Science.gov

Sample records for adhesive domain implications

  1. New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome

    SciTech Connect

    Jouet, M.; Kenwick, S.; Moncla, A.

    1995-06-01

    The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the first examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function. 39 refs., 5 figs., 3 tabs.

  2. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  3. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    PubMed Central

    Ellis, Stephanie J.; Lostchuck, Emily; Goult, Benjamin T.; Bouaouina, Mohamed; Fairchild, Michael J.; López-Ceballos, Pablo; Calderwood, David A.; Tanentzapf, Guy

    2014-01-01

    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. PMID:25393120

  4. Random pinning limits the size of membrane adhesion domains

    NASA Astrophysics Data System (ADS)

    Speck, Thomas; Vink, Richard L. C.

    2012-09-01

    Theoretical models describing specific adhesion of membranes predict (for certain parameters) a macroscopic phase separation of bonds into adhesion domains. We show that this behavior is fundamentally altered if the membrane is pinned randomly due to, e.g., proteins that anchor the membrane to the cytoskeleton. Perturbations which locally restrict membrane height fluctuations induce quenched disorder of the random-field type. This rigorously prevents the formation of macroscopic adhesion domains following the Imry-Ma argument [Imry and Ma, Phys. Rev. Lett.10.1103/PhysRevLett.35.1399 35, 1399 (1975)]. Our prediction of random-field disorder follows from analytical calculations and is strikingly confirmed in large-scale Monte Carlo simulations. These simulations are based on an efficient composite Monte Carlo move, whereby membrane height and bond degrees of freedom are updated simultaneously in a single move. The application of this move should prove rewarding for other systems also.

  5. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    SciTech Connect

    Ceccarelli,D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment.

  6. Formation of semi-dilute adhesion domains driven by weak elasticity-mediated interactions.

    PubMed

    Dharan, Nadiv; Farago, Oded

    2016-08-21

    Cell-cell adhesion is established by specific binding of receptor and ligand proteins anchored in the cell membranes. The adhesion bonds attract each other and often aggregate into large clusters that are central to many biological processes. One possible origin of attractive interactions between adhesion bonds is the elastic response of the membranes to their deformation by the bonds. Here, we analyze these elasticity-mediated interactions using a novel mean-field approach. Our analysis of systems at different densities of bonds, ϕ, reveals that the phase diagram, i.e., the binodal and spinodal lines, exhibit a nearly universal behavior when the temperature T is plotted against the scaled density x = ϕξ(2), where ξ is the linear size of the membrane's region affected by the presence of a single isolated bond. The critical point (ϕc , Tc) is located at very low densities, and slightly below Tc we identify phase coexistence between two low-density phases. Dense adhesion domains are observed only when the height by which the bonds deform the membranes, h0, is much larger than their thermal roughness, Δ, which occurs at very low temperatures T≪Tc. We, thus, conclude that the elasticity-mediated interactions are weak and cannot be regarded as responsible for the formation of dense adhesion domains. The weakness of the elasticity-mediated effect and its relevance to dilute systems only can be attributed to the fact that the membrane's elastic energy saturates in the semi-dilute regime, when the typical spacing between the bonds r≳ξ, i.e., for x≲ 1. Therefore, at higher densities, only the mixing entropy of the bonds (which always favors uniform distributions) is thermodynamically relevant. We discuss the implications of our results for the question of immunological synapse formation, and demonstrate that the elasticity-mediated interactions may be involved in the aggregation of these semi-dilute membrane domains. PMID:27426284

  7. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration

    PubMed Central

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-01-01

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405

  8. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties.

    PubMed Central

    Darboux, I; Barthalay, Y; Piovant, M; Hipeau-Jacquotte, R

    1996-01-01

    Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells. Images PMID:8890157

  9. Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains

    PubMed Central

    Sathe, Aneesh R.; Shivashankar, G. V.; Sheetz, Michael P.

    2016-01-01

    ABSTRACT The nuclear transport of paxillin appears to be crucial for paxillin function but the mechanism of transport remains unclear. Here, we show that the nuclear transport of paxillin is regulated by focal adhesion turnover and the presence of FAT domains. Focal adhesion turnover was controlled using triangular or circular fibronectin islands. Circular islands caused higher focal adhesion turnover and increased the nuclear transport of paxillin relative to triangular islands. Mutating several residues of paxillin had no effect on its nuclear transport, suggesting that the process is controlled by multiple domains. Knocking out FAK (also known as PTK2) and vinculin caused an increase in nuclear paxillin. This could be reversed by rescue with wild-type FAK but not by FAK with a mutated FAT domain, which inhibits paxillin binding. Expressing just the FAT domain of FAK not only brought down nuclear levels of paxillin but also caused a large immobile fraction of paxillin to be present at focal adhesions, as demonstrated by fluorescence recovery after photobleaching (FRAP) studies. Taken together, focal adhesion turnover and FAT domains regulate the nuclear localization of paxillin, suggesting a possible role for transcriptional control, through paxillin, by focal adhesions. PMID:27068537

  10. Formation of focal adhesion-stress fibre complexes coordinated by adhesive and non-adhesive surface domains.

    PubMed

    Zimerman, B; Arnold, M; Ulmer, J; Blümmel, J; Besser, A; Spatz, J P; Geiger, B

    2004-04-01

    Cell motility consists of repeating cycles of protrusion of a leading edge in the direction of migration, attachment of the advancing membrane to the matrix, and pulling of the trailing edge forward. In this dynamic process there is a major role for the cytoskeleton, which drives the protrusive events via polymerisation of actin in the lamellipodium, followed by actomyosin contractility. To study the transition of the actin cytoskeleton from a 'protrusive' to 'retractive' form, we have monitored the formation of focal adhesions and stress fibres during cell migration on a micro-patterned surface. This surface consisted of parallel arrays of 2 microm-wide, fibronectin-coated gold stripes, separated by non-adhesive (poly(ethylene glycol)-coated) glass areas with variable width, ranging from 4-12 microm. Monitoring the spreading of motile cells indicated that cell spreading was equally effective along and across the adhesive stripes, as long as the non-adhesive spaces between them did not exceed 6 microm. When the width of the PEG region was 8 microm or more, cells became highly polarised upon spreading, and failed to reach the neighboring adhesive stripes. It was also noted that as soon as the protruding lamella successfully crossed the PEG-coated area and reached an adhesive region, the organisation of actin in that area was transformed from a diffuse meshwork into a bundle, oriented perpendicularly to the stripes and anchored at its ends in focal adhesions. This transition depends on actomyosin-based contractility and is apparently triggered by the adhesion to the rigid fibronectin surface. PMID:16475844

  11. Crystallization of the Focal Adhesion Kinase Targeting (FAT) Domain in a Primitive Orthorhombic Space Group

    SciTech Connect

    Magis,A.; Bailey, K.; Kurenova, E.; Hernandez Prada, J.; Cance, W.; Ostrov, D.

    2008-01-01

    X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Angstroms resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.

  12. Trimeric Autotransporters Require Trimerization of the Passenger Domain for Stability and Adhesive Activity

    PubMed Central

    Cotter, Shane E.; Surana, Neeraj K.; Grass, Susan; St. Geme, Joseph W.

    2006-01-01

    In recent years, structural studies have identified a number of bacterial, viral, and eukaryotic adhesive proteins that have a trimeric architecture. The prototype examples in bacteria are the Haemophilus influenzae Hia adhesin and the Yersinia enterocolitica YadA adhesin. Both Hia and YadA are members of the trimeric-autotransporter subfamily and are characterized by an internal passenger domain that harbors adhesive activity and a short C-terminal translocator domain that inserts into the outer membrane and facilitates delivery of the passenger domain to the bacterial surface. In this study, we examined the relationship between trimerization of the Hia and YadA passenger domains and the capacity for adhesive activity. We found that subunit-subunit interactions and stable trimerization are essential for native folding and stability and ultimately for full-level adhesive activity. These results raise the possibility that disruption of the trimeric architecture of trimeric autotransporters, and possibly other trimeric adhesins, may be an effective strategy to eliminate adhesive activity. PMID:16855229

  13. The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1

    SciTech Connect

    Nomme, Julian; Fanning, Alan S.; Caffrey, Michael; Lye, Ming F.; Anderson, James M.; Lavie, Arnon

    2012-01-20

    Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe{sup -2} and Ser{sup -3} residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.

  14. Domain Specific vs Domain General: Implications for Dynamic Assessment

    ERIC Educational Resources Information Center

    Kaniel, Shlomo

    2010-01-01

    The article responds to the need for evidence-based dynamic assessment. The article is divided into two sections: In Part 1 we examine the scientific answer to the question of how far human mental activities and capabilities are domain general (DG) / domain specific (DS). A highly complex answer emerges from the literature review of domains such…

  15. Babesia bovis expresses a neutralization-sensitive antigen that contains a microneme adhesive repeat (MAR) domain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene coding for a protein with sequence similarity to the Toxoplasma gondii micronemal 1 (MIC1) protein that contains a copy of a domain described as a sialic acid-binding micronemal adhesive repeat was identified in the Babesia bovis genome. The single copy gene, located in chromosome 3, contains...

  16. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    NASA Astrophysics Data System (ADS)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  17. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  18. The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research

    PubMed Central

    Smith, Joseph D.

    2014-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family has a key role in parasite survival, transmission, and virulence. PfEMP1 are exported to the erythrocyte membrane and mediate binding of infected erythrocytes to the endothelial lining of blood vessels. This process aids parasite survival by avoiding spleen-dependent killing mechanisms, but it is associated with adhesion-based disease complications. Switching between PfEMP1 proteins enables parasites to evade host immunity and modifies parasite tropism for different microvascular beds. The PfEMP1 protein family is one of the most diverse adhesion modules in nature. This review covers PfEMP1 adhesion domain classification and the significant role it is playing in deciphering and deconvoluting P. falciparum cytoadhesion and disease. PMID:25064606

  19. Structural origins of misfolding propensity in the platelet adhesive von Willebrand factor A1 domain.

    PubMed

    Zimmermann, Michael T; Tischer, Alexander; Whitten, Steven T; Auton, Matthew

    2015-07-21

    The von Willebrand factor (VWF) A1 and A3 domains are structurally isomorphic yet exhibit distinct mechanisms of unfolding. The A1 domain, responsible for platelet adhesion to VWF in hemostasis, unfolds through a molten globule intermediate in an apparent three-state mechanism, while A3 unfolds by a classical two-state mechanism. Inspection of the sequences or structures alone does not elucidate the source of this thermodynamic conundrum; however, the three-state character of the A1 domain suggests that it has more than one cooperative substructure yielding two separate unfolding transitions not present in A3. We investigate the extent to which structural elements contributing to intermediate conformations can be identified using a residue-specific implementation of the structure-energy-equivalence-of-domains algorithm (SEED), which parses proteins of known structure into their constituent thermodynamically cooperative components using protein-group-specific, transfer free energies. The structural elements computed to contribute to the non-two-state character coincide with regions where Von Willebrand disease mutations induce misfolded molten globule conformations of the A1 domain. This suggests a mechanism for the regulation of rheological platelet adhesion to A1 based on cooperative flexibility of the α2 and α3 helices flanking the platelet GPIbα receptor binding interface. PMID:26200876

  20. Structural Origins of Misfolding Propensity in the Platelet Adhesive Von Willebrand Factor A1 Domain

    PubMed Central

    Zimmermann, Michael T.; Tischer, Alexander; Whitten, Steven T.; Auton, Matthew

    2015-01-01

    The von Willebrand factor (VWF) A1 and A3 domains are structurally isomorphic yet exhibit distinct mechanisms of unfolding. The A1 domain, responsible for platelet adhesion to VWF in hemostasis, unfolds through a molten globule intermediate in an apparent three-state mechanism, while A3 unfolds by a classical two-state mechanism. Inspection of the sequences or structures alone does not elucidate the source of this thermodynamic conundrum; however, the three-state character of the A1 domain suggests that it has more than one cooperative substructure yielding two separate unfolding transitions not present in A3. We investigate the extent to which structural elements contributing to intermediate conformations can be identified using a residue-specific implementation of the structure-energy-equivalence-of-domains algorithm (SEED), which parses proteins of known structure into their constituent thermodynamically cooperative components using protein-group-specific, transfer free energies. The structural elements computed to contribute to the non-two-state character coincide with regions where Von Willebrand disease mutations induce misfolded molten globule conformations of the A1 domain. This suggests a mechanism for the regulation of rheological platelet adhesion to A1 based on cooperative flexibility of the α2 and α3 helices flanking the platelet GPIbα receptor binding interface. PMID:26200876

  1. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    PubMed

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  2. Several domains from VAR2CSA can induce Plasmodium falciparum adhesion-blocking antibodies

    PubMed Central

    2010-01-01

    Background Malaria caused by Plasmodium falciparum can result in several different syndromes with severe clinical consequences for the about 200 million individuals infected each year. During pregnancy, women living in endemic areas become susceptible to malaria due to lack of antibodies against a unique P. falciparum membrane protein, named VAR2CSA. This antigen is not expressed in childhood infections, since it binds chondroitin sulphate A (CSA) expressed on the intervillous space in the placenta. A vaccine appears possible because women acquire protective antibodies hindering sequestration in the placenta as a function of parity. A challenge for vaccine development is to design small constructs of this large antigen, which can induce broadly protective antibodies. It has previously been shown that one domain of VAR2CSA, DBL4-FCR3, induces parasite adhesion-blocking antibodies. In this study, it is demonstrated that other domains of VAR2CSA also can induce antibodies with inhibitory activity. Methods All VAR2CSA domains from the 3D7 and HB3 parasites were produced in Baculovirus-transfected insect cells. Groups of three rats per protein were immunized and anti-sera were tested for surface reactivity against infected erythrocytes expressing FCR3 VAR2CSA and for the ability to inhibit FCR3CSA parasite adhesion to CSA. The fine specificity of the immune sera was analysed by VAR2CSA peptide arrays. Results Inhibitory antibodies were induced by immunization with DBL3-HB3 T1 and DBL1-3D7. However, unlike the previously characterised DBL4-FCR3 response the inhibitory response against DBL1-3D7 and DBL3-HB3 T1 was poorly reproduced in the second rounds of immunizations. Conclusion It is possible to induce parasite adhesion-blocking antibodies when immunizing with a number of different VAR2CSA domains. This indicates that the CSA binding site in VAR2CSA is comprised of epitopes from different domains. PMID:20064234

  3. Application of Terahertz Time-Domain Spectroscopy in nondestructive testing of adhesion quality

    NASA Astrophysics Data System (ADS)

    Zhao, Duo; Ren, Jiaojiao; Qao, Xiaoli; Li, Lijuan

    2015-10-01

    Multilayer composites assembled flexibly with have important effect on the performance and safety of aircrafts. The nondestructive detection on the adhesion layer is an important index to evaluate the quality of aircraft assembly. Terahertz Time-Domain Spectroscopy (THz-TDS) is a newly developed spectroscopy technique based on femtosecond laser technology which currently applied to qualitative analysis as a means of security detection and material identification. Compared with the traditional tensile testing, the detection of defects in the adhesion layer could be nondestructive, visible, positioning and more accurate. The spectral analysis on the material to be assembled was done respectively. The testing model was established in accord with the extracted optical parameters. With the employment of a reflective THz-TDS device, X-Y spot scanning was done to obtain waveforms of every location on an assembled sample. Layered analysis was done by selecting region of interest in time domain waveforms. Conclusions of Time- Frequency spectrum analysis and scanning imaging performance are relatively satisfying through the experiments. The defects could be located and analyzed accurately and efficiently. The research reveals that THz-TDS (0.1THz~5THz) has good testing performance on the adhesion quality of multilayer composites.

  4. Crystal Structures of Free and Ligand-Bound Focal Adhesion Targeting Domain of Pyk2

    SciTech Connect

    Lulo, J.; Yuzawa, S; Schlessinger, J

    2009-01-01

    Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the a1a4 and a2a3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases.

  5. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    SciTech Connect

    Dougherty, Gerard W.; Chopp, Treasa; Qi Shengmei; Cutler, Mary Lou . E-mail: mcutler@usuhs.mil

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.

  6. MMP-9-hemopexin domain hampers adhesion and migration of colorectal cancer cells.

    PubMed

    Burg-Roderfeld, M; Roderfeld, M; Wagner, S; Henkel, C; Grötzinger, J; Roeb, E

    2007-04-01

    Matrix metalloproteinases (MMPs), in particular MMP-2 and MMP-9, are involved in colon cancer progression and metastasis due to their ability to degrade extracellular matrix (ECM) components. In previous studies we described the MMP-9 hemopexin like domain (MMP-9-PEX) as an MMP-9 antagonist. In the present study it was examined whether recombinant MMP-9-PEX has an inhibitory effect on migration and adhesion of colorectal carcinoma cells. Furthermore, we searched for MMP-9 substrate binding sites within the MMP-9-PEX by surface plasmon resonance. Migration of SW620 and LS174 cells was investigated in a modified Boyden chamber assay. In the presence of 0.2 microg/ml MMP-9-PEX migration of SW620 was decreased by 34%, while addition of 0.4 microg/ml diminished migration by 56%. Migration of LS174 cells was not affected by MMP-9-PEX. Adhesion studies were performed on 96-well plates coated with gelatin, collagen type I, and laminin, respectively. In the presence of MMP-9-PEX, adhesion of SW620 cells to these coating substrates was significantly inhibited. Surface plasmon resonance studies revealed binding of collagen type I and IV, elastin, and fibrinogen to proMMP-9 as well as to MMP-9-PEX. However, equilibrium constants (Kd) indicated a higher affinity of proMMP-9 to the matrix proteins. This could indicate that there is more than one binding site for matrix components within the entire proMMP-9 molecule. Since migration and adhesion of metastatic colorectal carcinoma cells were reduced by MMP-9-PEX, this recombinant MMP-9 antagonist might be of therapeutical interest. PMID:17332939

  7. The Terminal A Domain of the Fibrillar Accumulation-Associated Protein (Aap) of Staphylococcus epidermidis Mediates Adhesion to Human Corneocytes▿

    PubMed Central

    Macintosh, Robin L.; Brittan, Jane L.; Bhattacharya, Ritwika; Jenkinson, Howard F.; Derrick, Jeremy; Upton, Mathew; Handley, Pauline S.

    2009-01-01

    The opportunistic pathogen Staphylococcus epidermidis colonizes indwelling medical devices by biofilm formation but is primarily a skin resident. In many S. epidermidis strains biofilm formation is mediated by a cell wall-anchored protein, the accumulation-associated protein (Aap). Here, we investigate the role of Aap in skin adhesion. Aap is an LPXTG protein with a domain architecture including a terminal A domain and a B-repeat region. S. epidermidis NCTC 11047 expresses Aap as localized, lateral tufts of fibrils on one subpopulation of cells (Fib+), whereas a second subpopulation does not express these fibrils of Aap (Fib−). Flow cytometry showed that 72% of NCTC 11047 cells expressed Aap and that 28% of cells did not. Aap is involved in the adhesion of Fib+ cells to squamous epithelial cells from the hand (corneocytes), as the recombinant A-domain protein partially blocked binding to corneocytes. To confirm the role of the Aap A domain in corneocyte attachment, Aap was expressed on the surface of Lactococcus lactis MG1363 as sparsely distributed, peritrichous fibrils. The expression of Aap increased corneocyte adhesion 20-fold compared to L. lactis carrying Aap without an A domain. S. epidermidis isolates from catheters, artificial joints, skin, and the nose also used the A domain of Aap to adhere to corneocytes, emphasizing the role of Aap in skin adhesion. In addition, L. lactis expressing Aap with different numbers of B repeats revealed a positive correlation between the number of B repeats and adhesion to corneocytes, suggesting an additional function for the B region in enhancing A-domain-dependent attachment to skin. Therefore, in addition to its established role in biofilm formation, Aap can also promote adhesion to corneocytes and is likely to be an important adhesin in S. epidermidis skin colonization. PMID:19749046

  8. Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions.

    PubMed

    Needham, L K; Thelen, K; Maness, P F

    2001-03-01

    The neural adhesion molecule L1 mediates the axon outgrowth, adhesion, and fasciculation that are necessary for proper development of synaptic connections. L1 gene mutations are present in humans with the X-linked mental retardation syndrome CRASH (corpus callosum hypoplasia, retardation, aphasia, spastic paraplegia, hydrocephalus). Three missense mutations associated with CRASH syndrome reside in the cytoplasmic domain of L1, which contains a highly conserved binding region for the cytoskeletal protein ankyrin. In a cellular ankyrin recruitment assay that uses transfected human embryonic kidney (HEK) 293 cells, two of the pathologic mutations located within the conserved SFIGQY sequence (S1224L and Y1229H) strikingly reduced the ability of L1 to recruit 270 kDa ankyrinG protein that was tagged with green fluorescent protein (ankyrin-GFP) to the plasma membrane. In contrast, the L1 missense mutation S1194L and an L1 isoform lacking the neuron-specific sequence RSLE in the cytoplasmic domain were as effective as RSLE-containing neuronal L1 in the recruitment of ankyrin-GFP. Ankyrin binding by L1 was independent of cell-cell interactions. Receptor-mediated endocytosis of L1 regulates intracellular signal transduction, which is necessary for neurite outgrowth. In rat B35 neuroblastoma cell lines stably expressing L1 missense mutants, antibody-induced endocytosis was unaffected by S1224L or S1194L mutations but appeared to be enhanced by the Y1229H mutation. These results suggested a critical role for tyrosine residue 1229 in the regulation of L1 endocytosis. In conclusion, specific mutations within key residues of the cytoplasmic domain of L1 (Ser(1224), Tyr(1229)) destabilize normal L1-ankyrin interactions and may influence L1 endocytosis to contribute to the mechanism of neuronal dysfunction in human X-linked mental retardation. PMID:11222639

  9. Critical Role of Heparin Binding Domains of Ameloblastin for Dental Epithelium Cell Adhesion and Ameloblastoma Proliferation*

    PubMed Central

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-01-01

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C-terminal half and that these domains were critical for AMBN binding to dental epithelial cells. Overexpression of full-length AMBN protein inhibited proliferation of human ameloblastoma AM-1 cells, but overexpression of heparin binding domain-deficient AMBN protein had no inhibitory effect. In full-length AMBN-overexpressing AM-1 cells, the expression of Msx2, which is involved in the dental epithelial progenitor phenotype, was decreased, whereas the expression of cell proliferation inhibitors p21 and p27 was increased. We also found that the expression of enamelin, a marker of differentiated ameloblasts, was induced, suggesting that AMBN promotes odontogenic tumor differentiation. Thus, our results suggest that AMBN promotes cell binding through the heparin binding sites and plays an important role in preventing odontogenic tumor development by suppressing cell proliferation and maintaining differentiation phenotype through Msx2, p21, and p27. PMID:19648121

  10. Adhesion of CO2 on hydrated mineral surfaces and its implications to geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Wang, S.; Clarens, A. F.; Tao, Z.; Persily, S. M.

    2013-12-01

    Most mineral surfaces are water wetting, which has important implications for the transport of non-aqueous phase liquids, such as CO2, through porous media. In this work, contact angle experiments were carried out wherein unusual wetting behavior was observed between mineral surfaces and liquid or supercritical CO2 under certain geochemical conditions. This behavior can be understood in the context of adhesion between the CO2 and the mineral surface. When adhesion occurs, the wettability characteristics of the surfaces are significantly altered. More importantly, the CO2 exhibits a strong affinity for the surface and is highly resistant to shear forces in the aqueous phase. A static pendant drop method was used on a variety of polished mineral surfaces to measure contact angles. The composition of the aqueous phase (e.g., pH, ionic strength) and the characteristics of the mineral surface (e.g., composition, roughness), were evaluated to understand their impact on the prevalence of adhesion. Pressure and temperature conditions were selected to represent those that would be prevalent in geologic carbon sequestration (GCS) or during leakage from target repositories. Adhesion was widely observed on phlogopite mica, silica, and calcite surfaces with roughness on the order of ~10 nanometers. CO2 exhibited no adhesion on mineral surfaces with higher roughness (e.g., quartz). On smoother surfaces, the CO2 is thought to have more effective contact area with the mineral, enabling the weak van der Waals forces that drive most adhesion processes. Brine chemistry also had an important role in controlling CO2 adhesion. Increases in CO2 partial pressure and ionic strength both increased the incidence of adhesion. The addition of strong acid or strong base permanently inhibited the development of adhesion. These results suggest that the development of adhesion between the CO2 and the mineral surface is dependent on the integrity and thickness of the hydration layer between the CO2

  11. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    NASA Astrophysics Data System (ADS)

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; Tretiakov, O. A.

    2016-03-01

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E ≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying a small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. A split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.

  12. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    DOE PAGESBeta

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; Tretiakov, O. A.

    2016-03-30

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying amore » small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.« less

  13. Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1.

    PubMed Central

    Robertson, A; MacColl, G S; Nash, J A; Boehm, M K; Perkins, S J; Bouloux, P M

    2001-01-01

    Anosmin-1, the gene product of the KAL gene, is implicated in the pathogenesis of X-linked Kallmann's syndrome. Anosmin-1 protein expression is restricted to the basement membrane and interstitial matrix of tissues affected in this syndrome during development. The anosmin-1 sequence indicates an N-terminal cysteine-rich domain, a whey acidic protein (WAP) domain, four fibronectin type III (FnIII) domains and a C-terminal histidine-rich region, and shows similarity with cell-adhesion molecules, such as neural cell-adhesion molecule, TAG-1 and L1. We investigated the structural and functional significance of three loss-of-function missense mutations of anosmin-1 using comparative modelling of the four FnIII and the WAP domains based on known NMR and crystal structures. Three missense mutation-encoded amino acid substitutions, N267K, E514K and F517L, were mapped to structurally defined positions on the GFCC' beta-sheet face of the first and third FnIII domains. Electrostatic maps demonstrated large basic surfaces containing clusters of conserved predicted heparan sulphate-binding residues adjacent to these mutation sites. To examine these modelling results anosmin-1 was expressed in insect cells. The incorporation of the three mutations into recombinant anosmin-1 had no effect on its secretion. The removal of two dibasic motifs that may constitute potential physiological cleavage sites for anosmin-1 had no effect on cleavage. Peptides based on the anosmin-1 sequences R254--K285 and P504--K527 were then synthesized in order to assess the effect of the three mutations on cellular adhesion, using cell lines that represented potential functional targets of anosmin-1. Peptides (10 microg/ml) incorporating the N267K and E514K substitutions promoted enhanced adhesion to 13.S.1.24 rat olfactory epithelial cells and canine MDCK1 kidney epithelial cells (P<0.01) compared with the wild-type peptides. This result was attributed to the introduction of a lysine residue adjacent to

  14. Organizational Metrics of Interchromatin Speckle Factor Domains: Integrative Classifier for Stem Cell Adhesion & Lineage Signaling

    PubMed Central

    Vega, Sebastián L.; Dhaliwal, Anandika; Arvind, Varun; Patel, Parth J.; Beijer, Nick R. M.; de Boer, Jan; Murthy, N. Sanjeeva; Kohn, Joachim; Moghe, Prabhas V.

    2015-01-01

    Stem cell fates on biomaterials are influenced by the complex confluence of microenvironmental cues emanating from soluble growth factors, cell-to-cell contacts, and biomaterial properties. Cell-microenvironment interactions influence the cell fate by initiating a series of outside-in signaling events that traverse from the focal adhesions to the nucleus via the cytoskeleton and modulate the sub-nuclear protein organization and gene expression. Here, we report a novel imaging-based framework that highlights the spatial organization of sub-nuclear proteins, specifically the splicing factor SC-35 in the nucleoplasm, as an integrative marker to distinguish between minute differences of stem cell lineage pathways in response to stimulatory soluble factors, surface topologies, and microscale topographies. This framework involves the high resolution image acquisition of SC-35 domains and imaging-based feature extraction to obtain quantitative nuclear metrics in tandem with machine learning approaches to generate a predictive cell state classification model. The acquired SC-35 metrics led to > 90% correct classification of emergent human mesenchymal stem cell (hMSC) phenotypes in populations of hMSCs exposed for merely 3 days to basal, adipogenic, or osteogenic soluble cues, as well as varying levels of dexamethasone-induced alkaline phosphatase (ALP) expression. Early osteogenic cellular responses across a series of surface patterns, fibrous scaffolds, and micropillars were also detected and classified using this imaging-based methodology. Complex cell states resulting from inhibition of RhoGTPase, β-catenin, and FAK could be classified with > 90% sensitivity on the basis of differences in the SC-35 organizational metrics. This indicates that SC-35 organization is sensitively impacted by adhesion-related signaling molecules that regulate osteogenic differentiation. Our results show that diverse microenvironment cues affect different attributes of the SC-35

  15. Peptide array-based screening of human mesenchymal stem cell-adhesive peptides derived from fibronectin type III domain

    SciTech Connect

    Okochi, Mina; Nomura, Shigeyuki; Kaga, Chiaki; Honda, Hiroyuki

    2008-06-20

    Human mesenchymal stem cell-adhesive peptides were screened based on the amino acid sequence of fibronectin type III domain 8-11 (FN-III{sub 8-11}) using a peptide array synthesized by the Fmoc-chemistry. Using hexameric peptide library of FN-III{sub 8-11} scan, we identified the ALNGR (Ala-Leu-Asn-Gly-Arg) peptide that induced cell adhesion as well as RGDS (Arg-Gly-Asp-Ser) peptide. After incubation for 2 h, approximately 68% of inoculated cells adhere to the ALNGR peptide disk. Adhesion inhibition assay with integrin antibodies showed that the ALNGR peptide interacts with integrin {beta}1 but not with {alpha}v{beta}3, indicating that the receptors for ALNGR are different from RGDS. Additionally, the ALNGR peptide expressed cell specificities for adhesion: cell adhesion was promoted for fibroblasts but not for keratinocytes or endotherial cells. The ALNGR peptide induced cell adhesion and promoted cell proliferation without changing its property. It is therefore useful for the construction of functional biomaterials.

  16. Biological implications of SNPs in signal peptide domains of human proteins.

    PubMed

    Jarjanazi, Hamdi; Savas, Sevtap; Pabalan, Noel; Dennis, James W; Ozcelik, Hilmi

    2008-02-01

    Proteins destined for secretion or membrane compartments possess signal peptides for insertion into the membrane. The signal peptide is therefore critical for localization and function of cell surface receptors and ligands that mediate cell-cell communication. About 4% of all human proteins listed in UniProt database have signal peptide domains in their N terminals. A comprehensive literature survey was performed to retrieve functional and disease associated genetic variants in the signal peptide domains of human proteins. In 21 human proteins we have identified 26 disease associated mutations within their signal peptide domains, 14 mutations of which have been experimentally shown to impair the signal peptide function and thus influence protein transportation. We took advantage of SignalP 3.0 predictions to characterize the signal peptide prediction score differences between the mutant and the wild-type alleles of each mutation, as well as 189 previously uncharacterized single nucleotide polymorphisms (SNPs) found to be located in the signal peptide domains of 165 human proteins. Comparisons of signal peptide prediction outcomes of mutations and SNPs, have implicated SNPs potentially impacting the signal peptide function, and thus the cellular localization of the human proteins. The majority of the top candidate proteins represented membrane and secreted proteins that are associated with molecular transport, cell signaling and cell to cell interaction processes of the cell. This is the first study that systematically characterizes genetic variation occurring in the signal peptides of all human proteins. This study represents a useful strategy for prioritization of SNPs occurring within the signal peptide domains of human proteins. Functional evaluation of candidates identified herein may reveal effects on major cellular processes including immune cell function, cell recognition and adhesion, and signal transduction. PMID:17680692

  17. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells

    PubMed Central

    Gueron, Geraldine; Giudice, Jimena; Valacco, Pia; Paez, Alejandra; Elguero, Belen; Toscani, Martin; Jaworski, Felipe; Leskow, Federico Coluccio; Cotignola, Javier; Marti, Marcelo; Binaghi, Maria; Navone, Nora; Vazquez, Elba

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa. PMID:24961479

  18. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system

    PubMed Central

    Stark, Alyssa Y.; Klittich, Mena R.; Sitti, Metin; Niewiarowski, Peter H.; Dhinojwala, Ali

    2016-01-01

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system’s performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both. PMID:27480603

  19. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system.

    PubMed

    Stark, Alyssa Y; Klittich, Mena R; Sitti, Metin; Niewiarowski, Peter H; Dhinojwala, Ali

    2016-01-01

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both. PMID:27480603

  20. Integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha ) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement.

    PubMed

    Fournier, Henri-Noël; Dupé-Manet, Sandra; Bouvard, Daniel; Lacombe, Marie-Lise; Marie, Christiane; Block, Marc R; Albiges-Rizo, Corinne

    2002-06-01

    Cell adhesion-dependent signaling implicates cytoplasmic proteins interacting with the intracellular tails of integrins. Among those, the integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha) has been shown to interact specifically with the beta(1) integrin cytoplasmic domain. Although it is likely that this protein plays an important role in controlling cell adhesion and migration, little is known about its actual function. To search for potential ICAP-1alpha-binding proteins, we used a yeast two-hybrid screen and identified the human metastatic suppressor protein nm23-H2 as a new partner of ICAP-1alpha. This direct interaction was confirmed in vitro, using purified recombinant ICAP-1alpha and nm23-H2, and by co-immunoprecipitation from CHO cell lysates over-expressing ICAP-1alpha. The physiological relevance of this interaction is provided by confocal fluorescence microscopy, which shows that ICAP-1alpha and nm23-H2 are co-localized in lamellipodia during the early stages of cell spreading. These adhesion sites are enriched in occupied beta(1) integrins and precede the formation of focal adhesions devoid of ICAP-1alpha and nm23-H2, indicating the dynamic segregation of components of matrix adhesions. This peripheral staining of ICAP-1alpha and nm23-H2 is only observed in cells spreading on fibronectin and collagen and is absent in cells spreading on poly-l-lysine, vitronectin, or laminin. This is consistent with the fact that targeting of both ICAP-1alpha and nm23-H2 to the cell periphery is dependent on beta(1) integrin engagement rather than being a consequence of cell adhesion. This finding represents the first evidence that the tumor suppressor nm23-H2 could act on beta(1) integrin-mediated cell adhesion by interacting with one of the integrin partners, ICAP-1alpha. PMID:11919189

  1. The first EGF domain of coagulation factor IX attenuates cell adhesion and induces apoptosis.

    PubMed

    Ishikawa, Tomomi; Kitano, Hisataka; Mamiya, Atsushi; Kokubun, Shinichiro; Hidai, Chiaki

    2016-07-01

    Coagulation factor IX (FIX) is an essential plasma protein for blood coagulation. The first epidermal growth factor (EGF) motif of FIX (EGF-F9) has been reported to attenuate cell adhesion to the extracellular matrix (ECM). The purpose of the present study was to determine the effects of this motif on cell adhesion and apoptosis. Treatment with a recombinant EGF-F9 attenuated cell adhesion to the ECM within 10 min. De-adhesion assays with native FIX recombinant FIX deletion mutant proteins suggested that the de-adhesion activity of EGF-F9 requires the same process of FIX activation as that which occurs for coagulation activity. The recombinant EGF-F9 increased lactate dehydrogenase (LDH) activity release into the medium and increased the number of cells stained with annexin V and activated caspase-3, by 8.8- and 2.7-fold respectively, indicating that EGF-F9 induced apoptosis. Activated caspase-3 increased very rapidly after only 5 min of administration of recombinant EGF-F9. Treatment with EGF-F9 increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), but not that of phosphorylated MAPK 44/42 or c-Jun N-terminal kinase (JNK). Inhibitors of caspase-3 suppressed the release of LDH. Caspase-3 inhibitors also suppressed the attenuation of cell adhesion and phosphorylation of p38 MAPK by EGF-F9. Our data indicated that EGF-F9 activated signals for apoptosis and induced de-adhesion in a caspase-3 dependent manner. PMID:27129300

  2. Glial cell interactions with tenascin-C: adhesion and repulsion to different tenascin-C domains is cell type related.

    PubMed

    Scholze, A; Götz, B; Faissner, A

    1996-06-01

    The multimodular glycoprotein tenascin-C is transiently expressed, predominantly by glial cells, during the development of the central and peripheral nervous systems. This extracellular matrix glycoprotein is involved in the control of cell adhesion, neuron migration and neurite outgrowth. Distinct functional properties for neuronal cell types have been attributed to separate tenascin-C domains using antibody perturbation studies and in vitro experiments on tenascin-C fragments. In order to study potential roles of tenascin-C for glial cell biology, a library of recombinant tenascin-C domains was used in a bioassay in vitro. Embryonic day 14 astrocytes, various astroglial-derived cell lines (C6, A7 and Neu7) and oligodendroglial-derived cell types (Oli-neu and G26-20) were examined in an adhesion assay and compared to the neuroblastoma cell line N2A. A binding site for most cell types, except for A7 and N2A, could be assigned to the first three fibronectin type III domains. Repulsive properties could be mapped to three different sites the epidermal growth factor-like repeats, fibronectin type III repeats 4 and 5 and to the alternatively spliced region of the molecule. The responses to these repulsive sites varied according to the cell type. These data are consistent with the interpretation that different cell types express distinct sets of tenascin-C receptors which might regulate cellular responses via distinct second messenger pathways. PMID:8842807

  3. Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions.

    PubMed Central

    Peles, E; Nativ, M; Lustig, M; Grumet, M; Schilling, J; Martinez, R; Plowman, G D; Schlessinger, J

    1997-01-01

    Receptor protein tyrosine phosphatase beta (RPTPbeta) expressed on the surface of glial cells binds to the glycosylphosphatidylinositol (GPI)-anchored recognition molecule contactin on neuronal cells leading to neurite outgrowth. We describe the cloning of a novel contactin-associated transmembrane receptor (p190/Caspr) containing a mosaic of domains implicated in protein-protein interactions. The extracellular domain of Caspr contains a neurophilin/coagulation factor homology domain, a region related to fibrinogen beta/gamma, epidermal growth factor-like repeats, neurexin motifs as well as unique PGY repeats found in a molluscan adhesive protein. The cytoplasmic domain of Caspr contains a proline-rich sequence capable of binding to a subclass of SH3 domains of signaling molecules. Caspr and contactin exist as a complex in rat brain and are bound to each other by means of lateral (cis) interactions in the plasma membrane. We propose that Caspr may function as a signaling component of contactin, enabling recruitment and activation of intracellular signaling pathways in neurons. The binding of RPTPbeta to the contactin-Caspr complex could provide a mechanism for cell-cell communication between glial cells and neurons during development. PMID:9118959

  4. Isolation of functional single domain antibody by whole cell immunization: implications for cancer treatment.

    PubMed

    Baral, Toya Nath; Murad, Yanal; Nguyen, Thanh-Dung; Iqbal, Umar; Zhang, Jianbing

    2011-08-31

    Carcinoembryonic antigen related cell adhesion molecule (CEACAM) 6 is over-expressed in different types of cancer cells. In addition, it has also been implicated in some infectious diseases. Targeting this molecule by an antibody might have applications in diverse tumor models. Single domain antibody (sdAb) is becoming very useful format in antibody engineering as potential tools for treating acute and chronic disease conditions such as cancer for both diagnostic as well as therapeutic application. Generally, sdAbs with good affinity are isolated from an immune library. Discovery of a new target antigen would require a new immunization with purified antigen which is not always easy. In this study, we have isolated, by phage display, an sdAb against CEACAM6 with an affinity of 5 nM from a llama immunized with cancer cells. The antibody has good biophysical properties, and it binds to the cells expressing the target antigen. Furthermore, it reduces cancer cells proliferation in vitro and shows an excellent tumor targeting in vivo. This sdAb could be useful in diagnosis as well as therapy of CEACAM6 expressing tumors. Finally, we envisage it would be feasible to isolate good sdAbs against other interesting tumor associated antigens from this library. Therefore, this immunization method could be a general strategy for isolating sdAbs against any surface antigen without immunizing the animal with the antigen of interest each time. PMID:21741385

  5. Structure and Mutagenesis of Neural Cell Adhesion Molecule Domains Evidence for Flexibility in the Placement of Polysialic Acid Attachment Sites

    SciTech Connect

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Lavie, Arnon; Colley, Karen J.

    2010-11-09

    The addition of {alpha}2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.

  6. Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains.

    PubMed

    Herrera, Raul; Anderson, Charles; Kumar, Krishan; Molina-Cruz, Alvaro; Nguyen, Vu; Burkhardt, Martin; Reiter, Karine; Shimp, Richard; Howard, Randall F; Srinivasan, Prakash; Nold, Michael J; Ragheb, Daniel; Shi, Lirong; DeCotiis, Mark; Aebig, Joan; Lambert, Lynn; Rausch, Kelly M; Muratova, Olga; Jin, Albert; Reed, Steven G; Sinnis, Photini; Barillas-Mury, Carolina; Duffy, Patrick E; MacDonald, Nicholas J; Narum, David L

    2015-10-01

    The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study indicated that the N-terminal domain might improve the efficacy of a new CSP vaccine. Using a panel of CSP-specific monoclonal antibodies, well-characterized recombinant CSPs, label-free quantitative proteomics, and in vitro inhibition of sporozoite invasion, we show that native CSP is N-terminally processed in the mosquito host and undergoes a reversible conformational change to mask some epitopes in the N- and C-terminal domains until the sporozoite interacts with the liver hepatocyte. Our findings show the importance of understanding processing and the biophysical change in conformation, possibly due to a mechanical or molecular signal, and may aid in the development of a new CSP vaccine. PMID:26169272

  7. Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains

    PubMed Central

    Herrera, Raul; Anderson, Charles; Kumar, Krishan; Molina-Cruz, Alvaro; Nguyen, Vu; Burkhardt, Martin; Reiter, Karine; Shimp, Richard; Howard, Randall F.; Srinivasan, Prakash; Nold, Michael J.; Ragheb, Daniel; Shi, Lirong; DeCotiis, Mark; Aebig, Joan; Lambert, Lynn; Rausch, Kelly M.; Muratova, Olga; Jin, Albert; Reed, Steven G.; Sinnis, Photini; Barillas-Mury, Carolina; Duffy, Patrick E.; MacDonald, Nicholas J.

    2015-01-01

    The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study indicated that the N-terminal domain might improve the efficacy of a new CSP vaccine. Using a panel of CSP-specific monoclonal antibodies, well-characterized recombinant CSPs, label-free quantitative proteomics, and in vitro inhibition of sporozoite invasion, we show that native CSP is N-terminally processed in the mosquito host and undergoes a reversible conformational change to mask some epitopes in the N- and C-terminal domains until the sporozoite interacts with the liver hepatocyte. Our findings show the importance of understanding processing and the biophysical change in conformation, possibly due to a mechanical or molecular signal, and may aid in the development of a new CSP vaccine. PMID:26169272

  8. Expression, purification, crystallization and preliminary X-ray analysis of the olfactomedin domain from the sea urchin cell-adhesion protein amassin

    SciTech Connect

    Hillier, Brian J.; Sundaresan, Vidyasankar; Stout, C. David; Vacquier, Victor D.

    2006-01-01

    The olfactomedin (OLF) domain from the sea urchin cell-adhesion protein amassin has been crystallized. A native data set extending to 2.7 Å has been collected using an in-house X-ray source. A family of animal proteins is emerging which contain a conserved protein motif known as an olfactomedin (OLF) domain. Novel extracellular protein–protein interactions occur through this domain. The OLF-family member amassin, from the sea urchin Strongylocentrotus purpuratus, has previously been identified to mediate a rapid cell-adhesion event resulting in a large aggregation of coelomocytes, the circulating immune cells. In this work, heterologous expression and purification of the OLF domain from amassin was carried out and initial crystallization trials were performed. A native data set has been collected, extending to 2.7 Å under preliminary cryoconditions, using an in-house generator. This work leads the way to the determination of the first structure of an OLF domain.

  9. The PPFLMLLKGSTR motif in globular domain 3 of the human laminin-5 {alpha}3 chain is crucial for integrin {alpha}3{beta}1 binding and cell adhesion

    SciTech Connect

    Kim, Jin-Man; Park, Won Ho; Min, Byung-Moo . E-mail: bmmin@snu.ac.kr

    2005-03-10

    Laminin-5 regulates various cellular functions, including cell adhesion, spreading, and motility. Here, we expressed the five human laminin {alpha}3 chain globular (LG) domains as monomeric, soluble fusion proteins, and examined their biological functions and signaling. Recombinant LG3 (rLG3) protein, unlike rLG1, rLG2, rLG4, and rLG5, played roles in cell adhesion, spreading, and integrin {alpha}3{beta}1 binding. More significantly, we identified a novel motif (PPFLMLLKGSTR) in the LG3 domain that is crucial for these responses. Studies with the synthetic peptides delineated the PPFLMLLKGSTR peptide within LG3 domain as a major site for both integrin {alpha}3{beta}1 binding and cell adhesion. Substitution mutation experiments suggest that the Arg residue is important for these activities. rLG3 protein- and PPFLMLLKGSTR peptide-induced keratinocyte adhesion triggered cell signaling through FAK phosphorylation at tyrosine-397 and -577. To our knowledge, this is the first report demonstrating that the PPFLMLLKGSTR peptide within the LG3 domain is a novel motif that is capable of supporting integrin {alpha}3{beta}1-dependent cell adhesion and spreading.

  10. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of adhesion molecule CD44

    SciTech Connect

    Mori, Tomoyuki; Kitano, Ken; Terawaki, Shin-ichi; Maesaki, Ryoko; Hakoshima, Toshio

    2007-10-01

    The radixin FERM domain complexed with the CD44 cytoplasmic tail peptide has been crystallized. A diffraction data set from the complex was collected to 2.1 Å. CD44 is an important adhesion molecule that specifically binds hyaluronic acid and regulates cell–cell and cell–matrix interactions. Increasing evidence has indicated that CD44 is assembled in a regulated manner into the membrane–cytoskeletal junction, a process that is mediated by ERM (ezrin/radixin/moesin) proteins. Crystals of a complex between the radixin FERM domain and the C-terminal cytoplasmic region of CD44 have been obtained. The crystal of the radixin FERM domain bound to the CD44 cytoplasmic tail peptide belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.70, b = 66.18, c = 86.22 Å, and contain one complex in the crystallographic asymmetric unit. An intensity data set was collected to a resolution of 2.1 Å.

  11. von Willebrand factor (VWF) propeptide binding to VWF D′D3 domain attenuates platelet activation and adhesion

    PubMed Central

    Madabhushi, Sri R.; Shang, Chengwei; Dayananda, Kannayakanahalli M.; Rittenhouse-Olson, Kate; Murphy, Mary; Ryan, Thomas E.; Montgomery, Robert R.

    2012-01-01

    Noncovalent association between the von Willebrand factor (VWF) propeptide (VWFpp) and mature VWF aids N-terminal multimerization and protein compartmentalization in storage granules. This association is currently thought to dissipate after secretion into blood. In the present study, we examined this proposition by quantifying the affinity and kinetics of VWFpp binding to mature VWF using surface plasmon resonance and by developing novel anti-VWF D′D3 mAbs. Our results show that the only binding site for VWFpp in mature VWF is in its D′D3 domain. At pH 6.2 and 10mM Ca2+, conditions mimicking intracellular compartments, VWFpp-VWF binding occurs with high affinity (KD = 0.2nM, koff = 8 × 10−5 s−1). Significant, albeit weaker, binding (KD = 25nM, koff = 4 × 10−3 s−1) occurs under physiologic conditions of pH 7.4 and 2.5mM Ca2+. This interaction was also observed in human plasma (KD = 50nM). The addition of recombinant VWFpp in both flow-chamber–based platelet adhesion assays and viscometer-based shear-induced platelet aggregation and activation studies reduced platelet adhesion and activation partially. Anti-D′D3 mAb DD3.1, which blocks VWFpp binding to VWF-D′D3, also abrogated platelet adhesion, as shown by shear-induced platelet aggregation and activation studies. Our data demonstrate that VWFpp binding to mature VWF occurs in the circulation, which can regulate the hemostatic potential of VWF by reducing VWF binding to platelet GpIbα. PMID:22452980

  12. The Learning Domains--Relationships and Other Implications.

    ERIC Educational Resources Information Center

    Hooker, Ellen; Kazanas, H. C.

    1980-01-01

    Offers a "slide rule" model of learning behaviors and interrelationships among the four domains of learning (affective, cognitive, psychomotor, and perceptual) to help vocational-technical educators structure learning outcomes. (SK)

  13. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin.

    PubMed

    Lo Sardo, Valentina; Zuccato, Chiara; Gaudenzi, Germano; Vitali, Barbara; Ramos, Catarina; Tartari, Marzia; Myre, Michael A; Walker, James A; Pistocchi, Anna; Conti, Luciano; Valenza, Marta; Drung, Binia; Schmidt, Boris; Gusella, James; Zeitlin, Scott; Cotelli, Franco; Cattaneo, Elena

    2012-05-01

    The Huntington's disease gene product, huntingtin, is indispensable for neural tube formation, but its role is obscure. We studied neurulation in htt-null embryonic stem cells and htt-morpholino zebrafish embryos and found a previously unknown, evolutionarily recent function for this ancient protein. We found that htt was essential for homotypic interactions between neuroepithelial cells; it permitted neurulation and rosette formation by regulating metalloprotease ADAM10 activity and Ncadherin cleavage. This function was embedded in the N terminus of htt and was phenocopied by treatment of htt knockdown zebrafish with an ADAM10 inhibitor. Notably, in htt-null cells, reversion of the rosetteless phenotype occurred only with expression of evolutionarily recent htt heterologues from deuterostome organisms. Conversely, all of the heterologues that we tested, including htt from Drosophila melanogaster and Dictyostelium discoideum, exhibited anti-apoptotic activity. Thus, anti-apoptosis may have been one of htt’s ancestral function(s), but, in deuterostomes, htt evolved to acquire a unique regulatory activity for controlling neural adhesion via ADAM10-Ncadherin, with implications for brain evolution and development. PMID:22466506

  14. P130Cas Src-Binding and Substrate Domains Have Distinct Roles in Sustaining Focal Adhesion Disassembly and Promoting Cell Migration

    PubMed Central

    Meenderink, Leslie M.; Ryzhova, Larisa M.; Donato, Dominique M.; Gochberg, Daniel F.; Kaverina, Irina; Hanks, Steven K.

    2010-01-01

    The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas −/− mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation. PMID:20976150

  15. A missense mutation (G1506E) in the adhesion G domain of laminin-5 causes mild junctional epidermolysis bullosa.

    PubMed

    Scaturro, Maria; Posteraro, Patrizia; Mastrogiacomo, Alessandro; Zaccaria, Maria Letizia; De Luca, Naomi; Mazzanti, Cinzia; Zambruno, Giovanna; Castiglia, Daniele

    2003-09-12

    Laminin-5 is the major adhesion ligand for epithelial cells. Mutations in the genes encoding laminin-5 cause junctional epidermolysis bullosa (JEB), a recessive inherited disease characterized by extensive epithelial-mesenchymal disadhesion. We describe a JEB patient compound heterozygote for two novel mutations in the gene (LAMA3) encoding the laminin alpha3 chain. The maternal mutation (1644delG) generates mRNA transcripts that undergo nonsense-mediated decay. The paternal mutation results in the Gly1506-->Glu substitution (G1506E) within the C-terminal globular region of the alpha3 chain (G domain). Mutation G1506E affects the proper folding of the fourth module of the G domain and results in the retention of most of the mutated polypeptide within the endoplasmic reticulum (ER). However, scant amounts of the mutated laminin-5 are secreted, undergo physiologic extracellular maturation, and correctly localize within the cutaneous basement membrane zone in patient's skin. Our findings represent the first demonstration of an ER-retained mutant laminin-5 leading to a mild JEB phenotype. PMID:12943669

  16. Expression, purification and crystallization of a BH domain from the GTPase regulatory protein associated with focal adhesion kinase.

    PubMed

    Sheffield, P J; Derewenda, U; Taylor, J; Parsons, T J; Derewenda, Z S

    1999-01-01

    Signaling by small GTPases is down-regulated by GTPase activating proteins (GAPs) which enhance the rate of GTP hydrolysis. The activity of GAPs specific for Rho GTPases resides in the BH domain, many homologues of which are found in any mammalian genome. One of them was identified in the GTPase regulator associated with focal-adhesion kinase (GRAF). It shares approximately 20% sequence identity with p50RhoGAP. This GAP activates RhoA and Cdc42Hs, but not Rac. In order to dissect the molecular basis of this specificity, a 231-residue-long fragment corresponding to the BH domain of GRAF has been expressed, purified and crystallized. Trigonal crystals, of space group P3(1)21 or P3(2)21, with unit-cell dimensions a = b = 63.5, c = 90.38 A were grown from solutions of PEG 6000. Data to 2.15 A were collected from a flash-frozen sample on an R-AXIS IV imaging-plate detector mounted on a rotating anode X-ray generator. PMID:10232922

  17. Composition and Humidity Response of the Black Widow Spider's Gumfoot Silk and its Implications on Adhesion

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Zhang, Ci; Cool, Lydia Rose; Blackledge, Todd. A.; Wesdemiotis, Chrys; Miyoshi, Toshikazu; Dhinojwala, Ali

    Humidity plays an important part in the performance of biomaterials such as pollen, gecko toe, wheat awns, bird feathers and dragline silk. Capture silk produced by web building spiders form an interesting class of humidity responsive biological glues. The adhesive properties of the widely studied `viscid silk' produced by orbweb-weaving spiders is highly humidity sensitive. On the other hand, relatively less is known about the dependence of composition and humidity response towards adhesion for `gumfoot' silk produced by cobweb-weaving spiders. In the present study, we investigate the gumfoot silk produced by Black Widow using adhesion mechanics, microscopy and spectroscopic methods. The results show the presence of hygroscopic salts, glycoproteins and previously known spider coating peptides in silk and their importance in the humidity response and adhesion. The current study elucidates the role of constituents of capture silk in its adhesion mechanism and offers insights to novel ways for fabricating bio-inspired adhesives.

  18. Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation

    PubMed Central

    Xu, Huifang; Bihan, Dominique; Chang, Francis; Huang, Paul H.; Farndale, Richard W.; Leitinger, Birgit

    2012-01-01

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that bind to and are activated by collagens. Similar to collagen-binding β1 integrins, the DDRs bind to specific motifs within the collagen triple helix. However, these two types of collagen receptors recognize distinct collagen sequences. While GVMGFO (O is hydroxyproline) functions as a major DDR binding motif in fibrillar collagens, integrins bind to sequences containing Gxx’GEx”. The DDRs are thought to regulate cell adhesion, but their roles have hitherto only been studied indirectly. In this study we used synthetic triple-helical collagen-derived peptides that incorporate either the DDR-selective GVMGFO motif or integrin-selective motifs, such as GxOGER and GLOGEN, in order to selectively target either type of receptor and resolve their contributions to cell adhesion. Our data using HEK293 cells show that while cell adhesion to collagen I was completely inhibited by anti-integrin blocking antibodies, the DDRs could mediate cell attachment to the GVMGFO motif in an integrin-independent manner. Cell binding to GVMGFO was independent of DDR receptor signalling and occurred with limited cell spreading, indicating that the DDRs do not mediate firm adhesion. However, blocking the interaction of DDR-expressing cells with collagen I via the GVMGFO site diminished cell adhesion, suggesting that the DDRs positively modulate integrin-mediated cell adhesion. Indeed, overexpression of the DDRs or activation of the DDRs by the GVMGFO ligand promoted α1β1 and α2β1 integrin-mediated cell adhesion to medium- and low-affinity integrin ligands without regulating the cell surface expression levels of α1β1 or α2β1. Our data thus demonstrate an adhesion-promoting role of the DDRs, whereby overexpression and/or activation of the DDRs leads to enhanced integrin-mediated cell adhesion as a result of higher integrin activation state. PMID:23284937

  19. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    PubMed

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. PMID:27008865

  20. Localized adhesion of monocytes to human atherosclerotic plaques demonstrated in vitro: implications for atherogenesis.

    PubMed Central

    Poston, R. N.; Johnson-Tidey, R. R.

    1996-01-01

    Blood-derived macrophages in the arterial intima are a characteristic feature of active atherosclerotic plaques. Adherent monocytes on the luminal surface and increased adhesion molecules on the endothelium have suggested that specific molecular mechanisms are involved in monocyte/macrophage traffic into the arterial wall. Adhesion of human monocytes and related cell lines was therefore studied in vitro to histological sections of human plaques. At 37 degrees C, these cells bound selectively to the plaques. Binding to the endothelium occurred and was also present extensively in the diseased intima. Inhibition studies showed that the endothelial and general intimal binding had largely similar molecular properties. Strong inhibition was produced by antibodies to the monocyte-specific adhesion molecule CD14, to beta2 integrins, and to ICAM-1. Likewise, a peptide containing the Arg-Gly-Asp sequence was strongly inhibitory, suggesting that binding of leukocyte integrins to arterial extracellular matrix was synergistic with cell-cell interactions. A P-selectin antibody was exceptional in giving selective inhibition of endothelial adhesion, which correlates with the specific endothelial localization of this adhesion molecule. These results show that monocytes adhere to atherosclerotic plaques through the focal activation of multiple arterial wall adhesion molecules, confirming the adhesion hypothesis. A positive feedback theory for the pathogenesis of atherosclerosis can be suggested, based on the ability of macrophages in the wall to activate the endothelium, induce adhesion molecules, and facilitate additional monocyte entry. The adhesion assay provides a means for the identification of adhesion inhibitors with therapeutic potential. Images Figure 2 PMID:8686764

  1. Analysis of the membrane-interacting domain of the sea urchin sperm adhesive protein bindin

    SciTech Connect

    Kennedy, L.; DeAngelis, P.L.; Glabe, C.G. )

    1989-11-14

    The authors have investigated the domain of the bindin polypeptide the selectively associates with gel-phase phospholipid vesicles. They found that small trypsin fragments of bindin retain the ability to selectively associate with gel-phase vesicles. The primary amino acid sequence of bindin suggests that these peptides are derived from the central portion of the polypeptide between residues 77 and 126, which is the most hydrophobic region of bindin. They have also employed 3-(trifluoromethyl)-3-(m-({sup 125}I)iodophenyl)diazirine (TID) and novel, radioiodinated, photoactivatable derivatives of the polar head group of phosphatidylethanolamine (ASD-PE and ASA-PE) to identify membrane-associated polypeptide segments after the transfer of radiolabel from the probe to the bindin polypeptide. After photolysis, bindin was selectively labeled only from probes incorporated in gel-phase vesicles. The labeling of bindin was much more efficient from the head group probes ASA-PE and ASD-PE (8 and 2% of the total label, respectively) in comparison to the hydrophobic probe TID (less than 0.02% of the total label), suggesting that bindin is localized within the polar part of the bilayer. Protease mapping experiments with V8 protease, trypsin, and endoprotease Lys-C suggest that some of the probe label is distributed along the amino-terminal portion of bindin between residues 1 and 76 and the rest of the label is restricted to the segments between residues 77 and 126 which also selectively bind to gel-phase vesicles. The carboxyl-terminal portion of bindin residues 127 and 236 is not labeled.

  2. Cognition in scientific and everyday domains: Comparison and learning implications

    NASA Astrophysics Data System (ADS)

    Reif, Frederick; Larkin, Jill H.

    An analysis and comparison of everyday life and the domain of science reveals significant differences in their goals and in the cognitive means used to attain these goals. Students' lack of awareness of these differences can lead to pervasive learning difficulties in their study of science. Thus many students (a) have erroneous conceptions of scientific goals, (b) import goals and ways of thinking which are effective in everyday life but inadequate in science, and (c) devise ways of thinking ill suited to science. Additional complications arise because science taught in schools often differs both from actual science and from everyday life. Students' learning difficulties are thus increased because scientific goals are distorted and scientific ways of thinking are inadequately taught. The preceding analysis suggests some empirical investigations and instructional improvements.

  3. Adhesion in a Vacuum Environment and its Implications for Dust Mitigation Techniques on Airless Bodies

    NASA Technical Reports Server (NTRS)

    Berkebile, Stephen; Gaier, James R.

    2012-01-01

    During the Apollo missions, the adhesion of dust to critical spacecraft systems was a greater problem than anticipated and resulted in functional degradation of thermal control surfaces, spacesuit seals, and other spacecraft components. Notably, Earth-based simulation efforts did not predict the magnitude and effects of dust adhesion in the lunar environment. Forty years later, we understand that the ultrahigh vacuum (UHV) environment, coupled with micrometeorite impacts and constant ion and photon bombardment from the sun result in atomically clean and high surface energy dust particles and spacecraft surfaces. However, both the dominant mechanism of adhesion in airless environments and the conditions for high fidelity simulation tests have still to be determined. The experiments presented in here aim to aid in the development of dust mitigation techniques for airless bodies (e.g., lunar surface, asteroids, moons of outer planets). The approach taken consists of (a) quantifying the adhesion between common polymer and metallic spacecraft materials and a synthetic noritic volcanic glass, as a function of surface cleanliness and of triboelectric charge transfer in a UHV environment, and (b) determining parameters for high fidelity tests through investigation of adhesion dependence on vacuum environment and sample treatment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is generally observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10. Furthermore, electrostatically-induced adhesion is found to decrease rapidly above pressures of 10-6 torr. It is concluded that high-fidelity tests should be conducted in high to ultrahigh vacuum and include an ionized surface cleaning

  4. A Naturally Occurring Single-Residue Mutation in the Translocator Domain of Neisseria meningitidis NhhA Affects Trimerization, Surface Localization, and Adhesive Capabilities▿†

    PubMed Central

    Echenique-Rivera, Hebert; Brunelli, Brunella; Scarselli, Maria; Taddei, Anna Rita; Pizza, Mariagrazia; Aricò, Beatrice; Serruto, Davide

    2011-01-01

    Neisseria meningitidis NhhA (Neisseria hia/hsf homologue A) is an oligomeric outer membrane protein belonging to the family of trimeric autotransporter adhesins. NhhA mediates the interaction of N. meningitidis with human epithelial cells and components of the extracellular matrix. The recombinant protein is able to induce bactericidal antibodies and hence has also been considered a potential vaccine candidate. In this study, we analyzed the production of NhhA in a large panel of N. meningitidis strains belonging to different serogroups and clonal complexes. We found that trimeric NhhA was produced at different levels by the various strains tested. In some strains belonging to the clonal complex ST41/44, the protein is detectable only as a monomer. Sequencing of the nhhA gene and generation of complementing strains in different genetic backgrounds have proved that a single mutation (Gly to Asp) in the translocator domain affected both trimerization and surface localization of NhhA. In vitro infection assays showed that this mutation impairs meningococcal NhhA-mediated adhesion, suggesting that strains carrying the mutation may rely on different strategies or molecules to mediate interaction with host cells. Finally, we demonstrated that N. meningitidis ST41/44 strains producing the mutated form did not induce killing mediated by NhhA-specific bactericidal antibodies. Our data help to elucidate the secretion mechanisms of trimeric autotransporters and to understand the contribution of NhhA in the evolutionary process of host-Neisseria interactions. Also, they might have important implications for the evaluation of NhhA as a vaccine candidate. PMID:21844231

  5. An experimental study of hafting adhesives and the implications for compound tool technology.

    PubMed

    Zipkin, Andrew M; Wagner, Mark; McGrath, Kate; Brooks, Alison S; Lucas, Peter W

    2014-01-01

    Experimental studies of hafting adhesives and modifications to compound tool components can demonstrate the extent to which human ancestors understood and exploited material properties only formally defined by science within the last century. Discoveries of Stone Age hafting adhesives at archaeological sites in Europe, the Middle East, and Africa have spurred experiments that sought to replicate or create models of such adhesives. Most of these studies, however, have been actualistic in design, focusing on replicating ancient applications of adhesive technology. In contrast, this study tested several glues based on Acacia resin within a materials science framework to better understand the effect of each adhesive ingredient on compound tool durability. Using an overlap joint as a model for a compound tool, adhesives formulated with loading agents from a range of particle sizes and mineral compositions were tested for toughness on smooth and rough substrates. Our results indicated that overlap joint toughness is significantly increased by using a roughened joint surface. Contrary to some previous studies, there was no evidence that particle size diversity in a loading agent improved adhesive effectiveness. Generally, glues containing quartz or ochre loading agents in the silt and clay-sized particle class yielded the toughest overlap joints, with the effect of particle size found to be more significant for rough rather than smooth substrate joints. Additionally, no particular ochre mineral or mineral mixture was found to be a clearly superior loading agent. These two points taken together suggest that Paleolithic use of ochre-loaded adhesives and the criteria used to select ochres for this purpose may have been mediated by visual and symbolic considerations rather than purely functional concerns. PMID:25383871

  6. An Experimental Study of Hafting Adhesives and the Implications for Compound Tool Technology

    PubMed Central

    Zipkin, Andrew M.; Wagner, Mark; McGrath, Kate; Brooks, Alison S.; Lucas, Peter W.

    2014-01-01

    Experimental studies of hafting adhesives and modifications to compound tool components can demonstrate the extent to which human ancestors understood and exploited material properties only formally defined by science within the last century. Discoveries of Stone Age hafting adhesives at archaeological sites in Europe, the Middle East, and Africa have spurred experiments that sought to replicate or create models of such adhesives. Most of these studies, however, have been actualistic in design, focusing on replicating ancient applications of adhesive technology. In contrast, this study tested several glues based on Acacia resin within a materials science framework to better understand the effect of each adhesive ingredient on compound tool durability. Using an overlap joint as a model for a compound tool, adhesives formulated with loading agents from a range of particle sizes and mineral compositions were tested for toughness on smooth and rough substrates. Our results indicated that overlap joint toughness is significantly increased by using a roughened joint surface. Contrary to some previous studies, there was no evidence that particle size diversity in a loading agent improved adhesive effectiveness. Generally, glues containing quartz or ochre loading agents in the silt and clay-sized particle class yielded the toughest overlap joints, with the effect of particle size found to be more significant for rough rather than smooth substrate joints. Additionally, no particular ochre mineral or mineral mixture was found to be a clearly superior loading agent. These two points taken together suggest that Paleolithic use of ochre-loaded adhesives and the criteria used to select ochres for this purpose may have been mediated by visual and symbolic considerations rather than purely functional concerns. PMID:25383871

  7. Adhesion control by inflation: implications from biology to artificial attachment device

    NASA Astrophysics Data System (ADS)

    Dening, Kirstin; Heepe, Lars; Afferrante, Luciano; Carbone, Giuseppe; Gorb, Stanislav N.

    2014-08-01

    There is an increasing demand for materials that incorporate advanced adhesion properties, such as an ability to adhere in a reversible and controllable manner. In biological systems, these features are known from adhesive pads of the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima. These species have convergently developed soft, hemispherically shaped pads that might be able to control their adhesion through active changing the curvature of the pad. Inspired by these biological systems, an artificial model system is developed here. It consists of an inflatable membrane clamped to the metallic cylinder and filled with air. Pull-off force measurements of the membrane surface were conducted in contact with the membrane at five different radii of curvature r c with (1) a smooth polyvinylsiloxane membrane and (2) mushroom-shaped adhesive microstructured membrane made of the same polymer. The hypothesis that an increased internal pressure, acting on the membrane, reduces the radius of the membrane curvature, resulting in turn in a lower pull-off force, is verified. Such an active control of adhesion, inspired by biological models, will lead to the development of industrial pick-and-drop devices with controllable adhesive properties.

  8. A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies

    PubMed Central

    Bengtsson, Anja; Joergensen, Louise; Rask, Thomas S.; Olsen, Rebecca W.; Andersen, Marianne A.; Turner, Louise; Theander, Thor G.; Higgins, Matthew K.; Craig, Alister; Brown, Alan

    2013-01-01

    Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1–binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1–binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding–like β3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum–exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1–specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration. PMID:23209327

  9. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis.

    PubMed

    Kotteas, Elias A; Boulas, Panagiotis; Gkiozos, Ioannis; Tsagkouli, Sofia; Tsoukalas, George; Syrigos, Konstantinos N

    2014-09-01

    The intercellular cell-adhesion molecule-1 (ICAM-1) is a transmembrane molecule and a distinguished member of the Immunoglobulin superfamily of proteins that participates in many important processes, including leukocyte endothelial transmigration, cell signaling, cell-cell interaction, cell polarity and tissue stability. ICAM-1and its soluble part are highly expressed in inflammatory conditions, chronic diseases and a number of malignancies. In the present article we present the implications of ICAM-1 in the progression and prognosis of one of the major global killers of our era: lung cancer. PMID:25202042

  10. Ankyrin repeat domain 28 (ANKRD28), a novel binding partner of DOCK180, promotes cell migration by regulating focal adhesion formation.

    PubMed

    Tachibana, Mitsuhiro; Kiyokawa, Etsuko; Hara, Shigeo; Iemura, Shun-Ichiro; Natsume, Tohru; Manabe, Toshiaki; Matsuda, Michiyuki

    2009-03-10

    DOCK180 is a guanine exchange factor of Rac1 originally identified as a protein bound to an SH3 domain of the Crk adaptor protein. DOCK180 induces tyrosine phosphorylation of p130(Cas), and recruits the Crk-p130(Cas) complex to focal adhesions. To understand the role of DOCK180 in cell adhesion and migration, we searched for DOCK180-binding proteins with a nano-LC/MS/MS system, and identified ANKRD28, a protein that contains twenty-six ankyrin domain repeats. Knockdown of ANKRD28 by RNA interference reduced the velocity of migration of HeLa cells, suggesting that this protein plays a physiologic role in the DOCK180-Rac1 signaling pathway. Furthermore, knockdown of ANKRD28 was found to alter the distribution of focal adhesion proteins such as Crk, paxillin, and p130(Cas). On the other hand, expression of ANKRD28, p130(Cas), Crk, and DOCK180 induced hyper-phosphorylation of p130(Cas), and impaired detachment of the cell membrane during migration. Consequently, cells expressing ANKRD28 exhibited multiple long cellular processes. ANKRD28 associated with DOCK180 in an SH3-dependent manner and competed with ELMO, another protein bound to the SH3 domain of DOCK180. In striking contrast to ANKRD28, overexpression of ELMO induced extensive lamellipodial protrusion around the entire circumference. These data suggest that ANKRD28 specifies the localization and the activity of the DOCK180-Rac1 pathway. PMID:19118547

  11. Focal Adhesion Kinase Directly Interacts with TSC2 Through Its FAT Domain and Regulates Cell Proliferation in Cashmere Goat Fetal Fibroblasts.

    PubMed

    Zheng, Xu; Bao, Wenlei; Yang, Jiaofu; Zhang, Tao; Sun, Dongsheng; Liang, Yan; Li, Shuyu; Wang, Yanfeng; Feng, Xue; Hao, Huifang; Wang, Zhigang

    2016-09-01

    Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor tyrosine kinase that senses a variety of extracellular signals, such as growth factors and integrins, to control the process of cell proliferation and metabolism. We cloned three goat FAK transcript variants (KM655805, KM658268, and KM658269) that encode 1052, 1006, and 962 amino-acid residue proteins. Bioinformatics analysis indicated that the putative FAK protein contains an FERM domain, a PTK domain, two Proline-rich regions, and a focal adhesion-targeting (FAT) domain. All the three transcript variants of FAK were detected in seven different goat tissues, and variant 1 had the most accumulation whereas variant 2 and variant 3 had lower accumulation. Treatment of goat fetal fibroblasts (GFbs) with a specific FAK inhibitor, TAE226, inhibited cell proliferation (p < 0.05) and induced damage to the cell morphology in a dose- and time-dependent manner. Further research demonstrated that FAK directly interacted with TSC2 (Tuberous sclerosis 2) tuberin domain through its C-terminus, which contains the complete FAT domain. In conclusion, our results indicated that FAK may be widely expressed in Cashmere goat tissues and its products participate in the mammalian target of rapamycin signaling pathway and cell proliferation through a direct interaction with TSC2 in GFBs. PMID:27380318

  12. Implications of Adhesion Studies for Dust Mitigation on Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Berkebile, Stephen P.

    2012-01-01

    Experiments measuring the adhesion forces under ultrahigh vacuum conditions (10 (exp -10) torr) between a synthetic volcanic glass and commonly used space exploration materials have recently been described. The glass has a chemistry and surface structure typical of the lunar regolith. It was found that Van der Waals forces between the glass and common spacecraft materials was negligible. Charge transfer between the materials was induced by mechanically striking the spacecraft material pin against the glass plate. No measurable adhesion occurred when striking the highly conducting materials, however, on striking insulating dielectric materials the adhesion increased dramatically. This indicates that electrostatic forces dominate over Van der Waals forces under these conditions. The presence of small amounts of surface contaminants was found to lower adhesive forces by at least two orders of magnitude, and perhaps more. Both particle and space exploration material surfaces will be cleaned by the interaction with the solar wind and other energetic processes and stay clean because of the extremely high vacuum (10 (exp -12) torr) so the atomically clean adhesion values are probably the relevant ones for the lunar surface environment. These results are used to interpret the results of dust mitigation technology experiments utilizing textured surfaces, work function matching surfaces and brushing. They have also been used to reinterpret the results of the Apollo 14 Thermal Degradation Samples experiment.

  13. Investigation of the impact of cleaning on the adhesive bond and the process implications

    SciTech Connect

    EMERSON,JOHN A.; GUESS,TOMMY R.; ADKINS,CAROL L. JONES; CURRO,JOHN G.; REEDY JR.,EARL DAVID; LOPEZ,EDWIN P.; LEMKE,PAUL A.

    2000-05-01

    While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

  14. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration.

    PubMed

    Janssens, Veerle; Zwaenepoel, Karen; Rossé, Carine; Petit, Marleen M R; Goris, Jozef; Parker, Peter J

    2016-04-15

    Here, we identify the LIM protein lipoma-preferred partner (LPP) as a binding partner of a specific protein phosphatase 2A (PP2A) heterotrimer that is characterised by the regulatory PR130/B″α1 subunit (encoded byPPP2R3A). The PR130 subunit interacts with the LIM domains of LPP through a conserved Zn(2+)-finger-like motif in the differentially spliced N-terminus of PR130. Isolated LPP-associated PP2A complexes are catalytically active. PR130 colocalises with LPP at multiple locations within cells, including focal contacts, but is specifically excluded from mature focal adhesions, where LPP is still present. An LPP-PR130 fusion protein only localises to focal adhesions upon deletion of the domain of PR130 that binds to the PP2A catalytic subunit (PP2A/C), suggesting that PR130-LPP complex formation is dynamic and that permanent recruitment of PP2A activity might be unfavourable for focal adhesion maturation. Accordingly, siRNA-mediated knockdown of PR130 increases adhesion of HT1080 fibrosarcoma cells onto collagen I and decreases their migration in scratch wound and Transwell assays. Complex formation with LPP is mandatory for these PR130-PP2A functions, as neither phenotype can be rescued by re-expression of a PR130 mutant that no longer binds to LPP. Our data highlight the importance of specific, locally recruited PP2A complexes in cell adhesion and migration dynamics. PMID:26945059

  15. Janus kinases and focal adhesion kinases play in the 4.1 band: a superfamily of band 4.1 domains important for cell structure and signal transduction.

    PubMed Central

    Girault, J. A.; Labesse, G.; Mornon, J. P.; Callebaut, I.

    1998-01-01

    The band 4.1 domain was first identified in the red blood cell protein band 4.1, and subsequently in ezrin, radixin, and moesin (ERM proteins) and other proteins, including tumor suppressor merlin/schwannomin, talin, unconventional myosins VIIa and X, and protein tyrosine phosphatases. Recently, the presence of a structurally related domain has been demonstrated in the N-terminal region of two groups of tyrosine kinases: the focal adhesion kinases (FAK) and the Janus kinases (JAK). Additional proteins containing the 4.1/JEF (JAK, ERM, FAK) domain include plant kinesin-like calmodulin-binding proteins (KCBP) and a number of uncharacterized open reading frames identified by systematic DNA sequencing. Phylogenetic analysis of amino acid sequences suggests that band 4.1/JEF domains can be grouped in several families that have probably diverged early during evolution. Hydrophobic cluster analysis indicates that the band 4.1/JEF domains might consist of a duplicated module of approximately 140 residues and a central hinge region. A conserved property of the domain is its capacity to bind to the membrane-proximal region of the C-terminal cytoplasmic tail of proteins with a single transmembrane segment. Many proteins with band 4.1/JEF domains undergo regulated intra- or intermolecular homotypic interactions. Additional properties common to band 4.1/JEF domains of several proteins are binding of phosphoinositides and regulation by GTPases of the Rho family. Many proteins with band 4. 1/JEF domains are associated with the actin-based cytoskeleton and are enriched at points of contact with other cells or the extracellular matrix, from which they can exert control over cell growth. Thus, proteins with band 4.1/JEF domain are at the crossroads between cytoskeletal organization and signal transduction in multicellular organisms. Their importance is underlined by the variety of diseases that can result from their mutations. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:9990861

  16. Implication of different domains of the Leishmania major metacaspase in cell death and autophagy

    PubMed Central

    Casanova, M; Gonzalez, I J; Sprissler, C; Zalila, H; Dacher, M; Basmaciyan, L; Späth, G F; Azas, N; Fasel, N

    2015-01-01

    Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine–cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains. PMID:26492367

  17. Deciphering Mode of Action of Functionally Important Regions in the Intrinsically Disordered Paxillin (Residues 1-313) Using Its Interaction with FAT (Focal Adhesion Targeting Domain of Focal Adhesion Kinase)

    PubMed Central

    Neerathilingam, Muniasamy; Bairy, Sneha G.; Mysore, Sumukh

    2016-01-01

    Intrinsically disordered proteins (IDPs) play a major role in various cellular functions ranging from transcription to cell migration. Mutations/modifications in such IDPs are shown to be associated with various diseases. Current strategies to study the mode of action and regulatory mechanisms of disordered proteins at the structural level are time consuming and challenging. Therefore, using simple and swift strategies for identifying functionally important regions in unstructured segments and understanding their underlying mechanisms is critical for many applications. Here we propose a simple strategy that employs dissection of human paxillin (residues 1–313) that comprises intrinsically disordered regions, followed by its interaction study using FAT (Focal adhesion targeting domain of focal adhesion kinase) as its binding partner to retrace structural behavior. Our findings show that the paxillin interaction with FAT exhibits a masking and unmasking effect by a putative intra-molecular regulatory region. This phenomenon suggests how cancer associated mutations in paxillin affect its interactions with Focal Adhesion Kinase (FAK). The strategy could be used to decipher the mode of regulations and identify functionally relevant constructs for other studies. PMID:26928467

  18. Adhesion energy between mica surfaces: Implications for the frictional coefficient under dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroshi

    2013-12-01

    frictional strength of faults is a critical factor that contributes to continuous fault slip and earthquake occurrence. Frictional strength can be reduced by the presence of sheet-structured clay minerals. In this study, two important factors influencing the frictional coefficient of minerals were quantitatively analyzed by a newly developed computational method based on a combination of first-principles study and thermodynamics. One factor that helps reduce the frictional coefficient is the low adhesion energy between the layers under dry conditions. Potassium ions on mica surfaces are easily exchanged with sodium ions when brought into contact with highly concentrated sodium-halide solutions. We found that the surface ion exchange with sodium ions reduces the adhesion energy, indicating that the frictional coefficient can be reduced under dry conditions. Another factor is the lubrication caused by adsorbed water films on mineral surfaces under wet conditions. Potassium and sodium ions on mica surfaces have a strong affinity for water molecules. In order to remove the adsorbed water molecules confined between mica surfaces, a differential compressive stress of the order of tens of gigapascals was necessary at room temperature. These water molecules inhibit direct contact between mineral surfaces and reduce the frictional coefficient. Our results imply that the frictional coefficient can be modified through contact with fluids depending on their salt composition. The low adhesion energy between fault-forming minerals and the presence of an adsorbed water film is a possible reason for the low frictional coefficient observed at continuous fault slip zones.

  19. The Cysteine-Rich Domain of Human Adam 12 Supports Cell Adhesion through Syndecans and Triggers Signaling Events That Lead to β1 Integrin–Dependent Cell Spreading

    PubMed Central

    Iba, Kousuke; Albrechtsen, Reidar; Gilpin, Brent; Fröhlich, Camilla; Loechel, Frosty; Zolkiewska, Anna; Ishiguro, Kazuhiro; Kojima, Tetsuhito; Liu, Wei; Langford, J. Kevin; Sanderson, Ralph D.; Brakebusch, Cord; Fässler, Reinhard; Wewer, Ulla M.

    2000-01-01

    The ADAMs (a disintegrin and metalloprotease) family of proteins is involved in a variety of cellular interactions, including cell adhesion and ecto- domain shedding. Here we show that ADAM 12 binds to cell surface syndecans. Three forms of recombinant ADAM 12 were used in these experiments: the cys-teine-rich domain made in Escherichia coli (rADAM 12-cys), the disintegrin-like and cysteine-rich domain made in insect cells (rADAM 12-DC), and full-length human ADAM 12-S tagged with green fluorescent protein made in mammalian cells (rADAM 12-GFP). Mesenchymal cells specifically and in a dose-dependent manner attach to ADAM 12 via members of the syndecan family. After binding to syndecans, mesenchymal cells spread and form focal adhesions and actin stress fibers. Integrin β1 was responsible for cell spreading because function-blocking monoclonal antibodies completely inhibited cell spreading, and chondroblasts lacking β1 integrin attached but did not spread. These data suggest that mesenchymal cells use syndecans as the initial receptor for the ADAM 12 cysteine-rich domain–mediated cell adhesion, and then the β1 integrin to induce cell spreading. Interestingly, carcinoma cells attached but did not spread on ADAM 12. However, spreading could be efficiently induced by the addition of either 1 mM Mn2+ or the β1 integrin–activating monoclonal antibody 12G10, suggesting that in these carcinoma cells, the ADAM 12–syndecan complex fails to modulate the function of β1 integrin. PMID:10831617

  20. Bovine leucocyte adhesion deficiency: a review of a modern disease and its implications.

    PubMed

    Gerardi, A S

    1996-11-01

    Bovine leucocyte adhesion deficiency (BLAD) is a genetic disease of cattle which affects the hematopoietic system. In the last decade BLAD has become a disease of economic importance in the dairy industry. This review describes the chronological developments and thinking that led to the elucidation of BLAD as a disease distinct from previous models in canine and human populations. All species affected show signs of chronic and recurrent infections. Necrotic and/or gangrenous infections of soft tissues are prevalent, in addition to secondary infections with bacteria or fungi. Low birthweight and unthriftiness are key signs in all species affected by leucocyte adhesion deficiency (LAD). Dermatomycoses and impaired pus formation are also common findings. The physiological basis for BLAD is a deficiency in the chemotactic and phagocytic properties of leucocytes and particularly neutrophils. The inhibition of diapedesis in the inflammatory response prevents normal immune reactions to invading pathogens. Chronic infections are a consequence of the faulty immune mechanisms. The biochemical aetiology of BLAD involves cell surface glycoprotein molecules known as integrins. These are responsible for the cell-cell interactions necessary for neutrophils to adhere to vascular endothelium in a normal individual. Experiments with monoclonal antibodies to block LFA-1, Mac-1, and p150,95 (three integrins vital for cell-cell interactions) mimic BLAD symptomatology and have led to the discovery of the reciprocal intercellular adhesion molecule (ICAM). Through pedigree analysis and biochemical detection with restrictive endonucleases, BLAD has been isolated genetically to a single gene locus. The economic significance and prophylaxis of the disease are briefly discussed. In addition, the beneficial aspects of the study of BLAD are considered. There are advantages in producing a BLAD-like state for preventing transplant rejection, ischaemia-reperfusion injury and other problems arising

  1. Basal neutrophil function in human aging: Implications in endothelial cell adhesion.

    PubMed

    Nogueira-Neto, Joes; Cardoso, André S C; Monteiro, Hugo P; Fonseca, Fernando L A; Ramos, Luiz Roberto; Junqueira, Virginia B C; Simon, Karin A

    2016-07-01

    Much attention has been drawn to the pro-inflammatory condition that accompanies aging. This study compared parameters from non-stimulated neutrophils, obtained from young (18-30 years old [y.o.]) and elderly (65-80 y.o.) human volunteers. Measured as an inflammatory marker, plasmatic concentration of hs-CRP was found higher in elderly individuals. Non-stimulated neutrophil production of ROS and NO was, respectively, 38 and 29% higher for the aged group. From the adhesion molecules evaluated, only CD11b expression was elevated in neutrophils from the aged group, whereas no differences were found for CD11a, CD18, or CD62. A 69% higher non-stimulated in vitro neutrophil/endothelial cell adhesion was observed for neutrophils isolated from elderly donors. Our results suggest that with aging, neutrophils may be constitutively producing more reactive species in closer proximity to endothelial cells of vessel walls, which may both contribute to vascular damage and reflect a neutrophil intracellular disrupted redox balance, altering neutrophil function in aging. PMID:27109745

  2. Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells.

    PubMed

    Grebeňová, D; Röselová, P; Pluskalová, M; Halada, P; Rösel, D; Suttnar, J; Brodská, B; Otevřelová, P; Kuželová, K

    2012-12-21

    We have previously shown that suberoylanilide hydroxamic acid (SAHA) treatment increases the adhesivity of leukemic cells to fibronectin at clinically relevant concentrations. Now, we present the results of the proteomic analysis of SAHA effects on leukemic cell lines using 2-DE and ProteomLab PF2D system. Histone acetylation at all studied acetylation sites reached the maximal level after 5 to 10 h of SAHA treatment. No difference in histone acetylation between subtoxic and toxic SAHA doses was observed. SAHA treatment induced cofilin phosphorylation at Ser3, an increase in vimentin and paxillin expression and a decrease in stathmin expression as confirmed by western-blotting and immunofluorescence microscopy. The interaction of cofilin with 14-3-3 epsilon was documented using both Duolink system and coimmunoprecipitation. However, this interaction was independent of cofilin Ser3 phosphorylation and the amount of 14-3-3-ε-bound cofilin did not rise following SAHA treatment. SAHA-induced increase in the cell adhesivity was associated with an increase in PAK phosphorylation in CML-T1 cells and was abrogated by simultaneous treatment with IPA-3, a PAK inhibitor. The effects of SAHA on JURL-MK1 cells were similar to those of other histone deacetylase inhibitors, tubastatin A and sodium butyrate. The proteome analysis also revealed several potential non-histone targets of histone deacetylases. PMID:23022583

  3. Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae.

    PubMed

    Soares de Lima, Cristiana; Zulianello, Laurence; Marques, Maria Angela de Melo; Kim, Heejin; Portugal, Michelle Iespa; Antunes, Sérgio Luiz; Menozzi, Franco Dante; Ottenhoff, Tom Henricus Maria; Brennan, Patrick Joseph; Pessolani, Maria Cristina Vidal

    2005-07-01

    Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein. PMID:15919224

  4. Crystal Structure of RAIDD Death Domain Implicates Potential Mechanism of PIDDosome Assembly

    SciTech Connect

    Park,H.; Wu, H.

    2006-01-01

    Caspase-2 is implicated in stress-induced apoptosis that acts as an upstream initiator of mitochondrial permeabilization. Recent studies have shown that caspase-2 activation requires a molecular complex known as the PIDDosome comprising the p53-inducible protein PIDD, the adapter protein RAIDD and caspase-2. RAIDD has an N-terminal caspase recruitment domain (CARD) that interacts with the CARD of caspase-2 and a C-terminal death domain (DD) that interacts with the DD in PIDD. As a first step towards elucidating the molecular mechanisms of caspase-2 activation, we report the crystal structure of RAIDD DD at 2.0 Angstroms resolution. The high-resolution structure reveals important features of RAIDD DD that may be important for DD folding and dynamics and for assembly of the PIDDosome.

  5. Bovine leukocyte adhesion deficiency: a brief overview of a modern disease and its implications.

    PubMed

    Gerardi, A S

    1996-01-01

    Bovine Leukocyte Adhesion Deficiency (BLAD) is a genetic disease of cattle affecting the hematopoietic system. In the last decade BLAD has become a disease of economic importance in the dairy industry. As such, this overview describes the chronological developments and thinking that led to the elucidation of BLAD as a distinct disease entity from previous models in canine and human populations. All species affected exhibit symptoms of chronic and recurrent infections. Necrotic and/or gangrenous infections of soft tissues are prevalent, as well as secondary infections with bacteria or fungi. Low birthweight and unthriftiness are key symptoms of neonates in all species affected by LAD. Dermatomycoses and impaired pus formation are also common findings. The physiological basis for BLAD is a deficiency in leukocyte (particularly neutrophil) chemotactic and phagocytic properties. The inhibition of diapedesis in the inflammatory response prevents normal immune reactions to invading pathogens. Chronic infections are a consequence of the faulty immune mechanisms. The biochemical etiology of BLAD involves cell surface glycoprotein molecules known as integrins. These are responsible for cell-cell interactions necessary for neutrophils to adhere to vascular endothelium in a normal individual. Experiments using monoclonal antibodies to block LFA-1, Mac-1, and p150,95 (three integrins vital for cell-cell interactions) mimic BLAD symptomatology and have led to the discovery of the reciprocal Intercellular Adhesion Molecule (ICAM). Through pedigree analysis and biochemical detection with restrictive endonucleases BLAD has been isolated genetically to a single gene locus. The economic significance and prophylaxis are briefly discussed. In addition, the beneficial aspects of the study of BLAD are addressed. There are advantages of producing a BLAD-like state in preventing transplant rejection, ischemia-reperfusion injury, and other scenarios arising from the deleterious effects of

  6. Neuregulin-1 Regulates Cell Adhesion via an ErbB2/Phosphoinositide-3 Kinase/Akt-Dependent Pathway: Potential Implications for Schizophrenia and Cancer

    PubMed Central

    Kanakry, Christopher G.; Li, Zhen; Nakai, Yoko; Sei, Yoshitatsu; Weinberger, Daniel R.

    2007-01-01

    Background Neuregulin-1 (NRG1) is a putative schizophrenia susceptibility gene involved extensively in central nervous system development as well as cancer invasion and metastasis. Using a B lymphoblast cell model, we previously demonstrated impairment in NRG1α-mediated migration in cells derived from patients with schizophrenia as well as effects of risk alleles in NRG1 and catechol-O-methyltransferase (COMT), a second gene implicated both in schizophrenia susceptibility and in cancer. Methodology/Principal Findings Here, we examine cell adhesion, an essential component process of cell motility, using an integrin-mediated cell adhesion assay based on an interaction between ICAM-1 and the CD11a/CD18 integrin heterodimer expressed on lymphoblasts. In our assay, NRG1α induces lymphoblasts to assume varying levels of adhesion characterized by time-dependent fluctuations in the firmness of attachment. The maximum range of variation in adhesion over sixty minutes correlates strongly with NRG1α-induced migration (r2 = 0.61). NRG1α-induced adhesion variation is blocked by erbB2, PI3K, and Akt inhibitors, but not by PLC, ROCK, MLCK, or MEK inhibitors, implicating the erbB2/PI3K/Akt1 signaling pathway in NRG1-stimulated, integrin-mediated cell adhesion. In cell lines from 20 patients with schizophrenia and 20 normal controls, cells from patients show a significant deficiency in the range of NRG1α-induced adhesion (p = 0.0002). In contrast, the response of patient-derived cells to phorbol myristate acetate is unimpaired. The COMT Val108/158Met genotype demonstrates a strong trend towards predicting the range of the NRG1α-induced adhesion response with risk homozygotes having decreased variation in cell adhesion even in normal subjects (p = 0.063). Conclusion/Significance Our findings suggest that a mechanism of the NRG1 genetic association with schizophrenia may involve the molecular biology of cell adhesion. PMID:18159252

  7. CPNA-1, a copine domain protein, is located at integrin adhesion sites and is required for myofilament stability in Caenorhabditis elegans.

    PubMed

    Warner, Adam; Xiong, Ge; Qadota, Hiroshi; Rogalski, Teresa; Vogl, A Wayne; Moerman, Donald G; Benian, Guy M

    2013-03-01

    We identify cpna-1 (F31D5.3) as a novel essential muscle gene in the nematode Caenorhabditis elegans. Antibodies specific to copine domain protein atypical-1 (CPNA-1), as well as a yellow fluorescent protein translational fusion, are localized to integrin attachment sites (M-lines and dense bodies) in the body-wall muscle of C. elegans. CPNA-1 contains an N-terminal predicted transmembrane domain and a C-terminal copine domain and binds to the M-line/dense body protein PAT-6 (actopaxin) and the M-line proteins UNC-89 (obscurin), LIM-9 (FHL), SCPL-1 (SCP), and UNC-96. Proper CPNA-1 localization is dependent upon PAT-6 in embryonic and adult muscle. Nematodes lacking cpna-1 arrest elongation at the twofold stage of embryogenesis and display disruption of the myofilament lattice. The thick-filament component myosin heavy chain MYO-3 and the M-line component UNC-89 are initially localized properly in cpna-1-null embryos. However, in these embryos, when contraction begins, MYO-3 and UNC-89 become mislocalized into large foci and animals die. We propose that CPNA-1 acts as a linker between an integrin-associated protein, PAT-6, and membrane-distal components of integrin adhesion complexes in the muscle of C. elegans. PMID:23283987

  8. Identification of a ligand-binding site in an immunoglobulin fold domain of the Saccharomyces cerevisiae adhesion protein alpha-agglutinin.

    PubMed Central

    de Nobel, H; Lipke, P N; Kurjan, J

    1996-01-01

    The Saccharomyces cerevisiae adhesion protein alpha-agglutinin (Ag alpha 1p) is expressed by alpha cells and binds to the complementary a-agglutinin expressed by a cells. The N-terminal half of alpha-agglutinin is sufficient for ligand binding and has been proposed to contain an immunoglobulin (Ig) fold domain. Based on a structural homology model for this domain and a previously identified critical residue (His292), we made Ag alpha 1p mutations in three discontinuous patches of the domain that are predicted to be in close proximity to His292 in the model. Residues in each of the three patches were identified that are important for activity and therefore define a putative ligand binding site, whereas mutations in distant loops had no effect on activity. This putative binding site is on a different surface of the Ig fold than the defined binding sites of immunoglobulins and other members of the Ig superfamily. Comparison of protein interaction sites by structural and mutational analysis has indicated that the area of surface contact is larger than the functional binding site identified by mutagenesis. The putative alpha-agglutinin binding site is therefore likely to identify residues that contribute to the functional binding site within a larger area that contacts a-agglutinin. Images PMID:8741846

  9. pH-dependent cross-linking of catechols through oxidation via Fe(3+) and potential implications for mussel adhesion.

    PubMed

    Fullenkamp, Dominic E; Barrett, Devin G; Miller, Dusty R; Kurutz, Josh W; Messersmith, Phillip B

    2014-01-01

    The mussel byssus is a remarkable attachment structure that is formed by injection molding and rapid in-situ hardening of concentrated solutions of proteins enriched in the catecholic amino acid 3,4-dihydroxy-L-phenylalanine (DOPA). Fe(3+), found in high concentrations in the byssus, has been speculated to participate in redox reactions with DOPA that lead to protein polymerization, however direct evidence to support this hypothesis has been lacking. Using small molecule catechols, DOPA-containing peptides, and native mussel foot proteins, we report the first direct observation of catechol oxidation and polymerization accompanied by reduction of Fe(3+) to Fe(2+). In the case of the small molecule catechol, we identified two dominant dimer species and characterized their connectivities by nuclear magnetic resonance (NMR), with the C6-C6 and C5-C6 linked species as the major and minor products, respectively. For the DOPA-containing peptide, we studied the pH dependence of the reaction and demonstrated that catechol polymerization occurs readily at low pH, but is increasingly diminished in favor of metal-catechol coordination interactions at higher pH. Finally, we demonstrate that Fe(3+) can induce cross-links in native byssal mussel proteins mefp-1 and mcfp-1 at acidic pH. Based on these findings, we discuss the potential implications to the chemistry of mussel adhesion. PMID:25243062

  10. pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion

    PubMed Central

    Fullenkamp, Dominic E.; Barrett, Devin G.; Miller, Dusty R.; Kurutz, Josh W.; Messersmith, Phillip B.

    2014-01-01

    The mussel byssus is a remarkable attachment structure that is formed by injection molding and rapid in-situ hardening of concentrated solutions of proteins enriched in the catecholic amino acid 3,4-dihydroxy-L-phenylalanine (DOPA). Fe3+, found in high concentrations in the byssus, has been speculated to participate in redox reactions with DOPA that lead to protein polymerization, however direct evidence to support this hypothesis has been lacking. Using small molecule catechols, DOPA-containing peptides, and native mussel foot proteins, we report the first direct observation of catechol oxidation and polymerization accompanied by reduction of Fe3+ to Fe2+. In the case of the small molecule catechol, we identified two dominant dimer species and characterized their connectivities by nuclear magnetic resonance (NMR), with the C6-C6 and C5-C6 linked species as the major and minor products, respectively. For the DOPA-containing peptide, we studied the pH dependence of the reaction and demonstrated that catechol polymerization occurs readily at low pH, but is increasingly diminished in favor of metal-catechol coordination interactions at higher pH. Finally, we demonstrate that Fe3+ can induce cross-links in native byssal mussel proteins mefp-1 and mcfp-1 at acidic pH. Based on these findings, we discuss the potential implications to the chemistry of mussel adhesion. PMID:25243062

  11. Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces

    PubMed Central

    Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail

    2015-01-01

    Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. PMID:26296729

  12. Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration.

    PubMed

    Friedman, Meyer J; Shah, Anjali G; Fang, Zhi-Hui; Ward, Elizabeth G; Warren, Stephen T; Li, Shihua; Li, Xiao-Jiang

    2007-12-01

    Expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) causes the neurodegenerative disease spinocerebellar ataxia 17 (SCA17). It remains unclear how the polyQ tract regulates normal protein function and induces selective neuropathology in SCA17. We generated transgenic mice expressing polyQ-expanded TBP. These mice showed weight loss, progressive neurological symptoms and neurodegeneration before early death. Expanded polyQ tracts reduced TBP dimerization but enhanced the interaction of TBP with the general transcription factor IIB (TFIIB). In SCA17 transgenic mice, the small heat shock protein HSPB1, a potent neuroprotective factor, was downregulated, and TFIIB occupancy of the Hspb1 promoter was decreased. Overexpression of HSPB1 or TFIIB alleviated mutant TBP-induced neuritic defects. These findings implicate the polyQ domain of TBP in transcriptional regulation and provide insight into the molecular pathogenesis of SCA17. PMID:17994014

  13. Induction of Adhesion-Inhibitory Antibodies against Placental Plasmodium falciparum Parasites by Using Single Domains of VAR2CSA▿

    PubMed Central

    Nielsen, Morten A.; Pinto, Vera V.; Resende, Mafalda; Dahlbäck, Madeleine; Ditlev, Sisse B.; Theander, Thor G.; Salanti, Ali

    2009-01-01

    In areas of endemicity pregnancy-associated malaria is an important cause of maternal anemia, stillbirth, and delivery of low-birth-weight children. The syndrome is precipitated by the accumulation of Plasmodium falciparum-infected erythrocytes in the placenta, mediated through an interaction between a parasite protein expressed on erythrocytes named variant surface antigen 2-chondroitin sulfate A (VAR2CSA) and CSA on syncytiotrophoblasts. VAR2CSA is a large polymorphic protein consisting of six Duffy binding-like (DBL), domains and with current constraints on recombinant protein production it is not possible to produce entire VAR2CSA recombinant proteins. Furthermore, the presence of polymorphisms has raised the question of whether it is feasible to define VAR2CSA antigens eliciting broadly protective antibodies. Thus, the challenge for vaccine development is to define smaller parts of the molecule which induce antibodies that inhibit CSA binding of different parasite strains. In this study, we produced a large panel of VAR2CSA proteins and raised antibodies against these antigens. We show that antibodies against the DBL4 domain effectively inhibit parasite binding. As the inhibition was not limited to homologous parasite strains, it seems feasible to base a protective malaria vaccine on a single VAR2CSA DBL domain. PMID:19307213

  14. Roles of Specific Membrane Lipid Domains in EGF Receptor Activation and Cell Adhesion Molecule Stabilization in a Developing Olfactory System

    PubMed Central

    Gibson, Nicholas J.; Tolbert, Leslie P.; Oland, Lynne A.

    2009-01-01

    Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons. PMID:19787046

  15. Large-scale gas dynamics in the adhesion model: implications for the two-phase massive galaxy formation scenario

    NASA Astrophysics Data System (ADS)

    Domínguez-Tenreiro, R.; Oñorbe, J.; Martínez-Serrano, F.; Serna, A.

    2011-06-01

    implications for diffuse or shocked mass elements), as well as on their possible observational implications, these patterns have been confronted with some generic properties of singular flows as described by the adhesion model (i.e. potential character of the velocity field, singular versus regular points, dressing, locality when a spectrum of perturbations is implemented). We have found that the common patterns the simulations show can be interpreted as a natural consequence of flow properties that, moreover, could explain different generic observational results from massive galaxies or their samples. We briefly discuss some of them.

  16. Synthetic RGD peptides derived from the adhesive domains of snake-venom proteins: evaluation as inhibitors of platelet aggregation.

    PubMed Central

    Lu, X; Deadman, J J; Williams, J A; Kakkar, V V; Rahman, S

    1993-01-01

    Synthetic peptides based on the RGD domains of the potent platelet aggregation inhibitors kistrin and dendroaspin were generated. The 13-amino-acid peptides were synthesized as dicysteinyl linear and disulphide cyclic forms. In platelet-aggregation studies, the cyclic peptides showed 3-fold better inhibition than their linear equivalents and approx. 100-fold greater potency than synthetic linear RGDS peptides derived from fibronectin. An amino acid substitution, Asp10-->Ala, in the kistrin-based peptide gave a 4-fold decrease in potency in the linear peptide, but produced a 2-fold elevation in the inhibitory activity of the cyclic form, generating a peptide of potency comparable with that of the parent protein. PMID:8250845

  17. Different forms of human vascular adhesion protein-1 (VAP-1) in blood vessels in vivo and in cultured endothelial cells: implications for lymphocyte-endothelial cell adhesion models.

    PubMed

    Salmi, M; Jalkanen, S

    1995-10-01

    Vascular endothelium plays a pivotal role in controlling leukocyte extravasation from the blood into the tissues. Vascular adhesion protein-1 (VAP-1) is a novel endothelial cell molecule which mediates lymphocyte binding to the vascular lining (Salmi, M., and Jalkanen, S., Science 1992. 257:1407). In this study, we analyzed endothelial cell type-specific differences of VAP-1. In vivo, VAP-1 is a 90/170-kDa molecule which is mainly expressed on the lumenal surface and in cytoplasmic granules of peripheral lymph node-type postcapillary venules (high endothelial venules, HEV). In tonsil HEV, VAP-1 is modified with abundant sialic acids. VAP-1 is also detectable in the cytoplasm of human umbilical vein endothelial cells (HUVEC) and in an endothelial cell hybrid EaHy-926, although both cell types lack detectable surface VAP-1. Cultured endothelial cells do not express MECA-79-defined peripheral lymph node addressins either. VAP-1 was not translocated onto the endothelial cell surface after stimulation with multiple cytokines, mitogens or secretagogues which induced expression of other known endothelial adhesion molecules. Biochemical analyses revealed that VAP-1 is a approximately 180-kDa protein in these endothelial cell types. Digestions with neuraminidase, O-glycanase and N-glycanase, as well as treatment of cells with tunicamycin and benzyl-N-acetylgalactosaminide, did not alter the molecular mass of VAP-1 in EaHy-926. Pulse-chase experiments showed that VAP-1 is directly synthesized as a 180-kDa molecule without any detectable precursors. Thus, in cultured endothelial cells, VAP-1 is a 180-kDa protein which is devoid of post-translational modifications, and in particular, lacks the sialic acids crucial for the function of VAP-1 in tonsil vessels. Notably, the endothelial cell types commonly used as a model in studying lymphocyte-endothelial cell interactions lack surface expression of VAP-1 and peripheral node addressins, and hence are inherently of limited use in

  18. DUF1220-Domain Copy Number Implicated in Human Brain-Size Pathology and Evolution

    PubMed Central

    Dumas, Laura J.; O’Bleness, Majesta S.; Davis, Jonathan M.; Dickens, C. Michael; Anderson, Nathan; Keeney, J.G.; Jackson, Jay; Sikela, Megan; Raznahan, Armin; Giedd, Jay; Rapoport, Judith; Nagamani, Sandesh S.C.; Erez, Ayelet; Brunetti-Pierri, Nicola; Sugalski, Rachel; Lupski, James R.; Fingerlin, Tasha; Cheung, Sau Wai; Sikela, James M.

    2012-01-01

    DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R2 = 0.98; p = 1.8 × 10−6), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size. PMID:22901949

  19. Crystal Structure of a Two-domain Multicopper Oxidase: Implications for the Evolution of Multicooper Blue Proteins

    SciTech Connect

    Lawton, Thomas J.; Sayavedra-Soto, Luis A.; Arp, Daniel J.; Rosenzweig, Amy C.

    2009-06-01

    The two-domain multicopper oxidases are proposed to be key intermediates in the evolution of three-domain multicopper oxidases. A number of two-domain multicopper oxidases have been identified from genome sequences and are classified as type A, type B, or type C on the basis of the predicted location of the type 1 copper center. The crystal structure of blue copper oxidase, a type C two-domain multicopper oxidase from Nitrosomonas europaea, has been determined to 1.9 A resolution. Blue copper oxidase is a trimer, of which each subunit comprises two cupredoxin domains. Each subunit houses a type 1 copper site in domain 1 and a type 2/type 3 trinuclear copper cluster at the subunit-subunit interface. The coordination geometry at the trinuclear copper site is consistent with reduction of the copper ions. Although the overall architecture of blue copper oxidase is similar to nitrite reductases, detailed structural alignments show that the fold and domain orientation more closely resemble the three-domain multicopper oxidases. These observations have important implications for the evolution of nitrite reductases and multicopper oxidases.

  20. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    PubMed

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development. PMID:26757815

  1. Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance.

    PubMed

    Kebouchi, Mounira; Galia, Wessam; Genay, Magali; Soligot, Claire; Lecomte, Xavier; Awussi, Ahoefa Ablavi; Perrin, Clarisse; Roux, Emeline; Dary-Mourot, Annie; Le Roux, Yves

    2016-04-01

    Streptococcus thermophilus (ST) is a lactic acid bacterium widely used in dairy industry and displays several properties which could be beneficial for host. The objective of this study was to investigate, in vitro, the implication of sortase A (SrtA) and sortase-dependent proteins (SDPs) in the adhesion of ST LMD-9 strain to intestinal epithelial cells (IECs) and resistance to bile salt mixture (BSM; taurocholoate, deoxycholate, and cholate). The effect of mutations in prtS (protease), mucBP (MUCin-Binding Protein), and srtA genes in ST LMD-9 in these mechanisms were examined. The HT29-MTX, HT29-CL.16E, and Caco-2 TC7 cell lines were used. HT29-MTX and HT29-CL.16E cells express different mucins found in the gastro intestinal tract; whereas, Caco-2 TC7 express cell surface proteins found in the small intestine. All mutants showed different adhesion profiles depending on cell lines. The mutation in genes srtA and mucBP leads to a significant decrease in LMD-9 adhesion capacity to Caco-2 TC7 cells. A mutation in mucBP gene has also shown a significant decrease in LMD-9 adhesion capacity to HT29-CL.16E cells. However, no difference was observed using HT29-MTX cells. Furthermore, ST LMD-9 and srtA mutant were resistant to BSM up to 3 mM. Contrariwise, no viable bacteria were detected for prtS and mucBP mutants at this concentration. Two conclusions could be drawn. First, SDPs could be involved in the LMD-9 adhesion depending on the cell lines indicating the importance of eukaryotic-cell surface components in adherence. Second, SDPs could contribute to resistance to bile salts probably by maintaining the cell membrane integrity. PMID:26820650

  2. The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with Laminin-211

    PubMed Central

    Petersen, Sarah C.; Luo, Rong; Liebscher, Ines; Giera, Stefanie; Jeong, Sung-jin; Mogha, Amit; Ghidinelli, Monica; Feltri, M. Laura; Schöneberg, Torsten; Piao, Xianhua; Monk, Kelly R.

    2014-01-01

    SUMMARY Myelin ensheathes axons to allow rapid propagation of action potentials and proper nervous system function. In the peripheral nervous system, Schwann cells (SCs) radially sort axons into a 1:1 relationship before wrapping an axonal segment to form myelin. SC myelination requires the adhesion G protein-coupled receptor GPR126, which undergoes autoproteolytic cleavage into an N-terminal fragment (NTF) and a 7-transmembrane-containing C-terminal fragment (CTF). Here, we show that GPR126 has domain-specific functions in SC development whereby the NTF is necessary and sufficient for axon sorting while the CTF promotes wrapping through cAMP elevation. These biphasic roles of GPR126 are governed by interactions with Laminin-211, which we define as a novel ligand for GPR126 that modulates receptor signaling via a tethered agonist. Our work suggests a model in which Laminin-211 mediates GPR126-induced cAMP levels to control early and late stages of SC development. PMID:25695270

  3. Inhibition of Nuclear Receptor Binding SET Domain 2/Multiple Myeloma SET Domain by LEM-06 Implication for Epigenetic Cancer Therapies

    PubMed Central

    di Luccio, Eric

    2015-01-01

    Background: Multiple myeloma SET domain (MMSET)/nuclear receptor binding SET domain 2 (NSD2) is a lysine histone methyltransferase (HMTase) and bona fide oncoprotein found aberrantly expressed in several cancers, suggesting potential role for novel therapeutic strategies. In particular, MMSET/NSD2 is emerging as a target for therapeutic interventions against multiple myeloma, especially t(4;14) myeloma that is associated with a significantly worse prognosis than other biological subgroups. Multiple myeloma is the second most common hematological malignancy in the United States, after non-Hodgkin lymphoma and remains an incurable malignancy. Thus, effective therapeutic strategies are greatly needed. HMTases inhibitors are scarce and no NSDs inhibitors have been isolated. Methods: We used homology modeling, molecular modeling simulations, virtual ligand screening, computational chemistry software for structure-activity relationship and performed in vitro H3K36 histone lysine methylation inhibitory assay using recombinant human NSD2-SET and human H3.1 histone. Results: Here, we report the discovery of LEM-06, a hit small molecule inhibitor of NSD2, with an IC50 of 0.8 mM against H3K36 methylation in vitro. Conclusions: We propose LEM-06 as a hit inhibitor that is useful to further optimize for exploring the biology of NSD2. LEM-06 derivatives may pave the way to specific NSD2 inhibitors suitable for therapeutic efforts against malignancies. PMID:26151044

  4. Characterization of the Cadherin–Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell–Cell Adhesion

    PubMed Central

    Clarke, Donald Nathaniel; Miller, Phillip W.; Lowe, Christopher J.; Weis, William I.; Nelson, William James

    2016-01-01

    The cadherin–catenin complex (CCC) mediates cell–cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis. We demonstrated that N. vectensis has a complete repertoire of cadherin–catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans. PMID:27189570

  5. Characterization of the Cadherin-Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell-Cell Adhesion.

    PubMed

    Clarke, Donald Nathaniel; Miller, Phillip W; Lowe, Christopher J; Weis, William I; Nelson, William James

    2016-08-01

    The cadherin-catenin complex (CCC) mediates cell-cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis We demonstrated that N. vectensis has a complete repertoire of cadherin-catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans. PMID:27189570

  6. Mapping of actionable mutations to histological subtype domains in lung adenocarcinoma: implications for precision medicine

    PubMed Central

    Wright, Gavin M.; Do, Hongdo; Weiss, Jonathan; Alam, Naveed Z.; Rathi, Vivek; Walkiewicz, Marzena; John, Thomas; Russell, Prudence A.; Dobrovic, Alexander

    2014-01-01

    Precision medicine depends on the accurate identification of actionable mutations in a tumor sample. It is unknown how heterogeneous the distribution of such mutations can be in a tumor. Morphological (i.e. histopathological) heterogeneity is well described in lung adenocarcinoma and has been specifically recognized in the most recent official clinico-pathological classification. The most predominant subtype present is now used to classify each lung adenocarcinoma. No molecular profile exists to explain the intratumoral differences in lung adenocarcinoma morphology, despite the consistently observed association between specific predominant subtypes and poorer survival. Given a recent proposal stratifying lung adenocarcinoma into subtypes of differing metastatic potential, we questioned the assumption that major mutations are present uniformly throughout tumors; especially those showing discrete different subtypes. We selected formalin-fixed paraffin embedded lung adenocarcinoma specimens that showed discrete areas of different subtypes, extracted subtype DNA samples from those areas and screened for mutations in hotspot regions of the EGFR, KRAS and BRAF genes using high resolution melting. Sanger sequencing was used to confirm all identified mutations. Chromogenic in situ hybridization (CISH) was used to identify mutant allele specific imbalances in tumors with EGFR mutations. Interestingly, we found that KRAS and BRAF mutations could be confined to morphological domains of higher grade. On the other hand, EGFR mutations were found through all histological subtypes in each tumor consistent with the driver status of this mutation. Intratumoral heterogeneity has major implications for tumorigenesis, chemoresistance and the role of histopathology in molecular screening for precision medicine. This study not only confirms that intratumoral mutational heterogeneity does occur, but also that it is associated with morphologically distinct regions in some tumors. From a

  7. Molecular determinants and thermodynamics of the amyloid precursor protein transmembrane domain implicated in Alzheimer's disease

    PubMed Central

    Wang, Hao; Barreyro, Laura; Provasi, Davide; Djemil, Imane; Torres-Arancivia, Celia; Filizola, Marta; Ubarretxena-Belandia, Iban

    2011-01-01

    The deposition of toxic amyloid-β peptide (Aβ) aggregates in the brain is a hallmark of Alzheimer's disease. The intramembrane proteolysis by γ-secretase of the amyloid precursor protein carboxy-terminal fragment (APP-βCTF) constitutes the final step in the production of Aβs. Mounting evidence suggests that APP-βCTF is a transmembrane domain (TMD) dimer, and that dimerization might modulate the production of Aβ species that are prone to aggregation, and therefore most toxic. We combined experimental and computational approaches to study the molecular determinants and thermodynamics of APP-βCTF dimerization, and produced a unifying structural model that reconciles much of the published data. Using a cell assay, which exploits a dimerization-dependent activator of transcription, we identified specific dimerization-disrupting mutations located mostly at the N-terminus of the TMD of APP-βCTF. The ability of selected mutants to disrupt the dimerization of full length APP-βCTF was confirmed by fluorescence resonance energy transfer experiments. Free-energy estimates of wild-type (WT) and mutants of the TMD of APP-βCTF derived from enhanced molecular dynamics simulations showed that the dimeric state is comprised of different arrangements, in which either 709GXXXA713 or 700GXXXG704GXXXG708 interaction motifs can engage in symmetric or asymmetric associations. Mutations along the TMD of APP-βCTF were found to modulate the relative free energy of the dimeric configurations, and to differently affect the distribution of interfaces within the dimeric state. This observation might have important biological implications, since dimers with a different arrangement of the transmembrane helices are likely to be recognized differently by γ-secretase and lead to a variation of Aβ levels. PMID:21440556

  8. Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa

    PubMed Central

    Wadley, Lyn; Hodgskiss, Tamaryn; Grant, Michael

    2009-01-01

    Compound adhesives made from red ochre mixed with plant gum were used in the Middle Stone Age (MSA), South Africa. Replications reported here suggest that early artisans did not merely color their glues red; they deliberately effected physical transformations involving chemical changes from acidic to less acidic pH, dehydration of the adhesive near wood fires, and changes to mechanical workability and electrostatic forces. Some of the steps required for making compound adhesive seem impossible without multitasking and abstract thought. This ability suggests overlap between the cognitive abilities of modern people and people in the MSA. Our multidisciplinary analysis provides a new way to recognize complex cognition in the MSA without necessarily invoking the concept of symbolism. PMID:19433786

  9. A Critical Comparison of Classical and Domain Theory: Some Implications for Character Education

    ERIC Educational Resources Information Center

    Keefer, Matthew Wilks

    2006-01-01

    Contemporary approaches to moral education are influenced by the "domain theory" approach to understanding moral development (Turiel, 1983; 1998; Nucci, 2001). Domain theory holds there are distinct conventional, personal and moral domains; each constituting a cognitive "structured-whole" with its own normative source and sphere of influence. One…

  10. Domain combination of the vertebrate-like TLR gene family: implications for their origin and evolution.

    PubMed

    Wu, Baojun; Huan, Tianxiao; Gong, Jing; Zhou, Pin; Bai, Zengliang

    2011-12-01

    Domain shuffling, which is an important mechanism in the evolution of multi-domain proteins, has shaped the evolutionary development of the immune system in animals. Toll and Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate and adaptive immune systems. Draft genome sequences provide the opportunity to compare the Toll/TLR gene repertoire among representative metazoans. In this study, we investigated the combination of Toll/interleukin-1 receptor (TIR) and leucine-rich repeat (LRR) domains of metazoan Toll/TLRs. Before Toll with both domains occurred in Cnidaria (sea anemone, Nematostella vectensis), through domain combinations, TIR-only and LRR-only proteins had already appeared in sponges (Amphimedon queenslandica). Although vertebrate-like TIR (V-TIR) domain already appeared in Cnidaria, the vertebrate-like TLR (V-TLR) with both domains appeared much later. The first combination between V-TIR domain and vertebrate-like LRR (V-LRR) domain for V-TLR may have occurred after the divergence of Cnidaria and bilateria. Then, another combination for V-TLR, a recombination of both domains, possibly occurred before or during the evolution of primitive vertebrates. Taken together, two rounds of domain combinations may thus have co-shaped the vertebrate TLRs. PMID:22227927

  11. Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth

    PubMed Central

    Holst, Frederik; Hoivik, Erling A.; Gibson, William J.; Taylor-Weiner, Amaro; Schumacher, Steven E.; Asmann, Yan W.; Grossmann, Patrick; Trovik, Jone; Necela, Brian M.; Thompson, E. Aubrey; Meyerson, Matthew; Beroukhim, Rameen; Salvesen, Helga B.; Cherniack, Andrew D.

    2016-01-01

    The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications. PMID:27160768

  12. Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth.

    PubMed

    Holst, Frederik; Hoivik, Erling A; Gibson, William J; Taylor-Weiner, Amaro; Schumacher, Steven E; Asmann, Yan W; Grossmann, Patrick; Trovik, Jone; Necela, Brian M; Thompson, E Aubrey; Meyerson, Matthew; Beroukhim, Rameen; Salvesen, Helga B; Cherniack, Andrew D

    2016-01-01

    The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications. PMID:27160768

  13. Evidence of a Role for CD44 and Cell Adhesion in Mediating Resistance to Lenalidomide in Multiple Myeloma: Therapeutic Implications

    PubMed Central

    Bjorklund, Chad C.; Baladandayuthapani, Veerabhadran; Lin, Heather Y.; Jones, Richard J.; Kuiatse, Isere; Wang, Hua; Yang, Jing; Shah, Jatin J.; Thomas, Sheeba K.; Wang, Michael; Weber, Donna M.; Orlowski, Robert Z.

    2013-01-01

    Resistance of myeloma to lenalidomide is an emerging clinical problem, and though it has been associated in part with activation of Wnt/β-catenin signaling, the mediators of this phenotype remained undefined. Lenalidomide-resistant models were found to overexpress the hyaluronan (HA)-binding protein CD44, a downstream Wnt/β-catenin transcriptional target. Consistent with a role of CD44 in cell adhesion-mediated drug-resistance (CAM-DR), lenalidomide-resistant myeloma cells were more adhesive to bone marrow stroma and HA-coated plates. Blockade of CD44 with monoclonal antibodies, free HA, or CD44 knockdown reduced adhesion and sensitized to lenalidomide. Wnt/β-catenin suppression by FH535 enhanced the activity of lenalidomide, as did interleukin-6 neutralization with siltuximab. Notably, all-trans-retinoic acid (ATRA) down-regulated total β-catenin, cell-surface and total CD44, reduced adhesion of lenalidomide-resistant myeloma cells, and enhanced the activity of lenalidomide in a lenalidomide-resistant in vivo murine xenograft model. Finally, ATRA sensitized primary myeloma samples from patients that had relapsed and/or refractory disease after lenalidomide therapy to this immunomodulatory agent ex vivo. Taken together, our findings support the hypotheses that CD44 and CAM-DR contribute to lenalidomide-resistance in multiple myeloma, that CD44 should be evaluated as a putative biomarker of sensitivity to lenalidomide, and that ATRA or other approaches that target CD44 may overcome clinical lenalidomide resistance. PMID:23760401

  14. Reduction in membranous immunohistochemical staining for the intracellular domain of epithelial cell adhesion molecule correlates with poor patient outcome in primary colorectal adenocarcinoma

    PubMed Central

    Wang, A.; Ramjeesingh, R.; Chen, C.H.; Hurlbut, D.; Hammad, N.; Mulligan, L.M.; Nicol, C.; Feilotter, H.E.; Davey, S.

    2016-01-01

    Background Epithelial cell adhesion molecule (epcam) is a multifunctional transmembrane glycoprotein expressed on both normal epithelium and epithelial neoplasms such as gastric, breast, and renal carcinomas. Recent studies have proposed that the proteolytic cleavage of the intracellular domain of epcam (epcam-icd) can trigger signalling cascades leading to aggressive tumour behavior. The expression profile of epcam-icd has not been elucidated for primary colorectal carcinoma. In the present study, we examined epcam-icd immunohistochemical staining in a large cohort of patients with primary colorectal adenocarcinoma and assessed its performance as a potential prognostic marker. Methods Immunohistochemical staining for epcam-icd was assessed on tissue microarrays consisting of 137 primary colorectal adenocarcinoma samples. Intensity of staining for each core was scored by 3 independent pathologists. The membranous epcam-icd staining score was calculated as a weighted average from 3 core samples per tumour. Univariate analysis of the average scores and clinical outcome measures was performed. Results The level of membranous epcam-icd staining was positively associated with well-differentiated tumours (p = 0.01); low preoperative carcinoembryonic antigen (p = 0.001); and several measures of survival, including 2-year (p = 0.02) and 5-year survival (p = 0.05), and length of time post-diagnosis (p = 0.03). A number of other variables—including stage, grade, and lymph node status—showed correlations with epcam staining and markers of poor outcome, but did not reach statistical significance. Conclusions Low membranous epcam-icd staining might be a useful marker to identify tumours with aggressive clinical behavior and potential poor prognosis and might help to select candidates who could potentially benefit from treatment targeting epcam. PMID:27330354

  15. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design.

    PubMed

    Mohanty, Smita; Kennedy, Eileen J; Herberg, Friedrich W; Hui, Raymond; Taylor, Susan S; Langsley, Gordon; Kannan, Natarajan

    2015-10-01

    Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. PMID:25847873

  16. Domain Organization in Clostridium botulinum Neurotoxin Type E is Unique: Its Implication in Faster Translocation

    SciTech Connect

    Kumaran, D.; Eswaramoorthy, S; Furey, W; Navaza, J; Sax, M; Swaminathan, S

    2009-01-01

    Clostridium botulinum produces seven antigenically distinct neurotoxins [C. botulinum neurotoxins (BoNTs) A-G] sharing a significant sequence homology. Based on sequence and functional similarity, it was believed that their three-dimensional structures will also be similar. Indeed, the crystal structures of BoNTs A and B exhibit similar fold and domain association where the translocation domain is flanked on either side by binding and catalytic domains. Here, we report the crystal structure of BoNT E holotoxin and show that the domain association is different and unique, although the individual domains are similar to those of BoNTs A and B. In BoNT E, both the binding domain and the catalytic domain are on the same side of the translocation domain, and all three have mutual interfaces. This unique association may have an effect on the rate of translocation, with the molecule strategically positioned in the vesicle for quick entry into cytosol. Botulism, the disease caused by BoNT E, sets in faster than any other serotype because of its speedy internalization and translocation, and the present structure offers a credible explanation. We propose that the translocation domain in other BoNTs follows a two-step process to attain translocation-competent conformation as in BoNT E. We also suggest that this translocation-competent conformation in BoNT E is a probable reason for its faster toxic rate compared to BoNT A. However, this needs further experimental elucidation.

  17. Extracellular membrane-proximal domain of HAb18G/CD147 binds to metal ion-dependent adhesion site (MIDAS) motif of integrin β1 to modulate malignant properties of hepatoma cells.

    PubMed

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2012-02-10

    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp(179) in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  18. Extracellular Membrane-proximal Domain of HAb18G/CD147 Binds to Metal Ion-dependent Adhesion Site (MIDAS) Motif of Integrin β1 to Modulate Malignant Properties of Hepatoma Cells*

    PubMed Central

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2012-01-01

    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp179 in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  19. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    PubMed

    Sosa-García, Bernadette; Gunduz, Volkan; Vázquez-Rivera, Viviana; Cress, W Douglas; Wright, Gabriela; Bian, Haikuo; Hinds, Philip W; Santiago-Cardona, Pedro G

    2010-01-01

    The retinoblastoma protein (pRb) is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis. PMID:21085651

  20. Curcumin inhibits development and cell adhesion in Dictyostelium discoideum: Implications for YakA signaling and GST enzyme function.

    PubMed

    Garige, Mamatha; Walters, Eric

    2015-11-13

    The molecular basis for nutraceutical properties of the polyphenol curcumin (Curcuma longa, Turmeric) is complex, affecting multiple factors that regulate cell signaling and homeostasis. Here, we report the effect of curcumin on cellular and developmental mechanisms in the eukaryotic model, Dictyostelium discoideum. Dictyostelium proliferation was inhibited in the presence of curcumin, which also suppressed the prestarvation marker, discoidin I, members of the yakA-mediated developmental signaling pathway, and expression of the extracellular matrix/cell adhesion proteins (DdCAD and csA). This resulted in delayed chemotaxis, adhesion, and development of the organism. In contrast to the inhibitory effects on developmental genes, curcumin induced gstA gene expression, overall GST activity, and generated production of reactive oxygen species. These studies expand our knowledge of developmental and biochemical signaling influenced by curcumin, and lends greater consideration of GST enzyme function in eukaryotic cell signaling, development, and differentiation. PMID:26449461

  1. The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease.

    PubMed

    Bycroft, M; Bateman, A; Clarke, J; Hamill, S J; Sandford, R; Thomas, R L; Chothia, C

    1999-01-15

    Most cases of autosomal dominant polycystic kidney disease (ADPKD) are the result of mutations in the PKD1 gene. The PKD1 gene codes for a large cell-surface glycoprotein, polycystin-1, of unknown function, which, based on its predicted domain structure, may be involved in protein-protein and protein-carbohydrate interactions. Approximately 30% of polycystin-1 consists of 16 copies of a novel protein module called the PKD domain. Here we show that this domain has a beta-sandwich fold. Although this fold is common to a number of cell-surface modules, the PKD domain represents a distinct protein family. The tenth PKD domain of human and Fugu polycystin-1 show extensive conservation of surface residues suggesting that this region could be a ligand-binding site. This structure will allow the likely effects of missense mutations in a large part of the PKD1 gene to be determined. PMID:9889186

  2. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    SciTech Connect

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  3. Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions.

    PubMed

    Takino, Takahisa; Saeki, Hiromi; Miyamori, Hisashi; Kudo, Tomoya; Sato, Hiroshi

    2007-12-15

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion and metastasis. We previously reported that extracellular matrix degradation by MT1-MMP regulates cell migration via modulating sustained integrin-mediated signals. In this study, MT1-MMP-expressing cells were plated onto fibronectin-coated plates and monitored for cell-matrix adhesion formation and fibronectin degradation. The fibronectin was degraded and removed in line with the cell migration track. The migrating cells showed a polarized morphology and were in contact with the edge of fibronectin through the leading edge, in which cell-matrix adhesions are concentrated. Expression of MT1-MMP targeted to cell-matrix adhesions by fusing with the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) promoted the initial fibronectin lysis at the cell periphery immediately after adhesion. These results suggest that fibronectin is degraded by MT1-MMP located at cell-matrix adhesions, which are concentrated at the leading edge of the migrating cells. To inhibit MT1-MMP at cell-matrix adhesion, the dominant negative form of MT1-MMP (MT1-Pex) was targeted to the cell-matrix adhesion by fusing with the FAT domain (MT1-Pex-FAT). MT1-Pex-FAT accumulated at cell-matrix adhesions and inhibited fibronectin degradation as well as FAK phosphorylation more effectively than parental MT1-Pex. MT1-Pex-FAT was also shown to suppress the invasion of tumor cells into three-dimensional collagen gel more strongly than MT1-Pex. These results suggest that MT1-MMP-mediated extracellular matrix lysis at cell-matrix adhesions induces the establishment of cell polarity, which facilitates cell-matrix adhesion turnover and subsequent cell migration. This model highlights the role of MT1-MMP at the leading edge of migrating cells. PMID:18089791

  4. beta 1-Integrin-mediated glioma cell adhesion and free radical-induced apoptosis are regulated by binding to a C-terminal domain of PG-M/versican.

    PubMed

    Wu, Yaojiong; Chen, Liwen; Zheng, Peng-Sheng; Yang, Burton B

    2002-04-01

    Integrins are cell-surface glycoproteins that mediate cell activities, including tissue morphogenesis, development, immune response, and cancer, through interaction with extracellular proteins. Here we report a novel means by which integrin signaling and functions are regulated. In pull-down assays and immunoprecipitation, beta(1)-integrin bound to the C-terminal domain of PG-M/versican, an extracellular chondroitin sulfate proteoglycan. This was confirmed by cell-surface binding assays. Binding was calcium- and manganese-dependent. Upon native gel electrophoresis, beta(1)-integrin comigrated with the C-terminal domain of PG-M/versican. The interaction of beta(1)-integrin with the C-terminal domain of PG-M/versican activated focal adhesion kinase, enhanced integrin expression, and promoted cell adhesion. As a result, cells expressing the C-terminal domain of PG-M/versican were resistant to free radical-induced apoptosis. As the PG-M/versican peptide used in this study does not contain the RGD consensus-binding motif for integrins, the mechanism of the observed binding represents an entirely new function. PMID:11805102

  5. LPHN3, a presynaptic adhesion-GPCR implicated in ADHD, regulates the strength of neocortical layer 2/3 synaptic input to layer 5

    PubMed Central

    2014-01-01

    Background Latrophilins (LPHNs) are a small family of neuronal adhesion-GPCRs originally discovered as receptors for the black widow spider toxin α-latrotoxin. Mutations in LPHN3 have recently been identified as risk factors for attention deficit hyperactivity disorder (ADHD) in humans, but their physiological function has remained elusive. In this study, we tested two hypotheses regarding LPHN3 function: (1) LPHN3 regulates synaptic transmission by modulating probability of release; and (2) LPHN3 controls synapse development and the abundance of synapses. Results We manipulated LPHN3 expression in mouse layer 2/3 (L2/3) pyramidal neurons and examined the consequences on the L2/3 to L5 cortical microcircuit. Employing an optogenetic strategy combined with shRNA knockdown of LPHN3, we found that LPHN3 did not influence probability of release at synapses formed by L2/3 neurons onto L5 pyramidal cells. The strength of L2/3 afferent input to L5, however, was weakened by loss of LPHN3. Using Synaptophysin-GFP as an anatomical marker of presynaptic terminals, we found that the density of synapses formed by L2/3 axons in L5 was reduced when LPHN3 was lost. Finally, we investigated the structural organization of the extracellular domain of LPHN3. We used single particle negative stain electron microscopy to image the extracellular domain of LPHN3 and showed that the Olfactomedin and Lectin domains form a globular domain on an elongated stalk. Cell-based binding experiments with mutant proteins revealed that the Olfactomedin domain was required for binding to FLRT3, whereas both the Olfactomedin and Lectin domains were involved in binding to Teneurin 1. Mutant LPHN3 lacking the Olfactomedin domain was not capable of rescuing the deficit in presynaptic density following knockdown of endogenous LPHN3. Conclusions We find that LPHN3 regulates the number of synapses formed by L2/3 neurons in L5 and the strength of synaptic drive from the L2/3-L5 pathway. The Olfactomedin

  6. A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny.

    PubMed

    Oda, Hiroki; Wada, Hiroshi; Tagawa, Kunifumi; Akiyama-Oda, Yasuko; Satoh, Nori; Humphreys, Tom; Zhang, Shicui; Tsukita, Shoichiro

    2002-01-01

    Although data are available from only vertebrates, urochordates, and three nonchordate animals, there are definite differences in the structures of classic cadherins between vertebrates plus urochordates and nonchordates. In this study we examined structural diversity of classic cadherins among bilaterian animals by obtaining new data from an amphioxus (Cephalochordata, Chordata), an acorn worm (Hemichordata), a sea star (Echinodermata), and an oyster (Mollusca). The structures of newly identified nonchordate cadherins are grouped together with those of the known sea urchin and Drosophila cadherins, whereas the structure of an amphioxus (Branchiostoma belcheri) cadherin, designated BbC, is differently categorized from those of other known chordate cadherins. BbC is identified as a cadherin by its cytoplasmic domain whose sequence is highly related to the cytoplasmic sequences of all known classic cadherins, but it lacks all of the five repeats constituting the extracellular homophilic-binding domain of other chordate cadherins. The ectodomains of BbC match the ectodomains found in nonchordate cadherins but not present in other chordate cadherins. We show that the BbC functions as a cell-cell adhesion molecule when expressed in Drosophila S2 cells and localizes to adherens junctions in the ectodermal epithelia in amphioxus embryos. We argue that BbC is the amphioxus homologue of the classic cadherins involved in the formation of epithelial adherens junctions. The structural relationships of the cadherin molecules allow us to propose a possibility that cephalochordates might be basal to the sister-groups vertebrates and urochordates. PMID:12492143

  7. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  8. Integrative curriculum reform, domain dependent knowing, and teachers` epistemological theories: Implications for middle-level teaching

    SciTech Connect

    Powell, R.R.

    1998-12-01

    Integrative curriculum as both a theoretical construct and a practical reality, and as a theme-based, problem-centered, democratic way of schooling, is becoming more widely considered as a feasible alternative to traditional middle-level curricula. Importantly for teaching and learning, domain dependence requires teachers to view one area of knowledge as fully interdependent with other areas of knowledge during the learning process. This requires teachers to adopt personal epistemological theories that reflect integrative, domain dependent knowing. This study explored what happened when teachers from highly traditional domain independent school settings encountered an ambitious college-level curriculum project that was designed to help the teachers understand the potential that integrative, domain dependent teaching holds for precollege settings. This study asked: What influence does an integrative, domain dependent curriculum project have on teachers` domain independent, epistemological theories for teaching and learning? Finding an answer to this question is essential if we, as an educational community, are to understand how integrative curriculum theory is transformed by teachers into systemic curriculum reform. The results suggest that the integrative curriculum project that teachers participated in did not explicitly alter their classroom practices in a wholesale manner. Personal epistemological theories of teachers collectively precluded teachers from making any wholesale changes in their individual classroom teaching. However, teachers became aware of integrative curriculum as an alternative, and they expressed interest in infusing integrative practices into their classrooms as opportunities arise.

  9. Crystal Structure of CRN-4: Implications for Domain Function in Apoptotic DNA Degradation▿

    PubMed Central

    Hsiao, Yu-Yuan; Nakagawa, Akihisa; Shi, Zhonghao; Mitani, Shohei; Xue, Ding; Yuan, Hanna S.

    2009-01-01

    Cell death related nuclease 4 (CRN-4) is one of the apoptotic nucleases involved in DNA degradation in Caenorhabditis elegans. To understand how CRN-4 is involved in apoptotic DNA fragmentation, we analyzed CRN-4's biochemical properties, in vivo cell functions, and the crystal structures of CRN-4 in apo-form, Mn2+-bound active form, and Er3+-bound inactive form. CRN-4 is a dimeric nuclease with the optimal enzyme activity in cleaving double-stranded DNA in apoptotic salt conditions. Both mutational studies and the structures of the Mn2+-bound CRN-4 revealed the geometry of the functional nuclease active site in the N-terminal DEDDh domain. The C-terminal domain, termed the Zn-domain, contains basic surface residues ideal for nucleic acid recognition and is involved in DNA binding, as confirmed by deletion assays. Cell death analysis in C. elegans further demonstrated that both the nuclease active site and the Zn-domain are required for crn-4's function in apoptosis. Combining all of the data, we suggest a structural model where chromosomal DNA is bound at the Zn-domain and cleaved at the DEDDh nuclease domain in CRN-4 when the cell is undergoing apoptosis. PMID:18981218

  10. Structural stabilization of GTP-binding domains in circularly permuted GTPases: Implications for RNA binding

    PubMed Central

    Anand, Baskaran; Verma, Sunil Kumar; Prakash, Balaji

    2006-01-01

    GTP hydrolysis by GTPases requires crucial residues embedded in a conserved G-domain as sequence motifs G1–G5. However, in some of the recently identified GTPases, the motif order is circularly permuted. All possible circular permutations were identified after artificially permuting the classical GTPases and subjecting them to profile Hidden Markov Model searches. This revealed G4–G5–G1–G2–G3 as the only possible circular permutation that can exist in nature. It was also possible to recognize a structural rationale for the absence of other permutations, which either destabilize the invariant GTPase fold or disrupt regions that provide critical residues for GTP binding and hydrolysis, such as Switch-I and Switch-II. The circular permutation relocates Switch-II to the C-terminus and leaves it unfastened, thus affecting GTP binding and hydrolysis. Stabilizing this region would require the presence of an additional domain following Switch-II. Circularly permuted GTPases (cpGTPases) conform to such a requirement and always possess an ‘anchoring’ C-terminal domain. There are four sub-families of cpGTPases, of which three possess an additional domain N-terminal to the G-domain. The biochemical function of these domains, based on available experimental reports and domain recognition analysis carried out here, are suggestive of RNA binding. The features that dictate RNA binding are unique to each subfamily. It is possible that RNA-binding modulates GTP binding or vice versa. In addition, phylogenetic analysis indicates a closer evolutionary relationship between cpGTPases and a set of universally conserved bacterial GTPases that bind the ribosome. It appears that cpGTPases are RNA-binding proteins possessing a means to relate GTP binding to RNA binding. PMID:16648363

  11. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction

    PubMed Central

    Tarazón, Estefanía; García-Manzanares, María; Montero, José Anastasio; Cinca, Juan; Portolés, Manuel; Rivera, Miguel; Roselló-Lletí, Esther

    2016-01-01

    Background Intercalated disks are unique structures in cardiac tissue, in which adherens junctions, desmosomes, and GAP junctions co-localize, thereby facilitating cardiac muscle contraction and function. Protocadherins are involved in these junctions; however, their role in heart physiology is poorly understood. We aimed to analyze the transcriptomic profile of adhesion molecules in patients with ischemic cardiomyopathy (ICM) and relate the changes uncovered with the hemodynamic alterations and functional depression observed in these patients. Methods and Results Twenty-three left ventricular tissue samples from patients diagnosed with ICM (n = 13) undergoing heart transplantation and control donors (CNT, n = 10) were analyzed using RNA sequencing. Forty-two cell adhesion genes involved in cellular junctions were differentially expressed in ICM myocardium. Notably, the levels of protocadherin PCDHGA3 were related with the stroke volume (r = –0.826, P = 0.003), ejection fraction (r = –0.793, P = 0.004) and left ventricular end systolic and diastolic diameters (r = 0.867, P = 0.001; r = 0.781, P = 0.005, respectively). Conclusions Our results support the importance of intercalated disks molecular alterations, closely involved in the contractile function, highlighting its crucial significance and showing gene expression changes not previously described. Specifically, altered PCDHGA3 gene expression was strongly associated with reduced stroke volume and ventricular dysfunction in ICM, suggesting a relevant role in hemodynamic perturbations and cardiac performance for this unexplored protocadherin. PMID:27472518

  12. Detrital provenance of Early Mesozoic basins in the Jiangnan domain, South China: Paleogeographic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Xu, Xianbing; Tang, Shuai; Lin, Shoufa

    2016-04-01

    Detrital provenance analysis is an effective way to understand paleogeographic change and geodynamics. In this paper, we present petrological, whole-rock geochemical and detrital zircon U-Pb geochronological analysis of Early and Middle Jurassic terrestrial clastic rocks in the Jingdezhen Basin and the Huangshan Basin in the Jiangnan domain, South China. Petrology and whole-rock geochemistry show that the source rocks are dominated by intermediate to acid component. The Chemical Index of Alteration ranges from 69 to 86, suggesting a moderate weathering history for the source rocks. The Early-Middle Jurassic sediments in the Jingdezhen and Huangshan basins were mostly sourced from magmatogenic greywackes and felsic magmatic rocks, respectively. Detrital zircons have seven age peaks at ~ 240 Ma, ~ 430 Ma, ~ 1390 Ma, ~ 1880 Ma, ~ 2500 Ma, -3200 Ma and 788-999 Ma (a wide peak). Provenance analysis indicates that the source rocks are in the Jiangnan domain, the Northwest Zhejiang Basin and the Wuyishan domain. Combining these with previous results and paleocurrent directions, we infer that the NE-trending Wuyishan and Xuefengshan domains and the nearly E-W-Jiangnan domain and Nanling tectonic belt were orogenic uplifts and watersheds during the Late Triassic to Middle Jurassic. The Early Mesozoic geodynamics in the South China Block was related to the westward subduction of the Paleo-Pacific Plate and the northward continent-continent collision following the closure of the Paleo-Tethys Ocean.

  13. The Dc-Module of Doublecortin: Dynamics, Domain Boundaries, and Functional Implications

    SciTech Connect

    Cierpicki,T.; Kim, M.; Cooper, D.; Derewenda, U.; Bushweller, J.; Derwenda, Z.

    2007-01-01

    The doublecortin-like (DC) domains, which usually occur in tandem, constitute novel microtubule-binding modules. They were first identified in doublecortin (DCX), a protein expressed in migrating neurons, and in the doublecortin-like kinase (DCLK). They are also found in other proteins, including the RP1 gene product which-when mutated-causes a form of inherited blindness. We previously reported an X-ray structure of the N-terminal DC domain of DCLK (N-DCLK), and a solution structure of an analogous module of human doublecortin (N-DCX). These studies showed that the DC domain has a tertiary fold closely reminiscent of ubiquitin and similar to several GTPase-binding domains. We now report an X-ray structure of a mutant of N-DCX, in which the C-terminal fragment (residues 139-147) unexpectedly shows an altered, 'open' conformation. However, heteronuclear NMR data show that this C-terminal fragment is only transiently open in solution, and assumes a predominantly 'closed' conformation. While the 'open' conformation may be artificially stabilized by crystal packing interactions, the observed switching between the 'open' and 'closed' conformations, which shortens the linker between the two DC-domains by {approx}20 A, is likely to be of functional importance in the control of tubulin polymerization and microtubule bundling by doublecortin.

  14. Abdominal Adhesions

    MedlinePlus

    ... Abdominal Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91– ... are abdominal adhesions and intestinal obstructions ... generally do not require treatment. Surgery is the only way to treat abdominal ...

  15. Focal Adhesion Kinase-Dependent Regulation of Adhesive Force Involves Vinculin Recruitment to Focal Adhesions

    PubMed Central

    Hanks, Steven K.; García, Andrés J.

    2016-01-01

    Background information Focal adhesion kinase (FAK), an essential non-receptor tyrosine kinase, plays pivotal roles in migratory responses, adhesive signaling, and mechanotransduction. FAK-dependent regulation of cell migration involves focal adhesion turnover dynamics as well as actin cytoskeleton polymerization and lamellipodia protrusion. Whereas roles for FAK in migratory and mechanosensing responses have been established, the contributions of FAK to the generation of adhesive forces are not well understood. Results Using FAK-null cells expressing wild-type and mutant FAK under an inducible tetracycline promoter, we analyzed the role of FAK in the generation of steady-state adhesive forces using micropatterned substrates and a hydrodynamic adhesion assay. FAK expression reduced steady-state strength by 30% compared to FAK-null cells. FAK expression reduced vinculin localization to focal adhesions by 35% independently from changes in integrin binding and localization of talin and paxillin. RNAi knockdown of vinculin abrogated the FAK-dependent differences in adhesive force. FAK-dependent changes in vinculin localization and adhesive force were confirmed in human primary fibroblasts with FAK knocked down by RNAi. The autophosphorylation Y397 and kinase domain Y576/Y577 sites were differentially required for FAK-mediated adhesive responses. Conclusions We demonstrate that FAK reduces steady-state adhesion strength by modulating vinculin recruitment to focal adhesions. These findings provide insights into the role of FAK in mechanical interactions between a cell and the extracellular matrix. PMID:19883375

  16. Folding catastrophes due to viscosity in multiferroic domains: implications for room-temperature multiferroic switching.

    PubMed

    Scott, J F

    2015-12-16

    Unusual domains with curved walls and failure to satisfy the Landau-Lifshitz-Kittel Law are modeled as folding catastrophes (saddle-node bifurcations). This description of ballistic motion in a viscous medium is based upon early work by Dawber et al 2003 Appl. Phys. Lett. 82 436. It suggests that ferroelectric films can exhibit folds or vortex patterns but not both. PMID:26575273

  17. Cultural-Historical Activity Theory and Domain Analysis: Metatheoretical Implications for Information Science

    ERIC Educational Resources Information Center

    Wang, Lin

    2013-01-01

    Background: Cultural-historical activity theory is an important theory in modern psychology. In recent years, it has drawn more attention from related disciplines including information science. Argument: This paper argues that activity theory and domain analysis which uses the theory as one of its bases could bring about some important…

  18. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    PubMed Central

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  19. Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes

    PubMed Central

    Ryan, Tomás J; Emes, Richard D; Grant, Seth GN; Komiyama, Noboru H

    2008-01-01

    Background Glutamate gated postsynaptic receptors in the central nervous system (CNS) are essential for environmentally stimulated behaviours including learning and memory in both invertebrates and vertebrates. Though their genetics, biochemistry, physiology, and role in behaviour have been intensely studied in vitro and in vivo, their molecular evolution and structural aspects remain poorly understood. To understand how these receptors have evolved different physiological requirements we have investigated the molecular evolution of glutamate gated receptors and ion channels, in particular the N-methyl-D-aspartate (NMDA) receptor, which is essential for higher cognitive function. Studies of rodent NMDA receptors show that the C-terminal intracellular domain forms a signalling complex with enzymes and scaffold proteins, which is important for neuronal and behavioural plasticity Results The vertebrate NMDA receptor was found to have subunits with C-terminal domains up to 500 amino acids longer than invertebrates. This extension was specific to the NR2 subunit and occurred before the duplication and subsequent divergence of NR2 in the vertebrate lineage. The shorter invertebrate C-terminus lacked vertebrate protein interaction motifs involved with forming a signaling complex although the terminal PDZ interaction domain was conserved. The vertebrate NR2 C-terminal domain was predicted to be intrinsically disordered but with a conserved secondary structure. Conclusion We highlight an evolutionary adaptation specific to vertebrate NMDA receptor NR2 subunits. Using in silico methods we find that evolution has shaped the NMDA receptor C-terminus into an unstructured but modular intracellular domain that parallels the expansion in complexity of an NMDA receptor signalling complex in the vertebrate lineage. We propose the NR2 C-terminus has evolved to be a natively unstructured yet flexible hub organising postsynaptic signalling. The evolution of the NR2 C-terminus and its

  20. Resveratrol induces ordered domains formation in biomembranes: Implication for its pleiotropic action.

    PubMed

    Neves, Ana Rute; Nunes, Cláudia; Reis, Salette

    2016-01-01

    Resveratrol is a polyphenol compound with great value in cancer therapy, cardiovascular protection, and neurodegenerative disorders. The mechanism by which resveratrol exerts such pleiotropic effects is not yet clear and there is a huge need to understand the influence of this compound on the regulation of lipid domains formation on membrane structure. The aim of the present study was to reveal potential molecular interactions between resveratrol and lipid rafts found in cell membranes by means of Förster resonance energy transfer, DPH fluorescence quenching, and triton X-100 detergent resistance assay. Liposomes composed of egg phosphatidylcholine, cholesterol, and sphingomyelin were used as model membranes. The results revealed that resveratrol induces phase separation and formation of liquid-ordered domains in bilayer structures. The formation of such tightly packed lipid rafts is important for different signal transduction pathways, through the regulation of membrane-associating proteins, that can justify several pharmacological activities of this compound. PMID:26456556

  1. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    SciTech Connect

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  2. Critical single-domain grain sizes in elongated iron particles: implications for meteoritic and lunar magnetism

    NASA Astrophysics Data System (ADS)

    Muxworthy, Adrian R.; Williams, Wyn

    2015-07-01

    Kamacite particles (Fe-Ni, Ni < 5 per cent), are very common in extra-terrestrial materials, such as meteorites. It is normally assumed that for kamacite particles to be reliable recorders of magnetic fields, they need to be magnetically uniform (single domain, SD) and thermally stable. Larger particles subdivide into non-uniform multidomain (MD) magnetic structures that produce weaker magnetic signals, while small SD particles become magnetically unstable due to thermal fluctuations and exhibit superparamagnetic behaviour. In this paper we determine the first micromagnetic calculation of the stable SD range domain-state phase diagram for metallic iron; previous calculations were analytical. There is a significant increase in the critical size for the SD/MD threshold size, for example, for cube-shaped iron particles, the critical SD/MD threshold has now been estimated to be 25 nm, compared to 17 nm for previous estimates. The larger critical SD/MD threshold size for iron, agrees better with previously published nanometric observations of domain state for FeNi particles, then early analytical models.

  3. Structure of human apolipoprotein A-IV: a distinct domain architecture among exchangeable apolipoproteins with potential functional implications.

    PubMed

    Pearson, Kevin; Saito, Hiroyuki; Woods, Stephen C; Lund-Katz, Sissel; Tso, Patrick; Phillips, Michael C; Davidson, W Sean

    2004-08-24

    Apolipoprotein A-IV (apoA-IV) is an exchangeable apolipoprotein that shares many functional similarities with related apolipoproteins such as apoE and apoA-I but has also been implicated as a circulating satiety factor. However, despite the fact that it contains many predicted amphipathic alpha-helical domains, relatively little is known about its tertiary structure. We hypothesized that apoA-IV exhibits a characteristic functional domain organization that has been proposed to define apoE and apoA-I. To test this, we created truncation mutants in a bacterial system that deleted amino acids from either the N- or C-terminal ends of human apoA-IV. We found that apoA-IV was less stable than apoA-I but was more highly organized in terms of its cooperativity of unfolding. Deletion of the extreme N and C termini of apoA-IV did not significantly affect the cooperativity of unfolding, but deletions past amino acid 333 on the C terminus or amino acid 61 on the N terminus had major destabilizing effects. Functionally, apoA-IV was less efficient than apoA-I at clearing multilamellar phospholipid liposomes and promoting ATP-binding cassette transporter A1-mediated cholesterol efflux. However, deletion of a C-terminal region of apoA-IV, which is devoid of predicted amphipathic alpha helices (amino acids 333-376) stimulated both of these activities dramatically. We conclude that the amphipathic alpha helices in apoA-IV form a single, large domain that may be similar to the N-terminal helical bundle domains of apoA-I and apoE but that apoA-IV lacks the C-terminal lipid-binding and cholesterol efflux-promoting domain present in these apolipoproteins. In fact, the C terminus of apoA-IV appears to reduce the ability of apoA-IV to interact with lipids and promote cholesterol efflux. This indicates that, although apoA-IV may have evolved from gene duplication events of ancestral apolipoproteins and shares the basic amphipathic helical building blocks, the overall localization of

  4. Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing.

    PubMed

    Li, H; Bingham, P M

    1991-10-18

    Two unrelated pre-mRNA splicing regulators-suppressor-of-white-apricot (su(wa)) and transformer (tra)-contain distinctive, approximately 120 amino acid arginine/serine (RS)-rich domains. Deletion of the su(wa) RS domain eliminates function. Replacement with the tra RS domain restores su(wa) function to nearly wild-type levels. Replacement with a 10 amino acid simple nuclear entry signal allows partial, inefficient function. Thus, the su(wa) RS domain apparently serves a generic function(s) subsuming nuclear entry. Moreover, immunocytochemical studies demonstrate that both RS domains specifically direct localization of a fused reporter protein to a punctate subnuclear compartment shown previously to be enriched in several constitutive splicing components. We propose that RS domains are a new class of targeting signals directing concentration of proteins in a subnuclear compartment implicated in splicing metabolism. PMID:1655279

  5. NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications.

    PubMed

    Gao, Guanghua; DeRose, Eugene F; Kirby, Thomas W; London, Robert E

    2006-02-14

    The base excision repair (BER) process requires removal of an abasic deoxyribose-5-phosphate group, a catalytic activity that has been demonstrated for the N-terminal 8 kDa domain of DNA polymerase beta (Pol beta), and for the homologous domain of DNA polymerase lambda (Pol lambda). Previous studies have demonstrated that this activity results from formation of a Schiff base adduct of the abasic deoxyribose C-1' with a lysine residue (K312 in the case of Pol lambda), followed by a beta-elimination reaction. To better understand the underlying chemistry, we have determined pKa values for the lysine residues in the Pol lambda lyase domain labeled with [epsilon-13C]lysine. At neutral pH, the H(epsilon) protons on 3 of the 10 lysine residues in this domain, K287, K291, and K312, exhibit chemical shift inequivalence that results from immobilization of the lysyl side chains. For K287 and K291, this results from the K287-E261 and K291-E298 salt bridge interactions, while for K312, immobilization apparently results from steric and hydrogen-bonding interactions that constrain the position of the lysine side chain. The pKa value of K312 is depressed to 9.58, a value indicating that at physiological pH K312 will exist predominantly in the protonated form. Titration of the domain with hairpin DNA containing a 5'-tetrahydrofuran terminus to model the abasic site produced shifts of the labeled lysine resonances that were in fast exchange but appeared to be complete at a stoichiometry of approximately 1:1.3, consistent with a dissociation constant of approximately 1 microM. The epsilon-proton shifts of K273 were the most sensitive to the addition of the DNA, apparently due to changes in the relative orientation between K273 and W274 in the DNA complex. The average pKa values increased by 0.55, consistent with the formation of some DNA-lysine salt bridges and with the general pH increase expected to result from a reduction in the net positive charge of the complex. A general

  6. Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals

    PubMed Central

    Muxworthy, Adrian R.; Williams, Wyn

    2009-01-01

    Magnetotactic bacteria contain chains of magnetically interacting crystals (magnetosome crystals), which they use for navigation (magnetotaxis). To improve magnetotaxis efficiency, the magnetosome crystals (usually magnetite or greigite in composition) should be magnetically stable single-domain (SSD) particles. Smaller single-domain particles become magnetically unstable owing to thermal fluctuations and are termed superparamagnetic (SP). Previous calculations for the SSD/SP threshold size or blocking volume did not include the contribution of magnetic interactions. In this study, the blocking volume has been calculated as a function of grain elongation and separation for chains of identical magnetite grains. The inclusion of magnetic interactions was found to decrease the blocking volume, thereby increasing the range of SSD behaviour. Combining the results with previously published calculations for the SSD to multidomain threshold size in chains of magnetite reveals that interactions significantly increase the SSD range. We argue that chains of interacting magnetosome crystals found in magnetotactic bacteria have used this effect to improve magnetotaxis. PMID:19091684

  7. Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals.

    PubMed

    Muxworthy, Adrian R; Williams, Wyn

    2009-12-01

    Magnetotactic bacteria contain chains of magnetically interacting crystals (magnetosome crystals), which they use for navigation (magnetotaxis). To improve magnetotaxis efficiency, the magnetosome crystals (usually magnetite or greigite in composition) should be magnetically stable single-domain (SSD) particles. Smaller single-domain particles become magnetically unstable owing to thermal fluctuations and are termed superparamagnetic (SP). Previous calculations for the SSD/SP threshold size or blocking volume did not include the contribution of magnetic interactions. In this study, the blocking volume has been calculated as a function of grain elongation and separation for chains of identical magnetite grains. The inclusion of magnetic interactions was found to decrease the blocking volume, thereby increasing the range of SSD behaviour. Combining the results with previously published calculations for the SSD to multidomain threshold size in chains of magnetite reveals that interactions significantly increase the SSD range. We argue that chains of interacting magnetosome crystals found in magnetotactic bacteria have used this effect to improve magnetotaxis. PMID:19091684

  8. Genetics of cognitive control: Implications for Nimh's research domain criteria initiative.

    PubMed

    Glahn, David C; Knowles, Emma E M; Pearlson, Godfrey D

    2016-01-01

    Cognitive control refers to a set of mental processes that modulate other cognitive and emotional systems in service of goal-directed adaptive behavior. There is growing support for the notion that cognitive control abnormalities are a central component of many of the neuropsychological deficits observed in individuals with mental illnesses, particularly those with psychotic disorders. NIMH's research domain criteria (RDoC) initiative, which is designed to develop biologically informed constructs to better understand psychopathology, designated cognitive control a construct within the cognitive systems domain. Identification of genes that influence cognitive control or its supportive brain systems will improve our understating of the RDoC construct and provide candidate genes for psychotic disorders. We examine evidence for cognitive control deficits in psychosis, determine if these measures could be useful endophenotypes, and explore work linking genetic variation to cognitive control performance. While there is a wealth of evidence to support the notion the cognitive control is a valid endophenotype for psychosis, its genetic underpinning remains ill characterized. However, existing work provides a promising foundation on which future endeavors might build. Confirming existing individual gene associations will go some way to expanding our understanding of the genetics of cognitive control, and by extension, psychotic disorders. Yet, to truly understand the molecular underpinnings of such complex traits, it may be necessary to evaluate genes in tandem, focusing not on single genes but rather on empirically derived gene sets or on functionally defined networks of genes. PMID:26768522

  9. Late replicating domains are highly recombining in females but have low male recombination rates: implications for isochore evolution.

    PubMed

    Pink, Catherine J; Hurst, Laurence D

    2011-01-01

    In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in analysis of GC

  10. Critical single domain grain sizes in chains of interacting greigite particles: Implications for magnetosome crystals

    NASA Astrophysics Data System (ADS)

    Muxworthy, Adrian R.; Williams, Wyn; Roberts, Andrew P.; Winklhofer, Michael; Chang, Liao; Pósfai, Mihály

    2013-12-01

    Magnetotactic bacteria contain chains of magnetically interacting crystals (magnetosomes), which aid navigation (magnetotaxis). To improve the efficiency of magnetotaxis, magnetosome crystals (which can consist of magnetite or greigite) should be magnetically stable single domain (SD) particles. Larger particles subdivide into nonuniform multidomain (MD) magnetic structures that produce weaker magnetic signals, while small SD particles become magnetically unstable due to thermal fluctuations and exhibit superparamagnetic (SP) behavior. In this study, we determined the stable SD range as a function of grain elongation and interparticle separation for chains of identical greigite grains using fundamental parameters recently determined for greigite. Interactions significantly increase the stable SD range. For example, for cube-shaped greigite grains the upper stable SD threshold size is increased from 107 nm for isolated grains to 204 nm for touching grains arranged in chains. The larger critical SD grain size for greigite means that, compared to magnetite magnetosomes, greigite magnetosomes can produce larger magnetic signals without the need for intergrain interactions.

  11. Leucocyte cellular adhesion molecules.

    PubMed

    Yong, K; Khwaja, A

    1990-12-01

    Leucocytes express adhesion promoting receptors which mediate cell-cell and cell-matrix interactions. These adhesive interactions are crucial to the regulation of haemopoiesis and thymocyte maturation, the direction and control of leucocyte traffic and migration through tissues, and in the development of immune and non-immune inflammatory responses. Several families of adhesion receptors have been identified (Table). The leucocyte integrin family comprises 3 alpha beta heterodimeric membrane glycoproteins which share a common beta subunit, designated CD18. The alpha subunits of each of the 3 members, lymphocyte function associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1) and p150,95 are designated CD11a, b and c respectively. These adhesion molecules play a critical part in the immune and inflammatory responses of leucocytes. The leucocyte integrin family is, in turn, part of the integrin superfamily, members of which are evolutionally, structurally and functionally related. Another Integrin subfamily found on leucocytes is the VLA group, so-called because the 'very late activation antigens' VLA-1 and VLA-2 were originally found to appear late in T-cell activation. Members of this family function mainly as extracellular matrix adhesion receptors and are found both on haemopoietic and non-haemopoietic cells. They play a part in diverse cellular functions including tissue organisation, lymphocyte recirculation and T-cell immune responses. A third integrin subfamily, the cytoadhesins, are receptors on platelets and endothelial cells which bind extracellular matrix proteins. A second family of adhesion receptors is the immunoglobulin superfamily, members of which include CD2, LFA-3 and ICAM-1, which participate in T-cell adhesive interactions, and the antigen-specific receptors of T and B cells, CD4, CD8 and the MHC Class I and II molecules. A recently recognised family of adhesion receptors is the selectins, characterised by a common lectin domain. Leucocyte

  12. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  13. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications

    SciTech Connect

    Holden, Lauren G.; Prochnow, Courtney; Chang, Y. Paul; Bransteitter, Ronda; Chelico, Linda; Sen, Udayaditya; Stevens, Raymond C.; Goodman, Myron F.; Chen, Xiaojiang S.

    2009-04-07

    The APOBEC family members are involved in diverse biological functions. APOBEC3G restricts the replication of human immunodeficiency virus (HIV), hepatitis B virus and retroelements by cytidine deamination on single-stranded DNA or by RNA binding. Here we report the high-resolution crystal structure of the carboxy-terminal deaminase domain of APOBEC3G (APOBEC3G-CD2) purified from Escherichia coli. The APOBEC3G-CD2 structure has a five-stranded {beta}-sheet core that is common to all known deaminase structures and closely resembles the structure of another APOBEC protein, APOBEC2. A comparison of APOBEC3G-CD2 with other deaminase structures shows a structural conservation of the active-site loops that are directly involved in substrate binding. In the X-ray structure, these APOBEC3G active-site loops form a continuous 'substrate groove' around the active centre. The orientation of this putative substrate groove differs markedly (by 90 degrees) from the groove predicted by the NMR structure. We have introduced mutations around the groove, and have identified residues involved in substrate specificity, single-stranded DNA binding and deaminase activity. These results provide a basis for understanding the underlying mechanisms of substrate specificity for the APOBEC family.

  14. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  15. Her2/neu extracellular domain shedding in uterine serous carcinoma: implications for immunotherapy with trastuzumab

    PubMed Central

    Todeschini, P; Cocco, E; Bellone, S; Varughese, J; Lin, K; Carrara, L; Guzzo, F; Buza, N; Hui, P; Silasi, D-A; Ratner, E; Azodi, M; Schwartz, P E; Rutherford, T J; Pecorelli, S; Santin, A D

    2011-01-01

    Background: We evaluated shedding of epidermal growth factor type II receptor (Her2/neu) extracellular domain (ECD) in primary uterine serous carcinoma (USC) cell lines and in the serum of USC patients and its biological effects in experiments of trastuzumab-induced cytotoxicity in vitro. Methods: Her2/neu expression was evaluated by immunohistochemistry (IHC), real-time PCR and flow cytometry, while c-erbB2 gene amplification was assessed using fluorescent in situ hybridisation (FISH). Her2/neu ECD levels in the supernatants of USC cell lines and in the serum of 38 USC patients and 19 controls were tested using ELISA. The biologic effect of Her2/neu ECD on trastuzumab-induced antibody-dependent cell-mediated cytotoxicity (ADCC) was evaluated in 5-h chromium-release assays. Results: Five out of ten USC cell lines overexpressed Her2/neu by IHC and showed amplification of the c-erbB2 gene. High levels of Her2/neu ECD were found in supernatants of all FISH-positive tumours. In contrast, FISH-negative USC was negative for Her2/neu ECD shedding. Serum Her2/neu ECD levels in patients harbouring 3+Her2/neu tumours were higher than those found in healthy women (P=0.02) or USC patients with 2+ or 1+/negative Her2/neu expression (P=0.02). In cytotoxicity experiments, trastuzumab-mediated ADCC was significantly decreased by the addition of Her2/neu ECD-containing supernatants (P=0.01). Conclusion: FISH-positive c-erbB2 USC cell lines shed high levels of Her2/neu ECD. High levels of Her2/neu ECD in USC patients may reduce trastuzumab-mediated ADCC in vitro and potentially neutralise its therapeutic effect in vivo. PMID:21915118

  16. The Three-dimensional Structure of the Extracellular Adhesion Domain of the Sialic Acid-binding Adhesin SabA from Helicobacter pylori

    PubMed Central

    Pang, Siew Siew; Nguyen, Stanley Thai Son; Perry, Andrew J.; Day, Christopher J.; Panjikar, Santosh; Tiralongo, Joe; Whisstock, James C.; Kwok, Terry

    2014-01-01

    The gastric pathogen Helicobacter pylori is a major cause of acute chronic gastritis and the development of stomach and duodenal ulcers. Chronic infection furthermore predisposes to the development of gastric cancer. Crucial to H. pylori survival within the hostile environment of the digestive system are the adhesins SabA and BabA; these molecules belong to the same protein family and permit the bacteria to bind tightly to sugar moieties LewisB and sialyl-LewisX, respectively, on the surface of epithelial cells lining the stomach and duodenum. To date, no representative SabA/BabA structure has been determined, hampering the development of strategies to eliminate persistent H. pylori infections that fail to respond to conventional therapy. Here, using x-ray crystallography, we show that the soluble extracellular adhesin domain of SabA shares distant similarity to the tetratricopeptide repeat fold family. The molecule broadly resembles a golf putter in shape, with the head region featuring a large cavity surrounded by loops that vary in sequence between different H. pylori strains. The N-terminal and C-terminal helices protrude at right angles from the head domain and together form a shaft that connects to a predicted outer membrane protein-like β-barrel trans-membrane domain. Using surface plasmon resonance, we were able to detect binding of the SabA adhesin domain to sialyl-LewisX and LewisX but not to LewisA, LewisB, or LewisY. Substitution of the highly conserved glutamine residue 159 in the predicted ligand-binding pocket abrogates the binding of the SabA adhesin domain to sialyl-LewisX and LewisX. Taken together, these data suggest that the adhesin domain of SabA is sufficient in isolation for specific ligand binding. PMID:24375407

  17. Adrenohepatic fusion: Adhesion or invasion in primary virilizant giant adrenal carcinoma? Implications for surgical resection. Two case report and review of the literature

    PubMed Central

    Alastrué Vidal, Antonio; Navinés López, Jordi; Julián Ibáñez, Juan Francisco; De la Ossa Merlano, Napoleón; Botey Fernandez, Mireia; Sampere Moragues, Jaume; Sánchez Torres, Maria del Carmen; Barluenga Torres, Eva; Fernández-Llamazares Rodríguez, Jaime

    2015-01-01

    Introduction Adrenohepatic fusion means union between the adrenal gland and the liver, intermingling its parenchymas. It is not possible to identify this condition by image tests. Its presence implies radical and multidisciplinar approach. Presentation of cases We report two female cases of 45 and 50 years old with clinical virilization and palpable mass on the abdominal right upper quadrant corresponding to adrenocortical carcinoma with hepatic fusion. The contrast-enhanced tomography showed an indistinguishable mass involving the liver and the right adrenal gland. In the first case, the patient had a two-time operation, the former removing only the adrenal carcinoma, and the second performing a radical surgery after an early relapse. In the second case, a radical right en bloc adrenohepatectomy was performed. Both cases were pathologically reported as liver-infiltrating adrenal carcinoma. Only in the second case the surgery was radical effective as first intention to treat, with 3 years of disease-free survival. Discussion ACC is a rare entity with poor prognosis. The major indicators of malignancy are tumour diameter over 6 cm, local invasion or metastasis, secretion of corticosteroids, virilization and hypertension and hypokalaemia. The parenchymal fusion of the adrenal cortical layer can be misdiagnosed as hepatocellular carcinoma with adhesion with the Glisson capsule. AHF in such cases may be misinterpreted during surgery, what may impair its resectability, and therefore the survival. The surgical treatment must be performed en bloc, often using liver vascular control. Postoperative treatment must be offered immediately after surgery. Conclusion We report two consecutive rare cases of adrenohepatic fusion in giant right adrenocortical carcinoma, not detectable by imaging, what has important implications for the surgical decision-making. As radical surgery is the best choice to offer a curative treatment, it has to be performed by a multidisciplinary well

  18. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. PMID:24375512

  19. Polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Bell, V. L.; Saintclair, T. L. (Inventor)

    1974-01-01

    A process of preparing aromatic polyamide-acids for use as adhesives is described. An equimolar quantity of an aromatic dianhydride is added to a stirred solution of an aromatic diamine in a water or alcohol-miscible ether solvent to obtain a viscous polymer solution. The polymeric-acid intermediate polymer does not become insoluble but directly forms a smooth viscous polymer solution. These polyamic-acid polymers are converted, by heating in the range of 200-300 C and with pressure, to form polyimides with excellent adhesive properties.

  20. Fault reactivation by stress pattern reorganization in the Hyblean foreland domain of SE Sicily (Italy) and seismotectonic implications

    NASA Astrophysics Data System (ADS)

    Cultrera, Fabrizio; Barreca, Giovanni; Scarfì, Luciano; Monaco, Carmelo

    2015-10-01

    Between the October 2011 and the July 2012, several seismic swarms occurred in the Hyblean foreland domain of SE Sicily (Italy) along the Cavagrande Canyon, one of the most impressive fluvial incisions of Sicily. Despite the low magnitude of the events (main shock with M ~ 3.7), they represent the biggest strain release of the Hyblean area over the last 10 years. A careful waveform analysis of the earthquakes revealed that most of them form a family of "multiplets". These findings allow us to reconstruct the attitude of the accountable fault plane by interpolating their high-precision 3D location parameters into a GIS platform. A detailed morpho-structural analysis, performed at the ideal updip projection of the modeled plane, showed that during the Middle-Late Pleistocene the epicentral area has been deformed by a belt of extensional faults, a segment of which matches well with the computer-generated surface. Despite the field evidence, computed focal solutions support contrasting strike-slip kinematics on the same fault plane, clearly indicating a dextral shearing on this pre-existing normal fault. The seismic swarms nucleated on a small rupture area along a ~ 10 km long, NW-SE trending fault segment, that could be able to generate M ~ 6 earthquakes. Following our analysis and looking at seismicity distribution in the SE portion of Hyblean area, we assess that a stress pattern reorganization occurred all over the Hyblean foreland between the Late Pleistocene and present-day. Change in the trajectory of the max stress axes (from vertical to horizontal) seems to have involved a pre-existing large-scale fault configuration with considerable seismotectonic implications.

  1. Crystal structure of histidine-rich glycoprotein N2 domain reveals redox activity at an interdomain disulfide bridge: implications for angiogenic regulation

    PubMed Central

    Kassaar, Omar; McMahon, Stephen A.; Thompson, Rory; Botting, Catherine H.; Naismith, James H.

    2014-01-01

    Histidine-rich glycoprotein (HRG) is a plasma protein consisting of 6 distinct functional domains and is an important regulator of key cardiovascular processes, including angiogenesis and coagulation. The protein is composed of 2 N-terminal domains (N1 and N2), 2 proline-rich regions (PRR1 and PRR2) that flank a histidine-rich region (HRR), and a C-terminal domain. To date, structural information of HRG has largely come from sequence analysis and spectroscopic studies. It is thought that an HRG fragment containing the HRR, released via plasmin-mediated cleavage, acts as a negative regulator of angiogenesis in vivo. However, its release also requires cleavage of a disulphide bond suggesting that its activity is mediated by a redox process. Here, we present a 1.93 Å resolution crystal structure of the N2 domain of serum-purified rabbit HRG. The structure confirms that the N2 domain, which along with the N1 domain, forms an important molecular interaction site on HRG, possesses a cystatin-like fold composed of a 5-stranded antiparallel β-sheet wrapped around a 5-turn α-helix. A native N-linked glycosylation site was identified at Asn184. Moreover, the structure reveals the presence of an S-glutathionyl adduct at Cys185, which has implications for the redox-mediated release of the antiangiogenic cleavage product from HRG. PMID:24501222

  2. Crystal structure of caspase recruiting domain (CARD) of apoptosis repressor with CARD (ARC) and its implication in inhibition of apoptosis

    PubMed Central

    Jang, Tae-ho; Kim, Seong Hyun; Jeong, Jae-Hee; Kim, Sunghwan; Kim, Yeun Gil; Park, Hyun Ho

    2015-01-01

    Apoptosis repressor with caspase recruiting domain (ARC) is a multifunctional inhibitor of apoptosis that is unusually over-expressed or activated in various cancers and in the state of the pulmonary hypertension. Therefore, ARC might be an optimal target for therapeutic intervention. Human ARC is composed of two distinct domains, N-terminal caspase recruiting domain (CARD) and C-terminal P/E (proline and glutamic acid) rich domain. ARC inhibits the extrinsic apoptosis pathway by interfering with DISC formation. ARC CARD directly interacts with the death domains (DDs) of Fas and FADD, as well as with the death effector domains (DEDs) of procaspase-8. Here, we report the first crystal structure of the CARD domain of ARC at a resolution of 2.4 Å. Our structure was a dimer with novel homo-dimerization interfaces that might be critical to its inhibitory function. Interestingly, ARC did not exhibit a typical death domain fold. The sixth helix (H6), which was detected at the typical death domain fold, was not detected in the structure of ARC, indicating that H6 may be dispensable for the function of the death domain superfamily. PMID:26038885

  3. Bacteriocin-producing strains of Lactobacillus plantarum inhibit adhesion of Staphylococcus aureus to extracellular matrix: quantitative insight and implications in antibacterial therapy.

    PubMed

    Mukherjee, Sandipan; Ramesh, Aiyagari

    2015-12-01

    In the present study, the adhesion of bacteriocin-producing probiotic strains of Lactobacillus plantarum onto extracellular matrix (ECM) proteins such as collagen and mucin and their potential to prevent pathogen invasion onto the ECM was ascertained. Fluorescence-based in vitro assays indicated that L. plantarum strains CRA21, CRA38 and CRA52 displayed considerable adhesion to ECM molecules, which was comparable to the probiotic Lactobacillus rhamnosus GG. Flow cytometry-based quantitative assessment of the adhesion potential suggested that L. plantarum CRA21 exhibited superior adhesion onto the ECM as compared with other lactic acid bacteria strains. Furthermore, fluorescence-based assays suggested that the highest inhibition of Staphylococcus aureus adhesion onto collagen and mucin by bacteriocin-producing L. plantarum strains was observed in the exclusion mode as compared with the competition and displacement modes. This observation was supported by the higher binding affinity (k(d)) for the ECM exhibited by the L. plantarum strains as compared with S. aureus. Interestingly, a crude plantaricin A extract from food isolates of L. plantarum displayed potent antibacterial activity on ECM-adhered S. aureus cells. It is envisaged that the L. plantarum isolates displaying bacteriocinogenic and ECM-adhering traits can perhaps be explored to develop safe antibacterial therapeutic agents. PMID:26445850

  4. Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets

    PubMed Central

    Díaz-Moreno, Irene; Hollingworth, David; Kelly, Geoff; Martin, Stephen; García-Mayoral, MaríaFlor; Briata, Paola; Gherzi, Roberto; Ramos, Andres

    2010-01-01

    KSRP is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for cellular proliferation and inflammatory response factors. The selectivity of this mRNA degradation mechanism relies on KSRP recognition of AU-rich elements in the mRNA 3′UTR, that is mediated by KSRP’s KH domains. Our structural analysis shows that the inter-domain linker orients the two central KH domains of KSRP—and their RNA-binding surfaces—creating a two-domain unit. We also show that this inter-domain arrangement is important to the interaction with KSRP’s RNA targets. PMID:20385598

  5. From the Cover: Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa.

    PubMed

    Wadley, Lyn; Hodgskiss, Tamaryn; Grant, Michael

    2009-06-16

    Compound adhesives made from red ochre mixed with plant gum were used in the Middle Stone Age (MSA), South Africa. Replications reported here suggest that early artisans did not merely color their glues red; they deliberately effected physical transformations involving chemical changes from acidic to less acidic pH, dehydration of the adhesive near wood fires, and changes to mechanical workability and electrostatic forces. Some of the steps required for making compound adhesive seem impossible without multitasking and abstract thought. This ability suggests overlap between the cognitive abilities of modern people and people in the MSA. Our multidisciplinary analysis provides a new way to recognize complex cognition in the MSA without necessarily invoking the concept of symbolism. PMID:19433786

  6. Adhesive curing through low-voltage activation

    PubMed Central

    Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.

    2015-01-01

    Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at −2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives. PMID:26282730

  7. Defining the role of a FYVE domain in the localization and activity of a cAMP phosphodiesterase implicated in osmoregulation in Trypanosoma cruzi.

    PubMed

    Schoijet, Alejandra C; Miranda, Kildare; Medeiros, Lia Carolina Soares; de Souza, Wanderley; Flawiá, Mirtha M; Torres, Héctor N; Pignataro, Omar P; Docampo, Roberto; Alonso, Guillermo D

    2011-01-01

    Intracellular levels of cyclic nucleotide second messengers are regulated predominantly by a large superfamily of phosphodiesterases (PDEs). Trypanosoma cruzi, the causative agent of Chagas disease, encodes four different PDE families. One of these PDEs, T. cruzi PDE C2 (TcrPDEC2) has been characterized as a FYVE domain containing protein. Here, we report a novel role for TcrPDEC2 in osmoregulation in T. cruzi and reveal the relevance of its FYVE domain. Our data show that treatment of epimastigotes with TcrPDEC2 inhibitors improves their regulatory volume decrease, whereas cells overexpressing this enzyme are unaffected by the same inhibitors. Consistent with these results, TcrPDEC2 localizes to the contractile vacuole complex, showing strong labelling in the region corresponding to the spongiome. Furthermore, transgenic parasites overexpressing a truncated version of TcrPDEC2 without the FYVE domain show a failure in its targeting to the contractile vacuole complex and a marked decrease in PDE activity, supporting the importance of this domain to the localization and activity of TcrPDEC2. Taking together, the results here presented are consistent with the importance of the cyclic AMP signalling pathway in regulatory volume decrease and implicate TcrPDEC2 as a specifically localized PDE involved in osmoregulation in T. cruzi. PMID:21166893

  8. Implications of Human Transient Receptor Potential Melastatin 8 (TRPM8) Channel Gating from Menthol Binding Studies of the Sensing Domain.

    PubMed

    Rath, Parthasarathi; Hilton, Jacob K; Sisco, Nicholas J; Van Horn, Wade D

    2016-01-12

    The transient receptor potential melastatin 8 (TRPM8) ion channel is the primary cold sensor in humans. TRPM8 is gated by physiologically relevant cold temperatures and chemical ligands that induce cold sensations, such as the analgesic compound menthol. Characterization of TRPM8 ligand-gated channel activation will lead to a better understanding of the fundamental mechanisms that underlie TRPM8 function. Here, the direct binding of menthol to the isolated hTRPM8 sensing domain (transmembrane helices S1-S4) is investigated. These data are compared with two mutant sensing domain proteins, Y745H (S2 helix) and R842H (S4 helix), which have been previously identified in full length TRPM8 to be menthol insensitive. The data presented herein show that menthol specifically binds to the wild type, Y745H, and R842H TRPM8 sensing domain proteins. These results are the first to show that menthol directly binds to the TRPM8 sensing domain and indicates that Y745 and R842 residues, previously identified in functional studies as crucial to menthol sensitivity, do not affect menthol binding but instead alter coupling between the sensing domain and the pore domain. PMID:26653082

  9. Crystal structure of TRAF1 TRAF domain and its implications in the TRAF1-mediated intracellular signaling pathway

    PubMed Central

    Kim, Chang Min; Choi, Jae Young; Bhat, Eijaz Ahmed; Jeong, Jae-Hee; Son, Young-Jin; Kim, Sunghwan; Park, Hyun Ho

    2016-01-01

    TNF-receptor associated factor (TRAF) proteins are key adaptor molecules containing E3 ubiquitin ligase activity that play a critical role in immune cell signaling. TRAF1 is a unique family of TRAF lacking the N-terminal RING finger domain. TRAF1 is an important scaffold protein that participates in TNFR2 signaling in T cells as a negative or positive regulator via direct interaction with TRAF2, which has recently been identified as a pro-apoptotic regulator in neuronal cell death. Here, we report the first crystal structure of the TRAF1 TRAF domain containing both the TRAF-N coiled-coil domain and the TRAF-C domain. Our structure reveals both similarities and differences with other TRAF family members, which may be functionally relevant to TRAFs. We also found that the TRAF-N coiled-coil domain of TRAF1 is critical for the trimer formation and stability of the protein. Finally, we found that conserved surface residues on the TRAF1 TRAF domain that might be binding hot spots that are critical for interaction with signaling molecules. PMID:27151821

  10. Crystal structure of TRAF1 TRAF domain and its implications in the TRAF1-mediated intracellular signaling pathway.

    PubMed

    Kim, Chang Min; Choi, Jae Young; Bhat, Eijaz Ahmed; Jeong, Jae-Hee; Son, Young-Jin; Kim, Sunghwan; Park, Hyun Ho

    2016-01-01

    TNF-receptor associated factor (TRAF) proteins are key adaptor molecules containing E3 ubiquitin ligase activity that play a critical role in immune cell signaling. TRAF1 is a unique family of TRAF lacking the N-terminal RING finger domain. TRAF1 is an important scaffold protein that participates in TNFR2 signaling in T cells as a negative or positive regulator via direct interaction with TRAF2, which has recently been identified as a pro-apoptotic regulator in neuronal cell death. Here, we report the first crystal structure of the TRAF1 TRAF domain containing both the TRAF-N coiled-coil domain and the TRAF-C domain. Our structure reveals both similarities and differences with other TRAF family members, which may be functionally relevant to TRAFs. We also found that the TRAF-N coiled-coil domain of TRAF1 is critical for the trimer formation and stability of the protein. Finally, we found that conserved surface residues on the TRAF1 TRAF domain that might be binding hot spots that are critical for interaction with signaling molecules. PMID:27151821

  11. Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from interleukin-18-activated hepatic sinusoidal endothelium: implications for circulating cancer cell arrest in the murine liver.

    PubMed

    Mendoza, L; Carrascal, T; De Luca, M; Fuentes, A M; Salado, C; Blanco, J; Vidal-Vanaclocha, F

    2001-08-01

    The mechanism of intrasinusoidal arrest of circulating cancer cells, which is a critical step in liver metastasis, appears to be facilitated by tumor-derived proinflammatory factors that increase sinusoidal cell adhesion receptors for cancer cells. However, how this prometastatic microenvironment is up-regulated remains unknown. Using intrasplenically injected B16 melanoma (B16M) cells, we show that the expression of vascular cell adhesion molecule-1 (VCAM-1) significantly increased in hepatic sinusoidal endothelium (HSE) cells over physiologic baseline within the first 24 hours of metastatic cancer cell infiltration in the liver. This correlated with increased in vitro adhesion of B16M cells to HSE cells isolated from B16M cell-injected mice. In vivo VCAM-1 blockade with specific antibodies before B16M cell injection decreased sinusoidal retention of luciferase-transfected B16M cells by 85%, and metastasis development by 75%, indicating that VCAM-1 expression on tumor-activated HSE cells had a prometastatic contribution. Because VCAM-1 expression is oxidative stress-inducible, recombinant catalase was in vivo administered, resulting in a complete abrogation of both VCAM-1 expression and B16M cell adhesion increases in HSE cells isolated from B16M cell-injected mice. Catalase also abrogated the proadhesive response of HSE cells to B16M-conditioned medium (B16M-CM) in vitro, although this did not affect the concomitant release of major proinflammatory cytokines by HSE cells. HSE cells treated with B16M-CM released interleukin (IL)-18 via tumor necrosis factor-alpha (TNF-alpha)-dependent IL-1beta in vitro. In turn, H(2)O(2) production from B16M-CM-treated HSE cells was regulated by IL-18. Thus, liver-infiltrating B16M cells activated their adhesion to HSE through a sequential process involving TNF-alpha-dependent IL-1beta, which induced IL-18 to up-regulate VCAM-1 via H(2)O(2). The pivotal position of H(2)O(2) was further supported by the fact that incubation of HSE

  12. Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains.

    PubMed Central

    Weng, Z; Thomas, S M; Rickles, R J; Taylor, J A; Brauer, A W; Seidel-Dugan, C; Michael, W M; Dreyfuss, G; Brugge, J S

    1994-01-01

    Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through

  13. Allostery Is an Intrinsic Property of the Protease Domain of DegS Implications for Enzyme Function and Evolution

    SciTech Connect

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T.

    2010-12-02

    DegS is a periplasmic Escherichia coli protease, which functions as a trimer to catalyze the initial rate-limiting step in a proteolytic cascade that ultimately activates transcription of stress response genes in the cytoplasm. Each DegS subunit consists of a protease domain and a PDZ domain. During protein folding stress, DegS is allosterically activated by peptides exposed in misfolded outer membrane porins, which bind to the PDZ domain and stabilize the active protease. It is not known whether allostery is conferred by the PDZ domains or is an intrinsic feature of the trimeric protease domain. Here, we demonstrate that free DegS{sup {Delta}PDZ} equilibrates between active and inactive trimers with the latter species predominating. Substrate binding stabilizes active DegS{sup {Delta}PDZ} in a positively cooperative fashion. Mutations can also stabilize active DegS{sup {Delta}PDZ} and produce an enzyme that displays hyperbolic kinetics and degrades substrate with a maximal velocity within error of that for fully activated, intact DegS. Crystal structures of multiple DegS{sup {Delta}PDZ} variants, in functional and non-functional conformations, support a two-state model in which allosteric switching is mediated by changes in specific elements of tertiary structure in the context of an invariant trimeric base. Overall, our results indicate that protein substrates must bind sufficiently tightly and specifically to the functional conformation of DegS{sup {Delta}PDZ} to assist their own degradation. Thus, substrate binding alone may have regulated the activities of ancestral DegS trimers with subsequent fusion of the protease domain to a PDZ domain, resulting in ligand-mediated regulation.

  14. Molecular Basis of Kindlin-2 Binding to Integrin-linked Kinase Pseudokinase for Regulating Cell Adhesion*

    PubMed Central

    Fukuda, Koichi; Bledzka, Kamila; Yang, Jun; Perera, H. Dhanuja; Plow, Edward F.; Qin, Jun

    2014-01-01

    Integrin-linked kinase (ILK) is a distinct intracellular adaptor essential for integrin-mediated cell-extracellular matrix adhesion, cell spreading, and migration. Acting as a major docking platform in focal adhesions, ILK engages many proteins to dynamically link integrins with the cytoskeleton, but the underlying mechanism remains elusive. Here, we have characterized the interaction of ILK with kindlin-2, a key regulator for integrin bidirectional signaling. We show that human kindlin-2 binds to human ILK with high affinity. Using systematic mapping approaches, we have identified a major ILK binding site involving a 20-residue fragment (residues 339–358) in kindlin-2. NMR-based analysis reveals a helical conformation of this fragment that utilizes its leucine-rich surface to recognize the ILK pseudokinase domain in a mode that is distinct from another ILK pseudokinase domain binding protein, α-parvin. Structure-based mutational experiments further demonstrate that the kindlin-2 binding to ILK is crucial for the kindlin-2 localization to focal adhesions and cell spreading (integrin outside-in signaling) but dispensable for the kindlin-2-mediated integrin activation (integrin inside-out signaling). These data define a specific mode of the kindlin-2/ILK interaction with mechanistic implications as to how it spatiotemporally mediates integrin signaling and cell adhesion. PMID:25160619

  15. The 9S RNA precursor of Escherichia coli 5S RNA has three structural domains: implications for processing.

    PubMed Central

    Christiansen, J

    1988-01-01

    The secondary structure of the 9S RNA precursor to ribosomal 5S RNA in Escherichia coli has been determined using chemical reagents and ribonucleases in combination with a reverse transcription procedure. The 9S RNA precursor was generated in vitro by T7 RNA polymerase, and the rrnB operon terminator, T1, was able to terminate the in vitro transcript. The secondary structure model exhibits three structural domains corresponding to a 5' region, a mature region and a terminator region. The mature domain is structurally identical to 5S RNA, and the ribosomal proteins L18 and L25 are able to bind to the precursor. The processing endoribonuclease RNase E cleaves between the structural domains. Moreover, an intramolecular refolding of the nascent transcript must take place if the current view of RNase III processing stems is correct. Images PMID:3045757

  16. Conformational heterogeneity of the Roc domains in C. tepidum Roc–COR and implications for human LRRK2 Parkinson mutations

    PubMed Central

    Rudi, Katharina; Ho, Franz Y.; Gilsbach, Bernd K.; Pots, Henderikus; Wittinghofer, Alfred; Kortholt, Arjan; Klare, Johann P.

    2015-01-01

    Ras of complex proteins (Roc) is a Ras-like GTP-binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide (nt)-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with site-directed spin labelling and pulse EPR distance measurements to follow conformational changes during the Roco G-protein cycle. Our results confirm that the COR domains are a stable dimerization device serving as a scaffold for the Roc domains that, in contrast, are structurally heterogeneous and dynamic entities. Contrary to other GAD proteins, we observed only minor structural alterations upon binding and hydrolysis of GTP, indicating significant mechanistic variations within this protein class. Mutations in the most prominent member of the Roco family of proteins, leucine-rich repeat (LRR) kinase 2 (LRRK2), are the most frequent cause of late-onset Parkinson's disease (PD). Using a stable recombinant LRRK2 Roc-COR-kinase fragment we obtained detailed kinetic data for the G-protein cycle. Our data confirmed that dimerization is essential for efficient GTP hydrolysis and PD mutations in the Roc domain result in decreased GTPase activity. Previous data have shown that these LRRK2 PD-mutations are located in the interface between Roc and COR. Importantly, analogous mutations in the conserved C. tepidum Roc/COR interface significantly influence the structure and nt-induced conformational changes of the Roc domains. PMID:26310572

  17. Roles of paxillin family members in adhesion and ECM degradation coupling at invadosomes.

    PubMed

    Petropoulos, Christos; Oddou, Christiane; Emadali, Anouk; Hiriart-Bryant, Edwige; Boyault, Cyril; Faurobert, Eva; Vande Pol, Scott; Kim-Kaneyama, Joo-Ri; Kraut, Alexandra; Coute, Yohann; Block, Marc; Albiges-Rizo, Corinne; Destaing, Olivier

    2016-06-01

    Invadosomes are acto-adhesive structures able to both bind the extracellular matrix (ECM) and digest it. Paxillin family members-paxillin, Hic-5, and leupaxin-are implicated in mechanosensing and turnover of adhesion sites, but the contribution of each paxillin family protein to invadosome activities is unclear. We use genetic approaches to show that paxillin and Hic-5 have both redundant and distinctive functions in invadosome formation. The essential function of paxillin-like activity is based on the coordinated activity of LD motifs and LIM domains, which support invadosome assembly and morphology, respectively. However, paxillin preferentially regulates invadosome assembly, whereas Hic-5 regulates the coupling between ECM degradation and acto-adhesive functions. Mass spectrometry analysis revealed new partners that are important for paxillin and Hic-5 specificities: paxillin regulates the acto-adhesive machinery through janus kinase 1 (JAK1), whereas Hic-5 controls ECM degradation via IQGAP1. Integrating the redundancy and specificities of paxillin and Hic-5 in a functional complex provides insights into the coupling between the acto-adhesive and ECM-degradative machineries in invadosomes. PMID:27269065

  18. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    SciTech Connect

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  19. M-Learning: Implications in Learning Domain Specificities, Adaptive Learning, Feedback, Augmented Reality, and the Future of Online Learning

    ERIC Educational Resources Information Center

    Squires, David R.

    2014-01-01

    The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…

  20. Non-destructive Inhibition of Metallofullerenol Gd@C82(OH)22 on WW domain: Implication on Signal Transduction Pathway

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Gu; Huynh, Tien; Zhou, Ruhong

    2012-12-01

    Endohedral metallofullerenol Gd@C82(OH)22 has recently been shown to effectively inhibit tumor growth; however, its potential adverse bioeffects remain to be understood before its wider applications. Here, we present our study on the interaction between Gd@C82(OH)22 and WW domain, a representative protein domain involved in signaling and regulatory pathway, using all-atom explicit solvent molecular dynamics simulations. We find that Gd@C82(OH)22 has an intrinsic binding preference to the binding groove, particularly the key signature residues Y28 and W39. In its binding competition with the native ligand PRM, Gd@C82(OH)22 is shown to easily win the competition over PRM in occupying the active site, implying that Gd@C82(OH)22 can impose a potential inhibitory effect on the WW domain. Further analyses with binding free energy landscapes reveal that Gd@C82(OH)22 can not only directly block the binding site of the WW domain, but also effectively distract the PRM from its native binding pocket.

  1. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity.

    PubMed Central

    Borel, F; Vincent, C; Leberman, R; Härtlein, M

    1994-01-01

    Escherichia coli seryl-tRNA synthetase (SerRS) a dimeric class II aminoacyl-tRNA synthetase with two structural domains charges specifically the five iso-acceptor tRNA(ser) as well as the tRNA(sec) (selC product) of E. coli. The N-terminal domain is a 60 A long arm-like coiled coil structure built of 2 long antiparallel a-h helices, whereas the C-terminal domain is a alpha-beta structure. A deletion of the N-terminal arm of the enzyme does not affect the amino acid activation step of the reaction, but reduces dramatically amino-acylation activity. The Kcat/Km value for the mutant enzyme is reduced by more than 4 orders of magnitude, with a nearly 30 fold increased Km value for tRNA(ser). An only slightly truncated mutant form (16 amino acids of the tip of the arm replaced by a glycine) has an intermediate aminoacylation activity. Both mutant synthetases have lost their specificity for tRNA(ser) and charge also non-cognate type 1 tRNA(s). Our results support the hypothesis that class II synthetases have evolved from an ancestral catalytic core enzyme by adding non-catalytic N-terminal or C-terminal tRNA binding (specificity) domains which act as determinants for cognate and anti-determinants for non-cognate tRNAs. Images PMID:8065908

  2. Traditional Glue, Adhesive and Poison Used for Composite Weapons by Ju/’hoan San in Nyae Nyae, Namibia. Implications for the Evolution of Hunting Equipment in Prehistory

    PubMed Central

    2015-01-01

    Ju/’hoan hunters from Nyae Nyae, near Tsumkwe in Namibia, demonstrate the manufacture of three fixative pastes made from plant extracts, and poison made from grubs and plant extracts. Ammocharis coranica and Terminalia sericea produce simple glue. Ozoroa schinzii latex mixed with carbonized Aristeda adscensionis grass is a compound adhesive. Composite poison is made from Chrysomelid grub viscera mixed with salivary extracts of Acacia mellifera inner bark and the tuber sap of Asparagus exuvialis. In order to document potential variability in the chaîne opératoire, and to eliminate inherent biases associated with unique observations, we studied manufacturing processes in three separate Nyae Nyae villages. Although there are methodological similarities in the Nyae Nyae area, we observed a few differences in contemporary traditions of poison manufacture. For example, some hunters make powder from Asparagus exuvialis tuber sap by boiling, reducing, hardening and grinding it, while others simply use heated sap. The Ju/’hoan hunting kit provides insights for archaeologists, but we must exercise caution when looking for continuity between prehistoric and historical technical systems. Some traditions have been lost to modern hunters, while others are new. We should also expect variability in the Stone Age because of geographically restricted resources. Simple glue, compound adhesive, and poison recipes identified in the Stone Age have no modern equivalents. By about 60,000 years ago at Diepkloof, simple glue was used for hafting tools, but at similarly-aged Sibudu there are recipes that combine red ochre powder with plant and/or animal ingredients. At Border Cave, novel poisons and compound adhesives were used in the Early Later Stone Age. It is possible that the complexity that we record in the manufacture of fixative pastes and poison used by Ju/’hoan hunters represents a hafting system both similar to and different from that observed at the Stone Age sites of

  3. Traditional Glue, Adhesive and Poison Used for Composite Weapons by Ju/'hoan San in Nyae Nyae, Namibia. Implications for the Evolution of Hunting Equipment in Prehistory.

    PubMed

    Wadley, Lyn; Trower, Gary; Backwell, Lucinda; d'Errico, Francesco

    2015-01-01

    Ju/'hoan hunters from Nyae Nyae, near Tsumkwe in Namibia, demonstrate the manufacture of three fixative pastes made from plant extracts, and poison made from grubs and plant extracts. Ammocharis coranica and Terminalia sericea produce simple glue. Ozoroa schinzii latex mixed with carbonized Aristeda adscensionis grass is a compound adhesive. Composite poison is made from Chrysomelid grub viscera mixed with salivary extracts of Acacia mellifera inner bark and the tuber sap of Asparagus exuvialis. In order to document potential variability in the chaîne opératoire, and to eliminate inherent biases associated with unique observations, we studied manufacturing processes in three separate Nyae Nyae villages. Although there are methodological similarities in the Nyae Nyae area, we observed a few differences in contemporary traditions of poison manufacture. For example, some hunters make powder from Asparagus exuvialis tuber sap by boiling, reducing, hardening and grinding it, while others simply use heated sap. The Ju/'hoan hunting kit provides insights for archaeologists, but we must exercise caution when looking for continuity between prehistoric and historical technical systems. Some traditions have been lost to modern hunters, while others are new. We should also expect variability in the Stone Age because of geographically restricted resources. Simple glue, compound adhesive, and poison recipes identified in the Stone Age have no modern equivalents. By about 60,000 years ago at Diepkloof, simple glue was used for hafting tools, but at similarly-aged Sibudu there are recipes that combine red ochre powder with plant and/or animal ingredients. At Border Cave, novel poisons and compound adhesives were used in the Early Later Stone Age. It is possible that the complexity that we record in the manufacture of fixative pastes and poison used by Ju/'hoan hunters represents a hafting system both similar to and different from that observed at the Stone Age sites of Diepkloof

  4. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    NASA Astrophysics Data System (ADS)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that

  5. Effect of water absorption on pollen adhesion.

    PubMed

    Lin, Haisheng; Lizarraga, Leonardo; Bottomley, Lawrence A; Carson Meredith, J

    2015-03-15

    Pollens possess a thin liquid coating, pollenkitt, which plays a major role in adhesion by forming capillary menisci at interfaces. Unfortunately, the influence of humidity on pollenkitt properties and capillary adhesion is unknown. Because humidity varies widely in the environment, the answers have important implications for better understanding plant reproduction, allergy and asthma, and pollen as atmospheric condensation nuclei. Here, pollenkitt-mediated adhesion of sunflower pollen to hydrophilic and hydrophobic surfaces was measured as a function of humidity. The results quantify for the first time the significant water absorption of pollenkitt and the resulting complex dependence of adhesion on humidity. On hydrophilic Si, adhesion increased with increasing RH for pollens with or without pollenkitt, up to 200nN at 70% RH. In contrast, on hydrophobic PS, adhesion of pollenkitt-free pollen is independent of RH. Surprisingly, when pollenkitt was present adhesion forces on hydrophobic PS first increased with RH up to a maximum value at 35% RH (∼160nN), and then decreased with further increases in RH. Independent measurement of pollenkitt properties is used with models of capillary adhesion to show that humidity-dependent changes in pollenkitt wetting and viscosity are responsible for this complex adhesion behavior. PMID:25524008

  6. Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-Src.

    PubMed Central

    Sabe, H; Hata, A; Okada, M; Nakagawa, H; Hanafusa, H

    1994-01-01

    Csk (C-terminal Src kinase), a protein-tyrosine kinase, bearing the Src homology 2 and 3 (SH2 and SH3) domains, has been implicated in phosphorylation of c-Src Tyr-527, resulting in suppression of c-Src kinase activity. We found that mutations in the SH2 or SH3 domain of Csk, though they did not affect its kinase activity, resulted in a loss of suppression of c-Src activity in fibroblasts. In normal fibroblasts, tyrosine-phosphorylated paxillin and focal adhesion kinase pp125FAK, which colocalize at focal adhesion plaques, were the major proteins to which the Csk SH2 domain bound. Loss of binding to these proteins by the Csk SH2 mutants correlated with loss of the activity to suppress c-Src. Consistent with this observation, the levels of tyrosine phosphorylation of paxillin and pp125FAK were greatly reduced during mitosis, whereas the kinase activity of c-Src was elevated. We suggest that the SH2 domain is required for Csk to suppress c-Src, perhaps in combination with the SH3 domain, by anchoring Csk to a particular subcellular location where c-Src may exist. Our data also indicate that a certain fraction of the Csk and Src family kinases function at the focal adhesion plaques. The activity of the c-Src kinase localized at the focal adhesion plaques appears to be regulated by cell adhesion to the extracellular matrix. Images PMID:7513429

  7. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion

    PubMed Central

    Matuska, Andrea M.; McFetridge, Peter S.

    2015-01-01

    Terminal sterilization induces physical and chemical changes in the extracellular matrix (ECM) of ex vivo-derived biomaterials due to their aggressive mechanism of action. Prior studies have focused on how sterilization affects the mechanical integrity of tissue-based biomaterials but have rarely characterized effects on early cellular interaction, which is indicative of the biological response. Using a model fibro-cartilage disc scaffold, these investigations compare the effect of three common sterilization methods [peracetic acid (PAA), gamma irradiation (GI), and ethylene oxide (EtO)] on a range of material properties and characterized early cellular interactions. GI and EtO produced unfavorable structural damage that contributed to inferior cell adhesion. Conversely, exposure to PAA resulted in limited structural alterations while inducing chemical modifications that favored cell attachment. Results suggest that the sterilization approach can be selected to modulate biomaterial properties to favor cellular adhesion and has relevance in tissue engineering and regenerative medicine applications. Furthermore, the study of cellular interactions with modified biomaterials in vitro provides information of how materials may react in subsequent clinical applications. PMID:24895116

  8. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion.

    PubMed

    Matuska, Andrea M; McFetridge, Peter S

    2015-02-01

    Terminal sterilization induces physical and chemical changes in the extracellular matrix (ECM) of ex vivo-derived biomaterials due to their aggressive mechanism of action. Prior studies have focused on how sterilization affects the mechanical integrity of tissue-based biomaterials but have rarely characterized effects on early cellular interaction, which is indicative of the biological response. Using a model fibrocartilage disc scaffold, these investigations compare the effect of three common sterilization methods [peracetic acid (PAA), gamma irradiation (GI), and ethylene oxide (EtO)] on a range of material properties and characterized early cellular interactions. GI and EtO produced unfavorable structural damage that contributed to inferior cell adhesion. Conversely, exposure to PAA resulted in limited structural alterations while inducing chemical modifications that favored cell attachment. Results suggest that the sterilization approach can be selected to modulate biomaterial properties to favor cellular adhesion and has relevance in tissue engineering and regenerative medicine applications. Furthermore, the study of cellular interactions with modified biomaterials in vitro provides information of how materials may react in subsequent clinical applications. PMID:24895116

  9. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications

    PubMed Central

    Cvicek, Vaclav; Goddard, William A.; Abrol, Ravinder

    2016-01-01

    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs

  10. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications.

    PubMed

    Cvicek, Vaclav; Goddard, William A; Abrol, Ravinder

    2016-03-01

    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs

  11. C. elegans patched-3 is an essential gene implicated in osmoregulation and requiring an intact permease transporter domain

    PubMed Central

    Soloviev, Alexander; Gallagher, Joseph; Marnef, Aline; Kuwabara, Patricia E.

    2011-01-01

    The nematode Caenorhabditis elegans has retained a rudimentary Hedgehog (Hh) signalling pathway; Hh and Smoothened (Smo) homologs are absent, but two highly related Patched gene homologs, ptc-1 and ptc-3, and 24 ptc-related (ptr) genes are present. We previously showed that ptc-1 is essential for germ line cytokinesis. Here, we report that ptc-3 is also an essential gene; the absence of ptc-3 results in a late embryonic lethality due to an apparent defect in osmoregulation. Rescue of a ptc-3 mutant with a ptc-3::gfp translational reporter reveals that ptc-3 is dynamically expressed in multiple tissues across development. Consistent with this pattern of expression, ptc-3(RNAi) reveals an additional postembryonic requirement for ptc-3 activity. Tissue-specific promoter studies indicate that hypodermal expression of ptc-3 is required for normal development. Missense changes in key residues of the sterol sensing domain (SSD) and the permease transporter domain GxxxD/E motif reveal that the transporter domain is essential for PTC-3 activity, whereas an intact SSD is dispensable. Taken together, our studies indicate that PTC proteins have retained essential roles in C. elegans that are independent of Smoothened (Smo). These observations reveal novel, and perhaps ancestral, roles for PTC proteins. PMID:21215260

  12. Variation of the neurofilament medium KSP repeat sub-domain across mammalian species: implications for altering axonal structure.

    PubMed

    Barry, D M; Carpenter, C; Yager, C; Golik, B; Barry, K J; Shen, H; Mikse, O; Eggert, L S; Schulz, D J; Garcia, M L

    2010-01-01

    The evolution of larger mammals resulted in a corresponding increase in peripheral nerve length. To ensure optimal nervous system functionality and survival, nerve conduction velocities were likely to have increased to maintain the rate of signal propagation. Increases of conduction velocities may have required alterations in one of the two predominant properties that affect the speed of neuronal transmission: myelination or axonal diameter. A plausible mechanism to explain faster conduction velocities was a concomitant increase in axonal diameter with evolving axonal length. The carboxy terminal tail domain of the neurofilament medium subunit is a determinant of axonal diameter in large caliber myelinated axons. Sequence analysis of mammalian orthologs indicates that the neurofilament medium carboxy terminal tail contains a variable lysine-serine-proline (KSP) repeat sub-domain flanked by two highly conserved sub-domains. The number of KSP repeats within this region of neurofilament medium varies among species. Interestingly, the number of repeats does not change within a species, suggesting that selective pressure conserved the number of repeats within a species. Mapping KSP repeat numbers onto consensus phylogenetic trees reveals independent KSP expansion events across several mammalian clades. Linear regression analyses identified three subsets of mammals, one of which shows a positive correlation in the number of repeats with head-body length. For this subset of mammals, we hypothesize that variations in the number of KSP repeats within neurofilament medium carboxy terminal tail may have contributed to an increase in axonal caliber, increasing nerve conduction velocity as larger mammals evolved. PMID:20008369

  13. Cadherin Cell Adhesion System in Canine Mammary Cancer: A Review

    PubMed Central

    Gama, Adelina; Schmitt, Fernando

    2012-01-01

    Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin) in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis. PMID:22973534

  14. A four-domain Kunitz-type proteinase inhibitor from Solen grandis is implicated in immune response.

    PubMed

    Wei, Xiumei; Yang, Jialong; Yang, Jianmin; Liu, Xiangquan; Liu, Meijun; Yang, Dinglong; Xu, Jie; Hu, Xiaoke

    2012-12-01

    Serine proteinase inhibitor (SPI) serves as a negative regulator in immune signal pathway by restraining the activities of serine proteinase (SP) and plays an essential role in the innate immunity. In the present study, a Kunitz-type SPI was identified from the mollusk razor clam Solen grandis (designated as SgKunitz). The full-length cDNA of SgKunitz was of 1284 bp, containing an open reading frame (ORF) of 768 bp. The ORF encoded four Kunitz domains, and their amino acids were well conserved when compared with those in other Kunitz-type SPIs, especially the six cysteines involved in forming of three disulfide bridges in each domain. In addition, the tertiary structure of all the four domains adopted a typical model of Kunitz-type SPI family, indicating SgKunitz was a new member of Kunitz-type SPI superfamily. The mRNA transcripts of SgKunitz were detected in all tested tissues of razor clam, including muscle, mantle, gonad, gill, hepatopancreas and hemocytes, and with the highest expression level in gill. When the razor clams were stimulated by LPS, PGN or β-1, 3-glucan, the expression level of SgKunitz mRNA in hemocytes was significantly up-regulated (P < 0.01), suggesting SgKunitz might involved in the processes of inhibiting the activity of SPs during the immune responses triggered by various pathogens. Furthermore, the recombinant protein of SgKunitz could effectively inhibit the activities of SP trypsin and chymotrypsin in vitro. The present results suggested SgKunitz could serve as an inhibitor of SP involving in the immune response of S. grandis, and provided helpful evidences to understand the regulation mechanism of immune signal pathway in mollusk. PMID:23022284

  15. The time domain and static sky science from the Pan-STARRS1 Surveys and implications for the TMT

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth

    2014-07-01

    Pan-STARRS1 has completed a 4 year observing program of a suite of sky surveys. A brief overview of the PS1 surveys and the scientific results with an emphasis on the time domain will be presented together with some results from other surveys. All PS1 data products and derived data products will be released to the community through the STScI MAST portal April 1, 2015. Potential future surveys with Pan-STARRS and synergies with TMT will be discussed.

  16. Deregulation of focal adhesion pathway mediated by miR-659-3p is implicated in bone marrow infiltration of stage M neuroblastoma patients

    PubMed Central

    Lagazio, Corrado; Persico, Luca; Carlini, Barbara; Varesio, Luigi; Morandi, Fabio; Morini, Martina; Gigliotti, Anna Rita; Esposito, Maria Rosaria; Viscardi, Elisabetta; Cecinati, Valerio; Conte, Massimo; Corrias, Maria Valeria

    2015-01-01

    To get insights on the metastatic process of human neuroblastoma (NB), the miRNA expression profile of bone marrow (BM)-infiltrating cells has been determined and compared to that of primary tumors. Twenty-two BM-infiltrating cells, 22 primary tumors, and 4 paired samples from patients with metastatic NB aged > 12 months were analyzed for the expression of 670 miRNAs by stem-loop RT-qPCR. The miRNAs whose expression was significantly different were subjected to selection criteria, and 20 selected miRNAs were tested in 10 additional BM-infiltrating cells and primary tumors. Among the miRNAs confirmed to be differentially expressed, miR-659-3p was further analyzed. Transfection of miR-659-3p mimic and inhibitor demonstrated the specific suppression and over-expression, respectively, of the miR-659-3p target gene CNOT1, a regulator of transcription of genes containing AU-rich element (ARE) sequence. Among the ARE-containing genes, miR-659-3p mimic and inhibitor specifically modified the expression of AKT3, BCL2, CYR61 and THSB2, belonging to the focal adhesion pathway. Most importantly, in BM-infiltrating cells CNOT1 expression was significantly higher, and that of AKT3, BCL2, THSB2 and CYR61 was significantly lower than in primary tumors. Thus, our study suggests a role of the focal adhesion pathway, regulated by miR-659-3p through CNOT1, in the human NB metastatic process. PMID:25980492

  17. Analysis of Altered MicroRNA Expression Profiles in Proximal Renal Tubular Cells in Response to Calcium Oxalate Monohydrate Crystal Adhesion: Implications for Kidney Stone Disease

    PubMed Central

    Wang, Bohan; Wu, Bolin; Liu, Jun; Yao, Weimin; Xia, Ding; Li, Lu; Chen, Zhiqiang; Ye, Zhangqun; Yu, Xiao

    2014-01-01

    Background Calcium oxalate monohydrate (COM) is the major crystalline component in kidney stones and its adhesion to renal tubular cells leads to tubular injury. However, COM-induced toxic effects in renal tubular cells remain ambiguous. MicroRNAs (miRNAs) play an important role in gene regulation at the posttranscriptional levels. Objective The present study aimed to assess the potential changes in microRNAs of proximal renal tubular cells in response to the adhesion of calcium oxalate monohydrate (COM) crystals. Methodology Lactate dehydrogenase (LDH) activity and DAPI staining were used to measure the toxic effects of HK-2 cells exposed to COM crystals. MicroRNA microarray and mRNA microarray were applied to evaluate the expression of HK-2 cells exposed to COM crystals. Quantitative real-time PCR (qRT-PCR) technology was used to validate the microarray results. Target prediction, Gene Ontology (GO) analysis and pathway analysis were applied to predict the potential roles of microRNAs in biological processes. Principal Findings Our study showed that COM crystals significantly altered the global expression profile of miRNAs in vitro. After 24 h treatment with a dose (1 mmol/L), 25 miRNAs were differentially expressed with a more than 1.5-fold change, of these miRNAs, 16 were up-regulated and 9 were down-regulated. A majority of these differentially expressed miRNAs were associated with cell death, mitochondrion and metabolic process. Target prediction and GO analysis suggested that these differentially expressed miRNAs potentially targeted many genes which were related to apoptosis, regulation of metabolic process, intracellular signaling cascade, insulin signaling pathway and type 2 diabetes. Conclusion Our study provides new insights into the role of miRNAs in the pathogenesis associated with nephrolithiasis. PMID:24983625

  18. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  19. Gender Differences in Material, Psychological, and Social Domains of the Income Gradient in Mortality: Implications for Policy

    PubMed Central

    Muennig, Peter; Kuebler, Meghan; Kim, Jaeseung; Todorovic, Dusan; Rosen, Zohn

    2013-01-01

    We set out to examine the material, psychological, and sociological pathways mediating the income gradient in health and mortality. We used the 2008 General Social Survey-National Death Index dataset (N = 26,870), which contains three decades of social survey data in the US linked to thirty years of mortality follow-up. We grouped a large number of variables into 3 domains: material, psychological, and sociological using factor analysis. We then employed discrete-time hazard models to examine the extent to which these three domains mediated the income-mortality association among men and women. Overall, the gradient was weaker for females than for males. While psychological and material factors explained mortality hazards among females, hazards among males were explained only by social capital. Poor health significantly predicted both income and mortality, particularly among females, suggesting a strong role for reverse causation. We also find that many traditional associations between income and mortality are absent in this dataset, such as perceived social status. PMID:23527129

  20. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    PubMed Central

    Boothe, Tobias; Lim, Gareth E.; Cen, Haoning; Skovsø, Søs; Piske, Micah; Li, Shu Nan; Nabi, Ivan R.; Gilon, Patrick; Johnson, James D.

    2016-01-01

    Objective The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. PMID:27110488

  1. Cadherin-11 localizes to focal adhesions and promotes cell–substrate adhesion

    PubMed Central

    Langhe, Rahul P.; Gudzenko, Tetyana; Bachmann, Michael; Becker, Sarah F.; Gonnermann, Carina; Winter, Claudia; Abbruzzese, Genevieve; Alfandari, Dominique; Kratzer, Marie-Claire; Franz, Clemens M.; Kashef, Jubin

    2016-01-01

    Cadherin receptors have a well-established role in cell–cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with β1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell–matrix adhesion during cell migration. PMID:26952325

  2. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  3. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  4. Understanding marine mussel adhesion.

    PubMed

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  5. Neurite Fasciculation Mediated by Complexes of Axonin-1 and Ng Cell Adhesion Molecule

    PubMed Central

    Kunz, Stefan; Spirig, Marianne; Ginsburg, Claudia; Buchstaller, Andrea; Berger, Philipp; Lanz, Rainer; Rader, Christoph; Vogt, Lorenz; Kunz, Beat; Sonderegger, Peter

    1998-01-01

    Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons. PMID:9852159

  6. αvβ3 Integrin Mediates the Cell-adhesive Capacity and Biological Activity of Basic Fibroblast Growth Factor (FGF-2) in Cultured Endothelial Cells

    PubMed Central

    Rusnati, Marco; Tanghetti, Elena; Dell’Era, Patrizia; Gualandris, Anna; Presta, Marco

    1997-01-01

    Fibroblast growth factor-2 (FGF-2) immobilized on non-tissue culture plastic promotes adhesion and spreading of bovine and human endothelial cells that are inhibited by anti-FGF-2 antibody. Heat-inactivated FGF-2 retains its cell-adhesive activity despite its incapacity to bind to tyrosine-kinase FGF receptors or to cell-surface heparan sulfate proteoglycans. Recombinant glutathione-S-transferase-FGF-2 chimeras and synthetic FGF-2 fragments identify two cell-adhesive domains in FGF-2 corresponding to amino acid sequences 38–61 and 82–101. Both regions are distinct from the FGF-receptor-binding domain of FGF-2 and contain a DGR sequence that is the inverse of the RGD cell-recognition sequence. Calcium deprivation, RGD-containing eptapeptides, soluble vitronectin (VN), but not fibronectin (FN), inhibit cell adhesion to FGF-2. Conversely, soluble FGF-2 prevents cell adhesion to VN but not FN, thus implicating VN receptor in the cell-adhesive activity of FGF-2. Accordingly, monoclonal and polyclonal anti-αvβ3 antibodies prevent cell adhesion to FGF-2. Also, purified human αvβ3 binds to immobilized FGF-2 in a cation-dependent manner, and this interaction is competed by soluble VN but not by soluble FN. Finally, anti-αvβ3 monoclonal and polyclonal antibodies specifically inhibit mitogenesis and urokinase-type plasminogen activator (uPA) up-regulation induced by free FGF-2 in endothelial cells adherent to tissue culture plastic. These data demonstrate that FGF-2 interacts with αvβ3 integrin and that this interaction mediates the capacity of the angiogenic growth factor to induce cell adhesion, mitogenesis, and uPA up-regulation in endothelial cells. PMID:9398667

  7. MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion.

    PubMed

    Huang, Xun; Cheng, Hwai Jong; Tessier-Lavigne, Marc; Jin, Yishi

    2002-05-16

    The netrin UNC-6 repels motor axons by activating the UNC-5 receptor alone or in combination with the UNC-40/DCC receptor. In a genetic screen for C. elegans mutants exhibiting partial defects in motor axon projections, we isolated the max-1 gene (required for motor neuron axon guidance). max-1 loss-of-function mutations cause fully penetrant but variable axon guidance defects. Mutations in unc-5 and unc-6, but not in unc-40, dominantly enhance the mutant phenotypes of max-1, whereas overexpression of unc-5 or unc-6, but not of unc-40, bypasses the requirement for max-1. MAX-1 proteins contain PH, MyTH4, and FERM domains and appear to be localized to neuronal processes. Human MAX-1 and UNC5H2 colocalize in discrete subcellular regions of transfected cells. Our results suggest a possible role for MAX-1 in netrin-induced axon repulsion by modulating the UNC-5 receptor signaling pathway. PMID:12062040

  8. From WaterML to TimeseriesML: Evolution and implications for cross-domain data interoperability

    NASA Astrophysics Data System (ADS)

    Arctur, D. K.; Taylor, P.; Lowe, D.; Tomkins, J.; Teng, W. L.; Ames, D. P.

    2015-12-01

    WaterML 2.0 part 1 was adopted by the Open Geospatial Consortium (OGC) in 2012 as an international standard profile of the Observations and Measurements conceptual model, for exchange of water observations time series data. It is implemented by national data producers such as the US Geological Survey for surface water time series, the NOAA/National Weather Service for forecast time series, the French Geological Survey for groundwater level monitoring, and the Australian Bureau of Meteorology for surface water observations. But WaterML 2.0 is not "just for water". The World Meteorological Organization (WMO) has recognized its potential role as a common time series description that could work for multiple application domains such as meteorology, climate, oceanography, and others. Accordingly, the WMO requested the OGC to migrate the non-hydrology parts of WaterML 2.0 to a new standard to be called TimeseriesML. This would then be considered by WMO for adoption as an operational standard globally. What does this mean for the geosciences? How far can this time series description be applied? What about time series of satellite retrievals? What will happen to WaterML 2.0 (and applications that work with it) when TimeseriesML is finished? These are among the questions we address in this presentation.

  9. Implication of complex vertebral malformation and bovine leukocyte adhesion deficiency DNA-based testing on disease frequency in the Holstein population.

    PubMed

    Schütz, E; Scharfenstein, M; Brenig, B

    2008-12-01

    Two inherited lethal disorders, bovine leukocyte adhesion deficiency (BLAD) and complex vertebral malformation (CVM), play a major role in breeding of Holstein cattle. Both inherited diseases are based on single nucleotide polymorphisms that have been known for 12 and 7 yr, respectively. A total of 25,753 cattle were genotyped for BLAD (18,200 tests) and CVM (14,493 tests) in our laboratory since the beginning of the genotyping programs for these diseases. Based on founder effects, the CVM mutation is thought to be linked to milk production. The BLAD was genotyped using RFLP until 2001; then a fluorescence resonance energy transfer assay on a LightCycler was used, as for CVM genotyping. By using single nucleotide polymorphism-aided breeding, the allelic frequency of the BLAD and CVM mutations in the active sire population was reduced from 9.4% in 1997 to 0.3% in 2007 (BLAD) and from 8.3% in 2002 to 2.3% in 2007 (CVM), with calculated half-life of the mutant allele of 2.1 yr for BLAD and 3.6 yr for CVM. An observed increase of BLAD frequency in 1999 could be attributed to the massive use of a BLAD-positive sire tested falsely negative in another laboratory. These data show that marker-assisted selection is capable of substantially reducing the frequency of a mutation within a period of not more than 5 yr. The different selection strategies against the lethal recessive allele in CVM and BLAD are reflected in the different reduction rates of the specific allele frequencies. PMID:19038961

  10. Major histocompatibility complex class I-intercellular adhesion molecule-1 association on the surface of target cells: implications for antigen presentation to cytotoxic T lymphocytes.

    PubMed

    Lebedeva, Tatiana; Anikeeva, Nadja; Kalams, Spyros A; Walker, Bruce D; Gaidarov, Ibragim; Keen, James H; Sykulev, Yuri

    2004-12-01

    Polarization and segregation of the T-cell receptor (TCR) and integrins upon productive cytotoxic T-lymphocyte (CTL) target cell encounters are well documented. Much less is known about the redistribution of major histocompatibility complex class I (MHC-I) and intercellular adhesion molecule-1 (ICAM-1) proteins on target cells interacting with CTLs. Here we show that human leucocyte antigen-A2 (HLA-A2) MHC-I and ICAM-1 are physically associated and recovered from both the raft fraction and the fraction of soluble membranes of target cells. Conjugation of target cells with surrogate CTLs, i.e. polystyrene beads loaded with antibodies specific for HLA-A2 and ICAM-1, induced the accumulation of membrane rafts, and beads loaded with ICAM-1-specific antibodies caused the selective recruitment of HLA-A2 MHC-I at the contact area of the target cells. Disruption of raft integrity on target cells led to a release of HLA-A2 and ICAM-1 from the raft fraction, abatement of HLA-A2 polarization, and diminished the ability of target cells bearing viral peptides to induce a Ca(2+) flux in virus-specific CTLs. These data suggest that productive engagement of ICAM-1 on target cells facilitates the polarization of MHC-I at the CTL-target cell interface, augmenting presentation of cognate peptide-MHC (pMHC) complexes to CTLs. We propose that ICAM-1-MHC-I association on the cell membrane is a mechanism that enhances the linkage between antigen recognition and early immunological synapse formation. PMID:15554924

  11. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Haupenthal, Viola J.; Zimmer, Valerie C.; Hartmann, Tobias

    2013-01-01

    One of the characteristic hallmarks of Alzheimer’s disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes. PMID:24391587

  12. Structural Studies on the Extracellular Domain of Sensor Histidine Kinase YycG from Staphylococcus aureus and Its Functional Implications.

    PubMed

    Kim, Truc; Choi, Jongkeun; Lee, Sangho; Yeo, Kwon Joo; Cheong, Hae-Kap; Kim, Kyeong Kyu

    2016-07-31

    Bacterial two-component signal transduction systems are used to adapt to fluctuations in the environment. YycG, a key two-component histidine kinase in Staphylococcus aureus, plays an essential role in cell viability and regulates cell wall metabolism, biofilm formation, virulence, and antibiotic resistance. For these reasons, YycG is considered a compelling target for the development of novel antibiotics. However, to date, the signaling mechanism of YycG and its stimulus are poorly understood mainly because of a lack of structural information on YycG. To address this deficiency, we determined the crystal structure of the extracellular domain of S. aureus YycG (YycGex) at 2.0-Å resolution. The crystal structure indicated two subunits with an extracellular Per-Arnt-Sim (PAS) topology packed into a dimer with interloop interactions. Disulfide scanning using cysteine-substituted mutants revealed that YycGex possessed dimeric interfaces not only in the loop but also in the helix α1. Cross-linking studies using intact YycG demonstrated that it was capable of forming high molecular weight oligomers on the cell membrane. Furthermore, we also observed that two auxiliary proteins of YycG, YycH and YycI, cooperatively interfered with the multimerization of YycG. From these results, we propose that signaling through YycG is regulated by multimerization and binding of YycH and YycI. These structural studies, combined with biochemical analyses, provide a better understanding of the signaling mechanism of YycG, which is necessary for developing novel antibacterial drugs targeting S. aureus. PMID:27389096

  13. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  14. Ultrafast ligand rebinding in the heme domain of the oxygen sensors FixL and Dos: general regulatory implications for heme-based sensors.

    PubMed

    Liebl, Ursula; Bouzhir-Sima, Latifa; Negrerie, Michel; Martin, Jean-Louis; Vos, Marten H

    2002-10-01

    Heme-based oxygen sensors are part of ligand-specific two-component regulatory systems, which have both a relatively low oxygen affinity and a low oxygen-binding rate. To get insight into the dynamical aspects underlying these features and the ligand specificity of the signal transduction from the heme sensor domain, we used femtosecond spectroscopy to study ligand dynamics in the heme domains of the oxygen sensors FixL from Bradyrhizobium japonicum (FixLH) and Dos from Escherichia coli (DosH). The heme coordination with different ligands and the corresponding ground-state heme spectra of FixLH are similar to myoglobin (Mb). After photodissociation, the excited-state properties and ligand-rebinding kinetics are qualitatively similar for FixLH and Mb for CO and NO as ligands. In contrast to Mb, the transient spectra of FixLH after photodissociation of ligands are distorted compared with the ground-state difference spectra, indicating differences in the heme environment with respect to the unliganded state. This distortion is particularly marked for O(2). Strikingly, heme-O(2) recombination occurs with efficiency unprecedented for heme proteins, in approximately 5 ps for approximately 90% of the dissociated O(2). For DosH-O(2), which shows 60% sequence similarity to FixLH, but where signal detection and transmission presumably are quite different, a similarly fast recombination was found with an even higher yield. Altogether these results indicate that in these sensors the heme pocket acts as a ligand-specific trap. The general implications for the functioning of heme-based ligand sensors are discussed in the light of recent studies on heme-based NO and CO sensors. PMID:12271121

  15. Magnetic characterization of non-ideal single-domain monoclinic pyrrhotite and its demagnetization under hydrostatic pressure up to 2 GPa with implications for impact demagnetization

    NASA Astrophysics Data System (ADS)

    Bezaeva, Natalia S.; Chareev, Dmitriy A.; Rochette, Pierre; Kars, Myriam; Gattacceca, Jérôme; Feinberg, Joshua M.; Sadykov, Ravil A.; Kuzina, Dilyara M.; Axenov, Sergey N.

    2016-08-01

    Here we present a comprehensive magnetic characterization of synthesized non-ideal single-domain (SD) monoclinic pyrrhotite (Fe7S8). The samples were in the form of a powder and a powder dispersed in epoxy. "Non-ideal" refers to a powder fraction of predominantly SD size with a minor contribution of small pseudo-single-domain grains; such non-ideal SD pyrrhotite was found to be a remanence carrier in several types of meteorites (carbonaceous chondrites, SNC…), which justifies the usage of synthetic compositions as analogous to natural samples. Data were collected from 5 to 633 K and include low-field magnetic susceptibility (χ0), thermomagnetic curves, major hysteresis loops, back-field remanence demagnetization curves, first-order reversal curves (FORCs), alternating field and pressure demagnetization of saturation isothermal remanent magnetization (SIRM), low temperature data (such as zero-field-cooled and field-cooled remanence datasets together with room temperature SIRM cooling-warming cycles) as well as XRD and Mössbauer spectra. The characteristic Besnus transition is observed at ∼33 K. FORC diagrams indicate interacting SD grains. The application of hydrostatic pressure up to 2 GPa using nonmagnetic high-pressure cells resulted in the demagnetization of the sample by 32-38%. Repeated cycling from 1.8 GPa to atmospheric pressure and back resulted in a total remanence decrease of 44% (after 3 cycles). Pressure demagnetization experiments have important implications for meteorite paleomagnetism and suggest that some published paleointensities of meteorites with non-ideal SD monoclinic pyrrhotite as remanence carrier may be lower limits because shock demagnetization was not accounted for.

  16. Searching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew P.; Chang, Liao; Heslop, David; Florindo, Fabio; Larrasoaña, Juan C.

    2012-08-01

    Magnetic hysteresis measurements of sediments have resulted in widespread reporting of “pseudo-single-domain”-like magnetic properties. In contrast, the ideal single domain (SD) properties that would be expected to be responsible for high quality paleomagnetic records are rare. Determining whether SD particles are rare or common in sediments requires application of techniques that enable discrimination among different magnetic components in a sediment. We apply a range of such techniques and find that SD particles are much more common than has been reported in the literature and that magnetite magnetofossils (the inorganic remains of magnetotactic bacteria) are widely preserved at depth in a range of sediment types, including biogenic pelagic carbonates, lacustrine and marine clays, and possibly even in glaci-marine sediments. Thus, instead of being rarely preserved in the geological record, we find that magnetofossils are widespread. This observation has important implications for our understanding of how sediments become magnetized and highlights the need to develop a more robust basis for understanding how biogenic magnetite contributes to the magnetization of sediments. Magnetofossils also have grain sizes that are substantially smaller than the 1-15 μm size range for which there is reasonable empirical support for relative paleointensity studies. The different magnetic response of coexisting fine biogenic and coarser lithogenic particles is likely to complicate relative paleointensity studies. This issue needs much closer attention. Despite the fact that sediments have been subjected to paleomagnetic investigation for over 60 years, much remains to be understood about how they become magnetized.

  17. Mechanism of Focal Adhesion Kinase Mechanosensing.

    PubMed

    Zhou, Jing; Aponte-Santamaría, Camilo; Sturm, Sebastian; Bullerjahn, Jakob Tómas; Bronowska, Agnieszka; Gräter, Frauke

    2015-11-01

    Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. PMID:26544178

  18. Mechanism of Focal Adhesion Kinase Mechanosensing

    PubMed Central

    Sturm, Sebastian; Bullerjahn, Jakob Tómas; Bronowska, Agnieszka; Gräter, Frauke

    2015-01-01

    Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. PMID:26544178

  19. [Adhesion to the antiretroviral treatment].

    PubMed

    Carballo, M

    2004-12-01

    The objective of the therapy antiretroviral is to improve the quality of life and the survival of the persons affected by the VIH through the suppression of the viral replication. Nevertheless one of the present problems is the resistant apparition of stumps to the new medicines caused by an incorrect management of the therapeutic plan; by an incorrect adhesion of the personal processing. Since the therapeutic success will depend, among others factors, and of important form of the degree of implication and commitment of the person affected, is a matter of identifying prematurely the possible situations concomitants (personal factors and of addiction, psycho-social, related to the processing and its possible secondary effects, associated factors to the own illness or even to the relation professional-patient) that can interfere in a correct adhesion. For it is necessary of the interaction multidisciplinary of the welfare team, and fundamental the work of nursing at the moment of to detect the possible determinant factors and the intervention definition of strategies arrived at by consensus with the own person, that they promote it or it improve. The quantification of the degree of adhesion (measure in %) values through various direct and indirect methods and should keep in mind in it takes of therapeutic decisions being able to come to be advised the suspension of the processing until obtaining to conscience to the person affected of the importance of a correct therapeutic compliance. PMID:15672996

  20. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  1. Force transmission during adhesion-independent migration.

    PubMed

    Bergert, Martin; Erzberger, Anna; Desai, Ravi A; Aspalter, Irene M; Oates, Andrew C; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K

    2015-04-01

    When cells move using integrin-based focal adhesions, they pull in the direction of motion with large, ∼100 Pa, stresses that contract the substrate. Integrin-mediated adhesions, however, are not required for in vivo confined migration. During focal adhesion-free migration, the transmission of propelling forces, and their magnitude and orientation, are not understood. Here, we combine theory and experiments to investigate the forces involved in adhesion-free migration. Using a non-adherent blebbing cell line as a model, we show that actin cortex flows drive cell movement through nonspecific substrate friction. Strikingly, the forces propelling the cell forward are several orders of magnitude lower than during focal-adhesion-based motility. Moreover, the force distribution in adhesion-free migration is inverted: it acts to expand, rather than contract, the substrate in the direction of motion. This fundamentally different mode of force transmission may have implications for cell-cell and cell-substrate interactions during migration in vivo. PMID:25774834

  2. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  3. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  4. Nascent Integrin Adhesions Form on All Matrix Rigidities after Integrin Activation.

    PubMed

    Changede, Rishita; Xu, Xiaochun; Margadant, Felix; Sheetz, Michael P

    2015-12-01

    Integrin adhesions assemble and mature in response to ligand binding and mechanical factors, but the molecular-level organization is not known. We report that ∼100-nm clusters of ∼50 β3-activated integrins form very early adhesions under a wide variety of conditions on RGD surfaces. These adhesions form similarly on fluid and rigid substrates, but most adhesions are transient on rigid substrates. Without talin or actin polymerization, few early adhesions form, but expression of either the talin head or rod domain in talin-depleted cells restores early adhesion formation. Mutation of the integrin binding site in the talin rod decreases cluster size. We suggest that the integrin clusters constitute universal early adhesions and that they are the modular units of cell matrix adhesions. They require the association of activated integrins with cytoplasmic proteins, in particular talin and actin, and cytoskeletal contraction on them causes adhesion maturation for cell motility and growth. PMID:26625956

  5. Domains and Naive Theories

    PubMed Central

    Gelman, Susan A.; Noles, Nicholaus S.

    2013-01-01

    Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This review examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children’s classification of biological and non-biological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning. PMID:24187603

  6. Postoperative Adhesion Development Following Cesarean and Open Intra-Abdominal Gynecological Operations

    PubMed Central

    Awonuga, Awoniyi O.; Fletcher, Nicole M.; Saed, Ghassan M.; Diamond, Michael P.

    2011-01-01

    In this review, we discuss the pathophysiology of adhesion development, the impact of physiological changes associated with pregnancy on markers of adhesion development, and the clinical implications of adhesion development following cesarean delivery (CD). Although peritoneal adhesions develop after the overwhelming majority of intra-abdominal and pelvic surgery, there is evidence in the literature that suggests that patients having CD may develop adhesions less frequently. However, adhesions continue to be a concern after CD, and are likely significant, albeit on average less than after gynecological operations, but with potential to cause significant delay in the delivery of the baby with serious, lifelong consequences. Appreciation of the pathophysiology of adhesion development described herein should allow a more informed approach to the rapidly evolving field of intra-abdominal adhesions and should serve as a reference for an evidence-based approach to consideration for the prevention and treatment of adhesions. PMID:21775773

  7. Postoperative Peritoneal Adhesions

    PubMed Central

    Ryan, Graeme B.; Grobéty, Jocelyne; Majno, Guido

    1971-01-01

    This paper describes an experimental model of peritoneal adhesions, in the rat, based on two relatively minor accidents that may occur during abdominal surgery in man: drying of the serosa, and bleeding. Drying alone had little effect; drying plus bleeding consistently produced adhesions to the dried area. Fresh blood alone produced adhesions between the three membranous structures [omentum and pelvic fat bodies (PFBs)]. The formation of persistent adhesions required whole blood. Preformed clots above a critical size induced adhesions even without previous serosal injury; they were usually captured by the omentum and PFBs. If all three membranous structures were excised, the clots caused visceral adhesions. The protective role of the omentum, its structure, and the mechanism of omental adhesions, are discussed. These findings are relevant to the pathogenesis of post-operative adhesions in man. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 12Fig 13Fig 1Fig 2Fig 14Fig 15Fig 8Fig 9Fig 10Fig 11 PMID:5315369

  8. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles. PMID:20844908

  9. Adhesion of latex films. Influence of surfactants

    SciTech Connect

    Charmeau, J.Y.; Kientz, E.; Holl, Y.

    1996-12-31

    In the applications of film forming latexes in paint, paper, coating, adhesive, textile industries, one of the most important property of latex films is adhesion onto a support. From the point of view of adhesion, latex films have two specificities. The first one arises from the particular structure of the film which is usually not homogeneous but retains to a certain extent the memory of the particles it was made from. These structure effects are clearly apparent when one compares mechanical or adhesion properties of pure latex films and of films of the same polymers but prepared from a solution. Latex films show higher Young`s moduli and lower adhesion properties than solution films. The second specificity of latex films comes from the presence of the surfactant which was used in the synthesis and as stabilizer for the latex. Most industrial latexes contain low amounts of surfactant, typically in the range 0.1 to 2-3 wt%. However, being usually incompatible with the polymer, the surfactant is not homogeneously distributed in the film. It tends to segregate towards the film-air or film-support interfaces or to form domains in the bulk of the film. Distribution of surfactants in latex films has been studied by several authors. The influence of the surfactant on adhesion, as well as on other properties, is thus potentially very important. This article presents the results of the authors investigation of surfactant effects on adhesion properties of latex films. To the authors knowledge, there is no other example, in the open literature, of this kind of study.

  10. The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites

    PubMed Central

    Karaköse, Esra; Geiger, Tamar; Flynn, Kevin; Lorenz-Baath, Katrin; Zent, Roy; Mann, Matthias; Fässler, Reinhard

    2015-01-01

    ABSTRACT PINCH-1 is a LIM-only domain protein that forms a ternary complex with integrin-linked kinase (ILK) and parvin (to form the IPP complex) downstream of integrins. Here, we demonstrate that PINCH-1 (also known as Lims1) gene ablation in the epidermis of mice caused epidermal detachment from the basement membrane, epidermal hyperthickening and progressive hair loss. PINCH-1-deficient keratinocytes also displayed profound adhesion, spreading and migration defects in vitro that were substantially more severe than those of ILK-deficient keratinocytes indicating that PINCH-1 also exerts functions in an ILK-independent manner. By isolating the PINCH-1 interactome, the LIM-domain-containing and actin-binding protein epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) was identified as a new PINCH-1-associated protein. EPLIN localized, in a PINCH-1-dependent manner, to integrin adhesion sites of keratinocytes in vivo and in vitro and its depletion severely attenuated keratinocyte spreading and migration on collagen and fibronectin without affecting PINCH-1 levels in focal adhesions. Given that the low PINCH-1 levels in ILK-deficient keratinocytes were sufficient to recruit EPLIN to integrin adhesions, our findings suggest that PINCH-1 regulates integrin-mediated adhesion of keratinocytes through the interactions with ILK as well as EPLIN. PMID:25609703

  11. S-Layer Homology Domain Proteins Csac_0678 and Csac_2722 Are Implicated in Plant Polysaccharide Deconstruction by the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus

    PubMed Central

    Ozdemir, Inci; Blumer-Schuette, Sara E.

    2012-01-01

    The genus Caldicellulosiruptor contains extremely thermophilic bacteria that grow on plant polysaccharides. The genomes of Caldicellulosiruptor species reveal certain surface layer homology (SLH) domain proteins that have distinguishing features, pointing to a role in lignocellulose deconstruction. Two of these proteins in Caldicellulosiruptor saccharolyticus (Csac_0678 and Csac_2722) were examined from this perspective. In addition to three contiguous SLH domains, the Csac_0678 gene encodes a glycoside hydrolase family 5 (GH5) catalytic domain and a family 28 carbohydrate-binding module (CBM); orthologs to Csac_0678 could be identified in all genome-sequenced Caldicellulosiruptor species. Recombinant Csac_0678 was optimally active at 75°C and pH 5.0, exhibiting both endoglucanase and xylanase activities. SLH domain removal did not impact Csac_0678 GH activity, but deletion of the CBM28 domain eliminated binding to crystalline cellulose and rendered the enzyme inactive on this substrate. Csac_2722 is the largest open reading frame (ORF) in the C. saccharolyticus genome (predicted molecular mass of 286,516 kDa) and contains two putative sugar-binding domains, two Big4 domains (bacterial domains with an immunoglobulin [Ig]-like fold), and a cadherin-like (Cd) domain. Recombinant Csac_2722, lacking the SLH and Cd domains, bound to cellulose and had detectable carboxymethylcellulose (CMC) hydrolytic activity. Antibodies directed against Csac_0678 and Csac_2722 confirmed that these proteins bound to the C. saccharolyticus S-layer. Their cellular localization and functional biochemical properties indicate roles for Csac_0678 and Csac_2722 in recruitment and hydrolysis of complex polysaccharides and the deconstruction of lignocellulosic biomass. Furthermore, these results suggest that related SLH domain proteins in other Caldicellulosiruptor genomes may also be important contributors to plant biomass utilization. PMID:22138994

  12. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  13. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  14. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  15. Tenomodulin expression in the periodontal ligament enhances cellular adhesion.

    PubMed

    Komiyama, Yuske; Ohba, Shinsuke; Shimohata, Nobuyuki; Nakajima, Keiji; Hojo, Hironori; Yano, Fumiko; Takato, Tsuyoshi; Docheva, Denitsa; Shukunami, Chisa; Hiraki, Yuji; Chung, Ung-Il

    2013-01-01

    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain. PMID:23593173

  16. Tenomodulin Expression in the Periodontal Ligament Enhances Cellular Adhesion

    PubMed Central

    Komiyama, Yuske; Ohba, Shinsuke; Shimohata, Nobuyuki; Nakajima, Keiji; Hojo, Hironori; Yano, Fumiko; Takato, Tsuyoshi; Docheva, Denitsa; Shukunami, Chisa; Hiraki, Yuji; Chung, Ung-il

    2013-01-01

    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain. PMID:23593173

  17. Contribution from pressure-sensitive adhesives

    NASA Astrophysics Data System (ADS)

    Cunningham, Gilbert

    1996-03-01

    The successful use of many security papers, foils and films depends on the technology of chemical fastening systems -- especially pressure sensitive adhesives. These are adhesives activated not by heat or by the evaporation of water or some other solvent, but simply by the act of application -- by pressure. These adhesives provide the means whereby laminations, substrates and seals are made effective. In addition to their physical properties these adhesives are often required to possess optical properties to allow the security materials to be visibly active and indeed the adhesive system may itself contribute as a carrier for a variety of security materials. Recent advances in adhesives chemistry have made it possible to achieve virtually all the required physical performance characteristics combined with a choice of optical properties ranging from total opacity to invisibility and including controlled translucency and tinting. The implications for security printing and packaging are important. Opacity is easy to achieve, for example by loading the adhesive with aluminum powder, by the selection of totally opaque materials like metallized film or by various printing processes. But achieving transparency is a different matter, and transparency is mandatory for applications involving the protection of documents, photographs, etc. with a clear film over-laminate. Obvious examples would be for passports, visas and other personal identification. But some security devices may themselves require protection; for example holograms or embossings. And transparency in the test laboratory is not enough. The Australian driving licence is stuck to the windshield, so the transparency of the adhesive must be sustained over long periods without deterioration due to prolonged u/v exposure, climatic conditions or aging. The commercial label market has helped to push the technology forward. There is a strong demand for the 'no-label look' for packaging of clear plastic and glass

  18. Bacterial Adhesion at Synthetic Surfaces

    PubMed Central

    Cunliffe, D.; Smart, C. A.; Alexander, C.; Vulfson, E. N.

    1999-01-01

    A systematic investigation into the effect of surface chemistry on bacterial adhesion was carried out. In particular, a number of physicochemical factors important in defining the surface at the molecular level were assessed for their effect on the adhesion of Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The primary experiments involved the grafting of groups varying in hydrophilicity, hydrophobicity, chain length, and chemical functionality onto glass substrates such that the surfaces were homogeneous and densely packed with functional groups. All of the surfaces were found to be chemically well defined, and their measured surface energies varied from 15 to 41 mJ · m−2. Protein adsorption experiments were performed with 3H-labelled bovine serum albumin and cytochrome c prior to bacterial attachment studies. Hydrophilic uncharged surfaces showed the greatest resistance to protein adsorption; however, our studies also showed that the effectiveness of poly(ethyleneoxide) (PEO) polymers was not simply a result of its hydrophilicity and molecular weight alone. The adsorption of the two proteins approximately correlated with short-term cell adhesion, and bacterial attachment for L. monocytogenes and E. coli also correlated with the chemistry of the underlying substrate. However, for S. aureus and S. typhimurium a different pattern of attachment occurred, suggesting a dissimilar mechanism of cell attachment, although high-molecular-weight PEO was still the least-cell-adsorbing surface. The implications of this for in vivo attachment of cells suggest that hydrophilic passivating groups may be the best method for preventing cell adsorption to synthetic substrates provided they can be grafted uniformly and in sufficient density at the surface. PMID:10543814

  19. Isozyme hybrids within the protruding third loop domain of the barley alpha-amylase (beta/alpha)8-barrel. Implication for BASI sensitivity and substrate affinity.

    PubMed

    Juge, N; Rodenburg, K W; Guo, X J; Chaix, J C; Svensson, B

    1995-04-24

    Barley alpha-amylase isozymes AMY1 and AMY2 contain three structural domains: a catalytic (beta/alpha)8-barrel (domain A) with a protruding loop (domain B; residues 89-152) that binds Ca2+, and a small C-terminal domain. Different parts of domain B secure isozyme specific properties as identified for three AMY1-AMY2 hybrids, obtained by homeologous recombination in yeast, with crossing-over at residues 112, 116, and 144. The AMY1 regions Val90-Thr112 and Ala145-Leu161 thus confer high affinities for the substrates alpha-D-maltoheptaoside and amylose, respectively. Leu117-Phe144, and to a lesser degree Ala145-Leu161, are critical for the stability at low pH characteristic of AMY1 and for the sensitivity to barley alpha-amylase/subtilisin inhibitor specific to AMY2. PMID:7737421

  20. Crystal structure of the leucine-rich repeat domain of the NOD-like receptor NLRP1: implications for binding of muramyl dipeptide.

    PubMed

    Reubold, Thomas F; Hahne, Gernot; Wohlgemuth, Sabine; Eschenburg, Susanne

    2014-09-17

    The NOD-like receptor NLRP1 (NLR family, pyrin domain containing 1) senses the presence of the bacterial cell wall component l-muramyl dipeptide (MDP) inside the cell. We determined the crystal structure of the LRR domain of human NLRP1 in the absence of MDP to a resolution of 1.65Å. The fold of the structure can be assigned to the ribonuclease inhibitor-like class of LRR proteins. We compared our structure with X-ray models of the LRR domains of NLRX1 and NLRC4 and a homology model of the LRR domain of NOD2. We conclude that the MDP binding site of NLRP1 is not located in the LRR domain. PMID:25064844

  1. Adhesion of Lunar Dust

    NASA Astrophysics Data System (ADS)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  2. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  3. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  4. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  5. Interaction between a Domain of the Negative Regulator of the Ras-ERK Pathway, SPRED1 Protein, and the GTPase-activating Protein-related Domain of Neurofibromin Is Implicated in Legius Syndrome and Neurofibromatosis Type 1.

    PubMed

    Hirata, Yasuko; Brems, Hilde; Suzuki, Mayu; Kanamori, Mitsuhiro; Okada, Masahiro; Morita, Rimpei; Llano-Rivas, Isabel; Ose, Toyoyuki; Messiaen, Ludwine; Legius, Eric; Yoshimura, Akihiko

    2016-02-12

    Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120(GAP). Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome. PMID:26635368

  6. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  7. Role of seta angle and flexibility in the gecko adhesion mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Congcong; Alex Greaney, P.

    2014-08-01

    A model is developed to describe the reversible nature of gecko dry adhesion. The central aspect of this model is that the seta can be easily peeled away from the contacting surface by a small moment at the contact tip. It is shown that this contact condition is very sensitive, but can result in robust adhesion if individual setae are canted and highly flexible. In analogy to the "cone of friction," we consider the "adhesion region"—the domain of normal and tangential forces that maintain adhesion. Results demonstrate that this adhesion region is highly asymmetric enabling the gecko to adhere under a variety of loading conditions associated with scuttling horizontally, vertically, and inverted. Moreover, under each of these conditions, there is a low energy path to de-adhesion. In this model, obliquely canted seta (as possessed by geckos) rather than vertically aligned fibers (common in synthetic dry adhesive) provides the most robust adhesion.

  8. Pro32Pro33 mutations in the integrin β3 PSI domain result in αIIbβ3 priming and enhanced adhesion: reversal of the hypercoagulability phenotype by the Src inhibitor SKI-606.

    PubMed

    Oliver, Kendra H; Jessen, Tammy; Crawford, Emily L; Chung, Chang Y; Sutcliffe, James S; Carneiro, Ana M

    2014-06-01

    The plasma-membrane integrin αIIbβ3 (CD41/CD61, GPIIbIIIa) is a major functional receptor in platelets during clotting. A common isoform of integrin β3, Leu33Pro is associated with enhanced platelet function and increased risk for coronary thrombosis and stroke, although these findings remain controversial. To better understand the molecular mechanisms by which this sequence variation modifies platelet function, we produced transgenic knockin mice expressing a Pro32Pro33 integrin β3. Consistent with reports utilizing human platelets, we found significantly reduced bleeding and clotting times, as well as increased in vivo thrombosis, in Pro32Pro33 homozygous mice. These alterations paralleled increases in platelet attachment and spreading onto fibrinogen resulting from enhanced integrin αIIbβ3 function. Activation with protease-activated receptor 4- activating peptide, the main thrombin signaling receptor in mice, showed no significant difference in activation of Pro32Pro33 mice as compared with controls, suggesting that inside-out signaling remains intact. However, under unstimulated conditions, the Pro32Pro33 mutation led to elevated Src phosphorylation, facilitated by increased talin interactions with the β3 cytoplasmic domain, indicating that the αIIbβ3 intracellular domains are primed for activation while the ligand-binding domain remains unchanged. Acute dosing of animals with a Src inhibitor was sufficient to rescue the clotting phenotype in knockin mice to wild-type levels. Together, our data establish that the Pro32Pro33 structural alteration modifies the function of integrin αIIbβ3, priming the integrin for outside-in signaling, ultimately leading to hypercoagulability. Furthermore, our data may support a novel approach to antiplatelet therapy by Src inhibition where hemostasis is maintained while reducing risk for cardiovascular disease. PMID:24695082

  9. Focal Adhesion Kinase Is Involved in Rabies Virus Infection through Its Interaction with Viral Phosphoprotein P

    PubMed Central

    Fouquet, Baptiste; Nikolic, Jovan; Larrous, Florence; Bourhy, Hervé; Wirblich, Christoph

    2014-01-01

    ABSTRACT The rabies virus (RABV) phosphoprotein P is a multifunctional protein: it plays an essential role in viral transcription and replication, and in addition, RABV P has been identified as an interferon antagonist. Here, a yeast two-hybrid screen revealed that RABV P interacts with the focal adhesion kinase (FAK). The binding involved the 106-to-131 domain, corresponding to the dimerization domain of P and the C-terminal domain of FAK containing the proline-rich domains PRR2 and PRR3. The P-FAK interaction was confirmed in infected cells by coimmunoprecipitation and colocalization of FAK with P in Negri bodies. By alanine scanning, we identified a single mutation in the P protein that abolishes this interaction. The mutant virus containing a substitution of Ala for Arg in position 109 in P (P.R109A), which did not interact with FAK, is affected at a posttranscriptional step involving protein synthesis and viral RNA replication. Furthermore, FAK depletion inhibited viral protein expression in infected cells. This provides the first evidence of an interaction of RABV with FAK that positively regulates infection. IMPORTANCE Rabies virus exhibits a small genome that encodes a limited number of viral proteins. To maintain efficient virus replication, some of them are multifunctional, such as the phosphoprotein P. We and others have shown that P establishes complex networks of interactions with host cell components. These interactions have revealed much about the role of P and about host-pathogen interactions in infected cells. Here, we identified another cellular partner of P, the focal adhesion kinase (FAK). Our data shed light on the implication of FAK in RABV infection and provide evidence that P-FAK interaction has a proviral function. PMID:25410852

  10. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    PubMed

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties. PMID:22447051