (SFA). Both hydrophilic and hydrophobic variants of mfp-3 were exploited to probe the nature of the interaction between the protein and collagen. Our chief findings are: 1) mfp-3 is an effective chaperone for tropocollagen adsorption to TiO2 and mica surfaces; 2) at pH 3, collagen addition between two mfp-3 films (Wc = 5.4 ± 0.2 mJ/m(2)) increased their cohesion by nearly 35%; 3) oxidation of Dopa in mfp-3 by periodate did not abolish the adhesion between collagen and mfp-3 films, and 4) collagen bridging between both hydrophilic and hydrophobic mfp-3 variant films is equally robust, suggesting that hydrophobic interactions play a minor role. Extensive H-bonding, ?-cation and electrostatic interactions are more plausible to explain the reversible bridging of mfp-3 films by collagen. PMID:25770997

Martinez Rodriguez, Nadine R; Das, Saurabh; Kaufman, Yair; Wei, Wei; Israelachvili, Jacob N; Waite, J Herbert

2015-05-01

77

Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT  

PubMed Central

The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT. PMID:24297751

Rogers, Crystal D.; Saxena, Ankur

2013-01-01

78

Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression  

Microsoft Academic Search

Twist, a newly found EMT-inducer, has been reported to be up-regulated in those of diffuse-type gastric carcinomas with high N-cadherin level. We show here MKN45, a cell line derived from undifferentiated carcinomas cells, expresses high levels of Twist. Down-regulation of Twist, using an antisense Twist vector in MKN45 cells, inhibits cell migration and invasion, companied with a morphologic changes associated

Zhou Yang; Xiaohong Zhang; Haiju Gang; Xiaojun Li; Zumao Li; Tao Wang; Juan Han; Ting Luo; Fuqiang Wen; Xiaoting Wu

2007-01-01

79

N-cadherin locks left-right asymmetry by ending the leftward movement of Hensen's node cells.  

PubMed

The stereotypic left-right (LR) asymmetric distribution of internal organs is due to an asymmetric molecular cascade in the lateral plate mesoderm (LPM) that is originated at the embryonic node. In chicken embryos, molecular asymmetries at Hensen's node are created by leftward cell movements that occur transiently. What terminates these movements, and, moreover, what is the impact of prolonging them on the LR asymmetry cascade? We show that leftward movements last longer when N-cadherin function is blocked and cease prematurely when N-cadherin is overexpressed on the right side of the node. The prolonged leftward movements lead to loss of asymmetric expression of fgf8 and nodal at the node region. This originates an abnormal expression of the asymmetric genes cer1 and snai1 in the LPM, resulting in mispositioned hearts. We conclude that N-cadherin stops the leftward cell movements and that this termination is an essential step in the establishment of LR asymmetry. PMID:25117685

Mendes, Raquel V; Martins, Gabriel G; Cristovão, Ana M; Saúde, Leonor

2014-08-11

80

RP1 Is a Phosphorylation Target of CK2 and Is Involved in Cell Adhesion  

PubMed Central

RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association. PMID:23844040

Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

2013-01-01

81

N-cadherin/catenin complex as a master regulator of intercalated disc function.  

PubMed

Intercellular adhesive junctions are essential for maintaining the physical integrity of tissues; this is particularly true for the heart that is under constant mechanical load. The correct functionality of the heart is dependent on the electrical and mechanical coordination of its constituent cardiomyocytes. The intercalated disc (ID) structure located at the termini of the rod-shaped adult cardiomyocyte contains various junctional proteins responsible for the integration of structural information and cell-cell communication. According to the classical description, the ID consists of three distinct junctional complexes: adherens junction (AJ), desmosome (Des), and gap junction (GJ) that work together to mediate mechanical and electrical coupling of cardiomyocytes. However, recent morphological and molecular studies indicate that AJ and Des components are capable of mixing together resulting in a "hybrid adhering junction" or "area composita." This review summarizes recent progress in understanding the in vivo function(s) of AJ components in cardiac homeostasis and disease. PMID:24766605

Vite, Alexia; Radice, Glenn L

2014-06-01

82

Structural basis of cell-cell adhesion by cadherins  

Microsoft Academic Search

Crystal structures of the amino-terminal domain of N-cadherin provide a picture at the atomic level of a specific adhesive contact between cells. A repeated set of dimer interfaces is common to the structure in three lattices. These interactions combine to form a linear zipper of molecules that mirrors the linear structure of the intracellular filaments with which cadherins associate. This

Lawrence Shapiro; Allison M. Fannon; Peter D. Kwong; Andrew Thompson; Mogens S. Lehmann; Gerhard Grübel; Jean-François Legrand; Jens Als-Nielsen; David R. Colman; Wayne A. Hendrickson

1995-01-01

83

Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques.  

PubMed

The adhesive plaques of Mytilus byssus are investigated increasingly to determine the molecular requirements for wet adhesion. Mfp-2 is the most abundant protein in the plaques, but little is known about its function. Analysis of Mfp-2 films using the surface forces apparatus detected no interaction between films or between a film and bare mica; however, addition of Ca(2+) and Fe(3+) induced significant reversible bridging (work of adhesion W(ad) approximately 0.3 mJ/m(2) to 2.2 mJ/m(2)) between two films at 0.35 m salinity. The strongest observed Fe(3+)-mediated bridging approaches the adhesion of oriented avidin-biotin complexes. Raman microscopy of plaque sections supports the co-localization of Mfp-2 and iron, which interact by forming bis- or tris-DOPA-iron complexes. Mfp-2 adhered strongly to Mfp-5, a DOPA-rich interfacial adhesive protein, but not to another interfacial protein, Mfp-3, which may in fact displace Mfp-2 from mica. In the presence of metal ions or Mfp-5, Mfp-2 adhesion was fully reversible. These results suggest that plaque cohesiveness depends on Mfp-2 complexation of metal ions, particularly Fe(3+) and also by Mfp-2 interaction with Mfp-5 at the plaque-substratum interface. PMID:20566644

Hwang, Dong Soo; Zeng, Hongbo; Masic, Admir; Harrington, Matthew J; Israelachvili, Jacob N; Waite, J Herbert

2010-08-13

84

Isolation of Focal Adhesion Proteins for Biochemical and Proteomic Analysis  

PubMed Central

Focal adhesions (FAs) are discrete plasma membrane-associated adhesive organelles that play dual roles in cell force transduction and signaling. FAs consist of clustered transmembrane heterodimeric integrin extracellular matrix (ECM) receptors and a large number of cytoplasmic proteins that collectively form thin plaques linking the ECM to actin filament bundles of the cytoskeleton. FAs are complex organelles that can change their composition in response to biochemical or mechanical cues. These compositional differences may underlie the ability of FAs to mediate an array of important cell functions including adhesion, signaling, force transduction, and regulation of the cytoskeleton. These functions contribute to the physiological processes of the immune response, development, and differentiation. However, linking FA composition to FA function has been difficult since there has been no method to isolate intact FAs reproducibly and determine their composition. We report here a new method for isolating FA structures in cultured cells distinct from cytoplasmic, nuclear, and internal membranous organellar components of the cell. We provide protocols for validation of the fractionation by immunofluorescence and immunoblotting, procedures for preparing the isolated FAs for mass spectrometric proteomic analysis, tips on data interpretation and analysis, and an approach for comparing FA composition in cells in which small GTPase signaling is perturbed. PMID:21909920

Kuo, Jean-Cheng; Han, Xuemei; Yates, John R.; Waterman, Clare M.

2014-01-01

85

Adhesion and structure properties of protein nanomaterials containing hydrophobic and charged amino acids.  

PubMed

Protein polymers are being used or considered for biobased adhesives and coating materials. Most adhesives derived from macro protein molecules work through receptors or cross-links to bring about adhesion. The adhesion mechanism of protein polymers would lead to better understanding of adhesives and the discovery of new practical properties of protein polymers at both nano- and macro-scales. The objective of this research work was to study adhesion properties of protein polymers at nanoscale (a peptide adhesive with nanometer-scale units that range in size of several nanometers, defined as protein nanomaterial). Seven protein nanomaterial samples with different degrees of adhesive strength were designed and synthesized using solid phase chemistries. All protein nanomaterials contain a common hydrophobic core flanked by charged amino acid sequences. The adhesion properties of the protein nanomaterials were investigated at different pH values and curing temperatures. The protein nanomaterials self aggregate and interact with the wood surface. The protein nanomaterial KKK-FLIVIGSII-KKK identified in this study had high adhesive strength toward wood. It had the highest shear strength at pH 12, with an amino acid sequence that was very hydrophobic and uncharged. This protein nanomaterial underwent structural analyses using circular dichroism, laser-Fourier transform infrared, and laser desorption mass spectrometry. At pH 12 this peptide adopted a pH-induced beta-like conformation. Adhesive strength reflects contributions of both hydrogen bonding and van der Waals interactions. Ionic and covalent bonds do not appear to be significant factors for adhesion in this study. PMID:16573147

Shen, Xinchun; Mo, Xiaoqun; Moore, Robyn; Frazier, Shawnalea J; Iwamoto, Takeo; Tomich, John M; Sun, Xiuzhi Susan

2006-03-01

86

The uvomorulin-anchorage protein alpha catenin is a vinculin homologue.  

PubMed Central

The cytoplasmic region of the Ca(2+)-dependent cell-adhesion molecule (CAM) uvomorulin associates with distinct cytoplasmic proteins with molecular masses of 102, 88, and 80 kDa termed alpha, beta, and gamma catenin, respectively. This complex formation links uvomorulin to the actin filament network, which seems to be of primary importance for its cell-adhesion properties. We show here that antibodies against alpha catenin also immunoprecipitate complexes that contain human N-cadherin, mouse P-cadherin, chicken A-CAM (adherens junction-specific CAM; also called N-cadherin) or Xenopus U-cadherin, demonstrating that alpha catenin is complexed with other cadherins. In immunofluorescence tests, alpha catenin is colocalized with cadherins at the plasma membrane. However, in cadherin-negative Ltk- cells, alpha catenin is found uniformly distributed in the cytoplasm, suggesting some additional biological function(s). Expression of uvomorulin in these cells results in a concentration of alpha catenin at membrane areas of cell contacts. We also have cloned and sequenced murine alpha catenin. The deduced amino acid sequence reveals a significant homology to vinculin. Our results suggest the possibility of a new vinculin-related protein family involved in the cytoplasmic anchorage of cell-cell and cell-substrate adhesion molecules. Images PMID:1924379

Herrenknecht, K; Ozawa, M; Eckerskorn, C; Lottspeich, F; Lenter, M; Kemler, R

1991-01-01

87

Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells  

SciTech Connect

Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and p130CAS, and analysed for reactivity, intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences, and subcellular localisation analysis revealed that in pathological MSCs, paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} formed nuclear molecular complexes. Increased expression of paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further, because FAK is an HSP90{alpha}/{beta} client protein, these results suggest the utility of HSP90{alpha}/{beta} inhibition as a target for adjuvant therapy for myelodysplasia.

Aanei, Carmen Mariana, E-mail: caanei@yahoo.com [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Eloae, Florin Zugun [Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)] [Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Flandrin-Gresta, Pascale [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France) [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Tavernier, Emmanuelle [Service Hematologie Clinique, Institut de Cancerologie de la Loire, 42270, Saint-Priest-en-Jarez (France) [Service Hematologie Clinique, Institut de Cancerologie de la Loire, 42270, Saint-Priest-en-Jarez (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Carasevici, Eugen [Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)] [Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Guyotat, Denis [Service Hematologie Clinique, Institut de Cancerologie de la Loire, 42270, Saint-Priest-en-Jarez (France) [Service Hematologie Clinique, Institut de Cancerologie de la Loire, 42270, Saint-Priest-en-Jarez (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Campos, Lydia [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France) [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France)

2011-11-01

88

Protein-based underwater adhesives and the prospects for their biotechnological production  

Microsoft Academic Search

Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the\\u000a last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments.\\u000a More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example,\\u000a synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine

Russell J. Stewart

2011-01-01

89

Expression of epithelial adhesion proteins and integrins in chronic inflammation.  

PubMed Central

Epithelial cell behavior in chronic inflammation is poorly characterized. During inflammation of tooth-supporting structures (periodontal disease), increased proliferation of epithelial cells into the inflamed connective tissue stroma is commonly seen. In some areas ulceration and degeneration take place. We studied alterations in the expression of adhesion molecules and integrins during chronic periodontal inflammation. In inflamed tissue, laminin-1 and type IV collagen were still present in the basement membrane and surrounding blood vessels, but they were also found extravascularly in inflamed connective tissue stroma. Type VII collagen and laminin-5 (also known as kalinin, epiligrin, or nicein) were poorly preserved in the basement membrane zone, but both were found in unusual streak-like distributions in the subepithelial connective tissue stroma in inflamed tissue. Both fibronectin and tenascin were substantially decreased in chronically inflamed connective tissue, showing only punctate staining at the basement membrane zone. Integrins of the beta 1 family showed two distinct staining patterns in epithelial cells during chronic inflammation; focal losses of beta 1 integrins (alpha 2 beta 1 and alpha 3 beta 1) were found in most areas, while in other areas the entire pocket epithelium was found to be strongly positive for beta 1 integrins. No members of the alpha v integrin family were found in any epithelia studied. Expression of the alpha 6 beta 4 integrin was high in basal cells of healthy tissue, but weak in epithelium associated with chronic inflammation. Chronic inflammation therefore involves alterations in both adhesion proteins and integrins expressed by epithelial cells. Basement membrane components found at abnormal sites in stroma in chronic inflammation might serve as new adhesive ligands for various cell types in inflamed stroma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7541610

Haapasalmi, K.; Mäkelä, M.; Oksala, O.; Heino, J.; Yamada, K. M.; Uitto, V. J.; Larjava, H.

1995-01-01

90

Nucleation and growth of cadherin adhesions  

SciTech Connect

Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions.

Lambert, Mireille [INSERM, U839, Paris, F-75005 (France); Universite Pierre et Marie Curie-Paris6, Paris, Institut du Fer a Moulin, UMR-S0839, Paris, F-75005 (France); Thoumine, Olivier [Universite Bordeaux 2, CNRS, UMR5091, Institut Francois Magendie de Neurosciences, Bordeaux, F-33077 (France); Brevier, Julien [Universite Joseph Fourier, CNRS, UMR5588, Saint-Martin d'Heres, F-38402 (France); Choquet, Daniel [Universite Bordeaux 2, CNRS, UMR5091, Institut Francois Magendie de Neurosciences, Bordeaux, F-33077 (France); Riveline, Daniel [Universite Joseph Fourier, CNRS, UMR5588, Saint-Martin d'Heres, F-38402 (France); Mege, Rene-Marc [INSERM, U839, Paris, F-75005 (France); Universite Pierre et Marie Curie-Paris6, Paris, Institut du Fer a Moulin, UMR-S0839, Paris, F-75005 (France)], E-mail: mege@fer-a-moulin.inserm.fr

2007-11-15

91

Regulation of Cellular Adhesion to Extracellular Matrix Proteins by Galectin-3  

Microsoft Academic Search

The control of cellular adhesion to extracellular matrix proteins is poorly understood. In the present analyses, we set out to test the hypothesis that high galectin-3 concentration on the cell surface downregulates cellular adhesion to the extracellular matrix proteins. Various tumor cell lines were briefly incubated without or with galectin-3 and then allowed to adhere to wells coated with laminin-1,

Josiah Ochieng; Maria L. Leite-Browning; Paula Warfield

1998-01-01

92

Lipoprotein lipase can function as a monocyte adhesion protein.  

PubMed

Lipoprotein lipase (LPL) is made by several cell types, including macrophages within the atherosclerotic lesion. LPL, a dimer of identical subunits, has high affinity for heparin and cell surface heparan sulfate proteoglycans (HSPGs). Several studies have shown that cell surface HSPGs can mediate cell binding to adhesion proteins. Here, we tested whether LPL, by virtue of its HSPG binding could mediate monocyte adhesion to surfaces. Monocyte binding to LPL-coated (1-25 micrograms/mL) tissue culture plates was 1.4- to 7-fold higher than that of albumin-treated plastic. Up to 3-fold more monocytes bound to the subendothelial matrix that had been pretreated with LPL. LPL also doubled the number of monocytes that bound to endothelial cells (ECs). Heparinase and heparitinase treatment of monocytes or incubation of monocytes with heparin decreased monocyte binding to LPL. Heparinase/heparitinase treatment of the matrix also abolished the LPL-mediated increase in monocyte binding. These results suggest that LPL dimers mediate monocyte binding by forming a "bridge" between matrix and monocyte surface HSPGs. Inhibition of LPL activity with tetrahydrolipstatin, a lipase active-site inhibitor, did not affect the LPL-mediated monocyte binding. To assess whether specific oligosaccharide sequences in HSPGs mediated monocyte binding to LPL, competition experiments were performed by using known HSPG binding proteins. Neither antithrombin nor thrombin inhibited monocyte binding to LPL. Next, we tested whether integrins were involved in monocyte binding to LPL. Surprisingly, monocyte binding to LPL-coated plastic and matrix was inhibited by approximately 35% via integrin-binding arginine-glycine-aspartic acid peptides. This result suggests that monocyte binding to LPL was mediated, in part, by monocyte cell surface integrins. In summary, our data show that LPL, which is present on ECs and in the subendothelial matrix, can augment monocyte adherence. This increase in monocyte-matrix interaction could promote macrophage accumulation within arteries. PMID:9261275

Obunike, J C; Paka, S; Pillarisetti, S; Goldberg, I J

1997-07-01

93

Aberrant Glycosylation of Plasma Proteins in Severe Preeclampsia Promotes Monocyte Adhesion  

PubMed Central

Glycosylation of plasma proteins increases during pregnancy. Our objectives were to investigate an anti-inflammatory role of these proteins in normal pregnancies and determine whether aberrant protein glycosylation promotes monocyte adhesion in preeclampsia. Plasma was prospectively collected from nonpregnant controls and nulliparous patients in all 3 trimesters. Patients were divided into cohorts based on the applicable postpartum diagnosis. U937 monocytes were preconditioned with enzymatically deglycosylated plasma, and monocyte adhesion to endothelial cell monolayers was quantified by spectrophotometry. Plasma from nonpregnant controls, first trimester normotensives, and first trimester patients with mild preeclampsia inhibited monocyte–endothelial cell adhesion (P < .05), but plasma from first trimester patients with severe preeclampsia and second and third trimester normotensives did not. Deglycosylating plasma proteins significantly increased adhesion in all the cohorts. These results support a role of plasma glycoprotein interaction in monocyte–endothelial cell adhesion and could suggest a novel therapeutic target for severe preeclampsia. PMID:23757314

Flood-Nichols, Shannon K.; Kazanjian, Avedis A.; Tinnemore, Deborah; Gafken, Philip R.; Ogata, Yuko; Napolitano, Peter G.; Stallings, Jonathan D.; Ippolito, Danielle L.

2014-01-01

94

Involvement of Sib Proteins in the Regulation of Cellular Adhesion in Dictyostelium discoideum? †  

PubMed Central

Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechanism underlying this regulation, we analyzed the expression of recently identified Dictyostelium adhesion molecules (Sib proteins) that present features also found in mammalian integrins. sibA and sibC are both expressed in vegetative Dictyostelium cells, but the expression of sibC is repressed strongly in conditions where cellular adhesion decreases. Analysis of sibA and sibC mutant cells further suggests that variations in the expression levels of sibC account largely for changes in cellular adhesion in response to environmental cues. PMID:18676957

Cornillon, Sophie; Froquet, Romain; Cosson, Pierre

2008-01-01

95

Adhesion G-Protein Coupled Receptors: Elusive Hybrids Come of Age  

PubMed Central

Adhesion G-protein coupled receptors (GPCRs) are the most recently identified and least understood subfamily of GPCRs. Adhesion GPCRs are characterized by unusually long ectodomains with adhesion-related repeats that facilitate cell-cell and cell-cell matrix contact, as well as a proteolytic cleavage site-containing domain that is a structural hallmark of the family. Their unusual chimeric structure of adhesion-related ectodomain with a seven-pass transmembrane domain and cytoplasmic signaling makes these proteins highly versatile in mediating cellular signaling in response to extracellular adhesion or cell motility events. The ligand binding and cytoplasmic signaling modes for members of this family are beginning to be elucidated, and recent studies have demonstrated critical roles for Adhesion GPCRs in planar polarity and other important cell-cell and cell-matrix interactions during development and morphogenesis, as well as heritable diseases and cancer. PMID:24229322

Simundza, Julia; Cowin, Pamela

2014-01-01

96

Allosteric Coupling in the Bacterial Adhesive Protein FimH*  

PubMed Central

The protein FimH is expressed by the majority of commensal and uropathogenic strains of Escherichia coli on the tips of type 1 fimbriae and mediates adhesion via a catch bond to its ligand mannose. Crystal structures of FimH show an allosteric conformational change, but it remains unclear whether all of the observed structural differences are part of the allosteric mechanism. Here we use the protein structural analysis tool RosettaDesign combined with human insight to identify and synthesize 10 mutations in four regions that we predicted would stabilize one of the conformations of that region. The function of each variant was characterized by measuring binding to the ligand mannose, whereas the allosteric state was determined using a conformation-specific monoclonal antibody. These studies demonstrated that each region investigated was indeed part of the FimH allosteric mechanism. However, the studies strongly suggested that some regions were more tightly coupled to mannose binding and others to antibody binding. In addition, we identified many FimH variants that appear locked in the low affinity state. Knowledge of regulatory sites outside the active and effector sites as well as the ability to make FimH variants locked in the low affinity state may be crucial to the future development of novel antiadhesive and antimicrobial therapies using allosteric regulation to inhibit FimH. PMID:23821547

Rodriguez, Victoria B.; Kidd, Brian A.; Interlandi, Gianluca; Tchesnokova, Veronika; Sokurenko, Evgeni V.; Thomas, Wendy E.

2013-01-01

97

Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive.  

PubMed

Despite the biodegradability, non-toxicity, and renewability, commercially available soy protein-based adhesives still have not been widely adopted by industry, partially due to their disappointing performances, i.e., low glue strength in the dry state and no glue strength in the wet state. In this study, biomimetic soy protein/CaCO(3) hybrid wood glue was devised and an attempt made to improve the adhesion strength. The structure and morphology of the adhesive and its fracture bonding interface and adhesion strength were investigated. Results showed that the compact rivets or interlocking links, and ion crosslinking of calcium, carbonate, hydroxyl ions in the adhesive greatly improving the water-resistance and bonding strength of soy protein adhesives. Glue strength of soy protein hybrid adhesive was higher than 6 MPa even after three water-immersion cycles. This green and sustainable proteinous hybrid adhesive, with high glue strength and good water-resistance, is a good substitute for formaldehyde wood glues. PMID:20307978

Liu, Dagang; Chen, Huihuang; Chang, Peter R; Wu, Qinglin; Li, Kaifu; Guan, Litao

2010-08-01

98

Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive  

NASA Astrophysics Data System (ADS)

Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical cross-linking, the synergy of adhesive blends was evaluated through classical rule-of-mixture. The findings of this study warrants further investigation concerning other potential uses of recovered sludge protein, especially as food supplements and economic implications.

Pervaiz, Muhammad

99

Focal adhesion linker proteins expression of fibroblast related to adhesion in response to different transmucosal abutment surfaces  

PubMed Central

PURPOSE To evaluate adherence of human gingival fibroblasts (HGFs) to transmucosal abutment of dental implant with different surface conditions with time and to investigate the roles of focal adhesion linker proteins (FALPs) involved in HGFs adhesion to abutment surfaces. MATERIALS AND METHODS Morphologies of cultured HGFs on titanium and ceramic discs with different surface were observed by scanning electron microscopy. Biocompatibility and focal adhesion were evaluated by ultrasonic wave application and cell viability assay. FALPs expression levels were assessed by RT-PCR and western blot. RESULTS There seemed to be little difference in biocompatibility and adhesion strength of HGFs depending on the surface conditions and materials. In all experimental groups, the number of cells remaining on the disc surface after ultrasonic wave application increased more than 2 times at 3 days after seeding compared to 1-day cultured cells and this continued until 7 days of culture. FALPs expression levels, especially of vinculin and paxillin, also increased in 5-day cultured cells compared to 1-day cultured fibroblasts on the disc surface. CONCLUSION These results might suggest that the strength of adhesion of fibroblasts to transmucosal abutment surfaces increases with time and it seemed to be related to expressions of FALPs. PMID:24049577

Moon, Yeon-Hee; Yoon, Mi-Kyeong; Moon, Jung-Sun; Kang, Jee-Hae; Kim, Sun-Hun; Yang, Hong-Seo

2013-01-01

100

Experimental strategies for the identification and characterization of adhesive proteins in animals: a review  

PubMed Central

Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

2015-01-01

101

Experimental strategies for the identification and characterization of adhesive proteins in animals: a review.  

PubMed

Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

2015-02-01

102

Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive  

E-print Network

and metal- ion-chelable proteins played important roles in mussel adhesion. Commercial production Agriculture and Agri-Food Canada, Biobased Platforms, Saskatoon, SK, Canada S7N0X2 a r t i c l e i n f o for the production of wood adhesive is not only inevitable but also responsive to reducing the impact caused

103

Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths  

NASA Astrophysics Data System (ADS)

The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude.The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30536d

Thormann, Esben; MizunoPresent Address: Nihon L'Oreal, Research; Innovation Center, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa, Japan., Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M. Soledad; Arias, José Luis; Rutland, Mark W.; PaiPresent Address: CenterFunctional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973., Ranjith Krishna; Bergström, Lennart

2012-06-01

104

Homophilic adhesion of the myelin Po protein requires glycosylation of both molecules in the homophilic pair  

E-print Network

Abstract. The myelin Po protein is glycosylated at a single site, asparagine 93, within its only immunoglobulin (Ig)-like domain. We have previously shown that Po behaves like a homophilic adhesion molecule (Filbin,

Marie T. Filbin; Gihan I. Tennekoon; F. S. Walsh; J. A. Pizzey

1993-01-01

105

Formulation designs and characterisations of whey-protein based API adhesives  

Microsoft Academic Search

Purpose – The purpose of this paper is to investigate the effects of the components of whey-protein based aqueous polymer-isocyanate (API) adhesives on the bond strength. Design\\/methodology\\/approach – The bond test (according to the JIS K6806-2003 standard), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterise the whey-protein based API adhesives with various formulations and

Zongyan Zhao; Zhenhua Gao; Wenbo Wang; Mingruo Guo

2011-01-01

106

Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells  

SciTech Connect

Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)] [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium)] [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)] [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

2013-11-22

107

Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue.  

PubMed

Mussels have a remarkable ability to attach their holdfast, or byssus, opportunistically to a variety of substrata that are wet, saline, corroded, and/or fouled by biofilms. Mytilus edulis foot protein-5 (Mefp-5) is one of several proteins in the byssal adhesive plaque of the mussel M. edulis. The high content of 3,4-dihydroxyphenylalanine (Dopa) (~30 mol %) and its localization near the plaque-substrate interface have often prompted speculation that Mefp-5 plays a key role in adhesion. Using the surface forces apparatus, we show that on mica surfaces Mefp-5 achieves an adhesion energy approaching E(ad) = ~-14 mJ/m(2). This exceeds the adhesion energy of another interfacial protein, Mefp-3, by a factor of 4-5 and is greater than the adhesion between highly oriented monolayers of biotin and streptavidin. The adhesion to mica is notable for its dependence on Dopa, which is most stable under reducing conditions and acidic pH. Mefp-5 also exhibits strong protein-protein interactions with itself as well as with Mefp-3 from M. edulis. PMID:22873939

Danner, Eric W; Kan, Yajing; Hammer, Malte U; Israelachvili, Jacob N; Waite, J Herbert

2012-08-21

108

Adhesion of Mussel Foot Protein Mefp-5 to Mica: An Underwater Superglue†  

PubMed Central

Mussels have a remarkable ability to attach their holdfast, or byssus, opportunistically to a variety of substrata that are wet, saline, corroded, and/or fouled by biofilms. Mytilus edulis foot protein-5 (Mefp-5) is one of several proteins in the byssal adhesive plaque of the mussel M. edulis. The high content of 3,4 dihydroxyphenylalanine (Dopa) (~30 mol%) and its localization near the plaque-substrate interface have often prompted speculation that Mefp-5 plays a key role in adhesion. Using the surface forces apparatus, we show that on mica surfaces Mefp-5 achieves an adhesion energy approaching Ead = ~? 14 mJ/m2. This exceeds the adhesion energy of another interfacial protein, Mefp-3, by a factor of 4–5 and is greater than the adhesion between highly oriented monolayers of biotin and streptavidin. The adhesion to mica is notable for its dependence on Dopa, which is most stable under reducing conditions and acidic pH. Mefp-5 also exhibits strong protein-protein interactions with itself as well as with Mefp-3 from M. edulis. PMID:22873939

Danner, Eric W.; Kan, Yajing; Hammer, Malte U.; Israelachvili, Jacob N.; Waite, J. Herbert

2012-01-01

109

Strong underwater adhesives made by self-assembling multi-protein nanofibres.  

PubMed

Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9?mJ?m(-2), which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH???7.0. PMID:25240674

Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M; Lu, Timothy K

2014-10-01

110

Strong underwater adhesives made by self-assembling multi-protein nanofibres  

NASA Astrophysics Data System (ADS)

Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure–function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9?mJ?m?2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH???7.0.

Zhong, Chao; Gurry, Thomas; Cheng, Allen A.; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M.; Lu, Timothy K.

2014-10-01

111

Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities  

PubMed Central

Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa). PMID:25295513

Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

2014-01-01

112

The SRC-associated protein CUB Domain-Containing Protein-1 regulates adhesion and motility  

PubMed Central

Multiple SRC-family kinases (SFKs) are commonly activated in carcinoma and appear to have a role in metastasis through incompletely understood mechanisms. Recent studies have shown that CDCP1 (CUB (complement C1r/C1s, Uegf, Bmp1) Domain-Containing Protein-1) is a transmembrane protein and an SRC substrate potentially involved in metastasis. Here we show that increased SFK and CDCP1 tyrosine phosphorylation is, surprisingly, associated with a decrease in FAK phosphorylation. This appears to be true in human tumors as shown by our correlation analysis of a mass spectrometric data set of affinity-purified phosphotyrosine peptides obtained from normal and cancer lung tissue samples. Induction of tyrosine phosphorylation of CDCP1 in cell culture, including by a mAb that binds to its extracellular domain, promoted changes in SFK and FAK tyrosine phosphorylation, as well as in PKC™, a protein known to associate with CDCP1, and these changes are accompanied by increases in adhesion and motility. Thus, signaling events that accompany the CDCP1 tyrosine phosphorylation observed in cell lines and human lung tumors may explain how the CDCP1/SFK complex regulates motility and adhesion. PMID:21725358

Benes, CH; Poulogiannis, G; Cantley, LC; Soltoff, SP

2013-01-01

113

The SRC-associated protein CUB Domain-Containing Protein-1 regulates adhesion and motility.  

PubMed

Multiple SRC-family kinases (SFKs) are commonly activated in carcinoma and appear to have a role in metastasis through incompletely understood mechanisms. Recent studies have shown that CDCP1 (CUB (complement C1r/C1s, Uegf, Bmp1) Domain-Containing Protein-1) is a transmembrane protein and an SRC substrate potentially involved in metastasis. Here we show that increased SFK and CDCP1 tyrosine phosphorylation is, surprisingly, associated with a decrease in FAK phosphorylation. This appears to be true in human tumors as shown by our correlation analysis of a mass spectrometric data set of affinity-purified phosphotyrosine peptides obtained from normal and cancer lung tissue samples. Induction of tyrosine phosphorylation of CDCP1 in cell culture, including by a mAb that binds to its extracellular domain, promoted changes in SFK and FAK tyrosine phosphorylation, as well as in PKC(TM), a protein known to associate with CDCP1, and these changes are accompanied by increases in adhesion and motility. Thus, signaling events that accompany the CDCP1 tyrosine phosphorylation observed in cell lines and human lung tumors may explain how the CDCP1/SFK complex regulates motility and adhesion. PMID:21725358

Benes, C H; Poulogiannis, G; Cantley, L C; Soltoff, S P

2012-02-01

114

Adhesion mechanism in a DOPA-deficient foot protein from green mussels().  

PubMed

The holdfast or byssus of Asian green mussels, Perna viridis, contains a foot protein, pvfp-1, that differs in two respects from all other known adhesive mussel foot proteins (mfp): (1) instead of the hallmark L-3,4-dihydroxyphenylalanine (DOPA) residues in mfp-1, for example, pvfp-1 contains C(2)-mannosyl-7-hydroxytryptophan (Man7OHTrp). (2) In addition, pvfp-1 chains are not monomeric like mfp-1 but trimerized by collagen and coiled-coil domains near the carboxy terminus after a typical domain of tandemly repeated decapeptides. Here, the contribution of these peculiarities to adhesion was examined using a surface forces apparatus (SFA). Unlike previously studied mfp-1s, pvfp-1 showed significant adhesion to mica and, in symmetric pvfp-1 films, substantial cohesive interactions were present at pH 5.5. The role of Man7OHTrp in adhesion is not clear, and a DOPA-like role for Man7OHTrp in metal complexation (e.g., Cu(2+), Fe(3+)) was not observed. Instead, cation-? interactions with low desolvation penalty between Man7OHTrp and lysyl side chains and conformational changes (raveling and unraveling of collagen helix and coiled-coil domains) are the best explanations for the strong adhesion between pvfp-1 monomolecular films. The strong adhesion mechanism induced by cation-? interactions and conformational changes in pvfp-1 provides new insights for the development of biomimetic underwater adhesives. PMID:23105946

Hwang, Dong Soo; Zeng, Hongbo; Lu, Qingye; Israelachvili, Jacob; Waite, J Herbert

2012-01-01

115

Adhesion mechanism in a DOPA-deficient foot protein from green mussels†  

PubMed Central

The holdfast or byssus of Asian green mussels, Perna viridis, contains a foot protein, pvfp-1, that differs in two respects from all other known adhesive mussel foot proteins (mfp): (1) instead of the hallmark L-3,4-dihydroxyphenylalanine (DOPA) residues in mfp-1, for example, pvfp-1 contains C2-mannosyl-7-hydroxytryptophan (Man7OHTrp). (2) In addition, pvfp-1 chains are not monomeric like mfp-1 but trimerized by collagen and coiled-coil domains near the carboxy terminus after a typical domain of tandemly repeated decapeptides. Here, the contribution of these peculiarities to adhesion was examined using a surface forces apparatus (SFA). Unlike previously studied mfp-1s, pvfp-1 showed significant adhesion to mica and, in symmetric pvfp-1 films, substantial cohesive interactions were present at pH 5.5. The role of Man7OHTrp in adhesion is not clear, and a DOPA-like role for Man7OHTrp in metal complexation (e.g., Cu2+, Fe3+) was not observed. Instead, cation–? interactions with low desolvation penalty between Man7OHTrp and lysyl side chains and conformational changes (raveling and unraveling of collagen helix and coiled-coil domains) are the best explanations for the strong adhesion between pvfp-1 monomolecular films. The strong adhesion mechanism induced by cation–? interactions and conformational changes in pvfp-1 provides new insights for the development of biomimetic underwater adhesives. PMID:23105946

Hwang, Dong Soo; Zeng, Hongbo; Lu, Qingye; Israelachvili, Jacob; Waite, J. Herbert

2012-01-01

116

Self-Assembled Monolayers That Resist the Adsorption of Proteins and the Adhesion of Bacterial and Mammalian  

E-print Network

to the adhesion of bacteria (Staphylococcus aureus, Staphylococcus epidermidis) and the attachment and spreading of proteins from solution and the adhesion of Staphylococcus epidermidis, Staphylococcus aureus, and bovine the adhesion of S. aureus and S. epidermidis as well as did surfaces terminated with tri(ethylene glycol

Prentiss, Mara

117

Adrenomedullin increases fibroblast-like synoviocyte adhesion to extracellular matrix proteins by upregulating integrin activation  

PubMed Central

Introduction Rheumatoid arthritis (RA) is characterized by bone and cartilage invasion by fibroblast-like synoviocytes (FLSs). Adrenomedullin, a peptide with anabolic and antiapoptotic properties, is secreted by rheumatoid FLSs. Adrenomedullin also increases the expression of adhesion molecules in endothelial cells and keratinocytes. Here, we investigated whether adrenomedullin mediated FLS adhesion to extracellular matrix (ECM) proteins. Methods FLSs were isolated from synovial tissues from RA and osteoarthritis (OA) patients. Plates were coated overnight with the ECM proteins vitronectin, fibronectin, and type I collagen (Coll.I). Adrenomedullin was used as a soluble FLS ligand before plating. We tested interactions with the adrenomedullin receptor antagonist (22-52)adrenomedullin and with the protein kinase A (PKA) inhibitor H-89, and inhibition of co-receptor RAMP-2 by siRNA. Cell adhesion was measured by using color densitometry. Activation of ?2 and ?1 integrins was evaluated by fluorescent microscopy; integrin inhibition, by RGD peptides; and the talin-integrin interaction, by immunoprecipitation (IP). Results Adrenomedullin specifically increased RA-FLS adhesion to vitronectin, fibronectin, and Coll.I; no such effect was found for OA-FLS adhesion. Basal or adrenomedullin-stimulated RA-FLS adhesion was inhibited by (22-52)adrenomedullin, H-89, and RAMP-2 siRNA. Adrenomedullin-stimulated adhesion was inhibited by RGD peptides, and associated with ?2 and ?1 integrin activation. This activation was shown with IP to be related to an integrin-talin interaction and was significantly decreased by (22-52)adrenomedullin. Conclusions Adrenomedullin-stimulated RA-FLS adhesion was specific for ECM proteins and mediated by ?2 and ?1 integrins. This effect of adrenomedullin was dependent on adrenomedullin receptors. These results support a new role for adrenomedullin in rheumatoid synovial fibroblast pathobiology. PMID:20942979

2010-01-01

118

CAP interacts with cytoskeletal proteins and regulates adhesion-mediated ERK activation and motility.  

PubMed

CAP/Ponsin belongs to the SoHo family of adaptor molecules that includes ArgBP2 and Vinexin. These proteins possess an N-terminal sorbin homology (SoHo) domain and three C-terminal SH3 domains that bind to diverse signaling molecules involved in a variety of cellular processes. Here, we show that CAP binds to the cytoskeletal proteins paxillin and vinculin. CAP localizes to cell-extracellular matrix (ECM) adhesion sites, and this process requires binding to vinculin. Overexpression of CAP induces the aggregation of paxillin, vinculin and actin at cell-ECM adhesion sites. Moreover, CAP inhibits adhesion-dependent processes such as cell spreading and focal adhesion turnover, whereas a CAP mutant that is unable to localize to cell-ECM adhesion sites is incapable of exerting these effects. Finally, depletion of CAP by siRNA-mediated knockdown leads to enhanced cell spreading, migration and the activation of the PAK/MEK/ERK pathway in REF52 cells. Taken together, these results indicate that CAP is a cytoskeletal adaptor protein involved in modulating adhesion-mediated signaling events that lead to cell migration. PMID:17082770

Zhang, Mei; Liu, Jun; Cheng, Alan; Deyoung, Stephanie M; Chen, Xiaowei; Dold, Lisa H; Saltiel, Alan R

2006-11-15

119

c-Yes regulates cell adhesion at the blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithelium of rat testes*  

PubMed Central

During spermatogenesis, extensive junction restructuring takes place at the blood-testis barrier (BTB) and the Sertoli cell-spermatid interface known as the apical ectoplasmic specialization (apical ES, a testis-specific adherens junction) in the seminiferous epithelium. However, the mechanism(s) that regulates these critical events in the testis remains unknown. Based on the current concept in the field, changes in the phosphorylation status of integral membrane proteins at these sites can induce alterations in protein endocytosis and recycling, causing junction restructuring. Herein, c-Yes, a non-receptor protein tyrosine kinase, was found to express abundantly at the BTB and apical ES stage-specifically, coinciding with junction restructuring events at these sites during the seminiferous epithelial cycle of spermatogenesis. c-Yes also structurally associated with adhesion proteins at the BTB (e.g., occludin and N-cadherin) and the apical ES (e.g., ?1-integrin, laminin ?3 and ?3), possibly to regulate phosphorylation status of proteins at these sites. SU6656, a selective c-Yes inhibitor, was shown to perturb the Sertoli cell tight junction-permeability barrier in vitro, which is mediated by changes in the distribution of occludin and N-cadherin at the cell-cell interface, moving from cell surface to cytosol, thereby destabilizing the tight junction-barrier. However, this disruptive effect of SU6656 on the barrier was blocked by testosterone. Furthermore, c-Yes is crucial to maintain the actin filament network in Sertoli cells since a blockade of c-Yes by SU6656 induced actin filament disorganization. In summary, c-Yes regulates BTB and apical ES integrity by maintaining proper distribution of integral membrane proteins and actin filament organization at these sites. PMID:21256972

Xiao, Xiang; Mruk, Dolores D.; Lee, Will M.; Cheng, C. Yan

2011-01-01

120

Convergence of Igf2 expression and adhesion signalling via RhoA and p38 MAPK enhances myogenic differentiation.  

PubMed

Cell-cell contact is essential for appropriate co-ordination of development and it initiates significant signalling events. During myogenesis, committed myoblasts migrate to sites of muscle formation, align and form adhesive contacts that instigate cell-cycle exit and terminal differentiation into multinucleated myotubes; thus myogenesis is an excellent paradigm for the investigation of signals derived from cell-cell contact. PI3-K and p38 MAPK are both essential for successful myogenesis. Pro-myogenic growth factors such as IGF-II activate PI3-K via receptor tyrosine kinases but the extracellular cues and upstream intermediates required for activation of the p38 MAPK pathway in myoblast differentiation are not known. Initial observations suggested a correlation between p38 MAPK phosphorylation and cell density, which was also related to N-cadherin levels and Igf2 expression. Subsequent studies using N-cadherin ligand, dominant-negative N-cadherin, constitutively active and dominant-negative forms of RhoA, and MKK6 and p38 constructs, reveal a novel pathway in differentiating myoblasts that links cell-cell adhesion via N-cadherin to Igf2 expression (assessed using northern and promoter-reporter analyses) via RhoA and p38alpha and/or beta but not gamma. We thus define a regulatory mechanism for p38 activation that relates cell-cell-derived adhesion signalling to the synthesis of the major fetal growth factor, IGF-II. PMID:17105766

Lovett, Fiona A; Gonzalez, Ivelisse; Salih, Dervis A M; Cobb, Laura J; Tripathi, Gyanendra; Cosgrove, Ruth A; Murrell, Adele; Kilshaw, Peter J; Pell, Jennifer M

2006-12-01

121

Role of cell-cell adhesion complexes in embryonic stem cell biology.  

PubMed

Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadherin interacts with key components of the naive stemness pathway and ablating it prevents stem cells from forming well-differentiated teratomas or contributing to chimeric animals. In addition, depleting E-cadherin converts naive mouse ESCs into primed epiblast-like stem cells (EpiSCs). In line with this, a mesenchymal-to-epithelial transition (MET) occurs during reprogramming of somatic cells towards induced pluripotent stem cells (iPSCs), leading to downregulation of N-cadherin and acquisition of high E-cadherin levels. ?-catenin exerts a dual function; it acts in cadherin-based adhesion and in WNT signaling and, although WNT signaling is important for stemness, the adhesive function of ?-catenin might be crucial for maintaining the naive state of stem cells. In addition, evidence is rising that other junctional proteins are also important in ESC biology. Thus, precisely regulated levels and activities of several junctional proteins, in particular E-cadherin, safeguard naive pluripotency and are a prerequisite for complete somatic cell reprogramming. PMID:24931943

Pieters, Tim; van Roy, Frans

2014-06-15

122

Quantifying adhesion mechanisms and dynamics of human hematopoietic stem and progenitor cells.  

PubMed

Using planar lipid membranes with precisely defined concentrations of specific ligands, we have determined the binding strength between human hematopoietic stem cells (HSC) and the bone marrow niche. The relative significance of HSC adhesion to the surrogate niche models via SDF1?-CXCR4 or N-cadherin axes was quantified by (a) the fraction of adherent cells, (b) the area of tight adhesion, and (c) the critical pressure for cell detachment. We have demonstrated that the binding of HSC to the niche model is a cooperative process, and the adhesion mediated by the CXCR4- SDF1? axis is stronger than that by homophilic N-cadherin binding. The statistical image analysis of stochastic morphological dynamics unraveled that HSC dissipated energy by undergoing oscillatory deformation. The combination of an in vitro niche model and novel physical tools has enabled us to quantitatively determine the relative significance of binding mechanisms between normal HSC versus leukemia blasts to the bone marrow niche. PMID:25824493

Burk, Alexandra S; Monzel, Cornelia; Yoshikawa, Hiroshi Y; Wuchter, Patrick; Saffrich, Rainer; Eckstein, Volker; Tanaka, Motomu; Ho, Anthony D

2015-01-01

123

Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.  

PubMed

We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding. PMID:25351253

Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

2015-02-01

124

Intraperitoneal administration of activated protein C prevents postsurgical adhesion band formation.  

PubMed

Postsurgical peritoneal adhesion bands are the most important causes of intestinal obstruction, pelvic pain, and female infertility. In this study, we used a mouse model of adhesion and compared the protective effect of activated protein C (APC) to that of the Food and Drug Administration-approved antiadhesion agent, sodium hyaluronate/carboxymethylcellulose (Seprafilm) by intraperitoneal administration of either APC or Seprafilm to experimental animals. Pathological adhesion bands were graded on day 7, and peritoneal fluid concentrations of tissue plasminogen activator (tPA), d-dimer, thrombin-antithrombin complex, and cytokines (IL-1?, IL-6, interferon-?, tumor necrosis factor-?, transforming growth factor-?1) were evaluated. Inflammation scores were also measured based on histologic data obtained from peritoneal tissues. Relative to Seprafilm, intraperitoneal administration of human APC led to significantly higher reduction of postsurgical adhesion bands. Moreover, a markedly lower inflammation score was obtained in the adhesive tissues of the APC-treated group, which correlated with significantly reduced peritoneal concentrations of proinflammatory cytokines and an elevated tPA level. Further studies using variants of human APC with or without protease-activated receptor 1 (PAR1) signaling function and mutant mice deficient for either endothelial protein C receptor (EPCR) or PAR1 revealed that the EPCR-dependent signaling activity of APC is primarily responsible for its protective activity in this model. These results suggest APC has therapeutic potential for preventing postsurgical adhesion bands. PMID:25575539

Dinarvand, Peyman; Hassanian, Seyed Mahdi; Weiler, Hartmut; Rezaie, Alireza R

2015-02-19

125

Hydrophobic enhancement of Dopa-mediated adhesion in a mussel foot protein  

PubMed Central

Dopa (3,4-dihydroxyphenylalanine) is recognized as a key chemical signature of mussel adhesion and has been adopted into diverse synthetic polymer systems. Dopa’s notorious susceptibility to oxidation, however, poses significant challenges to the practical translation of mussel adhesion. Using a Surface Forces Apparatus to investigate the adhesion of Mfp3 (mussel foot protein 3) slow, a hydrophobic protein variant of the Mfp3 family in the plaque, we have discovered a subtle molecular strategy correlated with hydrophobicity that appears to compensate for Dopa instability. At pH 3, where Dopa is stable, Mfp3 slow like Mfp3 fast adhesion to mica is directly proportional to the mol% of Dopa present in the protein. At pH 5.5 and 7.5, however, loss of adhesion in Mfp3 slow was less than half that occurring in Mfp3 fast, purportedly because Dopa in Mfp3 slow is less prone to oxidation. Indeed, cyclic voltammetry showed that the oxidation potential of Dopa in Mfp3 slow is significantly higher than in Mfp3 fast at pH 7.5. A much greater difference between the two variants was revealed in the interaction energy of two symmetric Mfp3 slow films (Ead = ?3 mJ/m2). This energy corresponds to the energy of protein cohesion which is notable for its reversibility and pH-independence. Exploitation of aromatic hydrophobic sequences to protect Dopa against oxidation as well as to mediate hydrophobic and H-bonding interactions between proteins provides new insights for developing effective artificial underwater adhesives. PMID:23214725

Wei, Wei; Yu, Jing; Broomell, Christopher; Israelachvili, Jacob N.; Waite, J. Herbert

2013-01-01

126

Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.  

PubMed Central

Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

1995-01-01

127

Leuprorelin acetate affects adhesion molecule expression in human prostate cancer cells.  

PubMed

Reduced cell-cell adhesion allows malignant epithelial cells to invade the basal membrane and penetrate the stroma. This implies the potential of the cells to escape from the primary tumor as well as spreading ability. Herein, we investigated the effects of leuprorelin acetate (LA), a GnRH agonistic analogue, alone or in combination with dihydrotestosterone (DHT), on the expression of molecules involved in cell adhesion (E-cadherin, N-cadherin, ?-, ?- and ?-catenin) or in migration/invasion (c-met, CD44v6 and caveolin-1) in androgen-sensitive (LNCaP) and -insensitive (PC-3) prostate cancer (CaP) cells. We demonstrated by immunoblotting that, in LNCaP cells, molecules present in the adherens junctions (E-cadherin, ?-, ?- and ?-catenin) were expressed, while ?-catenin was absent in PC-3 cells which expressed N-cadherin and c-met. In LNCaP cells, no changes in E-cadherin levels were produced by 10(-9) M DHT while LA (10(-11) or 10(-6) M) up-regulated the protein level (up to 26-30% after 48 h). In the same cells, ?- and ?-catenin expression was enhanced either by DHT (24 and 20%, respectively) or LA (up to 18 and 40%, respectively), while ?-catenin was not affected. Antagonistic effects were consistently observed between DHT and LA when the two hormones were jointly administered to the cells. Consistent results were obtained by immunocytochemistry. Co-immunoprecipitation analysis, used to verify the integrity of the LNCaP cell adhesion complex, demonstrated the association of E-cadherin with catenins. In PC-3 cells, adhesion molecule expression, analyzed by immunoblotting, was unaffected by LA, while a down-regulation of c-met (up to 28%) was observed after 24 h of treatment but which did not hold up over time (48-144 h). Our findings demonstrate the efficacy of LA in upregulating E-cadherin, ?- and ?-catenin in LNCaP cells. This effect, that may be considered as another aspect of the direct antitumor activity of the GnRH analogue in hormone-dependent CaP cells, may contribute to maintenance/restoration of the normal tissue architecture counteracting the tumor cell spreading tendency. PMID:21479359

Angelucci, Cristiana; Lama, Gina; Iacopino, Fortunata; Sica, Gigliola

2011-06-01

128

The N Terminus of the Adhesion G Protein-coupled Receptor GPR56 Controls Receptor Signaling Activity*S  

E-print Network

The N Terminus of the Adhesion G Protein-coupled Receptor GPR56 Controls Receptor Signaling of Medicine, Atlanta, Georgia GPR56 is an adhesion G protein-coupled receptor that plays a key role in cortical development. Mutations to GPR56 in humans cause malformations of the cerebral cortex, but little

Hall, Randy A

129

Diversity of bone matrix adhesion proteins modulates osteoblast attachment and organization of actin cytoskeleton.  

PubMed

Interaction of cells with extracellular matrix is an essential event for differentiation, proliferation and activity of osteoblasts. In bone, binding of osteoblasts to bone matrix is required to determine specific activities of the cells and to synthesize matrix bone proteins. Integrins are the major cell receptors involved in the cell linkage to matrix proteins such as fibronectin, type I collagen and vitronectin, via the RGD-sequences. In this study, cultures of osteoblast-like cells (Saos-2) were done on coated glass coverslips in various culture conditions: DMEM alone or DMEM supplemented with poly-L-lysine (PL), fetal calf serum (FCS), fibronectin (FN), vitronectin (VN) and type I collagen (Col-I). The aim of the study was to determine the specific effect of these bone matrix proteins on cell adherence and morphology and on the cytoskeleton status. Morphological characteristics of cultured cells were studied using scanning electron microscopy and image analysis. The heterogeneity of cytoskeleton was studied using fractal analysis (skyscrapers and blanket algorithms) after specific preparation of cells to expose the cytoskeleton. FAK and MAPK signaling pathways were studied by western blotting in these various culture conditions. Results demonstrated that cell adhesion was reduced with PL and VN after 240 min. After 60 min of adhesion, cytoskeleton organization was enhanced with FN, VN and Col-I. No difference in FAK phosphorylation was observed but MAPK phosphorylation was modulated by specific adhesion on extracellular proteins. These results indicate that culture conditions modulate cell adhesion, cytoskeleton organization and intracellular protein pathways according to extracellular proteins present for adhesion. PMID:24735942

Demais, V; Audrain, C; Mabilleau, G; Chappard, D; Baslé, M F

2014-06-01

130

Epithelial-Stromal Interactions in Human Breast Cancer: Effects on Adhesion, Plasma Membrane Fluidity and Migration Speed and Directness  

PubMed Central

Interactions occurring between malignant cells and the stromal microenvironment heavily influence tumor progression. We investigated whether this cross-talk affects some molecular and functional aspects specifically correlated with the invasive phenotype of breast tumor cells (i.e. adhesion molecule expression, membrane fluidity, migration) by co-culturing mammary cancer cells exhibiting different degrees of metastatic potential (MDA-MB-231>MCF-7) with fibroblasts isolated from breast healthy skin (normal fibroblasts, NFs) or from breast tumor stroma (cancer-associated fibroblasts, CAFs) in 2D or 3D (nodules) cultures. Confocal immunofluorescence analysis of the epithelial adhesion molecule E-cadherin on frozen nodule sections demonstrated that NFs and CAFs, respectively, induced or inhibited its expression in MCF-7 cells. An increase in the mesenchymal adhesion protein N-cadherin was observed in CAFs, but not in NFs, as a result of the interaction with both kinds of cancer cells. CAFs, in turn, promoted N-cadherin up-regulation in MDA-MB-231 cells and its de novo expression in MCF-7 cells. Beyond promotion of “cadherin switching”, another sign of the CAF-triggered epithelial-mesenchymal transition (EMT) was the induction of vimentin expression in MCF-7 cells. Plasma membrane labeling of monolayer cultures with the fluorescent probe Laurdan showed an enhancement of the membrane fluidity in cancer cells co-cultured with NFs or CAFs. An increase in lipid packing density of fibroblast membranes was promoted by MCF-7 cells. Time-lapsed cell tracking analysis of mammary cancer cells co-cultured with NFs or CAFs revealed an enhancement of tumor cell migration velocity, even with a marked increase in the directness induced by CAFs. Our results demonstrate a reciprocal influence of mammary cancer and fibroblasts on various adhesiveness/invasiveness features. Notably, CAFs' ability to promote EMT, reduction of cell adhesion, increase in membrane fluidity, and migration velocity and directness in mammary cancer cells can be viewed as an overall progression- and invasion-promoting effect. PMID:23251387

Lama, Gina; Proietti, Gabriella; Colabianchi, Anna; Papi, Massimiliano; Maiorana, Alessandro; De Spirito, Marco; Micera, Alessandra; Balzamino, Omar Bijorn; Di Leone, Alba; Masetti, Riccardo; Sica, Gigliola

2012-01-01

131

Low-cost Soybean Protein Products as Extenders in Plywood Adhesives  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soybean flour and meal were evaluated as alternate protein extenders in plywood adhesives. This research is part of our laboratory’s efforts to develop new uses for the proteinaceous co-products from soybean and cereal processing. Ground soybean meal was tested as replacement for wheat flour in glu...

132

Expression Patterns of Focal Adhesion Associated Proteins in the Developing Retina  

E-print Network

- mentally regulated expression patterns during eye morphogenesis. In the embryonic retina, immuno in regulating ret- inal morphogenesis. © 2002 Wiley-Liss, Inc. Key words: focal adhesion proteins; retina; Xeno highly laminated organization and accessibility. Dur- ing retinal morphogenesis, the neural tube

Sakaguchi, Donald S.

133

Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells.  

PubMed

Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca(2+) signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate. PMID:24184478

Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

2013-11-22

134

Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion.  

PubMed

A wide variety of biomaterials and bioactive molecules have been applied as scaffolds in neuronal tissue engineering. However, creating devices that enhance the regeneration of nervous system injuries is still a challenge, due the difficulty in providing an appropriate environment for cell growth and differentiation and active stimulation of nerve regeneration. In recent years, bacterial cellulose (BC) has emerged as a promising biomaterial for biomedical applications because of its properties such as high crystallinity, an ultrafine fiber network, high tensile strength, and biocompatibility. The small signaling peptides found in the proteins of extracellular matrix are described in the literature as promoters of adhesion and proliferation for several cell lineages on different surfaces. In this work, the peptide IKVAV was fused to a carbohydrate-binding module (CBM3) and used to modify BC surfaces, with the goal of promoting neuronal and mesenchymal stem cell (MSC) adhesion. The recombinant proteins IKVAV-CBM3 and (19)IKVAV-CBM3 were successfully expressed in E. coli, purified through affinity chromatography, and stably adsorbed to the BC membranes. The effect of these recombinant proteins, as well as RGD-CBM3, on cell adhesion was evaluated by MTS colorimetric assay. The results showed that the (19)IKVAV-CBM3 was able to significantly improve the adhesion of both neuronal and mesenchymal cells and had no effect on the other cell lineages tested. The MSC neurotrophin expression in cells grown on BC membranes modified with the recombinant proteins was also analyzed. PMID:22271600

Pértile, Renata; Moreira, Susana; Andrade, Fábia; Domingues, Lucília; Gama, Miguel

2012-01-01

135

Interspecific Variations in Adhesive Protein Sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus  

Microsoft Academic Search

Variation in the adhesive protein gene se- quences of Mytilus edulis, M. galloprovincialis, and M. trossulus collected in Delaware, Kamaishi (Japan), and Alaska, respectively, was analyzed by the polymerase chain reaction (PCR) using two sets of oligonucleotide primers. The first set, Me 13 and Me 14, was designed to amplify the repetitive region. The length of the amplified fragments was

KOJI INOUE; J. HERBERT WAITE; MAKOTO MATSUOKA; SATOSHI ODO; SHIGEAKI HARAYAMA

1995-01-01

136

Adhesive properties of soy proteins modified by urea and guanidine hydrochloride  

Microsoft Academic Search

An investigation was conducted on the adhesive and water-resistance properties of soy protein isolates that were modified\\u000a by varying solutions of urea (1, 3, 5, and 8 M) or guanidine hydrochloride (GH) (0.5, 1, and 3 M) and applied on walnut, cherry,\\u000a and pine plywoods. Soy proteins modified by 1 and 3 M urea showed greater shear strengths than did

Weining Huang; Xiuzhi Sun

2000-01-01

137

Differential expression of N-cadherin in pleural mesotheliomas and E-cadherin in lung adenocarcinomas in formalin-fixed, paraffin-embedded tissues  

Microsoft Academic Search

The differential diagnosis of pleural mesotheliomas and lung adenocarcinomas presents a continued challenge in the practice of surgical pathology. Paraffin immunohistochemistry (IHC) using different panels of antibodies can be helpful in some cases, but, as yet, no antigen is expressed specifically in mesotheliomas nor in adenocarcinomas. Using well characterized monoclonal antibodies (MAb) that recognized distinct mesenchymal and epithelial adhesion proteins,

Aaron C Han; Alejandro Peralta-Soler; Karen A Knudsen; Margaret J Wheelock; Keith R Johnson; Hernando Salazar

1997-01-01

138

Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner.  

PubMed

Microbes live mostly in a social community rather than in a planktonic state. Such communities have complex spatiotemporal patterns that require intercellular communication to coordinate gene expression. Here, we demonstrate that Cryptococcus neoformans, a model eukaryotic pathogen, responds to an extracellular signal in constructing its colony morphology. The signal that directs this community behavior is not a molecule of low molecular weight like pheromones or quorum-sensing molecules but a secreted protein. Znf2, a master regulator of morphogenesis in Cryptococcus, is necessary and sufficient for the production of this signal protein. Cfl1, a prominent Znf2-downstream adhesion protein (adhesin), was identified to be responsible for the paracrine communication. Consistent with its role in communication, Cfl1 is highly induced during mating colony differentiation, and some of the Cfl1 proteins undergo shedding and are released from the cell wall. The released Cfl1 is enriched in the extracellular matrix and acts as an autoinduction signal to stimulate neighboring cells to phenocopy Cfl1-expressing cells via the filamentation-signaling pathway. We further demonstrate the importance of an unannotated and yet conserved domain in Cfl1's signaling activity. Although adhesion proteins have long been considered to be mediators of microbial pathogenicity and the structural components of biofilms, our work presented here provides the direct evidence supporting the signaling activation by microbial adhesion/matrix proteins. PMID:23798436

Wang, Linqi; Tian, Xiuyun; Gyawali, Rachana; Lin, Xiaorong

2013-07-01

139

Different Roles for Lactococcal Aggregation Factor and Mucin Binding Protein in Adhesion to Gastrointestinal Mucosa  

PubMed Central

Adhesion of bacteria to mucosal surfaces and epithelial cells is one of the key features for the selection of probiotics. In this study, we assessed the adhesion property of Lactococcus lactis subsp. lactis BGKP1 based on its strong autoaggregation phenotype and the presence of the mucin binding protein (MbpL). Genes involved in aggregation (aggL) and possible interaction with mucin (mbpL), present on the same plasmid pKP1, were previously separately cloned in the plasmid pAZIL. In vivo and in vitro experiments revealed potentially different physiological roles of these two proteins in the process of adherence to the intestine during the passage of the strain through the gastrointestinal tract. We correlated the in vitro and in vivo aggregation of the BGKP1-20 carrying plasmid with aggL to binding to the colonic mucus through nonspecific hydrophobic interactions. The expression of AggL on the bacterial cell surface significantly increased the hydrophobicity of the strain. On the other hand, the presence of AggL in the strain reduced its ability to adhere to the ileum. Moreover, MbpL protein showed an affinity to bind gastric type mucin proteins such as MUC5AC. This protein did not contribute to the binding of the strain to the ileal or colonic part of the intestine. Different potential functions of lactococcal AggL and MbpL proteins in the process of adhesion to the gastrointestinal tract are proposed. PMID:22961901

Luki?, Jovanka; Strahini?, Ivana; Jov?i?, Branko; Filipi?, Brankica; Topisirovi?, Ljubiša; Koji?, Milan

2012-01-01

140

The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function  

PubMed Central

Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1. PMID:23885334

Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

2013-01-01

141

Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes  

PubMed Central

Sea urchins have a fluid-filled body cavity, the coelom, containing four types of immunocytes called coelomocytes. Within minutes after coelomic fluid is removed from the body cavity, a massive cell–cell adhesion of coelomocytes occurs. This event is referred to as clotting. Clotting is thought to be a defense mechanism against loss of coelomic fluid if the body wall is punctured, and it may also function in the cellular encapsulation of foreign material and microbes. Here we show that this intercoelomocyte adhesion is mediated by amassin, a coelomic plasma protein with a relative molecular mass (Mr) of 75 kD. Amassin forms large disulfide-bonded aggregates that adhere coelomocytes to each other. One half of the amassin protein comprises an olfactomedin (OLF) domain. Structural predictions show that amassin and other OLF domain-containing vertebrate proteins share a common architecture. This suggests that other proteins of the OLF family may function in intercellular adhesion. These findings are the first to demonstrate a function for a protein of the OLF family. PMID:12591917

Hillier, Brian J.; Vacquier, Victor D.

2003-01-01

142

Applications of traction force microscopy in measuring adhesion molecule dependent cell contractility  

NASA Astrophysics Data System (ADS)

This work describes the use of polyacrylamide hydrogels as controlled elastic modulus substrates for single cell traction force microscopy studies. The first section describes the use of EDC/NHS chemistry to convalently link microbeads to the hydrogel matrix for the purpose of performing long-term traction force studies (7 days). The final study uses the C2C12 cell line to demonstrate that integrin-mediated adhesion to soft substrates causes different cell behavior than N-cahderin-mediated adhesion to soft substrates. Cells plated on laminin-coated hydrogels exhibited stiffness dependent increases in cell spreading, whereas cells plated on N-cadherin-coated substrates. Similarly, cells plated on laminin-coated substrates exhibited substrate stiffness dependent increases in normalized net contractile moment, however the same cells plated on N-cadherin-coated substrates were unable to deform any but the softest hydrogels.

Mann, Cynthia Marie

143

A tumor suppressing function in the epithelial adhesion protein Trask  

PubMed Central

Trask/CDCP1 is a transmembrane glycoprotein widely expressed in epithelial tissues whose functions are just beginning to be understood, but include a role as an anti-adhesive effector of Src kinases. Early studies looking at RNA transcript levels seemed to suggest overexpression in some cancers, but immunostaining studies are now providing more accurate analyses of its expression. In an immunohistochemical survey of human cancer specimens we find that Trask expression is retained, reduced, or sometimes lost in some tumors compared with their normal epithelial tissue counterparts. A survey of human cancer cell lines also show a similar wide variation in the expression of Trask, including some cell types with the loss of Trask expression, and additional cell types that have lost the physiological detachment-induced phosphorylation of Trask. Three experimental models were established to interrogate the role of Trask in tumor progression including two gain-of-function models with tet-inducible expression of Trask in tumor cells lacking Trask expression, and one loss-of-function model to suppress Trask expression in tumor cells with abundant Trask expression. The induction of Trask expression and phosphorylation in MCF-7 cells and in 3T3v-src cells was associated with a reduction in tumor metastases while the shRNA induced knockdown of Trask in L3.6pl cancer cells was associated with increased tumor metastases. The results from these three models are consistent with a tumor suppressing role for Trask. These data identify Trask as one of several potential candidates for functionally relevant tumor suppressors on the 3p21.3 region of the genome frequently lost in human cancers. PMID:21706059

Spassov, Danislav S.; Wong, Ching Hang; Harris, Geoffrey; McDonough, Stephen; Phojanakong, Paul; Wang, Donghui; Hann, Byron; Bazarov, Alexey V.; Yaswen, Paul; Khanafshar, Elham; Moasser, Mark M.

2011-01-01

144

Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei  

PubMed Central

Hydrophobins are surface-active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and as fusion proteins. Both hydrophobins were produced as C-terminal fusions to the core of the hydrolytic enzyme endoglucanase I from the same organism. It was shown that as a fusion partner, HFBI causes the fusion protein to efficiently immobilize to hydrophobic surfaces, such as silanized glass and Teflon. The properties of the surface-bound protein were analyzed by the enzymatic activity of the endoglucanase domain, by surface plasmon resonance (Biacore), and by a quartz crystal microbalance. We found that the HFBI fusion forms a tightly bound, rigid surface layer on a hydrophobic support. The HFBI domain also causes the fusion protein to polymerize in solution, possibly to a decamer. Although isolated HFBII binds efficiently to surfaces, it does not cause immobilization as a fusion partner, nor does it cause polymerization of the fusion protein in solution. The findings give new information on how hydrophobins function and how they can be used to immobilize fusion proteins. PMID:12192081

Linder, Markus; Szilvay, Geza R.; Nakari-Setälä, Tiina; Söderlund, Hans; Penttilä, Merja

2002-01-01

145

The multiple signaling modalities of adhesion G protein-coupled receptor GPR126 in development  

PubMed Central

The G protein-coupled receptor (GPCR) superfamily is the largest known receptor family in the human genome. Although the family of adhesion GPCRs comprises the second largest sub-family, their function is poorly understood. Here, we review the current knowledge about the adhesion GPCR family member GPR126. GPR126 possesses a signal peptide, a 7TM domain homologous to secretin-like GPCRs, a GPS motif and an extended N-terminus containing a CUB (Complement, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a hormone binding domain and 27 putative N-glycosylation sites. Knockdown and knockout experiments in zebrafish and mice have demonstrated that Gpr126 plays an essential role in neural, cardiac and ear development. In addition, genome-wide association studies have implicated variations at the GPR126 locus in obstructive pulmonary dysfunction, in scoliosis and as a determinant of trunk length and body height. Gpr126 appears to exert its function depending on the organ system via G protein- and/or N-terminus-dependent signaling. Here, we review the current knowledge about Gpr126, which, due to the variety of its functions and its multiple signaling modalities, provides a model adhesion GPCR to understand general functional concepts utilized by adhesion GPCRs. PMID:25493288

Patra, Chinmoy; Monk, Kelly R.

2014-01-01

146

STRUCTURAL ORGANIZATION AND FUNCTION OF MOUSE PHOTORECEPTOR RIBBON SYNAPSES INVOLVE THE IMMUNOGLOBULIN ADHESION PROTEIN SYNCAM 1  

PubMed Central

Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the central nervous system (CNS), which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/Nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We now show by immuno-electron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers (ONL and OPL) in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7), but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Further, rod synapse ribbons are shortened in KO mice and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses. PMID:23982969

Ribic, Adema; Liu, Xinran; Crair, Michael C.; Biederer, Thomas

2013-01-01

147

Choline phosphate functionalized surface: protein-resistant but cell-adhesive zwitterionic surface potential for tissue engineering.  

PubMed

A choline phosphate (CP) modified surface is designed to resist protein adsorption due to its zwitterionic properties and simultaneously promote cell adhesion though its universal interaction with phosphate choline (PC) headgroups of the cell membrane. This work provides a new approach to obtain a cell-adhesive surface with a non-biofouling 'background', which has a potential for tissue engineering. PMID:25408248

Chen, Xingyu; Chen, Tianchan; Lin, Zaifu; Li, Xian'e; Wu, Wei; Li, Jianshu

2015-01-11

148

Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion.  

PubMed

Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments. PMID:25761668

Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A; Dhinojwala, Ali

2015-01-01

149

Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion  

NASA Astrophysics Data System (ADS)

Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.

Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

2015-03-01

150

Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion  

PubMed Central

Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments. PMID:25761668

Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

2015-01-01

151

Antioxidant Efficacy and Adhesion Rescue by a Recombinant Mussel Foot Protein-6  

PubMed Central

Mytilus foot protein type 6 (mfp-6) is crucial for maintaining the reducing conditions needed for optimal wet adhesion in marine mussels. In this report we describe the expression and production of a recombinant Mytilus californianus foot protein type 6 variant 1 (rmfp-6.1) fused with a hexa-histidine affinity tag in Escherichia coli and its purification by affinity chromatography. Recombinant mfp-6 showed high purification yields of 5–6 mg/L cell culture and excellent solubility in low pH buffers that retard oxidation of its many thiol groups. Purified rmfp-6.1 protein showed high DPPH radical scavenging activity as compared to Vitamin C. Using the highly sensitive surface force apparatus (SFA) technique to measure interfacial surface forces in the nanoNewton range we show that rmfp-6.1 is also able to rescue the oxidation-dependent adhesion loss of mussel foot protein 3 (mfp-3) at pH 3. The adhesion rescue is related to a reduction of dopaquinone back to DOPA in mfp-3 which is the reverse reaction observed during the detrimental enzymatic browning process in fruits and vegetables. Broadly viewed, rmfp-6.1 has potential as a versatile antioxidant for applications ranging from personal products to anti-spoilants for perishable foods during processing and storage. PMID:24106182

Nicklisch, S. C. T.; Das, Saurabh; Martinez Rodriguez, N. R.; Israelachvili, J. N.; Waite, J. H.

2013-01-01

152

Endocytosis Regulates Cell Soma Translocation and the Distribution of Adhesion Proteins in Migrating Neurons  

PubMed Central

Newborn neurons migrate from their birthplace to their final location to form a properly functioning nervous system. During these movements, young neurons must attach and subsequently detach from their substrate to facilitate migration, but little is known about the mechanisms cells use to release their attachments. We show that the machinery for clathrin-mediated endocytosis is positioned to regulate the distribution of adhesion proteins in a subcellular region just proximal to the neuronal cell body. Inhibiting clathrin or dynamin function impedes the movement of migrating neurons both in vitro and in vivo. Inhibiting dynamin function in vitro shifts the distribution of adhesion proteins to the rear of the cell. These results suggest that endocytosis may play a critical role in regulating substrate detachment to enable cell body translocation in migrating neurons. PMID:21445347

Shieh, Jennifer C.; Schaar, Bruce T.; Srinivasan, Karpagam; Brodsky, Frances M.; McConnell, Susan K.

2011-01-01

153

Wetting of soy protein adhesives modified by urea on wood surfaces  

Microsoft Academic Search

Wetting of soy protein adhesives modified by urea on wood surfaces was investigated with sessile liquid droplet method. Dynamic\\u000a contact angles were used to illustrate the wetting process. The effects of wood surface roughness and urea concentration on\\u000a contact angles were investigated. Moreover, two wetting models were used to describe the dynamic contact angle process, in\\u000a which the contact angle

Hua-Neng Xu; Qiu-Yun Shen; Xiao-Kun Ouyang; Li-Ye Yang

154

Human proteolipid protein (PLP) mediates winding and adhesion of phospholipid membranes but prevents their fusion.  

PubMed

Proteolipid protein (PLP or lipophilin) is a highly conserved, strongly hydrophobic, integral membrane protein, and is the major protein component of central nervous system myelin. Although PLP has been implicated in many functions, its in vivo role is still uncertain. Here, we report the investigation of PLP's putative adhesive function using purified PLP and reconstituted phospholipid vesicles made of either 100% phosphatidylcholine (PC), or a mixture of 92% PC and 8% phosphatidylserine (PS), by weight. PLP-induced changes in the phospholipid bilayer surfaces were directly examined by transmission electron microscopy. We found that upon the introduction of PLP, larger lipid vesicles became smaller and unilamellar. At the PLP:lipid molar ratio of 1:20, vesicle membranes rolled onto themselves forming 'croissant'-like structures that subsequently adhered to each other. The phenomena of PLP-induced bilayer rolling and adhesion were dependent on the concentration of PLP and the period of incubation, but were independent of the presence of calcium and types of phospholipids (PC or PC:PS). Furthermore, the presence of PLP in the lipid bilayers prevented the fusion of membranes. These findings show that PLP can induce membrane 'winding' while preventing the fusion of adjacent lipid bilayers. Hence, our data provide direct evidence for PLP's suspected function of membrane adhesion, and also suggest that PLP could potentially play a role in the formation of the myelin sheath. PMID:9858696

Palaniyar, N; Semotok, J L; Wood, D D; Moscarello, M A; Harauz, G

1998-12-01

155

Chick neural retina adhesion and survival molecule is a retinol-binding protein  

SciTech Connect

A 20,000-D protein called purpurin has recently been isolated from the growth-conditioned medium of cultured embryonic chick neural retina cells. Purpurin is a constituent of adherons and promotes cell-adheron adhesion by interacting with a cell surface heparan sulfate proteoglycan. It also prolongs the survival of cultured neural retina cells. This paper shows that purpurin is a secretory protein that has sequence homology with a human protein synthesized in the liver that transports retinol in the blood, the serum retinol-binding protein (RBP). Purpurin binds (/sup 3/H)retinol, and both purpurin and chick serum RBP stimulate the adhesion of neural retina cells, although the serum protein is less active than purpurin. Purpurin and the serum RBP are, however, different molecules, for the serum protein is approx.3.000 D larger than purpurin and has different silver-staining characteristics. Finally, purpurin supports the survival of dissociated ciliary ganglion cells, indicating that RBPs can act as ciliary neurotrophic factors.

Schubert, D.; LaCorbiere, M.; Esch, F.

1986-01-01

156

Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1  

PubMed Central

Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

2006-01-01

157

Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis  

DOEpatents

The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

Silverman, Heather G.; Roberto, Francisco F.

2006-01-17

158

Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis  

DOEpatents

The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

Silverman, Heather G.; Roberto, Francisco F.

2006-02-07

159

Oligonucleotide Microarray and QRT-PCR Study of Adhesion Protein Gene Expression in Acute Coronary Syndrome Patients  

Microsoft Academic Search

Cardiovascular diseases, including acute coronary syndrome (ACS), are the leading cause of death among humans. Adhesion proteins,\\u000a owing to their involvement in the initiation and progression of atherosclerotic lesions, contribute to the progression of\\u000a coronary disease and ACS occurrence. Considering ambiguosity of results reported to date, we decided to conduct a preliminary\\u000a investigation of adhesion protein gene expression in ACS

Józefa Dbek; Joanna Ligus; Justyna Szota

2010-01-01

160

Purification of DOPA-Containing Foot Proteins from Green Mussel, Perna viridis, and Adhesive Properties of Synthetic Model Copolypeptides  

Microsoft Academic Search

The thread-like adhesive tissue of the green mussel, Perna viridis, is referred to as the byssus. The phenol gland-derived proteins are involved in the underwater adhesion of the byssus. The objectives of the present study are identification and characterization of the phenol gland-derived proteins in the foot of P. viridis. P. viridis foot contains at least eight kinds of potential

Kousaku Ohkawa; Tadahiro Nagai; Ayako Nishida; Hiroyuki Yamomoto

2009-01-01

161

Intercellular adhesion molecule-1 is a regulator of blood–testis barrier function  

PubMed Central

Summary The mechanism underlying the movement of preleptotene/leptotene spermatocytes across the blood–testis barrier (BTB) during spermatogenesis is not well understood largely owing to the fact that the BTB, unlike most other blood–tissue barriers, is composed of several co-existing and co-functioning junction types. In the present study, we show that intercellular adhesion molecule-1 [ICAM-1, a Sertoli and germ cell adhesion protein having five immunoglobulin (Ig)-like domains, in addition to transmembrane and cytoplasmic domains] is a regulator of BTB integrity. Initial experiments showed ICAM-1 to co-immunoprecipitate and co-localize with tight junction and basal ectoplasmic specialization proteins such as occludin and N-cadherin, which contribute to BTB function. More importantly, overexpression of ICAM-1 in Sertoli cells in vitro enhanced barrier function when monitored by transepithelial electrical resistance measurements, illustrating that ICAM-1-mediated adhesion can promote BTB integrity. On the other hand, overexpression of a truncated form of ICAM-1 that consisted only of the five Ig-like domains (sICAM-1; this form of ICAM-1 is known to be secreted) elicited an opposite effect when Sertoli cell barrier function was found to be perturbed in vitro; in this case, sICAM-1 overexpression resulted in the downregulation of several BTB constituent proteins, which was probably mediated by Pyk2/p-Pyk2-Y402 and c-Src/p-Src-Y530. These findings were expanded to the in vivo level when BTB function was found to be disrupted following sICAM-1 overexpression. These data illustrate the existence of a unique mechanism in the mammalian testis where ICAM-1 can either positively or negatively regulate BTB function. PMID:22976294

Xiao, Xiang; Cheng, C. Yan; Mruk, Dolores D.

2012-01-01

162

Mitogen-Activated Protein Kinase (MAPK) Pathway Regulates Branching by Remodeling Epithelial Cell Adhesion  

PubMed Central

Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions. PMID:24603431

Ihermann-Hella, Anneliis; Lume, Maria; Miinalainen, Ilkka J.; Pirttiniemi, Anniina; Gui, Yujuan; Peränen, Johan; Charron, Jean; Saarma, Mart; Costantini, Frank; Kuure, Satu

2014-01-01

163

Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study  

NASA Astrophysics Data System (ADS)

Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

2009-09-01

164

In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces  

NASA Astrophysics Data System (ADS)

The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG ( RA/I) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb ( ?S,Alb) to interfacial tension between surface and IgG ( ?S,IgG) ( ?S,Alb/ ?S,IgG). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of ?S,Alb/ ?S,IgG may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.

Huang, Yan; Lü, Xiaoying; Jingwu, Ma; Huang, Nan

2008-11-01

165

Protection of chickens from fowl cholera by vaccination with recombinant adhesive protein of Pasteurella multocida.  

PubMed

The recombinant adhesive protein (rCp39) of Pasteurella multocida strain P-1059 (serovar A:3) was prepared and purified with a hybrid condition of affinity chromatography. The rCp39 was highly protective for chickens from fowl cholera by challenge-exposure with parental strain P-1059 or heterologous strain X-73 (serovar A:1) compared to various kind of vaccines. Sixteen groups of ten chickens each were subcutaneously inoculated twice with 100, 200 or 400 microg proteins of rCp39, native Cp39, native outer membrane protein H (OmpH) or recombinant OmpH, or 100 microg proteins of crude capsular extract (CCE) of strains P-1059 or X-73 at 2 weeks interval. Five chickens of each group were challenge-exposed with each strain 2 weeks after the second inoculation. As the results, 60-100% protections were demonstrated in the chickens against both strains. Fisher's exact test indicated no significant differences (P<0.05) in vaccine types and dosages. ELISA and Western blot analysis indicated that the chicken anti-rCp39 sera reacted to whole-cell lysate of parental or heterologous strains. In conclusion, rCp39 is a cross-protective recombinant adhesive antigen of P. multocida capsular serogroup A strains. Moreover, a hybrid condition of affinity chromatography was successfully demonstrated and protected the immunogenicity of recombinant protein. PMID:18403068

Sthitmatee, Nattawooti; Numee, Sureerat; Kawamoto, Eiichi; Sasaki, Hiraku; Yamashita, Kaoru; Takahashi, Naoyuki; Kataoka, Yasushi; Sawada, Takuo

2008-05-01

166

Protein Adhesion and Ion Substitution (on/in)to Minerals  

NASA Astrophysics Data System (ADS)

Arsenic and pathogenic prion protein-scrapie (PrPsc) are important contaminants which may soil and water for decades, unless they are removed by sorption. Two sorption mechanisms will be discussed, namely the organics (Prp and single aminoacid) adsorption on clay and the arsenic substitution in gypsum. The elucidation of these contrasted mechanisms will be shown to request complementary molecular-mechanical simulations with experimental spectroscopic investigations. As first example, structural studies performed at ILL/ESRF on As-doped gypsum (CaSO4 2H2O) using neutron and X-ray diffraction data and EXAFS were performed to determine how As fits into the bulk of gypsum structure. The combined Rietveld analysis of neutron and X-ray diffraction data shows an expansion of the unit cell volume proportional to the As concentration within the samples. to-sulfate substitution mechanisms were used as simulation starting hypotheses. DFT-based simulations (Mulliken analysis) were used to interpret charge distribution and to show that among the possible mechanisms, a sulphate substitution by either protonated, or fully deprotonated, arsenate ion, only the protonated arsenate substitution could best fit the EXAFS data. In the second example, we used Molecular Dynamics to understand the mechanism of strong binding of the pathogenic PrP peptide with clay mineral surfaces. We modeled only the infectious moiety, PrP92-138, of the whole PrPsc structure, with explicitly solvating water molecules in contact with the cleavage plane of pyrophillite, as a model for montmorillonite without any cationic substitution. Partial residual negative charges on the cleavage plane were balanced with K+ ions. The peptide anchored to the clay surface via up to 10 hydrogen bonds from lysine and histidine residues to oxygen atoms of the siloxane cavities, and a total adsorption energy of 3465 KJ.mol-1 was obtained. Our results were compared to the one obtained by chemical and thermal analysis, 23Na, 1H, 13C solid state NMR and MD computation on sorption of single lysine amino acid on model synthetic Na-montmorillonite. Our data provide further insight about interactions between lysine and montmorillonite which depend strongly on lysine concentration.

Charlet, L.; Fernandez Martinez, A.; Chapron, Y.; Sahai, N.; Cuello, G.; Brendle, J.; Marichal, C.

2008-12-01

167

N-ethylmaleimide-sensitive factor attachment protein ? (?SNAP) regulates matrix adhesion and integrin processing in human epithelial cells.  

PubMed

Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein ? (?SNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of ?SNAP induced detachment of intestinal epithelial cells, whereas overexpression of ?SNAP increased ECM adhesion and inhibited cell invasion. Loss of ?SNAP impaired Golgi-dependent glycosylation and trafficking of ?1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of ?SNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of ?SNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of ?SNAP depletion on ECM adhesion. Furthermore, our data implicates ?1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of ?SNAP. These results reveal novel roles for ?SNAP in regulating ECM adhesion and motility of epithelial cells. PMID:24311785

Naydenov, Nayden G; Feygin, Alex; Wang, Lifu; Ivanov, Andrei I

2014-01-24

168

Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein.  

PubMed

Force-distance measurements between supported lipid bilayers mimicking the cytoplasmic surface of myelin at various surface coverages of myelin basic protein (MBP) indicate that maximum adhesion and minimum cytoplasmic spacing occur when each negative lipid in the membrane can bind to a positive arginine or lysine group on MBP. At the optimal lipid/protein ratio, additional attractive forces are provided by hydrophobic, van der Waals, and weak dipolar interactions between zwitterionic groups on the lipids and MBP. When MBP is depleted, the adhesion decreases and the cytoplasmic space swells; when MBP is in excess, the bilayers swell even more. Excess MBP forms a weak gel between the surfaces, which collapses on compression. The organization and proper functioning of myelin can be understood in terms of physical noncovalent forces that are optimized at a particular combination of both the amounts of and ratio between the charged lipids and MBP. Thus loss of adhesion, possibly contributing to demyelination, can be brought about by either an excess or deficit of MBP or anionic lipids. PMID:19218452

Min, Younjin; Kristiansen, Kai; Boggs, Joan M; Husted, Cynthia; Zasadzinski, Joseph A; Israelachvili, Jacob

2009-03-01

169

Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro  

PubMed Central

Background Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. Methodology/Principal Findings The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (LbpLAP) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to LbpLAP for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, LbpLAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. LbpLAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, LbpLAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. Conclusions/Significance Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, LbpLAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations. PMID:22235279

Koo, Ok Kyung; Amalaradjou, Mary Anne Roshni; Bhunia, Arun K.

2012-01-01

170

International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein-Coupled Receptors.  

PubMed

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential. PMID:25713288

Hamann, Jörg; Aust, Gabriela; Araç, Demet; Engel, Felix B; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A; Harty, Breanne L; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C; Monk, Kelly R; Peeters, Miriam C; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W; Xu, Lei; Langenhan, Tobias; Schiöth, Helgi B

2015-04-01

171

Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion  

PubMed Central

Recruitment of receptor proteins to lipid rafts has been proposed as an important mechanism to regulate their cellular function. In particular, rafts have been implicated in regulation of integrin-mediated cell adhesion, although the underlying mechanism remains elusive. We used single-molecule near-field optical microscopy (NSOM) with localization accuracy of approximately 3 nm, to capture the spatio-functional relationship between the integrin LFA-1 and raft components (GPI-APs) on immune cells. Dual color nanoscale imaging revealed the existence of a nanodomain GPI-AP subpopulation that further concentrated in regions smaller than 250 nm, suggesting a hierarchical prearrangement of GPI-APs on resting monocytes. We previously demonstrated that in quiescent monocytes, LFA-1 preorganizes in nanoclusters. We now show that integrin nanoclusters are spatially different but reside proximal to GPI-AP nanodomains, forming hotspots on the cell surface. Ligand-mediated integrin activation resulted in an interconversion from monomers to nanodomains of GPI-APs and the generation of nascent adhesion sites where integrin and GPI-APs colocalized at the nanoscale. Cholesterol depletion significantly affected the reciprocal distribution pattern of LFA-1 and GPI-APs in the resting state, and LFA-1 adhesion to its ligand. As such, our data demonstrate the existence of nanoplatforms as essential intermediates in nascent cell adhesion. Since raft association with a variety of membrane proteins other than LFA-1 has been documented, we propose that hotspots regions enriched with raft components and functional receptors may constitute a prototype of nanoscale inter-receptor assembly and correspond to a generic mechanism to offer cells with privileged areas for rapid cellular function and responses to the outside world. PMID:19850864

van Zanten, Thomas S.; Cambi, Alessandra; Koopman, Marjolein; Joosten, Ben; Figdor, Carl G.; Garcia-Parajo, Maria F.

2009-01-01

172

Highly purified mussel adhesive protein to secure biosafety for in vivo applications  

PubMed Central

Background Unique adhesive and biocompatibility properties of mussel adhesive proteins (MAPs) are known for their great potential in many tissue engineering and biomedical applications. Previously, it was successfully demonstrated that redesigned hybrid type MAP, fp-151, mass-produced in Gram-negative bacterium Escherichia coli, could be utilized as a promising adhesive biomaterial. However, purification of recombinant fp-151 has been unsatisfactory due to its adhesive nature and polarity which make separation of contaminants (especially, lipopolysaccharide, a toxic Gram-negative cell membrane component) very difficult. Results In the present work, we devised a high resolution purification approach to secure safety standards of recombinant fp-151 for the successful use in in vivo applications. Undesirable impurities were remarkably eliminated as going through sequential steps including treatment with multivalent ion and chelating agent for cell membrane washing, mechanical cell disruption, non-ionic surfactant treatment for isolated inclusion body washing, acid extraction of washed inclusion body, and ion exchange chromatography purification of acid extracted sample. Through various analyses, such as high performance liquid chromatographic purity assay, limulus amoebocyte lysate endotoxin assay, and in vitro mouse macrophage cell tests on inflammation, viability, cytotoxicity, and apoptosis, we confirmed the biological safety of bacterial-derived purified recombinant fp-151. Conclusions Through this purification design, recombinant fp-151 achieved 99.90% protein purity and 99.91% endotoxin reduction that nearly no inflammation response was observed in in vitro experiments. Thus, the highly purified recombinant MAP would be successfully used as a safety-secured in vivo bioadhesive for tissue engineering and biomedical applications. PMID:24725543

2014-01-01

173

Fetal bovine serum xenoproteins modulate human monocyte adhesion and protein release on biomaterials in vitro  

PubMed Central

Monocyte-derived macrophages are critical in the host foreign body response to biomaterials and have been studied extensively in various culture conditions in vitro such as medium supplemented with fetal bovine serum (FBS) or autologous human serum (AHS). Since monocyte maturation into macrophages is highly plastic and may vary considerably depending on the surface, isolation procedures, and in vitro culture conditions, we hypothesize that variations in protein adsorption and serum type will greatly impact monocyte behavior in a surface-dependent manner. The impact of xenoproteins on monocyte-surface interaction is not well studied methodically and the use of AHS rather than FBS for macrophage-biomaterials studies in vitro is far from universal. The commonly used reference materials: tissue culture polystyrene (TCPS), polyethylene glycol (PEG), and poly-dimethylsiloxane (PDMS) were employed in this study and we found a 3-fold higher adherent monocyte density on TCPS when AHS was used versus FBS-supplemented medium. On PEG hydrogels, an 8-10 fold higher adhesion density was observed when AHS was employed versus FBS, while on PDMS no difference in adhesion density was observed between the two sera conditions. Additionally, the presence of lipopolysaccharide abrogated the serum-dependent effect on cell adhesion on TCPS. Significant differential variations in protein release were observed between the serum conditions on these surfaces, in particular there was a 100-fold higher concentration of growth-related oncogene for the AHS condition on PDMS even though the adhesion levels were comparable between the two serum conditions. These results emphasize the combined impact of the surface type and FBS xenoproteins in mediating the observed monocyte response to biomaterials in vitro. PMID:20837169

Schmidt, David; Joyce, Evan James; Kao, Weiyuan John

2010-01-01

174

Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina  

PubMed Central

Purpose The Down syndrome cell adhesion molecule (Dscam) gene is required for normal dendrite arborization and lamination in the mouse retina. In this study, we characterized the developmental localization of the DSCAM protein to better understand the postnatal stages of retinal development during which laminar disorganization occur in the absence of the protein. Methods Immunohistochemistry and colocalization analysis software were used to assay the localization of the DSCAM protein during development of the retina. Results We found that DSCAM was initially localized diffusely throughout mouse retinal neurites but then adopted a punctate distribution. DSCAM colocalized with catenins in the adult retina but was not detected at the active zone of chemical synapses, electrical synapses, and tight junctions. Further analysis identified a wave of colocalization between DSCAM and numerous synaptic and junction proteins coinciding with synaptogenesis between bipolar and retinal ganglion cells. Conclusions Research presented in this study expands our understanding of DSCAM function by characterizing its location during the development of the retina and identifies temporally regulated localization patterns as an important consideration in understanding the function of adhesion molecules in neural development. PMID:25352748

Belem de Andrade, Gabriel; Kunzelman, Landon; Merrill, Morgan M.

2014-01-01

175

Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts.  

PubMed

Adhesins are microbial surface proteins that mediate the adherence of microbial pathogens to host cell surfaces. In Mollicutes, several adhesins have been reported in mycoplasmas and spiroplasmas. Adhesins P40 of Mycoplasma agalactiae and P89 of Spiroplasma citri contain a conserved amino acid sequence known as the Mollicutes adhesin motif (MAM), whose function in the host cell adhesion remains unclear. Here, we show that phytoplasmas, which are plant-pathogenic mollicutes transmitted by insect vectors, possess an adhesion-containing MAM that was identified in a putative membrane protein, PAM289 (P38), of the 'Candidatus Phytoplasma asteris,' OY strain. P38 homologs and their MAMs were highly conserved in related phytoplasma strains. While P38 protein was expressed in OY-infected insect and plant hosts, binding assays showed that P38 interacts with insect extract, and weakly with plant extract. Interestingly, the interaction of P38 with the insect extract depended on MAM. These results suggest that P38 is a phytoplasma adhesin that interacts with the hosts. In addition, the MAM of adhesins is important for the interaction between P38 protein and hosts. PMID:25302654

Neriya, Yutaro; Maejima, Kensaku; Nijo, Takamichi; Tomomitsu, Tatsuya; Yusa, Akira; Himeno, Misako; Netsu, Osamu; Hamamoto, Hiroshi; Oshima, Kenro; Namba, Shigetou

2014-12-01

176

Serum protein layers on parylene-C and silicon oxide: effect on cell adhesion.  

PubMed

Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning. PMID:25555155

Delivopoulos, Evangelos; Ouberai, Myriam M; Coffey, Paul D; Swann, Marcus J; Shakesheff, Kevin M; Welland, Mark E

2015-02-01

177

Serum protein layers on parylene-C and silicon oxide: Effect on cell adhesion  

PubMed Central

Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning. PMID:25555155

Delivopoulos, Evangelos; Ouberai, Myriam M.; Coffey, Paul D.; Swann, Marcus J.; Shakesheff, Kevin M.; Welland, Mark E.

2015-01-01

178

Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion  

NASA Astrophysics Data System (ADS)

Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

2008-12-01

179

Understanding Marine Mussel Adhesion  

PubMed Central

In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

Roberto, Francisco F.

2007-01-01

180

A Multidomain Adhesion Protein Family Expressed in Plasmodium falciparum Is Essential for Transmission to the Mosquito  

PubMed Central

The recent sequencing of several apicomplexan genomes has provided the opportunity to characterize novel antigens essential for the parasite life cycle that might lead to the development of new diagnostic and therapeutic markers. Here we have screened the Plasmodium falciparum genome sequence for genes encoding extracellular multidomain putative adhesive proteins. Three of these identified genes, named PfCCp1, PfCCp2, and PfCCp3, have multiple adhesive modules including a common Limulus coagulation factor C domain also found in two additional Plasmodium genes. Orthologues were identified in the Cryptosporidium parvum genome sequence, indicating an evolutionary conserved function. Transcript and protein expression analysis shows sexual stage–specific expression of PfCCp1, PfCCp2, and PfCCp3, and cellular localization studies revealed plasma membrane–associated expression in mature gametocytes. During gametogenesis, PfCCps are released and localize surrounding complexes of newly emerged microgametes and macrogametes. PfCCp expression markedly decreased after formation of zygotes. To begin to address PfCCp function, the PfCCp2 and PfCCp3 gene loci were disrupted by homologous recombination, resulting in parasites capable of forming oocyst sporozoites but blocked in the salivary gland transition. Our results describe members of a conserved apicomplexan protein family expressed in sexual stage Plasmodium parasites that may represent candidates for subunits of a transmission-blocking vaccine. PMID:15184503

Pradel, Gabriele; Hayton, Karen; Aravind, L.; Iyer, Lakshminarayan M.; Abrahamsen, Mitchell S.; Bonawitz, Annemarie; Mejia, Cesar; Templeton, Thomas J.

2004-01-01

181

Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat  

Microsoft Academic Search

Tat, the transactivation factor of human im- munodeflciency virus type 1 (HIV-1), contains the highly conserved tripeptide sequence Arg-Gly-Asp (RGD) that characterizes sites for integrin-mediated cell adhesion. The tat protein was assayed for cell at- tachment activity by measuring the adhesion of mono- cytic, T lymphocytic, and skeletal muscle-derived cell lines to tat-coated substratum. All cell lines tested bound to

David A. Brake; Christine Debouck

1990-01-01

182

Protein-Mediated Adhesion of the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY to Hydrous Ferric Oxide  

PubMed Central

The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HFO adhesion molecules. S. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO. PMID:10543817

Caccavo, Frank

1999-01-01

183

Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide  

SciTech Connect

The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HGO adhesion molecules. A. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.

Caccavo, F. Jr.

1999-11-01

184

Biophysical Characterization of the Unstructured Cytoplasmic Domain of the Human Neuronal Adhesion Protein Neuroligin 3  

PubMed Central

Cholinesterase-like adhesion molecules (CLAMs) are a family of neuronal cell adhesion molecules with important roles in synaptogenesis, and in maintaining structural and functional integrity of the nervous system. Our earlier study on the cytoplasmic domain of one of these CLAMs, the Drosophila protein, gliotactin, showed that it is intrinsically unstructured in vitro. Bioinformatic analysis suggested that the cytoplasmic domains of other CLAMs are also intrinsically unstructured, even though they bear no sequence homology to each other or to any known protein. In this study, we overexpress and purify the cytoplasmic domain of human neuroligin 3, notwithstanding its high sensitivity to the Escherichia coli endogenous proteases that cause its rapid degradation. Using bioinformatic analysis, sensitivity to proteases, size exclusion chromatography, fluorescence correlation spectroscopy, analytical ultracentrifugation, small angle x-ray scattering, circular dichroism, electron spin resonance, and nuclear magnetic resonance, we show that the cytoplasmic domain of human neuroligin 3 is intrinsically unstructured. However, several of these techniques indicate that it is not fully extended, but becomes significantly more extended under denaturing conditions. PMID:18456828

Paz, Aviv; Zeev-Ben-Mordehai, Tzviya; Lundqvist, Martin; Sherman, Eilon; Mylonas, Efstratios; Weiner, Lev; Haran, Gilad; Svergun, Dmitri I.; Mulder, Frans A. A.; Sussman, Joel L.; Silman, Israel

2008-01-01

185

Characterization and binding analysis of a microneme adhesive repeat domain-containing protein from Toxoplasma gondii.  

PubMed

The intracellular parasite Toxoplasma gondii invades almost all nucleated cells, and has infected approximately 34% of the world's population to date. In order to develop effective vaccines against T. gondii infection, understanding of the role of the molecules that are involved in the invasion process is important. For this purpose, we characterized T. gondii proteins that contain microneme adhesive repeats (MARs), which are common in moving junction proteins. T. gondii MAR domain-containing protein 4a (TgMCP4a), which contains repeats of 17-22 amino acid segments at the N-terminus and three putative MAR domains at the C-terminus, is localized near the rhoptry of extracellular parasites. Following infection, TgMCP4a was detected in the parasitophorous vacuole. The recombinant Fc-TgMCP4a N-terminus protein (rTgMCP4a-1/Fc) showed binding activity to the surface proteins of Vero, 293T, and CHO cells. The recombinant GST-TgMCP4a N-terminus protein (rTgMCP4a-1/GST), which exhibited binding activity, was used to pull down the interacting factors from 293T cell lysate, and subsequent mass spectrometry analysis revealed that three types of heat shock proteins (HSPs) interacted with TgMCP4a. Transfection of a FLAG fusion protein of TgMCP4a-1 (rTgMCP4a-1/FLAG) into 293T cell and the following immunoprecipitation with anti-FLAG antibody confirmed the interactions of HSC70 with TgMCP4a. The addition of rTgMCP4a-1/GST into the culture medium significantly affected the growth of the parasite. This study hints that T. gondii may employ HSP proteins of host cell to facilitate their growth. PMID:24361285

Gong, Haiyan; Kobayashi, Kyousuke; Sugi, Tatsuki; Takemae, Hitoshi; Ishiwa, Akiko; Recuenco, Frances C; Murakoshi, Fumi; Xuan, Xuenan; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

2014-04-01

186

Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor-binding protein.  

PubMed

Adhesion of Staphylococcus aureus to blood vessels under shear stress requires von Willebrand factor (VWF). Several bacterial factors have been proposed to interact with VWF, including VWF-binding protein (vWbp), a secreted coagulase that activates the host's prothrombin to generate fibrin. We measured the adhesion of S aureus Newman and a vWbp-deficient mutant (vwb) to VWF, collagen, and activated endothelial cells in a microparallel flow chamber. In vivo adhesion of S aureus was evaluated in the mesenteric circulation of wild-type (WT) and VWF-deficient mice. We found a shear-dependent increase in adhesion of S aureus to the (sub)endothelium that was dependent on interactions between vWbp and the A1-domain of VWF. Adhesion was further enhanced by coagulase-mediated fibrin formation that clustered bacteria and recruited platelets into bacterial microthrombi. In vivo, deficiency of vWbp or VWF as well as inhibition of coagulase activity reduced S aureus adhesion. We conclude that vWbp contributes to vascular adhesion of S aureus through 2 independent mechanisms: shear-mediated binding to VWF and activation of prothrombin to form S aureus-fibrin-platelet aggregates. PMID:24951431

Claes, Jorien; Vanassche, Thomas; Peetermans, Marijke; Liesenborghs, Laurens; Vandenbriele, Christophe; Vanhoorelbeke, Karen; Missiakas, Dominique; Schneewind, Olaf; Hoylaerts, Marc F; Heying, Ruth; Verhamme, Peter

2014-09-01

187

Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material.  

PubMed

Mussel adhesive proteins (MAPs) attach to all types of inorganic and organic surfaces, even in wet environments. MAP of type 5 (fp-5), in particular, has been considered as a key adhesive material. However, the low availability of fp-5 has hampered its biochemical characterization and practical applications. Here, soluble recombinant fp-5 is mass-produced in Escherichia coli. Tyrosinase-modified recombinant fp-5 showed ?1.11 MPa adhesive shear strength, which is the first report of a bulk-scale adhesive force measurement for purified recombinant of natural MAP type. Surface coatings were also performed through simple dip-coating of various objects. In addition, complex coacervate using recombinant fp-5 and hyaluronic acid was prepared as an efficient adhesive formulation, which greatly improved the bulk adhesive strength. Collectively, it is expected that this work will enhance basic understanding of mussel adhesion and that recombinant fp-5 can be successfully used as a realistic bulk-scale bioadhesive and an efficient surface coating material. PMID:21770718

Choi, Yoo Seong; Kang, Dong Gyun; Lim, Seonghye; Yang, Yun Jung; Kim, Chang Sup; Cha, Hyung Joon

2011-08-01

188

Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation and induces expression of LAP receptor Hsp60.  

PubMed

Listeria monocytogenes interaction with the intestinal epithelium is a key step in the infection process. We demonstrated that Listeria adhesion protein (LAP) promotes adhesion to intestinal epithelial cells and facilitates extraintestinal dissemination in vivo. The LAP receptor is a stress response protein, Hsp60, but the precise role for the LAP-Hsp60 interaction during Listeria infection is unknown. Here we investigated the influence of physiological stressors and Listeria infection on host Hsp60 expression and LAP-mediated bacterial adhesion, invasion, and transepithelial translocation in an enterocyte-like Caco-2 cell model. Stressors such as heat (41°C), tumor necrosis factor alpha (TNF-?) (100 U), and L. monocytogenes infection (10(4) to 10(6) CFU/ml) significantly (P < 0.05) increased plasma membrane and intracellular Hsp60 levels in Caco-2 cells and consequently enhanced LAP-mediated L. monocytogenes adhesion but not invasion of Caco-2 cells. In transepithelial translocation experiments, the wild type (WT) exhibited 2.7-fold more translocation through Caco-2 monolayers than a lap mutant, suggesting that LAP is involved in transepithelial translocation, potentially via a paracellular route. Short hairpin RNA (shRNA) suppression of Hsp60 in Caco-2 cells reduced WT adhesion and translocation 4.5- and 3-fold, respectively, while adhesion remained unchanged for the lap mutant. Conversely, overexpression of Hsp60 in Caco-2 cells enhanced WT adhesion and transepithelial translocation, but not those of the lap mutant. Furthermore, initial infection with a low dosage (10(6) CFU/ml) of L. monocytogenes increased plasma membrane and intracellular expression of Hsp60 significantly, which rendered Caco-2 cells more susceptible to subsequent LAP-mediated adhesion and translocation. These data provide insight into the role of LAP as a virulence factor during intestinal epithelial infection and pose new questions regarding the dynamics between the host stress response and pathogen infection. PMID:20876294

Burkholder, Kristin M; Bhunia, Arun K

2010-12-01

189

Unraveling the Role of Surface Mucus-Binding Protein and Pili in Muco-Adhesion of Lactococcus lactis  

PubMed Central

Adhesion of bacteria to mucus may favor their persistence within the gut and their beneficial effects to the host. Interactions between pig gastric mucin (PGM) and a natural isolate of Lactococcus lactis (TIL448) were measured at the single-cell scale and under static conditions, using atomic force microscopy (AFM). In parallel, these interactions were monitored at the bacterial population level and under shear flow. AFM experiments with a L. lactis cell-probe and a PGM-coated surface revealed a high proportion of specific adhesive events (60%) and a low level of non-adhesive ones (2%). The strain muco-adhesive properties were confirmed by the weak detachment of bacteria from the PGM-coated surface under shear flow. In AFM, rupture events were detected at short (100?200 nm) and long distances (up to 600?800 nm). AFM measurements on pili and mucus-binding protein defective mutants demonstrated the comparable role played by these two surface proteinaceous components in adhesion to PGM under static conditions. Under shear flow, a more important contribution of the mucus-binding protein than the pili one was observed. Both methods differ by the way of probing the adhesion force, i.e. negative force contact vs. sedimentation and normal-to-substratum retraction vs. tangential detachment conditions, using AFM and flow chamber, respectively. AFM blocking assays with free PGM or O-glycan fractions purified from PGM demonstrated that neutral oligosaccharides played a major role in adhesion of L. lactis TIL448 to PGM. This study dissects L. lactis muco-adhesive phenotype, in relation with the nature of the bacterial surface determinants. PMID:24260308

Duviau, Marie-Pierre; Meyrand, Mickael; Guérardel, Yann; Castelain, Mickaël; Loubière, Pascal; Chapot-Chartier, Marie-Pierre; Dague, Etienne; Mercier-Bonin, Muriel

2013-01-01

190

Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC14 that inhibits adhesion of Enterococcus faecalis 1131  

Microsoft Academic Search

Lactobacilli have been shown to be important in the maintenance of the healthy urogenital flora. One strain, Lactobacillus fermentum RC-14, releases surface-active components which can inhibit adhesion of uropathogenic bacteria. Using a quantitative method for determining inhibition of adhesion, a protein with high anti-adhesive properties against Enterococcus faecalis 1131 was purified. The N-terminal sequence of the 29-kDa protein was identical

Christine Heinemann; Dick B. Janssen; Henk J. Busscher; Henny C. van der Mei; Gregor Reid

2000-01-01

191

Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens.  

PubMed

Sea stars are able to make firm but temporary attachments to various substrata by secretions released by their tube feet. After tube foot detachment, the adhesive secretions remain on the substratum as a footprint. Proteins presumably play a key role in sea star adhesion, as evidenced by the removal of footprints from surfaces after a treatment with trypsin. However, until now, characterisation was hampered by their high insolubility. In this study, a non-hydrolytic method was used to render most of the proteins constituting the adhesive footprints soluble. After analysis by SDS-PAGE, the proteins separated into about 25 bands, which ranged from 25 to 450 kDa in apparent molecular weight. Using mass spectrometry and a homology-database search, it was shown that several of the proteins are known intracellular proteins, presumably resulting from contamination of footprint material with tube foot epidermal cells. However, 11 protein bands, comprising the most abundant proteins, were not identified and might correspond to novel adhesive proteins. They were named 'Sea star footprint proteins' (Sfps). Tandem mass spectrometry analysis of the protein bands yielded 43 de novo-generated peptide sequences. Most of them were shared by several, if not all, Sfps. Polyclonal antibodies were raised against one of the peptides (HEASGEYYR from Sfp-115) and were used in immunoblotting. They specifically labelled Sfp-115 and other bands with lower apparent molecular weights. The different results suggest that all Sfps might belong to a single family of related proteins sharing similar motifs or, alternatively, they are the products of polymerization and/or degradation processes. PMID:22439774

Hennebert, Elise; Wattiez, Ruddy; Waite, J Herbert; Flammang, Patrick

2012-01-01

192

Vasoconstrictor-induced endocytic recycling regulates focal adhesion protein localization and function in vascular smooth muscle  

PubMed Central

Turnover of focal adhesions (FAs) is known to be critical for cell migration and adhesion of proliferative vascular smooth muscle (VSM) cells. However, it is often assumed that FAs in nonmigratory, differentiated VSM (dVSM) cells embedded in the wall of healthy blood vessels are stable structures. Recent work has demonstrated agonist-induced actin polymerization and Src-dependent FA phosphorylation in dVSM cells, suggesting that agonist-induced FA remodeling occurs. However, the mechanisms and extent of FA remodeling are largely unknown in dVSM. Here we show, for the first time, that a distinct subpopulation of dVSM FA proteins, but not the entire FA, remodels in response to the ?-agonist phenylephrine. Vasodilator-stimulated phosphoprotein and zyxin displayed the largest redistributions, while ?-integrin and FA kinase showed undetectable redistribution. Vinculin, metavinculin, Src, Crk-associated substrate, and paxillin displayed intermediate degrees of redistribution. Redistributions into membrane fractions were especially prominent, suggesting endosomal mechanisms. Deconvolution microscopy, quantitative colocalization analysis, and Duolink proximity ligation assays revealed that phenylephrine increases the association of FA proteins with early endosomal markers Rab5 and early endosomal antigen 1. Endosomal disruption with the small-molecule inhibitor primaquine inhibits agonist-induced redistribution of FA proteins, confirming endosomal recycling. FA recycling was also inhibited by cytochalasin D, latrunculin B, and colchicine, indicating that the redistribution is actin- and microtubule-dependent. Furthermore, inhibition of endosomal recycling causes a significant inhibition of the rate of development of agonist-induced dVSM contractions. Thus these studies are consistent with the concept that FAs in dVSM cells, embedded in the wall of the aorta, remodel during the action of a vasoconstrictor. PMID:23703522

Poythress, Ransom H.; Gallant, Cynthia; Vetterkind, Susanne

2013-01-01

193

Vasoconstrictor-induced endocytic recycling regulates focal adhesion protein localization and function in vascular smooth muscle.  

PubMed

Turnover of focal adhesions (FAs) is known to be critical for cell migration and adhesion of proliferative vascular smooth muscle (VSM) cells. However, it is often assumed that FAs in nonmigratory, differentiated VSM (dVSM) cells embedded in the wall of healthy blood vessels are stable structures. Recent work has demonstrated agonist-induced actin polymerization and Src-dependent FA phosphorylation in dVSM cells, suggesting that agonist-induced FA remodeling occurs. However, the mechanisms and extent of FA remodeling are largely unknown in dVSM. Here we show, for the first time, that a distinct subpopulation of dVSM FA proteins, but not the entire FA, remodels in response to the ?-agonist phenylephrine. Vasodilator-stimulated phosphoprotein and zyxin displayed the largest redistributions, while ?-integrin and FA kinase showed undetectable redistribution. Vinculin, metavinculin, Src, Crk-associated substrate, and paxillin displayed intermediate degrees of redistribution. Redistributions into membrane fractions were especially prominent, suggesting endosomal mechanisms. Deconvolution microscopy, quantitative colocalization analysis, and Duolink proximity ligation assays revealed that phenylephrine increases the association of FA proteins with early endosomal markers Rab5 and early endosomal antigen 1. Endosomal disruption with the small-molecule inhibitor primaquine inhibits agonist-induced redistribution of FA proteins, confirming endosomal recycling. FA recycling was also inhibited by cytochalasin D, latrunculin B, and colchicine, indicating that the redistribution is actin- and microtubule-dependent. Furthermore, inhibition of endosomal recycling causes a significant inhibition of the rate of development of agonist-induced dVSM contractions. Thus these studies are consistent with the concept that FAs in dVSM cells, embedded in the wall of the aorta, remodel during the action of a vasoconstrictor. PMID:23703522

Poythress, Ransom H; Gallant, Cynthia; Vetterkind, Susanne; Morgan, Kathleen G

2013-07-15

194

The adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH  

PubMed Central

The underwater adhesion of marine mussels relies on mussel foot proteins (mfps) rich in the catecholic amino acid 3, 4-dihydroxyphenylalanine (Dopa). As a side-chain, Dopa is capable of strong bidentate interactions with a variety of surfaces, including many minerals and metal oxides. Titanium is among the most widely used medical implant material and quickly forms a TiO2 passivation layer under physiological conditions. Understanding the binding mechanism of Dopa to TiO2 surfaces is therefore of considerable theoretical and practical interest. Using a surface forces apparatus, we explored the force-distance profiles and adhesion energies of mussel foot protein 3 (mfp-3) to TiO2 surfaces at three different pHs (pH3, 5.5 and 7.5). At pH3, mfp-3 showed the strongest adhesion force on TiO2, with an adhesion energy of ~ ?7.0 mJ/m2. Increasing the pH gives rise to two opposing effects: (1) increased oxidation of Dopa, thus decreasing availability for the Dopa-mediated adhesion, and (2) increased bidentate Dopa-Ti coordination, leading to the further stabilization of the Dopa group and thus an increasing of adhesion force. Both effects were reflected in the resonance-enhanced Raman spectra obtained at the three deposition pHs. The two competing effects give rise to a higher adhesion force of mfp-3 on TiO2 surface at pH 7.5 than at pH 5.5. Our results suggest that Dopa-containing proteins and synthetic polymers have great potential as coating materials for medical implant materials, particularly if redox activity can be controlled. PMID:23452271

Yu, Jing; Wei, Wei; Menyo, Matthew S.; Masic, Admir; Waite, J. Herbert; Israelachvili, Jacob N.

2013-01-01

195

A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain.  

PubMed

We identify a complex of three proteins in brain that has the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion. The three proteins are: (1) CASK, a protein related to MAGUKs (membrane-associated guanylate kinases); (2) Mint1, a putative vesicular trafficking protein; and (3) Veli1, -2, and -3, vertebrate homologs of C. elegans LIN-7. CASK, Mint1, and Velis form a tight, salt-resistant complex that can be readily isolated. CASK, Mint1, and Velis contain PDZ domains in addition to other modules. However, no PDZ domains are involved in complex formation, leaving them free to recruit cell adhesion molecules, receptors, and channels to the complex. We propose that the tripartite complex acts as a nucleation site for the assembly of proteins involved in synaptic vesicle exocytosis and synaptic junctions. PMID:9753324

Butz, S; Okamoto, M; Südhof, T C

1998-09-18

196

Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement  

PubMed Central

In this study, three-dimensional (3D) multi-component microstructures were precisely fabricated via multiphoton excited photochemistry using a femtosecond laser direct-writing system with proposed repetition positioning and vector scanning techniques. Extracellular matrix (ECM) proteins, such as fibronectin (FN), are difficult to stack and form 3D structures larger than several-hundred microns in height due to the nature of their protein structure. Herein, to fabricate complex 3D microstructures with FN, a 3D scaffold was designed and formed from bovine serum albumin (BSA), after which human FN was inserted at specific locations on the BSA scaffold; in this manner, the fabricated ECM microstructure can guide cells in a 3D environment. A human breast cancer cell line, MDA-MB-231, was used to investigate the behavior of cell migration and adhesion on the fabricated human FN and BSA protein structures. Experimental results indicate that many cells are not able to attach or climb on a 3D structure’s inclined plane without FN support; hence, the influence of cell growth in a 3D context with FN should being taken into consideration. This 3D multi-protein fabrication technique holds potential for cell studies in designed complex 3D ECM scaffolds. PMID:25780738

Da Sie, Yong; Li, Yi-Cheng; Chang, Nan-Shan; Campagnola, Paul J.; Chen, Shean-Jen

2015-01-01

197

Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins  

NASA Astrophysics Data System (ADS)

In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

2013-10-01

198

Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins  

PubMed Central

In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors. PMID:24145278

Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

2013-01-01

199

Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement.  

PubMed

In this study, three-dimensional (3D) multi-component microstructures were precisely fabricated via multiphoton excited photochemistry using a femtosecond laser direct-writing system with proposed repetition positioning and vector scanning techniques. Extracellular matrix (ECM) proteins, such as fibronectin (FN), are difficult to stack and form 3D structures larger than several-hundred microns in height due to the nature of their protein structure. Herein, to fabricate complex 3D microstructures with FN, a 3D scaffold was designed and formed from bovine serum albumin (BSA), after which human FN was inserted at specific locations on the BSA scaffold; in this manner, the fabricated ECM microstructure can guide cells in a 3D environment. A human breast cancer cell line, MDA-MB-231, was used to investigate the behavior of cell migration and adhesion on the fabricated human FN and BSA protein structures. Experimental results indicate that many cells are not able to attach or climb on a 3D structure's inclined plane without FN support; hence, the influence of cell growth in a 3D context with FN should being taken into consideration. This 3D multi-protein fabrication technique holds potential for cell studies in designed complex 3D ECM scaffolds. PMID:25780738

Da Sie, Yong; Li, Yi-Cheng; Chang, Nan-Shan; Campagnola, Paul J; Chen, Shean-Jen

2015-02-01

200

Enzyme modified soy flour adhesives  

Microsoft Academic Search

Soy protein based adhesives have not been used extensively in wood products since the 1960's because of inferior performance, stability, and water resistance issues relative to petroleum based adhesives. The early soy protein adhesives were made from defatted flours and were dispersed in alkaline solutions to denature proteins and make more polar groups available for adhesion. Recent research has focused

John F. Schmitz

2009-01-01

201

Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis.  

PubMed

Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases. PMID:25562318

Weston, Chris J; Shepherd, Emma L; Claridge, Lee C; Rantakari, Pia; Curbishley, Stuart M; Tomlinson, Jeremy W; Hubscher, Stefan G; Reynolds, Gary M; Aalto, Kristiina; Anstee, Quentin M; Jalkanen, Sirpa; Salmi, Marko; Smith, David J; Day, Christopher P; Adams, David H

2015-02-01

202

Multiscale approaches to protein-mediated interactions between membranes - Relating microscopic and macroscopic dynamics in radially growing adhesions  

E-print Network

Macromolecular complexation leading to coupling of two or more cellular membranes is a crucial step in a number of biological functions of the cell. While other mechanisms may also play a role, adhesion always involves the fluctuations of deformable membranes, the diffusion of proteins and the molecular binding and unbinding. Because these stochastic processes couple over a multitude of time and length scales, theoretical modeling of membrane adhesion has been a major challenge. Here we present an effective Monte Carlo scheme within which the effects of the membrane are integrated into local rates for molecular recognition. The latter step in the Monte Carlo approach enables us to simulate the nucleation and growth of adhesion domains within a system of the size of a cell for tens of seconds without loss of accuracy, as shown by comparison to $10^6$ times more expensive Langevin simulations. To perform this validation, the Langevin approach was augmented to simulate diffusion of proteins explicitly, together ...

Bihr, Timo; Smith, Ana-Suncana

2015-01-01

203

Adhesive Properties of YapV and Paralogous Autotransporter Proteins of Yersinia pestis.  

PubMed

Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs. PMID:25690102

Nair, Manoj K M; De Masi, Leon; Yue, Min; Galván, Estela M; Chen, Huaiqing; Wang, Fang; Schifferli, Dieter M

2015-05-01

204

Novel Pyridazinone Inhibitors for Vascular Adhesion Protein-1 (VAP-1): Old target – New Inhibition Mode  

PubMed Central

Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Though they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors. PMID:24304424

Bligt-Lindén, Eva; Pihlavisto, Marjo; Szatmári, István; Otwinowski, Zbyszek; Smith, David J.; Lázár, László; Fülöp, Ferenc; Salminen, Tiina A.

2014-01-01

205

A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1 alpha.  

PubMed Central

Higher plant proteins immunologically related to the animal substrate adhesion molecule vitronectin have recently been observed and implicated in a variety of biological processes, such as plasma membrane-cell wall adhesion, pollen tube extension, and bacterium-plant interaction. We provide evidence that, similar to vitronectin, one of these proteins, PVN1 (plant vitronectin-like 1), isolated from 428 mM NaCl-adapted tobacco cells binds to glass surfaces an heparin. PVN1 was isolated by glass bead affinity chromatography. Isolated PVN1 has adhesive activity based on results from a baby hamster kidney cell-spreading assay. This plant adhesion protein was detected in all tissues examined but was most abundant in roots and salt-adapted cultured cells. Immunogold labeling indicated that PVN1 is localized in the cell wall of cortical and transmitting tissue cells of pollinated mature styles. A partial amino acid sequence of PVN1 revealed no similarity with vitronectin but, instead, was nearly identical to the translational elongation factor-1 alpha (EF-1 alpha). A clone isolated by screening a tobacco cDNA expression library with anti-PVN1 encoded a protein with greater than 93% identity to sequences of EF-1 alpha from plants of numerous species. Immunological cross-reactivity between tobacco PVN1 and EF-1 alpha as well as the reaction between the EF-1 alpha antibody and the 65- and 75-kD vitronectin-like proteins of a fucoidal alga supported the conclusion that the plant extracellular adhesion protein PVN1 is related to EF-1 alpha. PMID:7514059

Zhu, J K; Damsz, B; Kononowicz, A K; Bressan, R A; Hasegawa, P M

1994-01-01

206

Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes  

PubMed Central

Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1. PMID:21451103

Routray, Chittaranjan; Liu, Chunsheng; Yaqoob, Usman; Billadeau, Daniel D.; Bloch, Kenneth D.; Kaibuchi, Kozo; Shah, Vijay H.

2011-01-01

207

Structure and expression of the silk adhesive protein Ser2 in Bombyx mori Barbara Kludkiewicz a,b  

E-print Network

Structure and expression of the silk adhesive protein Ser2 in Bombyx mori Barbara Kludkiewicz a in revised form 27 November 2009 Accepted 30 November 2009 Keywords: Silkworm Sericin Cocoon Silk gland Repetitive sequence a b s t r a c t Sericins are soluble silk components encoded in Bombyx mori by three

Â?urovec, Michal

208

Adhesive protein expression on endothelial cells after contact in vitro with polyethylene terephthalate coated with pyrolytic carbon  

Microsoft Academic Search

This research aims at evaluating the expression of some adhesive proteins on endothelial cell surface after contact with polyethylene terephthalate coated with pyrolytic carbon (PET + PC). Twenty-two different cultures of human umbilical vein endothelial cells (HUVECs) were put in contact with PET + PC. Both HUVECs grown without the biomaterial and HUVECs incubated with endotoxin were used as control.

E. Cenni; D. Granchi; C. R. Arciola; G. Ciapetti; L. Savarino; S. Stea; D. Cavedagna; A. Di Leo; A. Pizzoferrato

1995-01-01

209

Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites.  

PubMed

The use of fiber-reinforced composites (FRC) in dentistry has increased during recent years. In marginal areas of crowns and removable partial dentures the fibers may become exposed and come into contact with oral tissues, saliva, and microbes. To date, few articles have been published on oral microbial adhesion to FRCs. The aim of this study was to compare different FRCs, their components, and conventional restorative materials with respect to S. mutans ATCC 21752 adhesion and adsorption of specific S. mutans binding proteins. Surface roughness of the materials was also determined. Four different FRCs, a restorative composite, and a high-leucite ceramic material were studied. Polyethylene FRC was found to be significantly rougher than all other materials. Aramid FRC also showed higher surface roughness in comparison with all materials but polyethylene FRC. Without a saliva pellicle, adhesion of S. mutans coincided with surface roughness and polyethylene and aramid FRC promoted S. mutans adhesion better than the other smoother materials. In the presence of salivary pellicle, ceramic and polyethylene FRC bound more bacteria than the other materials studied. Higher quantities of S. mutans binding proteins in the pellicles may in part account for the higher S. mutans adhesion to saliva-coated ceramic and polyethylene FRC. PMID:12808599

Tanner, Johanna; Carlén, Anette; Söderling, Eva; Vallittu, Pekka K

2003-07-15

210

Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa q  

E-print Network

, butyl or octyl cyanoacrylate adhesives were determined. Although joints bonded using ethyl cyanoacrylate Surgical adhesives are increasingly being used in soft tissue repair as fasteners and sealants because [40] reported that the mussel adhesive formed weak bonds. These investigators used distinctly 1742

Shi, Riyi

211

Computational simulations of the conformational behaviour of the adhesive proteins RGDS fragment.  

PubMed

Many adhesive proteins present in extracellular matrices and in blood contain the tetrapeptide sequence -Arg-Gly-Asp-Ser- (or RGDS) at their cell recognition site. Since this sequence, or similar ones, was found in many proteins involved in major biological mechanisms, conformational investigations were performed on the RGDS fragment. A preliminary review of available crystal structures indicates that the RxDy sequences exhibit 3 well-defined structural patterns: one corresponding to a strong interaction between the Arg and Asp ionic side chains which are only about 4 A apart, one with the ions separated by about 8 A, and another in which the side chains are further apart (about 11 A). The conformational behaviour of the isolated RGDS fragment was next tackled using sequential building, Monte Carlo and molecular dynamics computational techniques. Analysis of the RGDS sequence conformational possibilities, as simulated in vacuum and in water solution, indicates that they can be classified into several conformational classes, which correspond roughly to the behaviour of the RGDS fragment as observed in protein matrices. This suggests the possibility of understanding the biological role of the RGDS or parent sequences in recognition processes. PMID:1624955

Cotrait, M; Kreissler, M; Hoflack, J; Lehn, J M; Maigret, B

1992-04-01

212

Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin  

Microsoft Academic Search

Transmission of the plant pathogen Spiroplasma citri by its leafhopper vector, Circulifer tenellus, involves adherence to and invasion of insect host cells. The S. citri adhesion related protein P89 (SARP1) was purified by immunoprecipitation using anti-SARP1 monoclonal antibodies. The protein's N-terminal amino acid sequence was determined and used to design a degenerate oligonucleotide. The labeled oligonucleotide hybridized to a 3.5

Michael Berg; Ulrich Melcher; Jacqueline Fletcher

2001-01-01

213

Immunolocalization of specific keratin associated beta-proteins (beta-keratins) in the adhesive setae of Gekko gecko.  

PubMed

The previous identification of 21 proteins in the digital setae transcriptome of Gekko gecko, 2 alpha-keratins of 52-53kDa and 19 beta-proteins (beta-keratins) of 10-21kDa, has indicated that most of setal corneous proteins are cysteine-rich. The production of specific antibodies for two of the main beta-protein subfamilies expressed in gecko setae has allowed the ultrastructural localization of two beta-proteins indicated as Ge-cprp-9 (cysteine-rich) and Ge-gprp-6 (glycine-rich). Only Ge-cprp-9, representing most of the 16 cysteine-rich beta-proteins, is present in the oberhautchen, setae and in the terminal spatula where adhesion takes place, supporting the previous expression study. Instead, the glycine-rich beta-proteins (Ge-gprp-6), representing the 3 glycine-rich beta-proteins of digital epidermis is only present in the stiff beta-layer of the digital scales and in the thin beta layer of the pad lamella sustaining the setae. Ge-cprp-9 is representative for most of the remaining 15 cys-rich proteins (Ge-cprp 1-16) and may have a structural and functional role in the process of adhesion. Most of the cysteine-rich setal proteins have a net positive charge and it is here hypothesized that these proteins may induce the formation of dipoles at the surface interface between the spatula and the substrate, enhancing the van der Waals forces and therefore adhesion to the substrate. The selection and improvement of these proteins during the evolution of geckos may have represented a successful factor for the survival and ecological adaptations of these climbing lizards. PMID:23639767

Alibardi, Lorenzo

2013-08-01

214

Adsorption and adhesion of common serum proteins to nanotextured gallium nitride  

NASA Astrophysics Data System (ADS)

As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the `activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization.As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the `activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization. Electronic supplementary information (ESI) available: Additional figures demonstrating the adhesion force magnitude (Fig. S1) and lateral steppe surface topography (Fig. S2). See DOI: 10.1039/c4nr06353h

Bain, Lauren E.; Hoffmann, Marc P.; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

2015-01-01

215

The metalloprotease ADAM8 is associated with and regulates the function of the adhesion receptor PSGL-1 through ERM proteins.  

PubMed

The P-selectin glycoprotein ligand-1 (PSGL-1) is involved in the initial contact of leukocytes with activated endothelium, and its adhesive function is regulated through its proteolytic processing. We have found that the metalloprotease ADAM8 is both associated with PSGL-1 through the ezrin–radixin–moesin actin-binding proteins and able to cause the proteolytic cleavage of this adhesion receptor. Accordingly, ADAM8 knockdown increases PSGL-1 expression, and functional assays show that ADAM8 is able to reduce leukocyte rolling on P-selectin and hence on activated endothelial cells. We conclude that ADAM8 modulates the expression and function of PSGL-1. PMID:22229154

Domínguez-Luis, Maria; Lamana, Amalia; Vazquez, Jesús; García-Navas, Rósula; Mollinedo, Faustino; Sánchez-Madrid, Francisco; Díaz-González, Federico; Urzainqui, Ana

2011-12-01

216

Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective  

PubMed Central

Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

2013-01-01

217

Multiscale approaches to protein-mediated interactions between membranes - Relating microscopic and macroscopic dynamics in radially growing adhesions  

E-print Network

Macromolecular complexation leading to coupling of two or more cellular membranes is a crucial step in a number of biological functions of the cell. While other mechanisms may also play a role, adhesion always involves the fluctuations of deformable membranes, the diffusion of proteins and the molecular binding and unbinding. Because these stochastic processes couple over a multitude of time and length scales, theoretical modeling of membrane adhesion has been a major challenge. Here we present an effective Monte Carlo scheme within which the effects of the membrane are integrated into local rates for molecular recognition. The latter step in the Monte Carlo approach enables us to simulate the nucleation and growth of adhesion domains within a system of the size of a cell for tens of seconds without loss of accuracy, as shown by comparison to $10^6$ times more expensive Langevin simulations. To perform this validation, the Langevin approach was augmented to simulate diffusion of proteins explicitly, together with reaction kinetics and membrane dynamics. We use the Monte Carlo scheme to gain deeper insight to the experimentally observed radial growth of micron sized adhesion domains, and connect the effective rate with which the domain is growing to the underlying microscopic events. We thus demonstrate that our technique yields detailed information about protein transport and complexation in membranes, which is a fundamental step toward understanding even more complex membrane interactions in the cellular context.

Timo Bihr; Udo Seifert; Ana-Suncana Smith

2015-03-05

218

Epithelial protein lost in neoplasm modulates platelet-derived growth factor-mediated adhesion and motility of mesangial cells.  

PubMed

Mesangial cell migration, regulated by several growth factors, is crucial after glomerulopathy and during glomerular development. Directional migration requires the establishment of a polarized cytoskeletal arrangement, a process regulated by coordinated actin dynamics and focal adhesion turnover at the peripheral ruffles in migrating cells. Here we found high expression of the actin cross-linking protein EPLIN (epithelial protein lost in neoplasm) in mesangial cells. EPLIN was localized in mesangial angles, which consist of actin-containing microfilaments extending underneath the capillary endothelium, where they attach to the glomerular basement membrane. In cultured mesangial cells, EPLIN was localized in peripheral actin bundles at focal adhesions and formed a protein complex with paxillin. The MEK-ERK (extracellular signal-regulated kinase) cascade regulated EPLIN-paxillin interaction and induced translocalization of EPLIN from focal adhesion sites to peripheral ruffles. Knockdown of EPLIN in mesangial cells enhanced platelet-derived growth factor-induced focal adhesion disassembly and cell migration. Furthermore, EPLIN expression was decreased in mesangial proliferative nephritis in rodents and humans in vivo. These results shed light on the coordinated actin remodeling in mesangial cells during restorative remodeling. Thus, changes in expression and localization of cytoskeletal regulators underlie phenotypic changes in mesangial cells in glomerulonephritis. PMID:24694988

Tsurumi, Haruko; Harita, Yutaka; Kurihara, Hidetake; Kosako, Hidetaka; Hayashi, Kenji; Matsunaga, Atsuko; Kajiho, Yuko; Kanda, Shoichiro; Miura, Kenichiro; Sekine, Takashi; Oka, Akira; Ishizuka, Kiyonobu; Horita, Shigeru; Hattori, Motoshi; Hattori, Seisuke; Igarashi, Takashi

2014-09-01

219

Focal adhesion kinase regulates the phosphorylation protein tyrosine phosphatase-? at Tyr789 in breast cancer cells.  

PubMed

Protein tyrosine phosphatase (PTP)?? regulates the phosphorylation of focal adhesion kinase (FAK), which is important in cellular signal transduction and integration of proteins. It has been demonstrated that a FAK?Del33 mutation (deletion of exon 33; KF437463) in breast cancer tissues regulates cell migration through FAK/Src signaling activation. However, the detailed pathway for Src activation with FAK?Del33 remains to be elucidated. The present study used a retroviral expression system to examine changes in PTP? phosphorylation affected by the FAK?Del33 protein in breast cancer cells. Small interfering (si)RNA targeting PTP? interfered with the phosphorylation of Src. Wound?healing and migration assays were performed to identify cell morphology and quantitative analysis was performed by examining band color depth in western blot analysis. Significant differences were observed in the phosphorylation level of PTP? at Tyr789 between the FAK?Del33 and the wild?type breast cancer cells, suggesting that FAK regulated the phosphorylation level of PTP? at Tyr789 in breast cancer mutant FAK?Del33 cells. The gene expression profile with FAK siRNA did not alter the levels of phosphorylation in other mutants, including autophosphorylation disability (Y397F), ATP kinase dominant negative (K454R) and protein 4.1, ezrin, radixin, moesin domain attenuate (?375). FAK RNAi inhibited the activity of the FAK?Del33 at the Src site and rescued the elevated cell migration and invasion. The present study demonstrated for the first time, to the best of our knowledge, an increase in the phosphorylation level of PTP??Tyr789 by its upstream activator, FAK?Del33, leading to Src activation in certain breast cancer cells, which has significant implications for metastatic potential. PMID:25625869

Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling; Chen, Chang-Qiang; Lin, Jia-Fei; Gu, Zhi-Dong; Ni, Pei-Hua; Zheng, Xin-Min; Fan, Qi-Shi

2015-06-01

220

Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion.  

PubMed

Bacterial nanocellulose (BNC) is an emerging biomaterial since it is biocompatible, integrates well with host tissue and can be biosynthesized in desired architecture. However, being a hydrogel, it exhibits low affinity for cell attachment, which is crucial for the cellular fate process. To increase cell attachment, the surface of BNC scaffolds was modified with two proteins, fibronectin and collagen type I, using an effective bioconjugation method applying 1-cyano-4-dimethylaminopyridinium (CDAP) tetrafluoroborate as the intermediate catalytic agent. The effect of CDAP treatment on cell adhesion to the BNC surface is shown for human umbilical vein endothelial cells and the mouse mesenchymal stem cell line C3H10T1/2. In both cases, the surface modification increased the number of cells attached to the surfaces. In addition, the morphology of the cells indicated more healthy and viable cells. CDAP activation of bacterial nanocellulose is shown to be a convenient method to conjugate extracellular proteins to the scaffold surfaces. CDAP treatment can be performed in a short period of time in an aqueous environment under heterogeneous and mild conditions preserving the nanofibrillar network of cellulose. PMID:24094166

Kuzmenko, Volodymyr; Sämfors, Sanna; Hägg, Daniel; Gatenholm, Paul

2013-12-01

221

Interfacial tension of complex coacervated mussel adhesive protein according to the Hofmeister series.  

PubMed

Complex coacervation is a liquid-liquid phase separation in a colloidal system of two oppositely charged polyelectrolytes or colloids. The interfacial tension of the coacervate phase is the key parameter for micelle formation and interactions with the encapsulating material. However, the relationship between interfacial tensions and various salt solutions is poorly understood in complex coacervation. In the present work, the complex coacervate dynamics of recombinant mussel adhesive protein (MAP) with hyaluronic acid (HA) were determined in the presence of Hofmeister series salt ions. Using measurements of absorbance, hydrodynamic diameter, capillary force, and receding contact angle in the bulk phase, the interfacial tensions of complex coacervated MAP/HA were determined to be 0.236, 0.256, and 0.287 mN/m in 250 mM NaHCOO, NaCl, and NaNO3 solutions, respectively. The sequences of interfacial tensions and contact angles of the complex coacervates in the presence of three sodium salts with different anions were found to follow the Hofmeister ordering. The tendency of interfacial tension between the coacervate and dilute phases in the presence of different types of Hofmeister salt ions could provide a better understanding of Hofmeister effects on complex coacervated materials based on the protein-polysaccharide system. This information can also be utilized for microencapsulation and adsorption by controlling intramolecular interactions. In addition, the injection molding dynamics of mussel byssus formation was potentially explained based on the measured interfacial tension of coacervated MAP. PMID:24490867

Lim, Seonghye; Moon, Dustin; Kim, Hyo Jeong; Seo, Jeong Hyun; Kang, In Seok; Cha, Hyung Joon

2014-02-01

222

Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases  

PubMed Central

Inhibition of the functions of L1 cell adhesion molecule (L1) by ethanol has been implicated in the pathogenesis of the neurodevelopmental aspects of the fetal alcohol syndrome (FAS). Ethanol at pharmacological concentrations has been shown to inhibit L1-mediated neurite outgrowth of rat post-natal day 6 cerebellar granule cells (CGN). Extracellular signal-related kinases (ERK) 1/2 activation occurs following L1 clustering. Reduction in phosphoERK1/2 by inhibition of mitogen-activated protein kinase kinase (MEK) reduces neurite outgrowth of cerebellar neurons. Here, we examine the effects of ethanol on L1 activation of ERK1/2, and whether this activation occurs via activation of fibroblast growth factor receptor 1 (FGFR1). Ethanol at 25 mm markedly inhibited ERK1/2 activation by both clustering L1 with cross-linked monoclonal antibodies, or by L1-Fc chimeric proteins. Clustering L1 with subsequent ERK1/2 activation did not result in tyrosine phosphorylation of the FGFR1. In addition, inhibition of FGFR1 tyrosine kinase blocked basic fibroblast growth factor (bFGF) activation of ERK1/2, but did not affect activation of ERK1/2 by clustered L1. We conclude that ethanol disrupts the signaling pathway between L1 clustering and ERK1/2 activation, and that this occurs independently of the FGFR1 pathway in cerebellar granule cells. PMID:16478533

Tang, Ningfeng; He, Min; O’Riordan, Mary Ann; Farkas, Chloe; Buck, Kevin; Lemmon, Vance; Bearer, Cynthia F.

2014-01-01

223

Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: II. In vivo wound closure study in a rat model  

NASA Astrophysics Data System (ADS)

Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser; and (ii) Ethicon"s Dermabond, a 2-octyl-cyanoacrylate. The tensile strength and time-to-failure of skin incisions repaired in vivo in a rat model were measured at seven days postoperative. Incisions closed by protein solder alone, by Dermabond alone, or by suture, were also tested for comparison. The tensile strength of repairs formed using the SEBA system were 50% to 65% stronger than repairs formed by suture or either adhesive alone, with significantly less variations within each experimental group (average standard deviations of 15% for SEBA versus 38% for suture and 28% for adhesive alone). In addition, the time-to-failure curves showed a longevity not previously seen with the suture or adhesive alone techniques. The SEBA system acts to keep the dermis in tight apposition during the critical early phase of wound healing when tissue gaps are bridged by scar and granulation tissue. It has the property of being more flexible than either of the adhesives alone and may allow the apposed edges to move in conjunction with each other as a unit for a longer period of time and over a greater range of stresses than adhesives alone. This permits more rapid healing and establishment of integrity since the microgaps between the dermis edges are significantly reduced. By the time the scaffolds are sloughed from the wound site, there is greater strength and healing than that produced by adhesive alone or by wounds following suture removal. This hypothesis is supported by the data of this study, as well as, the acute tensile strength data of Part I of this study.

McNally-Heintzelman, Karen M.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Soller, Eric C.; Gilmour, Travis M.; Hoffman, Grant T.; Edward, Deepak

2004-07-01

224

The Adhesion GPCRs: A unique family of G protein-coupled receptors with important roles in both central and peripheral tissues  

Microsoft Academic Search

.  G protein-coupled receptors (GPCRs) are a diverse superfamily of membrane-bound receptors. The second largest subgroup of\\u000a GPCRs, the Adhesion GPCRs, has 33 members in humans. Phylogenetic analysis of the entire repertoire of the seven transmembrane- domain (7TM)\\u000a regions of GPCRs shows that the Adhesion GPCRs form a distinct family. Adhesion GPCRs are characterised by (1) long N termini with multiple

T. K. Bjarnadóttir; R. Fredriksson; H. B. Schiöth

2007-01-01

225

Cytomegalovirus Destruction of Focal Adhesions Revealed in a High-Throughput Western Blot Analysis of Cellular Protein Expression† ?  

PubMed Central

Human cytomegalovirus (HCMV) systematically manages the expression of cellular functions, rather than exerting the global shutoff of host cell protein synthesis commonly observed with other herpesviruses during the lytic cycle. While microarray technology has provided remarkable insights into viral control of the cellular transcriptome, HCMV is known to encode multiple mechanisms for posttranscriptional and posttranslation regulation of cellular gene expression. High-throughput Western blotting (BD Biosciences Powerblot technology) with 1,009 characterized antibodies was therefore used to analyze and compare the effects of infection with attenuated high-passage strain AD169 and virulent low-passage strain Toledo at 72 hpi across gels run in triplicate for each sample. Six hundred ninety-four proteins gave a positive signal in the screen, of which 68 from strain AD169 and 71 from strain Toledo were defined as being either positively or negatively regulated by infection with the highest level of confidence (BD parameters). In follow-up analyses, a subset of proteins was selected on the basis of the magnitude of the observed effect or their potential to contribute to defense against immune recognition. In analyses performed at 24, 72, and 144 hpi, connexin 43 was efficiently downregulated during HCMV infection, implying a breakdown of intercellular communication. Mitosis-associated protein Eg-5 was found to be differentially upregulated in the AD169 and Toledo strains of HCMV. Focal adhesions link the actin cytoskeleton to the extracellular matrix and have key roles in initiating signaling pathways and substrate adhesion and regulating cell migration. HCMV suppressed expression of the focal-adhesion-associated proteins Hic-5, paxillin, and ?-actinin. Focal adhesions were clearly disrupted in HCMV-infected fibroblasts, with their associated intracellular and extracellular proteins being dispersed. Powerblot shows potential for rapid screening of the cellular proteome during HCMV infection. PMID:17522202

Stanton, R. J.; McSharry, B. P.; Rickards, C. R.; Wang, E. C. Y.; Tomasec, P.; Wilkinson, G. W. G.

2007-01-01

226

Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1.  

PubMed

T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion. PMID:24877199

Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

2014-06-01

227

First Two Domains at the lp_1643 Protein N Terminus Inhibit Pathogen Adhesion to Porcine Mucus In Vitro.  

PubMed

Gastrointestinal probiotics are important members of intestinal microflora in both healthy animals and human beings, and these bacteria may reduce the risk of infection caused by certain opportunistic pathogens through exclusive inhibition, competition, and displacement. The lp_1643 protein on the cell surface of Lactobacillus plantarum WCFSI was assumed to possess a mucus-binding capability. This study aimed to determine if purified His-N2 protein exclusively inhibits pathogen adhesion to porcine mucus. The interaction of the His-N2 protein with porcine mucus was determined by indirect enzyme-linked immunosorbent assay (ELISA), and the adhesion was assessed by a traditional plating method to count the bacteria adhered to the porcine mucus. Indirect ELISA showed that His-N2 protein adhered to porcine mucus, and its interacting molecules existed. The His-N2 protein effectively inhibited the adhesion of Escherichia coli DH5?, Listeria monocytogenes CMCC54004, Salmonella Typhimurium ATCC 14028, and Shigella flexneri CMCC(B)51572 to porcine mucus. Results showed that inhibition of pathogen adhesion to porcine mucus depended on dose and strain. The adhesion of L. monocytogenes CMCC54004, Salmonella Typhimurium ATCC 14028, and S. flexneri CMCC(B)51572 was reduced by 95.7, 97.0, and 95.7%, respectively, by pre-adding 100 ?l of 3.92 mg/ml of His-N2 protein, whereas that of E. coli DH5? was only 50.4%. The inhibition of adhesion of some pathogens by His-N2 was different at pH 6.6 and 7.5. The inhibition of E. coli DH5?, L. monocytogenes CMCC54004, and Salmonella Typhimurium ATCC 14028 at pH 6.6 was significantly higher than that at pH 7.5, whereas no statistically significant difference was observed in S. flexneri CMCC(B)51572. These results suggest that various types of inhibition mechanisms of His-N2 were involved in different pathogens. PMID:25710153

Du, Lihui; He, Xiaoying; Zhang, Hong; Liu, Fang; Ju, Xingrong; Yuan, Jian

2015-02-01

228

The evaluation of p,p'-DDT exposure on cell adhesion of hepatocellular carcinoma.  

PubMed

Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p'-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p'-DDT, exposing HepG2 cells for 6 days, decreased cell-cell adhesion and elevated cell-matrix adhesion. Strikingly, p,p'-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p'-DDT-induced effects. p,p'-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p'-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p'-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p'-DDT profoundly promotes the adhesion process by decreasing cell-cell adhesion and inducing cell-matrix adhesion via the ROS-mediated JAK/STAT3 pathway. All these events account for the carcinogenic potential of p,p'-DDT in liver. PMID:24820114

Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

2014-08-01

229

Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins.  

PubMed

Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis. PMID:25500214

Lee, Young Ah; Saito-Nakano, Yumiko; Kim, Kyeong Ah; Min, Arim; Nozaki, Tomoyoshi; Shin, Myeong Heon

2015-02-01

230

EspC Promotes Epithelial Cell Detachment by Enteropathogenic Escherichia coli via Sequential Cleavages of a Cytoskeletal Protein and then Focal Adhesion Proteins  

PubMed Central

EspC is a non-locus of enterocyte effacement (LEE)-encoded autotransporter produced by enteropathogenic Escherichia coli (EPEC) that is secreted to the extracellular milieu by a type V secretion system and then translocated into epithelial cells by the type III secretion system. Here, we show that this efficient EspC delivery into the cell leads to a cytopathic effect characterized by cell rounding and cell detachment. Thus, EspC is the main protein involved in epithelial cell cytotoxicity detected during EPEC adhesion and pedestal formation assays. The cell detachment phenotype is triggered by cytoskeletal and focal adhesion disruption. EspC-producing EPEC is able to cleave fodrin, paxillin, and focal adhesion kinase (FAK), but these effects are not observed when cells are infected with an espC isogenic mutant. Recovery of these phenotypes by complementing the mutant with the espC gene but not with the espC gene mutated in the serine protease motif highlights the role of the protease activity of EspC in the cell detachment phenotype. In vitro assays using purified proteins showed that EspC, but not EspC with an S256I substitution [EspCS256I], directly cleaves these cytoskeletal and focal adhesion proteins. Kinetics of protein degradation indicated that EspC-producing EPEC first cleaves fodrin (within the 11th and 9th repetitive units at the Q1219 and D938 residues, respectively), and this event sequentially triggers paxillin degradation, FAK dephosphorylation, and FAK degradation. Thus, cytoskeletal and focal adhesion protein cleavage leads to the cell rounding and cell detachment promoted by EspC-producing EPEC. PMID:24643541

Serapio-Palacios, Antonio; Vidal, Jorge E.; Salazar, M. Isabel; Tapia-Pastrana, Gabriela

2014-01-01

231

Enhanced Adhesion of Campylobacter jejuni to Abiotic Surfaces Is Mediated by Membrane Proteins in Oxygen-Enriched Conditions  

PubMed Central

Campylobacter jejuni is responsible for the major foodborne bacterial enteritis in humans. In contradiction with its fastidious growth requirements, this microaerobic pathogen can survive in aerobic food environments, suggesting that it must employ a variety of protection mechanisms to resist oxidative stress. For the first time, C. jejuni 81–176 inner and outer membrane subproteomes were analyzed separately using two-dimensional protein electrophoresis (2-DE) of oxygen-acclimated cells and microaerobically grown cells. LC-MS/MS analyses successfully identified 42 and 25 spots which exhibited a significantly altered abundance in the IMP-enriched fraction and in the OMP-enriched fraction, respectively, in response to oxidative conditions. These spots corresponded to 38 membrane proteins that could be grouped into different functional classes: (i) transporters, (ii) chaperones, (iii) fatty acid metabolism, (iv) adhesion/virulence and (v) other metabolisms. Some of these proteins were up-regulated at the transcriptional level in oxygen-acclimated cells as confirmed by qRT-PCR. Downstream analyses revealed that adhesion of C. jejuni to inert surfaces and swarming motility were enhanced in oxygen-acclimated cells or paraquat-stressed cells, which could be explained by the higher abundance of membrane proteins involved in adhesion and biofilm formation. The virulence factor CadF, over-expressed in the outer membrane of oxygen-acclimated cells, contributes to the complex process of C. jejuni adhesion to inert surfaces as revealed by a reduction in the capability of C. jejuni 81–176 ?CadF cells compared to the isogenic strain. Taken together, these data demonstrate that oxygen-enriched conditions promote the over-expression of membrane proteins involved in both the biofilm initiation and virulence of C. jejuni. PMID:23029510

Sulaeman, Sheiam; Hernould, Mathieu; Schaumann, Annick; Coquet, Laurent; Bolla, Jean-Michel; Dé, Emmanuelle; Tresse, Odile

2012-01-01

232

Wiskott-Aldrich syndrome protein controls antigen-presenting cell-driven CD4+ T-cell motility by regulating adhesion to intercellular adhesion molecule-1.  

PubMed

T-cell scanning for antigen-presenting cells (APC) is a finely tuned process. Whereas non-cognate APC trigger T-cell motility via chemokines and intercellular adhesion molecule-1 (ICAM-1), cognate APC deliver a stop signal resulting from antigen recognition. We tested in vitro the contribution of the actin cytoskeleton regulator Wiskott-Aldrich syndrome protein (WASP) to the scanning activity of primary human CD4(+)  T cells. WASP knock-down resulted in increased T-cell motility upon encounter with non-cognate dendritic cells or B cells and reduced capacity to stop following antigen recognition. The high motility of WASP-deficient T cells was accompanied by a diminished ability to round up and to stabilize pauses. WASP-deficient T cells migrated in a normal proportion towards CXCL12, CCL19 and CCL21, but displayed an increased adhesion and elongation on ICAM-1. The elongated morphology of WASP-deficient T cells was related to a reduced confinement of high-affinity lymphocyte function-associated antigen 1 to the mid-cell zone. Our data therefore indicate that WASP controls CD4(+) T-cell motility upon APC encounter by regulating lymphocyte function-associated antigen 1 spatial distribution. PMID:22804504

Lafouresse, Fanny; Cotta-de-Almeida, Vinicius; Malet-Engra, Gema; Galy, Anne; Valitutti, Salvatore; Dupré, Loïc

2012-10-01

233

Wiskott–Aldrich syndrome protein controls antigen-presenting cell-driven CD4+ T-cell motility by regulating adhesion to intercellular adhesion molecule-1  

PubMed Central

T-cell scanning for antigen-presenting cells (APC) is a finely tuned process. Whereas non-cognate APC trigger T-cell motility via chemokines and intercellular adhesion molecule-1 (ICAM-1), cognate APC deliver a stop signal resulting from antigen recognition. We tested in vitro the contribution of the actin cytoskeleton regulator Wiskott–Aldrich syndrome protein (WASP) to the scanning activity of primary human CD4+ T cells. WASP knock-down resulted in increased T-cell motility upon encounter with non-cognate dendritic cells or B cells and reduced capacity to stop following antigen recognition. The high motility of WASP-deficient T cells was accompanied by a diminished ability to round up and to stabilize pauses. WASP-deficient T cells migrated in a normal proportion towards CXCL12, CCL19 and CCL21, but displayed an increased adhesion and elongation on ICAM-1. The elongated morphology of WASP-deficient T cells was related to a reduced confinement of high-affinity lymphocyte function-associated antigen 1 to the mid-cell zone. Our data therefore indicate that WASP controls CD4+ T-cell motility upon APC encounter by regulating lymphocyte function-associated antigen 1 spatial distribution. PMID:22804504

Lafouresse, Fanny; Cotta-de-Almeida, Vinicius; Malet-Engra, Gema; Galy, Anne; Valitutti, Salvatore; Dupré, Loïc

2012-01-01

234

Adhesive properties of Clostridium perfringens to extracellular matrix proteins collagens and fibronectin.  

PubMed

The adhesive properties of Clostridium perfringens to collagens, gelatin, fibronectin (Fn), Fn-prebound collagens, and Fn-prebound gelatin were investigated. C. perfringens could bind to Fn-prebound collagen type II, type III, and gelatin, but not to gelatin or collagens except for collagen type I directly. Recombinant Fn-binding proteins of C. perfringens, rFbpA and rFbpB, were used to examine Fn-mediated bacterial adherence to collagen type I. In the presence of rFbps, C. perfringens adherence to Fn-prebound collagen type I was inhibited in a dose-dependent manner. Fn was not released from the coated collagen type I by the presence of rFbps, and rFbps did not bind to collagen type I. Thus, the inhibition of C. perfringens binding to Fn-prebound collagen type I by rFbps could not be explained by the removal of Fn from collagen or by the competitive binding of rFbps to collagen. Instead, both rFbps were found to bind to C. perfringens. These results suggest the possibility that rFbps may bind to the putative Fn receptor expressed on C. perfringens and competitively inhibit Fn binding to C. perfringens. PMID:24239649

Hitsumoto, Yasuo; Morita, Naomi; Yamazoe, Ryosuke; Tagomori, Mika; Yamasaki, Tsutomu; Katayama, Seiichi

2014-02-01

235

Role of actin-binding protein in insertion of adhesion receptors into the membrane.  

PubMed

The goal of this study was to determine whether actin-binding protein (ABP) regulates membrane composition. ABP-deficient and ABP-containing cells were transfected with the cDNAs coding for glycoprotein (GP) Ib-IX, a platelet receptor that interacts with ABP. Most of the GP Ib-IX remained inside the ABP-deficient cells. When ABP was present, functional GP Ib-IX was inserted into the membrane. GP Ib-IX lacking the domain that interacts with ABP also showed increased membrane insertion in ABP-expressing cells. Furthermore, a fragment of ABP that lacks the dimerization and GP Ib-IX-binding sites restored the spreading of the cells and increased the amount of GP Ib-IX in the membrane. Finally, expression of ABP also increased endogenous beta1 integrin in the membrane. These results indicate that 1) ABP maintains the properties of the cell such that adhesion receptors can be efficiently expressed in the membrane; 2) increased receptor expression is accompanied by increased ability of the cell to spread; and 3) ABP exerts its effect by a mechanism that does not appear to involve direct cross-linking of actin filaments or direct interaction with receptors. PMID:9446615

Meyer, S C; Sanan, D A; Fox, J E

1998-01-30

236

Measurement of adhesive forces between bacteria and protein-coated surfaces using optical tweezers  

Microsoft Academic Search

Bacterial adhesion is a primary cause of failure in implanted medical devices. Bacteria commonly found in device-related infections, such as S. aureus, have multiple cell surface adhesins which mediate specific adhesion to molecules found in extracellular matrix and blood plasma. Adhesins recognizing fibrinogen, fibronectin, collagen, and elastin molecules have been isolated in S. aureus. We have used optical tweezers to

Kathryn H. Simpson; Gabriela Bowden; Magnus Hook; Bahman Anvari

2002-01-01

237

Developing luminescent nanoprobes for labeling focal adhesion complex proteins and performing combined AFM-TIRF imaging of these conjugates  

E-print Network

on the surface of ovarian cancer cells (HeyA8) and of cytoskeletal components participating in the formation of focal adhesion complex (FAC), such as F- actin in endothelial cells (HUVECS) were labeled using the bio-conjugated QDs. iv Various imaging... ............................................................... 22 3.8 QD/Phaloidin Conjugation .................................................................... 23 3.9 Labeling of Cell Surface Proteins Using QD Strepavidin Conjugates . 23 3.10Labeling F-actin Using QD/Phalloidin Conjugates...

Nathwani, Bhavik Bharat

2008-10-10

238

Development of a rapid immunochromatographic test using a recombinant thrombospondin-related adhesive protein of Babesia gibsoni.  

PubMed

We developed an immunochromatographic test (ICT) with the full-length of thrombospondin-related adhesive protein of Babesia gibsoni expressed by the modified expression method. The developed ICT showed high sensitivity, specificity, and kappa value with a reference test (100%, 93.78%, and 0.8976, respectively), indicating that the ICT could be a new practical diagnostic test for B. gibsoni infection. PMID:22795671

Goo, Youn-Kyoung; Lee, Naeun; Terkawi, Mohamad Alaa; Luo, Yuzi; Aboge, Gabriel Oluga; Nishikawa, Yoshifumi; Suzuki, Hiroshi; Kim, Suk; Xuan, Xuenan

2012-12-21

239

How echinoccocosis affects potential cancer markers in plasma: galectin-3, sN-cadherin and sE-cadherin? a preliminary report  

PubMed Central

Background An increasing number of publications are suggesting that galectin-3 (Gal-3) and soluble cadherin fragments, such as E-cadherin (sE-CAD) and N-cadherin (sN-CAD), may be considered as cancer markers. Despite the promising results of the studies, there are no data concerning their levels in the plasma of echinococcosis patients. In most cases, echinoccocosis affects the liver, and its symptoms and disease course are very similar to those of liver cancer. The aim of the present study was to observe whether echinococcosis affects the concentration of soluble sN-CAD, sE-CAD fragments and Gal-3 in plasma and to determine which of them could be considered reliable liver cancer markers for further research. Methods The concentrations of sN-CAD, sE-CAD and Gal-3 in the EDTA plasma of patients suffering from echinococcosis (N = 20), liver cancers (N = 10) and healthy subjects (N = 20) were measured using the ELISA method. Results The plasma concentration of sE-CAD was lower (p = 0.0381), and that of Gal-3 higher (p = 0.0288), in echinococcosis than in the healthy group. However, only the concentration of sE-CAD differed significantly among the three analysed groups. In echinococcosis there was a correlation between the sE-CAD and CRP levels (rs = 0.79; p = 0.0066) as well as a correlation between the sE-CAD level and the number of leukocytes (rs = 0.65; p = 0.0210) in the blood. Conclusions Echinococcosis affects the concentration of soluble sE-CAD fragments and Gal-3 in plasma. sE-CAD can be considered as a marker for differentiation between liver cancer and echinoccocossis, a parasitic liver disease similar in symptoms. Further study is required to confirm these preliminary results. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2115657402650448. PMID:22340429

2012-01-01

240

Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action  

SciTech Connect

Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

Zhang, Haimou [Center for Infection and Immunity Research, School of Life Sciences, Hubei University, Wuhan, Hubei (China); Qin, Gangjian [Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (United States); Liang, Gang [Children's Hospital, Harvard Medical School, Boston, MA (United States); Li, Jinan [CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA (United States); Chiu, Isaac [CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA (United States); Barrington, Robert A. [CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA (United States); Liu, Dongxu [Center for Infection and Immunity Research, School of Life Sciences, Hubei University, Wuhan, Hubei (China)]. E-mail: dxliu001@yahoo.com

2007-07-13

241

Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp125FAK.  

PubMed Central

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK. Images PMID:8423801

Schaller, M D; Borgman, C A; Parsons, J T

1993-01-01

242

Focal adhesion proteins connect IgE receptors to the cytoskeleton as revealed by micropatterned ligand arrays  

PubMed Central

Patterned surfaces that present specific ligands in spatially defined arrays are used to examine structural linkages between clustered IgE receptors (IgE-Fc?RI) and the cytoskeleton in rat basophilic leukemia (RBL) mast cells. We showed with fluorescence microscopy that cytoskeletal F-actin concentrates in the same regions as cell surface IgE-Fc?RI that bind to the micrometer-size patterned ligands. However, the proteins mediating these cytoskeletal connections and their functional relevance were not known. We now show that whereas the adaptor proteins ezrin and moesin do not detectably concentrate with the array of clustered IgE-Fc?RI, focal adhesion proteins vinculin, paxillin, and talin, which are known to link F-actin with integrins, accumulate in these regions on the same time scale as F-actin. Moreover, colocalization of these focal adhesion proteins with clustered IgE-Fc?RI is enhanced after addition of fibronectin-RGD peptides. Significantly, the most prominent rat basophilic leukemia cell integrin (?5) avoids the patterned regions occupied by the ligands and associates preferentially with exposed regions of the silicon substrate. Thus, spatial separation provided by the patterned surface reveals that particular focal adhesion proteins, which connect to the actin cytoskeleton, associate with ligand-cross-linked IgE-Fc?RI, independently of integrins. We investigated the functional role of one of these proteins, paxillin, in IgE-Fc?RI-mediated signaling by using small interfering RNA. From these results, we determine that paxillin reduces stimulated phosphorylation of the Fc?RI ? subunit but enhances stimulated Ca2+ release from intracellular stores. The results suggest that paxillin associated with clustered IgE-Fc?RI has a net positive effect on Fc?RI signaling. PMID:19004813

Torres, Alexis J.; Vasudevan, Lavanya; Holowka, David; Baird, Barbara A.

2008-01-01

243

Epidermal growth factor activates the Rho GTPase-activating protein (GAP) Deleted in Liver Cancer 1 via focal adhesion kinase and protein phosphatase 2A.  

PubMed

Deleted in Liver Cancer 1 (DLC1) is a RHO GTPase-activating protein (GAP) that negatively regulates RHO. Through its GAP activity, it modulates the actin cytoskeleton network and focal adhesion dynamics, ultimately leading to suppression of cell invasion and metastasis. Despite its presence in various structural and signaling components, little is known about how the activity of DLC1 is regulated at focal adhesions. Here we show that EGF stimulation activates the GAP activity of DLC1 through a concerted mechanism involving DLC1 phosphorylation by MEK/ERK and its subsequent dephosphorylation by protein phosphatase 2A (PP2A) and inhibition of focal adhesion kinase by MEK/ERK to allow the binding between DLC1 and PP2A. Phosphoproteomics and mutation studies revealed that threonine 301 and serine 308 on DLC1, known previously to be mutated in certain cancers, are required for DLC1-PP2A interaction and the subsequent activation of DLC1 upon their dephosphorylation. The intricate interplay of this "MEK/ERK-focal adhesion kinase-DLC1-PP2A" quartet provides a novel checkpoint in the spatiotemporal control of cell spreading and cell motility. PMID:25525271

Ravi, Archna; Kaushik, Shelly; Ravichandran, Aarthi; Pan, Catherine Qiurong; Low, Boon Chuan

2015-02-13

244

In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli  

PubMed Central

Background In nature, mussel adhesive proteins (MAPs) show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa) and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate the use of functional MAPs in practical applications and can be successfully applied to prepare other Dopa/Dopaquinone-based biomaterials. PMID:23095646

2012-01-01

245

Three intrinsically unstructured mussel adhesive proteins, mfp-1, mfp-2, and mfp-3: Analysis by circular dichroism  

PubMed Central

Mussel foot proteins (mfps) mediate fouling by the byssal holdfast and have been extensively investigated as models for versatile polymer-mediated underwater adhesion and coatings. However, insights into the structural properties of mfps have lagged far behind the nanomechanical advances, owing in part to the inability of these proteins to crystallize as well as their limited solubility. Here, solution secondary structures of mfp-1, mfp-2, and mfp-3, localized in the mussel byssal cuticle, adhesive plaque, and plaque–substratum interface, respectively, were investigated using circular dichroism. All three have significant extended coil solution structure, but two, mfp-1 and mfp-2, appear to have punctuated regions of structure separated by unstructured domains. Apart from its punctuated distribution, the structure in mfp-1 resembles other structural proteins such as collagen and plant cell-wall proteins with prominent polyproline II helical structure. As in collagen, PP II structure of mfp-1 is incrementally disrupted by increasing the temperature and by raising pH. However, no recognizable change in mfp-1's PP II structure was evident with the addition with Ca2+ and Fe3+. In contrast, mfp-2 exhibits Ca2+- and disulfide-stabilized epidermal growth factor-like domains separated by unstructured sequence. Mfp-2 showed calcium-binding ability. Bound calcium in mfp-2 was not removed by chelation at pH 5.5, but it was released upon reduction of disulfide bonds. Mfp-3, in contrast, appears to consist largely of unstructured extended coils. PMID:22915553

Hwang, Dong Soo; Waite, J Herbert

2012-01-01

246

Adhesion of Aspergillus Species to Extracellular Matrix Proteins: Evidence for Involvement of Negatively Charged Carbohydrates on the Conidial Surface  

PubMed Central

Invasive lung disease caused by Aspergillus species is a potentially fatal infection in immunocompromised patients. The adhesion of Aspergillus fumigatus conidia to proteins in the basal lamina is thought to be an initial step in the development of invasive aspergillosis. The purpose of this study was to determine the mechanism of adhesion of A. fumigatus conidiospores to basal-lamina proteins and to determine whether conidia possess unique adhesins which allow them to colonize the host. We compared conidia from different Aspergillus species for the ability to bind to purified fibronectin and intact basal lamina. Adhesion assays using immobilized fibronectin or type II pneumocyte-derived basal lamina showed that A. fumigatus conidia bound significantly better than those of other Aspergillus species to both fibronectin and intact basal lamina. Neither desialylation nor complete deglycosylation of fibronectin decreased the binding of A. fumigatus conidia to fibronectin, suggesting that oligosaccharides on fibronectin were not involved in conidiospore binding. Further evidence for this hypothesis came from experiments using purified fragments of fibronectin; A. fumigatus conidia preferentially bound to the nonglycosylated 40-kDa fragment which contains the glycosaminoglycan (GAG) binding domain. Negatively charged carbohydrates, including dextran sulfate and heparin, as well as high-ionic-strength buffers, inhibited binding of A. fumigatus conidia to both fibronectin and intact basal lamina, suggesting that negatively charged carbohydrates on the surface of the conidium may bind to the GAG binding domain of fibronectin and other basal-lamina proteins. These data provide evidence for a novel mechanism of conidial attachment whereby adherence to fibronectin and other basal-lamina proteins is mediated via negatively charged carbohydrates on the conidial surface. PMID:10816488

Wasylnka, Julie A.; Moore, Margo M.

2000-01-01

247

[The role of the ERM protein family in maintaining cellular polarity, adhesion and regulation of cell motility].  

PubMed

Ezrin, radixin and moesin, forming the ERM protein family, act as molecular crosslinkers between actin filaments and proteins anchored in the cell membrane. By participating in a complex intracellular network of signal transduction pathways, ERM proteins play a key role in the regulation of adhesion and polarity of normal cells through interactions with membrane molecules, e.g. E-cadherin. Dynamic cytoskeletal transformations, in which the ERM and Rho GTPases are involved, lead to the formation of membrane-cytoplasmic structures, such as filopodia and lamellipodia, which are responsible for cellular motility. The interactions of ERM proteins with active Akt kinase cause the acquisition of antiapoptotic cellular features by downregulation of the proapoptotic protein Bad. ERM protein activity is regulated by phosphorylation/dephosphorylation reactions and linking phosphatidylinositols. The model of activation based on the molecular conformation changes by breaking the intramolecular bonds and exposing actin binding sites is essential for the proper functioning of the ERM proteins. Additionally, the connection types between the ERM and membrane proteins (direct or indirect by EBP50 and E3KARP) play an important role in transduction of signals from the extracellular matrix. Due to the wide range of ezrin, radixin and moesin cytophysiological features, detailed exploration of the ERM biochemistry will provide a series of answers to questions about ambiguous functions in many intracellular signal transduction pathways. PMID:22470191

Ha?o?, Agnieszka; Donizy, Piotr

2012-01-01

248

Expression of so-called adhesion proteins and DNA cytometric analysis in malignant parotid tumours as predictors of clinical outcome.  

PubMed

Tumours of the salivary glands are rare, and account for only 0.5-1% of all tumours. We have analysed the cytoarchitectural structure of such tumours by studying 3 binding proteins that act on different parts of the glandular epithelial architecture: e-cadherin, laminin, and CD44. We analysed the DNA using image cytometry to evaluate ploidy, S-phase, and 5c exceeding rate, and to compare the biological aggressiveness of the proteins. Our goal was to correlate the degree of structural integrity and the histological grade of the injury, and to try to find new biological factors that would help to predict the evolution of disease in the salivary glands. The immunoexpression pattern of the so-called adhesion proteins of the salivary glands, when combined, yields important data about the aggressiveness of malignant neoplasms, and provides useful tools with which to predict the biological evolution of malignant lesions. PMID:24309001

Azúa-Romeo, J; Saura, D; Guerrero, M; Turner, M; Saura, E

2014-02-01

249

A protein fragment of streptococcal cell surface antigen I/II which prevents adhesion of Streptococcus mutans.  

PubMed Central

Attachment of Streptococcus mutans to the tooth surface involves a cell surface protein with an M(r) of 185,000, termed streptococcal antigen (SA) I/II. Four overlapping fragments of the gene encoding SA I/II were amplified by polymerase chain reaction, cloned, and expressed in Escherichia coli. The recombinant polypeptides were assayed for adhesion-binding activity to salivary receptors and for recognition by a panel of monoclonal antibodies (MAbs) raised against SA I/II. Two of the MAbs which are known to prevent colonization of S. mutans in vivo bound the recombinant polypeptide comprising residues 816 to 1161. In vitro adhesion of S. mutans to saliva-coated hydroxyapatite beads was also inhibited specifically by a polypeptide (residues 816 to 1213) encompassing the same region. The evidence from the MAbs preventing colonization of S. mutans and the adherence inhibition assay suggests that an adhesion-binding activity resides within the portion of SA I/II comprising residues 816 to 1213, which is highly conserved among oral streptococcal species. Images PMID:7691754

Munro, G H; Evans, P; Todryk, S; Buckett, P; Kelly, C G; Lehner, T

1993-01-01

250

Mechanism for Adhesion G Protein-Coupled Receptor GPR56-Mediated RhoA Activation Induced By Collagen III Stimulation  

PubMed Central

GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Despite the importance of GPR56 in brain development, where mutations cause a devastating human brain malformation called bilateral frontoparietal polymicrogyria (BFPP), the signaling mechanism(s) remain largely unknown. Like many other adhesion GPCRs, GPR56 is cleaved via a GPCR autoproteolysis-inducing (GAIN) domain into N- and C-terminal fragments (GPR56N and GPR56C); however, the biological significance of this cleavage is elusive. Taking advantage of the recent identification of a GPR56 ligand and the presence of BFPP-associated mutations, we investigated the molecular mechanism of GPR56 signaling. We demonstrate that ligand binding releases GPR56N from the membrane-bound GPR56C and triggers the association of GPR56C with lipid rafts and RhoA activation. Furthermore, one of the BFPP-associated mutations, L640R, does not affect collagen III-induced lipid raft association of GPR56. Instead, it specifically abolishes collagen III-mediated RhoA activation. Together, these findings reveal a novel signaling mechanism that may apply to other members of the adhesion GPCR family. PMID:24949629

Luo, Rong; Jeong, Sung-Jin; Yang, Annie; Wen, Miaoyun; Saslowsky, David E.; Lencer, Wayne I.; Araç, Demet; Piao, Xianhua

2014-01-01

251

Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent  

PubMed Central

Despite their abundance and multiple functions in a variety of organ systems, the function and signaling mechanisms of adhesion G protein-coupled receptors (GPCRs) are poorly understood. Adhesion GPCRs possess large N termini containing various functional domains. In addition, many of them are autoproteolytically cleaved at their GPS sites into an N-terminal fragment (NTF) and C-terminal fragment. Here we demonstrate that Gpr126 is expressed in the endocardium during early mouse heart development. Gpr126 knockout in mice and knockdown in zebrafish caused hypotrabeculation and affected mitochondrial function. Ectopic expression of Gpr126-NTF that lacks the GPS motif (NTF?GPS) in zebrafish rescued the trabeculation but not the previously described myelination phenotype in the peripheral nervous system. These data support a model in which the NTF of Gpr126, in contrast to the C-terminal fragment, plays an important role in heart development. Collectively, our analysis provides a unique example of the versatile function and signaling properties of adhesion GPCRs in vertebrates. PMID:24082093

Patra, Chinmoy; van Amerongen, Machteld J.; Ghosh, Subhajit; Ricciardi, Filomena; Sajjad, Amna; Novoyatleva, Tatyana; Mogha, Amit; Monk, Kelly R.; Mühlfeld, Christian; Engel, Felix B.

2013-01-01

252

Protein kinase D isoforms are dispensable for integrin-mediated lymphocyte adhesion and homing to lymphoid tissues  

PubMed Central

Leukocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) integrins are essential for lymphocyte adhesion, trafficking and effector functions. Protein kinase D (PKD) has previously been implicated in lymphocyte integrin regulation through regulation of Rap1 activity. However, the true role of PKD in integrin regulation in primary lymphocytes has not previously been investigated. The major PKD isoform in lymphocytes is PKD2. Here we employed PKD2-deficient mice, a specific PKD kinase inhibitor, as well as PKD-null DT40 B cells to investigate the role of PKD in integrin regulation in lymphocytes. We report that PKD2-deficient lymphocytes bound normally to integrin ligands in static and shear flow adhesion assays. They also homed normally to lymphoid organs after adoptive transfer into wild-type mice. DT40 B cells devoid of any PKD isoforms and primary lymphocytes pretreated with a specific PKD inhibitor bound normally to integrin ligands, indicating that multiple PKD isoforms do not redundantly regulate lymphocyte integrins. In addition, PKD2-deficient lymphocytes, as well as DT40 cells devoid of any PKD isoforms, could activate Rap1 in response to B-cell receptor ligation or phorbol ester treatment. Together, these results show that the PKD family does not play a critical role in lymphocyte integrin-mediated cell adhesion or lymphocyte trafficking in vivo. PMID:22311617

Matthews, Sharon A; San Lek, Hwee; Morrison, Vicky L; Mackenzie, Matthew G; Zarrouk, Marouan; Cantrell, Doreen; Fagerholm, Susanna C

2012-01-01

253

Immunolocalization of keratin-associated beta-proteins in developing epidermis of lizard suggests that adhesive setae contain glycine--cysteine-rich proteins.  

PubMed

The localization of specific keratin-associated beta-proteins (formerly referred to as beta-keratins) in the embryonic epidermis of lizards is not known. Two specific keratin-associated beta-proteins of the epidermis, one representing the glycine-rich subfamily (HgG5) and the other the glycine-cysteine medium-rich subfamily (HgGC10), have been immunolocalized at the ultrastructural level in the lizard Anolis lineatopus. The periderm and granulated subperiderm are most immunonegative for these proteins. HgG5 is low to absent in theOberhäutchen layer while is present in the forming beta-layer, and disappears in mesos- and alpha-layers. Instead, HgGC10 is present in the Oberhäutchen, beta-, and also in the following alpha-layers, and specifically accumulates in the developing adhesive setae but not in the surrounding cells of the clear layer. Therefore, setae and their terminal spatulae that adhere to surfaces allowing these lizards to walk vertically contain cysteine-glycine rich proteins. The study suggests that, like in adult and regenerating epidermis, the HgGC10 protein is not only accumulated in cells of the beta-layer but also in those forming the alpha-layer. This small protein therefore is implicated in resistance, flexibility, and stretching of the epidermal layers. It is also hypothesized that the charges of these proteins may influence adhesion of the setae of pad lamellae. Conversely, glycine-rich beta-proteins like HgG5 give rise to the dense, hydrophobic, and chromophobic corneous material of the resistant beta-layer. This result suggests that the differential accumulation of keratin-associated beta-proteins over the alpha-keratin network determines differences in properties of the stratified layers of the epidermis of lizards. PMID:23108977

Alibardi, Lorenzo

2013-01-01

254

Inhibition of S-fimbria-mediated adhesion to human ileostomy glycoproteins by a protein isolated from bovine colostrum.  

PubMed Central

The aim of this study was to isolate and purify the component in bovine colostrum which is responsible for the inhibition of S-fimbria-mediated adhesion of Escherichia coli. Whey from defatted colostrum was fractionated by ultrafiltration, and the < 100K, < 30K, and < 10K fractions and the colostral whey were tested for inhibition of in vitro adhesion of radiolabelled S-fimbria-bearing E. coli to human ileostomy glycoproteins, which provide a model for human intestinal mucus. The inhibiting compound was purified from a dialyzed < 30K fraction with an anion exchange column which was eluted with a NaCl gradient (0 to 1.0 M). The compound was found to be a heat-resistant but pepsin-sensitive protein with an Mr of approximately 18,000 and an isoelectric point of approximately 5.75. The protein appears to block receptor sites for S-fimbriae on ileostomy glycoproteins, with steric hindrance being the most likely mechanism. Analysis of the amino acid sequence of the amino terminus of the 18K protein showed similarity with the sequence of beta-lactoglobulin. PMID:7591156

Ouwehand, A C; Conway, P L; Salminen, S J

1995-01-01

255

SpyAD, a moonlighting protein of group A Streptococcus contributing to bacterial division and host cell adhesion.  

PubMed

Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein). PMID:24778116

Gallotta, Marilena; Gancitano, Giovanni; Pietrocola, Giampiero; Mora, Marirosa; Pezzicoli, Alfredo; Tuscano, Giovanna; Chiarot, Emiliano; Nardi-Dei, Vincenzo; Taddei, Anna Rita; Rindi, Simonetta; Speziale, Pietro; Soriani, Marco; Grandi, Guido; Margarit, Immaculada; Bensi, Giuliano

2014-07-01

256

SpyAD, a Moonlighting Protein of Group A Streptococcus Contributing to Bacterial Division and Host Cell Adhesion  

PubMed Central

Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein). PMID:24778116

Gallotta, Marilena; Gancitano, Giovanni; Pietrocola, Giampiero; Mora, Marirosa; Pezzicoli, Alfredo; Tuscano, Giovanna; Chiarot, Emiliano; Nardi-Dei, Vincenzo; Taddei, Anna Rita; Rindi, Simonetta; Speziale, Pietro; Soriani, Marco; Bensi, Giuliano

2014-01-01

257

Myxoma viral serpin, Serp-1, inhibits human monocyte adhesion through regulation of actin-binding protein filamin B.  

PubMed

Serp-1 is a secreted myxoma viral serine protease inhibitor (serpin) with proven, highly effective, anti-inflammatory defensive activity during host cell infection, as well as potent immunomodulatory activity in a wide range of animal disease models. Serp-1 binds urokinase-type plasminogen activator (uPA) and the tissue-type PA, plasmin, and factor Xa, requiring uPA receptor (uPAR) for anti-inflammatory activity. To define Serp-1-mediated effects on inflammatory cell activation, we examined the association of Serp-1 with monocytes and T cells, effects on cellular migration, and the role of uPAR-linked integrins and actin-binding proteins in Serp-1 cellular responses. Our results show that Serp-1 associates directly with activated monocytes and T lymphocytes, in part through interaction with uPAR (P<0.001). Serp-1, but not mammalian serpin PA inhibitor-1 (PAI-1), attenuated cellular adhesion to the extracellular matrix. Serp-1 and PAI-1 reduced human monocyte and T cell adhesion (P<0.001) and migration across endothelial monolayers in vitro (P<0.001) and into mouse ascites in vivo (P<0.001). Serp-1 and an inactive Serp-1 mutant Serp-1(SAA) bound equally to human monocytes and T cells, but a highly proinflammatory mutant, Serp-1(Ala(6)), bound less well to monocytes. Serp-1 treatment of monocytes increased expression of filamin B actin-binding protein and reduced CD18 (beta-integrin) expression (P<0.001) in a uPAR-dependent response. Filamin colocalized and co-immunoprecipitated with uPAR, and short interference RNA knock-down of filamin blocked Serp-1 inhibition of monocyte adhesion. We report here that the highly potent, anti-inflammatory activity of Serp-1 is mediated through modification of uPAR-linked beta-integrin and filamin in monocytes, identifying this interaction as a central regulatory axis for inflammation. PMID:19052145

Viswanathan, Kasinath; Richardson, Jakob; Togonu-Bickersteth, Babajide; Dai, Erbin; Liu, Liying; Vatsya, Pracha; Sun, Yun-ming; Yu, Jeff; Munuswamy-Ramanujam, Ganesh; Baker, Henry; Lucas, Alexandra R

2009-03-01

258

Epidermal growth factor suppresses induction by progestin of the adhesion protein desmoplakin in T47D breast cancer cells  

PubMed Central

Introduction Although the effects of progesterone on cell cycle progression are well known, its role in spreading and adhesion of breast cancer cells has not attracted much attention until recently. Indeed, by controlling cell adhesion proteins, progesterone may play a direct role in breast cancer invasion and metastasis. Progesterone has also been shown to modulate epidermal growth factor (EGF) effects in neoplasia, although EGF effects on progesterone pathways and targets are less well understood. In the present study we identify an effect of EGF on a progesterone target, namely desmoplakin. Methods Initially flow cytometry was used to establish the growing conditions and demonstrate that the T47D breast cancer cell line was responding to progesterone and EGF in a classical manner. Differential display RT-PCR was employed to identify differentially expressed genes affected by progesterone and EGF. Western and Northern blotting were used to verify interactions between EGF and progesterone in three breast cancer cell lines: T47D, MCF-7, and ZR-75. Results We found the cell adhesion protein desmoplakin to be upregulated by progesterone – a process that was suppressed by EGF. This appears to be a general but not universal effect in breast cancer cell lines. Conclusion Our findings suggest that progesterone and EGF may play opposing roles in metastasis. They also suggest that desmoplakin may be a useful biomarker for mechanistic studies designed to analyze the crosstalk between EGF and progesterone dependent events. Our work may help to bridge the fields of metastasis and differentiation, and the mechanisms of steroid action. PMID:15084247

Pang, Haiyan; Rowan, Brian G; Al-Dhaheri, Mariam; Faber, Lee E

2004-01-01

259

Human epididymis protein 4 (HE4) plays a key role in ovarian cancer cell adhesion and motility  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We generated stable transduced HE4 overexpression and knockdown cells. Black-Right-Pointing-Pointer HE4 was associated with EOC cell adhesion and motility. Black-Right-Pointing-Pointer HE4 might have some effects on activation of EGFR-MAPK signaling pathway. Black-Right-Pointing-Pointer HE4 play an important role in EOC tumorigenicity. -- Abstract: Human epididymis protein 4 (HE4) is a novel and specific biomarker for epithelial ovarian cancer (EOC). We previously demonstrated that serum HE4 levels were significantly elevated in the majority of EOC patients but not in subjects with benign disease or healthy controls. However, the precise mechanism of HE4 protein function is unknown. In this study, we generated HE4-overexpressing SKOV3 cells and found that stably transduced cells promoted cell adhesion and migration. Knockdown of HE4 expression was achieved by stable transfection of SKOV3 cells with a construct encoding a short hairpin DNA directed against the HE4 gene. Correspondingly, the proliferation and spreading ability of HE4-expressed cells were inhibited by HE4 suppression. Mechanistically, impaired EGFR and Erk1/2 phosphorylation were observed in cells with HE4 knockdown. The phosphorylation was restored when the knockdown cells were cultured in conditioned medium containing HE4. Moreover, in vivo tumorigenicity showed that HE4 suppression markedly inhibited the growth of tumors. This suggests that expression of HE4 is associated with cancer cell adhesion, migration and tumor growth, which can be related to its effects on the EGFR-MAPK signaling pathway. Our results provide evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of HE4 in EOC progression. The role of HE4 as a target for gene-based therapy might be considered in future studies.

Lu, Renquan [Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032 (China) [Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Sun, Xinghui [Department of Medicine, Brigham and Women's Hospital, MA 02115 (United States) [Department of Medicine, Brigham and Women's Hospital, MA 02115 (United States); Department of Medicine, Harvard Medical School, MA 02115 (United States); Xiao, Ran; Zhou, Lei; Gao, Xiang [Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032 (China)] [Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032 (China); Guo, Lin, E-mail: guolin500@hotmail.com [Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032 (China) [Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China)

2012-03-09

260

Cross Talk between Cell Cell and Cell Matrix Adhesion Signaling Pathways during Heart Organogenesis: Implications for Cardiac Birth Defects  

NASA Astrophysics Data System (ADS)

The anterior posterior and dorsal ventral progression of heart organogenesis is well illustrated by the patterning and activity of two members of different families of cell adhesion molecules: the calcium-dependent cadherins, specifically N-cadherin, and the extracellular matrix glycoproteins, fibronectin. N-cadherin by its binding to the intracellular molecule [beta]-catenin and fibronectin by its binding to integrins at focal adhesion sites, are involved in regulation of gene expression by their association with the cytoskeleton and through signal transduction pathways. The ventral precardiac mesoderm cells epithelialize and become stably committed by the activation of these cell matrix and intracellular signaling transduction pathways. Cross talk between the adhesion signaling pathways initiates the characteristic phenotypic changes associated with cardiomyocyte differentiation: electrical activity and organization of myofibrils. The development of both organ form and function occurs within a short interval thereafter. Mutations in any of the interacting molecules, or environmental insults affecting either of these signaling pathways, can result in embryonic lethality or fetuses born with severe heart defects. As an example, we have defined that exposure of the embryo temporally to lithium during an early sensitive developmental period affects a canonical Wnt pathway leading to [beta]-catenin stabilization. Lithium exposure results in an anterior posterior progression of severe cardiac defects.

Linask, Kersti K.; Manisastry, Shyam; Han, Mingda

2005-06-01

261

Restoring E-cadherin-mediated cell-cell adhesion increases PTEN protein level and stability in human breast carcinoma cells  

SciTech Connect

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well-characterized tumor suppressor that negatively regulates cell growth and survival. Despite the critical role of PTEN in cell signaling, the mechanisms of its regulation are still under investigation. We reported here that PTEN expression could be controlled by overexpression or knock-down of E-cadherin in several mammary carcinoma cell lines. Furthermore, we showed that the accumulation of PTEN protein in E-cadherin overexpressing cells was due to increased PTEN protein stability rather than the regulation of its transcription. The proteasome-dependent PTEN degradation pathway was impaired after restoring E-cadherin expression. Moreover, maintenance of E-cadherin mediated cell-cell adhesion was necessary for its regulating PTEN. Altogether, our results suggested that E-cadherin mediated cell-cell adhesion was essential for preventing the proteasome degradation of PTEN, which might explain how breast carcinoma cells which lost cell-cell contact proliferate rapidly and are prone to metastasis.

Li Zengxia; Wang Liying; Zhang Wen; Fu Yi; Zhao Hongbo; Hu Yali; Prins, Bram Peter [Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032 (China); Zha Xiliang [Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032 (China)], E-mail: xlzha@shmu.edu.cn

2007-11-09

262

Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts.  

PubMed Central

We have isolated the major cell surface glycoprotein of chick embryo fibroblasts, CSP, and added it to a variety of transformed cells in vitro. The transformed cells become more elongated, often more flattened, and show increased adhesion to the substratum. Several transformed cell lines also align in striking parallel arrays. This alignment is characterized by a decrease in the amount of nuclear overlapping, probably indicating restoration of contact inhibition of movement. The morphological changes are antagonized by antibody to CSP. These effects of CSP are not associated with an elevation of cellular 3':5'-cyclic AMP. Moreover, the morphological reversion is not accompanied by an alteration in growth properties. Our results are consistent with a role for CSP in cell adhesion and morphology but not in growth control. Images PMID:177979

Yamada, K M; Yamada, S S; Pastan, I

1976-01-01

263

Characterization of Palladin, a Novel Protein Localized to Stress Fibers and Cell Adhesions  

Microsoft Academic Search

Here, we describe the identification of a novel phosphoprotein named palladin, which colocal- izes with a -actinin in the stress fibers, focal adhesions, cell-cell junctions, and embryonic Z-lines. Palladin is expressed as a 90-92-kD doublet in fibroblasts and coimmunoprecipitates in a complex with a -actinin in fibroblast lysates. A cDNA encoding palladin was iso- lated by screening a mouse embryo

Mana M. Parast; Carol A. Otey

2000-01-01

264

Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion  

Microsoft Academic Search

Monolayers of dipalmitoyl-phosphatidylethanolamine (DPPE) mixing with various mole percentages of distearoyl-phosphatidylethanolamine (DSPE)-conjugated poly-(ethylene glycol) (PEG m.w. 750–5000) were deposited on DPPE-coated glass surfaces by the Langmuir-Blodgett method. Increasing percentages of grafted PEG in these supported lipid surfaces increasingly inhibit the adsorption of bovine serum albumin (BSA), laminin, and fibronectin. Increasing percentages of grafted PEG also inhibit the adhesion of erythrocytes,

Hong Du; Parthapratim Chandaroy; Sek Wen Hui

1997-01-01

265

Hydrogen sulfide impairs keratinocyte cell growth and adhesion inhibiting mitogen-activated protein kinase signaling  

Microsoft Academic Search

The effects of exogenous hydrogen sulfide (H2S) on normal skin-derived immortalized human keratinocytes have been investigated in detail. We show in vitro that exogenous hydrogen sulfide reduces clonal growth, cell proliferation and cell adhesion of human keratinocytes. H2S, in fact, decreases the frequency of the putative keratinocyte stem cell subpopulation in culture, consequently affecting clonal growth, and impairs cell proliferation

Giuliana Gobbi; Francesca Ricci; Chiara Malinverno; Cecilia Carubbi; Maurizia Pambianco; Giuseppe de Panfilis; Marco Vitale; Prisco Mirandola

2009-01-01

266

Effects of antibodies against cell surface protein antigen PAc-glucosyltransferase fusion proteins on glucan synthesis and cell adhesion of Streptococcus mutans.  

PubMed Central

Cell surface protein antigen (PAc) and glucosyltransferases (GTFs) produced by Streptococcus mutans are considered to be major colonization factors of the organism, and the inhibition of these two factors is predicted to provide protection against dental caries. In this study, we have constructed fusion protein PAcA-GB, a fusion of the saliva-binding alanine-rich region (PAcA) of PAc with the glucan binding (GB) domain of GTF-I, an enzyme catalyzing the synthesis of water-insoluble glucan from sucrose, and fusion protein PAcA-SB, a fusion of PAcA with the sucrose binding (SB) domain of GTF-I. The recombinant fusion proteins were purified from cell extracts of Escherichia coli harboring the fusion genes, and rabbit antibodies against these fusion proteins were prepared. Water-insoluble glucan synthesis by cell-associated and cell-free GTF preparations from S. mutans as well as total glucan synthesis by GTF-I was markedly inhibited by anti-PAcA-GB immunoglobulin G (IgG) antibodies but not by anti-PAcA-SB IgG antibodies. Significant inhibition of the sucrose-independent and sucrose-dependent adhesion of S. mutans to saliva-coated hydroxyapatite beads was observed when anti-PAcA-GB antibodies were added to the reaction mixture. Anti-PAcA-SB antibodies inhibited the adhesion of S. mutans to the beads in the absence of sucrose but not in the presence of sucrose. Immunization with the fusion protein PAcA-GB may be useful for controlling the colonization of teeth by S. mutans. PMID:9169766

Yu, H; Nakano, Y; Yamashita, Y; Oho, T; Koga, T

1997-01-01

267

Loss of Cadherin-Binding Proteins ?-Catenin and Plakoglobin in the Heart Leads to Gap Junction Remodeling and Arrhythmogenesis  

PubMed Central

Arrhythmic right ventricular cardiomyopathy (ARVC) is a hereditary heart muscle disease that causes sudden cardiac death (SCD) in young people. Almost half of ARVC patients have a mutation in genes encoding cell adhesion proteins of the desmosome, including plakoglobin (JUP). We previously reported that cardiac tissue-specific plakoglobin (PG) knockout (PG CKO) mice have no apparent conduction abnormality and survive longer than expected. Importantly, the PG homolog, ?-catenin (CTNNB1), showed increased association with the gap junction protein connexin43 (Cx43) in PG CKO hearts. To determine whether ?-catenin is required to maintain cardiac conduction in the absence of PG, we generated mice lacking both PG and ?-catenin specifically in the heart (i.e., double knockout [DKO]). The DKO mice exhibited cardiomyopathy, fibrous tissue replacement, and conduction abnormalities resulting in SCD. Loss of the cadherin linker proteins resulted in dissolution of the intercalated disc (ICD) structure. Moreover, Cx43-containing gap junction plaques were reduced at the ICD, consistent with the arrhythmogenicity of the DKO hearts. Finally, ambulatory electrocardiogram monitoring captured the abrupt onset of spontaneous lethal ventricular arrhythmia in the DKO mice. In conclusion, these studies demonstrate that the N-cadherin-binding partners, PG and ?-catenin, are indispensable for maintaining mechanoelectrical coupling in the heart. PMID:22252313

Swope, David; Cheng, Lan; Gao, Erhe; Li, Jifen

2012-01-01

268

The Yak1 Protein Kinase Lies at the Center of a Regulatory Cascade Affecting Adhesive Growth and Stress Resistance in Saccharomyces cerevisiae  

PubMed Central

In Saccharomyces cerevisiae, adhesive growth on solid surfaces is mediated by the flocculin Flo11 to confer biofilm and filament formation. Expression of FLO11 is governed by a complex regulatory network that includes, e.g., the protein kinase A (PKA) signaling pathway. In addition, numerous regulatory genes, which have not been integrated into regulatory networks, affect adhesive growth, including WHI3 encoding an RNA-binding protein and YAK1 coding for a dual-specificity tyrosine-regulated protein kinase. In this study, we present evidence that Whi3 and Yak1 form part of a signaling pathway that regulates FLO11-mediated surface adhesion and is involved in stress resistance. Our study further suggests that Whi3 controls YAK1 expression at the post-transcriptional level and that Yak1 targets the transcriptional regulators Sok2 and Phd1 to control FLO11. We also discovered that Yak1 regulates acidic stress resistance and adhesion via the transcription factor Haa1. Finally, we provide evidence that the catalytic PKA subunit Tpk1 inhibits Yak1 by targeting specific serine residues to suppress FLO11. In summary, our data suggest that Yak1 is at the center of a regulatory cascade for adhesive growth and stress resistance, which is under dual control of Whi3 and the PKA subunit Tpk1. PMID:21149646

Malcher, Mario; Schladebeck, Sarah; Mösch, Hans-Ulrich

2011-01-01

269

Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin.  

PubMed

Transmission of the plant pathogen Spiroplasma citri by its leafhopper vector, Circulifer tenellus, involves adherence to and invasion of insect host cells. The S. citri adhesion related protein P89 (SARP1) was purified by immunoprecipitation using anti-SARP1 monoclonal antibodies. The protein's N-terminal amino acid sequence was determined and used to design a degenerate oligonucleotide. The labeled oligonucleotide hybridized to a 3.5 kb MboI fragment from S. citri DNA, which was then cloned and sequenced. Additionally, a 1.9 kb RsaI fragment of S. citri DNA, partially overlapping the MboI fragment, was isolated and characterized. Sequence analysis of the two clones revealed four open reading frames. ORF1 (675 bp) encodes the C-terminal part of a Soj-like protein. ORFs 1 and 2 were separated from ORFs 3 and 4 by a putative transcription termination site, indicated by a hairpin structure. ORF3 encodes an amphiphilic 798 amino acid long protein with a cleavable signal peptide and a predicted transmembrane helix near the C-terminus. The mature protein of 85.96 kDa has a calculated pI value of 5.5 and has an N-terminal amino acid sequence consistent with that determined from the purified SARP1. At the N-terminus of this protein is a region consisting of six repeats, each 39-42 amino acids, a motif belonging to a previously unrecognized family of repeats found in a variety of bacterial proteins. The taxonomically spotty presence of this 'sarpin' domain and the relationship of the repeats to each other suggests a convergent evolution in multiple lineages. PMID:11574152

Berg, M; Melcher, U; Fletcher, J

2001-09-01

270

A contactin-receptor-like protein tyrosine phosphatase beta complex mediates adhesive communication between astroglial cells and gonadotrophin-releasing hormone neurones.  

PubMed

Although it is well established that gonadotrophin-releasing hormone (GnRH) neurones and astrocytes maintain an intimate contact throughout development and adult life, the cell-surface molecules that may contribute to this adhesiveness remain largely unknown. In the peripheral nervous system, the glycosylphosphatidyl inositol (GPI)-anchored protein contactin is a cell-surface neuronal protein required for axonal-glial adhesiveness. A glial transmembrane protein recognised by neuronal contactin is receptor-like protein tyrosine phosphatase beta (RPTP beta), a phosphatase with structural similarities to cell adhesion molecules. In the present study, we show that contactin, and its preferred in cis partner Caspr1, are expressed in GnRH neurones. We also show that the RPTP beta mRNA predominantly expressed in hypothalamic astrocytes encodes an RPTP beta isoform (short RPTP beta) that uses its carbonic anhydrase (CAH) extracellular subdomain to interact with neuronal contactin. Immunoreactive contactin is most abundant in GnRH nerve terminals projecting to both the organum vasculosum of the lamina terminalis and median eminence, implying GnRH axons as an important site of contactin-dependent cell adhesiveness. GT1-7 immortalised GnRH neurones adhere to the CAH domain of RPTPbeta, and this adhesiveness is blocked when contactin GPI anchoring is disrupted or contactin binding capacity is immunoneutralised, suggesting that astrocytic RPTP beta interacts with neuronal contactin to mediate glial-GnRH neurone adhesiveness. Because the abundance of short RPTP beta mRNA increases in the female mouse hypothalamus (but not in the cerebral cortex) before puberty, it appears that an increased interaction between GnRH axons and astrocytes mediated by RPTP beta-contactin is a dynamic mechanism of neurone-glia communication during female sexual development. PMID:17927663

Parent, A-S; Mungenast, A E; Lomniczi, A; Sandau, U S; Peles, E; Bosch, M A; Rønnekleiv, O K; Ojeda, S R

2007-11-01

271

Comparative proteomic analysis of metabolically labelled proteins from Plasmodium falciparum isolates with different adhesion properties  

PubMed Central

The virulence of Plasmodium falciparum relates in part to the cytoadhesion characteristics of parasitized erythrocytes but the molecular basis of the different qualitative and quantitative binding phenotypes is incompletely understood. This paucity of information is due partly to the difficulty in working with membrane proteins, the variant nature of these surface antigens and their relatively low abundance. To address this two-dimensional (2D) protein profiles of closely related, but phenotypically different laboratory strains of P. falciparum have been characterized using proteomic approaches. Since the mature erythrocyte has no nucleus and no protein synthesis capability, metabolic labelling of proteins was used to selectively identify parasite proteins and increase detection sensitivity. A small number of changes (less than 10) were observed between four different P. falciparum laboratory strains with distinctive cytoadherence properties using metabolic labelling, with more parasite protein changes found in trophozoite iRBCs than ring stage. The combination of metabolic labelling and autoradiography can therefore be used to identify parasite protein differences, including quantitative ones, and in some cases to obtain protein identifications by mass spectrometry. The results support the suggestion that the membrane protein profile may be related to cytoadherent properties of the iRBCs. Most changes between parasite variants were differences in iso-electric point indicating differential protein modification rather than the presence or absence of a specific peptide. PMID:16887017

Wu, Yang; Craig, Alister

2006-01-01

272

Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: II. In vivo wound closure study in a rat model  

Microsoft Academic Search

Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w\\/v) bovine

Karen M. McNally-Heintzelman; Douglas L. Heintzelman; Mark T. Duffy; Jeffrey N. Bloom; Eric C. Soller; Travis M. Gilmour; Grant T. Hoffman; Deepak Edward

2004-01-01

273

c-kit receptor signaling through its phosphatidylinositide-3'-kinase-binding site and protein kinase C: role in mast cell enhancement of degranulation, adhesion, and membrane ruffling.  

PubMed Central

In bone marrow-derived mast cells (BMMCs), the Kit receptor tyrosine kinase mediates diverse responses including proliferation, survival, chemotaxis, migration, differentiation, and adhesion to extracellular matrix. In connective tissue mast cells, a role for Kit in the secretion of inflammatory mediators has been demonstrated as well. We recently demonstrated a role for phosphatidylinositide-3' (PI 3)-kinase in Kit-ligand (KL)-induced adhesion of BMMCs to fibronectin. Herein, we investigated the mechanism by which Kit mediates enhancement of Fc epsilon RI-mediated degranulation, cytoskeletal rearrangements, and adhesion in BMMCs. Wsh/Wsh BMMCs lacking endogenous Kit expression, were transduced to express normal and mutant Kit receptors containing Tyr-->Phe substitution at residues 719 and 821. Although the normal Kit receptor fully restored KL-induced responses in Wsh/Wsh BMMCs, Kit gamma 719F, which fails to bind and activate PI 3-kinase, failed to potentiate degranulation and is impaired in mediating membrane ruffling and actin assembly. Inhibition of PI 3-kinase with wortmannin or LY294002 also inhibited secretory enhancement and cytoskeletal rearrangements mediated by Kit. In contrast, secretory enhancement and adhesion stimulated directly through protein kinase C (PKC) do not require PI 3-kinase. Calphostin C, an inhibitor of PKC, blocked Kit-mediated adhesion to fibronectin, secretory enhancement, membrane ruffling, and filamentous actin assembly. Although cytochalasin D inhibited Kit-mediated filamentous actin assembly and membrane ruffling, secretory enhancement and adhesion to fibronectin were not affected by this drug. Therefore, Kit-mediated cytoskeletal rearrangements that are dependent on actin polymerization can be uncoupled from the Kit-mediated secretory and adhesive responses. Our results implicate receptor-proximal PI 3-kinase activation and activation of a PKC isoform in Kit-mediated secretory enhancement, adhesion, and cytoskeletal reorganization. Images PMID:9168474

Vosseller, K; Stella, G; Yee, N S; Besmer, P

1997-01-01

274

UNDERSTANDING INTERCELLULAR INTERACTIONS AND CELL ADHESION: LESSONS FROM STUDIES ON PROTEIN–METAL INTERACTIONS  

Microsoft Academic Search

To understand cell–cell interactions and the interactions of cells to non-biological materials, studies on binding forces between cellular proteins and between proteins and non-biological material such as metal surfaces are essential. The adsorption of proteins to solid–water interfaces is a multifactorial and a multistep process. First steps are determined by long-range interactions where surface properties such as hydrophobicity, distribution of

R. ECKERT; S. JENEY; J. K. H. HÖRBER

1997-01-01

275

Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels.  

PubMed

Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with approximately <100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end-group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

Scott, Evan A; Nichols, Michael D; Cordova, Lee H; George, Brandon J; Jun, Young-Shin; Elbert, Donald L

2008-12-01

276

Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels  

PubMed Central

Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

2008-01-01

277

Molecular Cloning and Characterization of a Surface-Localized Adhesion Protein in Mycoplasma bovis Hubei-1 Strain  

PubMed Central

Mycoplasma bovis (M. bovis) is an important pathogen that causes various bovine diseases, such as mastitis in cows and pneumonia in calves. The surface proteins are generally thought to play a central role in the pathogenesis of this organism. We screened the entire genome of M. bovis Hubei-1 and discovered a gene named vpmaX that encodes the 25 kDa variable surface lipoprotein A (VpmaX). Sequence analysis revealed that VpmaX contains several repetitive units and a typical bacterial lipoprotein signal sequence. The vpmaX gene was cloned and expressed in E. coli to obtain recombinant VpmaX (rVpmaX). Western blot analysis using a rabbit antibody against rVpmaX demonstrated that VpmaX is a membrane protein. Immunostaining visualized via confocal laser scanning microscopy showed that rVpmaX was able to adhere to embryonic bovine lung cells (EBL), and this was also confirmed by a sandwich ELISA. In summary, a surface-localized adhesion protein was identified in M. bovis Hubei-1. PMID:23936063

Wang, Yang; Zhou, Yumei; Liu, Yang; Xin, Jiuqing

2013-01-01

278

Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis Hubei-1 strain.  

PubMed

Mycoplasma bovis (M. bovis) is an important pathogen that causes various bovine diseases, such as mastitis in cows and pneumonia in calves. The surface proteins are generally thought to play a central role in the pathogenesis of this organism. We screened the entire genome of M. bovis Hubei-1 and discovered a gene named vpmaX that encodes the 25 kDa variable surface lipoprotein A (VpmaX). Sequence analysis revealed that VpmaX contains several repetitive units and a typical bacterial lipoprotein signal sequence. The vpmaX gene was cloned and expressed in E. coli to obtain recombinant VpmaX (rVpmaX). Western blot analysis using a rabbit antibody against rVpmaX demonstrated that VpmaX is a membrane protein. Immunostaining visualized via confocal laser scanning microscopy showed that rVpmaX was able to adhere to embryonic bovine lung cells (EBL), and this was also confirmed by a sandwich ELISA. In summary, a surface-localized adhesion protein was identified in M. bovis Hubei-1. PMID:23936063

Zou, Xiaohui; Li, Yuan; Wang, Yang; Zhou, Yumei; Liu, Yang; Xin, Jiuqing

2013-01-01

279

A Novel Group of Moraxella catarrhalis UspA Proteins Mediates Cellular Adhesion via CEACAMs and Vitronectin  

PubMed Central

Moraxella catarrhalis (Mx) is a common cause of otitis media and exacerbation of chronic obstructive pulmonary disease, an increasing worldwide problem. Surface proteins UspA1 and UspA2 of Mx bind to a number of human receptors and may function in pathogenesis. Genetic recombination events in the pathogen can generate hybrid proteins termed UspA2H. However, whether certain key functions (e.g. UspA1-specific CEACAM binding) can be exchanged between these adhesin families remains unknown. In this study, we have shown that Mx can incorporate the UspA1 CEACAM1-binding region not only into rare UspA1 proteins devoid of CEACAM-binding ability, but also into UspA2 which normally lack this capacity. Further, a screen of Mx isolates revealed the presence of novel UspA2 Variant proteins (UspA2V) in ?14% of the CEACAM-binding population. We demonstrate that the expression of UspA2/2V with the CEACAM-binding domain enable Mx to bind both to cell surface CEACAMs and to integrins, the latter via vitronectin. Such properties of UspA2/2V have not been reported to date. The studies demonstrate that the UspA family is much more heterogeneous than previously believed and illustrate the in vivo potential for exchange of functional regions between UspA proteins which could convey novel adhesive functions whilst enhancing immune evasion. PMID:23049802

Hill, Darryl J.; Whittles, Cheryl; Virji, Mumtaz

2012-01-01

280

Carcinoembryonic cell adhesion molecule 6 in human lung: regulated expression of a multifunctional type II cell protein  

PubMed Central

Carcinoembryonic cell adhesion molecule 6 (CEACAM6) is a glycosylated, glycosylphosphatidylinositol (GPI)-anchored protein expressed in epithelial cells of various human tissues. It binds gram-negative bacteria and is overexpressed in cancers, where it is antiapoptotic and promotes metastases. To characterize CEACAM6 expression in developing lung, we cultured human fetal lung epithelial cells and examined responses to differentiation-promoting hormones, adenovirus expressing thyroid transcription factor-1 (TTF-1), and silencing of TTF-1 with small inhibitory RNA. Glucocorticoid and cAMP had additive stimulatory effects on CEACAM6 content, and combined treatment maximally increased transcription rate, mRNA, and protein ?10-fold. Knockdown of TTF-1 reduced hormone induction of CEACAM6 by 80%, and expression of recombinant TTF-1 increased CEACAM6 in a dose-dependent fashion. CEACAM6 content of lung tissue increased during the third trimester and postnatally. By immunostaining, CEACAM6 was present in fetal type II cells, but not mesenchymal cells, and localized to both the plasma membrane and within surfactant-containing lamellar bodies. CEACAM6 was secreted from cultured type II cells and was present in both surfactant and supernatant fractions of infant tracheal aspirates. In functional studies, CEACAM6 reduced inhibition of surfactant surface properties by proteins in vitro and blocked apoptosis of electroporated cultured cells. We conclude that CEACAM6 in fetal lung epithelial cells is developmentally and hormonally regulated and a target protein for TTF-1. Because CEACAM6 acts as an antiapoptotic factor and stabilizes surfactant function, in addition to a putative role in innate defense against bacteria, we propose that it is a multifunctional alveolar protein. PMID:19329538

Kolla, Venkatadri; Gonzales, Linda W.; Bailey, Nicole A.; Wang, Ping; Angampalli, Sreedevi; Godinez, Marye H.; Madesh, Muniswamy; Ballard, Philip L.

2009-01-01

281

Cell adhesion force microscopy  

PubMed Central

The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

1999-01-01

282

Dynamic and Static Interactions between p120 Catenin and E-Cadherin Regulate the Stability of Cell-Cell Adhesion  

SciTech Connect

The association of p120 catenin (p120) with the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail is critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. Here, we present the crystal structure of p120 isoform 4A in complex with the JMD core region (JMD{sub core}) of E-cadherin. The p120 armadillo repeat domain contains modular binding pockets that are complementary to electrostatic and hydrophobic properties of the JMD{sub core}. Single-residue mutations within the JMD{sub core}-binding site of p120 abolished its interaction with E- and N-cadherins in vitro and in cultured cells. These mutations of p120 enabled us to clearly differentiate between N-cadherin-dependent and -independent steps of neuronal dendritic spine morphogenesis crucial for synapse development. NMR studies revealed that p120 regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the JMD, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination of E-cadherin, through its discrete dynamic and static binding sites.

Ishiyama, Noboru; Lee, Seung-Hye; Liu, Shuang; Li, Guang-Yao; Smith, Matthew J.; Reichardt, Louis F.; Ikura, Mitsuhiko (OCI); (UCSF)

2010-04-26

283

Cell adhesion and sorting in embryoid bodies derived from N- or E-cadherin deficient murine embryonic stem cells  

PubMed Central

Summary The primitive endoderm epithelial structure in mouse blastocysts forms following cell differentiation and subsequent sorting, and this two-step process can be reproduced in vitro using an embryoid body model. We found that in the chimeric embryoid bodies consisting of paired wildtype and E-cadherin null ES cells, the wildtype sorted to the center and were enveloped by the less adhesive E-cadherin null cells, in accord with Steinberg's hypothesis. However, wildtype and N-cadherin null ES cells intermixed and did not segregate, a situation that may be explained by Albert Harris' modified principle, which incorporates the unique properties of living cells. Furthermore, in chimeric embryoid bodies composed of N-cadherin and E-cadherin null ES cells, the two weakly interacting cell types segregated but did not envelop one another. Lastly, the most consistent and striking observation was that differentiated cells sorted to the surface and formed an enveloping layer, regardless of the relative cell adhesive affinity of any cell combination, supporting the hypothesis that the ability of the differentiated cells to establish apical polarity is the determining factor in surface sorting and positioning. PMID:24414205

Moore, Robert; Tao, Wensi; Meng, Yue; Smith, Elizabeth R.; Xu, Xiang-Xi

2014-01-01

284

Toner Adhesion  

Microsoft Academic Search

The adhesion of toner particles charged by triboelectricity plays an important role in the electrophotographic process. In spite of the importance of this phenomenon to electrophotography, the physics of toner adhesion is not well understood. A literature survey of toner adhesion measurements reveals adhesion forces which are typically 5 to 50 times larger than the predictions of the electrostatic image

Dan A. Hays

1995-01-01

285

Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence.  

PubMed Central

Barnacle cement is an underwater adhesive that is used for permanent settlement, and is an insoluble protein complex. A method for rendering soluble the cement of Megabalanus rosa has been developed, and three major proteins have been identified in a previous study. To survey the M. rosa cement proteins in a lower molecular mass range, the cement proteins were separated by reversed-phase HPLC and a previously unidentified protein named 20 kDa M. rosa cement protein (Mrcp-20k) was found. Mrcp-20k cDNA was cloned to reveal its primary structure. This cDNA was 902 bp long and encoded a 202 amino acid-long open reading frame, including 19 amino acids of the signal sequence. The molecular mass in the disulphide form was calculated to be 20357 Da and the isoelectric point of the mature polypeptide was 4.72. Mrcp-20k was characterized by an abundance of Cys residues and charged amino acids. The most common amino acid was Cys (17.5%), with Asp (11.5%), Glu (10.4%) and His (10.4%) following in order of magnitude. The alignment of the Cys residues indicated the primary structure of this protein to consist of six degenerated repeats, each about 30 residues long. Mrcp-20k has no intermolecular disulphide bonds and no free thiol groups of Cys in the insoluble cement complex. Abundant Cys is thought to play a role in maintaining the topology of charged amino acids on the molecular surface by intramolecular disulphide-bond formation. The possible function of abundant charged amino acids, including the interaction with a variety of surface metals on the substratum, is discussed. PMID:11368778

Kamino, K

2001-01-01

286

Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence.  

PubMed

Barnacle cement is an underwater adhesive that is used for permanent settlement, and is an insoluble protein complex. A method for rendering soluble the cement of Megabalanus rosa has been developed, and three major proteins have been identified in a previous study. To survey the M. rosa cement proteins in a lower molecular mass range, the cement proteins were separated by reversed-phase HPLC and a previously unidentified protein named 20 kDa M. rosa cement protein (Mrcp-20k) was found. Mrcp-20k cDNA was cloned to reveal its primary structure. This cDNA was 902 bp long and encoded a 202 amino acid-long open reading frame, including 19 amino acids of the signal sequence. The molecular mass in the disulphide form was calculated to be 20357 Da and the isoelectric point of the mature polypeptide was 4.72. Mrcp-20k was characterized by an abundance of Cys residues and charged amino acids. The most common amino acid was Cys (17.5%), with Asp (11.5%), Glu (10.4%) and His (10.4%) following in order of magnitude. The alignment of the Cys residues indicated the primary structure of this protein to consist of six degenerated repeats, each about 30 residues long. Mrcp-20k has no intermolecular disulphide bonds and no free thiol groups of Cys in the insoluble cement complex. Abundant Cys is thought to play a role in maintaining the topology of charged amino acids on the molecular surface by intramolecular disulphide-bond formation. The possible function of abundant charged amino acids, including the interaction with a variety of surface metals on the substratum, is discussed. PMID:11368778

Kamino, K

2001-06-01

287

Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair  

NASA Astrophysics Data System (ADS)

The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and similar artificial protein-graft-poly(ethylene glycol) materials with varying protein elements for improved wound healing might serve as biosynthetic implant materials or wound dressings that degrade in synchrony with the formation of a variety of target tissues.

Halstenberg, Sven

2002-01-01

288

Dominant-negative effect on adhesion by myelin Po protein truncated in its cytoplasmic domain  

E-print Network

Abstract. The myelin Po protein is believed to hold myelin together via interactions of both its extracellular and cytoplasmic domains. We have already shown that the extracellular domains of Po can interact in a homophilic

Man-har Wong; Marie T. Filbin

1996-01-01

289

Interactions between Galectin-3 and Mac2Binding Protein Mediate Cell-Cell Adhesion1  

Microsoft Academic Search

Galectin-3 is a ß-galactoside-specific lectin implicated in diverse pro cesses involved in cellular interactions. Recently, the Mac-2-binding pro tein, a heavily \\/V-glycosylated secreted protein with a subunit MTof 97,000, was identified as its ligand. The present study characterizes the interaction between galectin-3 and Mac-2-binding protein in whole cells and measures their relative expression levels. Incubation of A375 cells with affinity-

Hidenori Inohara; Shiro Akahani; Kirston Koths; Avraham Raz

290

[Influence of different adhesive composition on sporulation and protein synthesis by Bacillus thuringiensis collection strains].  

PubMed

The influence of different sticky-gene composition on sporulation and protein synthesis by B. thuringiensis collection strains has been investigated. It has been detemined that the most effective according this characteristics were B. thuringiensis collection strains 0293 and 98. It has been shown that the best on protein synthesis processes and sporulation by investigated B. thuringiensis strains influences adding to the culture medium sticky-gene compositions A and E in a concentration of from 10 to 15%. PMID:25434213

Krut', V V; Dankevych, L A; Votselko, S K; Patyka, V P

2014-01-01

291

Adsorption and adhesion of common serum proteins to nanotextured gallium nitride.  

PubMed

As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the 'activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization. PMID:25564044

Bain, Lauren E; Hoffmann, Marc P; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

2015-02-14

292

Scaffold-forming and Adhesive Contributions of Synthetic Laminin-binding Proteins to Basement Membrane Assembly*S?  

PubMed Central

Laminins that possess three short arms contribute to basement membrane assembly by anchoring to cell surfaces, polymerizing, and binding to nidogen and collagen IV. Although laminins containing the ?4 and ?5 subunits are expressed in ?2-deficient congenital muscular dystrophy, they may be ineffective substitutes because they bind weakly to cell surfaces and/or because they lack the third arm needed for polymerization. We asked whether linker proteins engineered to bind to deficient laminins that provide such missing activities would promote basement membrane assembly in a Schwann cell model. A chimeric fusion protein (?LNNd) that adds a short arm terminus to laminin through the nidogen binding locus was generated and compared with the dystrophy-ameliorating protein miniagrin (mAgrin) that binds to the laminin coiled-coil dystroglycan and sulfatides. ?LNNd was found to mediate laminin binding to collagen IV, to bind to galactosyl sulfatide, and to selectively convert ?-short arm deletion-mutant laminins Lm??LN and Lm??LN-L4b into polymerizing laminins. This protein enabled polymerization-deficient laminin but not an adhesion-deficient laminin lacking LG domains (Lm?LG) to assemble an extracellular matrix on Schwann cell surfaces. mAgrin, on the other hand, enabled Lm?LG to form an extracellular matrix on cell surfaces without increasing accumulation of non-polymerizing laminins. These gain-of-function studies reveal distinct polymerization and anchorage contributions to basement membrane assembly in which the three different LN domains mediate the former, and the LG domains provide primary anchorage with secondary contributions from the ?LN domain. These findings may be relevant for an understanding of the pathogenesis and treatment of laminin deficiency states. PMID:19189961

McKee, Karen K.; Capizzi, Stephanie; Yurchenco, Peter D.

2009-01-01

293

Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles.  

PubMed

Thermoresponsive poly(N-isopropylacrylamide) (pNIPAm) microgel particles cross-linked with various concentrations of PEG diacrylates of 3 different PEG chain lengths were synthesized via free-radical precipitation polymerization in order to investigate the phase transition and protein adsorption behavior as the hydrophilicity of the network is increased. Photon correlation spectroscopy (PCS) reveals that, as the concentration of PEG cross-linker incorporated into the particles is increased, an increase in the temperature and breadth of the phase transition occurs. Qualitative differences in particle density using isopycnic centrifugation confirm that higher PEG concentrations result in denser networks. The efficient incorporation of PEG cross-linker was confirmed with (1)H NMR, and variable temperature NMR studies suggest that, in the deswollen state, the longer PEG cross-links protrude from the dense globular network. This behavior apparently manifests itself as a decrease in nonspecific protein adsorption with increasing PEG length and content. Furthermore, when electrostatically attached to a glass surface, the particles containing the longer chain lengths exhibited enhanced nonfouling behavior and were resistant to cell adhesion in serum-containing media. The excellent performance of these particulate films and the simplicity with which they are assembled suggests that they may be applicable in a wide range of applications where nonfouling coatings are required. PMID:16004442

Nolan, Christine M; Reyes, Catherine D; Debord, Justin D; García, Andrés J; Lyon, L Andrew

2005-01-01

294

In-depth Characterization of the Secretome of Colorectal Cancer Metastatic Cells Identifies Key Proteins in Cell Adhesion, Migration, and Invasion*  

PubMed Central

Liver metastasis in colorectal cancer is the major cause of cancer-related deaths. To identify and characterize proteins associated with colon cancer metastasis, we have compared the conditioned serum-free medium of highly metastatic KM12SM colorectal cancer cells with the parental, poorly metastatic KM12C cells using quantitative stable isotope labeling by amino acids in cell culture (SILAC) analyses on a linear ion trap-Orbitrap Velos mass spectrometer. In total, 1337 proteins were simultaneously identified in SILAC forward and reverse experiments. For quantification, 1098 proteins were selected in both experiments, with 155 proteins showing >1.5-fold change. About 52% of these proteins were secreted directly or using alternative secretion pathways. GDF15, S100A8/A9, and SERPINI1 showed capacity to discriminate cancer serum samples from healthy controls using ELISAs. In silico analyses of deregulated proteins in the secretome of metastatic cells showed a major abundance of proteins involved in cell adhesion, migration, and invasion. To characterize the tumorigenic and metastatic properties of some top up- and down-regulated proteins, we used siRNA silencing and antibody blocking. Knockdown expression of NEO1, SERPINI1, and PODXL showed a significant effect on cellular adhesion. Silencing or blocking experiments with SOSTDC1, CTSS, EFNA3, CD137L/TNFSF9, ZG16B, and Midkine caused a significant decrease in migration and invasion of highly metastatic cells. In addition, silencing of SOSTDC1, EFNA3, and CD137L/TNFSF9 reduced liver colonization capacity of KM12SM cells. Finally, the panel of six proteins involved in invasion showed association with poor prognosis and overall survival after dataset analysis of gene alterations. In summary, we have defined a collection of proteins that are relevant for understanding the mechanisms underlying adhesion, migration, invasion, and metastasis in colorectal cancer. PMID:23443137

Barderas, Rodrigo; Mendes, Marta; Torres, Sofia; Bartolomé, Rubén A.; López-Lucendo, María; Villar-Vázquez, Roi; Peláez-García, Alberto; Fuente, Eduardo; Bonilla, Félix; Casal, J. Ignacio

2013-01-01

295

A tumor-suppressing function in the epithelial adhesion protein Trask.  

PubMed

Trask/CDCP1 is a transmembrane glycoprotein widely expressed in epithelial tissues whose functions are just beginning to be understood, but include a role as an anti-adhesive effector of Src kinases. Early studies looking at RNA transcript levels seemed to suggest overexpression in some cancers, but immunostaining studies are now providing more accurate analyses of its expression. In an immuno-histochemical survey of human cancer specimens, we find that Trask expression is retained, reduced or sometimes lost in some tumors compared with their normal epithelial tissue counterparts. A survey of human cancer cell lines also show a similar wide variation in the expression of Trask, including some cell types with the loss of Trask expression, and additional cell types that have lost the physiological detachment-induced phosphorylation of Trask. Three experimental models were established to interrogate the role of Trask in tumor progression, including two gain-of-function models with tet-inducible expression of Trask in tumor cells lacking Trask expression, and one loss-of-function model to suppress Trask expression in tumor cells with abundant Trask expression. The induction of Trask expression and phosphorylation in MCF-7 cells and in 3T3v-src cells was associated with a reduction in tumor metastases while the shRNA-induced knockdown of Trask in L3.6pl cancer cells was associated with increased tumor metastases. The results from these three models are consistent with a tumor-suppressing role for Trask. These data identify Trask as one of several potential candidates for functionally relevant tumor suppressors on the 3p21.3 region of the genome frequently lost in human cancers. PMID:21706059

Spassov, D S; Wong, C H; Harris, G; McDonough, S; Phojanakong, P; Wang, D; Hann, B; Bazarov, A V; Yaswen, P; Khanafshar, E; Moasser, M M

2012-01-26

296

Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: I. Acute wound closure study in a rat model  

Microsoft Academic Search

Composite adhesives composed of biodegradable scaffolds impregnated with a biological or synthetic adhesive were investigated for use in wound closure as an alternative to using either one of the adhesives alone. Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal sub mucosa, manufactured by Cook BioTech. The

Grant T. Hoffman; Eric C. Soller; Douglas L. Heintzelman; Mark T. Duffy; Jeffrey N. Bloom; Travis M. Gilmour; Krista N. Gonnerman; Karen M. McNally-Heintzelman

2004-01-01

297

BapC autotransporter protein of Bordetella pertussis is an adhesion factor.  

PubMed

Bordetella pertussis, the causative agent of whooping cough, attaches to mucosal surfaces in upper respiratory tract, where it produces, a variety of surface-associated and secreted molecules. Among various secreted products, some of the proteins belonging to autotransporter family; pertactin (Prn), bordetella resistance to killing (BrkA) and a newly identified member, bordetella autotransporter protein-C (BapC), are investigated in this study for their adherence potential to various respiratory and non-respiratory tract specific cell lines. Our results reveal that BapC and Prn mutants adhere significantly less (p < 0.0001 and p < 0.05) respectively to human non-respiratory (HeLa-229) and murine macrophages (P-388 D-1) cells compared to their wild-type strains. Prn, BrkA and BapC share no homology in their passenger domains except existence of common motifs arginine-glycine-asparctic (RGD) and glycosaminoglycan binding site (SGXG). We have shown that RGD and SGXG motifs are present in the coiled region in Prn and BrkA proteins with the exception in BapC where R (463) of RGD and S (597) of SGXG motif were observed in beta sheet of the modeled protein structures. Therefore, there is possibility that such arrangement of motifs can confer greater probability of BapC in better selective adherence to binding sites on the HeLa-229 and P-388 D-1 cell lines. PMID:22052409

Bokhari, Habib; Bilal, Iram; Zafar, Sadia

2012-08-01

298

Lsa21, a novel leptospiral protein binding adhesive matrix molecules and present during human infection  

Microsoft Academic Search

BACKGROUND: It has been well documented over past decades that interaction of pathogens with the extracellular matrix (ECM) plays a primary role in host cell attachment and invasion. Adherence to host tissues is mediated by surface-exposed proteins expressed by the microorganisms during infection. The mechanisms by which pathogenic leptospires invade and colonize the host remain poorly understood since few virulence

Marina V Atzingen; Angela S Barbosa; Thales De Brito; Silvio A Vasconcellos; Zenáide M de Morais; Dirce MC Lima; Patricia AE Abreu; Ana LTO Nascimento

2008-01-01

299

Nanoscale dynamics and protein adhesivity of alkylamine self-assembled monolayers on graphene.  

PubMed

Atomic-scale molecular dynamics computer simulations are used to probe the structure, dynamics, and energetics of alkylamine self-assembled monolayer (SAM) films on graphene and to model the formation of molecular bilayers and protein complexes on the films. Routes toward the development and exploitation of functionalized graphene structures are detailed here, and we show that the SAM architecture can be tailored for use in emerging applications (e.g., electrically stimulated nerve fiber growth via the targeted binding of specific cell surface peptide sequences on the functionalized graphene scaffold). The simulations quantify the changes in film physisorption on graphene and the alkyl chain packing efficiency as the film surface is made more polar by changing the terminal groups from methyl (-CH3) to amine (-NH2) to hydroxyl (-OH). The mode of molecule packing dictates the orientation and spacing between terminal groups on the surface of the SAM, which determines the way in which successive layers build up on the surface, whether via the formation of bilayers of the molecule or the immobilization of other (macro)molecules (e.g., proteins) on the SAM. The simulations show the formation of ordered, stable assemblies of monolayers and bilayers of decylamine-based molecules on graphene. These films can serve as protein adsorption platforms, with a hydrophobin protein showing strong and selective adsorption by binding via its hydrophobic patch to methyl-terminated films and binding to amine-terminated films using its more hydrophilic surface regions. Design rules obtained from modeling the atomic-scale structure of the films and interfaces may provide input into experiments for the rational design of assemblies in which the electronic, physicochemical, and mechanical properties of the substrate, film, and protein layer can be tuned to provide the desired functionality. PMID:23301836

O'Mahony, S; O'Dwyer, C; Nijhuis, C A; Greer, J C; Quinn, A J; Thompson, D

2013-06-18

300

Protein N-glycosylation in oral cancer: Dysregulated cellular networks among DPAGT1, E-cadherin adhesion and canonical Wnt signaling  

PubMed Central

N-Linked glycosylation (N-glycosylation) of proteins has long been associated with oncogenesis, but not until recently have the molecular mechanisms underlying this relationship begun to be unraveled. Here, we review studies describing how dysregulation of the N-glycosylation-regulating gene, DPAGT1, drives oral cancer. DPAGT1 encodes the first and rate-limiting enzyme in the assembly of the lipid-linked oligosaccharide precursor in the endoplasmic reticulum and thus mediates N-glycosylation of many cancer-related proteins. DPAGT1 controls N-glycosylation of E-cadherin, the major epithelial cell–cell adhesion receptor and a tumor suppressor, thereby affecting intercellular adhesion and cytoskeletal dynamics. DPAGT1 also regulates and is regulated by Wnt/?-catenin signaling, impacting the balance between proliferation and adhesion in homeostatic tissues. Thus, aberrant induction of DPAGT1 promotes a positive feedback network with Wnt/?-catenin that represses E-cadherin-based adhesion and drives tumorigenic phenotypes. Further, modification of receptor tyrosine kinases (RTKs) with N-glycans is known to control their surface presentation via the galectin lattice, and thus increased DPAGT1 expression likely contributes to abnormal activation of RTKs in oral cancer. Collectively, these studies suggest that dysregulation of the DPAGT1/Wnt/E-cadherin network underlies the etiology and pathogenesis of oral cancer. PMID:24742667

Varelas, Xaralabos; Bouchie, Meghan P; Kukuruzinska, Maria A

2014-01-01

301

cDNA cloning reveals the molecular structure of a sperm surface protein, PH20, involved in sperm-egg adhesion and the wide distribution of its gene among mammals  

Microsoft Academic Search

Sperm binding to the egg zona pellucida in mammals is a cell-cell adhesion process that is gener- ally species specific. The guinea pig sperm protein PH-20 has a required function in sperm adhesion to the zona pellucida of guinea pig eggs. PH-20 is lo- cated on both the sperm plasma membrane and acrosomal membrane. We report here the isolation and

William E Lathrop; Ellen P. Carmichael; Diana G. Myles; Paul Primakoff

1990-01-01

302

Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques  

NASA Astrophysics Data System (ADS)

In this work, protein adsorption and cell adhesion on three-dimensional (3D) polycaprolactone (PCL) scaffolds treated by plasma etching and deposition were performed. The 3D PCL scaffold used as a substrate of a bone tissue was fabricated by recent rapid prototype techniques. To increase surface properties, such as hydrophilicity, roughness, and surface chemistry, through good protein adhesion on scaffolds, oxygen (O2) plasma etching and acrylic acid or allyamine plasma deposition were performed on the 3D PCL scaffolds. The O2 plasma etching induced the formation of random nanoporous structures on the roughened surfaces of the 3D PCL scaffolds. The plasma deposition with acrylic acid and allyamine induced the chemical modification for introducing a functional group. The protein adsorption increased on the O2 plasma-etched surface compared with an untreated 3D PCL scaffold. MC3T3-E1 cells adhered bioactively on the etched and deposited surface compared with the untreated surface. The present plasma modification might be sought as an effective technique for enhancing protein adsorption and cell adhesion.

Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon

2014-11-01

303

Dynamics of presynaptic protein recruitment induced by local presentation of artificial adhesive contacts  

PubMed Central

Here we introduce a novel approach to induce and observe the formation of presynaptic compartments in axons through a combination of Atomic Force Microscopy (AFM) and fluorescence microscopy. First, we use a poly-D-lysine coated bead attached to an AFM tip to induce the recruitment of two synaptic proteins, bassoon and synaptophysin, and measure their absolute arrival times to the presynaptic department. We find that bassoon arrives before synaptophysin. Second, we observed the formation of very long (several 10s of µm), structured, protein-containing membranous strings as the AFM tip was withdrawn from the axon. It is conceivable that these strings might be a novel mechanism by which new neurites or branch points along existing neurites may be generated in situ. PMID:22648784

Suarez, Fernando; Thostrup, Peter; Colman, David; Grutter, Peter

2012-01-01

304

Noncovalent bonds are key mechanisms for the cohesion of barnacle ( Balanus crenatus ) adhesive proteins  

Microsoft Academic Search

Cement of the barnacle species, Balanus crenatus, was isolated and separated by SDS-PAGE. Reductive and nonreductive conditions yielded the same result of six major proteins (in the range up to 100 kDa) occurring as two triplets. A third triplet of lower molecular mass was faintly visible. The presence of a reductive agent had only little impact on the solubility of B.

Maja Wiegemann; Thomas Kowalik; Andreas Hartwig

2006-01-01

305

Novel Modulator for Endothelial Adhesion Molecules Adipocyte-Derived Plasma Protein Adiponectin  

Microsoft Academic Search

Background—Among the many adipocyte-derived endocrine factors, we recently found an adipocyte-specific secretory protein, adiponectin, which was decreased in obesity. Although obesity is associated with increased cardiovascular mortality and morbidity, the molecular basis for the link between obesity and vascular disease has not been fully clarified. The present study investigated whether adiponectin could modulate endothelial function and relate to coronary disease.

Noriyuki Ouchi; Shinji Kihara; Yukio Arit; Kazuhisa Maeda; Hiroshi Kuriyama; Yoshihisa Okamoto; Kikuko Hott; Makoto Nishida; Masahiko Takahashi; Tadashi Nakamura; Shizuya Yamashita; Tohru Funahashi; Yuji Matsuzawa

306

CCN3\\/Nephroblastoma Overexpressed Matricellular Protein Regulates Integrin Expression, Adhesion, and Dissemination in Melanoma  

Microsoft Academic Search

CCN3\\/nephroblastoma overexpressed belongs to the CCN family of genes that encode secreted proteins associated with the extracellular matrix (ECM) and exert regulatory effects at the cellular level. Overexpression of CCN3 was shown in metastatic melanoma cells compared with cells of the primary tumor from the same patient. Analysis of short-term cultures from 50 primary and metastatic melanomas revealed a heterogeneous

Viviana Vallacchi; Maria Daniotti; Francesca Ratti; Delia Di Stasi; Paola Deho; Annamaria De Filippo; Andrea Balsari; Antonino Carbone; Licia Rivoltini; Giorgio Parmiani; Noureddine Lazar; Bernard Perbal; Monica Rodolfo

2008-01-01

307

Seafood delicacy makes great adhesive  

SciTech Connect

Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

Idaho National Laboratory - Frank Roberto, Heather Silverman

2008-03-26

308

Seafood delicacy makes great adhesive  

ScienceCinema

Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

Idaho National Laboratory - Frank Roberto, Heather Silverman

2010-01-08

309

Spiroplasma citri Surface Protein P89 Implicated in Adhesion to Cells of the Vector Circulifer tenellus.  

PubMed

ABSTRACT Two microtiter plate assays were developed to study the adherence of the plant-pathogenic mollicute Spiroplasma citri to a monolayer of cultured cells of its leafhopper vector, Circulifer tenellus. Adherence was significantly reduced by prior treatment of the spiroplasmas with proteinase K or pronase. Electrophoresis and western blotting of spiroplasma membrane proteins, before and after exposure of intact spiroplasmas to proteases, revealed the concomitant reduction in intensity of a major membrane protein (P89) and a new polypeptide of approximately 46 kDa in protease-treated preparations (P46). Triton X-114 phase partitioning demonstrated that P89 and P46 are amphiphilic, and labeling of the new polypeptide P46 with anti-P89 serum suggested that this molecule may be a breakdown product of P89. Regeneration of P89 after proteinase K treatment of spiroplasmas was directly associated with restoration of the pathogen's attachment capability. Treatment of spiroplasmas with any of several carbohydrates and glycoconjugates or with tetramethyl-urea, a compound that interferes with hydrophobic associations, had a negligible effect on attachment. These results suggest that a spiroplasma surface protein, P89, has a role in S. citri adherence to C. tenellus cells. PMID:18944490

Yu, J; Wayadande, A C; Fletcher, J

2000-07-01

310

The Campylobacter jejuni Cj0268c Protein Is Required for Adhesion and Invasion In Vitro  

PubMed Central

Adherence of Campylobacter jejuni to its particular host cells is mediated by several pathogen proteins. We screened a transposon-based mutant library of C. jejuni in order to identify clones with an invasion deficient phenotype towards Caco2 cells and detected a mutant with the transposon insertion in gene cj0268c. In vitro characterization of a generated non-random mutant, the mutant complemented with an intact copy of cj0268c and parental strain NCTC 11168 confirmed the relevance of Cj0268c in the invasion process, in particular regarding adherence to host cells. Whereas Cj0268c does not impact autoagglutination or motility of C. jejuni, heterologous expression in E. coli strain DH5? enhanced the potential of the complemented E. coli strain to adhere to Caco2 cells significantly and, thus, indicates that Cj0268c does not need to interact with other C. jejuni proteins to develop its adherence-mediating phenotype. Flow cytometric measurements of E. coli expressing Cj0268c indicate a localization of the protein in the periplasmic space with no access of its C-terminus to the bacterial surface. Since a respective knockout mutant possesses clearly reduced resistance to Triton X-100 treatment, Cj0268c contributes to the stability of the bacterial cell wall. Finally, we could show that the presence of cj0268c seems to be ubiquitous in isolates of C. jejuni and does not correlate with specific clonal groups regarding pathogenicity or pathogen metabolism. PMID:24303031

Tareen, A. Malik; Lüder, Carsten G. K.; Zautner, Andreas E.; Groß, Uwe; Heimesaat, Markus M.; Bereswill, Stefan; Lugert, Raimond

2013-01-01

311

Titanate nanowire scaffolds decorated with anatase nanocrystals show good protein adsorption and low cell adhesion capacity  

PubMed Central

Background and methods: In this report, layered microporous titanate nanowire scaffolds (TiNWs) were constructed via a hydrothermal route and then decorated with anatase nanocrystals (ANs@TiNWs) by immersion in TiCl4 solution. The diameter and specific surface area of the ANs@TiNWs was measured. The TiNWs and ANs@TiNWs were then compared for their ability to adsorb protein and adhere to MG63 cells. Results: The diameter and specific surface area of the ANs@TiNWs were significantly larger than for TiNWs, and the ANs@TiNWs had an enhanced protein-adsorbing effect. It was found that the MG63 cells were less able to adhere to the flat titanium substrate than the TiNWs and ANs@TiNWs, and that this cell-repellant ability was greater with ANs@TiNWs. Other MG63 cell functions, proliferation in particular, were also inhibited by ANs@TiNWs. Conclusion: ANs@TiNWs show a high protein adsorption and cell-repellant capacity which would be useful in drug delivery. PMID:23430236

Ding, Xianglong; Yang, Xiaoqin; Zhou, Lei; Lu, Haibin; Li, Shaobing; Gao, Yan; Lai, Chunhua; Jiang, Ying

2013-01-01

312

The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development  

PubMed Central

Mutations in GPR56, a member of the adhesion G protein-coupled receptor family, cause a human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Magnetic resonance imaging (MRI) of BFPP brains reveals myelination defects in addition to brain malformation. However, the cellular role of GPR56 in oligodendrocyte development remains unknown. Here, we demonstrate that loss of Gpr56 leads to hypomyelination of the central nervous system in mice. GPR56 levels are abundant throughout early stages of oligodendrocyte development, but are downregulated in myelinating oligodendrocytes. Gpr56-knockout mice manifest with decreased oligodendrocyte precursor cell (OPC) proliferation and diminished levels of active RhoA, leading to fewer mature oligodendrocytes and a reduced number of myelinated axons in the corpus callosum and optic nerves. Conditional ablation of Gpr56 in OPCs leads to a reduced number of mature oligodendrocytes as seen in constitutive knockout of Gpr56. Together, our data define GPR56 as a cell-autonomous regulator of oligodendrocyte development. PMID:25607655

Giera, Stefanie; Deng, Yiyu; Luo, Rong; Ackerman, Sarah D.; Mogha, Amit; Monk, Kelly R.; Ying, Yanqin; Jeong, Sung-Jin; Makinodan, Manabu; Bialas, Allison R.; Chang, Bernard S.; Stevens, Beth; Corfas, Gabriel; Piao, Xianhua

2015-01-01

313

Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion  

Microsoft Academic Search

In vitro protein adsorption, platelet adhesion and activation on new hydrogel surfaces, composed of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) or poly(dimethyl siloxane) (PDMS), were investigated. By varying PEO length (MW=2000 or 3400), hydrophobic components (PTMO or PDMS) or polymer topology (block or graft copolymers), various physical hydrogels were produced. Their structures were verified by 1HNMR and ATR-IR and

Jae Hyung Park; You Han Bae

2002-01-01

314

p160 ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions  

Microsoft Academic Search

p160ROCK is a serine\\/threonine protein kinase that binds selectively to GTP-Rho and is activated by this binding. To identify its function, we transfected HeLa cells with wild type and mutants of p160ROCK and examined morphology of the transfected cells. Transfection with wild type and mutants containing the kinase domain and the coiled-coil forming region induced focal adhesions and stress fibers,

Toshimasa Ishizaki; Mamoru Naito; Kazuko Fujisawa; Midori Maekawa; Naoki Watanabe; Yuji Saito; Shuh Narumiya

1997-01-01

315

Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve  

Microsoft Academic Search

The cellular and subcellular localization of the neural cell adhesion molecules L1, N-CAM, and myelin-associated glycoprotein (MAG), their shared carbohydrate epitope L2\\/HNK-1, and the myelin basic protein (MBP) were studied by pre- and post- embedding immunoelectron microscopic labeling procedures in developing mouse sciatic nerve. L1 and N-CAM showed a similar staining pattern. Both were localized on small, non-myelinated, fasciculating axons

Rudolf Martini; Melitta Schachner

1986-01-01

316

Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: I. Acute wound closure study in a rat model  

NASA Astrophysics Data System (ADS)

Composite adhesives composed of biodegradable scaffolds impregnated with a biological or synthetic adhesive were investigated for use in wound closure as an alternative to using either one of the adhesives alone. Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal sub mucosa, manufactured by Cook BioTech. The biological adhesive was composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The synthetic adhesive was Ethicon's Dermabond, a 2-octyl-cyanoacrylate. The tensile strength of skin incisions repaired ex vivo in a rat model, by adhesive alone or in combination with a scaffold, as well as the time-to-failure, were measured and compared. The tensile strength of repairs formed using the scaffold-enhanced biological adhesives were on average, 80% stronger than their non-enhanced counterparts, with an accompanying increase in the time-to-failure of the repairs. These results support the theory that a scaffold material with an irregular surface that bridges the wound provides a stronger, more durable and consistent adhesion, due to the distribution of the tensile stress forces over the many micro-adhesions provided by the irregular surface, rather than the one large continuous adhesive contact. This theory is also supported by several previous ex vivo experiments demonstrating enhanced tensile strength of irregular versus smooth scaffold surfaces in identical tissue repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung tissue.

Hoffman, Grant T.; Soller, Eric C.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Gilmour, Travis M.; Gonnerman, Krista N.; McNally-Heintzelman, Karen M.

2004-07-01

317

Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Spiroplasma citri.  

PubMed

In the plant-pathogenic mollicute Spiroplasma citri, spiralin is the major lipoprotein at the cell surface and is thought to be one of the components involved in the interactions of the spiroplasma with its insect vector. With the aim of identifying surface proteins other than spiralin, monoclonal antibodies (mAbs) were produced by immunization of mice with the spiralin-defective S. citri mutant GII3-9a2. mAb 10G3 was found to react with several polypeptides of 43-47 and 80-95 kDa, all of which were detected in the detergent phase after Triton X-114 partitioning of proteins. Mass spectrometry (MALDI-TOF) analyses of the two major polypeptides P47 and P80 of GII3-9a2, reacting with mAb 10G3, revealed that P47 was a processed product and represented the C-terminal moiety of P80. Search for sequence homologies revealed that P80 shared strong similarities with the S. citri adhesion-related protein P89 (Sarp1) of S. citri BR3, and is one (named Scarp4a) of the eight Scarps encoded by the S. citri GII-3 genome. The eight scarp genes are carried by plasmids pSci1-5. Western immunoblotting of proteins with mAb 10G3 revealed that, in contrast to the insect-transmissible S. citri strain GII-3, the non-insect-transmissible strains ASP-1, R8A2 and 44 did not express Scarps. Southern blot hybridization experiments indicated that these strains possessed no scarp genes, and did not carry plasmids pSci1-5. However, S. citri strain GII3-5, lacking pSci5, was still efficiently transmitted, showing that, in the genetic background of S. citri GII-3, the pSci5-encoded genes, and in particular scarp2b, 3b and 5a, are not essential for insect transmission. Whether plasmid-encoded genes are involved in transmission of S. citri by its leafhopper vector remains to be determined. PMID:16514166

Berho, Nathalie; Duret, Sybille; Renaudin, Joël

2006-03-01

318

Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation.  

PubMed

Fractalkine is a novel multidomain protein expressed on the surface of activated endothelial cells. Cells expressing the chemokine receptor CX3CR1 adhere to fractalkine with high affinity, but it is not known if adherence requires G-protein activation and signal transduction. To investigate the cell adhesion properties of fractalkine, we created mutated forms of CX3CR1 that have little or no ability to transduce intracellular signals. Cells expressing signaling-incompetent forms of CX3CR1 bound rapidly and with high affinity to immobilized fractalkine in both static and flow assays. Video microscopy revealed that CX3CR1-expressing cells bound more rapidly to fractalkine than to VCAM-1 (60 versus 190 ms). Unlike VCAM-1, fractalkine did not mediate cell rolling, and after capture on fractalkine, cells did not dislodge. Finally, soluble fractalkine induced intracellular calcium fluxes and chemotaxis, but it did not activate integrins. Taken together these data provide strong evidence that CX3CR1, a seven-transmembrane domain receptor, mediates robust cell adhesion to fractalkine in the absence of G-protein activation and suggest a novel role for this receptor as an adhesion molecule. PMID:10187784

Haskell, C A; Cleary, M D; Charo, I F

1999-04-01

319

Use of immobilized lactoperoxidase to label L cell proteins involved in adhesion to polystyrene  

PubMed Central

Proteins involved in the attachment of murine L cells to polystyrene have been identified by a technique designed to iodinate only those macromolecules coming into closet apposition to the substratum. Whereas soluble lactoperoxidase (LPO) catalyzes the radioiodination of a broad spectrum of polypeptides, the same enzyme immobilized on polystyrene tissue culture flasks discriminately labels 55,000 and 42,000 mol wt polypeptides that adhere tightly to the substratum after the cells are removed. One-dimensional peptide mapping following limited proteolysis showed that the labeled 55,000 mol wt polypeptide is similar to a component of comparable molecular weight present in the detergent- extracted cytoskeleton. The functional association of two cytoskeletal structures, presumably 10-nm filaments and actin, is discussed, and alternative explanations for their susceptibility to iodination by immobilized LPO are presented. PMID:6892817

1980-01-01

320

Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis  

Microsoft Academic Search

Elongation factor Tu (EF-Tu), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI) are surface-bound proteins with a role in adhesion of Lactobacillus plantarum 423 to Caco-2 cells. Removal of surface-bound proteins from L. plantarum 423 (treated with 4M guanidine–HCl) reduced adhesion to Caco-2 cells by 40%. In a competitive exclusion experiment where all three strains were given an equal chance to

Kamini Ramiah; Carol A. van Reenen; Leon M. T. Dicks

2008-01-01

321

Reduction of protein adsorption and macrophage and astrocyte adhesion on ventricular catheters by polyethylene glycol and N-acetyl-L-cysteine.  

PubMed

Cellular obstruction of poly(dimethyl)siloxane (PDMS) catheters is one of the most prevalent causes of shunt failure in the treatment of hydrocephalus. By modifying PDMS using short- and long-chain mono-functional polyethylene glycol (PEG604 and PEG5K, respectively) and N-acetyl-L-cysteine via adsorption and covalent binding (NAC and NAC/EDC/NHS, respectively), we increased surface wettability. We hypothesized that these surface modifications would inhibit protein adsorption and decrease host macrophage and astrocyte adhesion. Tested in a bioreactor set to mimic physiological flow, all modified surfaces significantly decreased albumin adsorption compared with PDMS (p < 0.05) except for PEG604-modified PDMS (p = 0.14). All four modification strategies significantly reduced (p < 0.01) fibronectin adsorption. PEG604, PEG5K, NAC, and NAC/EDC/NHS reduced the average level of macrophage adhesion by 53%, 63%, 40%, and 58% (p <.0.05 except when comparing PDMS with NAC) and astrocyte adhesion by 47%, 83%, 91%, and 72% (p < 0.05 except when comparing PDMS with PEG604), respectively. Combined with saline soak results which suggest that the surface wettability is stable over 30 days for each modification, our results are consistent with the hypothesis that these modifications decrease cell adhesion on catheters in vitro for the treatment of hydrocephalus. PMID:21630435

Harris, Carolyn A; Resau, James H; Hudson, Eric A; West, Richard A; Moon, Candice; Black, Andrew D; McAllister, James P

2011-09-01

322

A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion.  

PubMed Central

Protein tyrosine phosphatases (PTPases), such as SHP-1 and SHP-2, that contain Src homology 2 (SH2) domains play important roles in growth factor and cytokine signal transduction pathways. A protein of approximately 115 to 120 kDa that interacts with SHP-1 and SHP-2 was purified from v-src-transformed rat fibroblasts (SR-3Y1 cells), and the corresponding cDNA was cloned. The predicted amino acid sequence of the encoded protein, termed SHPS-1 (SHP substrate 1), suggests that it is a glycosylated receptor-like protein with three immunoglobulin-like domains in its extracellular region and four YXX(L/V/I) motifs, potential tyrosine phosphorylation and SH2-domain binding sites, in its cytoplasmic region. Various mitogens, including serum, insulin, and lysophosphatidic acid, or cell adhesion induced tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2 in cultured cells. Thus, SHPS-1 may be a direct substrate for both tyrosine kinases, such as the insulin receptor kinase or Src, and a specific docking protein for SH2-domain-containing PTPases. In addition, we suggest that SHPS-1 may be a potential substrate for SHP-2 and may function in both growth factor- and cell adhesion-induced cell signaling. PMID:8943344

Fujioka, Y; Matozaki, T; Noguchi, T; Iwamatsu, A; Yamao, T; Takahashi, N; Tsuda, M; Takada, T; Kasuga, M

1996-01-01

323

Candida albicans Uses the Surface Protein Gpm1 to Attach to Human Endothelial Cells and to Keratinocytes via the Adhesive Protein Vitronectin  

PubMed Central

Candida albicans is a major cause of invasive fungal infections worldwide. Upon infection and when in contact with human plasma as well as body fluids the fungus is challenged by the activated complement system a central part of the human innate immune response. C. albicans controls and evades host complement attack by binding several human complement regulators like Factor H, Factor H-like protein 1 and C4BP to the surface. Gpm1 (Phosphoglycerate mutase 1) is one fungal Factor H/FHL1 -binding protein. As Gpm1 is surface exposed, we asked whether Gpm1 also contributes to host cell attachment. Here, we show by flow cytometry and by laser scanning microscopy that candida Gpm1 binds to human umbilical vein endothelial cells (HUVEC) to keratinocytes (HaCaT), and also to monocytic U937 cells. Wild type candida did bind, but the candida gpm1?/? knock-out mutant did not bind to these human cells. In addition Gpm1when attached to latex beads also conferred attachment to human endothelial cells. When analyzing Gpm1-binding to a panel of extracellular matrix proteins, the human glycoprotein vitronectin was identified as a new Gpm1 ligand. Vitronectin is a component of the extracellular matrix and also a regulator of the terminal complement pathway. Vitronectin is present on the surface of HUVEC and keratinocytes and acts as a surface ligand for fungal Gpm1. Gpm1 and vitronectin colocalize on the surface of HUVEC and HaCaT as revealed by laser scanning microscopy. The Gpm1 vitronectin interaction is inhibited by heparin and the interaction is also ionic strength dependent. Taken together, Gpm1 the candida surface protein binds to vitronectin and mediates fungal adhesion to human endothelial cells. Thus fungal Gpm1 and human vitronectin represent a new set of proteins that are relevant for fungal attachment to human cells interaction. Blockade of the Gpm1 vitronectin interaction might provide a new target for therapy. PMID:24625558

Lopez, Crisanto M.; Wallich, Reinhard; Riesbeck, Kristian; Skerka, Christine; Zipfel, Peter F.

2014-01-01

324

Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.  

PubMed

The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. PMID:17236214

Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A

2007-06-15

325

Dynamic Regulation of a Cell Adhesion Protein Complex Including CADM1 by Combinatorial Analysis of FRAP with Exponential Curve-Fitting  

PubMed Central

Protein components of cell adhesion machinery show continuous renewal even in the static state of epithelial cells and participate in the formation and maintenance of normal epithelial architecture and tumor suppression. CADM1 is a tumor suppressor belonging to the immunoglobulin superfamily of cell adhesion molecule and forms a cell adhesion complex with an actin-binding protein, 4.1B, and a scaffold protein, MPP3, in the cytoplasm. Here, we investigate dynamic regulation of the CADM1-4.1B-MPP3 complex in mature cell adhesion by fluorescence recovery after photobleaching (FRAP) analysis. Traditional FRAP analysis were performed for relatively short period of around 10min. Here, thanks to recent advances in the sensitive laser detector systems, we examine FRAP of CADM1 complex for longer period of 60 min and analyze the recovery with exponential curve-fitting to distinguish the fractions with different diffusion constants. This approach reveals that the fluorescence recovery of CADM1 is fitted to a single exponential function with a time constant (?) of approximately 16 min, whereas 4.1B and MPP3 are fitted to a double exponential function with two ?s of approximately 40-60 sec and 16 min. The longer ? is similar to that of CADM1, suggesting that 4.1B and MPP3 have two distinct fractions, one forming a complex with CADM1 and the other present as a free pool. Fluorescence loss in photobleaching analysis supports the presence of a free pool of these proteins near the plasma membrane. Furthermore, double exponential fitting makes it possible to estimate the ratio of 4.1B and MPP3 present as a free pool and as a complex with CADM1 as approximately 3:2 and 3:1, respectively. Our analyses reveal a central role of CADM1 in stabilizing the complex with 4.1B and MPP3 and provide insight in the dynamics of adhesion complex formation. PMID:25780926

Sakurai-Yageta, Mika; Maruyama, Tomoko; Suzuki, Takashi; Ichikawa, Kazuhisa; Murakami, Yoshinori

2015-01-01

326

Growth and poliovirus production of Vero cells on a novel microcarrier with artificial cell adhesive protein under serum-free conditions.  

PubMed

A microcarrier is used for the three-dimensional (3D) culture of adhesion-dependent mammalian cells. We developed a novel microcarrier by binding ProNectin F, an artificial cell adhesive protein synthesized by genetically engineered Escherichia coli to a polyacrylic superabsorbent polymer. The microcarrier is characterized by containing no animal-derived components. The serum-free culture of Vero cells for vaccine production using the microcarrier increased the number of Vero cells by approximately 30% compared with the existing dextran beads coated with porcine Type I collagen, which resulted in approximately a 30% to 40% increase in the infectivity titer of the Sabin 2 strain of poliovirus. These results suggested that the developed microcarrier should be unprecedented in permitting high-yield vaccine production by means of a serum-free culture. PMID:21262586

Kurokawa, Masato; Sato, Shigehiro

2011-05-01

327

Transcriptional activation of the vascular cell adhesion molecule-1 gene in T lymphocytes expressing human T-cell leukemia virus type 1 Tax protein.  

PubMed Central

Recruitment and extravasation of T cells through the blood-brain barrier are favored by adhesion molecule-mediated interactions of circulating T cells with endothelial cells. Since a common pathological finding in human T-cell leukemia virus type 1 (HTLV-1)-associated diseases is the infiltration of HTLV-1-infected T lymphocytes into various organs, we have looked for the profile of adhesion molecules expressed by HTLV-1-transformed T cells. Flow cytometry analysis indicated that these cells were expressing high levels of vascular cell adhesion molecule 1 (VCAM-1 [CD106]), a 110-kDa member of the immunoglobulin gene superfamily, first identified on endothelial cells stimulated with inflammatory cytokines. This adhesion molecule was also expressed by T cells obtained from one patient with HTLV-1-associated myelopathy/tropical spastic paraparesis but not by activated T cells isolated from one normal blood donor. The role of the viral trans-activator Tax protein in the induction of VCAM-1 was first indicated by the detection of this adhesion molecule on Jurkat T-cell clones stably expressing the tax gene. The effect of Tax on VCAM-1 gene transcription was next confirmed in JPX-9 cells, a subclone of Jurkat cells, carrying the tax sequences under the control of an inducible promoter. Furthermore, deletion and mutation analyses of the VCAM-1 promoter performed with chloramphenicol acetyltransferase constructs revealed that Tax was trans activating the VCAM-1 promoter via two NF-kappaB sites present at bp -72 and -57 in the VCAM-1 gene promoter, with both of them being required for the Tax-induced expression of this adhesion molecule. Finally, gel mobility shift assays demonstrated the nuclear translocation of proteins specifically bound to these two NF-kappaB motifs, confirming that VCAM-1 was induced on Tax-expressing cells in a kappaB-dependent manner. Collectively, these results therefore suggest that the exclusive Tax-induced expression of VCAM-1 on T cells may represent a pivotal event in the progression of HTLV-1-associated diseases. PMID:9343210

Valentin, H; Lemasson, I; Hamaia, S; Cassé, H; König, S; Devaux, C; Gazzolo, L

1997-01-01

328

The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity  

SciTech Connect

The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased focal adhesion kinase activity. • Shb is critical for the long-term maintenance of the hematopoietic stem cell pool.

Gustafsson, Karin [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden); Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew [HHMI, Children's Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Grawé, Jan [Department of Genetics and Pathology, Uppsala University, Uppsala 75185 (Sweden); McKinney-Freeman, Shannon L. [Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105 (United States); Daley, George Q. [HHMI, Children's Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Welsh, Michael, E-mail: michael.welsh@mcb.uu.se [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden)

2013-07-15

329

The platelet glycoprotein IIb/IIIa-like protein in human endothelial cells promotes adhesion but not initial attachment to extracellular matrix  

PubMed Central

On platelets the membrane glycoprotein IIb/IIIa complex (GPIIb/IIIa) functions in adhesive interactions with fibrinogen, von Willebrand factor, and fibronectin. However, the function of GPIIb/IIIa-like proteins on endothelial cells, as well as the ligand(s) the complex binds, is unknown. Using a highly specific polyclonal antibody we have explored the function of GPIIb/IIIa-like proteins on human umbilical vein endothelial cells (HUVE). Analysis by immunoblotting shows that this antiserum recognizes the endothelial GPIIIa-like protein of the complex. The IgG fraction of the polyclonal antiserum and its Fab' fragments detach confluent and subconfluent HUVE from extracellular substrata. The effect of the anti-GPIIb/IIIa IgG is not toxic as the detached cells maintain their viability after trypsinization and replating. Anti-GPIIb/IIIa IgG does not inhibit HUVE binding to extracellular matrix or purified fibronectin in an attachment assay despite the presence of intact GPIIb/IIIa on HUVE detached from substrate by various methods. Apparently, the GPIIb/IIIa-like protein on HUVE is important in normal HUVE adhesion to the extracellular matrix, but it is not required in the initial attachment of HUVE to extracellular matrix. PMID:2822728

1987-01-01

330

RhoGAP68F controls transport of adhesion proteins in Rab4 endosomes to modulate epithelial morphogenesis of Drosophila leg discs.  

PubMed

Elongation and invagination of epithelial tissues are fundamental developmental processes that contribute to the morphogenesis of embryonic and adult structures and are dependent on coordinated remodeling of cell-cell contacts. The morphogenesis of Drosophila leg imaginal discs depends on extensive remodeling of cell contacts and thus provides a useful system with which to investigate the underlying mechanisms. The small Rho GTPase regulator RhoGAP68F has been previously implicated in leg morphogenesis. It consists of on an N-terminal Sec14 domain and a C-terminal GAP domain. Here we examined the molecular function and role of RhoGAP68F in epithelial remodeling. We find that depletion of RhoGAP68F impairs epithelial remodeling from a pseudostratified to simple, while overexpression of RhoGAP68F causes tears of lateral cell-cell contacts and thus impairs epithelial integrity. We show that the RhoGAP68F protein localizes to Rab4 recycling endosomes and forms a complex with the Rab4 protein. The Sec14 domain is sufficient for localizing to Rab4 endosomes, while the activity of the GAP domain is dispensable. RhoGAP68F, in turn, inhibits the scission and movement of Rab4 endosomes involved in transport the adhesion proteins Fasciclin3 and E-cadherin back to cell-cell contacts. Expression of RhoGAP68F is upregulated during prepupal development suggesting that RhoGAP68F decreases the transport of key adhesion proteins to the cell surface during this developmental stage to decrease the strength of adhesive cell-cell contacts and thereby facilitate epithelial remodeling and leg morphogenesis. PMID:25617722

de Madrid, Beatriz Hernandez; Greenberg, Lina; Hatini, Victor

2015-03-15

331

The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin.  

PubMed

A cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis. Direct methylation of talin, a key regulatory molecule in cell migration, by Ezh2 disrupted the binding of talin to F-actin and thereby promoted the turnover of adhesion structures. This regulatory effect was abolished by targeted disruption of the interactions of Ezh2 with the cytoskeletal-reorganization effector Vav1. Our studies reveal an unforeseen extranuclear function for Ezh2 in regulating adhesion dynamics, with implications for leukocyte migration, immune responses and potentially pathogenic processes. PMID:25751747

Gunawan, Merry; Venkatesan, Nandini; Loh, Jia Tong; Wong, Jong Fu; Berger, Heidi; Neo, Wen Hao; Li, Liang Yao Jackson; La Win, Myint Khun; Yau, Yin Hoe; Guo, Tiannan; See, Peter Chi Ee; Yamazaki, Sayuri; Chin, Keh Chuang; Gingras, Alexandre R; Shochat, Susana Geifman; Ng, Lai Guan; Sze, Siu Kwan; Ginhoux, Florent; Su, I-Hsin

2015-05-01

332

Regulation of promyogenic signal transduction by cell-cell contact and adhesion  

SciTech Connect

Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

2010-11-01

333

A functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits non-specific protein, bacterial, and mammalian cell adhesion  

PubMed Central

This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications. PMID:18815622

Harbers, Gregory M.; Emoto, Kazunori; Greef, Charles; Metzger, Steven W.; Woodward, Heather N.; Mascali, James J.; Grainger, David W.; Lochhead, Michael J.

2008-01-01

334

Baicalein suppresses 17-?-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway.  

PubMed

Flavonoids are structurally similar to steroid hormones, particularly estrogens, and therefore have been studied for their potential effects on hormone-dependent cancers. Baicalein is the primary flavonoid derived from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the effects of baicalein on 17?-estradiol (E2)-induced migration, adhesion and invasion of MCF-7 and SK-BR-3 breast cancer cells. The results demonstrated that baicalein suppressed E2-stimulated wound-healing migration and cell?Matrigel adhesion, and ameliorated E2-promoted invasion across a Matrigel-coated Transwell membrane. Furthermore, baicalein interfered with E2-induced novel G protein-coupled estrogen receptor (GPR30)-related signaling, including a decrease in tyrosine phosphorylation of epidermal growth factor receptor (EGFR) as well as phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase Akt, without affecting GPR30 expression. The results also showed that baicalein suppressed the expression of GPR30 target genes, cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF) induced by E2. Furthermore, baicalein prevented GPR30-related signaling activation and upregulation of CYR61 and CTGF mRNA levels induced by G1, a specific GPR 30 agonist. The results suggest that baicalein inhibits E2-induced migration, adhesion and invasion through interfering with GPR30 signaling pathway activation, which indicates that it may act as a therapeutic candidate for the treatment of GPR30-positive breast cancer metastasis. PMID:25672442

Shang, Dandan; Li, Zheng; Zhu, Zhuxia; Chen, Huamei; Zhao, Lujun; Wang, Xudong; Chen, Yan

2015-04-01

335

Osteoblast adhesion on biomaterials  

Microsoft Academic Search

The development of tissue engineering in the field of orthopaedic surgery is now booming. Two fields of research in particular are emerging: the association of osteo-inductive factors with implantable materials; and the association of osteogenic stem cells with these materials (hybrid materials). In both cases, an understanding of the phenomena of cell adhesion and, in particular, understanding of the proteins

K. Anselme

2000-01-01

336

Effects of the knockdown of death-associated protein 3 expression on cell adhesion, growth and migration in breast cancer cells.  

PubMed

The death-associated protein 3 (DAP3) is a highly conserved phosphoprotein involved in the regulation of autophagy. A previous clinical study by our group suggested an association between low DAP3 expression and clinicopathological parameters of human breast cancer. In the present study, we intended to determine the role of DAP3 in cancer cell behaviour in the context of human breast cancer. We developed knockdown sub-lines of MCF7 and MDA-MB?231, and performed growth, adhesion, invasion assays and electric cell-substrate impedance sensing (ECIS) studies of post-wound migration of the cells. In addition, we studied the mRNA expression of caspase 8 and 9, death ligand signal enhancer (DELE), IFN-? promoter stimulator 1 (IPS1), cyclin D1 and p21 in the control and knockdown sub-lines. The knockdown sub-lines of MCF7 and MDA-MB?231 had significantly increased adhesion and decreased growth when compared to the controls. Furthermore, invasion and migration were significantly increased in the MDA-MB-231DAP3kd cells vs. the controls. The expression of caspase 9 and IPS1, known components of the apoptosis pathway, were significantly reduced in the MCF7DAP3kd cells (p=0.05 and p=0.003, respectively). We conclude that DAP3 silencing contributes to breast carcinogenesis by increasing cell adhesion, migration and invasion. It is possible that this may be due to the activity of focal adhesion kinase further downstream of the anoikis pathway. Further research in this direction would be beneficial in increasing our understanding of the mechanisms underlying human breast cancer. PMID:25738636

Wazir, Umar; Sanders, Andrew J; Wazir, Ahmad M A; Ye, Lin; Jiang, Wen G; Ster, Irina C; Sharma, Anup K; Mokbel, Kefah

2015-05-01

337

Differential adhesion, activity, and carbohydrate: Protein ratios of Pseudomonas atlantica monocultures attaching to stainless steel in a linear shear gradient  

Microsoft Academic Search

Biofilm formation on metallic surfaces in marine and freshwater environments often precedes corrosion and other biofouling conditions. Attachment is mediated by such environmental factors as the presence of surface conditioning films, fluid dynamics, bulk-phase nutrient levels, and surface chemistry. In this study, we utilized a Fowler Cell Adhesion Measurement Module to demonstrate that the changes in cellular concentration and composition

M. W. Mittelman; D. E. Nivens; C. Low; D. C. White

1990-01-01

338

Decreased sickle red blood cell adhesion to laminin by hydroxyurea is associated with inhibition of Lu/BCAM protein phosphorylation  

E-print Network

, the only drug with proven benefit in sickle-cell disease, diminishes these interactions but its mechanism1 Decreased sickle red blood cell adhesion to laminin by hydroxyurea is associated with inhibition, published in "Blood 2010;116(12):2152-9" DOI : 10.1182/blood-2009-12-257444 #12;2 Abstract Sickle-cell

Paris-Sud XI, Université de

339

Isoform Expression of CD44 Adhesion Molecules, Bcl2, p53 and Ki67 Proteins in Lung Cancer  

Microsoft Academic Search

CD44, belongs to the cell adhesion molecule family and is expressed on cell surfaces in several isoforms which are generated by alternative splicing of messenger RNA. These splice variants have been shown in several cancer cell types and are thought to be involved in tumor progression. The aim of the current study was to evaluate the expression of selected CD44

Ewa Mizera-Nyczak; Wojciech Dyszkiewicz; Karl-Heinz Heider

2001-01-01

340

Liver-intestine cadherin: molecular cloning and characterization of a novel Ca(2+)-dependent cell adhesion molecule expressed in liver and intestine  

PubMed Central

A novel member of the cadherin family of cell adhesion molecules has been characterized by cloning from rat liver, sequencing of the corresponding cDNA, and functional analysis after heterologous expression in nonadhesive S2 cells. cDNA clones were isolated using a polyclonal antibody inhibiting Ca(2+)-dependent intercellular adhesion of hepatoma cells. As inferred from the deduced amino acid sequence, the novel molecule has homologies with E-, P-, and N-cadherins, but differs from these classical cadherins in four characteristics. Its extracellular domain is composed of five homologous repeated domains instead of four characteristic for the classical cadherins. Four of the five domains are characterized by the sequence motifs DXNDN and DXD or modifications thereof representing putative Ca(2+)-binding sites of classical cadherins. In its NH2-terminal region, this cadherin lacks both the precursor segment and the endogenous protease cleavage site RXKR found in classical cadherins. In the extracellular EC1 domain, the novel cadherin contains an AAL sequence in place of the HAV sequence motif representing the common cell adhesion recognition sequence of E-, P-, and N-cadherin. In contrast to the conserved cytoplasmic domain of classical cadherins with a length of 150-160 amino acid residues, that of the novel cadherin has only 18 amino acids. Examination of transfected S2 cells showed that despite these structural differences, this cadherin mediates intercellular adhesion in a Ca(2+)-dependent manner. The novel cadherin is solely expressed in liver and intestine and was, hence, assigned the name LI-cadherin. In these tissues, LI- cadherin is localized to the basolateral domain of hepatocytes and enterocytes. These results suggest that LI-cadherin represents a new cadherin subtype and may have a role in the morphological organization of liver and intestine. PMID:8207063

1994-01-01

341

Freeze-dried allograft-mediated gene or protein delivery of growth and differentiation factor 5 reduces reconstructed murine flexor tendon adhesions  

PubMed Central

Advances in allograft processing have opened new horizons for clinical adaptation of flexor tendon allografts as delivery scaffolds for antifibrotic therapeutics. Recombinant adeno-associated-virus (rAAV) gene delivery of the growth and differentiation factor 5 (GDF-5) has been previously associated with antifibrotic effects in a mouse model of flexor tendoplasty. In this study, we compared the effects of loading freeze-dried allografts with different doses of GDF-5 protein or rAAV-Gdf5 on flexor tendon healing and adhesions. We first optimized the protein and viral loading parameters using reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and in vivo bioluminescent imaging. We then reconstructed flexor digitorum longus (FDL) tendons of the mouse hindlimb with allografts loaded with low and high doses of recombinant GDF-5 protein and rAAV-Gdf5 and evaluated joint flexion and biomechanical properties of the reconstructed tendon. In vitro optimization studies determined that both the loading time and concentration of the growth factor and viral vector had dose-dependent effects on their retention on the freeze-dried allograft. In vivo data suggest that protein and gene delivery of GDF-5 had equivalent effects on improving joint flexion function, in the range of doses used. Within the doses tested, the lower doses of GDF-5 had more potent effects on suppressing adhesions without adversely affecting the strength of the repair. These findings indicate equivalent antifibrotic effects of Gdf5 gene and protein delivery, but suggest that localized delivery of this potent factor should also carefully consider the dosage used to eliminate untoward effects, regardless of the delivery mode. PMID:24812579

Hasslund, Sys; Dadali, Tulin; Ulrich-Vinther, Michael; Søballe, Kjeld; Schwarz, Edward M

2014-01-01

342

Immunolocalization of keratin-associated beta-proteins (beta-keratins) in pad lamellae of geckos suggest that glycine-cysteine-rich proteins contribute to their flexibility and adhesiveness.  

PubMed

The epidermis of digital pads in geckos comprises superficial microornamentation from the oberhautchen layer that form long setae allowing these lizards to climb vertical surfaces. The beta-layer is reduced in pad lamellae but persists up to the apical free margin. Setae are made of different proteins including keratin-associated beta-proteins, formerly indicated as beta-keratins. In order to identify specific setal proteins the present ultrastructural study on geckos pad lamellae analyzes the immunolocalization of three beta-proteins previously found in the epidermis and adhesive setae of the green anolis. A protein rich in glycine but poor in cysteine (HgG5-like) is absent or masked in gecko pad lamellae. Another protein rich in glycine and cysteine (HgGC3-like) is weakly present in setae, oberhautchen and beta-layer. A glycine and cysteine medium rich beta-protein (HgGC10-like) is present in the lower part of the beta-layer but is absent in the oberhautchen, setae, and mesos layer. The latter two proteins may form intermolecular bonds that contribute to the flexibility of the corneous material sustaining the setae. The pliable alpha-layer present beneath the thin beta-layer and in the hinge region of the pad lamellae also contains HgGC10-like proteins. Based on the possibility that some HgGC3-like or other cys-rich beta-proteins are charged in the setae it is suggested that their charges influence the mechanism of adhesion increasing the induction of dipoles on the substrate and enhancing attractive van der Waals forces. PMID:23423812

Alibardi, Lorenzo

2013-03-01

343

Changes in the vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and c-reactive protein following administration of aqueous extract of piper sarmentosum on experimental rabbits fed with cholesterol diet  

PubMed Central

Background Inflammation process plays an important role in the development of atherosclerosis. Hypercholesterolemia is one of the major risk factors for atherosclerosis. The present study aimed to evaluate the effect of aqueous extract of Piper sarmentosum (P.s) on inflammatory markers like vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and C-reactive protein (CRP). Methods Forty two male New Zealand white rabbits were divided equally into seven groups; (i) C- control group fed normal rabbit chow (ii) CH- cholesterol diet (1%cholesterol) (iii) X1- 1% cholesterol with water extract of P.s (62.5 mg/kg) (iv) X2- 1% cholesterol with water extract of P.s (125 mg/kg (v) X3- 1% cholesterol with water extract of P.s (250 mg/kg) (vi) X4- 1% cholesterol with water extract of P.s (500 mg/kg) and (vii) SMV group fed with 1% cholesterol supplemented with simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. Blood serum was taken for observing the inflammatory markers at the beginning and end of the experiment. Results Rabbits fed with 1% cholesterol diet (CH) showed significant increase in the level of VCAM-1, ICAM-1 and CRP compared to the C group. The levels of VCAM-1, ICAM-1 and CRP in the 1% cholesterol group and supplemented with P.s (500 mg/kg) were significantly reduced compared to the cholesterol group. Similar results were also reported with simvistatin group. Conclusion These results suggest that the supplementation of Piper sarmentosum extract could inhibit inflammatory markers which in turn could prevent atherosclerosis. PMID:21214952

2011-01-01

344

Intrauterine Adhesions  

MedlinePLUS

... involve the uterus. Other possible causes of adhesion formation are infections of the uterine lining (endometritis), removal of fibroids in the cavity of the uterus and endometrial ablation (a surgical ...

345

Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells  

PubMed Central

The human cytokine interferon-inducible protein 10 (IP-10) is a small glycoprotein secreted by activated T cells, monocytes, endothelial cells, and keratinocytes, and is structurally related to a family of chemotactic cytokines called chemokines. Although this protein is present in sites of delayed-type hypersensitivity reactions and lepromatous leprosy lesions, the biological activity of IP-10 remains unknown. We report here that recombinant human IP-10 stimulated significant in vitro chemotaxis of human peripheral blood monocytes but not neutrophils. Recombinant human IP-10 also stimulated chemotaxis of stimulated, but not unstimulated, human peripheral blood T lymphocytes. Phenotypic analysis of the stimulated T cell population responsive to IP-10 demonstrated that stimulated CD4+ and CD29+ T cells migrated in response to IP-10. This resembles the biological activity of the previously described T cell chemoattractant RANTES. Using an endothelial cell adhesion assay, we demonstrated that stimulated T cells pretreated with optimal doses of IP-10 exhibited a greatly enhanced ability to bind to an interleukin 1-treated endothelial cell monolayer. These results demonstrate that the IP-10 gene encodes for an inflammatory mediator that specifically stimulates the directional migration of T cells and monocytes as well as potentiates T cell adhesion to endothelium. PMID:8496693

1993-01-01

346

Outer Membrane Protein U (OmpU) Mediates Adhesion of Vibrio mimicus to Host Cells via Two Novel N-Terminal Motifs  

PubMed Central

Vibrio mimicus (V.mimicus) is a causative agent of ascites disease in aquatic animals. Our previous studies have demonstrated that the outer membrane protein U (OmpU) from V.mimicus is an immunoprotective antigen with six immunodominant linear B-cell epitopes. Although the N-terminus of OmpU contains potential binding motifs, it remained unclear whether OmpU possesses adhesion function. Here, the adhesive capacity of recombinant OmpU and V.mimicus to epithelioma papulosum cyprinid (EPC) cells was determined by immunofluorescence and adherence assay. The results showed that after co-incubated with rOmpU, an obvious visible green fluorescence could be observed on the EPC cell surface and the nuclei exhibited blue fluorescence; while the control cell surface did not show any signal, only nuclei exhibited blue fluorescence. The average number of wild-type strain adhered to each cell was 32.3 ± 4.5. The average adhesion number of OmpU gene deletion mutant was significantly reduced to 10.8 ± 0.5 (P < 0.01) and restored to 31.3 ± 2.8 by complement strain (P >0.05). Pretreatment of cells with rOmpU reduced the average adhesion number of wild-type strain to 9.7 ± 2.9 (P < 0.01). Likewise, binding was significantly decreased to 8.8 ± 3.2 (P < 0.01) due to blocking role of OmpU antibodies. To determine binding motifs of OmpU, six immunodominant B-cell epitope peptides labeled with FITC were employed in flow cytometry-based binding assay. Two FITC-labeled epitope peptides (aa90-101 and aa173-192) showed strong binding to EPC cells (the fluorescence positive cell rate was 99 ± 0.6% and 98 ± 0.3%, respectively), which could be specifically competed by excess corresponding unlabeled peptides, whereas the remaining four showed a low level of background binding. This is the first demonstration that OmpU possesses adhesion function and its N terminal 90–101 and 173–192 amino acid regions are critical sites for cell surface binding. PMID:25742659

Liu, Xueqin; Gao, Huihui; Xiao, Nin; Liu, Yan; Li, Jinnian; Li, Lin

2015-01-01

347

Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1.  

PubMed

Anosmin-1, the gene product of the KAL gene, is implicated in the pathogenesis of X-linked Kallmann's syndrome. Anosmin-1 protein expression is restricted to the basement membrane and interstitial matrix of tissues affected in this syndrome during development. The anosmin-1 sequence indicates an N-terminal cysteine-rich domain, a whey acidic protein (WAP) domain, four fibronectin type III (FnIII) domains and a C-terminal histidine-rich region, and shows similarity with cell-adhesion molecules, such as neural cell-adhesion molecule, TAG-1 and L1. We investigated the structural and functional significance of three loss-of-function missense mutations of anosmin-1 using comparative modelling of the four FnIII and the WAP domains based on known NMR and crystal structures. Three missense mutation-encoded amino acid substitutions, N267K, E514K and F517L, were mapped to structurally defined positions on the GFCC' beta-sheet face of the first and third FnIII domains. Electrostatic maps demonstrated large basic surfaces containing clusters of conserved predicted heparan sulphate-binding residues adjacent to these mutation sites. To examine these modelling results anosmin-1 was expressed in insect cells. The incorporation of the three mutations into recombinant anosmin-1 had no effect on its secretion. The removal of two dibasic motifs that may constitute potential physiological cleavage sites for anosmin-1 had no effect on cleavage. Peptides based on the anosmin-1 sequences R254--K285 and P504--K527 were then synthesized in order to assess the effect of the three mutations on cellular adhesion, using cell lines that represented potential functional targets of anosmin-1. Peptides (10 microg/ml) incorporating the N267K and E514K substitutions promoted enhanced adhesion to 13.S.1.24 rat olfactory epithelial cells and canine MDCK1 kidney epithelial cells (P<0.01) compared with the wild-type peptides. This result was attributed to the introduction of a lysine residue adjacent to the large basic surfaces. We predict that two of the three missense mutants increase the binding of anosmin-1 to an extracellular target, possibly by enhancing heparan sulphate binding, and that this critically affects the function of anosmin-1. PMID:11463336

Robertson, A; MacColl, G S; Nash, J A; Boehm, M K; Perkins, S J; Bouloux, P M

2001-08-01

348

Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1.  

PubMed Central

Anosmin-1, the gene product of the KAL gene, is implicated in the pathogenesis of X-linked Kallmann's syndrome. Anosmin-1 protein expression is restricted to the basement membrane and interstitial matrix of tissues affected in this syndrome during development. The anosmin-1 sequence indicates an N-terminal cysteine-rich domain, a whey acidic protein (WAP) domain, four fibronectin type III (FnIII) domains and a C-terminal histidine-rich region, and shows similarity with cell-adhesion molecules, such as neural cell-adhesion molecule, TAG-1 and L1. We investigated the structural and functional significance of three loss-of-function missense mutations of anosmin-1 using comparative modelling of the four FnIII and the WAP domains based on known NMR and crystal structures. Three missense mutation-encoded amino acid substitutions, N267K, E514K and F517L, were mapped to structurally defined positions on the GFCC' beta-sheet face of the first and third FnIII domains. Electrostatic maps demonstrated large basic surfaces containing clusters of conserved predicted heparan sulphate-binding residues adjacent to these mutation sites. To examine these modelling results anosmin-1 was expressed in insect cells. The incorporation of the three mutations into recombinant anosmin-1 had no effect on its secretion. The removal of two dibasic motifs that may constitute potential physiological cleavage sites for anosmin-1 had no effect on cleavage. Peptides based on the anosmin-1 sequences R254--K285 and P504--K527 were then synthesized in order to assess the effect of the three mutations on cellular adhesion, using cell lines that represented potential functional targets of anosmin-1. Peptides (10 microg/ml) incorporating the N267K and E514K substitutions promoted enhanced adhesion to 13.S.1.24 rat olfactory epithelial cells and canine MDCK1 kidney epithelial cells (P<0.01) compared with the wild-type peptides. This result was attributed to the introduction of a lysine residue adjacent to the large basic surfaces. We predict that two of the three missense mutants increase the binding of anosmin-1 to an extracellular target, possibly by enhancing heparan sulphate binding, and that this critically affects the function of anosmin-1. PMID:11463336

Robertson, A; MacColl, G S; Nash, J A; Boehm, M K; Perkins, S J; Bouloux, P M

2001-01-01

349

Adhesive substrate-modulation of adaptive immune responses  

Microsoft Academic Search

While it is well-known that adsorbed proteins on implanted biomaterials modulate inflammatory responses, modulation of dendritic cells (DCs) via adhesion-dependent signaling has only been begun to be characterized. In this work, we demonstrate that adhesive substrates elicit differential DC maturation and adaptive immune responses. We find that adhesive substrates support similar levels of DC adhesion and expression of stimulatory and

Abhinav P. Acharya; Natalia V. Dolgova; Michael J. Clare-Salzler; Benjamin G. Keselowsky

2008-01-01

350

Hyaluronan-mediated cellular adhesion  

NASA Astrophysics Data System (ADS)

Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

Curtis, Jennifer

2005-03-01

351

Effect of the knockdown of death-associated protein 1 expression on cell adhesion, growth and migration in breast cancer cells.  

PubMed

Death-associated protein 1 (DAP1) is a highly conserved phosphoprotein involved in the regulation of autophagy. A previous clinical study by our group suggested an association between low DAP1 expression and clinicopathological parameters of human breast cancer. In the present study, we aimed to determine the role of DAP1 in cancer cell behaviour in the context of human breast cancer. We developed knockdown sublines of MCF7 and MDA-MB?231, and performed growth, adhesion and invasion assays and electric cell-substrate impedance sensing (ECIS) studies of the post-wound migration of cells. In addition, we studied the mRNA expression of caspase 8 and 9, DELE, IPS1, cyclin D1 and p21 in the control and knockdown sublines. Knockdown was associated with increased adhesion and migration, significantly so in the MDA-MB-231DAP1kd cell subline (p=0.029 and p=0.001, respectively). Growth in MCF7 cells showed a significant suppression on day 3 (p=0.029), followed by an increase in growth matching the controls on day 5. While no change in the apoptotic response to serum starvation could be attributed to DAP1 knockdown, the expression of known components of the apoptosis pathway (caspase 8) and cell cycle (p21) was significantly reduced in the MCF7DAP1kd cell subline (p?0.05), while in MDA-MB-231DAP1kd the expression of a pro-apoptotic molecule, IPS1, was suppressed (p?0.05). DAP1 may have an important role in cell adhesion, migration and growth in the context of breast cancer and has significant associations with the apoptosis pathway. Furthermore, we believe that delayed increase in growth observed in the MCF7DAP1kd cell subline may indicate activation of a strongly pro-oncogenic pathway downstream of DAP1. PMID:25530065

Wazir, Umar; Sanders, Andrew J; Wazir, Ali; Baig, Ruqia Mehmood; Jiang, Wen G; Ster, Irina C; Sharma, Anup K; Mokbel, Kefah

2015-03-01

352

Cellular settings mediating Src Substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734.  

PubMed

Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase C?, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression. PMID:21994943

Wortmann, Andreas; He, Yaowu; Christensen, Melinda E; Linn, Mayla; Lumley, John W; Pollock, Pamela M; Waterhouse, Nigel J; Hooper, John D

2011-12-01

353

Cellular Settings Mediating Src Substrate Switching between Focal Adhesion Kinase Tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) Tyrosine 734*  

PubMed Central

Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase C?, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression. PMID:21994943

Wortmann, Andreas; He, Yaowu; Christensen, Melinda E.; Linn, MayLa; Lumley, John W.; Pollock, Pamela M.; Waterhouse, Nigel J.; Hooper, John D.

2011-01-01

354

Expression of cell adhesion molecules in canine choroid plexus tumors  

PubMed Central

Choroid plexus tumor (CPT) is a primary intracranial neoplasm of the choroid plexus epithelium in the central nervous system. In the current World Health Organization classification, CPT is classified into two categories; choroid plexus papilloma (CPP) and carcinoma (CPC). In the present study, we investigated immunohistochemical expressions of N-cadherin, E-cadherin and ?-catenin in 5 canine CPT cases (1 disseminated CPC, 2 CPCs and 2 CPPs). One CPP case was positive for N-cadherin and ?-catenin, but negative for E-cadherin. The disseminated CPC case was positive for E-cadherin and ?-catenin, but negative for N-cadherin. The other cases were positive for the three molecules examined. These results suggest that loss of the N-cadherin expression might associate with the spreading of CPC cells. PMID:25373880

HIROSE, Naoki; UCHIDA, Kazuyuki; MATSUNAGA, Satoru; CHAMBERS, James Kenn; NAKAYAMA, Hiroyuki

2014-01-01

355

Expression of truncated Babesia gibsoni thrombospondin-related adhesive proteins in Escherichia coli and evaluation of their diagnostic potential by enzyme-linked immunosorbent assay.  

PubMed

Among the previously established enzyme-linked immunosorbent assays (ELISAs), an ELISA using the full length of a recombinant thrombospondin-related adhesive protein of Babesia gibsoni (rBgTRAPf) is considered as the most sensitive diagnostic method for the detection of an antibody to B. gibsoni in dogs. However, the expression of rBgTRAPf in high concentration is poor and, thus, limits its usefulness as a diagnostic antigen. To improve its expression level, we have truncated BgTRAPf into two fragments having either an N- or a C-terminus (BgTRAPn or BgTRAPc, respectively). The expression of BgTRAPc protein in Escherichia coli yielded adequate recombinant protein. The specificity and sensitivity of ELISAs with the truncated proteins were determined using dog sera experimentally infected with B. gibsoni and specific pathogen-free (SPF) dog sera. A total of 254 field dog sera were examined by the ELISA with rBgTRAPn, rBgTRAPc, and rBgTRAPf as well as by an indirect fluorescent antibody test (IFAT). The specificity of rBgTRAPc was the highest (97.15%), and its kappa value was more (0.8003) than rBgTRAPn (0.7083). With a sufficient level of expression as well as higher specificity and reliable sensitivity, rBgTRAPc appears to be a potential candidate antigen for the serodiagnosis of B. gibsoni infection in dogs. PMID:21802417

Narantsatsral, S; Goo, Youn-Kyoung; Battsetseg, B; Myagmarsuren, P; Terkawi, Mohamad Alaa; Soma, Takehisa; Luo, Yuzi; Li, Yan; Cao, Shinuo; Yu, Longzheng; Kamyingkird, Ketsarin; Aboge, Gabriel Oluga; Nishikawa, Yoshifumi; Xuan, Xuenan

2011-10-01

356

Receptor Protein-tyrosine Phosphatase ? Regulates Focal Adhesion Kinase Phosphorylation and ErbB2 Oncoprotein-mediated Mammary Epithelial Cell Motility*  

PubMed Central

We investigated the role of protein-tyrosine phosphatase ? (PTP?) in regulating signaling by the ErbB2 oncoprotein in mammary epithelial cells. Using this model, we demonstrated that activation of ErbB2 led to the transient inactivation of PTP?, suggesting that attenuation of PTP? activity may contribute to enhanced ErbB2 signaling. Furthermore, RNAi-induced suppression of PTP? led to increased cell migration in an ErbB2-dependent manner. The ability of ErbB2 to increase cell motility in the absence of PTP? was characterized by prolonged interaction of GRB7 with ErbB2 and increased association of ErbB2 with a ?1-integrin-rich complex, which depended on GRB7-SH2 domain interactions. Finally, suppression of PTP? resulted in increased phosphorylation of focal adhesion kinase on Tyr-407, which induced the recruitment of vinculin and the formation of a novel focal adhesion kinase complex in response to ErbB2 activation in mammary epithelial cells. Collectively, these results reveal a new role for PTP? in the regulation of motility of mammary epithelial cells in response to ErbB2 activation. PMID:24217252

Boivin, Benoit; Chaudhary, Fauzia; Dickinson, Bryan C.; Haque, Aftabul; Pero, Stephanie C.; Chang, Christopher J.; Tonks, Nicholas K.

2013-01-01

357

Polyimide adhesives  

NASA Technical Reports Server (NTRS)

A process of preparing aromatic polyamide-acids for use as adhesives is described. An equimolar quantity of an aromatic dianhydride is added to a stirred solution of an aromatic diamine in a water or alcohol-miscible ether solvent to obtain a viscous polymer solution. The polymeric-acid intermediate polymer does not become insoluble but directly forms a smooth viscous polymer solution. These polyamic-acid polymers are converted, by heating in the range of 200-300 C and with pressure, to form polyimides with excellent adhesive properties.

Progar, D. J.; Bell, V. L.; Saintclair, T. L. (inventors)

1974-01-01

358

Natural Underwater Adhesives  

PubMed Central

The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent curing. PMID:21643511

Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

2011-01-01

359

Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin.  

PubMed

The in vitro binding of surface-exposed material and outer membrane proteins of Helicobacter pylori to high-molecular-weight salivary mucin was studied. We identified a 16-kDa surface protein which adhered to high-molecular-weight salivary mucin. This protein binds specifically to sulfated oligosaccharide structures such as sulfo-Lewis a, sulfogalactose and sulfo-N-acetyl-glucosamine on mucin. Sequence analysis of the protein proved that it was identical to the N-terminal amino acid sequence of neutrophil-activating protein. Moreover, this adhesin was able to bind to Lewis x blood group antigen. PMID:9453593

Namavar, F; Sparrius, M; Veerman, E C; Appelmelk, B J; Vandenbroucke-Grauls, C M

1998-02-01

360

Fibronectin and Other Adhesive Glycoproteins  

Microsoft Academic Search

\\u000a Cells adhere to the extracellular matrix through interaction with adhesive extracellular matrix glycoproteins, including fibronectin,\\u000a laminins, vitronectin, thrombospondins, tenascins, entactins (or nidogens), nephronectin, fibrinogen, and others. Most adhesive\\u000a glycoproteins bind cells through cell surface integrin receptors in conjunction with other cell surface receptors, such as\\u000a dystroglycans and syndecans, and interact with other extracellular matrix proteins to form an intensive matrix

Jielin Xu; Deane Mosher

361

Integrated Proteomics Identified Up-Regulated Focal Adhesion-Mediated Proteins in Human Squamous Cell Carcinoma in an Orthotopic Murine Model  

PubMed Central

Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules. PMID:24858105

Granato, Daniela C.; Zanetti, Mariana R.; Kawahara, Rebeca; Yokoo, Sami; Domingues, Romênia R.; Aragão, Annelize Z.; Agostini, Michelle; Carazzolle, Marcelo F.; Vidal, Ramon O.; Flores, Isadora L.; Korvala, Johanna; Cervigne, Nilva K.; Silva, Alan R. S.; Coletta, Ricardo D.; Graner, Edgard; Sherman, Nicholas E.; Leme, Adriana F. Paes

2014-01-01

362

West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier  

PubMed Central

Neurological complications such as inflammation, failure of the blood-brain barrier (BBB), and neuronal death contribute to the mortality and morbidity associated with WNV-induced meningitis. Compromised BBB indicates the ability of the virus to gain entry into the CNS via the BBB, however, the underlying mechanisms, and the specific cell types associated with WNV-CNS trafficking are not well understood. Brain microvascular endothelial cells, main component of the BBB, represent a barrier to virus dissemination into the CNS and could play key role in WNV spread via hematogenous route. To investigate WNV entry into the CNS, we infected primary human brain microvascular endothelial (HBMVE) cells with the neurovirulent strain of WNV (NY99) and examined WNV replication kinetics together with the changes in the expressions of key tight junction proteins (TJP) and cell adhesion molecules (CAM). WNV infection of HBMVE cells was productive as analyzed by plaque assay and qRT-PCR, and did not induce cytopathic effect. Increased mRNA and protein expressions of TJP (claudin-1) and CAM (vascular cell adhesion molecule and E-selectin) were observed at days 2 and 3 after infection, respectively, which coincided with the peak in WNV replication. Further, using an in vitro BBB model comprised of HBMVE cells, we demonstrate that cell-free WNV can cross the BBB, without compromising the BBB integrity. These data suggest that infection of HBMVE cells can facilitate entry of cell-free virus into the CNS without disturbing the BBB, and increased CAM may assist in the trafficking of WNV-infected immune cells into the CNS, via ‘Trojan horse’ mechanism, thereby contributing to WNV dissemination in the CNS and associated pathology. PMID:19135695

Verma, Saguna; Lo, Yeung; Chapagain, Moti; Lum, Stephanie; Kumar, Mukesh; Gurjav, Ulziijargal; Luo, Haiyan; Nakatsuka, Austin; Nerurkar, Vivek R.

2009-01-01

363

Cryptosporidium parvum:PCR-RFLP Analysis of the TRAP-C1 (Thrombospondin-Related Adhesive Protein of Cryptosporidium1) Gene Discriminates between Two Alleles Differentially Associated with Parasite Isolates of Animal and Human Origin  

Microsoft Academic Search

Spano, F., Putignani, L., Guida, S., Crisanti, A. 1998.Cryptosporidium parvum: PCR-RFLP analysis of the TRAP-C1 (thrombospondin-related adhesive protein ofCryptosporidium-1) gene discriminates between two alleles differentially associated with parasite isolates of animal and human origin.Experimental Parasitology90,195–198.

Furio Spano; Lorenza Putignani; Serena Guida; Andrea Crisanti

1998-01-01

364

Neutrophil-Activating Protein Mediates Adhesion of Helicobacter pylori to Sulfated Carbohydrates on High-Molecular-Weight Salivary Mucin  

Microsoft Academic Search

The in vitro binding of surface-exposed material and outer membrane proteins of Helicobacter pylori to high-molecular-weight salivary mucin was studied. We identified a 16-kDa surface protein which adhered to high-molecular-weight salivary mucin. This protein binds specifically to sulfated oligosaccharide structures such as sulfo-Lewis a, sulfogalactose and sulfo-N-acetyl-glucosamine on mucin. Sequence analysis of the pro- tein proved that it was identical

FERRY NAMAVAR; MARION SPARRIUS; ENNO C. I. VEERMAN; BEN J. APPELMELK

1998-01-01

365

The intermediate filament protein vimentin binds specifically to a recombinant integrin {alpha}2/{beta}1 cytoplasmic tail complex and co-localizes with native {alpha}2/{beta}1 in endothelial cell focal adhesions  

SciTech Connect

Integrin receptors are crucial players in cell adhesion and migration. Identification and characterization of cellular proteins that interact with their short {alpha} and {beta} cytoplasmic tails will help to elucidate the molecular mechanisms by which integrins mediate bi-directional signaling across the plasma membrane. Integrin {alpha}2{beta}1 is a major collagen receptor but to date, only few proteins have been shown to interact with the {alpha}2 cytoplasmic tail or with the {alpha}2{beta}1 complex. In order to identify novel binding partners of a {alpha}2{beta}1cytoplasmic domain complex, we have generated recombinant GST-fusion proteins, incorporating the leucine zipper heterodimerization cassettes of Jun and Fos. To ascertain proper functionality of the recombinant proteins, interaction with natural binding partners was tested. GST-{alpha}2 and GST-Jun {alpha}2 bound His-tagged calreticulin while GST-{beta}1 and GST-Fos {beta}1 proteins bound talin. In screening assays for novel binding partners, the immobilized GST-Jun {alpha}2/GST-Fos {beta}1 heterodimeric complex, but not the single subunits, interacted specifically with endothelial cell-derived vimentin. Vimentin, an abundant intermediate filament protein, has previously been shown to co-localize with {alpha}v{beta}3-positive focal contacts. Here, we provide evidence that this interaction also occurs with {alpha}2{beta}1-enriched focal adhesions and we further show that this association is lost after prolonged adhesion of endothelial cells to collagen.

Kreis, Stephanie [LBPI: Laboratoire de Biologie et Physiologie Integree (CNRS/GDRE-ITI), Universite du Luxembourg, 162A, avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Schoenfeld, Hans-Joachim [F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, Preclinical Research, Vascular and Metabolic Diseases, CH-4070 Basel (Switzerland); Melchior, Chantal [LBPI: Laboratoire de Biologie et Physiologie Integree (CNRS/GDRE-ITI), Universite du Luxembourg, 162A, avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Steiner, Beat [F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, Preclinical Research, Vascular and Metabolic Diseases, CH-4070 Basel (Switzerland); Kieffer, Nelly [LBPI: Laboratoire de Biologie et Physiologie Integree (CNRS/GDRE-ITI), Universite du Luxembourg, 162A, avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg)]. E-mail: kieffer@cu.lu

2005-04-15

366

Some fundamentals of adhesion in synthetic adhesives  

Microsoft Academic Search

Various adhesion mechanisms that have been understood in the field of synthetic adhesives are described and these are linked with situations relevant to fouling issues. The review mainly deals with mechanical aspects of adhesion phenomena, with an emphasis on the role of the elasticity of the bodies, called substrata, attached by adhesive. The consequences of thin film geometry of the

Cyprien Gay

2003-01-01

367

Polyimide adhesives  

NASA Technical Reports Server (NTRS)

A process was developed for preparing aromatic polyamide acids for use as adhesives by reacting an aromatic dianhydride to an approximately equimolar amount of an aromatic diamine in a water or lower alkanol miscible ether solvent. The polyamide acids are converted to polyimides by heating to the temperature range of 200 - 300 C. The polyimides are thermally stable and insoluble in ethers and other organic solvents.

Progar, D. J.; Bell, V. L.; Stclair, T. L. (inventors)

1977-01-01

368

Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells  

PubMed Central

Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

2014-01-01

369

Terbium-based time-gated Förster resonance energy transfer imaging for evaluating protein-protein interactions on cell membranes.  

PubMed

Fluorescence imaging of cells and subcellular compartments is an essential tool to investigate biological processes and to evaluate the development and progression of diseases. In particular, protein-protein interactions can be monitored by Förster resonance energy transfer (FRET) between two proximal fluorophores that are attached to specific recognition biomolecules such as antibodies. We investigated the membrane expression of E- and N-cadherins in three different cell lines used as model systems to study epithelial to mesenchymal transition (EMT) and a possible detection of circulating tumour cells (CTCs). EMT is a key process in cancer metastasis, during which epithelial markers (such as E-cadherin) are down-regulated in the primary tumour whereas mesenchymal markers (such as N-cadherin) are up-regulated, leading to enhanced cell motility, intravasation, and appearance of CTCs. Various FRET donor-acceptor pairs and protein recognition strategies were utilized, in which Lumi4-Tb terbium complexes (Tb) and different organic dyes were conjugated to several distinct E- and N-cadherin-specific antibodies. Pulsed excitation of Tb at low repetition rates (100 Hz) and time-gated (TG) imaging of both the Tb-donor and the dye-acceptor photoluminescence (PL) allowed efficient detection of the EMT markers as well as FRET in the case of sufficient donor-acceptor proximity. Efficient FRET was observed only between two E-cadherin-specific antibodies and further experiments indicated that these antibodies recognized the same E-cadherin molecule, suggesting a limited accessibility of cadherins when they are clustered at adherens junctions. The investigated Tb-to-dye FRET systems provided reduced photobleaching compared to the AlexaFluor 488-568 donor-acceptor pair. Our results demonstrate the applicability and advantages of Tb-based TG FRET for efficient and stable imaging of antibody-antibody interactions on different cell lines. They also reveal the limitations of interpreting colocalization on cell membranes in the case of lacking FRET signals. PMID:25612290

Lindén, Stina; Singh, Manish Kumar; Wegner, K David; Regairaz, Marie; Dautry, François; Treussart, François; Hildebrandt, Niko

2015-03-01

370

Regulation of cell adhesion and anchorage-dependent growth by a new beta1-integrin-linked protein kinase  

Microsoft Academic Search

THE interaction of cells with the extracellular matrix regulates cell shape, motility, growth, survival, differentiation and gene expression, through integrin-mediated signal transduction1-3. We used a two-hybrid screen to isolate genes encoding proteins that interact with the beta1-integrin cytoplasmic domain. The most frequently isolated complementary DNA encoded a new, 59K serine\\/threonine protein kinase, containing four ankyrin-like repeats. We report here that

Gregory E. Hannigan; Chungyee Leung-Hagesteijn; Linda Fitz-Gibbon; Marc G. Coppolino; Galina Radeva; Jorge Filmus; John C. Bell; Shoukat Dedhar

1996-01-01

371

The 14-3-3? Protein Binds to the Cell Adhesion Molecule L1, Promotes L1 Phosphorylation by CKII and Influences L1-Dependent Neurite Outgrowth  

PubMed Central

Background The cell adhesion molecule L1 is crucial for mammalian nervous system development. L1 acts as a mediator of signaling events through its intracellular domain, which comprises a putative binding site for 14-3-3 proteins. These regulators of diverse cellular processes are abundant in the brain and preferentially expressed by neurons. In this study, we investigated whether L1 interacts with 14-3-3 proteins, how this interaction is mediated, and whether 14-3-3 proteins influence the function of L1. Methodology/Principal Findings By immunoprecipitation, we demonstrated that 14-3-3 proteins are associated with L1 in mouse brain. The site of 14-3-3 interaction in the L1 intracellular domain (L1ICD), which was identified by site-directed mutagenesis and direct binding assays, is phosphorylated by casein kinase II (CKII), and CKII phosphorylation of the L1ICD enhances binding of the 14-3-3 zeta isoform (14-3-3?). Interestingly, in an in vitro phosphorylation assay, 14-3-3? promoted CKII-dependent phosphorylation of the L1ICD. Given that L1 phosphorylation by CKII has been implicated in L1-triggered axonal elongation, we investigated the influence of 14-3-3? on L1-dependent neurite outgrowth. We found that expression of a mutated form of 14-3-3?, which impairs interactions of 14-3-3? with its binding partners, stimulated neurite elongation from cultured rat hippocampal neurons, supporting a functional connection between L1 and 14-3-3?. Conclusions/Significance Our results suggest that 14-3-3?, a novel direct binding partner of the L1ICD, promotes L1 phosphorylation by CKII in the central nervous system, and regulates neurite outgrowth, an important biological process triggered by L1. PMID:20976158

Ramser, Elisa M.; Wolters, Gerrit; Dityateva, Galina; Dityatev, Alexander; Schachner, Melitta; Tilling, Thomas

2010-01-01

372

Adhesion or plasmin regulates tyrosine phosphorylation of a novel membrane glycoprotein p80/gp140/CUB domain-containing protein 1 in epithelia.  

PubMed

Suspension of cultured human foreskin keratinocytes (HKs) with trypsin phosphorylates tyrosine residues on an 80-kDa membrane glycoprotein, p80 (Xia, Y., Gil, S. G., and Carter, W. G. (1996) J. Cell Biol. 132, 727-740). Readhesion dephosphorylates p80. Sequencing of a p80 cDNA established identity to CUB domain-containing protein 1 (CDCP1), a gene elevated in carcinomas. CDCP1/p80 cDNA encodes three extracellular CUB domains, a transmembrane domain, and two putative cytoplasmic Tyr phosphorylation sites. Treatment of adherent HKs with suramin, a heparin analogue, or inhibitors of phosphotyrosine phosphatases (PTPs; vanadate or calpeptin) increases phosphorylation of p80 and a novel 140-kDa membrane glycoprotein, gp140. Phosphorylated gp140 was identified as a trypsin-sensitive precursor to p80. Identity was confirmed by digestion and phosphorylation studies with recombinant gp140-GFP. Plasmin, a serum protease, also converts gp140 to p80, providing biological significance to the cleavage in wounds. Phosphorylation of gp140 and p80 are mediated by Src family kinases at multiple Tyr residues including Tyr(734). Dephosphorylation is mediated by PTP(s). Conversion of gp140 to p80 prolongs phosphorylation of p80 in response to suramin and changes in adhesion. This distinguishes gp140 and p80 and explains the relative abundance of phosphorylated p80 in trypsinized HKs. We conclude that phosphorylation of gp140 is dynamic and balanced by Src family kinase and PTPs yielding low equilibrium phosphorylation. We suggest that the balance is altered by conversion of gp140 to p80 and by adhesion, providing a novel transmembrane phosphorylation signal in epithelial wounds. PMID:14739293

Brown, Tod A; Yang, Tai Mei; Zaitsevskaia, Tatiana; Xia, Yuping; Dunn, Clarence A; Sigle, Randy O; Knudsen, Beatrice; Carter, William G

2004-04-01

373

Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel.  

PubMed

Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C; Wang, Lin

2014-01-01

374

Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel  

PubMed Central

Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

2014-01-01

375

Gecko adhesion pad: a smart surface?  

NASA Astrophysics Data System (ADS)

Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which