Sample records for adiabatic decompression melting

  1. Lithospheric processes that enhance melting at rifts

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Furman, T.

    2008-12-01

    Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.

  2. Degassing of H2O in a phonolitic melt: A closer look at decompression experiments

    NASA Astrophysics Data System (ADS)

    Marxer, Holger; Bellucci, Philipp; Nowak, Marcus

    2015-05-01

    Melt degassing during magma ascent is controlled by the decompression rate and can be simulated in decompression experiments. H2O-bearing phonolitic melts were decompressed at a super-liquidus T of 1323 K in an internally heated argon pressure vessel, applying continuous decompression (CD) as well as to date commonly used step-wise decompression (SD) techniques to investigate the effect of decompression method on melt degassing. The hydrous melts were decompressed from 200 MPa at nominal decompression rates of 0.0028-1.7 MPa·s- 1. At final pressure (Pfinal), the samples were quenched rapidly at isobaric conditions with ~ 150 K·s- 1. The bubbles in the quenched samples are often deformed and dented. Flow textures in the glass indicate melt transport at high viscosity. We suggest that this observation is due to bubble shrinkage during quench. This general problem was mostly overlooked in the interpretation of experimentally degassed samples to date. Bubble shrinkage due to decreasing molar volume (Vm) of the exsolved H2O in the bubbles occurs during isobaric rapid quench until the melt is too viscous too relax. The decrease of Vm(H2O) during cooling at Pfinal of the experiments results in a decrease of the bubble volume by a shrinking factor Bs: At nominal decompression rates > 0.17 MPa·s- 1 and a Pfinal of 75 MPa, the decompression method has only minor influence on melt degassing. SD and CD result in high bubble number densities of 104-105 mm- 3. Fast P drop leads to immediate supersaturation with H2O in the melt. At such high nominal decompression rates, the diffusional transport of H2O is limited and therefore bubble nucleation is the predominant degassing process. The residual H2O contents in the melts decompressed to 75 MPa increase with nominal decompression rate. After homogeneous nucleation is triggered, CD rates ≤ 0.024 MPa·s- 1 facilitate continuous reduction of the supersaturation by H2O diffusion into previously nucleated bubbles. Bubble number

  3. A metastable liquid melted from a crystalline solid under decompression

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  4. A metastable liquid melted from a crystalline solid under decompression

    PubMed Central

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152

  5. The role of volatile-saturation and adiabatic ascent of moderately hydrous melts on the formation of orbicules and comb layers in shallow subvolcanic conduits (Fisher Lake, Sierra Nevada).

    NASA Astrophysics Data System (ADS)

    McCarthy, A. J.; Müntener, O.

    2016-12-01

    Orbicules and comb layers are enigmatic features found sparsely distributed along plutonic contacts in a wide range of igneous environments. We provide new insights into the mechanisms responsible for the formation of these features by studying the spatial distribution, mineralogy and geochemistry of comb layers and orbicules from the Northern Sierra Nevada, Fisher Lake (USA). Over a range of studied comb textured layering, we show that the large majority of comb layers are cumulates formed by the initiation of plagioclase growth as a comb textured mineral. Plagioclase fractionation is followed by pyroxenes + oxides fractionation. Continuous crystal fractionation and conductive cooling from the host rock leads to amphibole saturation and the formation of late stage comb textured amphibole, leading to the formation of plagioclase- and plagioclase-amphibole comb textures. The lack of amphibole comb textures on orbicule rims as opposed to their widespread occurrence in comb layers, suggests that the presence of a thermal gradient plays an important role in diversifying comb textures. We propose that comb layers and orbicules are unique features which are controlled by the volatile content of ascending melts and ascent mechanisms. Thermodynamic calculations indicate that near-adiabatic decompression of water-undersaturated melts (ca. 4wt% H2O) through the crust will lead to superheating and dissolution of pre-existing minerals. Upon saturation of volatiles at shallow depth, degassing-induced undercooling of the decompressing melt will trigger heterogeneous nucleation of plagioclase on host rocks and remobilized xenoliths. The rarity of orbicules and comb layers in volcanic and plutonic rocks worldwide suggests that adiabatic decompression of moderately hydrous melts leading to superheating is a rare phenomena, with most arc melts ascending and cooling in small reservoirs throughout the crust, prior to emplacement at shallow depth as crystal-bearing magmas.

  6. A metastable liquid melted from a crystalline solid under decompression

    DOE PAGES

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; ...

    2017-01-23

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less

  7. Dynamics of upper mantle rocks decompression melting above hot spots under continental plates

    NASA Astrophysics Data System (ADS)

    Perepechko, Yury; Sorokin, Konstantin; Sharapov, Victor

    2014-05-01

    Numeric 2D simulation of the decompression melting above the hot spots (HS) was accomplished under the following conditions: initial temperature within crust mantle section was postulated; thickness of the metasomatized lithospheric mantle is determined by the mantle rheology and position of upper asthenosphere boundary; upper and lower boundaries were postulated to be not permeable and the condition for adhesion and the distribution of temperature (1400-2050°C); lateral boundaries imitated infinity of layer. Sizes and distribution of lateral points, their symmetry, and maximum temperature varied between the thermodynamic condition for existences of perovskite - majorite transition and its excess above transition temperature. Problem was solved numerically a cell-vertex finite volume method for thermo hydrodynamic problems. For increasing convergence of iterative process the method of lower relaxation with different value of relaxation parameter for each equation was used. The method of through calculation was used for the increase in the computing rate for the two-layered upper mantle - lithosphere system. Calculated region was selected as 700 x (2100-4900) km. The time step for the study of the asthenosphere dynamics composed 0.15-0.65 Ma. The following factors controlling the sizes and melting degree of the convective upper mantle, are shown: a) the initial temperature distribution along the section of upper mantleb) sizes and the symmetry of HS, c) temperature excess within the HS above the temperature on the upper and lower mantle border TB=1500-2000oC with 5-15% deviation but not exceed 2350oC. It is found, that appearance of decompression melting with HS presence initiate primitive mantle melting at TB > of 1600oC. Initial upper mantle heating influence on asthenolens dimensions with a constant HS size is controlled mainly by decompression melting degree. Thus, with lateral sizes of HS = 400 km the decompression melting appears at TB > 1600oC and HS

  8. Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Agostini, C.; Landi, P.; Fortunati, A.; Mancini, L.; Carroll, M. R.

    2015-12-01

    Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as a function of pressure, effective undercooling (Δ T eff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (Δ T eff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities ( N a) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5-10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density ( N a) and crystal fraction ( ϕ), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.

  9. Mantle Flow and Melting Processes Beneath Back-Arc Basins

    NASA Astrophysics Data System (ADS)

    Hall, P. S.

    2007-12-01

    The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.

  10. Sub-diffraction Imaging via Surface Plasmon Decompression

    DTIC Science & Technology

    2014-06-08

    of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. The views, opinions and/or findings...adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. Conference Name...diffraction imaging based on a process of adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved

  11. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    USGS Publications Warehouse

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-01-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  12. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    NASA Astrophysics Data System (ADS)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-10-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  13. Constraints on Mantle Plume Melting Conditions in the Martian Mantle Based on Improved Melting Phase Relationships of Olivine-Phyric Shergottite Yamato 980459

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Rapp, Jennifer F.; Usui, Tomohiro; Draper, David S.; Filiberto, Justin

    2016-01-01

    Martian meteorite Yamato 980459 (hereafter Y98) is an olivine-phyric shergottite that has been interpreted as closely approximating a martian mantle melt [1-4], making it an important constraint on adiabatic decompression melting models. It has long been recognized that low pressure melting of the Y98 composition occurs at extremely high temperatures relative to martian basalts (1430 degC at 1 bar), which caused great difficulties in a previous attempt to explain Y98 magma generation via a mantle plume model [2]. However, previous studies of the phase diagram were limited to pressures of 2 GPa and less [2, 5], whereas decompression melting in the present-day martian mantle occurs at pressures of 3-7 GPa, with the shallow boundary of the melt production zone occurring just below the base of the thermal lithosphere [6]. Recent experimental work has now extended our knowledge of the Y98 melting phase relationships to 8 GPa. In light of this improved petrological knowledge, we are therefore reassessing the constraints that Y98 imposes on melting conditions in martian mantle plumes. Two recently discovered olivine- phyric shergottites, Northwest Africa (NWA) 5789 and NWA 6234, may also be primary melts from the martian mantle [7, 8]. However, these latter meteorites have not been the subject of detailed experimental petrology studies, so we focus here on Y98.

  14. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision

    NASA Astrophysics Data System (ADS)

    Song, Shuguang; Niu, Yaoling; Su, Li; Wei, Chunjing; Zhang, Lifei

    2014-04-01

    Modern adakite or adakitic rocks are thought to result from partial melting of younger and thus warmer subducting ocean crust in subduction zones, with the melt interacting with or without mantle wedge peridotite during ascent, or from melting of thickened mafic lower crust. Here we show that adakitic (tonalitic-trondhjemitic) melts can also be produced by eclogite decompression during exhumation of subducted and metamorphosed oceanic/continental crust in response to continental collision, as exemplified by the adakitic rocks genetically associated with the early Paleozoic North Qaidam ultra-high pressure metamorphic (UHPM) belt on the northern margin of the Greater Tibetan Plateau. We present field evidence for partial melting of eclogite and its products, including adakitic melt, volumetrically significant plutons evolved from the melt, cumulate rocks precipitated from the melt, and associated granulitic residues. This “adakitic assemblage” records a clear progression from eclogite decompression and heating to partial melting, to melt fractionation and ascent/percolation in response to exhumation of the UHPM package. The garnetite and garnet-rich layers in the adakitic assemblage are of cumulate origin from the adakitic melt at high pressure, and accommodate much of the Nb-Ta-Ti. Zircon SHRIMP U-Pb dating shows that partial melting of the eclogite took place at ∼435-410 Ma, which postdates the seafloor subduction (>440 Ma) and temporally overlaps the UHPM (∼440-425 Ma). While the geological context and the timing of adakite melt formation we observe differ from the prevailing models, our observations and documentations demonstrate that eclogite melting during UHPM exhumation may be important in contributing to crustal growth.

  15. Receiver function imaging of the onset of melting, implications for volcanism beneath the Afar Rift in contrast to hotspot environments

    NASA Astrophysics Data System (ADS)

    Rychert, C. A.; Harmon, N.; Hammond, J. O.; Laske, G.; Kendall, J.; Ebinger, C. J.; Shearer, P. M.; Bastow, I. D.; Keir, D.; Ayele, A.; Belachew, M.; Stuart, G. W.

    2012-12-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift and hotspot regions such as Hawaii provides additional constraints. We use data from the Ethiopia/Kenya Broadband Seismic Experiment (EKBSE), the Ethiopia Afar Geophysical Lithospheric Experiment (EAGLE), a new UK/US led deployment of 46 stations in the Afar depression and surrounding area, and the PLUME experiment. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift, where the mantle lithosphere has been totally destroyed. Instead a strong velocity increase with depth at ~75 km depth matches geodynamic model predictions for a drop in melt percentage at the onset of decompression melting. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Therefore although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is minimal. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, just west of Hawaii, where a deep thermal plume is hypothesized to impinge on the lithosphere. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the

  16. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.

    PubMed

    McGary, R Shane; Evans, Rob L; Wannamaker, Philip E; Elsenbeck, Jimmy; Rondenay, Stéphane

    2014-07-17

    Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.

  17. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier

    NASA Astrophysics Data System (ADS)

    McGary, R. Shane; Evans, Rob L.; Wannamaker, Philip E.; Elsenbeck, Jimmy; Rondenay, Stéphane

    2014-07-01

    Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.

  18. Adiabat_1ph 3.0 and the MAGMA website: educational and research tools for studying the petrology and geochemistry of plate margins

    NASA Astrophysics Data System (ADS)

    Antoshechkina, P. M.; Asimow, P. D.

    2010-12-01

    features to be incorporated into adiabat_1ph after its release was the ability to simulate flux melting, in which a metasomatic fluid or melt, of fixed composition, was added to the system before each equilibration step. This idea was further developed in the coupled dynamic and petrological subduction zone model GyPSM, so that fluid flux into the wedge was controlled by the location of dehydration reactions in the slab. The adiabat_1ph release candidate includes a similar option so that the user may specify assimilated compositions, which evolve as the calculation proceeds. This added flexibility opens up a number of possibilities, such as more realistic simulations of melt-rock reactions at mid-ocean ridges. Adiabat_1ph files may be downloaded from the MAGMA website at http://magmasource.caltech.edu/ and feedback is welcomed at a dedicated forum, especially ideas for new software features. MAGMA is an online resource for the study of mantle melting and magma evolution, hosted by Caltech. As well as MELTS-related resources, there are tools for visualization of binary and ternary phase diagrams. Flash movies of phase diagrams for adiabatic decompression melting of peridotite and pyroxenite sources can be played in a web browser or downloaded from a server.

  19. Adiabatic temperature changes of magma-gas mixtures during ascent and eruption

    USGS Publications Warehouse

    Mastin, L.G.; Ghiorso, M.S.

    2001-01-01

    Most quantitative studies of flow dynamics in eruptive conduits during volcanic eruptions use a simplified energy equation that ignores either temperature changes, or the thermal effects of gas exsolution. In this paper we assess the effects of those simplifications by analyzing the influence of equilibrium gas exsolution and expansion on final temperatures, velocities, and liquid viscosities of magma-gas mixtures during adiabatic decompression. For a given initial pressure (p1), temperature (T1) and melt composition, the final temperature (Tf) and velocity (Umax) will vary depending on the degree to which friction and other irreversible processes reduce mechanical energy within the conduit. The final conditions range between two thermodynamic end members: (1) Constant enthalpy (dh=0), in which Tf is maximal and no energy goes into lifting or acceleration; and (2) constant entropy (ds=0), in which Tf is minimal and maximum energy goes into lifting and acceleration. For ds=0, T1=900 ??C and p1=200 MPa, a water-saturated albitic melt cools by ???200 ??C during decompression, but only about 250 ??C of this temperature decrease can be attributed to the energy of gas exsolution per se: The remainder results from expansion of gas that has already exsolved. For the same T1 and p1, and dh=0, Tf is 10-15 ??C hotter than T1 but is about 10-25 ??C cooler than Tf in similar calculations that ignore the energy of gas exsolution. For ds=0, p1=200 MPa and T1= 9,000 ??C, assuming that all the enthalpy change of decompression goes into kinetic energy, a water-saturated albitic mixture can theoretically accelerate to ???800 m/s. Similar calculations that ignore gas exsolution (but take into account gas expansion) give velocities about 10-15% higher. For the same T1, p1 = 200 MPa, and ds = 0, the cooling associated with gas expansion and exsolution increases final melt viscosity more than 2.5 orders of magnitude. For dh = 0, isenthalpic heating decreases final melt viscosity by about

  20. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: for axis and off-axis (seamounts) melting application

    NASA Astrophysics Data System (ADS)

    Batiza, Rodey

    1991-12-01

    We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di=f(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO=10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt% in order to interpret natural MORB liquids. This model allows us to calculate Po, Pf, To, Tf, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR) 8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lamont seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (~100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading Center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lamont seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad

  1. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting

    NASA Astrophysics Data System (ADS)

    Niu, Yaoling; Batiza, Rodey

    1991-12-01

    We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di = ƒ(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO = 10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt % in order to interpret natural MORB liquids. This model allows us to calculate Po, Pƒ, To, Tƒ, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR)8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lament seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (-100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lament seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a

  2. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of

  3. Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions

    DOE PAGES

    Michel, D. T.; Hu, S. X.; Davis, A. K.; ...

    2017-05-10

    Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less

  4. Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, D. T.; Hu, S. X.; Davis, A. K.

    Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less

  5. Decompression-induced melting of ice IV and the liquid-liquid transition in water

    NASA Astrophysics Data System (ADS)

    Mishima, Osamu; Stanley, H. Eugene

    1998-03-01

    Although liquid water has been the focus of intensive research for over 100 years, a coherent physical picture that unifies all of the known anomalies of this liquid, is still lacking. Some of these anomalies occur in the supercooled region, and have been rationalized on the grounds of a possible retracing of the liquid-gas spinodal (metastability limit) line into the supercooled liquid region, or alternatively the presence of a line of first-order liquid-liquid phase transitions in this region which ends in a critical point,. But these ideas remain untested experimentally, in part because supercooled water can be probed only above the homogeneous nucleation temperature TH at which water spontaneously crystallizes. Here we report an experimental approach that is not restricted by the barrier imposed by TH, involving measurement of the decompression-induced melting curves of several high-pressure phases of ice in small emulsified droplets. We find that the melting curve for ice IV seems to undergo a discontinuity at precisely the location proposed for the line of liquid-liquid phase transitions. This is consistent with, but does not prove, the coexistence of two different phases of (supercooled) liquid water. From the experimental data we calculate a possible Gibbs potential surface and a corresponding equation of state for water, from the forms of which we estimate the coordinates of the liquid-liquid critical point to be at pressure Pc ~ 0.1GPa and temperature Tc ~ 220K.

  6. Widespread Magmatism as a Result of Impact Related Decompression Melting on Early Mars

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.; Rogers, D.

    2012-12-01

    Flat-floored craters on Mars have been observed since early spacecraft viewed the surface. Early work characterized these craters as infilled by sedimentary materials [e.g. Christensen, 1983] but later work using THEMIS thermal inertia determined these craters contain some of the rockiest materials on the planet and not sedimentary materials [Edwards et al., 2009]. Here we investigate the distribution, physical properties (morphology and thermal inertia), and composition of these craters over the entire planet. We find the majority of rocky crater floors identified (~3300) are concentrated in the low albedo (0.1-0.17), cratered southern highlands. These craters are associated with the highest thermal inertia values (e.g. > 500 to 2000 J m-2 K-1 s-1/2), some of the most mafic materials on the planet (enriched in olivine/pyroxene vs. high-Si phases/plagioclase, often with >10-15% olivine areal abundance), and formed ~3.5 billion years ago. Based on the properties of the crater fill materials described, three mechanisms are considered for the formation of flat-floored, high thermal inertia crater floors on Mars including: 1) the lithification/induration of sediments, 2) the ponding of crustal melt material related to the heat generated during the impact process, and 3) infilling by volcanic materials. We find the only likely scenario is volcanic infilling through fractures created in the impact event. Furthermore, we find the generation of the primitive magma would be directly sourced from the decompression melting of the martian mantle due to the removal of several kilometers of overlying crustal material by the impactor. As the ancient martian crust was likely thin and the geothermal gradients were significantly higher than present day [e.g. Zuber, 2001], the decompression melting of the mantle [Bertka and Holloway, 1994] would be more likely to occur on early Mars then under present day conditions. This is borne out by the ancient ages (~3-4Ga) of the crater floors

  7. Decompression experiments identify kinetic controls on explosive silicic eruptions

    USGS Publications Warehouse

    Mangan, M.T.; Sisson, T.W.; Hankins, W.B.

    2004-01-01

    Eruption intensity is largely controlled by decompression-induced release of water-rich gas dissolved in magma. It is not simply the amount of gas that dictates how forcefully magma is propelled upwards during an eruption, but also the rate of degassing, which is partly a function of the supersaturation pressure (??Pcritical) triggering gas bubble nucleation. High temperature and pressure decompression experiments using rhyolite and dacite melt reveal compositionally-dependent differences in the ??Pcritical of degassing that may explain why rhyolites have fueled some of the most explosive eruptions on record.

  8. The effect of nonlinear decompression history on H2O/CO2 vesiculation in rhyolitic magmas

    NASA Astrophysics Data System (ADS)

    Su, Yanqing; Huber, Christian

    2017-04-01

    Magma ascent rate is one of the key parameters that control volcanic eruption style, tephra dispersion, and volcanic atmospheric impact. Many methods have been employed to investigate the magma ascent rate in volcanic eruptions, and most rely on equilibrium thermodynamics. Combining the mixed H2O-CO2 solubility model with the diffusivities of both H2O and CO2 for normal rhyolitic melt, we model the kinetics of H2O and CO2 in rhyolitic eruptions that involve nonlinear decompression rates. Our study focuses on the effects of the total magma ascent time, the nonlinearity of decompression paths, and the influence of different initial CO2/H2O content on the posteruptive H2O and CO2 concentration profiles around bubbles within the melt. Our results show that, under most circumstances, volatile diffusion profiles do not constrain a unique solution for the decompression rate of magmas during an eruption, but, instead, provide a family of decompression paths with a well-defined trade-off between ascent time and nonlinearity. An important consequence of our analysis is that the common assumption of a constant decompression rate (averaged value) tends to underestimate the actual magma ascent time.

  9. Quantum adiabatic computation and adiabatic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Zhaohui; Ying Mingsheng

    2007-08-15

    Recently, quantum adiabatic computation has attracted more and more attention in the literature. It is a novel quantum computation model based on adiabatic approximation, and the analysis of a quantum adiabatic algorithm depends highly on the adiabatic conditions. However, it has been pointed out that the traditional adiabatic conditions are problematic. Thus, results obtained previously should be checked and sufficient adiabatic conditions applicable to adiabatic computation should be proposed. Based on a result of Tong et al. [Phys. Rev. Lett. 98, 150402 (2007)], we propose a modified adiabatic criterion which is more applicable to the analysis of adiabatic algorithms. Asmore » an example, we prove the validity of the local adiabatic search algorithm by employing our criterion.« less

  10. Paradise Lost: Uncertainties in melting and melt extraction processes beneath oceanic spreading ridges

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.

    2014-12-01

    In many ways, decompression melting and focused melt transport beneath oceanic spreading ridges is the best understood igneous process on Earth. However, there are remaining - increasing - uncertainties in interpreting residual mantle peridotites. Indicators of degree of melting in residual peridotite are questionable. Yb concentration and spinel Cr# are affected by (a) small scale variations in reactive melt transport, (b) variable extents of melt extraction, and (c) "impregnation", i.e. partial crystallization of cooling melt in pore space. Roughly 75% of abyssal peridotites have undergone major element refertilization. Many may have undergone several melting events. The following three statements are inconsistent: (1) Peridotite melt productivity beyond cpx exhaustion is > 0.1%/GPa. (2) Crustal thickness is independent of spreading rate at rates > 2 cm/yr full rate (excluding ultra-slow spreading ridges). (3) Thermal models predict, and observations confirm, thick thermal boundary layers beneath slow spreading ridges. If (a) melt productivity is << 0.1%/GPa beyond cpx-out, and (b) cpx-out occurs > 15 km below the seafloor beneath most ridges, then the independence of crustal thickness with spreading rate can be understood. Most sampled peridotites from ridges melted beyond cpx-out. Cpx in these rocks formed via impregnation and/or exsolution during cooling. Most peridotites beneath ridges may undergo cpx exhaustion during decompression melting. This would entail an upward modification of potential temperature estimates. Alternatively, perhaps oceanic crustal thickness does vary with spreading rate but this is masked by complicated tectonics and serpentinization at slow-spreading ridges. Dissolution channels (dunites) are predicted to coalesce downstream, but numerical models of these have not shown why > 95% of oceanic crust forms in a zone < 5 km wide. There may be permeability barriers guiding deeper melt toward the ridge, but field studies have not identified

  11. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  12. An experimental study of permeability development as a function of crystal-free melt viscosity

    NASA Astrophysics Data System (ADS)

    Lindoo, A.; Larsen, J. F.; Cashman, K. V.; Dunn, A. L.; Neill, O. K.

    2016-02-01

    Permeability development in magmas controls gas escape and, as a consequence, modulates eruptive activity. To date, there are few experimental controls on bubble growth and permeability development, particularly in low viscosity melts. To address this knowledge gap, we have run controlled decompression experiments on crystal-free rhyolite (76 wt.% SiO2), rhyodacite (70 wt.% SiO2), K-phonolite (55 wt.% SiO2) and basaltic andesite (54 wt.% SiO2) melts. This suite of experiments allows us to examine controls on the critical porosity at which vesiculating melts become permeable. As starting materials we used both fine powders and solid slabs of pumice, obsidian and annealed starting materials with viscosities of ∼102 to ∼106 Pas. We saturated the experiments with water at 900° (rhyolite, rhyodacite, and phonolite) and 1025 °C (basaltic andesite) at 150 MPa for 2-72 hrs and decompressed samples isothermally to final pressures of 125 to 10 MPa at rates of 0.25-4.11 MPa/s. Sample porosity was calculated from reflected light images of polished charges and permeability was measured using a bench-top gas permeameter and application of the Forchheimer equation to estimate both viscous (k1) and inertial (k2) permeabilities. Degassing conditions were assessed by measuring dissolved water contents using micro-Fourier-Transform Infrared (μ-FTIR) techniques. All experiment charges are impermeable below a critical porosity (ϕc) that varies among melt compositions. For experiments decompressed at 0.25 MPa/s, we find the percolation threshold for rhyolite is 68.3 ± 2.2 vol.%; for rhyodacite is 77.3 ± 3.8 vol.%; and for K-phonolite is 75.6 ± 1.9 vol.%. Rhyolite decompressed at 3-4 MPa/s has a percolation threshold of 74 ± 1.8 vol.%. These results are similar to previous experiments on silicic melts and to high permeability thresholds inferred for silicic pumice. All basaltic andesite melts decompressed at 0.25 MPa/s, in contrast, have permeabilities below the detection

  13. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  14. The impact pseudotachylitic breccia controversy: Insights from first isotope analysis of Vredefort impact-generated melt rocks

    NASA Astrophysics Data System (ADS)

    Reimold, Wolf Uwe; Hauser, Natalia; Hansen, Bent T.; Thirlwall, Matthew; Hoffmann, Marie

    2017-10-01

    Besides impact melt rock, several large terrestrial impact structures, notably the Sudbury (Canada) and Vredefort (South Africa) structures, exhibit considerable occurrences of a second type of impact-generated melt rock, so-called pseudotachylitic breccia (previously often termed ;pseudotachylite; - the term today reserved in structural geology for friction melt in shear or fault zones). At the Vredefort Dome, the eroded central uplift of the largest and oldest known terrestrial impact structure, pseudotachylitic breccia is well-exposed, with many massive occurrences of tens of meters width and many hundreds of meters extent. Genesis of these breccias has been discussed variably in terms of melt formation due to friction melting, melting due to decompression after initial shock compression, decompression melting upon formation/collapse of a central uplift, or a combination of these processes. In addition, it was recently suggested that they could have formed by the infiltration of impact melt into the crater floor, coming off a coherent melt sheet and under assimilation of wall rock; even seismic shaking has been invoked. Field evidence for generation of such massive melt bodies by friction on large shear/fault zones is missing. Also, no evidence for the generation of massive pseudotachylitic breccias in rocks of low to moderate shock degree by melting upon pressure release after shock compression has been demonstrated. The efficacy of seismic shaking to achieve sufficient melting as a foundation for massive pseudotachylitic melt generation as typified by the breccias of the Sudbury and Vredefort structures has so far remained entirely speculative. The available petrographic and chemical evidence has, thus, been interpreted to favor either decompression melting (i.e., in situ generation of melt) upon central uplift collapse, or the impact melt infiltration hypothesis. Importantly, all the past clast population and chemical analyses have invariably supported an

  15. Orbital Decompression

    MedlinePlus

    ... A Complications of Sinusitis Epistaxis (Nosebleeds) Allergic Rhinitis (Hay Fever) Headaches and Sinus Disease Disorders of Smell & ... DCR) Disclosure Statement Printer Friendly Orbital Decompression John Lee, MD INTRODUCTION Orbital decompression is a surgical procedure ...

  16. Sulfur isotope fractionation between fluid and andesitic melt: An experimental study

    USGS Publications Warehouse

    Fiege, Adrian; Holtz, François; Shimizu, Nobumichi; Mandeville, Charles W.; Behrens, Harald; Knipping, Jaayke L.

    2014-01-01

    Glasses produced from decompression experiments conducted by Fiege et al. (2014a) were used to investigate the fractionation of sulfur isotopes between fluid and andesitic melt upon magma degassing. Starting materials were synthetic glasses with a composition close to a Krakatau dacitic andesite. The glasses contained 4.55–7.95 wt% H2O, ∼140 to 2700 ppm sulfur (S), and 0–1000 ppm chlorine (Cl). The experiments were carried out in internally heated pressure vessels (IHPV) at 1030 °C and oxygen fugacities (fO2) ranging from QFM+0.8 log units up to QFM+4.2 log units (QFM: quartz–fayalite–magnetite buffer). The decompression experiments were conducted by releasing pressure (P) continuously from ∼400 MPa to final P of 150, 100, 70 and 30 MPa. The decompression rate (r) ranged from 0.01 to 0.17 MPa/s. The samples were annealed for 0–72 h (annealing time, tA) at the final P and quenched rapidly from 1030 °C to room temperature (T).The decompression led to the formation of a S-bearing aqueous fluid phase due to the relatively large fluid–melt partitioning coefficients of S. Secondary ion mass spectrometry (SIMS) was used to determine the isotopic composition of the glasses before and after decompression. Mass balance calculations were applied to estimate the gas–melt S isotope fractionation factor αg-m.No detectable effect of r and tA on αg-m was observed. However, SIMS data revealed a remarkable increase of αg-m from ∼0.9985 ± 0.0007 at >QFM+3 to ∼1.0042 ± 0.0042 at ∼QFM+1. Noteworthy, the isotopic fractionation at reducing conditions was about an order of magnitude larger than predicted by previous works. Based on our experimental results and on previous findings for S speciation in fluid and silicate melt a new model predicting the effect of fO2 on αg-m (or Δ34Sg–m) in andesitic systems at 1030 °C is proposed. Our experimental results as well as our modeling are of high importance for the interpretation of S isotope

  17. The Fate of Sulfur during Decompression Melting of Peridotite and Crystallization of Basalts - Implications for Sulfur Geochemistry of MORB and the Earth's Upper Mantle

    NASA Astrophysics Data System (ADS)

    Ding, S.; Dasgupta, R.

    2014-12-01

    Magmatism in mid-ocean ridges is the main pathway of sulfur (S) from the Earth's mantle to the surficial reservoir. MORB is generally considered sulfide saturated due to the positive correlation between S and FeOT concentration (e.g., [1]). However, most MORBs are differentiated, and both S content and sulfur concentration at sulfide saturation (SCSS) change with P, T, and magma composition (e.g., [2]). Therefore, it remains uncertain, from the MORB chemistry alone, whether mantle melts parental to MORB are sulfide saturated. In this study, we modeled the behavior of S during isentropic partial melting of a fertile peridotite using pMELTS [3] and an SCSS parameterization [4]. Our results show that during decompression melting, at a fixed mantle potential temperature, TP (e.g., 1300 °C), SCSS of aggregate melt first slightly increases then decreases at shallower depth with total variation <200 ppm. However, an increase of TP results in a significant increase of SCSS of primitive melts. Our model shows that at 15% melting (F), sulfide in the residue is exhausted for a mantle with <200 ppm S. The resulted sulfide-undersaturated partial melts contain <1000 ppm S and are 4-6 times enriched in Cu compared to the source. In order to compare our modeled results directly to the differentiated basalts, isobaric crystallization calculation was performed on 5, 10, and 15% aggregate melts. SCSS changes along liquid line of descent with a decrease in T and increase in FeOT. Comparison of S contents between the model results and MORB glasses [5] reveals that many MORBs derive from sulfide undersaturated melts. Further, for a TP of 1300-1350 °C and F of 10-15 wt.%, reproduction of self-consistent S, and Cu budget of many MORB glasses requires that S of their mantle source be ~25-200 ppm. We will discuss the interplay of TP, average F, and the conditions of differentiation to bracket the S geochemistry of MORB and MORB source mantle and develop similar systematics for OIBs and

  18. Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water.

    PubMed

    Mishima, Osamu

    2011-12-08

    Melting of the precipitated ice IV in supercooled LiCl-H(2)O solution was studied in the range of 0-0.6 MPa and 160-270 K. Emulsified solution was used to detect this metastable transition. Ice IV was precipitated from the aqueous solution of 2.0 mol % LiCl (or 4.8 mol % LiCl) in each emulsion particle at low-temperature and high-pressure conditions, and the emulsion was decompressed at different temperatures. The melting of ice IV was detected from the temperature change of the emulsified sample during the decompression. There was an apparently sudden change in the slope of the ice IV melting curve (liquidus) in the pressure-temperature diagram. At the high-pressure and high-temperature side of the change, the solute-induced freezing point depression was observed. At the low-pressure and low-temperature side, ice IV transformed into ice Ih on the decompression, and the transition was almost unrelated to the concentration of LiCl. These experimental results were roughly explained by the presumed existence of two kinds of liquid water (low-density liquid water and high-density liquid water), or polyamorphism in water, and by the simple assumption that LiCl dissolved maily in high-density liquid water. © 2011 American Chemical Society

  19. The Role of Garnet Pyroxenite in High-Fe Mantle Melt Generation: High Pressure Melting Experiments

    NASA Astrophysics Data System (ADS)

    Tuff, J.; Takahashi, E.; Gibson, S.

    2004-12-01

    consistent with residual garnet in the ferropicrite melt source and favour high-pressure melting of garnet-pyroxenite. The garnet pyroxenite may represent subducted oceanic lithosphere entrained by the upwelling Tristan mantle plume starting-head. During adiabatic decompression, intersection of the garnet pyroxenite solidus at ˜ 5 GPa would occur at mantle potential temperatures of ˜ 1550° C. Subsequent melting of peridotite at ˜ 4.5 GPa may be restricted by the thick overlying sub-continental lithosphere such that dilution of the garnet-pyroxenite component would be significantly less than in intra-plate oceanic settings. This model accounts for the limited occurrence of ferropicrite magma in the initial stage of continental large igneous provinces and its absence in ocean-island basalt successions. 1 Allègre et al., Philosophical Transactions of the Royal Society of London A297, 447-477 (1980). 2 Gibson et al., Earth and Planetary Science Letters 174, 355-374 (2000). 3 Gibson, Earth and Planetary Science Letters 195, 59-74 (2002).

  20. Degassing of basaltic magma: decompression experiments and implications for interpreting the textures of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike

    2017-04-01

    Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 < P < 150 MPa) and the second at low pressure (50 < P < 25 MPa), preceding fragmentation. Both events, restricted to narrow P intervals, are driven by melt H2O supersaturation. In contrast, textures of the H2O-CO2-bearing basaltic melts result from continuous bubble nucleation, which is driven by the generation of melts supersaturated in CO2. This persistent non-equilibrium degassing causes the bubbles to evolve through power law distributions, as small bubbles continue to form and grow. This is what is observed in Plinian products. From our results, the evolution to mixed power law-exponential distributions, as found in Stromboli products, is indicative of the prevalence of bubble coalescence and an evolution toward

  1. Influence of starting material on the degassing behavior of trachytic and phonolitic melts

    NASA Astrophysics Data System (ADS)

    Preuss, Oliver; Marxer, Holger; Nowak, Marcus

    2015-04-01

    The dynamic magmatic processes beneath volcanic systems, occurring during magma ascent, cannot be observed directly in nature. Simulation of magma ascent in the lab realized by continuous decompression (CD) of a volatile containing melt is essential to understand these processes that may lead to potentially catastrophic eruptions threatening millions of people in highly populated areas like Naples located between the Campi Flegrei Volcanic Field and the Monte Somma-Vesuvio strato-volcano. In this project, experimental simulations of Campanian Ignimbrite (CI) magma ascent will give insight to the mechanisms of the CI super eruption, thus providing tools for volcanic hazard assessment at the high risk Campanian Volcanic District and other comparable volcanic systems. Additionally, comparable experiments with the same conditions using the 'white pumice' composition of the catastrophic Vesuvius AD 79 (VAD79) eruption, have been conducted. So far, the experiments were performed in an internally heated argon pressure vessel coupled with a high-pressure low-flow metering valve and a piezoelectric nano-positioning system using a starting pressure of 200 MPa, H2O content of about 5 wt% and two different decompression rates (0.024 and 0.17 MPa/s) at a superliquidus temperature of 1050 ° C to ensure a crystal free melt and a homogeneous bubble nucleation. Experiments were conducted with both, glass powder and cylinders, subsequently decompressed to 75 and 100 MPa and rapidly quenched. Beside the results that e.g. decompression rate, volatile content, fluid solubility and target pressure affect the degassing behavior of the melt, the influence of the starting material on the degassing processes is significant. Analyses of BSE- and transmitted light microscopy images revealed a different degassing behavior of glass cylinder experiments compared to powders. Nitrogen has a very low solubility in hydrous silicate melts, supporting our suggestion that preexisting nitrogen rich

  2. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V.

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  3. A Start Toward Micronucleus-Based Decompression Models; Altitude Decompression

    NASA Technical Reports Server (NTRS)

    Van Liew, H. D.; Conkin, Johnny

    2007-01-01

    Do gaseous micronuclei trigger the formation of bubbles in decompression sickness (DCS)? Most previous instructions for DCS prevention have been oriented toward supersaturated gas in tissue. We are developing a mathematical model that is oriented toward the expected behavior of micronuclei. The issue is simplified in altitude decompressions because the aviator or astronaut is exposed only to decompression, whereas in diving there is a compression before the decompression. The model deals with four variables: duration of breathing of 100% oxygen before going to altitude (O2 prebreathing), altitude of the exposure, exposure duration, and rate of ascent. Assumptions: a) there is a population of micronuclei of various sizes having a range of characteristics, b) micronuclei are stable until they grow to a certain critical nucleation radius, c) it takes time for gas to diffuse in or out of micronuclei, and d) all other variables being equal, growth of micronuclei upon decompression is more rapid at high altitude because of the rarified gas in the micronuclei. To estimate parameters, we use a dataset of 4,756 men in altitude chambers exposed to various combinations of the model s variables. The model predicts occurrence of DCS symptoms quite well. It is notable that both the altitude chamber data and the model show little effect of O2 prebreathing until it lasts more than 60 minutes; this is in contrast to a conventional idea that the benefit of prebreathing is directly due to exponential washout of tissue nitrogen. The delay in response to O2 prebreathing can be interpreted as time required for outward diffusion of nitrogen; when the micronuclei become small enough, they are disabled, either by crushing or because they cannot expand to a critical nucleation size when the subject ascends to altitude.

  4. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    NASA Astrophysics Data System (ADS)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  5. Comparative incidences of decompression illness in repetitive, staged, mixed-gas decompression diving: is 'dive fitness' an influencing factor?

    PubMed

    Sayer, Martin Dj; Akroyd, Jim; Williams, Guy D

    2008-06-01

    Wreck diving at Bikini Atoll consists of a relatively standard series of decompression dives with maximum depths in the region of 45-55 metres' sea water (msw). In a typical week of diving at Bikini, divers can perform up to 12 decompression dives to these depths over seven days; on five of those days, divers can perform two decompression dives per day. All the dives employ multi-level, staged decompression schedules using air and surface-supplied nitrox containing 80% oxygen. Bikini is serviced by a single diving operator and so a relatively precise record exists both of the actual number of dives undertaken and of the decompression illness incidents both for customer divers and the dive guides. The dive guides follow exactly the dive profiles and decompression schedules of the customers. Each dive guide will perform nearly 400 decompression dives a year, with maximum depths mostly around 50 msw, compared with an average of 10 (maximum of 12) undertaken typically by each customer diver in a week. The incidence of decompression illness for the customer population (presumed in the absence of medical records) is over ten times higher than that for the dive guides. The physiological reasons for such a marked difference are discussed in terms of customer demographics and dive-guide acclimatization to repetitive decompression stress. The rates of decompression illness for a range of diving populations are reviewed.

  6. Consistency of the adiabatic theorem.

    PubMed

    Amin, M H S

    2009-06-05

    The adiabatic theorem provides the basis for the adiabatic model of quantum computation. Recently the conditions required for the adiabatic theorem to hold have become a subject of some controversy. Here we show that the reported violations of the adiabatic theorem all arise from resonant transitions between energy levels. In the absence of fast driven oscillations the traditional adiabatic theorem holds. Implications for adiabatic quantum computation are discussed.

  7. Magmas with slab fluid and decompression melting signatures coexisting in the Gulf of Fonseca: Evidence from Isla El Tigre volcano (Honduras, Central America)

    NASA Astrophysics Data System (ADS)

    Mattioli, Michele; Renzulli, Alberto; Agostini, Samuele; Lucidi, Roberto

    2016-01-01

    Isla El Tigre volcano is located in the Gulf of Fonseca (Honduras) along the Central America volcanic front, where a significant change in the strike of the volcanic chain is observed. The studied samples of this poorly investigated volcano are mainly subalkaline basic to intermediate lavas (basalts and basaltic andesites) and subordinate subalkaline/alkaline transitional basalts, both having the typical mineralogical and geochemical characteristics of arc volcanic rocks. On the basis of petrographic and geochemical features, two groups of rocks have been distinguished. Lavas from the main volcanic edifice are highly porphyritic and hy-qz normative, and have lower MgO contents (< 5 wt.%). They show significant LILE and LREE enrichments and Nb-Ta depletions, and have a strong slab signature as well as incompatible element contents similar to those of the main front of the adjacent volcanoes in El Salvador and Nicaragua (e.g., Ba/La up to 80). In contrast, lavas from the parasitic cones have higher MgO contents (> 5 wt.%), are ol-hy normative and show lower HFSE depletions relative to LILE and LREE, with lower Ba/La, Ba/Nb and Zr/Nb ratios. This suggests that mantle-derived magmas were not produced by the same process throughout the activity of the volcano. The bulk rock geochemistry and 87Sr/86Sr (0.70373-0.70382), 143Nd/144Nd (0.51298-0.51301), 206Pb/204Pb (18.55-18.58), 207Pb/204Pb (15.54-15.56) and 208Pb/204Pb (38.23-38.26) isotopic data of Isla El Tigre compared with the other volcanoes of the Gulf of Fonseca and all available literature data for Central America suggests that this stratovolcano was mainly built by mantle-derived melts driven by slab-derived fluid-flux melting, while magmas erupted through its parasitic cones have a clear signature of decompression melting with minor slab contribution. The coexistence of these two different mantle melting generation processes is likely related to the complex geodynamic setting of the Gulf of Fonseca, where the

  8. Laboratory and numerical decompression experiments: an insight into the nucleation and growth of bubbles

    NASA Astrophysics Data System (ADS)

    Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.

    2014-12-01

    Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.

  9. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    The explosivity of volcanic eruptions is governed in part by the rate at which magma ascends and degasses. Because the time scales of eruptive processes can be exceptionally fast relative to standard geochronometers, magma ascent rate remains difficult to quantify. Here we use as a chronometer concentration gradients of volatile species along open melt embayments within olivine crystals. Continuous degassing of the external melt during magma ascent results in diffusion of volatile species from embayment interiors to the bubble located at their outlets. The novel aspect of this study is the measurement of concentration gradients in five volatile elements (CO2, H2O, S, Cl, F) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. We focus on four 100-200 μm, olivine-hosted embayments erupted on October 17, 1974 during the sub-Plinian eruption of Volcán de Fuego. H2O, CO2, and S all decrease toward the embayment outlet bubble, while F and Cl increase or remain roughly constant. Compared to an extensive melt inclusion suite from the same day of the eruption, the embayments have lost both H2O and CO2 throughout the entire length of the embayment. We fit the profiles with a 1-D numerical diffusion model that allows varying diffusivities and external melt concentrations as a function of pressure. Assuming a constant decompression rate from the magma storage region at approximately 220 MPa to the surface, H2O, CO2 and S profiles for all embayments can be fit with a relatively narrow range in decompression rates of 0.3-0.5 MPa/s, equivalent to 11-17 m/s ascent velocity and an 8 to 12 minute duration of magma ascent from ~ 10 km depth. A two stage decompression model takes advantage of the different depth ranges over which CO2 and H2O degas, and produces good fits given an initial stage of slow decompression (0.05-0.3 MPa/s) at high

  10. Unlocking the Secrets of the Mantle Wedge: New Insights Into Melt Generation Processes in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Grove, T. L.

    2007-05-01

    by adiabatic decompression. In light of these new insights into the chemical processes that lead to melt generation in subduction zones, further study of the influence of mantle dynamics and physical processes on melting is crucial. Variations in mantle permeability near the base of the wedge may exercise important controls on the access of fluids and/or melts to the overlying wedge. The presence of chlorite in the wedge may also influence rheological properties and seismicity in the vicinity of the slab - wedge interface. Improved knowledge of rheology and permeability will help us to develop more robust models of mantle flow and temperature distribution in the mantle wedge. These are crucial for refining melting models. By combining evidence from petrology, geochemistry and geophysics the mysteries that attend the generation of melt in the mantle wedge can be resolved.

  11. Adiabatic quantum computation along quasienergies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Atushi; Nemoto, Kae; National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430

    2010-02-15

    The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy was recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [A. Tanaka and M.more » Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of a parameter |v>, which is available to adjust the gaps of the quasienergies to control the running time steps. In Grover's database search problem, the costs to prepare |v> for the qualitatively different (i.e., power or exponential) running time steps are shown to be qualitatively different.« less

  12. Use of psychological decompression in military operational environments.

    PubMed

    Hughes, Jamie G H Hacker; Earnshaw, N Mark; Greenberg, Neil; Eldridge, Rod; Fear, Nicola T; French, Claire; Deahl, Martin P; Wessely, Simon

    2008-06-01

    This article reviews the use of psychological decompression as applied to troops returning from active service in operational theaters. Definitions of the term are considered and a brief history is given. Current policies and practices are described and the question of mandatory decompression is considered. Finally, the evidence base for the efficacy of decompression is examined and some conclusions are drawn. This article highlights variations in the definition and practice of decompression and its use. Although there is, as yet, no evidence that decompression works, there is also no evidence to the contrary. Given the lack of knowledge as to the balance of risks and benefits of decompression and the absence of any definitive evidence that decompression is associated with improved mental health outcomes or that lack of decompression is associated with the reverse, it is argued that the use of decompression should remain a matter for discretion.

  13. Cardiopulmonary Changes with Moderate Decompression in Rats

    NASA Technical Reports Server (NTRS)

    Robinson, R.; Little, T.; Doursout, M.-F.; Butler, B. D.; Chelly, J. E.

    1996-01-01

    Sprague-Dawley rats were compressed to 616 kPa for 120 min then decompressed at 38 kPa/min to assess the cardiovascular and pulmonary responses to moderate decompression stress. In one series of experiments the rats were chronically instrumented with Doppler ultrasonic probes for simultaneous measurement of blood pressure, cardiac output, heart rate, left and right ventricular wall thickening fraction, and venous bubble detection. Data were collected at base-line, throughout the compression/decompression protocol, and for 120 min post decompression. In a second series of experiments the pulmonary responses to the decompression protocol were evaluated in non-instrumented rats. Analyses included blood gases, pleural and bronchoalveolar lavage (BAL) protein and hemoglobin concentration, pulmonary edema, BAL and lung tissue phospholipids, lung compliance, and cell counts. Venous bubbles were directly observed in 90% of the rats where immediate post-decompression autopsy was performed and in 37% using implanted Doppler monitors. Cardiac output, stroke volume, and right ventricular wall thickening fractions were significantly decreased post decompression, whereas systemic vascular resistance was increased suggesting a decrease in venous return. BAL Hb and total protein levels were increased 0 and 60 min post decompression, pleural and plasma levels were unchanged. BAL white blood cells and neutrophil percentages were increased 0 and 60 min post decompression and pulmonary edema was detected. Venous bubbles produced with moderate decompression profiles give detectable cardiovascular and pulmonary responses in the rat.

  14. Mediterranean Magmatism: Bimodal Melting Patterns Inferred By Numerical Models

    NASA Astrophysics Data System (ADS)

    Gogus, O.; Ueda, K.; Gerya, T.

    2017-12-01

    Melt production by the decompression melting of the asthenospheric mantle occurs in the course of the lithospheric foundering process. The magmatic imprints of such foundering process are often described as anorogenic magmatism and this is usually followed by the orogenic magmatism, related to the subduction events in the Mediterranean region. Here, by using numerical geodynamic experiments we explore various styles of magmatism, their interaction with each other and the amount of magma production in the ocean subduction to slab peel away/delamination configuration. Model results show that the early stage of the ocean subduction under the continental lithosphere is associated with the short pulse of wet melting-orogenic magmatism and then the melting process is mostly dominated by dry melting-anorogenic magmatism, until the slab break-off occurs. While the melt types mixes/alternates during the evolution of the model, the wet melting facilitates the production of dry melting because of its uprising and emplacement under the crust where dry melting is present. The melt production pattern and the amount does not change significantly with different depths of the slab break-off (160-200 km). Model results can explain the transition from the calc-alkaline to alkaline volcanism in the western Mediterranean (Alboran domain) where ocean subduction to delamination has been interpreted.

  15. Adiabatic model and design of a translating field reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, T. P.; Siemon, R. E.; Sieck, P. E.

    We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it mustmore » be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.« less

  16. Adiabatic markovian dynamics.

    PubMed

    Oreshkov, Ognyan; Calsamiglia, John

    2010-07-30

    We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.

  17. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-07

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less

  18. Needle Decompression of Tension Pneumothorax with Colorimetric Capnography.

    PubMed

    Naik, Nimesh D; Hernandez, Matthew C; Anderson, Jeff R; Ross, Erika K; Zielinski, Martin D; Aho, Johnathon M

    2017-11-01

    The success of needle decompression for tension pneumothorax is variable, and there are no objective measures assessing effective decompression. Colorimetric capnography, which detects carbon dioxide present within the pleural space, may serve as a simple test to assess effective needle decompression. Three swine underwent traumatically induced tension pneumothorax (standard of care, n = 15; standard of care with needle capnography, n = 15). Needle thoracostomy was performed with an 8-cm angiocatheter. Similarly, decompression was performed with the addition of colorimetric capnography. Subjective operator assessment of decompression was recorded and compared with true decompression, using thoracoscopic visualization for both techniques. Areas under receiver operating curves were calculated and pairwise comparison was performed to assess statistical significance (P < .05). The detection of decompression by needle colorimetric capnography was found to be 100% accurate (15 of 15 attempts), when compared with thoracoscopic assessment (true decompression). Furthermore, it accurately detected the lack of tension pneumothorax, that is, the absence of any pathologic/space-occupying lesion, in 100% of cases (10 of 10 attempts). Standard of care needle decompression was detected by operators in 9 of 15 attempts (60%) and was detected in 3 of 10 attempts when tension pneumothorax was not present (30%). True decompression, under direct visualization with thoracoscopy, occurred 15 of 15 times (100%) with capnography, and 12 of 15 times (80%) without capnography. Areas under receiver operating curves were 0.65 for standard of care and 1.0 for needle capnography (P = .002). Needle decompression with colorimetric capnography provides a rapid, effective, and highly accurate method for eliminating operator bias for tension pneumothorax decompression. This may be useful for the treatment of this life-threatening condition. Copyright © 2017 American College of Chest Physicians

  19. Constraints from Water on Mantle Melting and Slab Fluid Composition

    NASA Astrophysics Data System (ADS)

    Plank, T.; Wade, J.

    2005-12-01

    Water drives mantle melting and fluid migration in subduction zones, but most models for these phenomena have been developed without constraints from water measurements in arc magmas. For example, the Central American volcanic arc (CAVA) records systematic variations in La/Yb, Ba/La and d18O, and these proxies have been used to predict the extent of mantle melting during decompression [1] and water-addition [2]. Here we use water concentrations in olivine-hosted melt inclusions from arc tephra, along with estimates derived from a clinopyroxene hygrometer [3], to test different models for mantle melting and slab fluid composition along the CAVA (from Nicaragua to Costa Rica). We use Ti as a proxy for mantle melt fraction (F) and invert H2O concentrations in CAVA magmas to obtain those in the mantle source (H2Oo), as in [4]. The relationship between F and H2Oo is nominally linear for Costa Rica mantle, with wet melting productivity dF/dH2O = 30 (wt%/wt%), higher than that used in [2], but consistent with experimentally-determined and MELTS-calculated productivity at 50 degrees above the dry solidus. This predicts mantle temperature beneath Costa Rica of at least 1350°C, and allows for a small (1-2% F) decompression-melting contribution, relative to the wet melting contribution (8-20% F). The percent of wet melting correlates locally with Ba/La, but not regionally, and so the use of Ba/La as a wet melting proxy [1] should be limited to single volcanoes or clusters. The water content of the CAVA melting region varies from 2500-9000 ppm H2O but does not decrease monotonically from Nicaragua to Costa Rica as does Ba/La. The relationship between H2Oo and Ba/La is thus complex, and requires a large along-strike decrease in Ba/La and H2O/La in the slab fluids towards the southeast. Such variation appears to be driven largely by La concentration, reflecting more dilute fluids (higher H2O/La) beneath Nicaragua and more solute-rich fluids (e.g., sediment melts with high La/ H

  20. Delayed, disequilibrium degassing in rhyolite magma: Decompression experiments and implications for explosive volcanism

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2000-01-01

    Recent numerical models and analog shock tube experiments show that disequilibrium degassing during magma ascent may lead to violent vesiculation very near the surface. In this study a series of decompression experiments using crystal-free, rhyolite melt were conducted to examine the development of large supersaturations due to delayed, homogenous (spontaneous) bubble nucleation. Melts were saturated at 900??C and 200 MPa with either 5.2 wt% dissolved H2O, or with 4.2 wt% H2O and 640 ppm CO2, and isothermally decompressed at linear rates of either 0.003, 0.025, or 8.5 MPa/s to final pressures between 25 and 175 MPa. Additional isobaric saturation experiments (900??C, 200-25 MPa) using pure H2O or mixed H2O-CO2 fluids establish reference equilibrium solubility curves/values. Homogenous nucleation is triggered in both H2O-only and H2O-CO2 experiments once the supersaturation pressure (??Pss) reaches ?? 120-150 MPa and the melt contains ?? two times its equilibrium water contents. Bubble number density and nucleation rate depend on the supersaturation pressure, with values on the order of 102/cm3 and < 1/cm3/s for ??Pss~120 MPa; 106/cm3 and 103-105/cm3/s for ??Pss??~130-150 MPa; and 107/cm3 and 106/cm3/s for ??Pss??160-175 MPa. Nucleation rates are consistent with classical nucleation theory, and infer an activation energy for nucleation of 1.5 x 10-18 J/nucleus, a critical bubble radius of 2 x 10-9 m, and an effective surface tension for rhyolite at 5.2 wt% H2O and 900??C of 0.10-0.11 N/m. The long nucleation delay limits the time available for subsequent diffusion such that disequilibrium dissolved H2O and CO2 contents persist to the end of our runs. The disequilibrium degassing paths inferred from our experiments contrast markedly with the equilibrium or quasi-equilibrium paths found in other studies where bubble nucleation occurs heterogenously on crystals or other discontinuities in the melt at low ??Pss. Homogenous and heterogenous nucleation rates are

  1. Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components

    PubMed Central

    Golowin, Roman; Portnyagin, Maxim; Hoernle, Kaj; Hauff, Folkmar; Gurenko, Andrey; Garbe-Schönberg, Dieter; Werner, Reinhard; Turner, Simon

    2017-01-01

    The Ontong Java and Manihiki oceanic plateaus are believed to have formed through high-degree melting of a mantle plume head. Boninite-like, low-Ti basement rocks at Manihiki, however, imply a more complex magma genesis compared with Ontong Java basement lavas that can be generated by ∼30% melting of a primitive mantle source. Here we show that the trace element and isotope compositions of low-Ti Manihiki rocks can best be explained by re-melting of an ultra-depleted source (possibly a common mantle component in the Ontong Java and Manihiki plume sources) re-enriched by ≤1% of an ocean-island-basalt-like melt component. Unlike boninites formed via hydrous flux melting of refractory mantle at subduction zones, these boninite-like intraplate rocks formed through adiabatic decompression melting of refractory plume material that has been metasomatized by ocean-island-basalt-like melts. Our results suggest that caution is required before assuming all Archaean boninites were formed in association with subduction processes. PMID:28181497

  2. Decompression scenarios in a new underground transportation system.

    PubMed

    Vernez, D

    2000-10-01

    The risks of a public exposure to a sudden decompression, until now, have been related to civil aviation and, at a lesser extent, to diving activities. However, engineers are currently planning the use of low pressure environments for underground transportation. This method has been proposed for the future Swissmetro, a high-speed underground train designed for inter-urban linking in Switzerland. The use of a low pressure environment in an underground public transportation system must be considered carefully regarding the decompression risks. Indeed, due to the enclosed environment, both decompression kinetics and safety measures may differ from aviation decompression cases. A theoretical study of decompression risks has been conducted at an early stage of the Swissmetro project. A three-compartment theoretical model, based on the physics of fluids, has been implemented with flow processing software (Ithink 5.0). Simulations have been conducted in order to analyze "decompression scenarios" for a wide range of parameters, relevant in the context of the Swissmetro main study. Simulation results cover a wide range from slow to explosive decompression, depending on the simulation parameters. Not surprisingly, the leaking orifice area has a tremendous impact on barotraumatic effects, while the tunnel pressure may significantly affect both hypoxic and barotraumatic effects. Calculations have also shown that reducing the free space around the vehicle may mitigate significantly an accidental decompression. Numeric simulations are relevant to assess decompression risks in the future Swissmetro system. The decompression model has proven to be useful in assisting both design choices and safety management.

  3. Transitionless driving on adiabatic search algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sangchul, E-mail: soh@qf.org.qa; Kais, Sabre, E-mail: kais@purdue.edu; Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian,more » approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.« less

  4. Comparison of clinical outcomes in decompression and fusion versus decompression only in patients with ossification of the posterior longitudinal ligament: a meta-analysis.

    PubMed

    Mehdi, Syed K; Alentado, Vincent J; Lee, Bryan S; Mroz, Thomas E; Benzel, Edward C; Steinmetz, Michael P

    2016-06-01

    OBJECTIVE Ossification of the posterior longitudinal ligament (OPLL) is a pathological calcification or ossification of the PLL, predominantly occurring in the cervical spine. Although surgery is often necessary for patients with symptomatic neurological deterioration, there remains controversy with regard to the optimal surgical treatment. In this systematic review and meta-analysis, the authors identified differences in complications and outcomes after anterior or posterior decompression and fusion versus after decompression alone for the treatment of cervical myelopathy due to OPLL. METHODS A MEDLINE, SCOPUS, and Web of Science search was performed for studies reporting complications and outcomes after decompression and fusion or after decompression alone for patients with OPLL. A meta-analysis was performed to calculate effect summary mean values, 95% CIs, Q statistics, and I(2) values. Forest plots were constructed for each analysis group. RESULTS Of the 2630 retrieved articles, 32 met the inclusion criteria. There was no statistically significant difference in the incidence of excellent and good outcomes and of fair and poor outcomes between the decompression and fusion and the decompression-only cohorts. However, the decompression and fusion cohort had a statistically significantly higher recovery rate (63.2% vs 53.9%; p < 0.0001), a higher final Japanese Orthopaedic Association score (14.0 vs 13.5; p < 0.0001), and a lower incidence of OPLL progression (< 1% vs 6.3%; p < 0.0001) compared with the decompression-only cohort. There was no statistically significant difference in the incidence of complications between the 2 cohorts. CONCLUSIONS This study represents the only comprehensive review of outcomes and complications after decompression and fusion or after decompression alone for OPLL across a heterogeneous group of surgeons and patients. Based on these results, decompression and fusion is a superior surgical technique compared with posterior

  5. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  6. Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.

  7. Decompression Mechanisms and Decompression Schedule Calculations.

    DTIC Science & Technology

    1984-01-20

    phisiology - The effects of altitude. Handbook of Physiology, Section 3: Respiration, Vol. II. W.O. Fenn and H. Rahn eds. Wash, D.C.; Am. Physiol. Soc. 1 4...decompression studies from other laboratories. METHODS Ten experienced and physically qualified divers ( ages 22-42) were compressed at a rate of 60...STATISTICS* --- ---------------------------------------------------------- EXPERIMENT N AGE (yr) HEIGHT (cm) WEIGHT (Kg) BODY FAT

  8. Effects of decompression on operator performance.

    DOT National Transportation Integrated Search

    1966-04-01

    The study was performed to provide more quantitative estimates of degradation of pilot performance following decompression and the extent to which a decompression with mask donning interrupts the task of piloting. The experiments utilized a Scow comp...

  9. Xenon Blocks Neuronal Injury Associated with Decompression

    PubMed Central

    Blatteau, Jean-Eric; David, Hélène N.; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H.

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  10. Xenon Blocks Neuronal Injury Associated with Decompression.

    PubMed

    Blatteau, Jean-Eric; David, Hélène N; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-10-15

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS.

  11. The Hugoniot adiabat of crystalline copper based on molecular dynamics simulation and semiempirical equation of state

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Maklashova, I. V.; Mel'nikov, I. N.

    2018-01-01

    The molecular dynamics (MD) method was used for prediction of properties of copper under shock-wave compression and clarification of the melting region of crystal copper. The embedded atom potential was used for the interatomic interaction. Parameters of Hugonoit adiabats of solid and liquid phases of copper calculated by the semiempirical Grüneisen equation of state are consistent with the results of MD simulations and experimental data. MD simulation allows to visualize the structure of cooper on the atomistic level. The analysis of the radial distribution function and the standard deviation by MD modeling allows to predict the melting area behind the shock wave front. These MD simulation data are required to verify the wide-range equation of state of metals. The melting parameters of copper based on MD simulations and semiempirical equations of state are consistent with experimental and theoretical data, including the region of the melting point of copper.

  12. Adiabatic Soliton Laser

    NASA Astrophysics Data System (ADS)

    Bednyakova, Anastasia; Turitsyn, Sergei K.

    2015-03-01

    The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

  13. Near-isothermal conditions in the middle and lower crust induced by melt migration.

    PubMed

    Depine, Gabriela V; Andronicos, Christopher L; Phipps-Morgan, Jason

    2008-03-06

    The thermal structure of the crust strongly influences deformation, metamorphism and plutonism. Models for the geothermal gradient in stable crust predict a steady increase of temperature with depth. This thermal structure, however, is incompatible with observations from high-temperature metamorphic terranes exhumed in orogens. Global compilations of peak conditions in high-temperature metamorphic terranes define relatively narrow ranges of peak temperatures over a wide range in pressure, for both isothermal decompression and isobaric cooling paths. Here we develop simple one-dimensional thermal models that include the effects of melt migration. These models show that long-lived plutonism results in a quasi-steady-state geotherm with a rapid temperature increase in the upper crust and nearly isothermal conditions in the middle and lower crust. The models also predict that the upward advection of heat by melt generates granulite facies metamorphism, and widespread andalusite-sillimanite metamorphism in the upper crust. Once the quasi-steady-state thermal profile is reached, the middle and lower crust are greatly weakened due to high temperatures and anatectic conditions, thus setting the stage for gravitational collapse, exhumation and isothermal decompression after the onset of plutonism. Near-isothermal conditions in the middle and lower crust result from the thermal buffering effect of dehydration melting reactions that, in part, control the shape of the geotherm.

  14. Decoherence in adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Lidar, Daniel A.

    2015-06-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  15. Decompression models: review, relevance and validation capabilities.

    PubMed

    Hugon, J

    2014-01-01

    For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.

  16. Cardiovascular Pressures with Venous Gas Embolism and Decompression

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Robinson, R.; Sutton, T.; Kemper, G. B.

    1995-01-01

    Venous gas embolism (VGE) is reported with decompression to a decreased ambient pressure. With severe decompression, or in cases where an intracardiac septal defect (patent foramen ovale) exists, the venous bubbles can become arterialized and cause neurological decompression illness. Incidence rates of patent foramen ovale in the general population range from 25-34% and yet aviators, astronauts, and deepsea divers who have decompression-induced venous bubbles do not demonstrate neurological symptoms at these high rates. This apparent disparity may be attributable to the normal pressure gradient across the atria of the heart that must be reversed for there to be flow potency. We evaluated the effects of: venous gas embolism (0.025, 0.05 and 0.15 ml/ kg min for 180 min.) hyperbaric decompression; and hypobaric decompression on the pressure gradient across the left and right atria in anesthetized dogs with intact atrial septa. Left ventricular end-diastolic pressure was used as a measure of left atrial pressure. In a total of 92 experimental evaluations in 22 dogs, there were no reported reversals in the mean pressure gradient across the atria; a total of 3 transient reversals occurred during the peak pressure gradient changes. The reasons that decompression-induced venous bubbles do not consistently cause serious symptoms of decompression illness may be that the amount of venous gas does not always cause sufficient pressure reversal across a patent foramen ovale to cause arterialization of the venous bubbles.

  17. Graphite solubility and co-vesiculation in basalt-like melts at one-ATM

    NASA Technical Reports Server (NTRS)

    Colson, R. O.

    1993-01-01

    The identity and source of the vapor phase that caused lunar lava-fountaining and vesiculation in lunar basalts continues to be of interest because of its implications for the composition and state of the lunar interior and because of its implications for lunar resources. In light of the apparent near-absence of H2O on the Moon, it has been suggested that the vapor phase may be CO2-CO. This premise is supported by the presence of carbon on the surface of volcanic glass beads. However, although the rapid exsolution of CO2 from a melt during decompression may be consistent with firefountaining, it fails to provide a satisfying explanation for vesiculation in mare basalt where exsolution of the gas phase would more reasonably be related to cooling/crystallization at low pressure rather than decompression from high pressure. Also, geochemical trends in lunar volcanic glasses suggest that their source has an oxygen fugacity more reducing than the iron-wustite buffer, an oxygen fugacity that is inconsistent with presence of dissolved CO2-CO at depth. The results of experiments in which a vesicular 'basalt' is produced from a melt equilibrated with graphite and pure CO gas at one atmosphere pressure are reported. The vesiculation is apparently related to exsolution of CO or a CO species during cooling of the melt or growth of quench crystals. Additionally, particulate carbon dispersed through the quenched sample suggests that elemental carbon is either in solution in the melt prior to quenching or tends to go into suspension perhaps as colloid-like particles. These two observations may provide insight into the nature of fire-fountaining and vesiculation on the Moon.

  18. [Patent foramen ovale and decompression illness in divers].

    PubMed

    Sivertsen, Wiebke; Risberg, Jan; Norgård, Gunnar

    2010-04-22

    About 25 % of the population has patent foramen ovale, and the condition has been assumed to be a causal factor in decompressive illness. Transcatheter closure is possible and is associated with a relatively low risk, but it has not been clarified whether there is an indication for assessment and treatment of the condition in divers. The present study explored a possible relationship between a patent foramen ovale and the risk for decompression illness in divers, if there are categories of divers that should be screened for the condition and what advice should be given to divers with this condition. The review is based on literature identified through a search in Pubmed and the authors' long clinical experience in the field. The risk of decompression illness for divers with a persistent foramen ovale is about five times higher than that in divers without this condition, but the absolute risk for decompression illness is only 2.5 after 10,000 dives. A causal association has not been shown between patent foramen ovale and decompression illness. Even if closure of patent foramen ovale may be done with relatively small risk, the usefulness of the procedure has not been documented in divers. We do not recommend screening for patent foramen ovale in divers because the absolute risk of decompression illness is small and transcatheter closure is only indicated after decompression illness in some occupational divers.

  19. Adiabatic quantum computation in open systems.

    PubMed

    Sarandy, M S; Lidar, D A

    2005-12-16

    We analyze the performance of adiabatic quantum computation (AQC) subject to decoherence. To this end, we introduce an inherently open-systems approach, based on a recent generalization of the adiabatic approximation. In contrast to closed systems, we show that a system may initially be in an adiabatic regime, but then undergo a transition to a regime where adiabaticity breaks down. As a consequence, the success of AQC depends sensitively on the competition between various pertinent rates, giving rise to optimality criteria.

  20. Relaxation versus adiabatic quantum steady-state preparation

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  1. Quantum gates with controlled adiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2015-02-01

    We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.

  2. Delayed facial nerve decompression for Bell's palsy.

    PubMed

    Kim, Sang Hoon; Jung, Junyang; Lee, Jong Ha; Byun, Jae Yong; Park, Moon Suh; Yeo, Seung Geun

    2016-07-01

    Incomplete recovery of facial motor function continues to be long-term sequelae in some patients with Bell's palsy. The purpose of this study was to investigate the efficacy of transmastoid facial nerve decompression after steroid and antiviral treatment in patients with late stage Bell's palsy. Twelve patients underwent surgical decompression for Bell's palsy 21-70 days after onset, whereas 22 patients were followed up after steroid and antiviral therapy without decompression. Surgical criteria included greater than 90 % degeneration on electroneuronography and no voluntary electromyography potentials. This study was a retrospective study of electrodiagnostic data and medical chart review between 2006 and 2013. Recovery from facial palsy was assessed using the House-Brackmann grading system. Final recovery rate did not differ significantly in the two groups; however, all patients in the decompression group recovered to at least House-Brackmann grade III at final follow-up. Although postoperative hearing threshold was increased in both groups, there was no significant between group difference in hearing threshold. Transmastoid decompression of the facial nerve in patients with severe late stage Bell's palsy at risk for a poor facial nerve outcome reduced severe complications of facial palsy with minimal morbidity.

  3. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression.

    PubMed

    Pontier, J-M; Lambrechts, K

    2014-06-01

    We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p < 0.001). After the dive with an air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.

  4. Modeling the exhumation path of partially melted ultrahigh-pressure metapelites, North-East Greenland Caledonides

    NASA Astrophysics Data System (ADS)

    Lang, Helen M.; Gilotti, Jane A.

    2015-06-01

    Pseudosection modeling constrains the pressure-temperature (P-T) exhumation path of partially melted ultrahigh-pressure (UHP) metapelites exposed in the North-East Greenland UHP terrane. A robust peak P and T estimate of 3.6 GPa and 970 °C based on mineral assemblages in nearby kyanite eclogites is the starting point for the P-T path. Although the peak assemblage for the metapelite is not preserved, the calculated modeled peak assemblage contained substantial clinopyroxene, garnet, phengite, K-feldspar and coesite with minor kyanite and rutile. Combining the pseudosection and observed textures, the decompression path crosses the coesite-quartz transition before reaching the dry phengite dehydration melting reaction where phengite is abruptly consumed. In the range of 2.5 to 2.2 GPa, clinopyroxene is completely consumed and garnet grows to its maximum volume and grossular content, matching the high grossular rims of relict megacrysts. Plagioclase joins the assemblage and the pseudosection predicts up to 12-13 vol.% melt in the supersolidus assemblage, which contained garnet, liquid, K-feldspar, plagioclase, kyanite, quartz and rutile. At this stage, the steep decompression path flattened out and became nearly isobaric. The melt crystallization assemblage that formed when the path crossed the solidus with decreasing temperature contains phengite, garnet, biotite, 2 feldspars, kyanite, quartz and rutile. Therefore, the path must have intersected the solidus at approximately 1.2 GPa, 825 °C. The pseudosection predicts that garnet is consumed on the cooling path, but little evidence of late garnet consumption or other retrograde effects is observed. This may be due to partial melt loss from the rock. Isochemical PT-n and PT-X sections calculated along the P-T path display changes in mineral assemblage and composition that are consistent with preserved assemblages.

  5. Crystallisation regimes and kinetics in experimentally decompressed dacitic magma

    NASA Astrophysics Data System (ADS)

    Blum-Oeste, N.; Schmidt, B. C.; Webb, S. L.

    2011-12-01

    Kinetic processes during magma ascent may have a strong influence on the eruption style. In water bearing dacitic magmas decompression induced exsolution of water and accompanying crystallisation of plagioclase are the main processes which drive the system towards a new equilibrium state. We present new data on the evolution of residual glass composition and crystal size distributions of plagioclase from decompression experiments. Experiments have been conducted in cold seal pressure vessels at 850°C on a natural dacite composition from Taapaca volcano (N. Chile). After an initial equilibration at 2kbar decompression rates between 6.3 and 450bar/h were applied to final pressures between 50 and 1550bar where samples were rapidly quenched. Complementary equilibrium experiments were done at corresponding pressures. The glass composition evolves from the initial state towards the equilibrium at the final pressure. The completeness of this re-equilibration depends on run duration and reaction rates. We introduce the "re-equilibration index" (REI), a fraction between 0 (initial state) and 1 (final state) which allows comparison of chemical components in terms of re-equilibration at different decompression rates. REI divided by the decompression duration gives the "re-equilibration rate" (RER). The REI varies among oxides and it decreases with increasing decompression rate. The highest REIs of ~0.9 have been found for MgO, K2O and Al2O3 at 6.3bar/h whereas Na2O shows the lowest number with 0.25 at this decompression rate. Towards faster decompression all REIs tend to decrease which shows a decreasing completeness of re-equilibration. At 450bar/h the highest REIs are ~0.25. RERs increase from below ~0.005/h at 6.3bar/h up to almost 0.08/h for Al2O3 at 450bar/h. The variability of RERs of different oxides also increases with decompression rates. At 450bar/h the RERs reach from <0.005/h up to 0.08/h. Although RERs strongly increase from low to high decompression rates, this

  6. Shortcuts to adiabaticity using flow fields

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti; Jarzynski, Christopher

    2017-12-01

    A shortcut to adiabaticity is a recipe for generating adiabatic evolution at an arbitrary pace. Shortcuts have been developed for quantum, classical and (most recently) stochastic dynamics. A shortcut might involve a counterdiabatic (CD) Hamiltonian that causes a system to follow the adiabatic evolution at all times, or it might utilize a fast-forward (FF) potential, which returns the system to the adiabatic path at the end of the process. We develop a general framework for constructing shortcuts to adiabaticity from flow fields that describe the desired adiabatic evolution. Our approach encompasses quantum, classical and stochastic dynamics, and provides surprisingly compact expressions for both CD Hamiltonians and FF potentials. We illustrate our method with numerical simulations of a model system, and we compare our shortcuts with previously obtained results. We also consider the semiclassical connections between our quantum and classical shortcuts. Our method, like the FF approach developed by previous authors, is susceptible to singularities when applied to excited states of quantum systems; we propose a simple, intuitive criterion for determining whether these singularities will arise, for a given excited state.

  7. Hypobaric decompression prebreathe requirements and breathing environment

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Pilmanis, Andrew A.

    1993-01-01

    To reduce incidence of decompression sickness (DCS), prebreathing 100 percent oxygen to denitrogenate is required prior to hypobaric decompressions from a sea level pressure breathing environment to pressures lower than 350 mm Hg (20,000 ft; 6.8 psia). The tissue ratio (TR) of such exposures equals or exceeds 1.7; TR being the tissue nitrogen pressure prior to decompression divided by the total pressure after decompression (((0.781)(14.697))/6.758). Designing pressure suits capable of greater pressure differentials, lower TR's, and procedures which limit the potential for DCS occurrence would enhance operational efficiency. The current 10.2 psia stage decompression prior to extravehicular activity (EVA) from the Shuttle in the 100 percent oxygen, 4.3 psia suit, results in a TR of 1.65 and has proven to be relatively free of DCS. Our recent study of zero-prebreathe decompressions to 6.8 psia breathing 100 percent oxygen (TR = 1.66) also resulted in no DCS (N = 10). The level of severe, Spencer Grades 3 or 4, venous gas emboli (VGE) increased from 0 percent at 9.5 psia to 40 percent at 6.8 psia yielding a Probit curve of VGE risk for the 51 male subjects who participated in these recent studies. Earlier, analogous decompressions using a 50 percent oxygen, 50 percent nitrogen breathing mixture resulted in one case of DCS and significantly higher levels of severe VGE, e.g., at 7.8 psia, the mixed gas breathing environment resulted in a 56 percent incidence of severe VGE versus 10 percent with use of 100 percent oxygen. The report of this study recommended use of 100 percent oxygen during zero-prebreathe exposure to 6.8 psia if such a suit could be developed. For future, long-term missions, we suggest study of the effects of decompression over several days to a breathing environment of 150 mmHg O2 and approximately 52 mmHg He as a means of eliminating DCS and VGE hazards during subsequent excursions. Once physiologically adapted to a 4 psia vehicle, base, or space

  8. Self-similar expansion of adiabatic electronegative dusty plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, M.; Bemooni, A.; Mamun, A. A.

    2017-12-01

    The self-similar expansion of an adiabatic electronegative dusty plasma (consisting of inertialess adiabatic electrons, inertialess adiabatic ions and inertial adiabatic negatively charged dust fluids) is theoretically investigated by employing the self-similar approach. It is found that the effects of the plasma adiabaticity (represented by the adiabatic index ) and dusty plasma parameters (determined by dust temperature and initial dust population) significantly modify the nature of the plasma expansion. The implications of our results are expected to play an important role in understanding the physics of the expansion of space and laboratory electronegative dusty plasmas.

  9. Graphics processing unit-assisted lossless decompression

    DOEpatents

    Loughry, Thomas A.

    2016-04-12

    Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.

  10. [Orbital decompression in Grave's ophtalmopathy].

    PubMed

    Longueville, E

    2010-01-01

    Graves disease orbitopathy is a complex progressive inflammatory disease. Medical treatment remains in all cases the proposed treatment of choice. Surgical treatment by bone decompression can be considered as an emergency mainly in cases of optic neuropathy or ocular hypertension not being controlled medically or in post-traumatic exophthalmos stage. Emergency bone decompression eliminates compression or stretching of the optic nerve allowing visual recovery. The uncontrolled ocular hypertension will benefit from decompression. The normalization of intraocular pressure may be obtained by this surgery or if needed by the use of postoperative antiglaucoma drops or even filtration surgery. In all operated cases, the IOP was normalized with an average decrease of 7.71 mmHg and a cessation of eye drops in 3/7 cases. Regarding sequelae, our therapeutic strategy involves consecutively surgery of the orbit, extraocular muscles and eyelids. The orbital expansion gives excellent results on the cosmetic level and facilitates the implementation of subsequent actions.

  11. Pictorial essay: Role of ultrasound in failed carpal tunnel decompression.

    PubMed

    Botchu, Rajesh; Khan, Aman; Jeyapalan, Kanagaratnam

    2012-01-01

    USG has been used for the diagnosis of carpal tunnel syndrome. Scarring and incomplete decompression are the main causes for persistence or recurrence of symptoms. We performed a retrospective study to assess the role of ultrasound in failed carpal tunnel decompression. Of 422 USG studies of the wrist performed at our center over the last 5 years, 14 were for failed carpal tunnel decompression. Scarring was noted in three patients, incomplete decompression in two patients, synovitis in one patient, and an anomalous muscle belly in one patient. No abnormality was detected in seven patients. We present a pictorial review of USG findings in failed carpal tunnel decompression.

  12. Pictorial essay: Role of ultrasound in failed carpal tunnel decompression

    PubMed Central

    Botchu, Rajesh; Khan, Aman; Jeyapalan, Kanagaratnam

    2012-01-01

    USG has been used for the diagnosis of carpal tunnel syndrome. Scarring and incomplete decompression are the main causes for persistence or recurrence of symptoms. We performed a retrospective study to assess the role of ultrasound in failed carpal tunnel decompression. Of 422 USG studies of the wrist performed at our center over the last 5 years, 14 were for failed carpal tunnel decompression. Scarring was noted in three patients, incomplete decompression in two patients, synovitis in one patient, and an anomalous muscle belly in one patient. No abnormality was detected in seven patients. We present a pictorial review of USG findings in failed carpal tunnel decompression. PMID:22623813

  13. Transcranial Doppler ultrasound and the etiology of neurologic decompression sickness during altitude decompression

    NASA Technical Reports Server (NTRS)

    Norfleet, W. T.; Powell, M. R.; Kumar, K. Vasantha; Waligora, J.

    1993-01-01

    The presence of gas bubbles in the arterial circulation can occur from iatrogenic mishaps, cardiopulmonary bypass devices, or following decompression, e.g., in deep-sea or SCUBA diving or in astronauts during extravehicular activities (EVA). We have examined the pathophysiology of neurological decompression sickness in human subjects who developed a large number of small gas bubbles in the right side of the heart as a result of hypobaric exposures. In one case, gas bubbles were detected in the middle cerebral artery (MCA) and the subject developed neurological symptoms; a 'resting' patent foramen ovalae (PFO) was found upon saline contrast echocardiography. A PFO was also detected in another individual who developed Spencer Grade 4 precordial Doppler ultrasound bubbles, but no evidence was seen of arterialization of bubbles upon insonation of either the MCA or common carotid artery. The reason for this difference in the behavior of intracardiac bubbles in these two individuals is not known. To date, we have not found evidence of right-to-left shunting of bubbles through pulmonary vasculature. The volume of gas bubbles present following decompression is examined and compared with the number arising from saline contrast injection. The estimates are comparable.

  14. The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle

    NASA Astrophysics Data System (ADS)

    Novella, Davide; Frost, Daniel J.; Hauri, Erik H.; Bureau, Helene; Raepsaet, Caroline; Roberge, Mathilde

    2014-08-01

    The partitioning of H2O between a mantle peridotite assemblage and low degree hydrous melt has been investigated at 6 GPa (corresponding to ∼180 km depth) at a temperature of 1400 °C. Peridotite mineral phases were analysed from 6 melting experiments performed in a natural chemical system. The experiments contained ∼80 wt% of a low degree hydrous melt that was obtained through a series of experiments where the melt composition was iteratively adjusted until saturation with the appropriate peridotite assemblage was achieved. The melt is fluid-undersaturated at the conditions of the experiment. Ion microprobe measurements of the mineral phases indicate olivine H2O concentrations of 434±61 ppm wt and average clinopyroxene (cpx) concentrations of 1268±173 ppm wt H2O. Orthopyroxene (opx) and garnet contain 700±46 ppm wt and 347±83 ppm wt H2O, respectively. The H2O content of the hydrous melts was determined by mass balance to be 11±0.5 wt% H2O. H2O partition coefficients between minerals and melt (DH2Omin/melt=XH2Omin/XH2Omelt) are 0.0040±0.0006 for olivine, 0.0064±0.0004 for opx, 0.0115±0.0016 for cpx and 0.0032±0.0008 for garnet. Using the determined H2O partition coefficients the onset and extent of melting at conditions equivalent to 180 km below mid-ocean ridges was determined as a function of mantle H2O content. Current estimates for the H2O content of the depleted mantle (50-200 ppm wt H2O) are insufficient to induce mantle melting at this depth, which requires ∼700 ppm wt H2O to produce 0.1% melting and 1600 ppm wt H2O for 1% melting, along an adiabat with a potential temperature of 1327 °C. Melting can occur at these conditions within the mantle source of ocean island basalts, which are estimated to contain up to 900 ppm wt H2O. If adiabatic temperatures are 200 °C higher within such plume related sources, then melt fractions of over 1% can be reached at 180 km depth. In addition, a model for the distribution of H2O between peridotite mineral

  15. Decompression sickness in breath-hold divers: a review.

    PubMed

    Lemaitre, Frederic; Fahlman, Andreas; Gardette, Bernard; Kohshi, Kiyotaka

    2009-12-01

    Although it has been generally assumed that the risk of decompression sickness is virtually zero during a single breath-hold dive in humans, repeated dives may result in a cumulative increase in the tissue and blood nitrogen tension. Many species of marine mammals perform extensive foraging bouts with deep and long dives interspersed by a short surface interval, and some human divers regularly perform repeated dives to 30-40 m or a single dive to more than 200 m, all of which may result in nitrogen concentrations that elicit symptoms of decompression sickness. Neurological problems have been reported in humans after single or repeated dives and recent necropsy reports in stranded marine mammals were suggestive of decompression sickness-like symptoms. Modelling attempts have suggested that marine mammals may live permanently with elevated nitrogen concentrations and may be at risk when altering their dive behaviour. In humans, non-pathogenic bubbles have been recorded and symptoms of decompression sickness have been reported after repeated dives to modest depths. The mechanisms implicated in these accidents indicate that repeated breath-hold dives with short surface intervals are factors that predispose to decompression sickness. During deep diving, the effect of pulmonary shunts and/or lung collapse may play a major role in reducing the incidence of decompression sickness in humans and marine mammals.

  16. Edema and elasticity of a fronto-temporal decompressive craniectomy

    PubMed Central

    Takada, Daikei; Nagai, Hidemasa; Moritake, Kouzo; Akiyama, Yasuhiko

    2012-01-01

    Background: Decompressive craniectomy is undertaken for relief of brain herniation caused by acute brain swelling. Brain stiffness can be estimated by palpating the decompressive cranial defect and can provide some relatively subjective information to the neurosurgeon to help guide care. The goal of the present study was to objectively evaluate transcutaneous stiffness of the cranial defect using a tactile resonance sensor and to describe the values in patients with a decompressive window in order to characterize the clinical association between brain edema and stiffness. Methods: Data were prospectively collected from 13 of 37 patients who underwent a decompressive craniectomy in our hospital during a 5-year period. Transcutaneous stiffness was measured as change in frequency and as elastic modulus. Results: Stiffness variables of the decompressive site were measured without any adverse effect and subsequent calculations revealed change in frequency = 101.71 ± 36.42 Hz, and shear elastic modulus = 1.99 ± 1.11 kPa. Conclusions: The elasticity of stiffness of a decompressive site correlated with brain edema, cisternal cerebrospinal fluid pressure, and brain shift, all of which are related to acute brain edema. PMID:22347679

  17. Oxygen Equipment and Rapid Decompression Studies

    DTIC Science & Technology

    1979-03-01

    defined and discussed by Fritz Haber anti Hans Clamann (3) of the USAF School of Aviation Medicine.* These authors define two factors in a...for the pattern of airflow through the pene- tration; and (vi) maintenance of critical flow. The equation for rapid decompression as presented by Haber ...galley, controlling the pressure differential between the two compartments. Using the equation of Haber and Clamann (7), a decompression for the galley

  18. Fluid-assisted melting in a collisional orogen

    NASA Astrophysics Data System (ADS)

    Berger, A.; Burri, T.; Engi, M.; Roselle, G. T.

    2003-04-01

    The Southern Steep Belt (SSB) of the Central Alps is the location of backthrusting during syn- to post-collisional deformation. From its metamorphic evolution and lithological contents the SSB has been interpreted as a tectonic accretion channel (TAC [1]). The central part of the SSB is additionally characterized by anatexites, leucogranitic aplites and pegmatites. Dehydration melting of muscovite is rare but did occurr locally. Moreover, no evidence of dehydration melting of biotite has been formed in that products of incongruent melting reactions (garnet, opx or cordierite) are missing. The melts are mainly produced by the infiltration of an external aqueous fluid. The fluids must have originated from the breakdown of hydrous minerals at temperatures below the water saturated solidus of the quartz-feldspar-system, such that the liberated fluids could not been trapped in the melt. Using the thermal modeling program MELONPIT [2] and assuming that solid fragments ascended in combination with tectonic accreated radioactive material, a complex thermal evolution inside the TAC has been derived. During subduction of the downgoing plate, isotherms were locally inverted, then subsequently relaxed, when subduction slowed down. At the collisional stage a small region develope, where the isotherms were still bent, and where temperatures increased during decompression. Assuming that dehydration reactions were followed by upward flow of fluids released from this region fluid present partial melting was triggered. The flow direction of the fluid was controlled by the pressure gradient and the steeply oriented foliations in the SSB. According to the model, the area of upward flowing fluids should be limited to the SSB. This is consistent with the observed regional distribution of leucosomes derived from in-situ melts. [1] Engi et al. (2001) Geology 29: 1143-1146 [2] Roselle et al. (2002) Am. J. Sci. 302: 381-409

  19. Decompression Surgery Alone Versus Decompression Plus Fusion in Symptomatic Lumbar Spinal Stenosis: A Swiss Prospective Multicenter Cohort Study With 3 Years of Follow-up.

    PubMed

    Ulrich, Nils H; Burgstaller, Jakob M; Pichierri, Giuseppe; Wertli, Maria M; Farshad, Mazda; Porchet, François; Steurer, Johann; Held, Ulrike

    2017-09-15

    Retrospective analysis of a prospective, multicenter cohort study. To estimate the added effect of surgical fusion as compared to decompression surgery alone in symptomatic lumbar spinal stenosis patients with spondylolisthesis. The optimal surgical management of lumbar spinal stenosis patients with spondylolisthesis remains controversial. Patients of the Lumbar Stenosis Outcome Study with confirmed DLSS and spondylolisthesis were enrolled in this study. The outcomes of this study were Spinal Stenosis Measure (SSM) symptoms (score range 1-5, best-worst) and function (1-4) over time, measured at baseline, 6, 12, 24, and 36 months follow-up. In order to quantify the effect of fusion surgery as compared to decompression alone and number of decompressed levels, we used mixed effects models and accounted for the repeated observations in main outcomes (SSM symptoms and SSM function) over time. In addition to individual patients' random effects, we also fitted random slopes for follow-up time points and compared these two approaches with Akaike's Information Criterion and the chi-square test. Confounders were adjusted with fixed effects for age, sex, body mass index, diabetes, Cumulative Illness Rating Scale musculoskeletal disorders, and duration of symptoms. One hundred thirty-one patients undergoing decompression surgery alone (n = 85) or decompression with fusion surgery (n = 46) were included in this study. In the multiple mixed effects model the adjusted effect of fusion compared with decompression alone surgery on SSM symptoms was 0.06 (95% confidence interval: -0.16-0.27) and -0.07 (95% confidence interval: -0.25-0.10) on SSM function, respectively. Among the patients with degenerative lumbar spinal stenosis and spondylolisthesis our study confirms that in the two groups, decompression alone and decompression with fusion, patients distinctively benefited from surgical treatment. When adjusted for confounders, fusion surgery was not associated with a more

  20. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  1. Piecewise adiabatic following in non-Hermitian cycling

    NASA Astrophysics Data System (ADS)

    Gong, Jiangbin; Wang, Qing-hai

    2018-05-01

    The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.

  2. Original endoscopic orbital decompression of lateral wall through hairline approach for Graves' ophthalmopathy: an innovation of balanced orbital decompression.

    PubMed

    Gong, Yi; Yin, Jiayang; Tong, Boding; Li, Jingkun; Zeng, Jiexi; Zuo, Zhongkun; Ye, Fei; Luo, Yongheng; Xiao, Jing; Xiong, Wei

    2018-01-01

    Orbital decompression is an important surgical procedure for treatment of Graves' ophthalmopathy (GO), especially in women. It is reasonable for balanced orbital decompression of the lateral and medial wall. Various surgical approaches, including endoscopic transnasal surgery for medial wall and eye-side skin incision surgery for lateral wall, are being used nowadays, but many of them lack the validity, safety, or cosmetic effect. Endoscopic orbital decompression of lateral wall through hairline approach and decompression of medial wall via endoscopic transnasal surgery was done to achieve a balanced orbital decompression, aiming to improve the appearance of proptosis and create conditions for possible strabismus and eyelid surgery afterward. From January 29, 2016 to February 14, 2017, this surgery was performed on 41 orbits in 38 patients with GO, all of which were at inactive stage of disease. Just before surgery and at least 3 months after surgery, Hertel's ophthalmostatometer and computed tomography (CT) were used to check proptosis and questionnaires of GO quality of life (QOL) were completed. The postoperative retroversion of eyeball was 4.18±1.11 mm (Hertel's ophthalmostatometer) and 4.17±1.14 mm (CT method). The patients' QOL was significantly improved, especially the change in appearance without facial scar. The only postoperative complication was local soft tissue depression at temporal region. Obvious depression occurred in four cases (9.76%), which can be repaired by autologous fat filling. This surgery is effective, safe, and cosmetic. Effective balanced orbital decompression can be achieved by using this original and innovative surgery method. The whole manipulation is safe and controllable under endoscope. The postoperative scar of endoscopic surgery through hairline approach is covered by hair and the anatomic structure of anterior orbit is not impacted.

  3. Adiabatic Quantum Search in Open Systems.

    PubMed

    Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D

    2016-10-07

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  4. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  5. Thermally assisted adiabatic quantum computation.

    PubMed

    Amin, M H S; Love, Peter J; Truncik, C J S

    2008-02-15

    We study the effect of a thermal environment on adiabatic quantum computation using the Bloch-Redfield formalism. We show that in certain cases the environment can enhance the performance in two different ways: (i) by introducing a time scale for thermal mixing near the anticrossing that is smaller than the adiabatic time scale, and (ii) by relaxation after the anticrossing. The former can enhance the scaling of computation when the environment is super-Ohmic, while the latter can only provide a prefactor enhancement. We apply our method to the case of adiabatic Grover search and show that performance better than classical is possible with a super-Ohmic environment, with no a priori knowledge of the energy spectrum.

  6. Some physical aspects of fluid-fluxed melting

    NASA Astrophysics Data System (ADS)

    Patiño Douce, A.

    2012-04-01

    surprising result that fluid infiltration produces more melt during fractional melting than during batch melting. This behavior, which is opposite to that of decompression melting of a dry solid, arises because the melting point depression effect of the added fluid is greater during fractional melting than during batch melting, which results in a greater release of enthalpy and, therefore, greater melt production for fractional melting than for batch melting, for the same total amount of fluid added. The difference may be considerable. As an example, suppose that 0.1 mols of H2O infiltrate 1 mol or silicate rock. Depending on the rock composition this may corresponds to ˜ 1 wt% H2O. For a given choice of model parameters (initial temperature, heat capacity and entropy of fusion), about 28% of the rock melts during fractional melting, versus some 23 % during batch melting. Fluid fluxing is a robust process of melt generation, without which magmatism at Earth's convergent plate margins would be impossible.

  7. Orbital Decompression in Thyroid Eye Disease

    PubMed Central

    Fichter, N.; Guthoff, R. F.; Schittkowski, M. P.

    2012-01-01

    Though enlargement of the bony orbit by orbital decompression surgery has been known for about a century, surgical techniques vary all around the world mostly depending on the patient's clinical presentation but also on the institutional habits or the surgeon's skills. Ideally every surgical intervention should be tailored to the patient's specific needs. Therefore the aim of this paper is to review outcomes, hints, trends, and perspectives in orbital decompression surgery in thyroid eye disease regarding different surgical techniques. PMID:24558591

  8. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    NASA Astrophysics Data System (ADS)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  9. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  10. Adiabatic heating in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.

    1977-01-01

    The dynamic X-ray spectra of two simple, impulsive solar flares are examined together with H alpha, microwave and meter wave radio observations. X-ray spectra of both events were characteristic of thermal bremsstrahlung from single temperature plasmas. The symmetry between rise and fall was found to hold for the temperature and emission measure. The relationship between temperature and emission measure was that of an adiabatic compression followed by adiabatic expansion; the adiabatic index of 5/3 indicated that the electron distribution remained isotropic. Observations in H alpha provided further evidence for compressive energy transfer.

  11. Ambulation Increases Decompression Sickness in Altitude Exposure

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Pollock, N. W.; Natoli, M. J.; Wessel, J. H., III; Gernhardt, M. L.

    2014-01-01

    INTRODUCTION - Exercise accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of exercise are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psi exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity (CEVIS and ISLE). Additional work is required to investigate whether exercise normal to 1 G environments increases the risk of DCS over microgravity simulation. METHODS - The CEVIS protocol was replicated with one exception. Our subjects completed controlled ambulation (walking in place with fixed cadence and step height) during both preflight and at 4.3 psi instead of remaining non-ambulatory throughout. Decompression stress was graded with aural Doppler (Spencer 0-IV scale). Two-dimensional echocardiographic imaging was used to look for left heart gas emboli (the presence of which prompted test termination). Venous blood was collected at three points to correlate Doppler measures of decompression stress with microparticle (cell fragment) accumulation. Fisher Exact Tests compared test and control groups. Trial suspension would occur when DCS risk >15% or grade IV venous gas emboli (VGE) risk >20% (at 70% confidence). RESULTS - Eleven person-trials were completed (9 male, 2 female) when DCS prompted suspension. DCS was greater than in CEVIS trials (3/11 [27%] vs. 0/45 [0%], respectively, p=0.03). Statistical significance was not reached for peak grade IV VGE (2/11 [18%] vs. 3/45 [7%], p=0.149) or cumulative grade IV VGE observations per subject-trial (8/128 [6%] vs. 26/630 [4%], p=0.151). Microparticle data were collected for 5/11 trials (3 with DCS outcomes), with widely varying patterns that could not be resolved statistically

  12. Quantum adiabatic machine learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Lidar, Daniel A.

    2013-05-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

  13. Effect of Orbital Decompression on Corneal Topography in Patients with Thyroid Ophthalmopathy

    PubMed Central

    Kim, Su Ah; Jung, Su Kyung; Paik, Ji Sun; Yang, Suk-Woo

    2015-01-01

    Objective To evaluate changes in corneal astigmatism in patients undergoing orbital decompression surgery. Methods This retrospective, non randomized comparative study involved 42 eyes from 21 patients with thyroid ophthalmopathy who underwent orbital decompression surgery between September 2011 and September 2014. The 42 eyes were divided into three groups: control (9 eyes), two-wall decompression (25 eyes), and three-wall decompression (8 eyes). The control group was defined as the contralateral eyes of nine patients who underwent orbital decompression surgery in only one eye. Corneal topography (Orbscan II), Hertel exophthalmometry, and intraocular pressure were measured at 1 month before and 3 months after surgery. Corneal topographic parameters analyzed were total astigmatism (TA), steepest axis (SA), central corneal thickness (CCT), and anterior chamber depth (ACD). Results Exophthalmometry values and intraocular pressure decreased significantly after the decompression surgery. The change (absolute value (|x|) of the difference) in astigmatism at the 3 mm zone was significantly different between the decompression group and the controls (p = 0.025). There was also a significant change in the steepest axis at the 3 mm zone between the decompression group and the controls (p = 0.033). An analysis of relevant changes in astigmatism showed that there was a dominant tendency for incyclotorsion of the steepest axis in eyes that underwent decompression surgery. Using Astig PLOT, the mean surgically induced astigmatism (SIA) was 0.21±0.88 D with an axis of 46±22°, suggesting that decompression surgery did change the corneal shape and induced incyclotorsion of the steepest axis. Conclusions There was a significant change in corneal astigmatism after orbital decompression surgery and this change was sufficient to affect the optical function of the cornea. Surgeons and patients should be aware of these changes. PMID:26352432

  14. Ridge Outgassing and Melt Production from 4Ga to Present

    NASA Astrophysics Data System (ADS)

    Fuentes, J.; Crowley, J.; Dasgupta, R.; Mitrovica, J. X.

    2017-12-01

    The majority of Earth's volcanism occurs at ocean ridges via decompression melting. This process exerts a strong control on the mantle and surface volatile contents throughout Earth history. In this study, we investigate mantle temperature, ridge melt production, and ridge CO2 outgassing from 4 Ga to present by coupling an analytical mantle convection model (Crowley and O'Connell 2012) with a recent petrologic model of peridotite melting in the presence of CO2 (Dasgupta et al. 2013). By taking advantage of the computational efficiency of the convection model, we simulate time-dependent convection with a large suite of realistic mantle and lithospheric parameters to produce a full range of possible thermal histories. We only accept models which evolve from stagnant-lid convection to mobile-lid convection in order to be consistent with previous geodynamic modeling and geochemical studies (i.e. Condie et al. 2016, Debaille et al. 2013). The presence of volatiles in the mantle leads to deeper, low degree melting. This effect, combined with higher temperatures sustained during the phase of stagnant-lid convection, has a significant effect on the total mass of CO2 outgassed (as well as other volatiles), with major implications for early Earth climate and its continued evolution.

  15. Altitude-induced decompression sickness

    DOT National Transportation Integrated Search

    2010-01-01

    Decompression sickness (DCS) describes a condition characterized by a variety of symptoms resulting from exposure to low barometric pressures that cause inert gases (mainly nitrogen), normally dissolved in body fluids and tissues, to come out of phys...

  16. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  17. Energy consumption for shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.

    2017-08-01

    Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.

  18. Slip and frictional heating of extruded polyethylene melts

    NASA Astrophysics Data System (ADS)

    Pérez-González, José; Marín-Santibáñez, Benjamín M.; Zamora-López, Héctor S.; Rodríguez-González, Francisco

    2017-05-01

    Extrusion of polymer melts with slip at the die generates frictional heating. The relationship between slip flow and frictional heating during the continuous extrusion of a non-slipping linear low-density (LLDPE) and a slipping high-density polyethylene (HDPE), respectively, both pure as well as blended with a fluoropolymer processing aid (PA), was investigated in this work by Rheo-particle image velocimetry and thermal imaging. Significant rises in temperature were measured under slip and no slip conditions, being these much higher than the values predicted by the adiabatic flow assumption. Clear difference was made between viscous and frictional heating before the stick-slip regime for the LLDPE, even though they could not be distinguished from one another at higher stresses. Such a difference, however, could not be made for the slipping HDPE, since overall in the presence of slip, frictional and viscous heating act synergistically to increase the melt temperature.

  19. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  20. Adiabat-shaping in indirect drive inertial confinement fusion

    DOE PAGES

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; ...

    2015-05-05

    Adiabat-shaping techniques were investigated in this paper in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform formore » both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. Finally, this approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.« less

  1. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  2. Effect of local minima on adiabatic quantum optimization.

    PubMed

    Amin, M H S

    2008-04-04

    We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.

  3. 46 CFR Appendix A to Part 197 - Air No-Decompression Limits

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Air No-Decompression Limits A Appendix A to Part 197... STANDARDS GENERAL PROVISIONS Pt. 197, App. A Appendix A to Part 197—Air No-Decompression Limits The following table gives the depth versus bottom time limits for single, no-decompression, air dives made...

  4. 46 CFR Appendix A to Part 197 - Air No-Decompression Limits

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Air No-Decompression Limits A Appendix A to Part 197... STANDARDS GENERAL PROVISIONS Pt. 197, App. A Appendix A to Part 197—Air No-Decompression Limits The following table gives the depth versus bottom time limits for single, no-decompression, air dives made...

  5. 46 CFR Appendix A to Part 197 - Air No-Decompression Limits

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air No-Decompression Limits A Appendix A to Part 197... STANDARDS GENERAL PROVISIONS Pt. 197, App. A Appendix A to Part 197—Air No-Decompression Limits The following table gives the depth versus bottom time limits for single, no-decompression, air dives made...

  6. 46 CFR Appendix A to Part 197 - Air No-Decompression Limits

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Air No-Decompression Limits A Appendix A to Part 197... STANDARDS GENERAL PROVISIONS Pt. 197, App. A Appendix A to Part 197—Air No-Decompression Limits The following table gives the depth versus bottom time limits for single, no-decompression, air dives made...

  7. Empirical models for use in designing decompression procedures for space operations

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Edwards, Benjamin F.; Waligora, James M.; Horrigan, David J., Jr.

    1987-01-01

    Empirical models for predicting the incidence of Type 1 altitude decompression sickness (DCS) and venous gas emboli (VGE) during space extravehicular activity (EVA), and for use in designing safe denitrogenation decompression procedures are developed. The models are parameterized using DCS and VGE incidence data from NASA and USAF manned altitude chamber decompression tests using 607 male and female subject tests. These models, and procedures for their use, consist of: (1) an exponential relaxation model and procedure for computing tissue nitrogen partial pressure resulting from a specified prebreathing and stepped decompression sequence; (2) a formula for calculating Tissue Ratio (TR), a tissue decompression stress index; (3) linear and Hill equation models for predicting the total incidence of VGE and DCS attendant with a particular TR; (4) graphs of cumulative DCS and VGE incidence (risk) versus EVA exposure time at any specified TR; and (5) two equations for calculating the average delay period for the initial detection of VGE or indication of Type 1 DCS in a group after a specific denitrogenation decompression procedure. Several examples of realistic EVA preparations are provided.

  8. Surgical orbital decompression for thyroid eye disease.

    PubMed

    Boboridis, Kostas G; Bunce, Catey

    2011-12-07

    Orbital decompression is an established procedure for the management of exophthalmos and visual rehabilitation from optic neuropathy in cases of thyroid eye disease. Numerous procedures for removal of orbital bony wall, fat or a combination of these for a variety of indications in different stages of the disease have been well reported in the medical literature. However, the relative effectiveness and safety of these procedures in relation to the various indications remains unclear. To review current published evidence for the effectiveness of surgical orbital decompression for disfiguring proptosis in adult thyroid eye disease and summa rise information on possible complications and the quality of life from the studies identified. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 10), MEDLINE (January 1950 to October 2011), EMBASE (January 1980 to October 2011), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) and ClinicalTrials.gov (http://clinicaltrials.gov). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 6 October 2011. We searched oculoplastic textbooks, conference proceedings from the European and American Society of Ophthalmic Plastic and Reconstructive Surgery (ESOPRS, ASOPRS), European Ophthalmological Society (SOE), the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) for the years 2000 to 2009 to identify relevant data. We attempted to contact researchers who are active in this field for information about further published or unpublished studies. We included randomised controlled trials (RCTs) with no restriction on date or language comparing two or more surgical methods for orbital decompression with removal of bony wall, orbital fat or a combination of both for disfiguring proptosis or comparison of surgical techniques

  9. Simulation of periodically focused, adiabatic thermal beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Akylas, T. R.; Barton, T. J.

    2012-12-21

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam ismore » found be stable in the parameter regime where the simulations are performed.« less

  10. Broadband photonic transport between waveguides by adiabatic elimination

    NASA Astrophysics Data System (ADS)

    Oukraou, Hassan; Coda, Virginie; Rangelov, Andon A.; Montemezzani, Germano

    2018-02-01

    We propose an adiabatic method for the robust transfer of light between the two outer waveguides in a three-waveguide directional coupler. Unlike the established technique inherited from stimulated Raman adiabatic passage (STIRAP), the method proposed here is symmetric with respect to an exchange of the left and right waveguides in the structure and permits the transfer in both directions. The technique uses the adiabatic elimination of the middle waveguide together with level crossing and adiabatic passage in an effective two-state system involving only the external waveguides. It requires a strong detuning between the outer and the middle waveguide and does not rely on the adiabatic transfer state (dark state) underlying the STIRAP process. The suggested technique is generalized to an array of N waveguides and verified by numerical beam propagation calculations.

  11. The oxidation state of the mantle and the extraction of carbon from Earth's interior.

    PubMed

    Stagno, Vincenzo; Ojwang, Dickson O; McCammon, Catherine A; Frost, Daniel J

    2013-01-03

    Determining the oxygen fugacity of Earth's silicate mantle is of prime importance because it affects the speciation and mobility of volatile elements in the interior and has controlled the character of degassing species from the Earth since the planet's formation. Oxygen fugacities recorded by garnet-bearing peridotite xenoliths from Archaean lithosphere are of particular interest, because they provide constraints on the nature of volatile-bearing metasomatic fluids and melts active in the oldest mantle samples, including those in which diamonds are found. Here we report the results of experiments to test garnet oxythermobarometry equilibria under high-pressure conditions relevant to the deepest mantle xenoliths. We present a formulation for the most successful equilibrium and use it to determine an accurate picture of the oxygen fugacity through cratonic lithosphere. The oxygen fugacity of the deepest rocks is found to be at least one order of magnitude more oxidized than previously estimated. At depths where diamonds can form, the oxygen fugacity is not compatible with the stability of either carbonate- or methane-rich liquid but is instead compatible with a metasomatic liquid poor in carbonate and dominated by either water or silicate melt. The equilibrium also indicates that the relative oxygen fugacity of garnet-bearing rocks will increase with decreasing depth during adiabatic decompression. This implies that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe(3+) in silicate minerals during upwelling. The depth of carbonate melt formation will depend on the ratio of Fe(3+) to total iron in the bulk rock. This 'redox melting' relationship has important implications for the onset of geophysically detectable incipient melting and for the extraction of carbon dioxide from the mantle through decompressive melting.

  12. An experimental study of the fluid-melt partitioning of volatiles (H2O, CO2, S) during the degassing of ascending basalt

    NASA Astrophysics Data System (ADS)

    Le Gall, Nolwenn; Pichavant, Michel; Di Carlo, Ida; Scaillet, Bruno

    2017-04-01

    We performed decompression experiments to constrain the fluid-melt partitioning of volatiles (H2O, CO2, S) in ascending basalt magmas associated with violent eruptions. Experiments were conducted in an internally heated pressure vessel under oxidizing conditions (fO2: NNO+1.1) so that all sulphur occurs as sulfate (S6+) in the melt. Volatile-bearing (2.72 ± 0.02 wt% H2O, 1291 ± 85 ppm CO2, 1535 ± 369 ppm S) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, decompressed between 150 and 25 MPa at constant rates of 39 and 78 kPa/s (or 1.5 and 3 m/s), and rapidly quenched. Run products were characterized both chemically (by IR spectroscopy and electron microprobe analysis) and texturally (by scanning electron microscopy), and then compared with Stromboli pumice products (glass inclusions, volcanic gases). In H2O-CO2-S-bearing basaltic melts, bubbles start to nucleate heterogeneously on Fe sulfides for supersaturation pressures ΔPHeN ≤ 1 MPa and to nucleate homogeneously for ΔPHoN < 50 MPa (ΔPHeN and ΔPHoN are the difference between the saturation pressure and the pressure at which heterogeneous and homogeneous bubble nucleation are observed, respectively). Bubble growth, coalescence and outgassing occur in addition to continuous bubble nucleation, which is sustained by the preservation of CO2 supersaturated melts during decompression. In addition to model the degassing behaviour of sulphur (and also of CO2 and H2O), our experiments aim to assist in the interpretation of geochemical observables. On the one hand, the volatile degassing trend recorded by Stromboli natural glasses (unsealed glass embayments) was closely experimentally simulated, with a coupled decrease of H2O and S whereas CO2 concentrations remain elevated. On the other hand, the experimental H2O/CO2 and CO2/SO2 fluid molar ratios, calculated by mass balance, both reproduced or closely approached the lower ranges of gas ratios measured at Stromboli for quiescent

  13. Decompression to altitude: assumptions, experimental evidence, and future directions.

    PubMed

    Foster, Philip P; Butler, Bruce D

    2009-02-01

    Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.

  14. Experimental realization of noise-induced adiabaticity in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wang, Bi-Xue; Xin, Tao; Kong, Xiang-Yu; Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2018-04-01

    The adiabatic evolution is the dynamics of an instantaneous eigenstate of a slowly varing Hamiltonian. Recently, an interesting phenomenon shows up that white noises can enhance and even induce adiabaticity, which is in contrast to previous perception that environmental noises always modify and even ruin a designed adiabatic passage. We experimentally realized a noise-induced adiabaticity in a nuclear magnetic resonance system. Adiabatic Hadamard gate and entangled state are demonstrated. The effect of noise on adiabaticity is experimentally exhibited and compared with the noise-free process. We utilized a noise-injected method, which can be applied to other quantum systems.

  15. A kinematic model for the late Cenozoic development of southern California crust and upper mantle

    NASA Technical Reports Server (NTRS)

    Humphreys, Eugene D.; Hager, Bradford H.

    1990-01-01

    A model is developed for the young and ongoing kinematic deformation of the southern California crust and upper mantle. The kinematic model qualitatively explains both the overall seismic structure of the upper mantle and much of the known geological history of the late Cenozoic as consequences of ongoing convection beneath southern California. In this model, the high-velocity upper-mantle anomaly of the Transverse ranges is created through the convergence and sinking of the entire thickness of subcrustal lihtosphere, and the low-velocity upper-mantle anomaly beneath the Salton Trough region is attributed to high temperatures and 1-4 percent partial melt related to adiabatic decompression during mantle upwelling.

  16. Gas embolization of the liver in a rat model of rapid decompression.

    PubMed

    L'Abbate, Antonio; Kusmic, Claudia; Matteucci, Marco; Pelosi, Gualtiero; Navari, Alessandro; Pagliazzo, Antonino; Longobardi, Pasquale; Bedini, Remo

    2010-08-01

    Occurrence of liver gas embolism after rapid decompression was assessed in 31 female rats that were decompressed in 12 min after 42 min of compression at 7 ATA (protocol A). Sixteen rats died after decompression (group I). Of the surviving rats, seven were killed at 3 h (group II), and eight at 24 h (group III). In group I, bubbles were visible in the right heart, aortic arch, liver, and mesenteric veins and on the intestinal surface. Histology showed perilobular microcavities in sinusoids, interstitial spaces, and hepatocytes. In group II, liver gas was visible in two rats. Perilobular vacuolization and significant plasma aminotransferase increase were present. In group III, liver edema was evident at gross examination in all cases. Histology showed perilobular cell swelling, vacuolization, or hydropic degeneration. Compared with basal, enzymatic markers of liver damage increased significantly. An additional 14 rats were decompressed twice (protocol B). Overall mortality was 93%. In addition to diffuse hydropic degeneration, centrilobular necrosis was frequently observed after the second decompression. Additionally, 10 rats were exposed to three decompression sessions (protocol C) with doubled decompression time. Their mortality rate decreased to 20%, but enzymatic markers still increased in surviving rats compared with predecompression, and perilobular cell swelling and vacuolization were present in five rats. Study challenges were 1) liver is not part of the pathophysiology of decompression in the existing paradigm, and 2) although significant cellular necrosis was observed in few animals, zonal or diffuse hepatocellular damage associated with liver dysfunction was frequently demonstrated. Liver participation in human decompression sickness should be looked for and clinically evaluated.

  17. Needle Decompression of Tension Pneumothorax Tactical Combat Casualty Care Guideline Recommendations

    DTIC Science & Technology

    2012-07-06

    SUBJECT: Needle Decompression of Tension Pneumothorax Tactical Combat Casualty Care Guideline Recommendations 2012-05 2 demonstrating the...Decompression of Tension Pneumothorax Tactical Combat Casualty Care Guideline Recommendations 2012-05 3 needle may be too short to reliably reach the...at the AAL as the preferred site for needle decompression of a presumed tension pneumothorax . Further, studies evaluating chest wall thickness are

  18. Adiabatic regularization for gauge fields and the conformal anomaly

    NASA Astrophysics Data System (ADS)

    Chu, Chong-Sun; Koyama, Yoji

    2017-03-01

    Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.

  19. [Theoretical analysis of recompression-based therapies of decompression illness].

    PubMed

    Nikolaev, V P; Sokolov, G M; Komarevtsev, V N

    2011-01-01

    Theoretical analysis is concerned with the benefits of oxygen, air and nitrogen-helium-oxygen recompression schedules used to treat decompression illness in divers. Mathematical modeling of tissue bubbles dynamics during diving shows that one-hour oxygen recompression to 200 kPa does not diminish essentially the size of bubble enclosed in a layer that reduces tenfold the intensity of gas diffusion from bubbles. However, these bubbles dissolve fully in all the body tissues equally after 2-hr. air compression to 800 kPa and ensuing 2-d decompression by the Russian navy tables, and 1.5-hr. N-He-O2 compression to this pressure followed by 5-day decompression. The overriding advantage of the gas mixture recompression is that it obviates the narcotic action of nitrogen at the peak of chamber pressure and does not create dangerous tissue supersaturation and conditions for emergence of large bubbles at the end of decompression.

  20. Decompression-Driven Superconductivity Enhancement in In2 Se3.

    PubMed

    Ke, Feng; Dong, Haini; Chen, Yabin; Zhang, Jianbo; Liu, Cailong; Zhang, Junkai; Gan, Yuan; Han, Yonghao; Chen, Zhiqiang; Gao, Chunxiao; Wen, Jinsheng; Yang, Wenge; Chen, Xiao-Jia; Struzhkin, Viktor V; Mao, Ho-Kwang; Chen, Bin

    2017-09-01

    An unexpected superconductivity enhancement is reported in decompressed In 2 Se 3 . The onset of superconductivity in In 2 Se 3 occurs at 41.3 GPa with a critical temperature (T c ) of 3.7 K, peaking at 47.1 GPa. The striking observation shows that this layered chalcogenide remains superconducting in decompression down to 10.7 GPa. More surprisingly, the highest T c that occurs at lower decompression pressures is 8.2 K, a twofold increase in the same crystal structure as in compression. It is found that the evolution of T c is driven by the pressure-induced R-3m to I-43d structural transition and significant softening of phonons and gentle variation of carrier concentration combined in the pressure quench. The novel decompression-induced superconductivity enhancement implies that it is possible to maintain pressure-induced superconductivity at lower or even ambient pressures with better superconducting performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Endoscopic Endonasal Optic Nerve Decompression for Fibrous Dysplasia

    PubMed Central

    DeKlotz, Timothy R.; Stefko, S. Tonya; Fernandez-Miranda, Juan C.; Gardner, Paul A.; Snyderman, Carl H.; Wang, Eric W.

    2016-01-01

    Objective To evaluate visual outcomes and potential complications for optic nerve decompression using an endoscopic endonasal approach (EEA) for fibrous dysplasia. Design Retrospective chart review of patients with fibrous dysplasia causing extrinsic compression of the canalicular segment of the optic nerve that underwent an endoscopic endonasal optic nerve decompression at the University of Pittsburgh Medical Center from 2010 to 2013. Main Outcome Measures The primary outcome measure assessed was best-corrected visual acuity (BCVA) with secondary outcomes, including visual field testing, color vision, and complications associated with the intervention. Results A total of four patients and five optic nerves were decompressed via an EEA. All patients were symptomatic preoperatively and had objective findings compatible with compressive optic neuropathy: decreased visual acuity was noted preoperatively in three patients while the remaining patient demonstrated an afferent pupillary defect. BCVA improved in all patients postoperatively. No major complications were identified. Conclusion EEA for optic nerve decompression appears to be a safe and effective treatment for patients with compressive optic neuropathy secondary to fibrous dysplasia. Further studies are required to identify selection criteria for an open versus an endoscopic approach. PMID:28180039

  2. An Integrated Development Environment for Adiabatic Quantum Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation enginemore » that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.« less

  3. An evaluation of potential decompression hazards in small pressurized aircraft.

    DOT National Transportation Integrated Search

    1967-06-01

    Over 300 decompression tests were conducted to determine potential hazards of ejection or incapacitating or fatal head injuries in small volume pressurized aircraft in the event of sudden decompression following the loss of a window, emergency exit, ...

  4. Decompressing recompression chamber attendants during Australian submarine rescue operations.

    PubMed

    Reid, Michael P; Fock, Andrew; Doolette, David J

    2017-09-01

    Inside chamber attendants rescuing survivors from a pressurised, distressed submarine may themselves accumulate a decompression obligation which may exceed the limits of Defense and Civil Institute of Environmental Medicine tables presently used by the Royal Australian Navy. This study assessed the probability of decompression sickness (P DCS ) for medical attendants supervising survivors undergoing oxygen-accelerated saturation decompression according to the National Oceanic and Atmospheric Administration (NOAA) 17.11 table. Estimated probability of decompression sickness (P DCS ), the units pulmonary oxygen toxicity dose (UPTD) and the volume of oxygen required were calculated for attendants breathing air during the NOAA table compared with the introduction of various periods of oxygen breathing. The P DCS in medical attendants breathing air whilst supervising survivors receiving NOAA decompression is up to 4.5%. For the longest predicted profile (830 minutes at 253 kPa) oxygen breathing at 30, 60 and 90 minutes at 132 kPa partial pressure of oxygen reduced the air-breathing-associated P DCS to less than 3.1 %, 2.1% and 1.4% respectively. The probability of at least one incident of DCS among attendants, with consequent strain on resources, is high if attendants breathe air throughout their exposure. The introduction of 90 minutes of oxygen breathing greatly reduces the probability of this interruption to rescue operations.

  5. Evaluation of safety of hypobaric decompressions and EVA from positions of probabilistic theory

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. P.

    Formation and subsequent evolution of gas bubbles in blood and tissues of subjects exposed to decompression are casual processes in their nature. Such character of bubbling processes in a body predetermines probabilistic character of decompression sickness (DCS) incidence in divers, aviators and astronauts. Our original probabilistic theory of decompression safety is based on stochastic models of these processes and on the concept of critical volume of a free gas phase in body tissues. From positions of this theory, the probability of DCS incidence during single-stage decompressions and during hypobaric decompressions under EVA in particular, is defined by the distribution of possible values of nucleation efficiency in "pain" tissues and by its critical significance depended on the parameters of a concrete decompression. In the present study the following is shown: 1) the dimensionless index of critical nucleation efficiency for "pain" body tissues is a more adequate index of decompression stress in comparison with Tissue Ratio, TR; 2) a priory the decompression under EVA performed according to the Russian protocol is more safe than decompression under EVA performed in accordance with the U.S. protocol; 3) the Russian space suit operated at a higher pressure and having a higher "rigidity" induces a stronger inhibition of mechanisms of cavitation and gas bubbles formation in tissues of a subject located in it, and by that provides a more considerable reduction of the DCS risk during real EVA performance.

  6. Piezosurgery in Modified Pterional Orbital Decompression Surgery in Graves Disease.

    PubMed

    Grauvogel, Juergen; Scheiwe, Christian; Masalha, Waseem; Jarc, Nadja; Grauvogel, Tanja; Beringer, Andreas

    2017-10-01

    Piezosurgery uses microvibrations to selectively cut bone, preserving the adjacent soft tissue. The present study evaluated the use of piezosurgery for bone removal in orbital decompression surgery in Graves disease via a modified pterional approach. A piezosurgical device (Piezosurgery medical) was used in 14 patients (20 orbits) with Graves disease who underwent orbital decompression surgery in additional to drills and rongeurs for bone removal of the lateral orbital wall and orbital roof. The practicability, benefits, and drawbacks of this technique in orbital decompression surgery were recorded. Piezosurgery was evaluated with respect to safety, preciseness of bone cutting, and preservation of the adjacent dura and periorbita. Preoperative and postoperative clinical outcome data were assessed. The orbital decompression surgery was successful in all 20 orbits, with good clinical outcomes and no postoperative complications. Piezosurgery proved to be a safe tool, allowing selective bone cutting with no damage to the surrounding soft tissue structures. However, there were disadvantages concerning the intraoperative handling in the narrow space and the efficiency of bone removal was limited in the orbital decompression surgery compared with drills. Piezosurgery proved to be a useful tool in bone removal for orbital decompression in Graves disease. It is safe and easy to perform, without any danger of damage to adjacent tissue because of its selective bone-cutting properties. Nonetheless, further development of the device is necessary to overcome the disadvantages in intraoperative handling and the reduced bone removal rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Influence of long-term intermittent exposures to hypoxia on decompression-induced pulmonary haemorrhage.

    PubMed Central

    Fang, H S; Chen, C F

    1976-01-01

    Healthy male rats were acclimatized by being placed in a decompression chamber at a simulated altitude of 18 000 feet (5486 m) for three hours daily for 84 days. The altitude acclimatized rats paired with unacclimatized rats were rapidly decompressed together. The range of decompression was performed from on atmospheric pressure to an ambient pressure of 30 mmHg in 0-2 seconds. It was found that in control rats, 14 of 20 lung (70%) exhibited pulmonary haemorrhage following rapid decompression. In altitude acclimatized rats, however, only 6 of 20 (30%) revealed decompression-induced haemorrhage. The difference was statistically significant. The present findings indicate that long-term intermittent exposures to hypoxia might increase the resistance of pulmonary tissue to rapid decompression, resulting in a decrease in frequency and severity of pulmonary haemorrhage. The possible mechanism of such a phenomenon is discussed. PMID:1257942

  8. Evidence Report: Risk of Decompression Sickness (DCS)

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Norcross, Jason R.; Wessel, James H. III; Abercromby, Andrew F. J.; Klein, Jill S.; Dervay, Joseph P.; Gernhardt, Michael L.

    2013-01-01

    The Risk of Decompression Sickness (DCS) is identified by the NASA Human Research Program (HRP) as a recognized risk to human health and performance in space, as defined in the HRP Program Requirements Document (PRD). This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. Given that tissue inert gas partial pressure is often greater than ambient pressure during phases of a mission, primarily during extravehicular activity (EVA), there is a possibility that decompression sickness may occur.

  9. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  10. Semiconductor adiabatic qubits

    DOEpatents

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib

    2016-12-27

    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  11. Role of Inflammatory Reponse in Experimental Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Little, T.

    1999-01-01

    Decompression to altitude can result in gas bubble formation both in tissues and in the systemic veins. The venous gas emboli (VGE) are often monitored during decompression exposures to assess risk for decompression sickness (DCS). Astronauts are at risk for DCS during extravehicular activities (EVA), where decompression occurs from the Space Shuttle or Space Station atmospheric pressure of 14.7 pounds per square inch (PSI) to that of the space suit pressure of 4.3 PSI. DCS symptoms include diffuse pain, especially around joints, inflammation and edema. Pathophysiological effects include interstitial inflammatory responses and recurring injury to the vascular endothelium. Such responses can result in vasoconstriction and associated hemodynamic changes.The granulocyte cell activation and chemotaxin release results in the formation of vasoactive and microvascular permeability altering mediators, especially from the lungs which are the principal target organ for the venous bubbles, and from activated cells (neutrophils, platelets, macrophages). Such mediators include free arachidonic acid and the byproducts of its metabolism via the cyclooxygenase and lipoxygenase pathways (see figure). The cyclooxygenase pathway results in formation of prostacyclin and other prostaglandins and thromboxanes that cause vasoconstriction, bronchoconstriction and platelet aggregation. Leukotrienes produced by the alternate pathway cause pulmonary and bronchial smooth muscle contraction and edema. Substances directly affecting vascular tone such as nitric oxide may also play a role in the respose to DCS. We are studying the role and consequent effects of the release inflammatory bioactive mediators as a result of DCS and VGE. More recent efforts are focused on identifying the effects of the body's circadian rhythm on these physiological consequences to decompression stress. al

  12. Arthroscopic-assisted core decompression of the humeral head.

    PubMed

    Dines, Joshua S; Strauss, Eric J; Fealy, Stephen; Craig, Edward V

    2007-01-01

    Humeral head osteonecrosis is a progressive disease that requires prompt diagnosis and treatment. Core decompression is a viable treatment option for early-stage cases. Most surgeons perform core decompression by arthroscopically visualizing the necrotic area of bone and using a cannulated drill to take a core. Several attempts are frequently needed to reach the proper location. In the hip multiple passes are associated with complications. We describe the use of an anterior cruciate ligament (ACL) tibial drill guide to precisely localize the area of necrotic bone. Diagnostic arthroscopy is performed to assess the areas of osteonecrosis. Core decompression is performed by use of an ACL tibial guide, brought in through the anterior or posterior portal to precisely localize the necrotic area in preparation for drilling. Under image intensification, Steinmann pins are advanced into the area of osteonecrosis. Once positioned, several 4-mm cores are made. We treated 3 patients with this technique, and all had immediate pain relief. The use of the ACL guide allows precise localization of the area of humeral head involvement and avoids multiple drillings into unaffected areas. Initial indications are that arthroscopic-assisted core decompression with an ACL guide is an effective alternative to previously used methods.

  13. European EVA decompression sickness risks

    NASA Astrophysics Data System (ADS)

    Vogt, Lorenz; Wenzel, Jürgen; Skoog, A. I.; Luck, S.; Svensson, Bengt

    For the first manned flight of Hermes there will be a capability of performing EVA. The European EVA Space Suit will be an anthropomorphic system with an internal pressure of 500 hPa of pure oxygen. The pressure reduction from the Hermes cabin pressure of 1013 hPa will induce a risk for Decompression Sickness (DCS) for the EVA crewmember if no adequate protective procedures are implemented. Specific decompression procedures have to be developed. From a critical review of the literature and by using knowledge gained from research conducted in the past in the fields of diving and aerospace medicine safe protective procedures are proposed for the European EVA scenario. An R factor of 1.2 and a tissue half-time ( t1/2) of 360 minutes in a single-tissue model have been identified as appropriate operational values. On the basis of an acceptable risk level of approximately 1%, oxygen prebreathing times are proposed for (a) direct pressure reduction from 1013 hPa to a suit pressure of 500 hPa, and (b) staged decompression using a 700 hPa intermediate stage in the spacecraft cabin. In addition, factors which influence individual susceptibility to DCS are identified. Recommendations are also given in the areas of crew selection and medical monitoring requirements together with therapeutic measures that can be implemented in the Hermes scenario. A method for demonstration of the validity of proposed risks and procedures is proposed.

  14. High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt.

    PubMed

    Eilon, Zachary C; Abers, Geoffrey A

    2017-05-01

    At most mid-ocean ridges, a wide region of decompression melting must be reconciled with a narrow neovolcanic zone and the establishment of full oceanic crustal thickness close to the rift axis. Two competing paradigms have been proposed to explain melt focusing: narrow mantle upwelling due to dynamic effects related to in situ melt or wide mantle upwelling with lateral melt transport in inclined channels. Measurements of seismic attenuation provide a tool for identifying and characterizing the presence of melt and thermal heterogeneity in the upper mantle. We use a unique data set of teleseismic body waves recorded on the Cascadia Initiative's Amphibious Array to simultaneously measure seismic attenuation and velocity across an entire oceanic microplate. We observe maximal differential attenuation and the largest delays ([Formula: see text] s and δ T S ~ 2 s) in a narrow zone <50 km from the Juan de Fuca and Gorda ridge axes, with values that are not consistent with laboratory estimates of temperature or water effects. The implied seismic quality factor ( Q s ≤ 25) is among the lowest observed worldwide. Models harnessing experimentally derived anelastic scaling relationships require a 150-km-deep subridge region containing up to 2% in situ melt. The low viscosity and low density associated with this deep, narrow melt column provide the conditions for dynamic mantle upwelling, explaining a suite of geophysical observations at ridges, including electrical conductivity and shear velocity anomalies.

  15. Micro-surgical decompression for greater occipital neuralgia.

    PubMed

    Li, Fuyong; Ma, Yi; Zou, Jianjun; Li, Yanfeng; Wang, Bin; Huang, Haitao; Wang, Quancai; Li, Liang

    2012-01-01

    To evaluate the clinical effect of micro-surgical decompression of greater occipital nerve for greater occipital neuralgia (GON). 76 patients underwent surgical decompression of the great occipital nerve. A nerve block was tested before operation. The headache rapidly resolved after infiltration of 1% Lidocaine near the tender area of the nerve trunk. 89 procedures were performed for 76 patients. The mean follow up duration was 20 months (range 7-52 months). The headache symptoms of 68 (89.5%) patients were completely resolved, and another 5 (6.6%) patients were significantly relieved without the need for any further medical treatment. Three (3.9%) patients experienced recurrence of the disorder. All patients experienced hypoesthesia of the innervated area of the great occipital nerve. They recovered gradually within 1 to 6 months after surgery. Micro-surgical decompression of the greater occipital nerve is a safe and effective method for greater occipital neuralgia. We believe our findings support the notion that the technique should also be considered as the first-line procedure for GON.

  16. Intraoperative Computed Tomography for Cervicomedullary Decompression of Foramen Magnum Stenosis in Achondroplasia: Two Case Reports

    PubMed Central

    Arishima, Hidetaka; Tsunetoshi, Kenzo; Kodera, Toshiaki; Kitai, Ryuhei; Takeuchi, Hiroaki; Kikuta, Ken-ichiro

    2013-01-01

    The authors report two cases of cervicomedullary decompression of foramen magnum (FM) stenosis in children with achondroplasia using intraoperative computed tomography (iCT). A 14-month-old girl with myelopathy and retarded motor development, and a 10-year-old girl who had already undergone incomplete FM decompression was presented with myelopathy. Both patients underwent decompressive sub-occipitalcraniectomy and C1 laminectomy without duraplasty using iCT. It clearly showed the extent of FM decompression during surgery, which finally enabled sufficient decompression. After the operation, their myelopathy improved. We think that iCT can provide useful information and guidance for sufficient decompression for FM stenosis in children with achondroplasia. PMID:24140778

  17. Intraoperative computed tomography for cervicomedullary decompression of foramen magnum stenosis in achondroplasia: two case reports.

    PubMed

    Arishima, Hidetaka; Tsunetoshi, Kenzo; Kodera, Toshiaki; Kitai, Ryuhei; Takeuchi, Hiroaki; Kikuta, Ken-Ichiro

    2013-01-01

    The authors report two cases of cervicomedullary decompression of foramen magnum (FM) stenosis in children with achondroplasia using intraoperative computed tomography (iCT). A 14-month-old girl with myelopathy and retarded motor development, and a 10-year-old girl who had already undergone incomplete FM decompression was presented with myelopathy. Both patients underwent decompressive sub-occipitalcraniectomy and C1 laminectomy without duraplasty using iCT. It clearly showed the extent of FM decompression during surgery, which finally enabled sufficient decompression. After the operation, their myelopathy improved. We think that iCT can provide useful information and guidance for sufficient decompression for FM stenosis in children with achondroplasia.

  18. Global adiabaticity and non-Gaussianity consistency condition

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-10-01

    In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad ≡ δP - cw2 δρ where cw2 = P ˙ / ρ ˙ , usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad = 0 on all scales, which we call global adiabaticity (GA), which is guaranteed if cw2 = cs2, where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which cw2 = cs2 = 1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2 = cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.

  19. Generalized shortcuts to adiabaticity and enhanced robustness against decoherence

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.; Sarandy, Marcelo S.

    2018-01-01

    Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.

  20. Decompressive craniectomy and hydrocephalus: proposal of a therapeutic flow chart.

    PubMed

    Peraio, Simone; Calcagni, Maria Lucia; Mattoli, Maria Vittoria; Marziali, Giammaria; DE Bonis, Pasquale; Pompucci, Angelo; Anile, Carmelo; Mangiola, Annunziato

    2017-12-01

    Decompressive craniectomy (DC) may be necessary to save the lives of patients suffering from intracranial hypertension. However, this procedure is not complication-free. Its two main complications are hydrocephalus and the sinking skin-flap syndrome (SSFS). The radiological findings and the clinical evaluation may be not enough to decide when and/or how to treat hydrocephalus in a decompressed patient. SSFS and hydrocephalus may be not unrelated. In fact, a patient affected by hydrocephalus, after the ventriculo-peritoneal shunt, can develop SSFS; on the other hand, SSFS per se can cause hydrocephalus. Treating hydrocephalus in decompressed patients can be challenging. Radiological findings and clinical evaluation may not be enough to define the most appropriate therapeutic strategy. Cerebrospinal fluid (CSF) dynamics and metabolic evaluations can represent important diagnostic tools for assessing the need of a CSF shunt in patients with a poor baseline neurologic status. Based on our experience, we propose a flow chart for treating decompressed patients affected by ventriculomegaly.

  1. Prevention of decompression sickness during extravehicular activity in space: a review.

    PubMed

    Tokumaru, O

    1997-12-01

    Extended and more frequent extravehicular activity (EVA) is planned in NASA's future space programs. The more EVAs are conducted, the higher the incidence of decompression sickness (DCS) that is anticipated. Since Japan is also promoting the Space Station Freedom project with NASA, DCS during EVA will be an inevitable complication. The author reviewed the pathophysiology of DCS and detailed four possible ways of preventing decompression sickness during EVA in space: (1) higher pressure suit technology; (2) preoxygenation/prebreathing; (3) staged decompression; and (4) habitat or vehicle pressurization. Among these measures, development of zero-prebreathe higher pressure suit technology seems most ideal, but because of economic and technical reasons and in cases of emergency, other methods must also be improved. Unsolved problems like repeated decompression or oxygen toxicity were also listed.

  2. Biomechanical analysis of the upper thoracic spine after decompressive procedures.

    PubMed

    Healy, Andrew T; Lubelski, Daniel; Mageswaran, Prasath; Bhowmick, Deb A; Bartsch, Adam J; Benzel, Edward C; Mroz, Thomas E

    2014-06-01

    Decompressive procedures such as laminectomy, facetectomy, and costotransversectomy are routinely performed for various pathologies in the thoracic spine. The thoracic spine is unique, in part, because of the sternocostovertebral articulations that provide additional strength to the region relative to the cervical and lumbar spines. During decompressive surgeries, stability is compromised at a presently unknown point. To evaluate thoracic spinal stability after common surgical decompressive procedures in thoracic spines with intact sternocostovertebral articulations. Biomechanical cadaveric study. Fresh-frozen human cadaveric spine specimens with intact rib cages, C7-L1 (n=9), were used. An industrial robot tested all spines in axial rotation (AR), lateral bending (LB), and flexion-extension (FE) by applying pure moments (±5 Nm). The specimens were first tested in their intact state and then tested after each of the following sequential surgical decompressive procedures at T4-T5 consisting of laminectomy; unilateral facetectomy; unilateral costotransversectomy, and subsequently instrumented fusion from T3-T7. We found that in all three planes of motion, the sequential decompressive procedures caused no statistically significant change in motion between T3-T7 or T1-T12 when compared with intact. In comparing between intact and instrumented specimens, our study found that instrumentation reduced global range of motion (ROM) between T1-T12 by 16.3% (p=.001), 12% (p=.002), and 18.4% (p=.0004) for AR, FE, and LB, respectively. Age showed a negative correlation with motion in FE (r = -0.78, p=.01) and AR (r=-0.7, p=.04). Thoracic spine stability was not significantly affected by sequential decompressive procedures in thoracic segments at the level of the true ribs in all three planes of motion in intact thoracic specimens. Age appeared to negatively correlate with ROM of the specimen. Our study suggests that thoracic spinal stability is maintained immediately after

  3. Frequency of decompression illness among recent and extinct mammals and "reptiles": a review

    NASA Astrophysics Data System (ADS)

    Carlsen, Agnete Weinreich

    2017-08-01

    The frequency of decompression illness was high among the extinct marine "reptiles" and very low among the marine mammals. Signs of decompression illness are still found among turtles but whales and seals are unaffected. In humans, the risk of decompression illness is five times increased in individuals with Patent Foramen Ovale; this condition allows blood shunting from the venous circuit to the systemic circuit. This right-left shunt is characteristic of the "reptile" heart, and it is suggested that this could contribute to the high frequency of decompression illness in the extinct reptiles.

  4. Frequency of decompression illness among recent and extinct mammals and "reptiles": a review.

    PubMed

    Carlsen, Agnete Weinreich

    2017-08-01

    The frequency of decompression illness was high among the extinct marine "reptiles" and very low among the marine mammals. Signs of decompression illness are still found among turtles but whales and seals are unaffected. In humans, the risk of decompression illness is five times increased in individuals with Patent Foramen Ovale; this condition allows blood shunting from the venous circuit to the systemic circuit. This right-left shunt is characteristic of the "reptile" heart, and it is suggested that this could contribute to the high frequency of decompression illness in the extinct reptiles.

  5. Stopping power beyond the adiabatic approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, M.; Correa, A. A.; Artacho, E.

    2017-06-01

    Energetic ions traveling in solids deposit energy in a variety of ways, being nuclear and electronic stopping the two avenues in which dissipation is usually treated. This separation between electrons and ions relies on the adiabatic approximation in which ions interact via forces derived from the instantaneous electronic ground state. In a more detailed view, in which non-adiabatic effects are explicitly considered, electronic excitations alter the atomic bonding, which translates into changes in the interatomic forces. In this work, we use time dependent density functional theory and forces derived from the equations of Ehrenfest dynamics that depend instantaneously on themore » time-dependent electronic density. With them we analyze how the inter-ionic forces are affected by electronic excitations in a model of a Ni projectile interacting with a Ni target, a metallic system with strong electronic stopping and shallow core level states. We find that the electronic excitations induce substantial modifications to the inter-ionic forces, which translate into nuclear stopping power well above the adiabatic prediction. Particularly, we observe that most of the alteration of the adiabatic potential in early times comes from the ionization of the core levels of the target ions, not readily screened by the valence electrons.« less

  6. [Theoretical evaluation of the risk of decompression illness during simulated extravehicular activity].

    PubMed

    Nikolaev, V P

    2008-01-01

    Theoretical analysis of the risk of decompression illness (DI) during extravehicular activity following the Russian and NASA decompression protocols (D-R and D-US, respectively) was performed. In contrast to the tradition approach to decompression stress evaluation by the factor of tissue supersaturation with nitrogen, our probabilistic theory of decompression safety provides a completely reasoned evaluation and comparison of the levels of hazard of these decompression protocols. According to this theory, the function of cumulative DI risk is equal to the sum of functions of cumulative risk of lesion of all body tissues by gas bubbles and their supersaturation by solute gases. Based on modeling of dynamics of these functions, growth of the DI cumulative risk in the course of D-R and D-US follows essentially similar trajectories within the time-frame of up to 330 minutes. However, further extension of D-US but not D-R raises the risk of DI drastically.

  7. Predictors of surgical revision after in situ decompression of the ulnar nerve.

    PubMed

    Krogue, Justin D; Aleem, Alexander W; Osei, Daniel A; Goldfarb, Charles A; Calfee, Ryan P

    2015-04-01

    This study was performed to identify factors associated with the need for revision surgery after in situ decompression of the ulnar nerve for cubital tunnel syndrome. This case-control investigation examined all patients treated at one institution with open in situ decompression for cubital tunnel syndrome between 2006 and 2011. The case patients were 44 failed decompressions that required revision, and the controls were 79 randomly selected patients treated with a single operation. Demographic data and disease-specific data were extracted from the medical records. The rate of revision surgery after in situ decompression was determined from our 5-year experience. A multivariate logistic regression model was used based on univariate testing to determine predictors of revision cubital tunnel surgery. Revision surgery was required in 19% (44 of 231) of all in situ decompressions performed during the study period. Predictors of revision surgery included a history of elbow fracture or dislocation (odds ratio [OR], 7.1) and McGowan stage I disease (OR, 3.2). Concurrent surgery with in situ decompression was protective against revision surgery (OR, 0.19). The rate of revision cubital tunnel surgery after in situ nerve decompression should be weighed against the benefits of a less invasive procedure compared with transposition. When considering in situ ulnar nerve decompression, prior elbow fracture as well as patients requesting surgery for mild clinically graded disease should be viewed as risk factors for revision surgery. Patient factors often considered relevant to surgical outcomes, including age, sex, body mass index, tobacco use, and diabetes status, were not associated with a greater likelihood of revision cubital tunnel surgery. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Adiabatic Quantum Computing with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Hankin, Aaron; Biedermann, Grant; Burns, George; Jau, Yuan-Yu; Johnson, Cort; Kemme, Shanalyn; Landahl, Andrew; Mangan, Michael; Parazzoli, L. Paul; Schwindt, Peter; Armstrong, Darrell

    2012-06-01

    We are developing, both theoretically and experimentally, a neutral atom qubit approach to adiabatic quantum computation. Using our microfabricated diffractive optical elements, we plan to implement an array of optical traps for cesium atoms and use Rydberg-dressed ground states to provide a controlled atom-atom interaction. We will develop this experimental capability to generate a two-qubit adiabatic evolution aimed specifically toward demonstrating the two-qubit quadratic unconstrained binary optimization (QUBO) routine.

  9. Episodic kinematics in continental rifts modulated by changes in mantle melt fraction.

    PubMed

    Lamb, Simon; Moore, James D P; Smith, Euan; Stern, Tim

    2017-07-05

    Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor 'spreading centres' found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however-which are also associated with mantle melt production-are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift-processes that are also likely to occur in oceanic spreading centres.

  10. [Two-wall decompression without resection of the medial wall. Effect on squint angle].

    PubMed

    Bertelmann, E; Rüther, K

    2011-11-01

    Postoperative new onset diplopia can be a disadvantage for surgical orbital decompression in patients with exophthalmos in thyroid eye disease. The various modifications of decompression (number and combination of walls) differ in their influence on the postoperative squint angle. We report on postoperative diplopia in a modified 2 wall decompression strategy (lateral wall and floor). This study was a retrospective analysis of 36 consecutive 2-wall decompressions performed between 2006-2010 in 24 patients with 6 months of stable exophthalmos in thyroid eye disease after medical therapy and radiotherapy. The preoperative and postoperative squint angle in prism cover test (PCT), motility, induction of diplopia, reduction of exophthalmos, visual acuity and complications were evaluated. In all 36 decompressions the postoperative squint angle was equal to or less than before surgery. In 8 eyes additional squint surgery was performed. The mean reduction in exopthalmos was 4.3 mm. An adverse effect of decompression on the postoperative squint angle was not evident in this study. New induction of diplopia was not observed at all. One possible explanation is the preservation of the medial wall.

  11. On the adiabatic limit of Hadamard states

    NASA Astrophysics Data System (ADS)

    Drago, Nicolò; Gérard, Christian

    2017-08-01

    We consider the adiabatic limit of Hadamard states for free quantum Klein-Gordon fields, when the background metric and the field mass are slowly varied from their initial to final values. If the Klein-Gordon field stays massive, we prove that the adiabatic limit of the initial vacuum state is the (final) vacuum state, by extending to the symplectic framework the adiabatic theorem of Avron-Seiler-Yaffe. In cases when only the field mass is varied, using an abstract version of the mode decomposition method we can also consider the case when the initial or final mass vanishes, and the initial state is either a thermal state or a more general Hadamard state.

  12. Decompression sickness in simulated Apollo-Soyuz space missions

    NASA Technical Reports Server (NTRS)

    Cooke, J. P.; Robertson, W. G.

    1974-01-01

    Apollo-Soyuz docking module atmospheres were evaluated for incidence of decompression sickness in men simulating passage from the Russian spacecraft atmosphere, to the U.S. spacecraft atmosphere, and then to the American space suit pressure. Following 8 hr of 'shirtsleeve' exposure to 31:69::O2:N2 gas breathing mixture, at 10 psia, subjects were 'denitrogenated' for either 30 or 60 min with 100% O2 prior to decompression directly to 3.7 psia suit equivalent while performing exercise at fixed intervals. Five of 21 subjects experienced symptoms of decompression sickness after 60 min of denitrogenation compared to 6 among 20 subjects after 30 min of denitrogenation. A condition of Grade I bends was reported after 60 min of denitrogenation, and 3 of these 5 subjects noted the disappearance of all symptoms of bends at 3.7 psia. After 30 min of denitrogenation, 2 out of 6 subjects developed Grade II bends at 3.7 psia.

  13. Effect of Inert Gas Switching at Depth on Decompression Outcome in Rats

    DTIC Science & Technology

    1989-01-01

    Indcuae Security Classification) Effect Of inert gas switching at depth on decompression outcome in rats Liil RVRcCall1urn M~E 16. SUPPLEMENTARY...CLASSIrICATrIONOF TI PAGE All other edition% -ate obsfee UNCLASSIFIED Effect of inert gas switching at depth on decompression outcome in rats R. S... Effect of inert gas Although various models of inert gas transport in the switching at depth on decompression outcome in rats. J. Appl

  14. Surgical decompression is associated with decreased mortality in patients with sepsis and ureteral calculi.

    PubMed

    Borofsky, Michael S; Walter, Dawn; Shah, Ojas; Goldfarb, David S; Mues, Adam C; Makarov, Danil V

    2013-03-01

    The combination of sepsis and ureteral calculus is a urological emergency. Traditional teaching advocates urgent decompression with nephrostomy tube or ureteral stent placement, although published outcomes validating this treatment are lacking. National practice patterns for such scenarios are currently undefined. Using a retrospective study design, we defined the surgical decompression rate in patients admitted to the hospital with severe infection and ureteral calculi. We determined whether a mortality benefit is associated with this intervention. Patient demographics and hospital characteristics were extracted from the 2007 to 2009 Nationwide Inpatient Sample. We identified 1,712 patients with ureteral calculi and sepsis. Multivariate logistic regression was performed to determine the association between mortality and surgical decompression. Of the patients 78% underwent surgical decompression. Mortality was higher in those not treated with surgical decompression (19.2% vs 8.82%, p <0.001). Lack of surgical decompression was independently associated with an increased OR of mortality even when adjusting for patient demographics, comorbidities and geographic region of treatment (OR 2.6, 95% CI 1.9-3.7). Absent surgical decompression is associated with higher odds of mortality in patients with sepsis and ureteral calculi. Further research to determine predictors of surgical decompression is necessary to ensure that all patients have access to this life saving therapy. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Ignition and pusher adiabat

    DOE PAGES

    Cheng, B. L.; Kwan, T. J. T.; Wang, Y. M.; ...

    2018-05-18

    In the last five years, large amounts of high quality experimental data in inertial confinement fusion (ICF) were produced at the National Ignition Facility (NIF). From the NIF data, we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition in ICF and identified the critical physical issues important to achieve ignition, such as implosion energetics, pusher adiabat, tamping effects in fuel confinement, and confinement time. In this article, we will present recently developed TN ignition theory and implosion scaling laws [1, 2] characterizing the thermodynamic properties of the hot spot and the TN ignition metrics atmore » NIF. We compare our theoretical predictions with NIF data with good agreement between theory and experiments. We will also demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium-tritium and on the neutron yields of ICF capsules. Applications [3–5] to NIF experiments and physical explanations of the discrepancies among theory, data and simulations will be presented. In our theory, the actual adiabat of the cold DT fuel can be inferred from neutron image data of a burning capsule. With the experimentally inferred hot spot mix, the CH mix in the cold fuel could be estimated, as well as the preheat. Finally, possible path forwards to reach high yields are discussed.« less

  16. Identifying the Subtle Presentation of Decompression Sickness.

    PubMed

    Alea, Kenneth

    2015-12-01

    Decompression sickness is an inherent occupational hazard that has the possibility to leave its victims with significant long-lasting effects that can potentially impact an aircrew's flight status. The relative infrequency of this hazard within the military flying community along with the potentially subtle presentation of decompression sickness (DCS) has the potential to result in delayed diagnosis and treatment, leading to residual deficits that can impact a patient's daily life or even lead to death. The patient presented in this work was diagnosed with a Type II DCS 21 h after a cabin decompression at 35,000 ft (10,668 m). The patient had been asymptomatic with a completely normal physical/neurological exam following his flight. The following day, he presented with excessive fatigue and on re-evaluation was recommended for hyperbaric therapy, during which his symptoms completely resolved. He was re-evaluated 14 d later and cleared to resume flight duties without further incident. The manifestation of this patient's decompression sickness was subtle and followed an evaluation that failed to identify any focal findings. A high index of suspicion with strict follow-up contributed to the identification of DCS in this case, resulting in definitive treatment and resolution of the patient's symptoms. Determination of the need for hyperbaric therapy following oxygen supplementation and a thorough history and physical is imperative. If the diagnosis is in question, consider preemptive hyperbaric therapy as the benefits of treatment in DCS outweigh the risks of treatment. Finally, this work introduces the future potential of neuropsychological testing for both the diagnosis of DCS as well as assessing the effectiveness of hyperbaric therapy in Type II DCS.

  17. You’re the Flight Surgeon: Pulmonary Decompression Sickness

    DTIC Science & Technology

    2008-06-01

    follow-up of this patient Diagnosis: Decompression sickness (DeS) with pulmonary symptoms (Type Il DeS, older nomenclature). Treatment: Hyperbaric ...is quite clear thai any case of suspected decompression sickness in the USAF be discussed with the hyperbariC medicine specialists at Brooks City...physician in as respectful manner as you can that you suspect the patient’s condition is likely related to his hypobaric exposure. B. Agree with

  18. A Log Logistic Survival Model Applied to Hypobaric Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2001-01-01

    Decompression sickness (DCS) is a complex, multivariable problem. A mathematical description or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to define a decompression dose using physical and physiological variables, and an appropriate analytical approach. It also requires a high-performance computer with specialized software. I have used published DCS data to develop my decompression doses, which are variants of equilibrium expressions for evolved gas plus other explanatory variables. My analytical approach is survival analysis, where the time of DCS occurrence is modeled. My conclusions can be applied to simple hypobaric decompressions - ascents lasting from 5 to 30 minutes - and, after minutes to hours, to denitrogenation (prebreathing). They are also applicable to long or short exposures, and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future spaceflight crews on the Moon and Mars.

  19. Outcome after decompressive craniectomy for the treatment of severe traumatic brain injury.

    PubMed

    Howard, Jerry Lee; Cipolle, Mark D; Anderson, Meredith; Sabella, Victoria; Shollenberger, Daniele; Li, P Mark; Pasquale, Michael D

    2008-08-01

    Using decompressive craniectomy as part of the treatment regimen for severe traumatic brain injury (STBI) has become more common at our Level I trauma center. This study was designed to examine this practice with particular attention to long-term functional outcome. A retrospective review of prospectively collected data was performed for patients with STBI admitted from January 1, 2003 to December 31, 2005. Our institution manages patients using the Brain Trauma Foundation Guidelines. Data collected from patients undergoing decompressive craniectomy included: age, Injury Severity Score, admission and follow-up Glasgow Coma Score, timing of, and indication for decompressive craniectomy, and procedure-related complications. The Extended Glasgow Outcome Scale (GOSE) was performed by a experienced trauma clinical research coordinator using a structured phone interview to assess long-term outcome in the survivors. Student's t test and chi2 were used to examine differences between groups. Forty STBI patients were treated with decompressive craniectomy; 24 were performed primarily in conjunction with urgent evacuation of extra-axial hemorrhage and 16 were performed primarily in response to increased intracranial pressure with 4 of these after an initial craniotomy. Decompressive craniectomy was very effective at lowering intracranial pressure in these 16 patients (35.0 mm Hg +/- 13.5 mm Hg to 14.6 mm Hg +/- 8.7 mm Hg, p = 0.005). Twenty-two decompressive craniectomy patients did not survive to hospital discharge, whereas admission Glasgow Coma Score and admission pupil size and reactivity correlated with outcome, age, and Injury Severity Score did not. At a mean of 11 months (range, 3-26 months) after decompressive craniectomy, 6 survivors had a poor functional outcome (GOSE 1-4), whereas 12 survivors had a good outcome (GOSE 5-8). Therefore, 70% of these patients had an unfavorable outcome (death or severe disability), and 30% had a favorable long-term functional outcome

  20. Biomechanics of the lower thoracic spine after decompression and fusion: a cadaveric analysis.

    PubMed

    Lubelski, Daniel; Healy, Andrew T; Mageswaran, Prasath; Benzel, Edward C; Mroz, Thomas E

    2014-09-01

    Few studies have evaluated the extent of biomechanical destabilization of thoracic decompression on the upper and lower thoracic spine. The present study evaluates lower thoracic spinal stability after laminectomy, unilateral facetectomy, and unilateral costotransversectomy in thoracic spines with intact sternocostovertebral articulations. To assess the biomechanical impact of decompression and fixation procedures on lower thoracic spine stability. Biomechanical cadaveric study. Sequential surgical decompression (laminectomy, unilateral facetectomy, unilateral costotransversectomy) and dorsal fixation were performed on the lower thoracic spine (T8-T9) of human cadaveric spine specimens with intact rib cages (n=10). An industrial robot was used to apply pure moments to simulate flexion-extension (FE), lateral bending (LB), and axial rotation (AR) in the intact specimens and after decompression and fixation. Global range of motion (ROM) between T1-T12 and intrinsic ROM between T7-T11 were measured for each specimen. The decompression procedures caused no statistically significant change in either global or intrinsic ROM compared with the intact state. Instrumentation, however, reduced global motion for AR (45° vs. 30°, p=.0001), FE (24° vs. 19°, p=.02), and LB (47° vs. 36°, p=.0001) and for intrinsic motion for AR (17° vs. 4°, p=.0001), FE (8° vs. 1°, p=.0001), and LB (12° vs. 1°, p=.0001). No significant differences were identified between decompression of the upper versus lower thoracic spine, with trends toward significantly greater ROM for AR and lower ROM for LB in the lower thoracic spine. The lower thoracic spine was not destabilized by sequential unilateral decompression procedures. Addition of dorsal fixation increased segment rigidity at intrinsic levels and also reduced overall ROM of the lower thoracic spine to a greater extent than did fusing the upper thoracic spine (level of the true ribs). Despite the lack of true ribs, the lower thoracic

  1. Health care worker decompression sickness: incidence, risk and mitigation.

    PubMed

    Clarke, Richard

    2017-01-01

    Inadvertent exposure to radiation, chemical agents and biological factors are well recognized hazards associated with the health care delivery system. Less well appreciated yet no less harmful is risk of decompression sickness in those who accompany patients as inside attendants (IAs) during provision of hyperbaric oxygen therapy. Unlike the above hazards where avoidance is practiced, IA exposure to decompression sickness risk is unavoidable. While overall incidence is low, when calculated as number of cases over number of exposures or potential for a case during any given exposure, employee cumulative risk, defined here as number of cases over number of IAs, or risk that an IA may suffer a case, is not. Commonly, this unique occupational environmental injury responds favorably to therapeutic recompression and a period of recuperation. There are, however, permanent and career-ending consequences, and at least two nurses have succumbed to their decompression insults. The intent of this paper is to heighten awareness of hyperbaric attendant decompression sickness. It will serve as a review of reported cases and reconcile incidence against largely ignored individual worker risk. Mitigation strategies are summarized and an approach to more precisely identify risk factors that might prompt development of consensus screening standards is proposed. Copyright© Undersea and Hyperbaric Medical Society.

  2. Adiabatic Quantum Anomaly Detection and Machine Learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen; Lidar, Daniel

    2012-02-01

    We present methods of anomaly detection and machine learning using adiabatic quantum computing. The machine learning algorithm is a boosting approach which seeks to optimally combine somewhat accurate classification functions to create a unified classifier which is much more accurate than its components. This algorithm then becomes the first part of the larger anomaly detection algorithm. In the anomaly detection routine, we first use adiabatic quantum computing to train two classifiers which detect two sets, the overlap of which forms the anomaly class. We call this the learning phase. Then, in the testing phase, the two learned classification functions are combined to form the final Hamiltonian for an adiabatic quantum computation, the low energy states of which represent the anomalies in a binary vector space.

  3. On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics

    NASA Astrophysics Data System (ADS)

    Cotton, Stephen J.; Liang, Ruibin; Miller, William H.

    2017-08-01

    The Meyer-Miller (MM) classical vibronic (electronic + nuclear) Hamiltonian for electronically non-adiabatic dynamics—as used, for example, with the recently developed symmetrical quasiclassical (SQC) windowing model—can be written in either a diabatic or an adiabatic representation of the electronic degrees of freedom, the two being a canonical transformation of each other, thus giving the same dynamics. Although most recent applications of this SQC/MM approach have been carried out in the diabatic representation—because most of the benchmark model problems that have exact quantum results available for comparison are typically defined in a diabatic representation—it will typically be much more convenient to work in the adiabatic representation, e.g., when using Born-Oppenheimer potential energy surfaces (PESs) and derivative couplings that come from electronic structure calculations. The canonical equations of motion (EOMs) (i.e., Hamilton's equations) that come from the adiabatic MM Hamiltonian, however, in addition to the common first-derivative couplings, also involve second-derivative non-adiabatic coupling terms (as does the quantum Schrödinger equation), and the latter are considerably more difficult to calculate. This paper thus revisits the adiabatic version of the MM Hamiltonian and describes a modification of the classical adiabatic EOMs that are entirely equivalent to Hamilton's equations but that do not involve the second-derivative couplings. The second-derivative coupling terms have not been neglected; they simply do not appear in these modified adiabatic EOMs. This means that SQC/MM calculations can be carried out in the adiabatic representation, without approximation, needing only the PESs and the first-derivative coupling elements. The results of example SQC/MM calculations are presented, which illustrate this point, and also the fact that simply neglecting the second-derivative couplings in Hamilton's equations (and presumably also in

  4. Patterns and Variations in Microvascular Decompression for Trigeminal Neuralgia

    PubMed Central

    TODA, Hiroki; GOTO, Masanori; IWASAKI, Koichi

    2015-01-01

    Microvascular decompression (MVD) is a highly effective surgical treatment for trigeminal neuralgia (TN). Although there is little prospective clinical evidence, accumulated observational studies have demonstrated the benefits of MVD for refractory TN. In the current surgical practice of MVD for TN, there have been recognized patterns and variations in surgical anatomy and various decompression techniques. Here we provide a stepwise description of surgical procedures and relevant anatomical characteristics, as well as procedural options. PMID:25925756

  5. The Extended Oxygen Window Concept for Programming Saturation Decompressions Using Air and Nitrox

    PubMed Central

    Kot, Jacek; Sicko, Zdzislaw

    2015-01-01

    Saturation decompression is a physiological process of transition from one steady state, full saturation with inert gas at pressure, to another one: standard conditions at surface. It is defined by the borderline condition for time spent at a particular depth (pressure) and inert gas in the breathing mixture (nitrogen, helium). It is a delicate and long lasting process during which single milliliters of inert gas are eliminated every minute, and any disturbance can lead to the creation of gas bubbles leading to decompression sickness (DCS). Most operational procedures rely on experimentally found parameters describing a continuous slow decompression rate. In Poland, the system for programming of continuous decompression after saturation with compressed air and nitrox has been developed as based on the concept of the Extended Oxygen Window (EOW). EOW mainly depends on the physiology of the metabolic oxygen window—also called inherent unsaturation or partial pressure vacancy—but also on metabolism of carbon dioxide, the existence of water vapor, as well as tissue tension. Initially, ambient pressure can be reduced at a higher rate allowing the elimination of inert gas from faster compartments using the EOW concept, and maximum outflow of nitrogen. Then, keeping a driving force for long decompression not exceeding the EOW allows optimal elimination of nitrogen from the limiting compartment with half-time of 360 min. The model has been theoretically verified through its application for estimation of risk of decompression sickness in published systems of air and nitrox saturation decompressions, where DCS cases were observed. Clear dose-reaction relation exists, and this confirms that any supersaturation over the EOW creates a risk for DCS. Using the concept of the EOW, 76 man-decompressions were conducted after air and nitrox saturations in depth range between 18 and 45 meters with no single case of DCS. In summary, the EOW concept describes physiology of

  6. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  7. The Roles of Temperature and Composition in High-Pressure Structural Changes in Aluminosilicate Melts

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2009-12-01

    modifier cation field strength has an important effect on this process as well: it is now well-known from borosilicate analog systems that higher field-strength modifiers (e.g. Ca2+ vs. Na+) stabilize local concentrations of negative charge as on NBO. This competing effect may again complicate models of density vs. composition. At best, quenched and decompressed glasses sample the melt structure only at the high P glass transition temperature. Given that the solidus temperatures of greatest interest to geological processes generally increase with pressure, changes in melt structure with temperature become even more important. The still poorly-known effects of ambient T decompression on glass structure also need to be resolved by future studies of the kinetics of this process and key in-situ measurements. Simple estimates of density changes during quench from a high P/T melt and subsequent decompression suggest that there is not a great deal of “room” for inelastic structural relaxation in typical aluminosilicate glasses, unless the high pressure thermal expansivity has a much larger structural contribution (Si coordination shift with T?) than is known from ambient P.

  8. Contrasting melt equilibration conditions across Anatolia

    NASA Astrophysics Data System (ADS)

    Reid, Mary; Delph, Jonathan; Schleiffarth, W. Kirk; Cosca, Michael

    2017-04-01

    The widespread mafic volcanism, elevated crustal temperatures, and plateau-type topography in Central Anatolia, Turkey, could collectively be the result of lithospheric delamination, mantle upwelling, and tectonic escape in response to Arabian-Anatolian plate collision. We used the results from basalt geochemistry and a passive-source broadband seismic experiment obtained as part of an international collaborative effort (Continental Dynamics - Central Anatolia Tectonics) to investigate the crust-mantle structure and melting conditions associated with the Quaternary Hasandag Monogenic Cluster (HMC) south and west of Hasandag volcano. The HMC is unusually mafic, not only for Central Anatolia but globally, enabling meaningful comparisons between geochemical and seismic interpretations of mantle conditions. HMC basalts are characterized by orogenic signatures that could have originated (1) in mantle wedge that, after stagnating because of collision, was remobilized south and upward as a result of rollback of the African slab or, alternatively (2) by piecemeal foundering of residual mantle lithosphere into convecting upper mantle, producing small-scale convection and associated decompression melting. Melt equilibration conditions for the HMC are hot (TP ˜1335-1250˚ C, assuming 1-4 wt.% H2O) and shallow (P = 1.1 to 1.6 GPa), approaching those for MORB. Shear wave velocities are relatively constant at ˜4.1 km/s between the Moho and a depth of ˜45-50 km (˜1.4 GPa; Fig. 6), below which Vs increases with increasing depth. We infer that a melt-perfused mantle lid could be locally present between 40 and 55 km. In contrast to Central Anatolia, estimated equilibration conditions for Western Anatolia and Eastern Anatolia (east of the Inner Tauride Suture) mantle melts are hotter (by ≥60˚ C) and deeper (mostly by 0.6-1.0 GPa). They also have chemical signatures that, unlike Central Anatolia, are similar to those of intraplate basalts. These differences are likely related

  9. Adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Lidar, Daniel A.

    2018-01-01

    Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.

  10. Nerve Decompression Surgery After Total Hip Arthroplasty: What Are the Outcomes?

    PubMed

    Chughtai, Morad; Khlopas, Anton; Gwam, Chukwuwieke U; Elmallah, Randa K; Thomas, Melbin; Nace, James; Mont, Michael A

    2017-04-01

    The purpose of our study was to compare (1) muscle strength; (2) pain; (3) sensation; (4) various outcome measurement scales between post-total hip arthroplasty (THA) patients who had a sciatic nerve injury and did or did not receive decompression surgery for this condition; and (5) to compare these findings with current literature. Nineteen patients who had nerve injury after THA were reviewed. Patients were stratified into those who had a nerve decompression (n = 12), and those who had not (n = 7). Motor strength was evaluated using the Muscle Strength Testing Scale. Pain was evaluated by using the visual analogue scale. Systematic literature search was performed to compare the findings of this study with others currently published. The decompression group had a significant improvement in motor strength and the visual analog scale scores as compared with nonoperative group. Patients in decompression group had a significant larger increase in the mean Harris hip score and University of California Los Angeles score. There was no significant difference in the increase of Short Form-36 physical and mental scores between the 2 groups. Literature review for nonoperative management yielded 5 studies (93 patients), with 33% improvement. There were 7 studies (81 patients) on nerve decompression surgery, with 75% improvement. This study demonstrates the benefits of nerve decompression surgery in patients who had sciatic nerve injury after THA, as evidenced by results of standardized outcome measurement scales. It is possible to achieve improvements in terms of strength, pain, and clinical outcomes. Comparative studies with larger cohorts are needed to fully assess the best candidates for this procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Transnasal Endoscopic Optic Nerve Decompression in Post Traumatic Optic Neuropathy.

    PubMed

    Gupta, Devang; Gadodia, Monica

    2018-03-01

    To quantify the successful outcome in patients following optic nerve decompression in post traumatic unilateral optic neuropathy in form of improvement in visual acuity. A prospective study was carried out over a period of 5 years (January 2011 to June 2016) at civil hospital Ahmedabad. Total 20 patients were selected with optic neuropathy including patients with direct and indirect trauma to unilateral optic nerve, not responding to conservative management, leading to optic neuropathy and subsequent impairment in vision and blindness. Decompression was done via Transnasal-Ethmo-sphenoidal route and outcome was assessed in form of post-operative visual acuity improvement at 1 month, 6 months and 1 year follow up. After surgical decompression complete recovery of visual acuity was achieved in 16 (80%) patients and partial recovery in 4 (20%). Endoscopic transnasal approach is beneficial in traumatic optic neuropathy not responding to steroid therapy and can prevent permanent disability if earlier intervention is done prior to irreversible damage to the nerve. Endoscopic optic nerve surgery can decompress the traumatic and oedematous optic nerve with proper exposure of orbital apex and optic canal without any major intracranial, intraorbital and transnasal complications.

  12. MRI Evaluation of Post Core Decompression Changes in Avascular Necrosis of Hip.

    PubMed

    Nori, Madhavi; Marupaka, Sravan Kumar; Alluri, Swathi; Md, Naseeruddin; Irfan, Kazi Amir; Jampala, Venkateshwarlu; Apsingi, Sunil; Eachempati, Krishna Kiran

    2015-12-01

    Avascular necrosis of hip typically presents in young patients. Core decompression in precollapse stage provides pain relief and preservation of femoral head. The results of core decompression vary considerably despite early diagnosis. The role of MRI in monitoring patients post surgically has not been clearly defined. To study pre and post core decompression MRI changes in avascular necrosis of hip. This is a contiguous observational cohort of 40 hips treated by core decompression for precollapse avascular necrosis of femoral head, who had a baseline MRI performed before surgery. Core decompression of the femoral head was performed within 4 weeks. Follow up radiograph and MRI scans were done at six months. Harris hip score preoperatively, 1 month and 6 months after the surgery was noted. Success in this study was defined as postoperative increase in Harris hip score (HHS) by 20 points and no additional femoral collapse. End point of clinical adverse outcome as defined by fall in Harris hip score was conversion or intention to convert to total hip replacement (THR). MRI parameters in the follow up scan were compared to the preoperative MRI. Effect of core decompression on bone marrow oedema and femoral head collapse was noted. Results were analysed using SPSS software version. Harris hip score improved from 57 to 80 in all patients initially. Six hips had a fall in Harris hip score to mean value of 34.1 during follow up (9 to 12 months) and underwent total hip replacement. MRI predictors of positive outcome are lesions with grade A extent, Grade A & B location. Bone marrow oedema with lesions less than 50% involvement, medial and central location. Careful selection of patients by MR criteria for core decompression provides satisfactory outcome in precollapse stage of avascular necrosis of hip.

  13. MRI Evaluation of Post Core Decompression Changes in Avascular Necrosis of Hip

    PubMed Central

    Marupaka, Sravan Kumar; Alluri, Swathi; MD, Naseeruddin; Irfan, Kazi Amir; Jampala, Venkateshwarlu; Apsingi, Sunil; Eachempati, Krishna Kiran

    2015-01-01

    Introduction Avascular necrosis of hip typically presents in young patients. Core decompression in precollapse stage provides pain relief and preservation of femoral head. The results of core decompression vary considerably despite early diagnosis. The role of MRI in monitoring patients post surgically has not been clearly defined. Aim To study pre and post core decompression MRI changes in avascular necrosis of hip. Materials and Methods This is a contiguous observational cohort of 40 hips treated by core decompression for precollapse avascular necrosis of femoral head, who had a baseline MRI performed before surgery. Core decompression of the femoral head was performed within 4 weeks. Follow up radiograph and MRI scans were done at six months. Harris hip score preoperatively, 1 month and 6 months after the surgery was noted. Success in this study was defined as postoperative increase in Harris hip score (HHS) by 20 points and no additional femoral collapse. End point of clinical adverse outcome as defined by fall in Harris hip score was conversion or intention to convert to total hip replacement (THR). MRI parameters in the follow up scan were compared to the preoperative MRI. Effect of core decompression on bone marrow oedema and femoral head collapse was noted. Results were analysed using SPSS software version. Results Harris hip score improved from 57 to 80 in all patients initially. Six hips had a fall in Harris hip score to mean value of 34.1 during follow up (9 to 12 months) and underwent total hip replacement. MRI predictors of positive outcome are lesions with grade A extent, Grade A & B location. Bone marrow oedema with lesions less than 50% involvement, medial and central location. Conclusion Careful selection of patients by MR criteria for core decompression provides satisfactory outcome in precollapse stage of avascular necrosis of hip. PMID:26816966

  14. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    NASA Astrophysics Data System (ADS)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  15. Greater Occipital Nerve Decompression for Occipital Neuralgia.

    PubMed

    Jose, Anson; Nagori, Shakil Ahmed; Chattopadhyay, Probodh K; Roychoudhury, Ajoy

    2018-05-14

    The aim of the study was to evaluate the effectiveness of greater occipital nerve decompression for the management of occipital neuralgia. Eleven patients of medical refractory occipital neuralgia were enrolled in the study. Local anaesthetic blocks were used for confirming diagnosis. All of them underwent surgical decompression of greater occipital nerve at the level of semispinalis capitis and trapezial tunnel. A pre and postoperative questionnaire was used to compare the severity of pain and number of pain episodes/month. Mean pain episodes reported by patients before surgery were 17.1 ± 5.63 episodes per month. This reduced to 4.1 ± 3.51 episodes per month (P < 0.0036) postsurgery. The mean intensity of pain also reduced from a preoperative 7.18 ± 1.33 to a postoperative of 1.73 ± 1.95 (P < 0.0033). Three patients reported complete elimination of pain after surgery while 6 patients reported significant relief of their symptoms. Only 2 patients failed to notice any significant improvement. The mean follow-up period was 12.45 ± 1.29 months. Surgical decompression of greater occipital nerve is a simple and viable treatment modality for the management of occipital neuralgia.

  16. Musculoskeletal-induced Nucleation in Altitude Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2014-01-01

    Musculoskeletal activity has the potential to both improve and compromise decompression safety. Exercise enhances inert gas elimination during oxygen breathing prior to decompression (prebreathe), but it may also promote bubble nuclei formation (nucleation), which can lead to gas phase separation and bubble growth and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation may be critical to the net effect. There are limited data available to evaluate cost-benefit relationships. Understanding the relationship is important to improve our understanding of the underlying mechanisms of nucleation in exercise prebreathe protocols and to quantify risk in gravity and microgravity environments. Data gathered during NASA's Prebreathe Reduction Program (PRP) studies combined oxygen prebreathe and exercise followed by low pressure (4.3 psi; altitude equivalent of 30,300 ft [9,235 m]) microgravity simulation to produce two protocols used by astronauts preparing for extravehicular activity. Both the Phase II/CEVIS (cycle ergometer vibration isolation system) and ISLE (in-suit light exercise) trials eliminated ambulation to more closely simulate the microgravity environment. The CEVIS results (35 male, 10 female) serve as control data for this NASA/Duke study to investigate the influence of ambulation exercise on bubble formation and the subsequent risk of DCS.

  17. Timing of cranioplasty after decompressive craniectomy for trauma.

    PubMed

    Piedra, Mark P; Nemecek, Andrew N; Ragel, Brian T

    2014-01-01

    The optimal timing of cranioplasty after decompressive craniectomy for trauma is unknown. The aim of this study was to determine if early cranioplasty after decompressive craniectomy for trauma reduces complications. Consecutive cases of patients who underwent autologous cranioplasty after decompressive craniectomy for trauma at a single Level I Trauma Center were studied in a retrospective 10 year data review. Associations of categorical variables were compared using Chi-square test or Fisher's exact test. A total of 157 patients were divided into early (<12 weeks; 78 patients) and late (≥12 weeks; 79 patients) cranioplasty cohorts. Baseline characteristics were similar between the two cohorts. Cranioplasty operative time was significantly shorter in the early (102 minutes) than the late (125 minutes) cranioplasty cohort (P = 0.0482). Overall complication rate in both cohorts was 35%. Infection rates were lower in the early (7.7%) than the late (14%) cranioplasty cohort as was bone graft resorption (15% early, 19% late), hydrocephalus rate (7.7% early, 1.3% late), and postoperative hematoma incidence (3.9% early, 1.3% late). However, these differences were not statistically significant. Patients <18 years of age were at higher risk of bone graft resorption than patients ≥18 years of age (OR 3.32, 95% CI 1.25-8.81; P = 0.0162). After decompressive craniectomy for trauma, early (<12 weeks) cranioplasty does not alter the incidence of complication rates. In patients <18 years of age, early (<12 weeks) cranioplasty increases the risk of bone resorption. Delaying cranioplasty (≥12 weeks) results in longer operative times and may increase costs.

  18. Stimulated Raman adiabatic passage in a three-level superconducting circuit

    PubMed Central

    Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2016-01-01

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454

  19. Stimulated Raman adiabatic passage in a three-level superconducting circuit.

    PubMed

    Kumar, K S; Vepsäläinen, A; Danilin, S; Paraoanu, G S

    2016-02-23

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.

  20. The vibrationally adiabatic torsional potential energy surface of trans-stilbene

    NASA Astrophysics Data System (ADS)

    Chowdary, Praveen D.; Martinez, Todd J.; Gruebele, Martin

    2007-05-01

    The effect of vibrational Zero Point Energy (ZPE) on the torsional barriers of trans-stilbene is studied in the adiabatic approximation. The two torsional modes corresponding to phenyl rotation are explicitly separated, and the remaining modes are treated as normal coordinates. ZPE reduces the adiabatic barrier along the in-phase torsion from 198 to 13 cm -1. A one-dimensional adiabatic potential for the anti-phase torsion, including the ZPE of the in-phase torsion, reduces the adiabatic barrier from 260 to 58 cm -1. Comparison with recent electronic structure benchmark calculations suggests that vibrational corrections play a significant role in trans-stilbene's experimentally observed planar structure.

  1. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  2. Failure rate of prehospital chest decompression after severe thoracic trauma.

    PubMed

    Kaserer, Alexander; Stein, Philipp; Simmen, Hans-Peter; Spahn, Donat R; Neuhaus, Valentin

    2017-03-01

    Chest decompression can be performed by different techniques, like needle thoracocentesis (NT), lateral thoracostomy (LT), or tube thoracostomy (TT). The aim of this study was to report the incidence of prehospital chest decompression and to analyse the effectiveness of these techniques. In this retrospective case series study, all medical records of adult trauma patients undergoing prehospital chest decompression and admitted to the resuscitation area of a level-1 trauma center between 2009 and 2015 were reviewed and analysed. Only descriptive statistics were applied. In a 6-year period 24 of 2261 (1.1%) trauma patients had prehospital chest decompression. Seventeen patients had NT, six patients TT, one patient NT as well as TT, and no patients had LT. Prehospital successful release of a tension pneumothorax was reported by the paramedics in 83% (5/6) with TT, whereas NT was effective in 18% only (3/17). In five CT scans all thoracocentesis needles were either removed or extrapleural, one patient had a tension pneumothorax, and two patients had no pneumothorax. No NT or TT related complications were reported during hospitalization. Prehospital NT or TT is infrequently attempted in trauma patients. Especially NT is associated with a high failure rate of more than 80%, potentially due to an inadequate ratio between chest wall thickness and catheter length as previously published as well as a possible different pathophysiological cause of respiratory distress. Therefore, TT may be considered already in the prehospital setting to retain sufficient pleural decompression upon admission. Copyright © 2016. Published by Elsevier Inc.

  3. Oxygen equipment and rapid decompression studies.

    DOT National Transportation Integrated Search

    1979-03-01

    This is a collection of reports of evaluations of the protective capability of various oxygen systems at high altitude and during rapid decompression. Results of these studies were presented at scientific meetings and/or published in preprints or pro...

  4. [A clinical study on different decompression methods in cervical spondylosis].

    PubMed

    Ma, Xun; Zhao, Xiao-fei; Zhao, Yi-bo

    2009-04-15

    To analyze the different decompression methods to treat cervical spondylosis based on imageological evaluation. Two hundred and sixty three consecutive patients with cervical spondylosis between Nov. 2004 and Oct. 2007 were involved in this study. Patients were distributed to different operation groups based on the preoperative imageological evaluation, including anterior or posterior decompression methods. The Anterior method is to use the discectomy of one to three segments, autogenous iliac graft or titanium mesh or cage fusion and titanium plate fixation, or subtotal vertebrectomy of one to two segments autogenous iliac graft or titanium mesh fusion and titanium plate fixation, or discectomy plus subtotal vertebrectomy, The posterior expansive single open door laminoplasty and other operation types. All the patients were divided into different groups by the preoperative imageological evaluation, age, sex and course of diseases. Then we collected each group's preoperative and postoperative JOA scores and mean improvement rate to evaluate the postoperative effect by different decompression methods. Two hundred and thirty five patients were followed up with a mean period of 18 months (range, 4 to 36 months). JOA scores of all patients were improved by different degrees after operations. Anterior and posterior decompression methods both can achieve higher mean improvement rates. There were no significant differences in mean improvement rates between anterior groups, and so did male and female (P > 0.05). The effect will decrease as age increases or the course of disease prolongs. Statistical significance existed among the different age groups and between course groups (P < 0.05). Anterior and posterior decompression methods both can achieve good effect. The key point is to choose the surgical indication correctly, decompress thoroughly, and make the fusion reliable and fixation firm. In regard to the patients' imageological evaluation, the methods should be

  5. Risk of decompression sickness in the presence of circulating microbubbles

    NASA Technical Reports Server (NTRS)

    Kumar, K. Vasantha; Powell, Michael R.

    1993-01-01

    In this study, we examined the association between microbubbles formed in the circulation from a free gas phase and symptoms of altitude decompression sickness (DCS). In a subgroup of 59 males of mean (S.D) age 31.2 (5.8) years who developed microbubbles during exposure to 26.59 kPa (4.3 psi) under simulated extravehicular activities (EVA), symptoms of DCS occurred in 24 (41 percent) individuals. Spencer grade 1 microbubbles occurred in 4 (7 percent), grade 2 in 9 (15 percent), grade 3 in 15 (25 percent), and grade 4 in 31 (53 percent) of subjects. Survival analysis using Cox proportional hazards regression showed that individuals with less than grade 3 CMB showed 2.46 times (95 percent confidence interval = 1.26 to 5.34) higher risk of symptoms. This information is crucial for defining the risk of DCS for inflight Doppler monitoring under space EVA. Altitude decompression sickness (DCS) occurs when there is acute reduction in ambient pressure. The symptoms of DCS are due to the formation of a free gas phase (in the form of gas microbubbles) in tissues during decompression. Musculo-skeletal pain of bends is the commonest form of DCS in altitude exposures. In the space flight environment, there is a risk of DCS when astronauts decompress from the normobaric shuttle pressure into the hypobaric space suit pressure (currently about 29.65 kPa (4.3 psi) for extra-vehicular activities (EVA). This risk is counterbalanced by a judicious combination of prior denitrogenation and staged decompression. Studies of DCS are limited by the duration of the test at reduced pressure. Since only a proportion of subjects tested develop symptoms, the information on DCS is generally incomplete or 'censored'. Many studies employ Doppler ultrasound monitoring of the precordial area for detecting circulating microbubbles (CMB). Although the association between CMB and bends pain is not causal, CMB are frequently monitored during decompression. In this paper, we examine the association

  6. A connection between mix and adiabat in ICF capsules

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Yi, Sunghuan (Austin); Batha, Steven

    2016-10-01

    We study the relationship between instability induced mix, preheat and the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. Our studies show that hydrodynamic instability not only directly affects the implosion, hot spot shape and mix, but also affects the thermodynamics of the capsule, such as, the adiabat of the DT fuel, and, in turn, affects the energy partition between the pusher shell (cold DT) and the hot spot. It was found that the adiabat of the DT fuel is sensitive to the amount of mix caused by Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the material interfaces due to its exponential dependence on the fuel entropy. An upper limit of mix allowed maintaining a low adiabat of DT fuel is derived. Additionally we demonstrated that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of the 3D effects and mix in the capsule experiments. Furthermore, from the observed neutron images and our physics model, we could infer the adiabat of the DT fuel in the capsule and determine the possible amount of mix in the hot spot (LA-UR-16-24880). This work was conducted under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  7. Lumbar spinous process splitting decompression provides equivalent outcomes to conventional midline decompression in degenerative lumbar canal stenosis: a prospective, randomized controlled study of 51 patients.

    PubMed

    Rajasekaran, S; Thomas, Ashok; Kanna, Rishi M; Prasad Shetty, Ajoy

    2013-09-15

    Prospective, randomized controlled study. To compare the functional outcomes and extent of paraspinal muscle damage between 2 decompressive techniques for lumbar canal stenosis. Lumbar spinous process splitting decompression (LSPSD) preserves the muscular and liga-mentous attachments of the posterior elements of the spine. It can potentially avoid problems such as paraspinal muscle atrophy and trunk extensor weakness that can occur after conventional midline decompression. However, large series prospective randomized controlled studies are lacking. Patients with lumbar canal stenosis were randomly allocated into 2 groups: LSPSD (28 patients) and conventional midline decompression (23 patients). The differences in operative time, blood loss, time to comfortable mobilization, and hospital stay were studied. Paraspinal muscle damage was assessed by postoperative rise in creatine phosphokinase and C-reactive protein levels. Functional outcome was evaluated at 1 year by Japanese Orthopaedic Association score, neurogenic claudication outcome score, and visual analogue scale for back pain and neurogenic claudication. Fifty-one patients of mean age 56 years were followed-up for a mean 14.2 ± 2.9 months. There were no significant differences in the operative time, blood loss, and hospital stay. Both the groups showed significant improvement in the functional outcome scores at 1 year. Between the 2 groups, the Japanese Orthopaedic Association score, neurogenic claudication outcome score improvement, visual analogue scale for back pain, neurogenic claudication visual analogue scale, and the postoperative changes in serum C-reactive protein and creatine phosphokinase levels did not show any statistically significant difference. On the basis of the Japanese Orthopaedic Association recovery rate, it was found that 73.9% of conventional midline decompression group had good outcomes compared with only 60.7% after LSPSD. The functional outcome scores, back pain, and claudication

  8. Decryption-decompression of AES protected ZIP files on GPUs

    NASA Astrophysics Data System (ADS)

    Duong, Tan Nhat; Pham, Phong Hong; Nguyen, Duc Huu; Nguyen, Thuy Thanh; Le, Hung Duc

    2011-10-01

    AES is a strong encryption system, so decryption-decompression of AES encrypted ZIP files requires very large computing power and techniques of reducing the password space. This makes implementations of techniques on common computing system not practical. In [1], we reduced the original very large password search space to a much smaller one which surely containing the correct password. Based on reduced set of passwords, in this paper, we parallel decryption, decompression and plain text recognition for encrypted ZIP files by using CUDA computing technology on graphics cards GeForce GTX295 of NVIDIA, to find out the correct password. The experimental results have shown that the speed of decrypting, decompressing, recognizing plain text and finding out the original password increases about from 45 to 180 times (depends on the number of GPUs) compared to sequential execution on the Intel Core 2 Quad Q8400 2.66 GHz. These results have demonstrated the potential applicability of GPUs in this cryptanalysis field.

  9. The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting

    NASA Astrophysics Data System (ADS)

    de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.

    1999-09-01

    Incorporating upper mantle differentiation through decompression melting in a numerical mantle convection model, we demonstrate that a compositionally distinct root consisting of depleted peridotite can grow and remain stable during a long period of secular cooling. Our modeling results show that in a hot convecting mantle partial melting will produce a compositional layering in a relatively short time of about 50 Ma. Due to secular cooling mantle differentiation finally stops before 1 Ga. The resulting continental root remains stable on a billion year time scale due to the combined effects of its intrinsically lower density and temperature-dependent rheology. Two different parameterizations of the melting phase-diagram are used in the models. The results indicate that during the Archaean melting occurred on a significant scale in the deep regions of the upper mantle, at pressures in excess of 15 GPa. The compositional depths of continental roots extend to 400 km depending on the potential temperature and the type of phase-diagram parameterization used in the model. The results reveal a strong correlation between lateral variations of temperature and the thickness of the continental root. This shows that cold regions in cratons are stabilized by a thick depleted root.

  10. A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco.

    PubMed

    Spisni, Enzo; Marabotti, Claudio; De Fazio, Luigia; Valerii, Maria Chiara; Cavazza, Elena; Brambilla, Stefano; Hoxha, Klarida; L'Abbate, Antonio; Longobardi, Pasquale

    2017-03-01

    The aim of this study was to compare two decompression procedures commonly adopted by technical divers: the ZH-L16 algorithm modified by 30/85 gradient factors (compartmental decompression model, CDM) versus the 'ratio decompression strategy' (RDS). The comparison was based on an analysis of changes in diver circulating inflammatory profiles caused by decompression from a single dive. Fifty-one technical divers performed a single trimix dive to 50 metres' sea water (msw) for 25 minutes followed by enriched air (EAN50) and oxygen decompression. Twenty-three divers decompressed according to a CDM schedule and 28 divers decompressed according to a RDS schedule. Peripheral blood for detection of inflammatory markers was collected before and 90 min after diving. Venous gas emboli were measured 30 min after diving using 2D echocardiography. Matched groups of 23 recreational divers (dive to 30 msw; 25 min) and 25 swimmers were also enrolled as control groups to assess the effects of decompression from a standard air dive or of exercise alone on the inflammatory profile. Echocardiography at the single 30 min observation post dive showed no significant differences between the two decompression procedures. Divers adopting the RDS showed a worsening of post-dive inflammatory profile compared to the CDM group, with significant increases in circulating chemokines CCL2 (P = 0.001) and CCL5 (P = 0.006) levels. There was no increase in chemokines following the CDM decompression. The air scuba group also showed a statistically significant increase in CCL2 (P < 0.001) and CCL5 (P = 0.003) levels post dive. No cases of decompression sickness occurred. The ratio deco strategy did not confer any benefit in terms of bubbles but showed the disadvantage of increased decompression-associated secretion of inflammatory chemokines involved in the development of vascular damage.

  11. The physiological kinetics of nitrogen and the prevention of decompression sickness.

    PubMed

    Doolette, D J; Mitchell, S J

    2001-01-01

    Decompression sickness (DCS) is a potentially crippling disease caused by intracorporeal bubble formation during or after decompression from a compressed gas underwater dive. Bubbles most commonly evolve from dissolved inert gas accumulated during the exposure to increased ambient pressure. Most diving is performed breathing air, and the inert gas of interest is nitrogen. Divers use algorithms based on nitrogen kinetic models to plan the duration and degree of exposure to increased ambient pressure and to control their ascent rate. However, even correct execution of dives planned using such algorithms often results in bubble formation and may result in DCS. This reflects the importance of idiosyncratic host factors that are difficult to model, and deficiencies in current nitrogen kinetic models. Models describing the exchange of nitrogen between tissues and blood may be based on distributed capillary units or lumped compartments, either of which may be perfusion- or diffusion-limited. However, such simplistic models are usually poor predictors of experimental nitrogen kinetics at the organ or tissue level, probably because they fail to account for factors such as heterogeneity in both tissue composition and blood perfusion and non-capillary exchange mechanisms. The modelling of safe decompression procedures is further complicated by incomplete understanding of the processes that determine bubble formation. Moreover, any formation of bubbles during decompression alters subsequent nitrogen kinetics. Although these factors mandate complex resolutions to account for the interaction between dissolved nitrogen kinetics and bubble formation and growth, most decompression schedules are based on relatively simple perfusion-limited lumped compartment models of blood: tissue nitrogen exchange. Not surprisingly, all models inevitably require empirical adjustment based on outcomes in the field. Improvements in the predictive power of decompression calculations are being

  12. Chronic Decompression Illness Cognitive Dysfunction Improved with Hyperbaric Oxygen: A Case Report

    DTIC Science & Technology

    2018-11-09

    Altitude chamber exposures are used for training to allow aircrew to experience their hypoxia and pressure effect symptoms. Decompression illness ...chamber decompression illness is around 0.25% (1). Because the evolution of gas within the tissue or vasculature is being treated upon recompression

  13. Adiabatic topological quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less

  14. Adiabatic topological quantum computing

    DOE PAGES

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; ...

    2015-07-31

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less

  15. Potential Fifty Percent Reduction in Saturation Diving Decompression Time Using a Combination of Intermittent Recompression and Exercise

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael I.; Abercromby, Andrew; Conklin, Johnny

    2007-01-01

    Conventional saturation decompression protocols use linear decompression rates that become progressively slower at shallower depths, consistent with free gas phase control vs. dissolved gas elimination kinetics. If decompression is limited by control of free gas phase, linear decompression is an inefficient strategy. The NASA prebreathe reduction program demonstrated that exercise during O2 prebreathe resulted in a 50% reduction (2 h vs. 4 h) in the saturation decompression time from 14.7 to 4.3 psi and a significant reduction in decompression sickness (DCS: 0 vs. 23.7%). Combining exercise with intermittent recompression, which controls gas phase growth and eliminates supersaturation before exercising, may enable more efficient saturation decompression schedules. A tissue bubble dynamics model (TBDM) was used in conjunction with a NASA exercise prebreathe model (NEPM) that relates tissue inert gas exchange rate constants to exercise (ml O2/kg-min), to develop a schedule for decompression from helium saturation at 400 fsw. The models provide significant prediction (p < 0.001) and goodness of fit with 430 cases of DCS in 6437 laboratory dives for TBDM (p = 0.77) and with 22 cases of DCS in 159 altitude exposures for NEPM (p = 0.70). The models have also been used operationally in over 25,000 dives (TBDM) and 40 spacewalks (NEPM). The standard U.S. Navy (USN) linear saturation decompression schedule from saturation at 400 fsw required 114.5 h with a maximum Bubble Growth Index (BGI(sub max)) of 17.5. Decompression using intermittent recompression combined with two 10 min exercise periods (75% VO2 (sub peak)) per day required 54.25 h (BGI(sub max): 14.7). Combined intermittent recompression and exercise resulted in a theoretical 53% (2.5 day) reduction in decompression time and theoretically lower DCS risk compared to the standard USN decompression schedule. These results warrant future decompression trials to evaluate the efficacy of this approach.

  16. Trends in Orbital Decompression Techniques of Surveyed American Society of Ophthalmic Plastic and Reconstructive Surgery Members.

    PubMed

    Reich, Shani S; Null, Robert C; Timoney, Peter J; Sokol, Jason A

    To assess current members of the American Society of Ophthalmic Plastic and Reconstructive Surgery (ASOPRS) regarding preference in surgical techniques for orbital decompression in Graves' disease. A 10-question web-based, anonymous survey was distributed to oculoplastic surgeons utilizing the ASOPRS listserv. The questions addressed the number of years of experience performing orbital decompression surgery, preferred surgical techniques, and whether orbital decompression was performed in collaboration with an ENT surgeon. Ninety ASOPRS members participated in the study. Most that completed the survey have performed orbital decompression surgery for >15 years. The majority of responders preferred a combined approach of floor and medial wall decompression or balanced lateral and medial wall decompression; only a minority selected a technique limited to 1 wall. Those surgeons who perform fat decompression were more likely to operate in collaboration with ENT. Most surgeons rarely remove the orbital strut, citing risk of worsening diplopia or orbital dystopia except in cases of optic nerve compression or severe proptosis. The most common reason given for performing orbital decompression was exposure keratopathy. The majority of surgeons perform the surgery without ENT involvement, and number of years of experience did not correlate significantly with collaboration with ENT. The majority of surveyed ASOPRS surgeons prefer a combined wall approach over single wall approach to initial orbital decompression. Despite the technological advances made in the field of modern endoscopic surgery, no single approach has been adopted by the ASOPRS community as the gold standard.

  17. Technique for Mini-open Decompression of Chiari Type I Malformation in Adults.

    PubMed

    Pakzaban, Peyman

    2017-08-01

    The technique for decompression of Chiari type I malformation relies on open exposure of craniocervical junction for suboccipital craniectomy and upper cervical laminectomy with or without duraplasty. There is no detailed technical report of a minimally invasive approach for Chiari decompression in adults. To describe a mini-open technique for decompression of Chiari type I malformation (including duraplasty) in adults. Six consecutive adult patients with symptomatic Chiari type I malformation underwent decompression through a 3 to 4 cm midline incision via a speculum retractor. All patients underwent a limited suboccipital craniectomy and C1 laminectomy with an ultrasonic bone scalpel. All patients underwent duraplasty with a synthetic dural substitute. In the 2 patients with syringomyelia, the arachnoid was opened and intradural dissection was carried out. In the remaining 4 patients, the arachnoid was left intact. All operations were completed successfully through the mini-open exposure. Mean surgery time, blood loss, and length of stay were 114 min, 55 mL, and 1.3 days, respectively. Mean follow-up was 13.2 months (range 9-18). All patients had excellent clinical outcomes as defined by scores of 15 (3 patients) or 16 (3 patients) on Chicago Chiari Outcome Scale. There were no neurological complications or cerebrospinal fluid leaks. Postop computed tomography revealed good boney decompression. In the 2 patients with syringomyelia, MRI at 6 months revealed resolution of the syrinx. Decompression of Chiari type I malformation in adults can be performed safely and effectively through the mini-open exposure described in this report. Copyright © 2017 by the Congress of Neurological Surgeons

  18. Complexity of the Quantum Adiabatic Algorithm

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2013-03-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorihms. Here, we discuss several aspects of the quantum adiabatic algorithm: We analyze the efficiency of the algorithm on several ``hard'' (NP) computational problems. Studying the size dependence of the typical minimum energy gap of the Hamiltonians of these problems using quantum Monte Carlo methods, we find that while for most problems the minimum gap decreases exponentially with the size of the problem, indicating that the QAA is not more efficient than existing classical search algorithms, for other problems there is evidence to suggest that the gap may be polynomial near the phase transition. We also discuss applications of the QAA to ``real life'' problems and how they can be implemented on currently available (albeit prototypical) quantum hardware such as ``D-Wave One'', that impose serious restrictions as to which type of problems may be tested. Finally, we discuss different approaches to find improved implementations of the algorithm such as local adiabatic evolution, adaptive methods, local search in Hamiltonian space and others.

  19. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  20. Upper extremity palsy following cervical decompression surgery results from a transient spinal cord lesion.

    PubMed

    Hasegawa, Kazuhiro; Homma, Takao; Chiba, Yoshikazu

    2007-03-15

    Retrospective analysis. To test the hypothesis that spinal cord lesions cause postoperative upper extremity palsy. Postoperative paresis, so-called C5 palsy, of the upper extremities is a common complication of cervical surgery. Although there are several hypotheses regarding the etiology of C5 palsy, convincing evidence with a sufficient study population, statistical analysis, and clear radiographic images illustrating the nerve root impediment has not been presented. We hypothesized that the palsy is caused by spinal cord damage following the surgical decompression performed for chronic compressive cervical disorders. The study population comprised 857 patients with chronic cervical cord compressive lesions who underwent decompression surgery. Anterior decompression and fusion was performed in 424 cases, laminoplasty in 345 cases, and laminectomy in 88 cases. Neurologic characteristics of patients with postoperative upper extremity palsy were investigated. Relationships between the palsy, and patient sex, age, diagnosis, procedure, area of decompression, and preoperative Japanese Orthopaedic Association score were evaluated with a risk factor analysis. Radiographic examinations were performed for all palsy cases. Postoperative upper extremity palsy occurred in 49 cases (5.7%). The common features of the palsy cases were solely chronic compressive spinal cord disorders and decompression surgery to the cord. There was no difference in the incidence of palsy among the procedures. Cervical segments beyond C5 were often disturbed with frequent multiple segment involvement. There was a tendency for spontaneous improvement of the palsy. Age, decompression area (anterior procedure), and diagnosis (ossification of the posterior longitudinal ligament) are the highest risk factors of the palsy. The results of the present study support our hypothesis that the etiology of the palsy is a transient disturbance of the spinal cord following a decompression procedure. It appears

  1. Unusual Clinical Presentation and Role of Decompressive Craniectomy in Herpes Simplex Encephalitis.

    PubMed

    Singhi, Pratibha; Saini, Arushi Gahlot; Sahu, Jitendra Kumar; Kumar, Nuthan; Vyas, Sameer; Vasishta, Rakesh Kumar; Aggarwal, Ashish

    2015-08-01

    Decompressive craniectomy in pediatric central nervous infections with refractory intracranial hypertension is less commonly practiced. We describe improved outcome of decompressive craniectomy in a 7-year-old boy with severe herpes simplex encephalitis and medically refractory intracranial hypertension, along with a brief review of the literature. Timely recognition of refractory intracranial hypertension and surgical decompression in children with herpes simplex encephalitis can be life-saving. Additionally, strokelike atypical presentations are being increasingly recognized in children with herpes simplex encephalitis and should not take one away from the underlying herpes simplex encephalitis. © The Author(s) 2014.

  2. Optic neuropathy in thyroid eye disease: results of the balanced decompression technique.

    PubMed

    Baril, Catherine; Pouliot, Denis; Molgat, Yvonne

    2014-04-01

    To determine the efficacy of combined endoscopic medial and external lateral orbital decompression for the treatment of compressive optic neuropathy (CON) in thyroid eye disease (TED). A retrospective review of all patients undergoing combined surgical orbital decompression for CON between 2000 and 2010 was conducted. Fifty-nine eyes of 34 patients undergoing combined surgical orbital decompression for CON. Clinical outcome measures included visual acuity, Hardy-Rand-Rittler (HRR) colour plate testing, relative afferent pupillary defect, intraocular pressure measurement, and Hertel exophthalmometry. A CON score was calculated preoperatively and postoperatively based on the visual acuity and the missed HRR plates. A higher CON score correlates with more severe visual dysfunction. All patients had improvement of their optic neuropathy after surgical decompression. CON score was calculated for 54 eyes and decreased significantly from a mean of 13.2 ± 10.35 preoperatively to a mean of 8.51 ± 10.24 postoperatively (p < 0.0001). Optic neuropathy was completely resolved in 93.22% (55/59 eyes). Eighteen of 34 patients (52.94%) experienced development of new-onset postoperative strabismus that required subsequent surgical intervention. Endoscopic medial combined with external lateral orbital decompression is an effective technique for the treatment of TED-associated CON. © 2013 Canadian Ophthalmological Society Published by Canadian Ophthalmological Society All rights reserved.

  3. Redistribution of Decompression Stop Time from Shallow to Deep Stops Increases Incidence of Decompression Sickness in Air Decompression Dives

    DTIC Science & Technology

    2011-07-22

    year old active duty male diver surfaced from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops...effort, and this episode responded immediately to pressure. AGE is unlikely due to the experience of the diver, the MK 20 FFM characteristics, and...from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops” experimental decompression profile

  4. Reduction rate by decompression as a treatment of odontogenic cysts.

    PubMed

    Oliveros-Lopez, L; Fernandez-Olavarria, A; Torres-Lagares, D; Serrera-Figallo, M-A; Castillo-Oyagüe, R; Segura-Egea, J-J; Gutierrez-Perez, J-L

    2017-09-01

    Odontogenic cysts are defined as those cysts that arise from odontogenic epithelium and occur in the tooth-bearing regions of the jaws. Cystectomy, marsupialization or decompression of odontogenic cyst are treatment approach to this pathology. The aim of this study was to evaluate the effectiveness of the decompression as the primary treatment of the cystic lesions of the jaws and them reduction rates involving different factors. 23 patients with odontogenic cysts of the jaws, previously diagnosed by anatomical histopathology (follicular cysts (7) and radicular cysts (16)) underwent decompression as an initial treatment. Clinical examination and pre and post panoramic radiograph were measured and analyzed. In addition, data as gender, age, time reduction and location of the lesion were collected. Significant results were obtained in relation to the location of lesions and the reduction rate (p<0.01). In a higher initial lesion, a greater reduction rate was observed (p<0.05). Decompression as an initial treatment of cystic lesions of the jaws was effective; it reduces the size of the lesions avoiding a possible damage to adjacent structures. Cystic lesions in the mandible, regardless of the area where they occur will have a higher reduction rate if it is compared with the maxilla. Similar behavior was identified in large lesions compared to smaller.

  5. Decompression sickness and venous gas emboli at 8.3 psia

    NASA Technical Reports Server (NTRS)

    Smead, Kenneth W.; Dixon, Gene A.; Webb, James T.; Krutz, Robert W., Jr.

    1987-01-01

    This study sought to determine the bends risk on decompression from sea level to 8.3 psia. On the basis of several prior studies by NASA and the Air Force, this differential was expected to result in a minimal (about 5 percent) incidence of mild decompression sickness, and may be the pressure of choice for the next-generation NASA extravehicular activity (EVA) pressure suit. Thirty-one volunteer subjects, performing light work characteristic of EVA, were exposed to 8.3 psia pressure altitude for six hours. Limb bends incidence was 3.2 percent, and 25.8 percent of the subjects demonstrated significant intravascular bubbling. Those who bubbled were significantly older than the bubble-free group, but differed in no other aspect. An 8.3 psia advanced pressure suit design was considered insufficient to totally preclude the risk of decompression sickness.

  6. [Decompressive craniectomy in the management of sylvian infarction].

    PubMed

    Berhouma, Moncef; Khouja, Néjib; Jemel, Hafedh; Khaldi, Moncef

    2006-09-01

    Space-occupying middle cerebral artery infarction represents about 10 to 15% of supratentorial ischemic strokes. This syndrome carries a high rate of mortality and requires aggressive surgical decompression. The authors present 6 patients with signs of trans-tentorial herniation operated on between February 2001 and August 2003. Neurological preoperative status was evaluated with Glasgow coma scale score and postoperatively with Barthel index. Three patients had excellent recovery (Barthel Index up to 70), one remained dependant and two died. Younger patients had better prognosis. Decompressive surgery, when done early, should improve mortality rate and even functional outcome. Optimal selection of patients, with the help of Diffusion-Weighted imaging, could vouch good results.

  7. Levodopa in Treatment of Decompression Sickness and of Air Embolism Induced Paraplegia in Rats.

    DTIC Science & Technology

    1981-08-28

    nitrosoureas (BCNU, CCNU) made additional progress in the treatment of brain tumors. A lipid soluble agent , 1,3-bis (2-Chloroethyl)-l- Nitrosourea (BCNU...mechanisms of levodopa and some other agents in the prevention and in the recovery of rats from decompression sickness. For better clarity the...brain occurring in decompression sickness. B. Decompression Sickness Studies. We have shown that gelatin, an agent that protects platelets during freezing

  8. Probing coherence aspects of adiabatic quantum computation and control.

    PubMed

    Goswami, Debabrata

    2007-09-28

    Quantum interference between multiple excitation pathways can be used to cancel the couplings to the unwanted, nonradiative channels resulting in robustly controlling decoherence through adiabatic coherent control approaches. We propose a useful quantification of the two-level character in a multilevel system by considering the evolution of the coherent character in the quantum system as represented by the off-diagonal density matrix elements, which switches from real to imaginary as the excitation process changes from being resonant to completely adiabatic. Such counterintuitive results can be explained in terms of continuous population exchange in comparison to no population exchange under the adiabatic condition.

  9. Influence of surgical decompression on the expression of inflammatory and tissue repair biomarkers in periapical cysts.

    PubMed

    Rodrigues, Janderson Teixeira; Dos Santos Antunes, Henrique; Armada, Luciana; Pires, Fábio Ramôa

    2017-12-01

    The biologic effects of surgical decompression on the epithelium and connective tissues of periapical cysts are not fully understood. The aim of this study was to evaluate the expression of tissue repair and inflammatory biomarkers in periapical cysts before and after surgical decompression. Nine specimens of periapical cysts treated with decompression before undergoing complete enucleation were immunohistochemically analyzed to investigate the expression of interleukin-1β, tumor necrosis factor-α, transforming growth factor-β1, matrix metalloproteinase-9, Ki-67, and epidermal growth factor receptor. Expression of the biomarkers was classified as positive, focal, or negative. Ki-67 immunoexpression was calculated as a cell proliferation index. The expression of the biomarkers was compared in the specimens from decompression and from the final surgical procedure. Computed tomography demonstrated that volume was reduced in all cysts after decompression. There were no differences in the immunoexpression of the proinflammatory and tissue repair biomarkers when comparing the specimens obtained before and after the decompression. Surgical decompression was efficient in reducing the volume of periapical cysts before complete enucleation. When comparing the specimens obtained from surgical decompression and from complete surgical removal, the immunohistochemical analysis did not show a decrease in proinflammatory biomarkers; neither did it show an increase in tissue repair biomarkers. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The impact of dissolved fluorine on bubble nucleation in hydrous rhyolite melts

    NASA Astrophysics Data System (ADS)

    Gardner, James E.; Hajimirza, Sahand; Webster, James D.; Gonnermann, Helge M.

    2018-04-01

    Surface tension of hydrous rhyolitic melt is high enough that large degrees of supersaturation are needed to homogeneously nucleate H2O bubbles during eruptive magma ascent. This study examines whether dissolved fluorine lowers surface tension of hydrous rhyolite, and thus lowers the supersaturation required for bubble nucleation. Fluorine was targeted because it, like H2O, changes melt properties and is highly soluble, unlike all other common magmatic volatiles. Rhyolite melts were saturated at Ps = 245 MPa with H2O fluid that contained F, generating rhyolite with 6.7 ± 0.4 wt.% H2O and 1.1-1.3 wt.% F. When these melts were decompressed rapidly to Pf = 149-202 MPa and quenched after 60 s, bubbles nucleated at supersaturations of ΔP = Ps - Pf ≥52 MPa, and reached bubble number densities of NB = 1012-13 m-3 at ΔP = 78-101 MPa. In comparison, rhyolite saturated with 6.34 ± 0.09 wt.% H2O, but only 0.25 wt.% F, did not nucleate bubbles until ΔP ≥ 100-116 MPa, and even then, at significantly lower NB (<1010 m-3). Numerical modeling of bubble nucleation and growth was used to estimate the values of surface tension required to generate the observed values of NB. Slight differences in melt compositions (i.e., alkalinity and H2O content), H2O diffusivity, or melt viscosity cannot explain the observed differences in NB. Instead, surface tension of F-rich rhyolite must be lower by approximately 4% than that of F-poor rhyolite. This difference in surface tension is significant and, for example, exceeds that found between hydrous basaltic andesite and hydrous rhyolite. These results suggest that is likely that surface tension for F-rich magmas, such as topaz rhyolite, is significantly lower than for F-poor magmas.

  11. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  12. A Pottery Electric Kiln Using Decompression

    NASA Astrophysics Data System (ADS)

    Naoe, Nobuyuki; Yamada, Hirofumi; Nakayama, Tetsuo; Nakayama, Minoru; Minamide, Akiyuki; Takemata, Kazuya

    This paper presents a novel type electric kiln which fires the pottery using the decompression. The electric kiln is suitable for the environment and the energy saving as the pottery furnace. This paper described the baking principle and the baking characteristic of the novel type electric kiln.

  13. Experimental constraints on melting temperatures in the MgO-SiO2 system at lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Baron, Marzena A.; Lord, Oliver T.; Myhill, Robert; Thomson, Andrew R.; Wang, Weiwei; Trønnes, Reidar G.; Walter, Michael J.

    2017-08-01

    Eutectic melting curves in the system MgO-SiO2 have been experimentally determined at lower mantle pressures using laser-heated diamond anvil cell (LH-DAC) techniques. We investigated eutectic melting of bridgmanite plus periclase in the MgO-MgSiO3 binary, and melting of bridgmanite plus stishovite in the MgSiO3-SiO2 binary, as analogues for natural peridotite and basalt, respectively. The melting curve of model basalt occurs at lower temperatures, has a shallower dT / dP slope and slightly less curvature than the model peridotitic melting curve. Overall, melting temperatures detected in this study are in good agreement with previous experiments and ab initio simulations at ∼25 GPa (Liebske and Frost, 2012; de Koker et al., 2013). However, at higher pressures the measured eutectic melting curves are systematically lower in temperature than curves extrapolated on the basis of thermodynamic modelling of low-pressure experimental data, and those calculated from atomistic simulations. We find that our data are inconsistent with previously computed melting temperatures and melt thermodynamic properties of the SiO2 endmember, and indicate a maximum in short-range ordering in MgO-SiO2 melts close to Mg2SiO4 composition. The curvature of the model peridotite eutectic relative to an MgSiO3 melt adiabat indicates that crystallization in a global magma ocean would begin at ∼100 GPa rather than at the bottom of the mantle, allowing for an early basal melt layer. The model peridotite melting curve lies ∼ 500 K above the mantle geotherm at the core-mantle boundary, indicating that it will not be molten unless the addition of other components reduces the solidus sufficiently. The model basalt melting curve intersects the geotherm at the base of the mantle, and partial melting of subducted oceanic crust is expected.

  14. Nonadiabatic exchange dynamics during adiabatic frequency sweeps.

    PubMed

    Barbara, Thomas M

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space

    PubMed Central

    An, Shuoming; Lv, Dingshun; del Campo, Adolfo; Kim, Kihwan

    2016-01-01

    The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a ‘fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies. PMID:27669897

  16. Ignition and pusher adiabat

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F.

    2018-07-01

    In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium–tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.

  17. 29 CFR Appendix A to Subpart S of... - Decompression Tables

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... working period at 20 pounds gauge. Decompression Table No. 1: 20 pounds for 4 hours, total decompression... minutes per pound. Stage 2 (final) elapsed time 40 Total time 43 Example No. 2: 5-hour working period at... pressure p.s.i.g. Working period hours 1/2 1 11/2 2 3 4 5 6 7 8 Over 8 9 to 12 3 3 3 3 3 3 3 3 3 3 3 14 6 6...

  18. The Risks of Scuba Diving: A Focus on Decompression Illness

    PubMed Central

    2014-01-01

    Decompression Illness includes both Decompression Sickness (DCS) and Pulmonary Overinflation Syndrome (POIS), subsets of diving-related injury related to scuba diving. DCS is a condition in which gas bubbles that form while diving do not have adequate time to be resorbed or “off-gassed,” resulting in entrapment in specific regions of the body. POIS is due to an overly rapid ascent to the surface resulting in the rupture of alveoli and subsequent extravasation of air bubbles into tissue planes or even the cerebral circulation. Divers must always be cognizant of dive time and depth, and be trained in the management of decompression. A slow and controlled ascent, plus proper control of buoyancy can reduce the dangerous consequences of pulmonary barotrauma. The incidence of adverse effects can be diminished with safe practices, allowing for the full enjoyment of this adventurous aquatic sport. PMID:25478296

  19. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendrick, Brian K.

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner

  20. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Kendrick, Brian K.

    2018-01-01

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B2(v , j) ↔ AB(v ', j') + B and A + AB(v , j) → A + AB(v ', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchange symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v ', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. The results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.

  1. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    DOE PAGES

    Kendrick, Brian K.

    2018-01-28

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner

  2. Floquet protocols of adiabatic state flips and reallocation of exceptional points

    NASA Astrophysics Data System (ADS)

    Halpern, Dashiell; Li, Huanan; Kottos, Tsampikos

    2018-04-01

    We introduce the notion of adiabatic state flip of a Floquet Hamiltonian associated with a non-Hermitian system that it is subjected to two driving schemes with clear separation of time scales. The fast (Floquet) modulation scheme is utilized to reallocate the exceptional points in the parameter space of the system and redefine the topological features of an adiabatic cyclic modulation associated with the slow driving scheme. Such topological reorganization can be used in order to control the adiabatic transport between two eigenmodes of the Floquet Hamiltonian. The proposed scheme provides a degree of reconfigurability of adiabatic state transfer which can find applications in system control in photonics and microwave domains.

  3. Exercise with prebreathe appears to increase protection from decompression sickness: Preliminary findings

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Fischer, Michele D.; Heaps, Cristine L.; Pilmanis, Andrew A.

    1994-01-01

    Extravehicular activity (EVA) from the Space Shuttle involves one hour of prebreath with 100% oxygen, decompression of the entire Shuttle to 10.2 psia for at least 12 hours, and another prebreath for 40 minutes before decompression to the 4.3 psia suit pressure. We are investigating the use of a one-hour prebreathe with 100% oxygen beginning with a ten-minute strenuous exercise period as an alternative for the staged decompression schedule described above. The 10-minute exercise consists of dual-cycle ergometry performed at 75% of the subject's peak oxygen uptake to increase denitrogenation efficiency by increasing ventilation and perfusion. The control exposures were preceded by a one-hour prebreathe with 100% oxygen while resting in a supine position. The twenty-two male subjects were exposed to 4.3 psia for 4 hours while performing light to moderate exercise. Preliminary results from 22 of the planned 26 subjects indicate 76% DCS following supine, resting prebreathe and 38% following prebreathe with exercise. The staged decompression schedule has been shown to result in 23% DCS which is not significantly different from the exercise-enhanced prebreathe results. Prebreathe including exercise appears to be comparable to the protection afforded by the more lengthy staged decompression schedule. Completion of the study later this year will enable planned statistical analysis of the results.

  4. Bilateral Ocular Decompression Retinopathy after Ahmed Valve Implantation for Uveitic Glaucoma.

    PubMed

    Flores-Preciado, Javier; Ancona-Lezama, David Arturo; Valdés-Lara, Carlos Andrés; Díez-Cattini, Gian Franco; Coloma-González, Itziar

    2016-01-01

    We report the case of a 29-year-old man who underwent Ahmed valve implantation in both eyes as treatment for uveitic glaucoma, subsequently presenting with bilateral ocular decompression retinopathy in the postoperative period. Ocular decompression retinopathy is a rare complication of filtering surgery in patients with glaucoma; however, the course is benign in most cases, with spontaneous resolution of bleedings and improvement of visual acuity.

  5. Petrological constraints on melt generation beneath the Asal Rift (Djibouti) using quaternary basalts

    NASA Astrophysics Data System (ADS)

    Pinzuti, Paul; Humler, Eric; Manighetti, Isabelle; Gaudemer, Yves

    2013-08-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 56 new lava flows sampled along 10 km of the rift axis and 9 km off-axis (i.e., erupted within the last 620 kyr). Petrological and primary geochemical results show that most of the samples of the inner floor of the Asal Rift are affected by plagioclase accumulation. Trace element ratios and major element compositions corrected for mineral accumulation and crystallization show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. While FeO, Fe8.0, Zr/Y, and (Dy/Yb)N decrease from the rift shoulders to the rift axis, SiO2, Na/Ti, Lu/Hf increase and Na2O and Na8.0 are constant across the rift. These variations are qualitatively consistent with shallow melting beneath the rift axis and deeper melting for off-axis lava flows. Na8.0 and Fe8.0 contents show that beneath the rift axis, melting paths are shallow, from 81 ± 4 to 43 ± 5 km. These melting paths are consistent with adiabatic melting in normal-temperature fertile asthenosphere, beneath an extensively thinned mantle lithosphere. On the contrary, melting on the rift shoulders (from 107 ± 7 to 67 ± 8 km) occurred beneath thicker lithosphere, requiring a mantle solidus temperature 100 ± 40°C hotter. In this geodynamic environment, the calculated rate of lithospheric thinning appears to be 4.0 ± 2.0 cm yr-1, a value close to the mean spreading rate (2.9 ± 0.2 cm yr-1) over the last 620 kyr.

  6. Deep lateral wall orbital decompression following strabismus surgery in patients with Type II ophthalmic Graves' disease.

    PubMed

    Ellis, Michael P; Broxterman, Emily C; Hromas, Alan R; Whittaker, Thomas J; Sokol, Jason A

    2018-01-10

    Surgical management of ophthalmic Graves' disease traditionally involves, in order, orbital decompression, followed by strabismus surgery and eyelid surgery. Nunery et al. previously described two distinct sub-types of patients with ophthalmic Graves' disease; Type I patients exhibit no restrictive myopathy (no diplopia) as opposed to Type II patients who do exhibit restrictive myopathy (diplopia) and are far more likely to develop new-onset worsening diplopia following medial wall and floor decompression. Strabismus surgery involving extra-ocular muscle recession has, in turn, been shown to potentially worsen proptosis. Our experience with Type II patients who have already undergone medial wall and floor decompression and strabismus surgery found, when additional decompression is necessary, deep lateral wall decompression (DLWD) appears to have a low rate of post-operative primary-gaze diplopia. A case series of four Type II ophthalmic Graves' disease patients, all of whom had already undergone decompression and strabismus surgery, and went on to develop worsening proptosis or optic nerve compression necessitating further decompression thereafter. In all cases, patients were treated with DLWD. Institutional Review Board approval was granted by the University of Kansas. None of the four patients treated with this approach developed recurrent primary-gaze diplopia or required strabismus surgery following DLWD. While we still prefer to perform medial wall and floor decompression as the initial treatment for ophthalmic Graves' disease, for proptosis following consecutive strabismus surgery, DLWD appears to be effective with a low rate of recurrent primary-gaze diplopia.

  7. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis

    NASA Astrophysics Data System (ADS)

    Zhang, Guibin; Niu, Yaoling; Song, Shuguang; Zhang, Lifei; Tian, Zuolin; Christy, Andrew G.; Han, Lei

    2015-06-01

    We have studied trace element behavior and timing of decompression melting of UHP rocks during exhumation recorded in the magmatic products, i.e., the melt phase (leucosomes), cumulate (garnetite) and residue (amphibolitized eclogite) from a single outcrop in the south Dulan area, North Qaidam UHPM belt, NW China. Two distinct episodes of partial melting are recognized. First, Grt-free tonalitic-trondhjemitic leucosome melts with higher silica crystallized at 424.0 ± 2.7 Ma. Garnets grew in the leucosome melt but fractionated out to form garnetite cumulates along with Ti-rich phases (rutile and titanite), strengthening the adakitic signature of the leucosome. Later Grt-bearing leucosome melts with an age of 412.4 ± 2.9 Ma cross-cut boudins and layers of amphibolitized eclogite. Geochemical investigation of bulk-rocks and in situ minerals verifies the genetic relationship between the amphibolitized eclogite and the tonalitic-trondhjemitic melts. Zircons from the amphibolitized eclogite have older (> 700 Ma) protolith ages, with subsequent eclogite-facies metamorphism, retrograde granulite-facies overprinting and partial melting. Phase modeling and Zr-in-rutile thermometry calculations in combination with zircon geochronology reveal the evolution P-T-t path for the exhumation and the partial melting of the deeply subducted continental crust at the North Qaidam subduction zone in the Early Paleozoic.

  8. Core decompression of the equine navicular bone: an in vivo study in healthy horses.

    PubMed

    Jenner, Florien; Kirker-Head, Carl

    2011-02-01

    To determine the physiologic response of the equine navicular bone to core decompression surgery in healthy horses. Experimental in vivo study. Healthy adult horses (n=6). Core decompression was completed by creating three 2.5-mm-diameter drill channels into the navicular bone under arthroscopic control. The venous (P(V)), arterial (P(A)), articular (P(DIPJ)), and intraosseous pressures (IOP) were recorded before and after decompression drilling. Each IOP measurement consisted of a baseline (IOP(B)) and a stress test (intramedullary injection of saline solution, IOP(S)) recording. Lameness was assessed subjectively and using force plate gait analysis. Fluorochrome bone labeling was performed. Horses were euthanatized at 12 weeks. Navicular bone mineral density (BMD) was measured, and bone histology evaluated. Peak IOP (IOP(max)) after stress testing was significantly (P<.05) reduced immediately after core decompression; however, the magnitude of these effects was decreased at 3 and 6 weeks after decompression. A significant (P<.05) correlation existed between IOP(max) and BMD. No lameness was observed beyond the first week after surgery. Substantial remodeling and neovascularization was evident adjacent the surgery sites. Navicular bone core decompression surgery reduced IOP(max), and, with the exception of a mild short-lived lameness, caused no other adverse effects in healthy horses during the 12-week study period. © Copyright 2011 by The American College of Veterinary Surgeons.

  9. Changes in optical coherence tomography measurements after orbital wall decompression in dysthyroid optic neuropathy.

    PubMed

    Park, Kyung-Ah; Kim, Yoon-Duck; Woo, Kyung In

    2018-06-01

    The purpose of our study was to assess changes in peripapillary retinal nerve fiber layer (RNFL) thickness after orbital wall decompression in eyes with dysthyroid optic neuropathy (DON). We analyzed peripapillary optical coherence tomography (OCT) images (Cirrus HD-OCT) from controls and patients with DON before and 1 and 6 months after orbital wall decompression. There was no significant difference in mean preoperative peripapillary retinal nerve fiber layer thickness between eyes with DON and controls. The superior and inferior peripapillary RNFL thickness decreased significantly 1 month after decompression surgery compared to preoperative values (p = 0.043 and p = 0.022, respectively). The global average, superior, temporal, and inferior peripapillary RNFL thickness decreased significantly 6 months after decompression surgery compared to preoperative values (p = 0.015, p = 0.028, p = 0.009, and p = 0.006, respectively). Patients with greater preoperative inferior peripapillary RNFL thickness tended to have better postoperative visual acuity at the last visit (p = 0.024, OR = 0.926). Our data revealed a significant decrease in peripapillary RNFL thickness postoperatively after orbital decompression surgery in patients with DON. We also found that greater preoperative inferior peripapillary RNFL thickness was associated with better visual outcomes. We suggest that RNFL thickness can be used as a prognostic factor for DON before decompression surgery.

  10. Trade-off between speed and cost in shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Campbell, Steve

    Recent years have witnessed a surge of interest in the study of thermal nano-machines that are capable of converting disordered forms of energy into useful work. It has been shown for both classical and quantum systems that external drivings can allow a system to evolve adiabatically even when driven in finite time, a technique commonly known as shortcuts to adiabaticity. It was suggested to use such external drivings to render the unitary processes of a thermodynamic cycle quantum adiabatic, while being performed in finite time. However, implementing an additional external driving requires resources that should be accounted for. Furthermore, and in line with natural intuition, these transformations should not be achievable in arbitrarily short times. First, we will present a computable measure of the cost of a shortcut to adiabaticity. Using this, we then examine the speed with which a quantum system can be driven. As a main result, we will establish a rigorous link between this speed, the quantum speed limit, and the (energetic) cost of implementing such a shortcut to adiabaticity. Interestingly, this link elucidates a trade-off between speed and cost, namely that instantaneous manipulation is impossible as it requires an infinite cost.

  11. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  12. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure.

    PubMed

    Jurčišinová, E; Jurčišin, M

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  13. Spaceflight Decompression Sickness Contingency Plan

    NASA Technical Reports Server (NTRS)

    Dervay, Joseph P.

    2007-01-01

    A viewgraph presentation on the Decompression Sickness (DCS) Contingency Plan for manned spaceflight is shown. The topics include: 1) Approach; 2) DCS Contingency Plan Overview; 3) Extravehicular Activity (EVA) Cuff Classifications; 4) On-orbit Treatment Philosophy; 5) Long Form Malfunction Procedure (MAL); 6) Medical Checklist; 7) Flight Rules; 8) Crew Training; 9) Flight Surgeon / Biomedical Engineer (BME) Training; and 10) DCS Emergency Landing Site.

  14. Optimal timing of autologous cranioplasty after decompressive craniectomy in children.

    PubMed

    Piedra, Mark P; Thompson, Eric M; Selden, Nathan R; Ragel, Brian T; Guillaume, Daniel J

    2012-10-01

    The object of this study was to determine if early cranioplasty after decompressive craniectomy for elevated intracranial pressure in children reduces complications. Sixty-one consecutive cases involving pediatric patients who underwent autologous cranioplasty after decompressive craniectomy for raised intracranial pressure at a single academic children's hospital over 15 years were studied retrospectively. Sixty-one patients were divided into early (< 6 weeks; 28 patients) and late (≥ 6 weeks; 33 patients) cranioplasty cohorts. The cohorts were similar except for slightly lower age in the early (8.03 years) than the late (10.8 years) cranioplasty cohort (p < 0.05). Bone resorption after cranioplasty was significantly more common in the late (42%) than the early (14%) cranioplasty cohort (p < 0.05; OR 5.4). No other complication differed in incidence between the cohorts. After decompressive craniectomy for raised intracranial pressure in children, early (< 6 weeks) cranioplasty reduces the occurrence of reoperation for bone resorption, without altering the incidence of other complications.

  15. Bilateral Ocular Decompression Retinopathy after Ahmed Valve Implantation for Uveitic Glaucoma

    PubMed Central

    Flores-Preciado, Javier; Ancona-Lezama, David Arturo; Valdés-Lara, Carlos Andrés; Díez-Cattini, Gian Franco; Coloma-González, Itziar

    2016-01-01

    Case Report We report the case of a 29-year-old man who underwent Ahmed valve implantation in both eyes as treatment for uveitic glaucoma, subsequently presenting with bilateral ocular decompression retinopathy in the postoperative period. Discussion Ocular decompression retinopathy is a rare complication of filtering surgery in patients with glaucoma; however, the course is benign in most cases, with spontaneous resolution of bleedings and improvement of visual acuity. PMID:27920718

  16. Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor.

    PubMed

    Mitra, Avik; Ghosh, Arindam; Das, Ranabir; Patel, Apoorva; Kumar, Anil

    2005-12-01

    Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.

  17. Resolution of Tachyarrhythmia Following Posterior Fossa Decompression Surgery for Chiari Malformation Type I.

    PubMed

    Elia, Christopher; Brazdzionis, James; Tashjian, Vartan

    2018-03-01

    Chiari malformation (CM) type I commonly presents with symptoms such as tussive headaches, paresthesias, and, in severe cases, corticobulbar dysfunction. However, patients may present with atypical symptoms lending to the complexity in this patient population. We present a case of a CM patient presenting with atypical cardiac symptoms and arrhythmias, all of which resolved after surgical decompression. A 31-year-old female presented with atypical chest pain, palpitations, tachycardia, headaches, and dizziness for 2 years. Multiple antiarrhythmics and ultimately cardiac ablation procedure proved to be ineffective. Magnetic resonance imaging revealed CM, and the patient ultimately underwent surgical decompression with subsequent resolution of her symptoms. The surgical management of CM patients presenting with atypical symptoms can be challenging and often lead to delays in intervention. To our knowledge this is the only reported case of a patient presenting with tachyarrhythmia and atypical chest pain with resolution after Chiari decompression. We believe the dramatic improvement documented in the present case should serve to advance Chiari decompression in CM patients presenting with refractory tachyarrhythmia in whom no other discernable cause has been elucidated. Further studies are needed to better correlate the findings and to hopefully establish a criteria for patients that will likely benefit from surgical decompression. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-06

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  19. Critical Appraisal on Orbital Decompression for Thyroid Eye Disease: A Systematic Review and Literature Search.

    PubMed

    Boboridis, Konstadinos G; Uddin, Jimmy; Mikropoulos, Dimitrios G; Bunce, Catey; Mangouritsas, George; Voudouragkaki, Irini C; Konstas, Anastasios G P

    2015-07-01

    Orbital decompression is the indicated procedure for addressing exophthalmos and compressive optic neuropathy in thyroid eye disease. There are an abundance of techniques for removal of orbital bone, fat, or a combination published in the scientific literature. The relative efficacy and complications of these interventions in relation to the specific indications remain as yet undocumented. We performed a systematic review of the current published evidence for the effectiveness of orbital decompression, possible complications, and impact on quality of life. We searched the current databases for medical literature and controlled trials, oculoplastic textbooks, and conference proceedings to identify relevant data up to February 2015. We included randomized controlled trials (RCTs) comparing two or more interventions for orbital decompression. We identified only two eligible RCTs for inclusion in the review. As a result of the significant variability between studies on decompression, i.e., methodology and outcome measures, we did not perform a meta-analysis. One study suggests that the transantral approach and endonasal technique had similar effects in reducing exophthalmos but the latter is safer. The second study provides evidence that intravenous steroids may be superior to primary surgical decompression in the management of compressive optic neuropathy requiring less secondary surgical procedures. Most of the published literature on orbital decompression consists of retrospective, uncontrolled trials. There is evidence from those studies that removal of the medial and lateral wall (balanced) and the deep lateral wall decompression, with or without fat removal, may be the most effective surgical methods with only few complications. There is a clear unmet need for controlled trials evaluating the different techniques for orbital decompression. Ideally, future studies should address the effectiveness, possible complications, quality of life, and cost of each

  20. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  1. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J. F.; Ma, Q. M.; Song, T.

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusionmore » coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.« less

  2. Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Kusky, Timothy; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2015-04-01

    Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence Numerous studies have described partial melting processes in low-high pressure meta-sedimentary rocks, some of which may generate melts that coalesce to form plutons. However, migmatized ultrahigh pressure (UHP) eclogite has never been clearly described from the microscale to macroscale, though experimental studies prove dehydration partial melting of eclogite at high pressure condition1 and low degrees of partially melted eclogite have been reported from the Qaidam UHP orogenic belt in NW China2,3 or inferred from multiphase solid (MS) inclusions within eclogite4 in the Sulu UHP belt. We present field-based documentation of decompression partial melting of UHP eclogite from Yangkou and General's Hill, Sulu Orogen. Migmatized eclogite shows successive stages of anatexis, initially starting from intragranular and grain boundary melt droplets, which grow into a 3D interconnected intergranular network, then segregate and accumulate in pressure shadow areas, and finally merge to form melt channels and dikes that transport melts to upper lithospheric levels. In-situ phengite breakdown-induced partial melting is directly identified by MS inclusions of Kfs+ barium-bearing Kfs + Pl in garnet, connected by 4-10 μm wide veinlets consisting of Bt + Kfs + Pl next to the phengite. Intergranular veinlets of plagioclase + K-feldspar first form isolated beads of melt along grain boundaries and triple junctions of quartz, and with higher degrees of melting, eventually form interconnected 3D networks along grain boundaries in the leucosome, allowing melt to escape from the intergranular realm and collect in low-stress areas. U-Pb (zircon) dating and petrological analyses on residue and leucocratic rocks shows that partial melting occurred at 228-219 Ma, shortly after peak UHP metamorphism (~230 Ma), and at depths of 30-90 km

  3. Quantum Adiabatic Brachistochrone

    NASA Astrophysics Data System (ADS)

    Rezakhani, A. T.; Kuo, W.-J.; Hamma, A.; Lidar, D. A.; Zanardi, P.

    2009-08-01

    We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.

  4. Quantum adiabatic brachistochrone.

    PubMed

    Rezakhani, A T; Kuo, W-J; Hamma, A; Lidar, D A; Zanardi, P

    2009-08-21

    We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.

  5. Melting relations in the Fe-S-Si system at high pressure and temperature: implications for the planetary core

    NASA Astrophysics Data System (ADS)

    Sakairi, Takanori; Ohtani, Eiji; Kamada, Seiji; Sakai, Takeshi; Sakamaki, Tatsuya; Hirao, Naohisa

    2017-12-01

    The phase and melting relations in the Fe-S-Si system were determined up to 60 GPa by using a double-sided laser-heated diamond anvil cell combined with X-ray diffraction. On the basis of the X-ray diffraction patterns, we confirmed that hcp/fcc Fe-Si alloys and Fe3S are stable phases under subsolidus conditions in the Fe-S-Si system. Both solidus and liquidus temperatures are significantly lower than the melting temperature of pure Fe and both increase with pressure. The slopes of the Fe-S-Si liquidus and solidus curves determined here are smaller than the adiabatic temperature gradients of the liquid cores of Mercury and Mars. Thus, crystallization of their cores started at the core-mantle boundary region.

  6. Surgical Decompression of Painful Diabetic Peripheral Neuropathy: The Role of Pain Distribution

    PubMed Central

    Liao, Chenlong; Zhang, Wenchuan; Yang, Min; Ma, Qiufeng; Li, Guowei; Zhong, Wenxiang

    2014-01-01

    Objective To investigate the effect of surgical decompression on painful diabetic peripheral neuropathy (DPN) patients and discuss the role which pain distribution and characterization play in the management of painful DPN as well as the underlying mechanism involved. Methods A total of 306 patients with painful diabetic lower-extremity neuropathy were treated with Dellon surgical nerve decompression in our department. Clinical evaluation including Visual analogue scale (VAS), Brief Pain Inventory Short Form for diabetic peripheral neuropathy (BPI-DPN) questionnaire, two-point discrimination (2-PD), nerve conduction velocity (NCV) and high-resolution ultrasonography (cross-sectional area, CSA) were performed in all cases preoperatively, and at 6 month intervals for 2 years post-decompression. The patients who underwent surgery were retrospectively assigned into two subgroups (focal and diffuse pain) according to the distribution of the diabetic neuropathic pain. The control group included 92 painful DPN patients without surgery. Results The levels of VAS, scores in BPI-DPN, 2-PD, NCV results and CSA were all improved in surgical group when compared to the control group (P<0.05). More improvement of VAS, scores in BPI-DPN and CSA was observed in focal pain group than that in diffuse group (P<0.05). Conclusions Efficacy of decompression of multiple lower-extremity peripheral nerves in patients with painful diabetic neuropathy was confirmed in this study. While both focal and diffuse group could benefit from surgical decompression, pain relief and morphological restoration could be better achieved in focal group. PMID:25290338

  7. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists

  8. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  9. Analysis of direct costs of decompressive craniectomy in victims of traumatic brain injury.

    PubMed

    Badke, Guilherme Lellis; Araujo, João Luiz Vitorino; Miura, Flávio Key; Guirado, Vinicius Monteiro de Paula; Saade, Nelson; Paiva, Aline Lariessy Campos; Avelar, Tiago Marques; Pedrozo, Charles Alfred Grander; Veiga, José Carlos Esteves

    2018-04-01

    Decompressive craniectomy is a procedure required in some cases of traumatic brain injury (TBI). This manuscript evaluates the direct costs and outcomes of decompressive craniectomy for TBI in a developing country and describes the epidemiological profile. A retrospective study was performed using a five-year neurosurgical database, taking a sample of patients with TBI who underwent decompressive craniectomy. Several variables were considered and a formula was developed for calculating the total cost. Most patients had multiple brain lesions and the majority (69.0%) developed an infectious complication. The general mortality index was 68.8%. The total cost was R$ 2,116,960.22 (US$ 661,550.06) and the mean patient cost was R$ 66,155.00 (US$ 20,673.44). Decompressive craniectomy for TBI is an expensive procedure that is also associated with high morbidity and mortality. This was the first study performed in a developing country that aimed to evaluate the direct costs. Prevention measures should be a priority.

  10. Narrow-line laser cooling by adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.

    2018-02-01

    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.

  11. Predictive modeling of altitude decompression sickness in humans

    NASA Technical Reports Server (NTRS)

    Kenyon, D. J.; Hamilton, R. W., Jr.; Colley, I. A.; Schreiner, H. R.

    1972-01-01

    The coding of data on 2,565 individual human altitude chamber tests is reported as part of a selection procedure designed to eliminate individuals who are highly susceptible to decompression sickness, individual aircrew members were exposed to the pressure equivalent of 37,000 feet and observed for one hour. Many entries refer to subjects who have been tested two or three times. This data contains a substantial body of statistical information important to the understanding of the mechanisms of altitude decompression sickness and for the computation of improved high altitude operating procedures. Appropriate computer formats and encoding procedures were developed and all 2,565 entries have been converted to these formats and stored on magnetic tape. A gas loading file was produced.

  12. Spinal decompression sickness: mechanical studies and a model.

    PubMed

    Hills, B A; James, P B

    1982-09-01

    Six experimental investigations of various mechanical aspects of the spinal cord are described relevant to its injury by gas deposited from solution by decompression. These show appreciable resistances to gas pockets dissipating by tracking along tissue boundaries or distending tissue, the back pressure often exceeding the probable blood perfusion pressure--particularly in the watershed zones. This leads to a simple mechanical model of spinal decompression sickness based on the vascular "waterfall" that is consistent with the pathology, the major quantitative aspects, and the symptomatology--especially the reversibility with recompression that is so difficult to explain by an embolic mechanism. The hypothesis is that autochthonous gas separating from solution in the spinal cord can reach sufficient local pressure to exceed the perfusion pressure and thus occlude blood flow.

  13. Adiabatic magnetocaloric effect in Ni50Mn35In15 ribbons

    NASA Astrophysics Data System (ADS)

    Álvarez-Alonso, P.; Aguilar-Ortiz, C. O.; Camarillo, J. P.; Salazar, D.; Flores-Zúñiga, H.; Chernenko, V. A.

    2016-11-01

    Heusler-type Ni-Mn-based metamagnetic shape memory alloys (MetaMSMAs) are promising candidates for magnetic refrigeration. To increase heat exchange rate and efficiency of cooling, the material should have a high surface/volume ratio. In this work, the typical Ni50Mn35In15 MetaMSMA was selected to fabricate thin ribbons by melt-spinning. The characteristic transformations of the ribbons were determined by calorimetry, X-ray diffraction, scanning electron microscopy and thermomagnetization measurements. The inverse and conventional magnetocaloric effects (MCEs) associated with the martensitic transformation (MT) and the ferromagnetic transition of the austenite (TCA), respectively, were measured directly by the adiabatic method (ΔTad) and indirectly by estimating the magnetic entropy change from magnetization measurements. It is found that the ribbons exhibit large values of ΔTad = -1.1 K at μ0ΔH = 1.9 T, in the vicinity of the MT temperature of 300 K for inverse MCE, and ΔTad = 2.3 K for conventional MCE at TCA = 309 K. This result strongly motivates further development of different MetaMSMA refrigerants shaped as ribbons.

  14. Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories

    NASA Astrophysics Data System (ADS)

    Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi

    2018-04-01

    The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.

  15. ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori

    2014-01-01

    Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and themore » efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.« less

  16. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Rezakhani, Ali T.; Hamma, Alioscia

    2009-10-01

    We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real-time axis, that some number of its time derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is nondegenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time derivative of the Hamiltonian divided by the cube of the minimal gap.

  17. Parameter estimation of the copernicus decompression model with venous gas emboli in human divers.

    PubMed

    Gutvik, Christian R; Dunford, Richard G; Dujic, Zeljko; Brubakk, Alf O

    2010-07-01

    Decompression Sickness (DCS) may occur when divers decompress from a hyperbaric environment. To prevent this, decompression procedures are used to get safely back to the surface. The models whose procedures are calculated from, are traditionally validated using clinical symptoms as an endpoint. However, DCS is an uncommon phenomenon and the wide variation in individual response to decompression stress is poorly understood. And generally, using clinical examination alone for validation is disadvantageous from a modeling perspective. Currently, the only objective and quantitative measure of decompression stress is Venous Gas Emboli (VGE), measured by either ultrasonic imaging or Doppler. VGE has been shown to be statistically correlated with DCS, and is now widely used in science to evaluate decompression stress from a dive. Until recently no mathematical model has existed to predict VGE from a dive, which motivated the development of the Copernicus model. The present article compiles a selection experimental dives and field data containing computer recorded depth profiles associated with ultrasound measurements of VGE. It describes a parameter estimation problem to fit the model with these data. A total of 185 square bounce dives from DCIEM, Canada, 188 recreational dives with a mix of single, repetitive and multi-day exposures from DAN USA and 84 experimentally designed decompression dives from Split Croatia were used, giving a total of 457 dives. Five selected parameters in the Copernicus bubble model were assigned for estimation and a non-linear optimization problem was formalized with a weighted least square cost function. A bias factor to the DCIEM chamber dives was also included. A Quasi-Newton algorithm (BFGS) from the TOMLAB numerical package solved the problem which was proved to be convex. With the parameter set presented in this article, Copernicus can be implemented in any programming language to estimate VGE from an air dive.

  18. [Microvascular decompression for hemifacial spasm. Ten years of experience].

    PubMed

    Revuelta-Gutiérrez, Rogelio; Vales-Hidalgo, Lourdes Olivia; Arvizu-Saldaña, Emiliano; Hinojosa-González, Ramón; Reyes-Moreno, Ignacio

    2003-01-01

    Hemifacial spasm characterized by involuntary paroxistic contractions of the face is more frequent on left side and in females. Evolution is progressive and in a few cases may disappear. Management includes medical treatment, botulinum toxin, and microvascular decompression of the nerve. We present the results of 116 microvascular decompressions performed in 88 patients over 10 years. All patients had previous medical treatment. All patients were operated on with microsurgical technique by asterional craniotomy. Vascular compression was present in all cases with one exception. Follow-up was from 1 month to 133 months. Were achieved excellent results in 70.45% of cases after first operation, good results in 9.09%, and poor results in 20.45% of patients. Long-term results were excellent in 81.82%, good in 6.82%, and poor in 11.36% of patients. Hypoacusia and transitory facial palsy were the main complications. Hemifacial spasm is a painless but disabling entity. Medical treatment is effective in a limited fashion. Injection of botulinum toxin has good response but benefit is transitory. Microvascular decompression is treatment of choice because it is minimally invasive, not destructive, requires minimum technical support, and yields best long-term results.

  19. Electromagnetic image-guided orbital decompression: technique, principles, and preliminary experience with 6 consecutive cases.

    PubMed

    Servat, Juan J; Elia, Maxwell Dominic; Gong, Dan; Manes, R Peter; Black, Evan H; Levin, Flora

    2014-12-01

    To assess the feasibility of routine use of electromagnetic image guidance systems in orbital decompression. Six consecutive patients underwent stereotactic-guided three wall orbital decompression using the novel Fusion ENT Navigation System (Medtronic), a portable and expandable electromagnetic guidance system with multi-instrument tracking capabilities. The system consists of the Medtronic LandmarX System software-enabled computer station, signal generator, field-generating magnet, head-mounted marker coil, and surgical tracking instruments. In preparation for use of the LandmarX/Fusion protocol, all patients underwent preoperative non-contrast CT scan from the superior aspect of the frontal sinuses to the inferior aspect of the maxillary sinuses that includes the nasal tip. The Fusion ENT Navigation System (Medtronic™) was used in 6 patients undergoing maximal 3-wall orbital decompression for Graves' orbitopthy after a minimum of six months of disease inactivity. Preoperative Hertel exophthalmometry measured more than 27 mm in all patients. The navigation system proved to be no more difficult technically than the traditional orbital decompression approach. Electromagnetic image guidance is a stereotactic surgical navigation system that provides additional intraoperative flexibility in orbital surgery. Electromagnetic image-guidance offers the ability to perform more aggressive orbital decompressions with reduced risk.

  20. Shortcuts to adiabaticity for accelerated quantum state transfer

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.

    Adiabatic transfer protocols are among the most powerful and interesting approaches to move quantum states between two different systems. While having many advantages, those schemes are necessarily slow, and hence can suffer from dissipation and noise in the target and/or source system. In this talk, we present an approach that allows to operate a state transfer much faster, without suffering from non-adiabatic errors. The key idea is to work with a basis of dressed states whose very definition incorporates the matrix elements which give rise to non-adiabatic transitions. By introducing additional control fields, we can ensure that the system ``rides'' these new dressed states during the protocol, thus allowing for a fast high fidelity state transfer. We discuss a recent experimental implementation of these ideas in an NV-center Λ-system, as well as extensions to state transfer problems involving propagating states.

  1. Adiabatic Quantum Computation: Coherent Control Back Action.

    PubMed

    Goswami, Debabrata

    2006-11-22

    Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments.

  2. An equation of state for high pressure-temperature liquids (RTpress) with application to MgSiO3 melt

    NASA Astrophysics Data System (ADS)

    Wolf, Aaron S.; Bower, Dan J.

    2018-05-01

    The thermophysical properties of molten silicates at extreme conditions are crucial for understanding the early evolution of Earth and other massive rocky planets, which is marked by giant impacts capable of producing deep magma oceans. Cooling and crystallization of molten mantles are sensitive to the densities and adiabatic profiles of high-pressure molten silicates, demanding accurate Equation of State (EOS) models to predict the early evolution of planetary interiors. Unfortunately, EOS modeling for liquids at high P-T conditions is difficult due to constantly evolving liquid structure. The Rosenfeld-Tarazona (RT) model provides a physically sensible and accurate description of liquids but is limited to constant volume heating paths (Rosenfeld and Tarazona, 1998). We develop a high P-T EOS for liquids, called RTpress, which uses a generalized Rosenfeld-Tarazona model as a thermal perturbation to isothermal and adiabatic reference compression curves. This approach provides a thermodynamically consistent EOS which remains accurate over a large P-T range and depends on a limited number of physically meaningful parameters that can be determined empirically from either simulated or experimental datasets. As a first application, we model MgSiO3 melt representing a simplified rocky mantle chemistry. The model parameters are fitted to the MD simulations of both Spera et al. (2011) and de Koker and Stixrude (2009), recovering pressures, volumes, and internal energies to within 0.6 GPa, 0.1 Å3 , and 6 meV per atom on average (for the higher resolution data set), as well as accurately predicting liquid densities and temperatures from shock-wave experiments on MgSiO3 glass. The fitted EOS is used to determine adiabatic thermal profiles, revealing the approximate thermal structure of a fully molten magma ocean like that of the early Earth. These adiabats, which are in strong agreement for both fitted models, are shown to be sufficiently steep to produce either a center

  3. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  4. Spontaneous extracranial decompression of epidural hematoma.

    PubMed

    Neely, John C; Jones, Blaise V; Crone, Kerry R

    2008-03-01

    Epidural hematoma (EDH) is a common sequela of head trauma in children. An increasing number are managed nonsurgically, with close clinical and imaging observation. We report the case of a traumatic EDH that spontaneously decompressed into the subgaleal space, demonstrated on serial CT scans that showed resolution of the EDH and concurrent enlargement of the subgaleal hematoma.

  5. Experimental and computational studies on the femoral fracture risk for advanced core decompression.

    PubMed

    Tran, T N; Warwas, S; Haversath, M; Classen, T; Hohn, H P; Jäger, M; Kowalczyk, W; Landgraeber, S

    2014-04-01

    Two questions are often addressed by orthopedists relating to core decompression procedure: 1) Is the core decompression procedure associated with a considerable lack of structural support of the bone? and 2) Is there an optimal region for the surgical entrance point for which the fracture risk would be lowest? As bioresorbable bone substitutes become more and more common and core decompression has been described in combination with them, the current study takes this into account. Finite element model of a femur treated by core decompression with bone substitute was simulated and analyzed. In-vitro compression testing of femora was used to confirm finite element results. The results showed that for core decompression with standard drilling in combination with artificial bone substitute refilling, daily activities (normal walking and walking downstairs) are not risky for femoral fracture. The femoral fracture risk increased successively when the entrance point is located further distal. The critical value of the deviation of the entrance point to a more distal part is about 20mm. The study findings demonstrate that optimal entrance point should locate on the proximal subtrochanteric region in order to reduce the subtrochanteric fracture risk. Furthermore the consistent results of finite element and in-vitro testing imply that the simulations are sufficient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  7. 21 CFR 884.5225 - Abdominal decompression chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Abdominal decompression chamber. 884.5225 Section 884.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Therapeutic...

  8. 21 CFR 884.5225 - Abdominal decompression chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Abdominal decompression chamber. 884.5225 Section 884.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Therapeutic...

  9. 21 CFR 884.5225 - Abdominal decompression chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Abdominal decompression chamber. 884.5225 Section 884.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Therapeutic...

  10. 21 CFR 884.5225 - Abdominal decompression chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Abdominal decompression chamber. 884.5225 Section 884.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Therapeutic...

  11. Shortcuts to adiabaticity. Suppression of pair production in driven Dirac dynamics

    DOE PAGES

    Deffner, Sebastian

    2015-12-21

    By achieving effectively adiabatic dynamics in finite time, we have found that it is our ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods—the fast-forward technique—to driven Dirac dynamics. We find that our main result shortcuts to adiabaticity for the (1+1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings aremore » illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields.« less

  12. Is the addition of an assisted driving Hamiltonian always useful for adiabatic evolution?

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Li, Li

    2017-04-01

    It has been known that when an assisted driving item is added to the main system Hamiltonian, the efficiency of the resultant adiabatic evolution can be significantly improved. In some special cases, it can be seen that only through adding an assisted driving Hamiltonian can the resulting adiabatic evolution be made not to fail. Thus the additional driving Hamiltonian plays an important role in adiabatic computing. In this paper, we show that if the driving Hamiltonian is chosen inappropriately, the adiabatic computation may still fail. More importantly, we find that the adiabatic computation can only succeed if the assisted driving Hamiltonian has a relatively fixed form. This may help us understand why in the related literature all of the driving Hamiltonians used share the same form.

  13. Modified Veress needle decompression of tension pneumothorax: a randomized crossover animal study.

    PubMed

    Lubin, Dafney; Tang, Andrew L; Friese, Randall S; Martin, Matthew; Green, D J; Jones, Trevor; Means, Russell R; Ginwalla, Rashna; O'Keeffe, Terence S; Joseph, Bellal A; Wynne, Julie L; Kulvatunyou, Narong; Vercruysse, Gary; Gries, Lynn; Rhee, Peter

    2013-12-01

    The current prehospital standard of care using a large bore intravenous catheter for tension pneumothorax (tPTX) decompression is associated with a high failure rate. We developed a modified Veress needle (mVN) for this condition. The purpose of this study was to evaluate the effectiveness and safety of the mVN as compared with a 14-gauge needle thoracostomy (NT) in a swine tPTX model. tPTX was created in 16 adult swine via thoracic CO2 insufflation to 15 mm Hg. After tension physiology was achieved, defined as a 50% reduction of cardiac output, the swine were randomized to undergo either mVN or NT decompression. Failure to restore 80% baseline systolic blood pressure within 5 minutes resulted in crossover to the alternate device. The success rate of each device, death, and need for crossover were analyzed using χ. Forty-three tension events were created in 16 swine (24 mVN, 19 NT) at 15 mm Hg of intrathoracic pressure with a mean CO2 volume of 3.8 L. tPTX resulted in a 48% decline of systolic blood pressure from baseline and 73% decline of cardiac output, and 42% had equalization of central venous pressure with pulmonary capillary wedge pressure. All tension events randomized to mVN were successfully rescued within a mean (SD) of 70 (86) seconds. NT resulted in four successful decompressions (21%) within a mean (SD) of 157 (96) seconds. Four swine (21%) died within 5 minutes of NT decompression. The persistent tension events where the swine survived past 5 minutes (11 of 19 NTs) underwent crossover mVN decompression, yielding 100% rescue. Neither the mVN nor the NT was associated with inadvertent injuries to the viscera. Thoracic insufflation produced a reliable and highly reproducible model of tPTX. The mVN is vastly superior to NT for effective and safe tPTX decompression and physiologic recovery. Further research should be invested in the mVN for device refinement and replacement of NT in the field.

  14. Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12)

    USGS Publications Warehouse

    Tequi, C.; Robie, R.A.; Hemingway, B.S.; Neuville, D.R.; Richet, P.

    1991-01-01

    The heat capacity of Mg3Al2Si3O12 glass has been measured from 10 to 1000 K by adiabatic and differential scanning calorimetry. The heat capacity of crystalline pyrope has been determined from drop-calorimetry measurements between 820 and 1300 K. From these and previously published results a consistent set of thermodynamic data is presented for pyrope and Mg3Al2Si3O12 glass and liquid for the interval 0-2000 K. The enthalpy of fusion at 1570 ?? 30 K, the metastable congruent 1-bar melting point, is 241 ?? 12 kJ/mol. ?? 1991.

  15. [Orbital decompression in Grave's disease: comparison of techniques].

    PubMed

    Sellari-Franceschini, S; Berrettini, S; Forli, F; Bartalena, L; Marcocci, C; Tanda, M L; Nardi, M; Lepri, A; Pinchera, A

    1999-12-01

    Grave's ophthalmopathy is an inflammatory, autoimmune disorder often associated with Grave's disease. The inflammatory infiltration involves the retrobulbar fatty tissue and the extrinsic eye muscles, causing proptosis, extraocular muscle dysfunction and often diplopia. Orbital decompression is an effective treatment in such cases, particularly when resistant to drugs and external radiation therapy. This work compares the results of orbital decompression performed by removing: a) the medial and lateral walls (Mourits technique) in 10 patients (19 orbits) and b) the medial and lower walls (Walsh-Ogura technique) in 17 patients (31 orbits). The results show that removing the floor of the orbit enables better reduction of proptosis but more easily leads to post-operative diplopia. Thus it proves necessary to combine the two techniques, modifying the surgical approach on a case-by-case basis.

  16. Low-power adiabatic sequences for in-vivo localized two-dimensional chemical shift correlated MR spectroscopy

    PubMed Central

    Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory

    2011-01-01

    Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988

  17. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  18. Decompressive hemicraniectomy in a space-occupying presentation of hemiconvulsion-hemiplegia-epilepsy syndrome.

    PubMed

    Berhouma, Moncef; Chekili, Ridha; Brini, Ines; Kchir, Nidhameddine; Jemel, Hafedh; Bousnina, Souad; Khaldi, Moncef

    2007-12-01

    A case of an acute life-threatening presentation of hemiconvulsion-hemiplegia-epilepsy (HHE) syndrome requiring an urgent decompressive hemicraniectomy is described. A 9 month-old baby had a status epilepticus following a sustained fever, leading to a comatose state and a right pupillary dilatation associated with a left hemiplegia. The MRI showed a swelling right hemisphere with marked temporal herniation. The baby underwent a decompressive right hemicraniectomy with temporal cortical biopsies. The post-operative course was favourable. The histological findings were unspecific, showing a gliotic spongiosis with disseminated granular cells. The post-operative MRI depicted a right hemisphere atrophy. To our knowledge, a space-occupying presentation of HHE syndrome requiring surgical decompression has never been described before while only a few reports dealt with the neuropathological aspects of this syndrome.

  19. "White Cord Syndrome" of Acute Hemiparesis After Posterior Cervical Decompression and Fusion for Chronic Cervical Stenosis.

    PubMed

    Antwi, Prince; Grant, Ryan; Kuzmik, Gregory; Abbed, Khalid

    2018-05-01

    "White cord syndrome" is a very rare condition thought to be due to acute reperfusion of chronically ischemic areas of the spinal cord. Its hallmark is the presence of intramedullary hyperintense signal on T2-weighted magnetic resonance imaging sequences in a patient with unexplained neurologic deficits following spinal cord decompression surgery. The syndrome is rare and has been reported previously in 2 patients following anterior cervical decompression and fusion. We report an additional case of this complication. A 68-year-old man developed acute left-sided hemiparesis after posterior cervical decompression and fusion for cervical spondylotic myelopathy. The patient improved with high-dose steroid therapy. The rare white cord syndrome following either anterior cervical decompression and fusion or posterior cervical decompression and fusion may be due to ischemic-reperfusion injury sustained by chronically compressed parts of the spinal cord. In previous reports, patients have improved following steroid therapy and acute rehabilitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Cost-effectiveness of surgical decompression for space-occupying hemispheric infarction.

    PubMed

    Hofmeijer, Jeannette; van der Worp, H Bart; Kappelle, L Jaap; Eshuis, Sara; Algra, Ale; Greving, Jacoba P

    2013-10-01

    Surgical decompression reduces mortality and increases the probability of a favorable functional outcome after space-occupying hemispheric infarction. Its cost-effectiveness is uncertain. We assessed clinical outcomes, costs, and cost-effectiveness for the first 3 years in patients who were randomized to surgical decompression or best medical treatment within 48 hours after symptom onset in the Hemicraniectomy After Middle Cerebral Artery Infarction With Life-Threatening Edema Trial (HAMLET). Data on medical consumption were derived from case record files, hospital charts, and general practitioners. We calculated costs per quality-adjusted life year (QALY). Uncertainty was assessed with bootstrapping. A Markov model was constructed to estimate costs and health outcomes after 3 years. Of 39 patients enrolled within 48 hours, 21 were randomized to surgical decompression. After 3 years, 5 surgical (24%) and 14 medical patients (78%) had died. In the first 3 years after enrollment, operated patients had more QALYs than medically treated patients (mean difference, 1.0 QALY [95% confidence interval, 0.6-1.4]), but at higher costs (mean difference, €127,000 [95% confidence interval, 73,100-181,000]), indicating incremental costs of €127,000 per QALY gained. Ninety-eight percent of incremental cost-effectiveness ratios replicated by bootstrapping were >€80,000 per QALY gained. Markov modeling suggested costs of ≈€60,000 per QALY gained for a patient's lifetime. Surgical decompression for space-occupying infarction results in an increase in QALYs, but at very high costs. http://www.controlled-trials.com. Unique identifier: ISRCTN94237756.

  1. Analysis of magnetically immersed electron guns with non-adiabatic fields.

    PubMed

    Pikin, Alexander; Alessi, James G; Beebe, Edward N; Raparia, Deepak; Ritter, John

    2016-11-01

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.

  2. An Adiabatic Phase-Matching Accelerator

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  3. An Adiabatic Phase-Matching Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  4. Quasi-adiabatic calorimeter for direct electrocaloric measurements

    NASA Astrophysics Data System (ADS)

    Sanlialp, Mehmet; Shvartsman, Vladimir V.; Faye, Romain; Karabasov, Maksim O.; Molin, Christian; Gebhardt, Sylvia; Defay, Emmanuel; Lupascu, Doru C.

    2018-03-01

    The electrocaloric effect (ECE) in ferroelectric materials is a promising candidate for small, effective, low cost, and environmentally friendly solid state cooling applications. Instead of the commonly used indirect estimates based on Maxwell's relations, direct measurements of the ECE are required to obtain reliable values. In this work, we report on a custom-made quasi-adiabatic calorimeter for direct ECE measurements. The ECE is measured for two promising lead-free materials: Ba(Zr0.12Ti0.88)O3 and Ba(Zr0.2Ti0.8)O3 bulk ceramics. Adiabatic temperature changes of ΔTEC = 0.5 K at 355 K and ΔTEC = 0.3 K at 314 K were achieved under the application of an electric field of 2 kV/mm for the Ba(Zr0.12Ti0.88)O3 and Ba(Zr0.2Ti0.8)O3 samples, respectively. The quasi-adiabatic ECE measurements reliably match other direct EC measurements using a differential scanning calorimeter or an infrared camera. The data are compared to indirect EC estimations based on Maxwell's relations and show that the indirect measurements typically underestimate the effect to a certain degree.

  5. A rare remote epidural hematoma secondary to decompressive craniectomy.

    PubMed

    Xu, Gang-Zhu; Wang, Mao-De; Liu, Kai-Ge; Bai, Yin-An

    2014-01-01

    Remote epidural hematoma (REDH) is an uncommon complication of decompressive craniectomy. Remote epidural hematomas of the parietal occiput region have been reported only rarely. We report a unique case of delayed-onset bilateral extensive straddle postsagittal sinus and bilateral lateral sinus parietal occiput REDH after decompressive craniectomy, of which volume was approximately 130 mL, with left deviating midline structures. The patient was immediately taken back to the operating room for evacuation of the REDH via bilateral parietal and occiput craniectomy. Postoperatively, serial computed tomographic scans performed 3 days later showed that the REDH had been completely evacuated. Two months later, the patient regained full consciousness and obtained a near-complete recovery except for right facial paralysis.

  6. A case of decompression sickness in a commercial pilot.

    PubMed

    Wolf, C W; Petzl, D H; Seidl, G; Burghuber, O C

    1989-10-01

    We report a case of decompression sickness (DCS) followed by pulmonary edema in a 47-year-old commercial pilot who operated a non-pressurized turboprop twin at flight level 290. He became unconscious and recovered after an emergency descent. The pilot collapsed and a pulmonary edema occurred 8 h after landing. The patient improved rapidly with fluid replacement and without hyperbaric therapy, which was not available at that time. This course of DCS is unusual because it is reported that fluid replacement without hyperbaric therapy normally cannot recover severe cases of DCS. The considerable increase in body weight of this pilot within the last 6 months may have been a predisposing factor for development of decompression sickness.

  7. The Adiabatic Invariance of the Action Variable in Classical Dynamics

    ERIC Educational Resources Information Center

    Wells, Clive G.; Siklos, Stephen T. C.

    2007-01-01

    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…

  8. Adiabatic transfer of energy fluctuations between membranes inside an optical cavity

    NASA Astrophysics Data System (ADS)

    Garg, Devender; Chauhan, Anil K.; Biswas, Asoka

    2017-08-01

    A scheme is presented for the adiabatic transfer of average fluctuations in the phonon number between two membranes in an optical cavity. We show that by driving the cavity modes with external time-delayed pulses, one can obtain an effect analogous to stimulated Raman adiabatic passage in the atomic systems. The adiabatic transfer of fluctuations from one membrane to the other is attained through a "dark" mode, which is robust against decay of the mediating cavity mode. The results are supported with analytical and numerical calculations with experimentally feasible parameters.

  9. Orbital fat decompression for thyroid eye disease: retrospective case review and criteria for optimal case selection.

    PubMed

    Prat, Marta Calsina; Braunstein, Alexandra L; Dagi Glass, Lora R; Kazim, Michael

    2015-01-01

    The purpose of this study is to identify the subgroups of thyroid eye disease (TED) patients most likely to benefit from orbital fat decompression. This retrospective study reviews 217 orbits of 109 patients who underwent orbital fat decompression for proptosis secondary to thyroid eye disease. Charts were reviewed for demographic, radiographic, clinical, and surgical data. Three groups of patients were defined for the purposes of statistical analysis: those with proptosis secondary to expansion of the fat compartment (group I), those with proptosis secondary to enlargement of the extraocular muscles (group II), and those with proptosis secondary to enlargement of both fat and muscle (group III). Groups I and II, and those patients with greater preoperative proptosis and those with a history of radiation therapy were most likely to benefit from orbital fat decompression. However, even those in group III or with lesser proptosis appreciated significant benefit. While orbital fat decompression can and, at times, should be combined with bone decompression to treat proptosis resulting from thyroid eye disease, orbital fat decompression alone is associated with lower rates of surgical morbidity, and is especially effective for group I and II patients, those with greater preoperative proptosis, and those with a history of radiation.

  10. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere

    PubMed Central

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-01-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031

  11. A current review of core decompression in the treatment of osteonecrosis of the femoral head.

    PubMed

    Pierce, Todd P; Jauregui, Julio J; Elmallah, Randa K; Lavernia, Carlos J; Mont, Michael A; Nace, James

    2015-09-01

    The review describes the following: (1) how traditional core decompression is performed, (2) adjunctive treatments, (3) multiple percutaneous drilling technique, and (4) the overall outcomes of these procedures. Core decompression has optimal outcomes when used in the earliest, precollapse disease stages. More recent studies have reported excellent outcomes with percutaneous drilling. Furthermore, adjunct treatment methods combining core decompression with growth factors, bone morphogenic proteins, stem cells, and bone grafting have demonstrated positive results; however, larger randomized trial is needed to evaluate their overall efficacy.

  12. Farris-Tang retractor in optic nerve sheath decompression surgery.

    PubMed

    Spiegel, Jennifer A; Sokol, Jason A; Whittaker, Thomas J; Bernard, Benjamin; Farris, Bradley K

    2016-01-01

    Our purpose is to introduce the use of the Farris-Tang retractor in optic nerve sheath decompression surgery. The procedure of optic nerve sheath fenestration was reviewed at our tertiary care teaching hospital, including the use of the Farris-Tang retractor. Pseudotumor cerebri is a syndrome of increased intracranial pressure without a clear cause. Surgical treatment can be effective in cases in which medical therapy has failed and disc swelling with visual field loss progresses. Optic nerve sheath decompression surgery (ONDS) involves cutting slits or windows in the optic nerve sheath to allow cerebrospinal fluid to escape, reducing the pressure around the optic nerve. We introduce the Farris-Tang retractor, a retractor that allows for excellent visualization of the optic nerve sheath during this surgery, facilitating the fenestration of the sheath and visualization of the subsequent cerebrospinal fluid egress. Utilizing a medial conjunctival approach, the Farris-Tang retractor allows for easy retraction of the medial orbital tissue and reduces the incidence of orbital fat protrusion through Tenon's capsule. The Farris-Tang retractor allows safe, easy, and effective access to the optic nerve with good visualization in optic nerve sheath decompression surgery. This, in turn, allows for greater surgical efficiency and positive patient outcomes.

  13. Decompression management by 43 models of dive computer: single square-wave exposures to between 15 and 50 metres' depth.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne

    2014-12-01

    Dive computers are used in some occupational diving sectors to manage decompression but there is little independent assessment of their performance. A significant proportion of occupational diving operations employ single square-wave pressure exposures in support of their work. Single examples of 43 models of dive computer were compressed to five simulated depths between 15 and 50 metres' sea water (msw) and maintained at those depths until they had registered over 30 minutes of decompression. At each depth, and for each model, downloaded data were used to collate the times at which the unit was still registering "no decompression" and the times at which various levels of decompression were indicated or exceeded. Each depth profile was replicated three times for most models. Decompression isopleths for no-stop dives indicated that computers tended to be more conservative than standard decompression tables at depths shallower than 30 msw but less conservative between 30-50 msw. For dives requiring decompression, computers were predominantly more conservative than tables across the whole depth range tested. There was considerable variation between models in the times permitted at all of the depth/decompression combinations. The present study would support the use of some dive computers for controlling single, square-wave diving by some occupational sectors. The choice of which makes and models to use would have to consider their specific dive management characteristics which may additionally be affected by the intended operational depth and whether staged decompression was permitted.

  14. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  15. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System

    NASA Astrophysics Data System (ADS)

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-01

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  16. 21 CFR 884.5225 - Abdominal decompression chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Abdominal decompression chamber. 884.5225 Section 884.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... abdominal pain during pregnancy or labor. (b) Classification. Class III (premarket approval). (c) Date PMA...

  17. Early Versus Delayed Surgical Decompression of Spinal Cord after Traumatic Cervical Spinal Cord Injury: A Cost-Utility Analysis.

    PubMed

    Furlan, Julio C; Craven, B Catharine; Massicotte, Eric M; Fehlings, Michael G

    2016-04-01

    This cost-utility analysis was undertaken to compare early (≤24 hours since trauma) versus delayed surgical decompression of spinal cord to determine which approach is more cost effective in the management of patients with acute traumatic cervical spinal cord injury (SCI). This study includes the patients enrolled into the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS) and admitted at Toronto Western Hospital. Cases were grouped into patients with motor complete SCI and individuals with motor incomplete SCI. A cost-utility analysis was performed for each group of patients by the use of data for the first 6 months after SCI. The perspective of a public health care insurer was adopted. Costs were estimated in 2014 U.S. dollars. Utilities were estimated from the STASCIS. The baseline analysis indicates early spinal decompression is more cost-effective approach compared with the delayed spinal decompression. When we considered the delayed spinal decompression as the baseline strategy, the incremental cost-effectiveness ratio analysis revealed a saving of US$ 58,368,024.12 per quality-adjusted life years gained for patients with complete SCI and a saving of US$ 536,217.33 per quality-adjusted life years gained in patients with incomplete SCI for the early spinal decompression. The probabilistic analysis confirmed the early-decompression strategy as more cost effective than the delayed-decompression approach, even though there is no clearly dominant strategy. The results of this economic analysis suggests that early decompression of spinal cord was more cost effective than delayed surgical decompression in the management of patients with motor complete and incomplete SCI, even though no strategy was clearly dominant. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery.

    PubMed

    Shin, E Kyung; Kim, Chi Heon; Chung, Chun Kee; Choi, Yunhee; Yim, Dahae; Jung, Whei; Park, Sung Bae; Moon, Jung Hyeon; Heo, Won; Kim, Sung-Mi

    2017-02-01

    Lumbar spinal stenosis (LSS) is the most common lumbar degenerative disease, and sagittal imbalance is uncommon. Forward-bending posture, which is primarily caused by buckling of the ligamentum flavum, may be improved via simple decompression surgery. The objectives of this study were to identify the risk factors for sagittal imbalance and to describe the outcomes of simple decompression surgery. This is a retrospective nested case-control study PATIENT SAMPLE: This was a retrospective study that included 83 consecutive patients (M:F=46:37; mean age, 68.5±7.7 years) who underwent decompression surgery and a minimum of 12 months of follow-up. The primary end point was normalization of sagittal imbalance after decompression surgery. Sagittal imbalance was defined as a C7 sagittal vertical axis (SVA) ≥40 mm on a 36-inch-long lateral whole spine radiograph. Logistic regression analysis was used to identify the risk factors for sagittal imbalance. Bilateral decompression was performed via a unilateral approach with a tubular retractor. The SVA was measured on serial radiographs performed 1, 3, 6, and 12 months postoperatively. The prognostic factors for sagittal balance recovery were determined based on various clinical and radiological parameters. Sagittal imbalance was observed in 54% (45/83) of patients, and its risk factors were old age and a large mismatch between pelvic incidence and lumbar lordosis. The 1-year normalization rate was 73% after decompression surgery, and the median time to normalization was 1 to 3 months. Patients who did not experience SVA normalization exhibited low thoracic kyphosis (hazard ratio [HR], 1.04; 95% confidence interval [CI], 1.02-1.10) (p<.01) and spondylolisthesis (HR, 0.33; 95% CI, 0.17-0.61) before surgery. Sagittal imbalance was observed in more than 50% of LSS patients, but this imbalance was correctable via simple decompression surgery in 70% of patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The best of both Reps—Diabatized Gaussians on adiabatic surfaces

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-11-01

    When simulating nonadiabatic molecular dynamics, choosing an electronic representation requires consideration of well-known trade-offs. The uniqueness and spatially local couplings of the adiabatic representation come at the expense of an electronic wave function that changes discontinuously with nuclear motion and associated singularities in the nonadiabatic coupling matrix elements. The quasi-diabatic representation offers a smoothly varying wave function and finite couplings, but identification of a globally well-behaved quasi-diabatic representation is a system-specific challenge. In this work, we introduce the diabatized Gaussians on adiabatic surfaces (DGAS) approximation, a variant of the ab initio multiple spawning (AIMS) method that preserves the advantages of both electronic representations while avoiding their respective pitfalls. The DGAS wave function is expanded in a basis of vibronic functions that are continuous in both electronic and nuclear coordinates, but potentially discontinuous in time. Because the time-dependent Schrödinger equation contains only first-order derivatives with respect to time, singularities in the second-derivative nonadiabatic coupling terms (i.e., diagonal Born-Oppenheimer correction; DBOC) at conical intersections are rigorously absent, though singular time-derivative couplings remain. Interpolation of the electronic wave function allows the accurate prediction of population transfer probabilities even in the presence of the remaining singularities. We compare DGAS calculations of the dynamics of photoexcited ethene to AIMS calculations performed in the adiabatic representation, including the DBOC. The 28 fs excited state lifetime observed in DGAS simulations is considerably shorter than the 50 fs lifetime observed in the adiabatic simulations. The slower decay in the adiabatic representation is attributable to the large, repulsive DBOC in the neighborhood of conical intersections. These repulsive DBOC terms are artifacts

  20. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    ERIC Educational Resources Information Center

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  1. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  2. Does decompression of odontogenic cysts and cystlike lesions change the histologic diagnosis?

    PubMed

    Schlieve, Thomas; Miloro, Michael; Kolokythas, Antonia

    2014-06-01

    The purpose of this study was to report the histopathologic findings after postdecompression definitive treatment of odontogenic cystlike lesions and determine whether the diagnosis was consistent with the pretreatment diagnosis, thereby answering the clinical question: does decompression change the histologic diagnosis? The authors implemented a retrospective cohort study from a sample of patients diagnosed with a benign odontogenic cystlike lesion and who underwent decompression followed by definitive surgery as part of their treatment. The predictor variable was treatment by decompression and the dependent variable was change in histologic diagnosis. Age, gender, and lesion location were included as variables. The χ(2) test was used for statistical analysis of the categorical data and P values less than .05 were considered statistically significant. Twenty-five cysts and cystlike lesions in 25 patients were treated with decompression followed by enucleation and curettage. The mean age was 34 years (range, 13 to 80 yr) and 56% (14) were male patients. Lesions were located in the mandible in 76% (19 of 25) of patients. Postdecompression histologic examination at the time of definitive surgical treatment was consistent with the preoperative biopsy diagnosis in 91% (10 of 11) of keratocystic odontogenic tumors, 67% (2 of 3) of glandular odontogenic cysts, 75% (3 of 4) of dentigerous cysts, and 100% (7 of 7) of cystic ameloblastomas. The histologic diagnosis at time of definitive treatment by enucleation and curettage is consistent with the predecompression diagnosis. Therefore, all lesions should be definitively treated after decompression based on the initial lesion diagnosis, with all patients placed on appropriate follow-up protocols. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. All rights reserved.

  3. Dark energy and dark matter from an additional adiabatic fluid

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo

    2016-10-01

    The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.

  4. Factors associated with spinal fusion after posterior fossa decompression in pediatric patients with Chiari I malformation and scoliosis.

    PubMed

    Mackel, Charles E; Cahill, Patrick J; Roguski, Marie; Samdani, Amer F; Sugrue, Patrick A; Kawakami, Noriaki; Sturm, Peter F; Pahys, Joshua M; Betz, Randal R; El-Hawary, Ron; Hwang, Steven W

    2016-12-01

    OBJECTIVE The authors performed a study to identify clinical characteristics of pediatric patients diagnosed with Chiari I malformation and scoliosis associated with a need for spinal fusion after posterior fossa decompression when managing the scoliotic curve. METHODS The authors conducted a multicenter retrospective review of 44 patients, aged 18 years or younger, diagnosed with Chiari I malformation and scoliosis who underwent posterior fossa decompression from 2000 to 2010. The outcome of interest was the need for spinal fusion after decompression. RESULTS Overall, 18 patients (40%) underwent posterior fossa decompression alone, and 26 patients (60%) required a spinal fusion after the decompression. The mean Cobb angle at presentation and the proportion of patients with curves > 35° differed between the decompression-only and fusion cohorts (30.7° ± 11.8° vs 52.1° ± 26.3°, p = 0.002; 5 of 18 vs 17 of 26, p = 0.031). An odds ratio of 1.0625 favoring a need for fusion was established for each 1° of increase in Cobb angle (p = 0.012, OR 1.0625, 95% CI 1.0135-1.1138). Among the 14 patients older than 10 years of age with a primary Cobb angle exceeding 35°, 13 (93%) ultimately required fusion. Patients with at least 1 year of follow-up whose curves progressed more 10° after decompression were younger than those without curve progression (6.1 ± 3.0 years vs 13.7 ± 3.2 years, p = 0.001, Mann-Whitney U-test). Left apical thoracic curves constituted a higher proportion of curves in the decompression-only group (8 of 16 vs 1 of 21, p = 0.002). CONCLUSIONS The need for fusion after posterior fossa decompression reflected the curve severity at clinical presentation. Patients presenting with curves measuring > 35°, as well as those greater than 10 years of age, may be at greater risk for requiring fusion after posterior fossa decompression, while patients less than 10 years of age may require routine monitoring for curve progression. Left apical thoracic curves

  5. Dibutyryl cAMP effects on thromboxane and leukotriene production in decompression-induced lung injury

    NASA Technical Reports Server (NTRS)

    Little, T. M.; Butler, B. D.

    1997-01-01

    Decompression-induced venous bubble formation has been linked to increased neutrophil counts, endothelial cell injury, release of vasoactive eicosanoids, and increased vascular membrane permeability. These actions may account for inflammatory responses and edema formation. Increasing the intracellular cAMP has been shown to decrease eicosanoid production and edema formation in various models of lung injury. Reduction of decompression-induced inflammatory responses was evaluated in decompressed rats pretreated with saline (controls) or dibutyryl cAMP (DBcAMP, an analog of cAMP). After pretreatment, rats were exposed to either 616 kPa for 120 min or 683 kPa for 60 min. The observed increases in extravascular lung water ratios (pulmonary edema), bronchoalveolar lavage, and pleural protein in the saline control group (683 kPa) were not evident with DBcAMP treatment. DBcAMP pretreatment effects were also seen with the white blood cell counts and the percent of neutrophils in the bronchoalveolar lavage. Urinary levels of thromboxane B2, 11-dehydrothromboxane B2, and leukotriene E4 were significantly increased with the 683 kPa saline control decompression exposure. DBcAMP reduced the decompression-induced leukotriene E4 production in the urine. Plasma levels of thromboxane B2, 11-dehydrothromboxane B2, and leukotriene E4 were increased with the 683-kPa exposure groups. DBcAMP treatment did not affect these changes. The 11-dehydrothromboxane B2 and leukotriene E4 levels in the bronchoalveolar lavage were increased with the 683 kPa exposure and were reduced with the DBcAMP treatment. Our results indicate that DBcAMP has the capability to reduce eicosanoid production and limit membrane permeability and subsequent edema formation in rats experiencing decompression sickness.

  6. Analysis of magnetically immersed electron guns with non-adiabatic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less

  7. Analysis of magnetically immersed electron guns with non-adiabatic fields

    DOE PAGES

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...

    2016-11-08

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less

  8. Physiological consequences of rapid or prolonged aircraft decompression: evaluation using a human respiratory model.

    PubMed

    Wolf, Matthew

    2014-04-01

    Aircraft passengers and crew may be subjected to rapid or prolonged decompression to high cabin altitude when an aircraft develops a hole in the fuselage. The accepted measure of neurological damage due to the hypobaric hypoxia produced is the subjective 'time of useful consciousness' (TUC) measure, which is appropriate for pilots and crew who perform their given tasks, however, TUC is measured under conditions different than the decompression scenarios that passengers undergo in today's aircraft. Ernsting proposed that prolonged exposure to alveolar O2 pressures less than 30 mmHg (P30) causes neurological damage. The current study proposes that a critical value of arterial O2 saturation of 70% (S70) can be used in place of P30 and that this physiological measure is more suited for determination of hypobaric hypoxia in passengers. The study shows the equivalence of model-predicted P30 and S70 values in the Ernsting-decompression scenarios. The model is also used to predict values of these physiological measures in actual aircraft-decompression scenarios. The model can be used by others to quantitatively predict the degree of hypobaric hypoxia for virtually any kind of decompression scenario, including those where supplemental O2 is used. Use of this tool avoids the prohibitive costs of human-subject testing for new aircraft and the potential danger inherent in such tests.

  9. Spatial domain entertainment audio decompression/compression

    NASA Astrophysics Data System (ADS)

    Chan, Y. K.; Tam, Ka Him K.

    2014-02-01

    The ARM7 NEON processor with 128bit SIMD hardware accelerator requires a peak performance of 13.99 Mega Cycles per Second for MP3 stereo entertainment quality decoding. For similar compression bit rate, OGG and AAC is preferred over MP3. The Patent Cooperation Treaty Application dated 28/August/2012 describes an audio decompression scheme producing a sequence of interleaving "min to Max" and "Max to min" rising and falling segments. The number of interior audio samples bound by "min to Max" or "Max to min" can be {0|1|…|N} audio samples. The magnitudes of samples, including the bounding min and Max, are distributed as normalized constants within the 0 and 1 of the bounding magnitudes. The decompressed audio is then a "sequence of static segments" on a frame by frame basis. Some of these frames needed to be post processed to elevate high frequency. The post processing is compression efficiency neutral and the additional decoding complexity is only a small fraction of the overall decoding complexity without the need of extra hardware. Compression efficiency can be speculated as very high as source audio had been decimated and converted to a set of data with only "segment length and corresponding segment magnitude" attributes. The PCT describes how these two attributes are efficiently coded by the PCT innovative coding scheme. The PCT decoding efficiency is obviously very high and decoding latency is basically zero. Both hardware requirement and run time is at least an order of magnitude better than MP3 variants. The side benefit is ultra low power consumption on mobile device. The acid test on how such a simplistic waveform representation can indeed reproduce authentic decompressed quality is benchmarked versus OGG(aoTuv Beta 6.03) by three pair of stereo audio frames and one broadcast like voice audio frame with each frame consisting 2,028 samples at 44,100KHz sampling frequency.

  10. Do modern techniques improve core decompression outcomes for hip osteonecrosis?

    PubMed

    Marker, David R; Seyler, Thorsten M; Ulrich, Slif D; Srivastava, Siddharth; Mont, Michael A

    2008-05-01

    Core decompression procedures have been used in osteonecrosis of the femoral head to attempt to delay the joint destruction that may necessitate hip arthroplasty. The efficacy of core decompressions has been variable with many variations of technique described. To determine whether the efficacy of this procedure has improved during the last 15 years using modern techniques, we compared recently reported radiographic and clinical success rates to results of surgeries performed before 1992. Additionally, we evaluated the outcomes of our cohort of 52 patients (79 hips) who were treated with multiple small-diameter drillings. There was a decrease in the proportion of patients undergoing additional surgeries and an increase in radiographic success when comparing pre-1992 results to patients treated in the last 15 years. However, there were fewer Stage III hips in the more recent reports, suggesting that patient selection was an important reason for this improvement. The results of the small-diameter drilling cohort were similar to other recent reports. Patients who had small lesions and were Ficat Stage I had the best results with 79% showing no radiographic progression. Our study confirms core decompression is a safe and effective procedure for treating early stage femoral head osteonecrosis.

  11. White matter changes linked to visual recovery after nerve decompression

    PubMed Central

    Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.

    2015-01-01

    The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884

  12. Decompression of keratocystic odontogenic tumors leading to increased fibrosis, but without any change in epithelial proliferation.

    PubMed

    Awni, Sarah; Conn, Brendan

    2017-06-01

    The aim of this study was to investigate whether decompression treatment induces changes in the histology or biologic behavior of keratocystic odontogenic tumor (KCOT). Seventeen patients with KCOT underwent decompression treatment with or without enucleation. Histologic evaluation and immunohistochemical expression of p53, Ki-67, and Bcl-2 were analyzed by using conventional microscopy. KCOT showed significantly increased fibrosis (P = .01) and a subjective reduction in mitotic activity (P = .03) after decompression. There were no statistically significant changes in the expression of proliferation markers. An increase in daughter-cysts or epithelial rests was seen after decompression (P = .04). Recurrence was noted in four of 16 cases, and expression of p53 was strongly correlated with prolonged duration of treatment (P = .01) and intense inflammatory changes (P = .02). Structural changes in the KCOT epithelium or capsule following decompression facilitate surgical removal of the tumor. There was no statistical evidence that decompression influences expression of proliferation markers in the lining, indicating that the potential for recurrence may not be restricted to the cellular level. The statistically significant increase of p53 expression with increased duration of treatment and increase of inflammation may also indicate the possibility of higher rates of recurrence with prolonged treatment and significant inflammatory changes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  13. Quantum adiabatic computation with a constant gap is not useful in one dimension.

    PubMed

    Hastings, M B

    2009-07-31

    We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).

  14. Effects of preheat and mix on the fuel adiabat of an imploding capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.

    We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M clean=M DT ≥ 0:98 is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effectsmore » and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.« less

  15. Effects of preheat and mix on the fuel adiabat of an imploding capsule

    DOE PAGES

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; ...

    2016-12-01

    We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M clean=M DT ≥ 0:98 is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effectsmore » and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.« less

  16. Shortcuts to adiabaticity from linear response theory

    DOE PAGES

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  17. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  18. Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Lu, Xiao-Jing; Li, M.; Yan, Run-Ying; Zhou, Yun-Qing

    2017-12-01

    We propose a theoretical scheme to speed up adiabatic population transfer in a Josephson artificial qutrit by transitionless quantum driving. At a magic working point, an effective three-level subsystem can be chosen to constitute our qutrit. With Stokes and pump driving, adiabatic population transfer can be achieved in the qutrit by means of stimulated Raman adiabatic passage. Assisted by a counter-diabatic driving, the adiabatic population transfer can be sped up drastically with accessible parameters. Moreover, the accelerated operation is flexibly reversible and highly robust against decoherence effects. Thanks to these distinctive advantages, the present protocol could offer a promising avenue for optimal coherent operations in Josephson quantum circuits.

  19. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  20. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  1. Optics of tunneling from adiabatic nanotapers

    NASA Astrophysics Data System (ADS)

    Sumetsky, M.

    2006-12-01

    A theory of light propagation along adiabatic photonic nanowire tapers (nanotapers) having diameters significantly less than the radiation wavelength λ˜1 μm is developed. The fundamental mode of a nanotaper primarily consists of an evanescent field, which propagates in the ambient medium and is very sensitive to the nanotaper shape. General analytical expressions for the evanescent field and the radiation loss of adiabatic nanotapers are obtained and applied to the investigation of the optics of tunneling from a nanotaper of a characteristic shape. The radiation loss of this nanotaper occurs locally near a focal circumference of the evanescent field, representing an intersection of a complex caustic surface with real space, where the fundamental mode splits into the radiating and guiding components. The interference of these components gives rise to a sequence of circumferences with zero electromagnetic field.

  2. High-Energy, Multi-Octave-Spanning Mid-IR Sources via Adiabatic Difference Frequency Generation

    DTIC Science & Technology

    2016-10-17

    plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of...achieved the main goals of our research plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG...research plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of

  3. Flotation of Magnetite Crystals upon Decompression - A Formation Model for Kiruna-type Iron Oxide-Apatite Deposits

    NASA Astrophysics Data System (ADS)

    Knipping, J. L.; Simon, A. C.; Fiege, A.; Webster, J. D.; Reich, M.; Barra, F.; Holtz, F.; Oeser-Rabe, M.

    2017-12-01

    Trace-element characteristics of magnetite from Kiruna-type iron oxide-apatite deposits indicate a magmatic origin. A possible scenario currently considered for the magmatic formation, apart from melt immiscibility, is related to degassing of volatile-rich magmas. Decompression, e.g., induced by magma ascent, results in volatile exsolution and the formation of a magmatic volatile phase. Volatile bubbles are expected to nucleate preferentially on the surface of oxides like magnetite which is due to a relatively low surface tension of oxide-bubble interfaces [1]. The "bulk" density of these magnetite-bubble pairs is typically lower than the surrounding magma and thus, they are expected to migrate upwards. Considering that magnetite is often the liquidus phase in fluid-saturated, oxidized andesitic arc magmas, this process may lead to the formation of a rising magnetite-bubble suspension [2]. To test this hypothesis, complementary geochemical analyses and high pressure experimental studies are in progress. The core to rim Fe isotopic signature of magnetite grains from the Los Colorados deposit in the Chilean Iron Belt was determined by Laser Ablation-MC-ICP-MS. The δ56Fe data reveal a systematic zonation from isotopically heavy Fe (δ56Fe: 0.25 ±0.07 ‰) in the core of magnetite grains to relatively light Fe (δ56Fe: 0.15 ±0.05 ‰) toward grain rims. This variation indicates crystallization of the magnetite cores at early magmatic stages from a silicate melt and subsequent growth of magnetite rims at late magmatic - hydrothermal stages from a free volatile phase. These signatures agree with the core to rim trace-element signatures of the same magnetite grains. The presence of Cl in the exsolved volatile phase and the formation of FeCl2 complexes is expected to enhance the transport of Fe in fluids and the formation of magmatic-hydrothermal magnetite [3]. First experiments (975 °C, 350 to 100 MPa, 0.025 MPa/s) show certain magnetite accumulation only 15 minutes

  4. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  5. Navigation-guided optic canal decompression for traumatic optic neuropathy: Two case reports.

    PubMed

    Bhattacharjee, Kasturi; Serasiya, Samir; Kapoor, Deepika; Bhattacharjee, Harsha

    2018-06-01

    Two cases of traumatic optic neuropathy presented with profound loss of vision. Both cases received a course of intravenous corticosteroids elsewhere but did not improve. They underwent Navigation guided optic canal decompression via external transcaruncular approach, following which both cases showed visual improvement. Postoperative Visual Evoked Potential and optical coherence technology of Retinal nerve fibre layer showed improvement. These case reports emphasize on the role of stereotactic navigation technology for optic canal decompression in cases of traumatic optic neuropathy.

  6. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle.

    PubMed

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-26

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5/3, when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  7. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  8. Ambulation Increases Decompression Sickness in Spacewalk Simulations

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2014-01-01

    Musculoskeletal activity has the potential to both improve and compromise decompression safety. Exercise enhances inert gas elimination during oxygen breathing prior to decompression (prebreathe), but it may also promote bubble nuclei formation (nucleation), which can lead to gas phase separation and bubble growth and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation may be critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. Data gathered during NASA's Prebreathe Reduction Program (PRP) studies combined oxygen prebreathe and exercise followed by low pressure (4.3 psi; altitude equivalent of 30,300 ft [9,235 m]) microgravity simulation to produce two protocols used by astronauts preparing for extravehicular activity. Both the Phase II/CEVIS (cycle ergometer vibration isolation system) and ISLE (in-suit light exercise) trials eliminated ambulation to more closely simulate the microgravity environment. The CEVIS results (35 male, 10 female) serve as control data for this NASA/Duke study to investigate the influence of ambulation exercise on bubble formation and the subsequent risk of DCS. METHODS Four experiments will replicate the CEVIS exercise-enhanced oxygen prebreathe protocol, each with a different exception. The first of these is currently underway. Experiment 1 - Subjects complete controlled ambulation (walking in place with fixed cadence and step height) during both preflight and at 4.3 psi instead of remaining nonambulatory throughout. Experiment 2 - Subjects remain non-ambulatory during the preflight period and ambulatory at 4.3 psi. Experiment 3 - Subjects ambulate during the preflight period and remain non-ambulatory at 4.3 psi. Experiment 4 - The order of heavy and light exercise employed in the CEVIS protocol is

  9. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head

    PubMed Central

    Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng

    2017-01-01

    Introduction Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Methods Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. Results The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Conclusions Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis. PMID:28464029

  10. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head.

    PubMed

    Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng

    2017-01-01

    Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis.

  11. Decompressive craniectomy in diffuse traumatic brain injury.

    PubMed

    Cooper, D James; Rosenfeld, Jeffrey V; Murray, Lynnette; Arabi, Yaseen M; Davies, Andrew R; D'Urso, Paul; Kossmann, Thomas; Ponsford, Jennie; Seppelt, Ian; Reilly, Peter; Wolfe, Rory

    2011-04-21

    It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure. From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months. Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%). In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes. (Funded by the National Health and Medical Research Council of Australia and others; DECRA Australian Clinical Trials Registry number, ACTRN012605000009617.).

  12. Chemistry of Tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited

    NASA Astrophysics Data System (ADS)

    Žák, Karel; Skála, Roman; Řanda, Zdeněk; Mizera, Jiří; Heissig, Kurt; Ackerman, Lukáš; Ďurišová, Jana; Jonášová, Šárka; Kameník, Jan; Magna, Tomáš

    2016-04-01

    Moldavites, tektites of the Central European strewn field, have been traditionally linked with the Ries impact structure in Germany. They are supposed to be derived mainly from the near-surface sediments of the Upper Freshwater Molasse of Miocene age that probably covered the target area before the impact. Comparison of the chemical composition of moldavites with that of inferred source materials requires recalculation of the composition of sediments to their water-, organic carbon- and carbon dioxide-free residuum. This recalculation reflects the fact that these compounds were lost almost completely from the target materials during their transformation to moldavites. Strong depletions in concentrations of many elements in moldavites relative to the source sediments (e.g., Mo, Cu, Ag, Sb, As, Fe) contrast with enrichments of several elements in moldavites (e.g., Cs, Ba, K, Rb). These discrepancies can be generally solved using two different approaches, either by involvement of a component of specific chemical composition, or by considering elemental fractionation during tektite formation. The proposed conceptual model of moldavite formation combines both approaches and is based on several steps: (i) the parent mixture (Upper Freshwater Molasse sediments as the dominant source) contained also a minor admixture of organic matter and soils; (ii) the most energetic part of the ejected matter was converted to vapor (plasma) and another part produced melt directly upon decompression; (iii) following further adiabatic decompression, the expanding vapor phase disintegrated the melt into small melt droplets and some elements were partially lost from the melt because of their volatility, or because of the volatility of their compounds, such as carbonyls of Fe and other transition metals (e.g., Ni, Co, Mo, Cr, and Cu); (iv) large positively charged ions such as Cs+, Ba2+, K+, Rb+ from the plasma portion were enriched in the late-stage condensation spherules or condensed

  13. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict themore » precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.« less

  14. Ambulation During Periods of Supersaturation Increase Decompression Stress in Spacewalk Simulations

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2016-01-01

    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation are likely critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a low pressure (4.3 psia; altitude equivalent of 30,300 ft [9,235 m]) simulation exposure of non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity. One protocol included both upright cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one protocol relied on non-cycling exercise only (ISLE: 'in-suit light exercise'). CEVIS trial data serve as control data for the current study to investigate the influence of ambulation exercise in 1G environments on bubble formation and the subsequent risk of DCS.

  15. The influence of prior exercise at anaerobic threshold on decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Waligora, James M.; Gilbert, John H., III

    1992-01-01

    This study was conducted to examine the effects of exercise prior to decompression on the incidence of altitude decompression sickness (DCS). In a balanced, two-period, crossover trial, 39 healthy individuals were each exposed twice, without denitrogenation, to an altitude of 6400 m in a hypobaric chamber. Under the experimental condition, subjects exercised at their predetermined anaerobic threshold levels for 30 min each day for 3 d prior to altitude exposure; the other condition was a non-exercise control. Under both conditions, subjects performed exercise simulating space extravehicular activities at altitude for a period of 3 h, while breathing 100 percent oxygen. There were nine preferences (untied responses) for DCS, four under control and five under experimental conditions; all were Type I, pain-only bends. No carry-over effects between exposures was detected, and the test for treatment differences showed p = 0.56 for symptoms. No significant difference in DCS preferences was found after subjects exercised up to their anaerobic threshold levels during the days prior to decompression.

  16. Space Flight Decompression Sickness Contingency Plan

    NASA Technical Reports Server (NTRS)

    Dervay, Joseph; Gernhardt, Michael L.; Ross, Charles E.; Hamilton, Douglas; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    The purpose was to develop an enhanced plan to diagnose, treat, and manage decompression sickness (DCS) during extravehicular activity (EVA). This plan is merited by the high frequency of upcoming EVAs necessary to construct and maintain the International Space Station (ISS). The upcoming ISS era will demand a significant increase in EVA. The DCS Risk and Contingency Plan provided a new and improved approach to DCS reporting, treatment, management, and training.

  17. Management of sinonasal complications after endoscopic orbital decompression for Graves' orbitopathy.

    PubMed

    Antisdel, Jastin L; Gumber, Divya; Holmes, Janalee; Sindwani, Raj

    2013-09-01

    Endoscopic orbital decompression (EnOD) has proven to be safe and effective for the treatment of Graves' orbitopathy; however, complications do occur. Although the literature focuses on orbital complications, sinonasal complications including postobstructive sinusitis, hemorrhage, and cerebrospinal fluid (CSF) leak can also be challenging to manage. This study examines the incidence and management of sinonasal complications in these patients. Retrospective review. Clinical data, surgical findings, and postoperative outcomes were reviewed of patients who underwent EnOD for Graves' disease between March 2004 and November 2010. The incidence and management of postoperative sinonasal complications requiring an intervention were examined. The study group consisted of 50 consecutive patients (86 decompression procedures): 11 males and 39 females with an average age of 48.6 years (SD = 12.9). Incidence of significant sinonasal complications was 3.5% (5/86): with one patient experiencing postoperative hemorrhage requiring operative management, three patients with postoperative obstructive sinusitis, and one patient with nasal obstruction secondary to nasal adhesions that required lysis. The maxillary sinus was the most commonly involved and was managed using the mega-antrostomy technique. In the case of frontal sinusitis, an endoscopic transaxillary approach was utilized to avoid injury to decompressed orbital contents. All complications were successfully managed without sequelae. Sinonasal complications following EnOD are uncommon. In the setting of a decompressed orbit, even routine types of postoperative issues can be challenging and require additional considerations. Successful management of postoperative sinusitis related to outflow obstruction may require more extensive approaches and novel techniques. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Connection between optimal control theory and adiabatic-passage techniques in quantum systems

    NASA Astrophysics Data System (ADS)

    Assémat, E.; Sugny, D.

    2012-08-01

    This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.

  19. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

    PubMed Central

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-01-01

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity. PMID:28397793

  20. Needle decompression in a patient with vision-threatening orbital emphysema

    PubMed Central

    Lin, Che-Yu; Tsai, Chieh-Chih; Kao, Shu-Ching; Kau, Hui-Chuan; Lee, Fenq-Lih

    2016-01-01

    Orbital emphysema is a condition resulting from trapping of air in loose subcutaneous or orbital tissues from the paranasal sinuses. This condition commonly seen in patients with a history of periorbital trauma or surgery, especially following sneezing or nose blowing. It usually has a benign and self-limited course. However, the entrapped orbital air can cause a substantial increase in pressure with restricted ocular motility or vascular compromise and become severe enough to cause visual impairment. We herein present the case of a patient who developed severe orbital emphysema after blunt trauma followed by sneezing and was successfully treated with needle decompression of intraorbital air. Emergency needle decompression resulted in an improvement in vision and intraocular pressure. PMID:29018719

  1. Application of COMPONT Medical Adhesive Glue for Tension-Reduced Duraplasty in Decompressive Craniotomy

    PubMed Central

    Zhou, Yujia; Wang, Gesheng; Liu, Jialin; Du, Yong; Wang, Lei; Wang, Xiaoyong

    2016-01-01

    Background The aim of this study was to evaluate the application of medical adhesive glue for tension-reduced duraplasty in decompressive craniotomy. Material/Methods A total of 56 cases were enrolled for this study from Jan 2013 to May 2015. All patients underwent decompressive craniotomy and the dura was repaired in all of them with tension-reduced duraplasty using the COMPONT medical adhesive to glue artificial dura together. The postoperative complications and the healing of dura mater were observed and recorded. Results No wound infection, epidural or subdural hematoma, cerebrospinal fluid leakage, or other complications associated with the procedure occurred, and there were no allergic reactions to the COMPONT medical adhesive glue. The second-phase surgery of cranioplasty was performed at 3 to 6 months after the decompressive craniotomy in 32 out of the 56 cases. During the cranioplasty we observed no adherence of the artificial dura mater patch to the skin flap, no residual COMPONT glue, or hydropic or contracture change of tissue at the surgical sites. Additionally, no defect or weakening of the adherence between the artificial dura mater patch and the self dura matter occurred. Conclusions COMPONT medical adhesive glue is a safe and reliable tool for tension-reduced duraplasty in decompressive craniotomy. PMID:27752035

  2. Bridging Quantum, Classical and Stochastic Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti

    Adiabatic invariants - quantities that are preserved under the slow driving of a system's external parameters - are important in classical mechanics, quantum mechanics and thermodynamics. Adiabatic processes allow a system to be guided to evolve to a desired final state. However, the slow driving of a quantum system makes it vulnerable to environmental decoherence, and for both quantum and classical systems, it is often desirable and time-efficient to speed up a process. Shortcuts to adiabaticity are strategies for preserving adiabatic invariants under rapid driving, typically by means of an auxiliary field that suppresses excitations, otherwise generated during rapid driving. Several theoretical approaches have been developed to construct such shortcuts. In this dissertation we focus on two different approaches, namely counterdiabatic driving and fast-forward driving, which were originally developed for quantum systems. The counterdiabatic approach introduced independently by Dermirplak and Rice [J. Phys. Chem. A, 107:9937, 2003], and Berry [J. Phys. A: Math. Theor., 42:365303, 2009] formally provides an exact expression for the auxiliary Hamiltonian, which however is abstract and difficult to translate into an experimentally implementable form. By contrast, the fast-forward approach developed by Masuda and Nakamura [Proc. R. Soc. A, 466(2116):1135, 2010] provides an auxiliary potential that may be experimentally implementable but generally applies only to ground states. The central theme of this dissertation is that classical shortcuts to adiabaticity can provide useful physical insights and lead to experimentally implementable shortcuts for analogous quantum systems. We start by studying a model system of a tilted piston to provide a proof of principle that quantum shortcuts can successfully be constructed from their classical counterparts. In the remainder of the dissertation, we develop a general approach based on flow-fields which produces simple expressions

  3. Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture

    NASA Astrophysics Data System (ADS)

    Stepanov, Victor P.; Kulik, Nina P.

    2017-04-01

    The adiabatic compressibility, β, of the immiscible liquid mixture 0.52 LiCl+0.48 AgBr (the top of the miscibility gap) was experimentally investigated in the temperature range from the melting point to the critical mixing temperature using the sound velocity values, u, measured by the pulse method, and the density quantities, ρ, which were determined using the hydrostatic weight procedure based on the relationship β=u- 2ρ- 1. It is shown that the coefficients of the temperature dependencies for the compressibility and density of the upper and lower equilibrium phases have opposite signs because of the superposition of the intensity of the thermal motion of the ions and the change in the composition of the phases. The differences, ∆β and ∆ρ, in the magnitudes of the compressibility and density for the equilibrium phases decrease with temperature elevation. The temperature dependencies of the compressibility and density difference are described using the empirical equations ∆β≈(Tc-T)0.438 and ∆ρ≈(Tc-T)0.439.

  4. Microsurgical Decompression of Inferior Alveolar Nerve After Endodontic Treatment Complications.

    PubMed

    Bianchi, Bernardo; Ferri, Andrea; Varazzani, Andrea; Bergonzani, Michela; Sesenna, Enrico

    2017-07-01

    Iatrogenic injury in oral surgery is the most frequent cause of sensory disturbance in the distribution of the inferior alveolar nerve (IAN) and mental nerve.Inferior alveolar nerve damage can occur during third molar extraction, implant location, orthognathic surgery, preprosthetic surgery, salivary gland surgery, local anesthetic injections or during the resection of benign or malignant tumors.Injuries to the IAN can be caused also by endodontic treatment of mandibular molars and premolars when filling material is forced into the tooth and mandibular canal.The sensory disturbances that could follow a damage of the IAN could be hypoesthesia, dysesthesia, hyperesthesia, anesthesia, and sometimes a painful anesthesia that strike ipsilateral lower lip, chin, and teeth. These can undermine life quality by affecting speech, chewing, and social interaction.Treatment of these complications is sometimes difficult and could consist in observation or in surgical decompression of the involved nerve to relieve the patient's symptoms and improve sensory recovery. The most debated points are the timing of intervention and the effective role of decompression in clinical outcome-improvement.The purpose of this article is to show authors' experience with 2 patients treated with microsurgical nerve decompression to remove endodontic material from the mandibular canal and providing also a comprehensive review of the literature.

  5. Adiabatic leakage elimination operator in an experimental framework

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Ming; Byrd, Mark S.; Jing, Jun; Wu, Lian-Ao

    2018-06-01

    Adiabatic evolution is used in a variety of quantum information processing tasks. However, the elimination of errors is not as well developed as it is for circuit model processing. Here, we present a strategy to improve the performance of a quantum adiabatic process by adding leakage elimination operators (LEOs) to the evolution. These are a sequence of pulse controls acting in an adiabatic subspace to eliminate errors by suppressing unwanted transitions. Using the Feshbach P Q partitioning technique, we obtain an analytical solution for a set of pulse controls. The effectiveness of the LEO is independent of the specific form of the pulse but depends on the average frequency of the control function. By observing that the evolution of the target eigenstate is governed by a periodic function appearing in the integral of the control function, we show that control parameters can be chosen in such a way that the instantaneous eigenstates of the system are unchanged, yet a speedup can be achieved by suppressing transitions. Furthermore, we give the exact expression of the control function for a counter unitary transformation to be used in experiments which provides a clear physical meaning for the LEO, aiding in the implementation.

  6. Quantum dynamics by the constrained adiabatic trajectory method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclerc, A.; Jolicard, G.; Guerin, S.

    2011-03-15

    We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are exploredmore » through simple examples.« less

  7. Non-adiabatic holonomic quantum computation in linear system-bath coupling

    PubMed Central

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-01-01

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of . The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities. PMID:26846444

  8. Non-adiabatic holonomic quantum computation in linear system-bath coupling.

    PubMed

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-02-05

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of (N - 2)/N. The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities.

  9. Rapid versus gradual bladder decompression in acute urinary retention.

    PubMed

    Etafy, Mohamed H; Saleh, Fatma H; Ortiz-Vanderdys, Cervando; Hamada, Alaa; Refaat, Alaa M; Aal, Mohamed Abdel; Deif, Hazem; Gawish, Maher; Abdellatif, Ashraf H; Gadalla, Khaled

    2017-01-01

    To demonstrate a benefit in diminished adverse events such as hypotension and hematuria with gradual drainage of the bladder when compared to rapid decompression in patients with acute urinary retention (AUR) due to benign prostatic hyperplasia in a case-control study. Sixty-two patients matched our selection criteria presenting with AUR. They were divided into two groups - the first was managed by rapid drainage of the bladder, the second was managed by gradual drainage through a urethral catheter (The first 100 mL immediately evacuated, then the rest evacuated gradually over 2 h). The mean age was 64.4 and 63.2 years in the first and second group, respectively. Diagnosed cause was benign hyperplasia of the prostate. Hematuria occurred in two patients in the first group and none in the second group. The two cases of hematuria were mild and treated conservatively. After the relief of the obstruction, the mean blood pressure was noticed to decrease by 15 mmHg and 10 mmHg in the first and second group, respectively, however, no one developed significant hypotension. Pain relief was achieved after complete drainage in the first group and after the evacuation of 100 mL in the second group. We conclude that there is no significant difference between rapid and gradual decompression of the bladder in patients with AUR. Hematuria and hypotension may occur after rapid decompression of the obstructed urinary bladder, but these complications are rarely clinically significant.

  10. Adiabatic Theorem for Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  11. Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history

    NASA Astrophysics Data System (ADS)

    Andrault, Denis; Bolfan-Casanova, Nathalie; Nigro, Giacomo Lo; Bouhifd, Mohamed A.; Garbarino, Gaston; Mezouar, Mohamed

    2011-04-01

    We investigated the melting properties of a synthetic chondritic primitive mantle up to core-mantle boundary (CMB) pressures, using laser-heated diamond anvil cell. Melting criteria are essentially based on the use of X-rays provided by synchrotron radiation. We report a solidus melting curve lower than previously determined using optical methods. The liquidus curve is found between 300 and 600 K higher than the solidus over the entire lower mantle. At CMB pressures (135 GPa), the chondritic mantle solidus and liquidus reach 4150 (± 150) K and 4725 (± 150) K, respectively. We discuss that the lower mantle is unlikely to melt in the D″-layer, except if the highest estimate of the temperature profile at the base of the mantle, which is associated with a very hot core, is confirmed. Therefore, recent suggestions of partial melting in the lowermost mantle based on seismic observations of ultra-low velocity zones indicate either (1) a outer core exceeding 4150 K at the CMB or (2) the presence of chemical heterogeneities with high concentration of fusible elements. Our observations of a high liquidus temperature as well as a large gap between solidus and liquidus temperatures have important implications for the properties of the magma ocean during accretion. Not only complete melting of the lower mantle would require excessively high temperatures, but also, below liquidus temperatures partial melting should take place over a much larger depth interval than previously thought. In addition, magma adiabats suggest very high surface temperatures in case of a magma ocean that would extend to more than 40 GPa, as suggested by siderophile metal-silicate partitioning data. Such high surface temperature regime, where thermal blanketing is inefficient, points out to a transient character of the magma ocean, with a very fast cooling rate.

  12. First-Order Phase Transition in the Quantum Adiabatic Algorithm

    DTIC Science & Technology

    2010-01-14

    London) 400, 133 (1999). [19] T. Jörg, F. Krzakala, G . Semerjian, and F. Zamponi, arXiv:0911.3438. PRL 104, 020502 (2010) P HY S I CA L R EV I EW LE T T E R S week ending 15 JANUARY 2010 020502-4 ...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Quantum Adiabatic Algorithm, Monte Carlo, Quantum Phase Transition A. P . Young, V...documentation. Approved for public release; distribution is unlimited. ... 56290.2-PH-QC First-Order Phase Transition in the Quantum Adiabatic Algorithm A. P

  13. Adiabatic invariance with first integrals of motion

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2002-10-01

    The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.

  14. Adiabatic Compression Sensitivity of AF-M315E (Briefing Charts)

    DTIC Science & Technology

    2015-07-27

    Charts 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Adiabatic Compression Sensitivity of AF - M315E (Briefing Charts) 5a...PA#15402. 14. ABSTRACT The Air Force Research Laboratory developed monopropellant, AF - M315E , has been selected for demonstration under the NASA...Pollux Drive, Edwards AFB, CA 93524-7048. Adiabatic Compression Sensitivity of AF - M315E Phu Quach ERC, Incorporated Air Force Research Laboratory

  15. Report on computation of repetitive hyperbaric-hypobaric decompression tables

    NASA Technical Reports Server (NTRS)

    Edel, P. O.

    1975-01-01

    The tables were constructed specifically for NASA's simulated weightlessness training program; they provide for 8 depth ranges covering depths from 7 to 47 FSW, with exposure times of 15 to 360 minutes. These tables were based up on an 8 compartment model using tissue half-time values of 5 to 360 minutes and Workmanline M-values for control of the decompression obligation resulting from hyperbaric exposures. Supersaturation ratios of 1.55:1 to 2:1 were used for control of ascents to altitude following such repetitive dives. Adequacy of the method and the resultant tables were determined in light of past experience with decompression involving hyperbaric-hypobaric interfaces in human exposures. Using these criteria, the method showed conformity with empirically determined values. In areas where a discrepancy existed, the tables would err in the direction of safety.

  16. Potential and Limitations of Neural Decompression in Extreme Lateral Interbody Fusion-A Systematic Review.

    PubMed

    Lang, Gernot; Perrech, Moritz; Navarro-Ramirez, Rodrigo; Hussain, Ibrahim; Pennicooke, Brenton; Maryam, Farah; Avila, Mauricio J; Härtl, Roger

    2017-05-01

    Extreme lateral interbody fusion (ELIF) is a powerful tool for interbody fusion and coronal deformity correction. However, evidence regarding the success of ELIF in decompressing foraminal, lateral recess, and central canal stenosis is lacking. We performed a systematic review of current literature on the potential and limitations of ELIF to indirectly decompress neural elements. A literature search using PubMed, Cochrane, and ScienceDirect databases was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Information on study design, sample size, population, procedure, number and location of involved levels, follow-up time, and complications as well as information on conflict of interest was extracted and evaluated. We selected 20 publications including 1080 patients for review. Most publications (90%) were retrospective case series. Most frequent indications for ELIF included degenerative disc disease, spinal stenosis, spondylolisthesis, and degenerative scoliosis. Most studies revealed significant improvement in radiographic and clinical outcome after ELIF. Mean foraminal area, central canal area, and subarticular diameter increased by 31.6 mm 2 , 28.5 mm 2 , and 0.85 mm. ELIF successfully improved foraminal stenosis. Contradictory results were found for indirect decompression of central canal stenosis. Data on lateral recess stenosis were scarce. Current data suggest ELIF to be an efficient technique in decompression of foraminal stenosis. Evidence on decompression of central canal or lateral recess stenosis via ELIF is low, and results are inconsistent. Most studies are limited by study design, sample size, and potential conflicts of interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle

    NASA Astrophysics Data System (ADS)

    De Smet, J.; Van den Berg, A. P.; Vlaar, N. J.

    2000-07-01

    The origin of stable old continental cratonic roots is still debated. We present numerical modelling results which show rapid initial formation during the Archaean of continental roots of ca. 200 km thick. These results have been obtained from an upper mantle thermal convection model including differentiation by pressure release partial melting of mantle peridotite. The upper mantle model includes time-dependent radiogenic heat production and thermal coupling with a heat reservoir representing the Earth's lower mantle and core. This allows for model experiments including secular cooling on a time-scale comparable to the age of the Earth. The model results show an initial phase of rapid continental root growth of ca. 0.1 billion year, followed by a more gradual increase of continental volume by addition of depleted material produced through hot diapiric, convective upwellings which penetrate the continental root from below. Within ca. 0.6 Ga after the start of the experiment, secular cooling of the mantle brings the average geotherm below the peridotite solidus thereby switching off further continental growth. At this time the thickness of the continental root has grown to ca. 200 km. After 1 Ga of secular cooling small scale thermal instabilities develop at the bottom of the continental root causing continental delamination without breaking up the large scale layering. This delaminated material remixes with the deeper layers. Two more periods, each with a duration of ca. 0.5 Ga and separated by quiescent periods were observed when melting and continental growth was reactivated. Melting ends at 3 Ga. Thereafter secular cooling proceeds and the compositionally buoyant continental root is stabilized further through the increase in mechanical strength induced by the increase of the temperature dependent mantle viscosity. Fluctuating convective velocity amplitudes decrease to below 10 mma -1 and the volume average temperature of the sub-continental convecting mantle has

  18. Melting mode and source lithology inferred from trace element systematic in historical olivine from Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Gómez-Ulla, Alejandra; Sigmarsson, Olgeir; Guðfinnsson, Guðmundur H.

    2017-04-01

    Trace element concentrations and ratios in olivine phenocrysts, such as fractionation-corrected Ni x (FeO/MgO) and Fe/Mn, have been shown useful as probes of pyroxenite derived component in mixtures of primary mantle melts (e.g. Sobolev et al., 2007). For instance, higher Ni and lower Mn and Ca contents are expected in partial melts of pyroxenite compared to those of lherzolite. We have measured trace element concentrations in olivine from 1730-1736 AD (Timanfaya) and 1824 AD eruptions in Lanzarote (Canary Islands), which erupted mafic and mantle nodule bearing magmas, ranging in composition from highly silica-undersaturated basanite through alkali basalt to tholeiite. The early basanite exhibit the largest olivine trace element variation covering the range of those from MORB and OIB worldwide, whereas later erupted tholeiite have values typical from pyroxenite derived melts. The Fo value decreased systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with, increasing concentrations of Mn and Ca and higher Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at lower temperature. The basanite from the eruption that took place in 1824 AD has olivine with even higher Fo value and trace element variability similar those of the Timanfaya basanite. The fact that the Lanzarote basanite contain olivine with trace element systematic spanning that of MORB and pyroxenite melt can be explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. Initial reactive porous flow through depleted oceanic lithosphere and equilibration with dunitic restite of percolating pyroxenite melt may have amplified the observed Ni depletion in olivine of the earliest basanite. The fact that olivine compositions and

  19. Geometrizing adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Rezakhani, Ali; Kuo, Wan-Jung; Hamma, Alioscia; Lidar, Daniel; Zanardi, Paolo

    2010-03-01

    A time-optimal approach to adiabatic quantum computation (AQC) is formulated. The corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. We demonstrate this geometrization through some examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance. The underlying connection with quantum phase transitions is also explored.

  20. Complicated Pseudomeningocele Repair After Chiari Decompression: Case Report and Review of the Literature.

    PubMed

    De Tommasi, Claudio; Bond, Aaron E

    2016-04-01

    Pseudomeningocele is a recognised complication after posterior fossa decompression for Chiari malformation. Its management can be challenging and treatment options vary in literature. A difficult-to-treat case of a pseudomeningocele after posterior fossa decompression for a Chiari I malformation is presented. A 34-year-old woman underwent an initial decompression followed by multiple revision surgeries after the development of a symptomatic pseudomeningocele and a low-grade infection. Complications associated with standard treatment modalities, including lumbar drainage and dural repair, are discussed. A review of the existing literature is presented. The reported case ultimately required complete removal of all dural repair materials to eliminate the patient's low-grade infection, a muscular flap, and placement of a ventricular-peritoneal shunt for definitive treatment after a trial of a lumbar drain led to herniation and development of a syrinx. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.

    2018-02-01

    We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.

  2. A theoretical study of the adiabatic and vertical ionization potentials of water.

    PubMed

    Feller, David; Davidson, Ernest R

    2018-06-21

    Theoretical predictions of the three lowest adiabatic and vertical ionization potentials of water were obtained from the Feller-Peterson-Dixon approach. This approach combines multiple levels of coupled cluster theory with basis sets as large as aug-cc-pV8Z in some cases and various corrections up to and including full configuration interaction theory. While agreement with experiment for the adiabatic ionization potential of the lowest energy 2 B 1 state was excellent, differences for other states were much larger, sometimes exceeding 10 kcal/mol (0.43 eV). Errors of this magnitude are inconsistent with previous benchmark work on 52 adiabatic ionization potentials, where a root mean square of 0.20 kcal/mol (0.009 eV) was found. Difficulties in direct comparisons between theory and experiment for vertical ionization potentials are discussed. With regard to the differences found for the 2 A 1 / 2 Π u and 2 B 2 adiabatic ionization potentials, a reinterpretation of the experimental spectrum appears justified.

  3. Propranolol Effects on Decompression Sickness in a Simulated DISSUB Rescue in Swine.

    PubMed

    Forbes, Angela S; Regis, David P; Hall, Aaron A; Mahon, Richard T; Cronin, William A

    2017-04-01

    Disabled submarine (DISSUB) survivors may face elevated CO2 levels and inert gas saturation, putting them at risk for CO2 toxicity and decompression sickness (DCS). Propranolol was shown to reduce CO2 production in an experimental DISSUB model in humans but its effects on DCS in a DISSUB rescue scenario are unknown. A 100% oxygen prebreathe (OPB) reduces DCS incidence and severity and is incorporated into some DISSUB rescue protocols. We used a swine model of DISSUB rescue to study the effect of propranolol on DCS incidence and mortality with and without an OPB. In Experiment 1, male Yorkshire Swine (70 kg) were pressurized to 2.8 ATA for 22 h. Propranolol 1.0 mg · kg-1 (IV) was administered at 21.25 h. At 22 h, the animal was rapidly decompressed and observed for DCS type, onset time, and mortality. Experimental animals (N = 21; 69 ± 4.1 kg), PROP1.0, were compared to PROP1.0-OPB45 (N = 8; 69 ± 2.8 kg) with the same dive profile, except for a 45 min OPB prior to decompression. In Experiment 2, the same methodology was used with the following changes: swine pressurized to 2.8 ATA for 28 h; experimental group (N = 25; 67 ± 3.3 kg), PROP0.5 bis, propranolol 0.5 mg · kg-1 bis (twice) (IV) was administered at 22 h and 26 h. Control animals (N = 25; 67 ± 3.9 kg) received normal saline. OPB reduced mortality in PROP1.0-OBP45 compared to PROP1.0 (0% vs. 71%). PROP0.5 bis had increased mortality compared to CONTROL (60-% vs. 4%). Administration of beta blockers prior to saturation decompression appears to increase DCS and worsen mortality in a swine model; however, their effects in bounce diving remain unknown.Forbes AS, Regis DP, HallAA, Mahon RT, Cronin WA. Propranolol effects on decompression sickness in a simulated DISSUB rescue in swine. Aerosp Med Hum Perform. 2017; 88(4):385-391.

  4. ORACLE Stroke Study: Opinion Regarding Acceptable Outcome Following Decompressive Hemicraniectomy for Ischemic Stroke.

    PubMed

    Honeybul, Stephen; Ho, Kwok M; Blacker, David W

    2016-08-01

    There continues to be considerable interest in the use of decompressive hemicraniectomy in the management of malignant cerebral artery infarction; however, concerns remain about long-term outcome. To assess opinion on consent and acceptable outcome among a wide range of healthcare workers. Seven hundred seventy-three healthcare workers at the 2 major public neurosurgical centers in Western Australia participated. Participants were asked to record their opinion on consent and acceptable outcome based on the modified Rankin Score (mRS). The evidence for clinical efficacy of the procedure was presented, and participants were then asked to reconsider their initial responses. Of the 773 participants included in the study, 407 (52.7%) initially felt that they would provide consent for a decompressive craniectomy as a lifesaving procedure, but only a minority of them considered an mRS score of 4 or 5 an acceptable outcome (for mRS score ≤4, n = 67, 8.7%; for mRS score = 4, n = 57, 7.4%). After the introduction of the concept of the disability paradox and the evidence for the clinical efficacy of decompressive craniectomy, more participants were unwilling to accept decompressive craniectomy (18.1% vs 37.8%), but at the same time, more were willing to accept an mRS score ≤4 as an acceptable outcome (for mRS score ≤4, n = 92, 11.9%; for mRS score = 4, n = 79, 10.2%). Most participants felt survival with dependency to be unacceptable. However, many would be willing to provide consent for surgery in the hopes that they may survive with some degree of independence. DESTINY, Decompressive Surgery for the Treatment of Malignant Infarction of the Middle Cerebral ArterymRS, modified Rankin Scale.

  5. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  6. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses.

    PubMed

    Dmowski, W; Gierlotka, S; Wang, Z; Yokoyama, Y; Palosz, B; Egami, T

    2017-07-26

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.

  7. The effects of venting and decompression on Yellow Tang (Zebrasoma flavescens) in the marine ornamental aquarium fish trade

    PubMed Central

    Tissot, Brian N.; Heidel, Jerry R.; Miller-Morgan, Tim

    2015-01-01

    Each year, over 45 countries export 30 million fish from coral reefs as part of the global marine ornamental aquarium trade. This catch volume is partly influenced by collection methods that cause mortality. Barotrauma in fish resulting from forced ascent from depth can contribute to post-collection mortality. However, implementing decompression stops during ascent can prevent barotrauma. Conversely, venting (puncturing the swim bladder to release expanded internal gas) following ascent can mitigate some signs of barotrauma like positive buoyancy. Here, we evaluate how decompression and venting affect stress and mortality in the Yellow Tang (Zebrasoma flavescens). We examined the effects of three ascent treatments, each with decompression stops of varying frequency and duration, coupled with or without venting, on sublethal effects and mortality using histology and serum cortisol measurements. In fish subjected to ascent without decompression stops or venting, a mean post-collection mortality of 6.2% occurred within 24 h of capture. Common collection methods in the fishery, ascent without decompression stops coupled with venting, or one long decompression stop coupled with venting, resulted in no mortality. Histopathologic examination of heart, liver, head kidney, and swim bladder tissues in fish 0d and 21d post-collection revealed no significant barotrauma- or venting-related lesions in any treatment group. Ascent without decompression stops resulted in significantly higher serum cortisol than ascent with many stops, while venting alone did not affect cortisol. Future work should examine links in the supply chain following collection to determine if further handling and transport stressors affect survivorship and sublethal effects. PMID:25737809

  8. Effect of Subspine Decompression on Rectus Femoris Integrity and Iliopsoas Excursion: A Cadaveric Study.

    PubMed

    El-Shaar, Rami; Stanton, Michael; Biehl, Scott; Giordano, Brian

    2015-10-01

    To determine the relative influence of anteroinferior iliac spine (AIIS) or subspine decompression on proximal rectus femoris integrity and iliopsoas excursion throughout a physiological range of motion. Nineteen cadaveric hips from 10 specimens were dissected to retain the origin of the rectus femoris direct and indirect heads. The anatomic footprints of the origins were measured with calipers. Serial 5-mm resections of the AIIS were made to determine the extent of proximal tendon disruption that corresponded to each resection. Iliopsoas tendon tracking was also assessed after sequential AIIS decompression by measuring the excursion of the medial border of the iliopsoas tendon as it traveled from its native resting position to the point where it first encountered bony impingement at the AIIS. The mean proximal-distal footprint of the rectus femoris direct head was 17.95 ± 2.99 mm. The mean medial-lateral distance was 11.84 ± 2.34 mm. There was a consistent bare area along the inferior aspect of the AIIS that averaged 4.84 ± 1.42 mm. The average percentage of remaining footprint after each 5-mm resection (5 to 25 mm) was 96%, 65%, 35%, 14%, and 11%, respectively, with statistical significance noted after resections larger than 5 mm (P < .001). The native excursion distance of the iliopsoas tendon was 14.05 mm. With each 5-mm resection, the percentage of excursion before impingement on the AIIS increased by 18%, 45%, 72%, 95%, and 100%, respectively, which was statistically significance after all resections (P < .001). Our study maps the anatomic footprint of the direct head of the rectus femoris tendon and confirms a previously identified bare area along the inferior aspect of the AIIS. Female cadaveric hips had a significantly smaller rectus footprint than male cadavers in our study (P < .001). Subspine decompression greater than 10 mm significantly compromises the rectus femoris origin and should be avoided when performing arthroscopic AIIS decompression. In

  9. The partitioning behavior of silver in a vapor brine rhyolite melt assemblage

    NASA Astrophysics Data System (ADS)

    Simon, Adam C.; Pettke, Thomas; Candela, Philip A.; Piccoli, Philip M.

    2008-03-01

    The partitioning of silver in a sulfur-free rhyolite melt-vapor-brine assemblage has been quantified at 800 °C, pressures of 100 and 140 MPa and f≈NNO (nickel-nickel oxide). Silver solubility (±2 σ) in rhyolite increases 5-fold from 105 ± 21 to 675 ± 98 μg/g as pressure increases from 100 to 140 MPa. Nernst-type partition coefficients (DAgi,j±2σ) describing the mass transfer of silver at 100 MPa between vapor and melt, brine and melt and vapor and brine are 32 ± 30, 1151 ± 238 and 0.026 ± 0.004, respectively. At 140 MPa, values for DAgi,j(±2σ) for vapor and melt, brine and melt, and vapor and brine are 32 ± 10, 413 ± 172 and 0.06 ± 0.03, respectively. Apparent equilibrium constant values (±2 σ) describing the exchange of silver and sodium between vapor and melt, KAg,Nav/m, at 100 and 140 MPa are 105 ± 68 and 14 ± 6. The average values (±2 σ) for silver and sodium exchange between brine and melt, KAg,Nab/m, at 100 and 140 MPa are 313 ± 288 and 65 ± 12. These data indicate that the mass transfer of silver from rhyolite melt to an exsolved volatile phase(s) is enhanced at 100 MPa relative to 140 MPa, suggesting that decompression increases the silver ore-generative potential of an evolving silicate magma. Model calculations using the new data suggest that the evolution of low-density, aqueous fluid (i.e., vapor) may be responsible for the the silver tonnage of many porphyry-type and perhaps epithermal-type ore deposits. For example, Halter et al. (Halter W. E., Pettke T. and Heinrich C. A. (2002) The origin of Cu/Au ratios in porphyry-type ore deposits. Science296, 1842-1844) used detailed silicate and sulfide melt inclusion and vapor and brine fluid inclusions analyses to estimate a melt volume on the order of 15 km 3 to satisfy the copper budget at the Bajo de la Alumbrera copper-, gold-, silver-ore deposit. Using their melt volume estimate with the data presented here, model calculations for a 15-km 3 felsic melt, saturated with pyrrhotite

  10. Eutectic melting in the MgO-SiO2 system and its implication to Earth's lower mantle evolution

    NASA Astrophysics Data System (ADS)

    Baron, M. A.; Lord, O. T.; Myhill, R.; Thomson, A.; Wang, W.; Tronnes, R. G.; Walter, M. J.

    2017-12-01

    Eutectic melting curves in the system MgO-SiO2 have been experimentally studied at lower mantle pressures using laser-heated diamond anvil cell (LH-DAC) techniques. We investigated eutectic melting of bridgmanite plus periclase in the MgO-MgSiO3 binary and bridgmanite plus stishovite in the MgSiO3-SiO2 sub-system as the simplest models of natural peridotite and basalt. The eutectic melting have been detected on the basis of the thermal perturbations (i.e. melting plateau) during the experiment but also post-experimental textural and chemical analyses of the recovered samples. We also performed a suite of sub-solidus experiments in order to compare and bracket the eutectic melting experiments. The melting curve of model basalt occurs at lower temperatures, has a shallower dT/dP slope and slightly less curvature than the model peridotitic melting curve. Overall, melting temperatures detected in this study are in good agreement with previous experiments and ab initio simulations at 25 GPa (Liebske and Frost, 2012; de Koker et al., 2013). However, at higher pressures the measured eutectic melting curves are systematically lower in temperature than curves extrapolated on the basis of thermodynamic modelling of low-pressure experimental data, and those calculated from atomistic simulations. In turn, when comparing with previously published solidus curves obtained for natural basalt and peridotite (e.g. Fiquet et al., 2010; Andrault et al. 2011; Nomura et al. 2014; Hirose et al. 1999; Andrault et al. 2014 and Pradhan et al. 2015) the melting curves from this study are higher. However, the difference in temperature is less significant than previously though. Based on the comparison of the curvature of the model peridotite eutectic relative to an MgSiO3 melt adiabat we infer that crystallization in a global magma ocean would begin at 100 GPa rather than at the bottom of the mantle, allowing for an early basal melt layer. The model peridotite melting curve lies 500 K above

  11. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loughry, Thomas A.

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to tenmore » times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.« less

  12. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    NASA Astrophysics Data System (ADS)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  13. Economic evaluation of decompressive craniectomy versus barbiturate coma for refractory intracranial hypertension following traumatic brain injury.

    PubMed

    Alali, Aziz S; Naimark, David M J; Wilson, Jefferson R; Fowler, Robert A; Scales, Damon C; Golan, Eyal; Mainprize, Todd G; Ray, Joel G; Nathens, Avery B

    2014-10-01

    Decompressive craniectomy and barbiturate coma are often used as second-tier strategies when intracranial hypertension following severe traumatic brain injury is refractory to first-line treatments. Uncertainty surrounds the decision to choose either treatment option. We investigated which strategy is more economically attractive in this context. We performed a cost-utility analysis. A Markov Monte Carlo microsimulation model with a life-long time horizon was created to compare quality-adjusted survival and cost of the two treatment strategies, from the perspective of healthcare payer. Model parameters were estimated from the literature. Two-dimensional simulation was used to incorporate parameter uncertainty into the model. Value of information analysis was conducted to identify major drivers of decision uncertainty and focus future research. Trauma centers in the United States. Base case was a population of patients (mean age = 25 yr) who developed refractory intracranial hypertension following traumatic brain injury. We compared two treatment strategies: decompressive craniectomy and barbiturate coma. Decompressive craniectomy was associated with an average gain of 1.5 quality-adjusted life years relative to barbiturate coma, with an incremental cost-effectiveness ratio of $9,565/quality-adjusted life year gained. Decompressive craniectomy resulted in a greater quality-adjusted life expectancy 86% of the time and was more cost-effective than barbiturate coma in 78% of cases if our willingness-to-pay threshold is $50,000/quality-adjusted life year and 82% of cases at a threshold of $100,000/quality-adjusted life year. At older age, decompressive craniectomy continued to increase survival but at higher cost (incremental cost-effectiveness ratio = $197,906/quality-adjusted life year at mean age = 85 yr). Based on available evidence, decompressive craniectomy for the treatment of refractory intracranial hypertension following traumatic brain injury provides better

  14. Elective decompression of the left ventricle in pediatric patients may reduce the duration of venoarterial extracorporeal membrane oxygenation.

    PubMed

    Hacking, Douglas F; Best, Derek; d'Udekem, Yves; Brizard, Christian P; Konstantinov, Igor E; Millar, Johnny; Butt, Warwick

    2015-04-01

    We aimed to determine the effect of elective left heart decompression at the time of initiation of central venoarterial extracorporeal membrane oxygenation (VA ECMO) on VA ECMO duration and clinical outcomes in children in a single tertiary ECMO referral center with a large pediatric population from a national referral center for pediatric cardiac surgery. We studied 51 episodes of VA ECMO in a historical cohort of 49 pediatric patients treated between the years 1990 and 2013 in the Paediatric Intensive Care Unit (PICU) of the Royal Children's Hospital, Melbourne. The cases had a variety of diagnoses including congenital cardiac abnormalities, sepsis, myocarditis, and cardiomyopathy. Left heart decompression as an elective treatment or an emergency intervention for left heart distension was effectively achieved by a number of methods, including left atrial venting, blade atrial septostomy, and left ventricular cannulation. Elective left heart decompression was associated with a reduction in time on ECMO (128 h) when compared with emergency decompression (236 h) (P = 0.013). Subgroup analysis showed that ECMO duration was greatest in noncardiac patients (elective 138 h, emergency 295 h; P = 0.02) and in patients who died despite both emergency decompression and ECMO (elective 133 h, emergency 354 h; P = 0.002). As the emergency cases had a lower pH, a higher PaCO2 , and a lower oxygenation index and were treated with a higher mean airway pressure, positive end-expiratory pressure, and respiratory rate prior to receiving VA ECMO, we undertook multivariate linear regression modeling to show that only PaCO2 and the timing of left heart decompression were associated with ECMO duration. However, elective left heart decompression was not associated with a reduction in length of PICU stay, duration of mechanical ventilation, or duration of oxygen therapy. Elective left heart decompression was not associated with improved ECMO survival or survival to PICU discharge

  15. Decompression Device Using a Stainless Steel Tube and Wire for Treatment of Odontogenic Cystic Lesions: A Technical Report.

    PubMed

    Jung, Eun-Joo; Baek, Jin-A; Leem, Dae-Ho

    2014-11-01

    Decompression is considered an effective treatment for odontogenic cystic lesions in the jaw. A variety of decompression devices are successfully used for the treatment of keratocystic odontogenic tumors, radicular cysts, dentigerous cysts, and ameloblastoma. The purpose of these devices is to keep an opening between the cystic lesion and the oral environment during treatment. The aim of this report is to describe an effective decompression tube using a stainless steel tube and wire for treatment of jaw cystic lesions.

  16. Systematic review of intraoperative colonic irrigation vs. manual decompression in obstructed left-sided colorectal emergencies.

    PubMed

    Kam, M H; Tang, C L; Chan, E; Lim, J F; Eu, K W

    2009-09-01

    A systematic review was conducted to determine if manual decompression is a safe alternative to intraoperative colonic irrigation prior to primary anastomosis in obstructed left-sided colorectal emergencies. Search for relevant articles from 1980 to 2007 was conducted on Medline, Embase and the Cochrane Controlled Trials Register using the keywords "colonic lavage, irrigation, decompression, washout, obstructed and bowel preparation", either singularly or in combination. Trials in English publications with similar patient characteristics, inclusion criteria and outcome measures were selected for analysis. Thirty-day mortality, anastomotic leak rates and post-operative wound infection were studied as outcome variables. Analysis was performed with RevMan 4.2 software. Seven trials were identified for systematic review, with a total of 449 patients. Data from the single randomised controlled trial and one prospective comparative trial were analysed separately. Results from the remaining five studies were pooled into two arms of a composite series, one with colonic irrigation and one without. Results showed no significant difference in the anastomotic leak rates and mortality rates between the colonic irrigation and manual decompression arms in the randomised and comparative trials. The composite series, however, showed significantly better results with manual decompression (RR 6.18, 95% CI 1.67-22.86). The post-operative infection rate was similar in both groups. Manual decompression was comparable to colonic irrigation for primary anastomosis in obstructed left-sided colorectal emergencies, with no significant increase in mortality, leak or infection rates.

  17. [Analysis of decompression safety during extravehicular activity of astronauts in the light of probability theory].

    PubMed

    Nikolaev, V P; Katuntsev, V P

    1998-01-01

    Objectives of the study were comparative assessment of the risk of decompression sickness (DCS) in human subjects during shirt-sleeve simulation of extravehicular activity (EVA) following Russian and U.S. protocols, and analysis of causes of the difference between real and simulated EVA decompression safety. To this end, DCS risk during exposure to a sing-step decompression was estimated with an original method. According to the method, DCS incidence is determined by distribution of nucleation efficacy index (z) in the worst body tissues and its critical values (zm) as a function of initial nitrogen tension in these tissues and final ambient pressure post decompression. Gaussian distribution of z values was calculated basing on results of the DCS risk evaluation on the U.S. EVA protocol in an unsuited chamber test with various pre-breath procedures (Conkin et al., 1987). Half-time of nitrogen washout from the worst tissues was presumed to be 480 min. Calculated DCS risk during short-sleeve EVA simulation by the Russian and U.S. protocols with identical physical loading made up 19.2% and 23.4%, respectively. Effects of the working spacesuit pressure, spacesuit rigidity, metabolic rates during operations in EVA space suit, transcutaneous nitrogen exchange in the oxygen atmosphere of space suit, microgravity, analgesics, short compression due to spacesuit leak tests on the eye of EVA are discussed. Data of the study illustrate and advocate for high decompression safety of current Russian and U.S. EVA protocols.

  18. An adiabatic quantum flux parametron as an ultra-low-power logic device

    NASA Astrophysics Data System (ADS)

    Takeuchi, Naoki; Ozawa, Dan; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2013-03-01

    Ultra-low-power adiabatic quantum flux parametron (QFP) logic is investigated since it has the potential to reduce the bit energy per operation to the order of the thermal energy. In this approach, nonhysteretic QFPs are operated slowly to prevent nonadiabatic energy dissipation occurring during switching events. The designed adiabatic QFP gate is estimated to have a dynamic energy dissipation of 12% of IcΦ0 for a rise/fall time of 1000 ps. It can be further reduced by reducing circuit inductances. Three stages of adiabatic QFP NOT gates were fabricated using a Nb Josephson integrated circuit process and their correct operation was confirmed.

  19. Optimal control of the power adiabatic stroke of an optomechanical heat engine.

    PubMed

    Bathaee, M; Bahrampour, A R

    2016-08-01

    We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained.

  20. Interspinous Process Decompression: Expanding Treatment Options for Lumbar Spinal Stenosis

    PubMed Central

    Nunley, Pierce D.; Shamie, A. Nick; Blumenthal, Scott L.; Orndorff, Douglas; Geisler, Fred H.

    2016-01-01

    Interspinous process decompression is a minimally invasive implantation procedure employing a stand-alone interspinous spacer that functions as an extension blocker to prevent compression of neural elements without direct surgical removal of tissue adjacent to the nerves. The Superion® spacer is the only FDA approved stand-alone device available in the US. It is also the only spacer approved by the CMS to be implanted in an ambulatory surgery center. We computed the within-group effect sizes from the Superion IDE trial and compared them to results extrapolated from two randomized trials of decompressive laminectomy. For the ODI, effect sizes were all very large (>1.0) for Superion and laminectomy at 2, 3, and 4 years. For ZCQ, the 2-year Superion symptom severity (1.26) and physical function (1.29) domains were very large; laminectomy effect sizes were very large (1.07) for symptom severity and large for physical function (0.80). Current projections indicate a marked increase in the number of patients with spinal stenosis. Consequently, there remains a keen interest in minimally invasive treatment options that delay or obviate the need for invasive surgical procedures, such as decompressive laminectomy or fusion. Stand-alone interspinous spacers may fill a currently unmet treatment gap in the continuum of care and help to reduce the burden of this chronic degenerative condition on the health care system. PMID:27819001

  1. Interspinous Process Decompression: Expanding Treatment Options for Lumbar Spinal Stenosis.

    PubMed

    Nunley, Pierce D; Shamie, A Nick; Blumenthal, Scott L; Orndorff, Douglas; Block, Jon E; Geisler, Fred H

    2016-01-01

    Interspinous process decompression is a minimally invasive implantation procedure employing a stand-alone interspinous spacer that functions as an extension blocker to prevent compression of neural elements without direct surgical removal of tissue adjacent to the nerves. The Superion® spacer is the only FDA approved stand-alone device available in the US. It is also the only spacer approved by the CMS to be implanted in an ambulatory surgery center. We computed the within-group effect sizes from the Superion IDE trial and compared them to results extrapolated from two randomized trials of decompressive laminectomy. For the ODI, effect sizes were all very large (>1.0) for Superion and laminectomy at 2, 3, and 4 years. For ZCQ, the 2-year Superion symptom severity (1.26) and physical function (1.29) domains were very large ; laminectomy effect sizes were very large (1.07) for symptom severity and large for physical function (0.80). Current projections indicate a marked increase in the number of patients with spinal stenosis. Consequently, there remains a keen interest in minimally invasive treatment options that delay or obviate the need for invasive surgical procedures, such as decompressive laminectomy or fusion. Stand-alone interspinous spacers may fill a currently unmet treatment gap in the continuum of care and help to reduce the burden of this chronic degenerative condition on the health care system.

  2. Non-Adiabatic Molecular Dynamics Methods for Materials Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furche, Filipp; Parker, Shane M.; Muuronen, Mikko J.

    2017-04-04

    The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations ofmore » vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.« less

  3. Quantum trajectories for time-dependent adiabatic master equations

    NASA Astrophysics Data System (ADS)

    Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.

    2018-02-01

    We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.

  4. Implementation of adiabatic geometric gates with superconducting phase qubits.

    PubMed

    Peng, Z H; Chu, H F; Wang, Z D; Zheng, D N

    2009-01-28

    We present an adiabatic geometric quantum computation strategy based on the non-degenerate energy eigenstates in (but not limited to) superconducting phase qubit systems. The fidelity of the designed quantum gate was evaluated in the presence of simulated thermal fluctuations in a superconducting phase qubits circuit and was found to be quite robust against random errors. In addition, it was elucidated that the Berry phase in the designed adiabatic evolution may be detected directly via the quantum state tomography developed for superconducting qubits. We also analyze the effects of control parameter fluctuations on the experimental detection of the Berry phase.

  5. Influence of Lumbar Lordosis on the Outcome of Decompression Surgery for Lumbar Canal Stenosis.

    PubMed

    Chang, Han Soo

    2018-01-01

    Although sagittal spinal balance plays an important role in spinal deformity surgery, its role in decompression surgery for lumbar canal stenosis is not well understood. To investigate the hypothesis that sagittal spinal balance also plays a role in decompression surgery for lumbar canal stenosis, a prospective cohort study analyzing the correlation between preoperative lumbar lordosis and outcome was performed. A cohort of 85 consecutive patients who underwent decompression for lumbar canal stenosis during the period 2007-2011 was analyzed. Standing lumbar x-rays and 36-item short form health survey questionnaires were obtained before and up to 2 years after surgery. Correlations between lumbar lordosis and 2 parameters of the 36-item short form health survey (average physical score and bodily pain score) were statistically analyzed using linear mixed effects models. There was a significant correlation between preoperative lumbar lordosis and the 2 outcome parameters at postoperative, 6-month, 1-year, and 2-year time points. A 10° increase of lumbar lordosis was associated with a 5-point improvement in average physical scores. This correlation was not present in preoperative scores. This study showed that preoperative lumbar lordosis significantly influences the outcome of decompression surgery on lumbar canal stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Simple proof of equivalence between adiabatic quantum computation and the circuit model.

    PubMed

    Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan

    2007-08-17

    We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.

  7. Rapid versus gradual bladder decompression in acute urinary retention

    PubMed Central

    Etafy, Mohamed H.; Saleh, Fatma H.; Ortiz-Vanderdys, Cervando; Hamada, Alaa; Refaat, Alaa M.; Aal, Mohamed Abdel; Deif, Hazem; Gawish, Maher; Abdellatif, Ashraf H.; Gadalla, Khaled

    2017-01-01

    Objective: To demonstrate a benefit in diminished adverse events such as hypotension and hematuria with gradual drainage of the bladder when compared to rapid decompression in patients with acute urinary retention (AUR) due to benign prostatic hyperplasia in a case–control study. Methods: Sixty-two patients matched our selection criteria presenting with AUR. They were divided into two groups – the first was managed by rapid drainage of the bladder, the second was managed by gradual drainage through a urethral catheter (The first 100 mL immediately evacuated, then the rest evacuated gradually over 2 h). Results: The mean age was 64.4 and 63.2 years in the first and second group, respectively. Diagnosed cause was benign hyperplasia of the prostate. Hematuria occurred in two patients in the first group and none in the second group. The two cases of hematuria were mild and treated conservatively. After the relief of the obstruction, the mean blood pressure was noticed to decrease by 15 mmHg and 10 mmHg in the first and second group, respectively, however, no one developed significant hypotension. Pain relief was achieved after complete drainage in the first group and after the evacuation of 100 mL in the second group. Conclusions: We conclude that there is no significant difference between rapid and gradual decompression of the bladder in patients with AUR. Hematuria and hypotension may occur after rapid decompression of the obstructed urinary bladder, but these complications are rarely clinically significant. PMID:29118535

  8. Greater occipital nerve excision for occipital neuralgia refractory to nerve decompression.

    PubMed

    Ducic, Ivica; Felder, John M; Khan, Neelam; Youn, Sojin

    2014-02-01

    Patients who undergo occipital nerve decompression for treatment of migraine headaches due to occipital neuralgia have already exhausted medical options for treatment. When surgical decompression fails, it is unknown how best to help these patients. We examine our experience performing greater occipital nerve (GON) excision for pain relief in this select, refractory group of patients. A retrospective chart review supplemented by a follow-up survey was performed on all patients under the care of the senior author who had undergone GON excision after failing occipital nerve decompression. Headache severity was measured by the migraine headache index (MHI) and disability by the migraine disability assessment. Success rate was considered the percentage of patients who experienced a 50% or greater reduction in MHI at final follow-up. Seventy-one of 108 patients responded to the follow-up survey and were included in the study. Average follow-up was 33 months. The success rate of surgery was 70.4%; 41% of patients showed a 90% or greater decrease in MHI. The MHI changed, on average, from 146 to 49, for an average reduction of 63% (P < 0.001). Migraine disability assessment scores decreased by an average of 49% (P < 0.001). Multivariate analysis revealed that a diagnosis of cervicogenic headache was associated with failure of surgery. The most common adverse effect was bothersome numbness or hypersensitivity in the denervated area, occurring in up to 31% of patients. Excision of the GON is a valid option for pain relief in patients with occipital headaches refractory to both medical treatment and surgical decompression. Potential risks include failure in patients with cervicogenic headache and hypersensitivity of the denervated area. To provide the best outcome to these patients who have failed all previous medical and surgical treatments, a multidisciplinary team approach remains critical.

  9. Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem

    PubMed Central

    Wang, Hefeng; Wu, Lian-Ao

    2016-01-01

    An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions. PMID:26923834

  10. Lower bound on the time complexity of local adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenghao; Koh, Pang Wei; Zhao, Yan

    2006-11-01

    The adiabatic theorem of quantum physics has been, in recent times, utilized in the design of local search quantum algorithms, and has been proven to be equivalent to standard quantum computation, that is, the use of unitary operators [D. Aharonov in Proceedings of the 45th Annual Symposium on the Foundations of Computer Science, 2004, Rome, Italy (IEEE Computer Society Press, New York, 2004), pp. 42-51]. Hence, the study of the time complexity of adiabatic evolution algorithms gives insight into the computational power of quantum algorithms. In this paper, we present two different approaches of evaluating the time complexity for local adiabatic evolution using time-independent parameters, thus providing effective tests (not requiring the evaluation of the entire time-dependent gap function) for the time complexity of newly developed algorithms. We further illustrate our tests by displaying results from the numerical simulation of some problems, viz. specially modified instances of the Hamming weight problem.

  11. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  12. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  13. Adiabatic two-qubit state preparation in a superconducting qubit system

    NASA Astrophysics Data System (ADS)

    Filipp, Stefan; Ganzhorn, Marc; Egger, Daniel; Fuhrer, Andreas; Moll, Nikolaj; Mueller, Peter; Roth, Marco; Schmidt, Sebastian

    The adiabatic transport of a quantum system from an initial eigenstate to its final state while remaining in the instantaneous eigenstate of the driving Hamiltonian can be used for robust state preparation. With control over both qubit frequencies and qubit-qubit couplings this method can be used to drive the system from initially trivial eigenstates of the uncoupled qubits to complex entangled multi-qubit states. In the context of quantum simulation, the final state may encode a non-trivial ground-state of a complex molecule or, in the context of adiabatic quantum computing, the solution to an optimization problem. Here, we present experimental results on a system comprising fixed-frequency superconducting transmon qubits and a tunable coupler to adjust the qubit-qubit coupling via parametric frequency modulation. We realize different types of interaction by adjusting the frequency of the modulation. A slow variation of drive amplitude and phase leads to an adiabatic steering of the system to its final state showing entanglement between the qubits.

  14. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  15. Coverage dependent non-adiabaticity of CO on a copper surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omiya, Takuma; Surface and Interface Science Laboratory, RIKEN, Wako 351-0198; Arnolds, Heike

    2014-12-07

    We have studied the coverage-dependent energy transfer dynamics between hot electrons and CO on Cu(110) with femtosecond visible pump, sum frequency probe spectroscopy. We find that transients of the C–O stretch frequency display a red shift, which increases from 3 cm{sup −1} at 0.1 ML to 9 cm{sup −1} at 0.77 ML. Analysis of the transients reveals that the non-adiabatic coupling between the adsorbate vibrational motion and the electrons becomes stronger with increasing coverage. This trend requires the frustrated rotational mode to be the cause of the non-adiabatic behavior, even for relatively weak laser excitation of the adsorbate. We attributemore » the coverage dependence to both an increase in the adsorbate electronic density of states and an increasingly anharmonic potential energy surface caused by repulsive interactions between neighboring CO adsorbates. This work thus reveals adsorbate-adsorbate interactions as a new way to control adsorbate non-adiabaticity.« less

  16. Melting Processes at the Base of the Mantle Wedge: Melt Compositions and Melting Reactions for the First Melts of Vapor-Saturated Lherzolite

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.

    2014-12-01

    Vapor-saturated melting experiments have been performed at pressures near the base of the mantle wedge (3.2 GPa). The starting composition is a metasomatized lherzolite containing 3 wt. % H2O. Near-solidus melts and coexisting mineral phases have been characterized in experiments that span 925 to 1100 oC with melt % varying from 6 to 9 wt. %. Olivine, orthopyroxene, clinopyroxene and garnet coexist with melt over the entire interval and rutile is also present at < 1000 oC. Melt is andesitic in composition and varies from 60 wt. % SiO2 at 950 oC to 52 wt. % at 1075 oC. The Al2O3 contents of the melt are 13 to 14 wt. %, and CaO contents range from 1 and 4 wt. %. Melting is peritectic with orthopyroxene + liquid produced by melting of garnet + olivine + high-Ca pyroxene. In addition to quenched melt, we observe a quenched silicate component that is rhyolitic (>72 % SiO2) that we interpret as a precipitate from the coexisting supercritical H2O-rich vapor. Extrapolation of the measured compositional variation toward the solidus suggests that the first melt may be very SiO2 rich (i.e., granitic). We suggest that these granitic melts are the first melts of the mantle near the slab-wedge interface. As these SiO2-rich melts ascend into shallower, hotter overlying mantle, they continue to interact with the surrounding mantle and evolve in composition. These first melts may elucidate the geochemical and physical processes that accompany the beginnings of H2O flux melting.

  17. Accuracy of the adiabatic-impulse approximation for closed and open quantum systems

    NASA Astrophysics Data System (ADS)

    Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.

  18. Towards fault tolerant adiabatic quantum computation.

    PubMed

    Lidar, Daniel A

    2008-04-25

    I show how to protect adiabatic quantum computation (AQC) against decoherence and certain control errors, using a hybrid methodology involving dynamical decoupling, subsystem and stabilizer codes, and energy gaps. Corresponding error bounds are derived. As an example, I show how to perform decoherence-protected AQC against local noise using at most two-body interactions.

  19. Assessment of two methods of gastric decompression for the initial management of gastric dilatation-volvulus.

    PubMed

    Goodrich, Z J; Powell, L L; Hulting, K J

    2013-02-01

    To assess gastric trocarization and orogastric tubing as a means of gastric decompression for the initial management of gastric dilatation-volvulus. Retrospective review of 116 gastric dilatation-volvulus cases from June 2001 to October 2009. Decompression was performed via orogastric tubing in 31 dogs, gastric trocarization in 39 dogs and a combination of both in 46 dogs. Tubing was successful in 59 (75·5%) dogs and unsuccessful in 18 (23·4%) dogs. Trocarization was successful in 73 (86%) dogs and unsuccessful in 12 (14%) dogs. No evidence of gastric perforation was noted at surgery in dogs undergoing either technique. One dog that underwent trocarization had a splenic laceration identified at surgery that did not require treatment. Oesophageal rupture or aspiration pneumonia was not identified in any dog during hospitalization. No statistical difference was found between the method of gastric decompression and gastric compromise requiring surgical intervention or survival to discharge. Orogastric tubing and gastric trocarization are associated with low complication and high success rates. Either technique is an acceptable method for gastric decompression in dogs with gastric dilatation-volvulus. © 2013 British Small Animal Veterinary Association.

  20. Decompressive craniectomy in severe traumatic brain injury: prognostic factors and complications

    PubMed Central

    Grille, Pedro; Tommasino, Nicolas

    2015-01-01

    Objective To analyze the clinical characteristics, complications and factors associated with the prognosis of severe traumatic brain injury among patients who undergo a decompressive craniectomy. Methods Retrospective study of patients seen in an intensive care unit with severe traumatic brain injury in whom a decompressive craniectomy was performed between the years 2003 and 2012. Patients were followed until their discharge from the intensive care unit. Their clinical-tomographic characteristics, complications, and factors associated with prognosis (univariate and multivariate analysis) were analyzed. Results A total of 64 patients were studied. Primary and lateral decompressive craniectomies were performed for the majority of patients. A high incidence of complications was found (78% neurological and 52% nonneurological). A total of 42 patients (66%) presented poor outcomes, and 22 (34%) had good neurological outcomes. Of the patients who survived, 61% had good neurological outcomes. In the univariate analysis, the factors significantly associated with poor neurological outcome were postdecompressive craniectomy intracranial hypertension, greater severity and worse neurological state at admission. In the multivariate analysis, only postcraniectomy intracranial hypertension was significantly associated with a poor outcome. Conclusion This study involved a very severe and difficult to manage group of patients with high morbimortality. Intracranial hypertension was a main factor of poor outcome in this population. PMID:26340150

  1. Alternative technique in atypical spinal decompression: the use of the ultrasonic scalpel in paediatric achondroplasia

    PubMed Central

    Woodacre, Timothy; Sewell, Matthew; Clarke, Andrew J; Hutton, Mike

    2016-01-01

    Spinal stenosis can be a very disabling condition. Surgical decompression carries a risk of dural tear and neural injury, which is increased in patients with severe stenosis or an atypical anatomy. We present an unusual case of symptomatic stenosis secondary to achondroplasia presenting in a paediatric patient, and highlight a new surgical technique used to minimise the risk of dural and neural injury during decompression. PMID:27288205

  2. "Adiabatic-hindered-rotor" treatment of the parahydrogen-water complex.

    PubMed

    Zeng, Tao; Li, Hui; Le Roy, Robert J; Roy, Pierre-Nicholas

    2011-09-07

    Inspired by a recent successful adiabatic-hindered-rotor treatment for parahydrogen pH(2) in CO(2)-H(2) complexes [H. Li, P.-N. Roy, and R. J. Le Roy, J. Chem. Phys. 133, 104305 (2010); H. Li, R. J. Le Roy, P.-N. Roy, and A. R. W. McKellar, Phys. Rev. Lett. 105, 133401 (2010)], we apply the same approximation to the more challenging H(2)O-H(2) system. This approximation reduces the dimension of the H(2)O-H(2) potential from 5D to 3D and greatly enhances the computational efficiency. The global minimum of the original 5D potential is missing from the adiabatic 3D potential for reasons based on solution of the hindered-rotor Schrödinger equation of the pH(2). Energies and wave functions of the discrete rovibrational levels of H(2)O-pH(2) complexes obtained from the adiabatic 3D potential are in good agreement with the results from calculations with the full 5D potential. This comparison validates our approximation, although it is a relatively cruder treatment for pH(2)-H(2)O than it is for pH(2)-CO(2). This adiabatic approximation makes large-scale simulations of H(2)O-pH(2) systems possible via a pairwise additive interaction model in which pH(2) is treated as a point-like particle. The poor performance of the diabatically spherical treatment of pH(2) rotation excludes the possibility of approximating pH(2) as a simple sphere in its interaction with H(2)O. © 2011 American Institute of Physics

  3. The mechanics of decompressive craniectomy: Bulging in idealized geometries

    NASA Astrophysics Data System (ADS)

    Weickenmeier, Johannes; Kuhl, Ellen; Goriely, Alain

    2016-11-01

    In extreme cases of traumatic brain injury or a stroke, the resulting uncontrollable swelling of the brain may lead to a harmful increase of the intracranial pressure. As a common measure for immediate release of pressure on the brain, part of the skull is surgically removed allowing for the brain to bulge outwards, a procedure known as a decompressive craniectomy. During this excessive brain swelling, the affected tissue typically undergoes large deformations resulting in a complex three-dimensional mechanical loading state with several important implications on optimal treatment strategies and outcome. Here, as a first step towards a better understanding of the mechanics of a decompressive craniectomy, we consider simple models for the bulging of elastic solids under geometric constraints representative of the surgical intervention. In small deformations and simple geometries, the exact solution of this problem is derived from the theory of contact mechanics. The analysis of these solutions reveals a number of interesting generic features relevant for the mechanics of craniectomy.

  4. Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): Implications for crustal anatexis

    NASA Astrophysics Data System (ADS)

    Barich, Amel; Acosta-Vigil, Antonio; Garrido, Carlos J.; Cesare, Bernardo; Tajčmanová, Lucie; Bartoli, Omar

    2014-10-01

    matrix with oriented sillimanite. Previous conventional petrologic studies on these strongly deformed rocks have proposed that anatexis started during decompression from peak to post-peak conditions and in the field of sillimanite. The study of melt inclusions shows, however, that melt was already present in the system at peak conditions, and that most garnet grew in the presence of melt.

  5. Microstructures and Petrology of Melt Inclusions in the Anatectic Sequence of Jubrique (Betic Cordillera, S Spain): Implications for Crustal Anatexis

    NASA Astrophysics Data System (ADS)

    Acosta-vigil, A.; Barich, A.; Garrido, C. J.; Cesare, B.; Tajčmanová, L.; Bartoli, O.

    2014-12-01

    conventional petrologic studies on these strongly deformed rocks have proposed that anatexis started during decompression from peak to post-peak conditions and in the field of sillimanite. The study of melt inclusions shows, however, that melt was already present in the system at peak conditions, and that most garnet grew in the presence of melt.

  6. Irreconcilable difference between quantum walks and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Meyer, David A.

    2016-06-01

    Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.

  7. Spherulites growth in trachytic melts: a textural quantitative study from synchrotron X-ray microtomography and SEM data

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Giuli, Gabriele; Cicconi, Maria Rita; Voltolini, Marco; Carroll, Michael R.

    2013-04-01

    This study shows the first textural data on synthetic alkali-feldspar spherulites grown in trachytic melts during cooling and decompression experiments with water-saturated conditions. Previous textural studies have shown the shape evolution and the growth process of spherulites as a function of undercooling (T) and water content, although just in basaltic and rhyolitic melts [1-3]. Spherulites are spherical clusters of polycrystalline aggregates that occur commonly in rhyolitic melts under highly non-equilibrium conditions [3-4]. Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspars and the implications for magma dynamics during the ascent towards the surface. Experiments have been conducted using cold seal pressure vessel apparatus at pressure range of 30 - 200 MPa, temperature of 750 - 850 °C and time of 2 - 16 hours, thereby reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes. This study presents quantitative data on spherulite morphologies obtained both by scanning electron microscopy (SEM) and synchrotron X-ray microtomography. Size, aspect ratio, number and crystallographic misorientation of alkali feldspar crystals will be measured. Furthermore, experiments performed at different durations could allow us to follow the growth and the evolution of spherulites. The shape of spherulites changes as a function of ΔT and experimental durations. Two kind of spherulites occured during experiments: open spherulites and close spherulites. The open spherulites are characterized by an structure with large (generally rectangular prismatic), widely spaced fibers with main axis converging towards a central nucleus, in agreement with previous observations [5-6]. Instead, the close spherulites consist of acicular and tiny fibers radially aggregated around a nucleus and single crystals are hardly distinguishable. First preliminary results show: a

  8. Rabi oscillations produced by adiabatic pulse due to initial atomic coherence.

    PubMed

    Svidzinsky, Anatoly A; Eleuch, Hichem; Scully, Marlan O

    2017-01-01

    If an electromagnetic pulse is detuned from atomic transition frequency by amount Δ>1/τ, where τ is the turn-on time of the pulse, then atomic population adiabatically follows the pulse intensity without causing Rabi oscillations. Here we show that, if initially, the atom has nonzero coherence, then the adiabatic pulse yields Rabi oscillations of atomic population ρaa(t), and we obtain analytical solutions for ρaa(t). Our findings can be useful for achieving generation of coherent light in the backward direction in the QASER scheme in which modulation of the coupling between light and atoms is produced by Rabi oscillations. Initial coherence can be created by sending a short resonant pulse into the medium followed by a long adiabatic pulse, which leads to the light amplification in the backward direction.

  9. Could some aviation deep vein thrombosis be a form of decompression sickness?

    PubMed

    Buzzacott, Peter; Mollerlokken, Andreas

    2016-10-01

    Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.

  10. Melt generation in the West Antarctic Rift System: the volatile legacy of Gondwana subduction?

    NASA Astrophysics Data System (ADS)

    Aviado, K.; Rilling-Hall, S.; Mukasa, S. B.; Bryce, J. G.; Cabato, J.

    2013-12-01

    The West Antarctic Rift System (WARS) represents one of the largest extensional alkali volcanic provinces on Earth, yet the mechanisms responsible for driving rift-related magmatism remain controversial. The failure of both passive and active models of decompression melting to explain adequately the observed volume of volcanism has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. The latter is supported by roughly 500 Ma of subduction along the paleo-Pacific margin of Gondwana, although both processes are capable of producing the broad seismic anomaly imaged beneath most of the Southern Ocean. Olivine-hosted melt inclusions from basanitic lavas provide a means to evaluate the volatile budget of the mantle responsible for active rifting beneath the WARS. We present H2O, CO2, F, S and Cl concentrations determined by SIMS and major oxide compositions by EMPA for olivine-hosted melt inclusions from lavas erupted in Northern Victoria Land (NVL) and Marie Byrd Land (MBL). The melt inclusions are largely basanitic in composition (4.05 - 17.09 wt % MgO, 37.86 - 45.89 wt % SiO2, and 1.20 - 5.30 wt % Na2O), and exhibit water contents ranging from 0.5 up to 3 wt % that are positively correlated with Cl and F. Coupling between Cl and H2O indicates metasomatic enrichment by subduction-related fluids produced during dehydration reactions; coupling between H2O and F, which is more highly retained in subducting slabs, may be related to partial melting of slab remnants [1]. Application of source lithology filters [2] to whole rock major oxide data shows that primitive lavas (MgO wt % >7) from the Terror Rift, considered the locus of on-going tectonomagmatic activity, have transitioned from a pyroxenite source to a volatilized peridotite source over the past ~4 Ma. Integrating the volatile data with the modeled characteristics of source lithologies suggests that partial melting of lithosphere modified by

  11. Generation of alkaline magmas in subduction zones by melting of mélange diapirs

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.; Le Roux, V.

    2016-12-01

    Alkaline lavas occur globally in subduction-related volcanic arcs. Existing explanations for the occurrence of alkaline lavas in volcanic arcs invoke at least one - and in some cases multiple - `metasomatic' events in addition to the traditional three-component mixing of altered oceanic crust (AOC), sediment melt, and depleted mantle, in order to explain the range of rock types found in a given region. These multi-stage models posit the existence of metasomatized mantle wedge peridotite containing phlogopite or amphibole-enriched veins, which partially melt when fluxed by the addition of materials from the subducted slab. The mélange diapir model is informed by observations and modeling of the subduction side of the arc system, and predicts the generation of alkaline arc magmas by advection of buoyant material from the slab-wedge interface into the mantle wedge below arcs. Here we report results from experiments in which natural mélange materials partially melted at upper mantle conditions were found to produce alkaline magmas compositionally similar to those found in arcs worldwide. The starting material for our experiments is a chlorite-omphacite fels (SY400) from the island of Syros, Greece, that is representative of a hybrid rock containing AOC, sediment, and mantle components. Melting experiments were performed using a piston cylinder apparatus at conditions relevant to the heating-decompression path of mélange diapirs (1000-1300 °C, 1.5-2.5 GPa). The compositions of experimentally produced melts range from 51-61 wt% SiO2, and fall within the trachyte and tephrite-phonolite series (7.5-12.9 wt% Na2O+K2O). Restitic phases in equilibrium with melt include clinopyroxene, garnet (at high P), phlogopite (at high P), amphibole, olivine, rutile, and ilmenite. Partial melts produced in our experiments have trace-element abundance patterns that are typical of alkaline arc lavas, such as enrichment in large ion lithophile elements (Cs, Rb, Ba, Pb, Sr) and alkalis (K

  12. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  13. Strain on intervertebral discs after anterior cervical decompression and fusion.

    PubMed

    Matsunaga, S; Kabayama, S; Yamamoto, T; Yone, K; Sakou, T; Nakanishi, K

    1999-04-01

    An analysis of the change in strain distribution of intervertebral discs present after anterior cervical decompression and fusion by an original method. The analytical results were compared to occurrence of herniation of the intervertebral disc on magnetic resonance imaging. To elucidate the influence of anterior cervical decompression and fusion on the unfused segments of the spine. There is no consensus regarding the exact significance of the biomechanical change in the unfused segment present after surgery. Ninety-six patients subjected to anterior cervical decompression and fusion for herniation of intervertebral discs were examined. Shear strain and longitudinal strain of intervertebral discs were analyzed on pre- and postoperative lateral dynamic routine radiography of the cervical spine. Thirty of the 96 patients were examined by magnetic resonance imaging before and after surgery, and the relation between alteration in strains and postsurgical occurrence of disc herniation was examined. In the cases of double- or triple-level fusion, shear strain of adjacent segments had increased 20% on average 1 year after surgery. Thirteen intervertebral discs that had an abnormally high degree of strain showed an increase in longitudinal strain after surgery. Eleven (85%) of the 13 discs that showed an abnormal increase in longitudinal strain had herniation in the same intervertebral discs with compression of the spinal cord during the follow-up period. Relief of symptoms was significantly poor in the patients with recent herniation. Close attention should be paid to long-term biomechanical changes in the unfused segment.

  14. MRI-guidance in percutaneous core decompression of osteonecrosis of the femoral head.

    PubMed

    Kerimaa, Pekka; Väänänen, Matti; Ojala, Risto; Hyvönen, Pekka; Lehenkari, Petri; Tervonen, Osmo; Blanco Sequeiros, Roberto

    2016-04-01

    The purpose of this study was to evaluate the usefulness of MRI-guidance for core decompression of avascular necrosis of the femoral head. Twelve MRI-guided core decompressions were performed on patients with different stages of avascular necrosis of the femoral head. The patients were asked to evaluate their pain and their ability to function before and after the procedure and imaging findings were reviewed respectively. Technical success in reaching the target was 100 % without complications. Mean duration of the procedure itself was 54 min. All patients with ARCO stage 1 osteonecrosis experienced clinical benefit and pathological MRI findings were seen to diminish. Patients with more advanced disease gained less, if any, benefit and total hip arthroplasty was eventually performed on four patients. MRI-guidance seems technically feasible, accurate and safe for core decompression of avascular necrosis of the femoral head. Patients with early stage osteonecrosis may benefit from the procedure. • MRI is a useful guidance method for minimally invasive musculoskeletal interventions. • Bone drilling seems beneficial at early stages of avascular necrosis. • MRI-guidance is safe and accurate for bone drilling.

  15. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmowski, W.; Gierlotka, S.; Wang, Z.

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less

  16. Facial nerve decompression surgery using bFGF-impregnated biodegradable gelatin hydrogel in patients with Bell palsy.

    PubMed

    Hato, Naohito; Nota, Jumpei; Komobuchi, Hayato; Teraoka, Masato; Yamada, Hiroyuki; Gyo, Kiyofumi; Yanagihara, Naoaki; Tabata, Yasuhiko

    2012-04-01

    Basic fibroblast growth factor (bFGF) promotes the regeneration of denervated nerves. The aim of this study was to evaluate the regeneration-facilitating effects of novel facial nerve decompression surgery using bFGF in a gelatin hydrogel in patients with severe Bell palsy. Prospective clinical study. Tertiary referral center. Twenty patients with Bell palsy after more than 2 weeks following the onset of severe paralysis were treated with the new procedure. The facial nerve was decompressed between tympanic and mastoid segments via the mastoid. A bFGF-impregnated biodegradable gelatin hydrogel was placed around the exposed nerve. Regeneration of the facial nerve was evaluated by the House-Brackmann (H-B) grading system. The outcomes were compared with the authors' previous study, which reported outcomes of the patients who underwent conventional decompression surgery (n = 58) or conservative treatment (n = 43). The complete recovery (H-B grade 1) rate of the novel surgery (75.0%) was significantly better than the rate of conventional surgery (44.8%) and conservative treatment (23.3%). Every patient in the novel decompression surgery group improved to H-B grade 2 or better even when undergone between 31 and 99 days after onset. Advantages of this decompression surgery are low risk of complications and long effective period after onset of the paralysis. To the authors' knowledge, this is the first clinical report of the efficacy of bFGF using a new drug delivery system in patients with severe Bell palsy.

  17. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described.

  18. Continuous decompression of unicameral bone cyst with cannulated screws: a comparative study.

    PubMed

    Brecelj, Janez; Suhodolcan, Lovro

    2007-09-01

    We determined the role of mechanical decompression in the resolution of unicameral bone cyst. A total of 69 children with unicameral bone cysts were treated either by (i) open curettage and bone grafting, (ii) steroid injection or (iii) cannulated screw insertion. During a mean follow-up of 69 months (range, 12-58), the cysts were evaluated by radiological criteria. The healing rates in the three groups were 25, 12 and 29% after the first treatment, and a further 50, 19 and 65% after the second. The study has demonstrated the advantages of the decompression technique for unicameral bone cysts over other treatment modalities studied.

  19. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-12-30

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described. 22 figs.

  20. Percutaneous laser disc decompression versus conventional microdiscectomy for patients with sciatica: Two-year results of a randomised controlled trial.

    PubMed

    Brouwer, Patrick A; Brand, Ronald; van den Akker-van Marle, M Elske; Jacobs, Wilco Ch; Schenk, Barry; van den Berg-Huijsmans, Annette A; Koes, Bart W; Arts, Mark A; van Buchem, M A; Peul, Wilco C

    2017-06-01

    Background Percutaneous laser disc decompression is a minimally invasive treatment, for lumbar disc herniation and might serve as an alternative to surgical management of sciatica. In a randomised trial with two-year follow-up we assessed the clinical effectiveness of percutaneous laser disc decompression compared to conventional surgery. Materials and methods This multicentre randomised prospective trial with a non-inferiority design, was carried out according to an intent-to-treat protocol with full institutional review board approval. One hundred and fifteen eligible surgical candidates, with sciatica from a disc herniation smaller than one-third of the spinal canal, were randomly allocated to percutaneous laser disc decompression ( n = 55) or conventional surgery ( n = 57). The main outcome measures for this trial were the Roland-Morris Disability Questionnaire for sciatica, visual analogue scores for back and leg pain and the patient's report of perceived recovery. Results The primary outcome measures showed no significant difference or clinically relevant difference between the two groups at two-year follow-up. The re-operation rate was 21% in the surgery group, which is relatively high, and with an even higher 52% in the percutaneous laser disc decompression group. Conclusion At two-year follow-up, a strategy of percutaneous laser disc decompression, followed by surgery if needed, resulted in non-inferior outcomes compared to a strategy of microdiscectomy. Although the rate of reoperation in the percutaneous laser disc decompression group was higher than expected, surgery could be avoided in 48% of those patients that were originally candidates for surgery. Percutaneous laser disc decompression, as a non-surgical method, could have a place in the treatment arsenal of sciatica caused by contained herniated discs.

  1. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving

    PubMed Central

    He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou

    2016-01-01

    We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169

  2. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving.

    PubMed

    He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou

    2016-08-08

    We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.

  3. Compositional Discrimination of Decompression and Decomposition Gas Bubbles in Bycaught Seals and Dolphins

    PubMed Central

    Bernaldo de Quirós, Yara; Seewald, Jeffrey S.; Sylva, Sean P.; Greer, Bill; Niemeyer, Misty; Bogomolni, Andrea L.; Moore, Michael J.

    2013-01-01

    Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis. PMID:24367623

  4. Endoscopic foraminal decompression for failed back surgery syndrome under local anesthesia.

    PubMed

    Yeung, Anthony; Gore, Satishchandra

    2014-01-01

    The most common causes of failed back surgery are residual or recurrent herniation, foraminal fibrosis and foraminal stenosis that is ignored, untreated, or undertreated. Residual back ache may also be from facetal causes or denervation and scarring of the paraspinal muscles.(1-6) The original surgeon may advise his patient that nothing more can be done on the basis of his opinion that the nerve was visually decompressed by the original surgery, supported by improved post-op imaging and follow-up studies such as EMG and conduction velocity studies. Post-op imaging or electrophysiological assessment may be inadequate to explain all the reasons for residual or recurrent symptoms. Treatment of Failed back surgery by repeat traditional open revision surgery usually incorporates more extensive decompression causing increased instability and back pain, therefore necessitating fusion. The authors, having limited their practice to endoscopic MIS surgery over the last 15-20 years, report on their experience gained during that period to relieve pain by endoscopically visualizing and treating unrecognized causative patho-anatomy in FBSS.(7.) Thirty consecutive patients with FBSS presenting with back and leg pain that had supporting imaging diagnosis of lateral stenosis and /or residual / recurrent disc herniation, or whose pain complaint was supported by relief from diagnostic and therapeutic injections (Figure 1), were offered percutaneous transforaminal endoscopic discectomy and foraminoplasty over a repeat open procedure. Each patient sought consultation following a transient successful, partially successful or unsuccessful open translaminar surgical treatment for disc herniation or spinal stenosis. Endoscopic foraminoplasty was also performed to either decompress the bony foramen for foraminal stenosis, or foraminoplasty to allow for endoscopic visual examination of the affected traversing and exiting nerve roots in the axilla, also known as the "hidden zone" of Macnab

  5. Endoscopic Foraminal Decompression for Failed Back Surgery Syndrome under local Anesthesia

    PubMed Central

    Gore, Satishchandra

    2014-01-01

    Background The most common causes of failed back surgery are residual or recurrent herniation, foraminal fibrosis and foraminal stenosis that is ignored, untreated, or undertreated. Residual back ache may also be from facetal causes or denervation and scarring of the paraspinal muscles.1–6 The original surgeon may advise his patient that nothing more can be done on the basis of his opinion that the nerve was visually decompressed by the original surgery, supported by improved post-op imaging and follow-up studies such as EMG and conduction velocity studies. Post-op imaging or electrophysiological assessment may be inadequate to explain all the reasons for residual or recurrent symptoms. Treatment of Failed back surgery by repeat traditional open revision surgery usually incorporates more extensive decompression causing increased instability and back pain, therefore necessitating fusion. The authors, having limited their practice to endoscopic MIS surgery over the last 15-20 years, report on their experience gained during that period to relieve pain by endoscopically visualizing and treating unrecognized causative patho-anatomy in FBSS.7 Methods Thirty consecutive patients with FBSS presenting with back and leg pain that had supporting imaging diagnosis of lateral stenosis and /or residual / recurrent disc herniation, or whose pain complaint was supported by relief from diagnostic and therapeutic injections (Figure 1), were offered percutaneous transforaminal endoscopic discectomy and foraminoplasty over a repeat open procedure. Each patient sought consultation following a transient successful, partially successful or unsuccessful open translaminar surgical treatment for disc herniation or spinal stenosis. Endoscopic foraminoplasty was also performed to either decompress the bony foramen for foraminal stenosis, or foraminoplasty to allow for endoscopic visual examination of the affected traversing and exiting nerve roots in the axilla, also known as the

  6. Adiabatic quantum optimization for associative memory recall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seddiqi, Hadayat; Humble, Travis S.

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  7. Adiabatic Quantum Optimization for Associative Memory Recall

    NASA Astrophysics Data System (ADS)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  8. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  9. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.

    PubMed

    Mitra, Avik; Mahesh, T S; Kumar, Anil

    2008-03-28

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.

  10. Severe capillary leak syndrome after inner ear decompression sickness in a recreational scuba diver.

    PubMed

    Gempp, Emmanuel; Lacroix, Guillaume; Cournac, Jean-Marie; Louge, Pierre

    2013-07-01

    Post-decompression shock with plasma volume deficit is a very rare event that has been observed under extreme conditions of hypobaric and hyperbaric exposure in aviators and professional divers. We report a case of severe hypovolemic shock due to extravasation of plasma in a recreational scuba diver presenting with inner ear decompression sickness. Impaired endothelial function can lead to capillary leak with hemoconcentration and hypotension in severe cases. This report suggests that decompression-induced circulating bubbles may have triggered the endothelial damage, activating the classic inflammatory pathway of increased vascular permeability. This observation highlights the need for an accurate diagnosis of this potentially life-threatening condition at the initial presentation in the Emergency Department after a diving-related injury. An elevated hematocrit in a diver should raise the suspicion for the potential development of capillary leak syndrome requiring specific treatment using albumin infusion as primary fluid replacement. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Adiabatic expansion, early X-ray data and the central engine in GRBs

    NASA Astrophysics Data System (ADS)

    Barniol Duran, R.; Kumar, P.

    2009-05-01

    The Swift satellite early X-ray data show a very steep decay in most of the gamma-ray bursts light curves. This decay is either produced by the rapidly declining continuation of the central engine activity or by some leftover radiation starting right after the central engine shuts off. The latter scenario consists of the emission from an `ember' that cools via adiabatic expansion and, if the jet angle is larger than the inverse of the source Lorentz factor, the large angle emission. In this work, we calculate the temporal and spectral properties of the emission from such a cooling ember, providing a new treatment for the microphysics of the adiabatic expansion. We use the adiabatic invariance of p2⊥/B (p⊥ is the component of the electrons' momentum normal to the magnetic field, B) to calculate the electrons' Lorentz factor during the adiabatic expansion; the electron momentum becomes more and more aligned with the local magnetic field as the expansion develops. We compare the theoretical expectations of the adiabatic expansion (and the large angle emission) with the current observations of the early X-ray data and find that only ~20 per cent of our sample of 107 bursts are potentially consistent with this model. This leads us to believe that, for most bursts, the central engine does not turn off completely during the steep decay of the X-ray light curve; therefore, this phase is produced by the continued rapidly declining activity of the central engine.

  12. Timing of cranioplasty after decompressive craniectomy for ischemic or hemorrhagic stroke.

    PubMed

    Piedra, Mark P; Ragel, Brian T; Dogan, Aclan; Coppa, Nicholas D; Delashaw, Johnny B

    2013-01-01

    The optimal timing of cranioplasty after decompressive craniectomy for stroke is not known. Case series suggest that early cranioplasty is associated with higher rates of infection while delaying cranioplasty may be associated with higher rates of bone resorption. The authors examined whether the timing of cranioplasty after decompressive craniectomy for stroke affects postoperative complication rates. A retrospective cohort study was undertaken to evaluate complication rates in patients undergoing cranioplasty at early (within 10 weeks of craniectomy) or late (≥ 10 weeks) stages. Multivariate logistic regression analysis was used to determine characteristics that would predict complications in patients undergoing cranioplasty after decompressive craniectomy for stroke. While the overall complication rate was higher in the early cranioplasty cohort (22% vs 16% in the late cranioplasty cohort), the difference was not statistically significant (p = 0.5541). Patients in the early cranioplasty cohort had lower rates of postoperative hematoma but higher rates of infection. Presence of a CSF shunt was the only significant predictor of complications (OR 8.96, 95% CI 1.84-43.6). Complications rates for early cranioplasty (within 10 weeks of craniectomy) are similar to those encountered when cranioplasty is delayed, although the cohort size in this study was too small to state equivalence. Patients with a ventriculoperitoneal shunt are at higher risk for complications after cranioplasty.

  13. Resolution of extra-axial collections after decompressive craniectomy for ischemic stroke.

    PubMed

    Ropper, Alexander E; Nalbach, Stephen V; Lin, Ning; Dunn, Ian F; Gormley, William B

    2012-02-01

    Extra-axial fluid collections are known consequences of decompressive hemicraniectomy. Studies have examined these collections and their management. We retrospectively reviewed 12 consecutive patients who underwent decompressive hemicraniectomy for the treatment of malignant cerebral edema after infarction and evaluated the evolution, resolution and treatment of post-operative extra-axial fluid collections. All patients underwent standard-sized frontotemporoparietal hemicraniectomy with duraplasty as treatment for medically intractable malignant cerebral edema at an average of 3 days after the stroke (median 2 days). Their 30-day mortality was 25%. Three patients developed some extra-axial fluid collections after craniectomy: two patients developed the collections early in their post-operative course, 3 days and 5 days after the craniectomy. Both experienced spontaneous resolution of the collections without corrective cranioplasty or shunt placement at 34 days and 58 days after surgery. The third patient developed a collection 55 days after the operation related to a subgaleal bacterial infection. In the final analysis, 18% of patients developed extra-axial collections and all resolved spontaneously. The incidence of extra-axial collections after decompressive hemicraniectomy following ischemic stroke was lower in our retrospective series than has been reported by others. The collections resolved spontaneously, suggesting that early anticipatory, corrective treatment with cerebrospinal fluid diversion or cranioplasty may not be warranted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Adiabatic pipelining: a key to ternary computing with quantum dots.

    PubMed

    Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I

    2008-12-10

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  15. Women's experiences of daily life after anterior cervical decompression and fusion surgery: A qualitative interview study.

    PubMed

    Hermansen, Anna; Peolsson, Anneli; Kammerlind, Ann-Sofi; Hjelm, Katarina

    2016-04-01

    To explore and describe women's experiences of daily life after anterior cervical decompression and fusion surgery. Qualitative explorative design. Fourteen women aged 39-62 years (median 52 years) were included 1.5-3 years after anterior cervical decompression and fusion for cervical disc disease. Individual semi-structured interviews were analysed by qualitative content analysis with an inductive approach. The women described their experiences of daily life in 5 different ways: being recovered to various extents; impact of remaining symptoms on thoughts and feelings; making daily life work; receiving support from social and occupational networks; and physical and behavioural changes due to interventions and encounters with healthcare professionals. This interview study provides insight into women's daily life after anterior cervical decompression and fusion. Whilst the subjects improved after surgery, they also experienced remaining symptoms and limitations in daily life. A variety of mostly active coping strategies were used to manage daily life. Social support from family, friends, occupational networks and healthcare professionals positively influenced daily life. These findings provide knowledge about aspects of daily life that should be considered in individualized postoperative care and rehabilitation in an attempt to provide better outcomes in women after anterior cervical decompression and fusion.

  16. Prevention of decompression sickness during a simulated space docking mission

    NASA Technical Reports Server (NTRS)

    Cooke, J. P.; Bollinger, R. R.; Richardson, B.

    1975-01-01

    This study has shown that repetitive exchanges between the Apollo space vehicle atmosphere of 100% oxygen at 5 psia (258 torr) and the Soyuz spacecraft atmosphere of 30% oxygen-70% nitrogen at 10 psia (533 torr), as simulated in altitude chambers, will not likely result in any form of decompression sickness. This conclusion is based upon the absence of any form of bends in seven crewmen who participated in 11 tests distributed over three 24-h periods. During each period, three transfers from the 5 to the 10 psia environments were performed by simulating passage through a docking module which served as an airlock where astronauts and cosmonauts first adapted to each other's cabin gases and pressures before transfer. Biochemical tests, subjective fatigue scores, and the complete absence of any form of pain were also indicative that decompression sickness should not be expected if this spacecraft transfer schedule is followed.

  17. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  18. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  19. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  20. Simulating the behavior of volatiles belonging to the C-O-H-S system in silicate melts under magmatic conditions with the software D-Compress

    NASA Astrophysics Data System (ADS)

    Burgisser, Alain; Alletti, Marina; Scaillet, Bruno

    2015-06-01

    Modeling magmatic degassing, or how the volatile distribution between gas and melt changes at pressure varies, is a complex task that involves a large number of thermodynamical relationships and that requires dedicated software. This article presents the software D-Compress, which computes the gas and melt volatile composition of five element sets in magmatic systems (O-H, S-O-H, C-S-O-H, C-S-O-H-Fe, and C-O-H). It has been calibrated so as to simulate the volatiles coexisting with three common types of silicate melts (basalt, phonolite, and rhyolite). Operational temperatures depend on melt composition and range from 790 to 1400 °C. A specificity of D-Compress is the calculation of volatile composition as pressure varies along a (de)compression path between atmospheric and 3000 bars. This software was prepared so as to maximize versatility by proposing different sets of input parameters. In particular, whenever new solubility laws on specific melt compositions are available, the model parameters can be easily tuned to run the code on that composition. Parameter gaps were minimized by including sets of chemical species for which calibration data were available over a wide range of pressure, temperature, and melt composition. A brief description of the model rationale is followed by the presentation of the software capabilities. Examples of use are then presented with outputs comparisons between D-Compress and other currently available thermodynamical models. The compiled software and the source code are available as electronic supplementary materials.

  1. Use of computed tomography to assess volume change after endoscopic orbital decompression for Graves' ophthalmopathy.

    PubMed

    Schiff, Bradley A; McMullen, Caitlin P; Farinhas, Joaquim; Jackman, Alexis H; Hagiwara, Mari; McKellop, Jason; Lui, Yvonne W

    2015-01-01

    Orbital decompression is frequently performed in the management of patients with sight-threatening and disfiguring Graves' ophthalmopathy. The quantitative measurements of the change in orbital volume after orbital decompression procedures are not definitively known. Furthermore, the quantitative effect of septal deviation on volume change has not been previously analyzed. To provide quantitative measurement of orbital volume change after medial and inferior endoscopic decompression and describe a straightforward method of measuring this change using open-source technologies. A secondary objective was to assess the effect of septal deviation on orbital volume change. A retrospective review was performed on all patients undergoing medial and inferior endoscopic orbital decompression for Graves' ophthalmopathy at a tertiary care academic medical center. Pre-operative and post-operative orbital volumes were calculated from computed tomography (CT) data using a semi-automated segmenting technique and Osirix™, an open-source DICOM reader. Data were collected for pre-operative and post-operative orbital volumes, degree of septal deviation, time to follow-up scan, and individual patient Hertel scores. Nine patients (12 orbits) were imaged before and after decompression. Mean pre-operative orbital volume was 26.99 cm(3) (SD=2.86 cm(3)). Mean post-operative volume was 33.07 cm(3) (SD=3.96 cm(3)). The mean change in volume was 6.08 cm(3) (SD=2.31 cm(3)). The mean change in Hertel score was 4.83 (SD=0.75). Regression analysis of change in volume versus follow-up time to imaging indicates that follow-up time to imaging has little effect on change in volume (R=-0.2), and overall mean maximal septal deviation toward the operative side was -0.5mm. Negative values were attributed to deviation away form the operative site. A significant correlation was demonstrated between change in orbital volume and septal deviation distance site (R=0.66), as well as between change in orbital

  2. Adiabatic shear mechanisms for the hard cutting process

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin

    2015-05-01

    The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.

  3. Successful Treatment of Early Talar Osteonecrosis by Core Decompression Combined with Intraosseous Stem Cell Injection: A Case Report.

    PubMed

    Nevalainen, Mika T; Repo, Jussi P; Pesola, Maija; Nyrhinen, Jukka P

    2018-01-01

    Osteonecrosis of the talus is a fairly rare condition. Many predisposing factors have been identified including previous trauma, use of corticosteroids, alcoholism, and smoking. As a gold standard, magnetic resonance imaging (MRI) is the most sensitive and specific diagnostic examination to detect osteonecrosis. While many treatment options for talar osteonecrosis exist, core decompression is suggested on young patients with good outcome results. More recently, intraosseous stem cell and platelet-rich plasma (PRP) injection has been added to the core decompression procedure. We report a successful treatment of early talar osteonecrosis ARCO I (Association Research Circulation Osseous) by core decompression combined with stem cell and PRP injection. On 3-month and 15-month follow-up, MRI showed complete resolution of the osteonecrotic changes together with clinical improvement. This modified technique is a viable treatment option for early talar osteonecrosis. Nevertheless, future prospects should include a study comparing this combined technique with plain core decompression.

  4. A Phase Matching, Adiabatic Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Flöttmann, Klaus; Kärtner, Franz

    2017-05-01

    Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.

  5. Bending light via adiabatic optical transition in longitudinally modulated photonic lattices

    PubMed Central

    Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan

    2015-01-01

    Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands. PMID:26511890

  6. Non-adiabatic dynamics of molecules in optical cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Bennett, Kochise; Mukamel, Shaul, E-mail: smukamel@uci.edu

    2016-02-07

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes likemore » the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.« less

  7. Measurement-based quantum computation on two-body interacting qubits with adiabatic evolution.

    PubMed

    Kyaw, Thi Ha; Li, Ying; Kwek, Leong-Chuan

    2014-10-31

    A cluster state cannot be a unique ground state of a two-body interacting Hamiltonian. Here, we propose the creation of a cluster state of logical qubits encoded in spin-1/2 particles by adiabatically weakening two-body interactions. The proposal is valid for any spatial dimensional cluster states. Errors induced by thermal fluctuations and adiabatic evolution within finite time can be eliminated ensuring fault-tolerant quantum computing schemes.

  8. Comparison of clinical outcomes between laminoplasty, posterior decompression with instrumented fusion, and anterior decompression with fusion for K-line (-) cervical ossification of the posterior longitudinal ligament.

    PubMed

    Koda, Masao; Mochizuki, Makondo; Konishi, Hiroaki; Aiba, Atsuomi; Kadota, Ryo; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato; Furuya, Takeo

    2016-07-01

    The K-line, which is a virtual line that connects the midpoints of the anteroposterior diameter of the spinal canal at C2 and C7 in a plain lateral radiogram, is a useful preoperative predictive indicator for sufficient decompression by laminoplasty (LMP) for ossification of the posterior longitudinal ligament (OPLL). K-line is defined as (+) when the peak of OPLL does not exceed the K-line, and is defined as (-) when the peak of OPLL exceeds the K-line. For patients with K-line (-) OPLL, LMP often results in poor outcome. The aim of the present study was to compare the clinical outcome of LMP, posterior decompression with instrumented fusion (PDF) and anterior decompression and fusion (ADF) for patients with K-line (-) OPLL. The present study included patients who underwent surgical treatment including LMP, PDF and ADF for K-line (-) cervical OPLL. We retrospectively compared the clinical outcome of those patients in terms of Japanese Orthopedic Association score (JOA score) recovery rate. JOA score recovery rate was significantly higher in the ADF group compared with that in the LMP group and the PDF group. The JOA score recovery rate in the PDF group was significantly higher than that in the LMP group. LMP should not be used for K-line (-) cervical OPLL. ADF is one of the suitable surgical treatments for K-line (-) OPLL. Both ADF and PDF are applicable for K-line (-) OPLL according to indications set by each institute and surgical decisions.

  9. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field

    NASA Astrophysics Data System (ADS)

    Kolafa, Jiří

    2016-11-01

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  10. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field.

    PubMed

    Kolafa, Jiří

    2016-11-28

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  11. Colonic Fermentation Promotes Decompression sickness in Rats

    PubMed Central

    de Maistre, Sébastien; Vallée, Nicolas; Gempp, Emmanuel; Lambrechts, Kate; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric

    2016-01-01

    Massive bubble formation after diving can lead to decompression sickness (DCS). During dives with hydrogen as a diluent for oxygen, decreasing the body’s H2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. So we set out to investigate if colonic fermentation leading to endogenous hydrogen production promotes DCS in fasting rats. Four hours before an experimental dive, 93 fasting rats were force-fed, half of them with mannitol and the other half with water. Exhaled hydrogen was measured before and after force-feeding. Following the hyperbaric exposure, we looked for signs of DCS. A higher incidence of DCS was found in rats force-fed with mannitol than in those force-fed with water (80%, [95%CI 56, 94] versus 40%, [95%CI 19, 64], p < 0.01). In rats force-fed with mannitol, metronidazole pretreatment reduced the incidence of DCS (33%, [95%CI 15, 57], p = 0.005) at the same time as it inhibited colonic fermentation (14 ± 35 ppm versus 118 ± 90 ppm, p = 0.0001). Pre-diveingestion of mannitol increased the incidence of DCS in fasting rats when colonic fermentation peaked during the decompression phase. More generally, colonic fermentation in rats on a normal diet could promote DCS through endogenous hydrogen production. PMID:26853722

  12. Changes in foraminal area with anterior decompression versus keyhole foraminotomy in the cervical spine: a biomechanical investigation.

    PubMed

    Nguyen, Jacqueline; Chu, Bryant; Kuo, Calvin C; Leasure, Jeremi M; Ames, Christopher; Kondrashov, Dimitriy

    2017-12-01

    OBJECTIVE Anterior cervical discectomy and fusion (ACDF) with or without partial uncovertebral joint resection (UVR) and posterior keyhole foraminotomy are established operative procedures to treat cervical disc degeneration and radiculopathy. Studies have demonstrated reliable results with each procedure, but none have compared the change in neuroforaminal area between indirect and direct decompression techniques. The purpose of this study was to determine which cervical decompression method most consistently increases neuroforaminal area and how that area is affected by neck position. METHODS Eight human cervical functional spinal units (4 each of C5-6 and C6-7) underwent sequential decompression. Each level received the following surgical treatment: bilateral foraminotomy, ACDF, ACDF + partial UVR, and foraminotomy + ACDF. Multidirectional pure moment flexibility testing combined with 3D C-arm imaging was performed after each procedure to measure the minimum cross-sectional area of each foramen in 3 different neck positions: neutral, flexion, and extension. RESULTS Neuroforaminal area increased significantly with foraminotomy versus intact in all positions. These area measurements did not change in the ACDF group through flexion-extension. A significant decrease in area was observed for ACDF in extension (40 mm 2 ) versus neutral (55 mm 2 ). Foraminotomy + ACDF did not significantly increase area compared with foraminotomy in any position. The UVR procedure did not produce any changes in area through flexion-extension. CONCLUSIONS All procedures increased neuroforaminal area. Foraminotomy and foraminotomy + ACDF produced the greatest increase in area and also maintained the area in extension more than anterior-only procedures. The UVR procedure did not significantly alter the area compared with ACDF alone. With a stable cervical spine, foraminotomy may be preferable to directly decompress the neuroforamen; however, ACDF continues to play an important role for

  13. Gender and Decompression Sickness: A Critical Review and Analysis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The author addressed the following questions: are women at greater risk of decompression sickness and venous gas emboli at certain times in their reproductive cycle, is risk modified by the use of birth control pills (BCP), and is there a difference in overall risk between men and women under the same decompression dose? The summary considers information from the few abstracts and reports that were available. Except for the observation of more Type II DCS in women, particularly in women who fly after diving, there was no compelling evidence of a difference in DCS risk between men and women SCUBA divers. Many women that presented with DCS symptoms seemed to be in or near menses, with statistically fewer cases reported as time increased from menses. There was no compelling evidence that the use of BCP in SCUBA divers increases the risk of DCS. There were insufficient data about VGE from SCUBA diving to make any conclusion about the incidence of VGE and gender. In contrast, there were ample data about VGE from research in altitude chambers. Women produced less VGE and less Grade IV VGE compared to men under the same decompression dose, certainly when resting oxygen prebreathe (PB) was performed prior to ascent to altitude. Dual-cycle ergometry exercise during PB tends to reduce the differences in VGE between men and women. There was no compelling evidence that the risk of altitude DCS was different between men and women. However, a large number of DCS cases were associated with menses, and the use of BCP did seem to put women at a slightly greater risk than those that did not use BCP. There were substantial observations that women comprised a larger number of difficult cases that required complicated medical management.

  14. Decompression tables for inside chamber attendants working at altitude.

    PubMed

    Bell, James; Thombs, Paul A; Davison, William J; Weaver, Lindell K

    2014-01-01

    Hyperbaric oxygen (HBO2) multiplace chamber inside attendants (IAs) are at risk for decompression sickness (DCS). Standard decompression tables are formulated for sea-level use, not for use at altitude. At Presbyterian/St. Luke's Medical Center (Denver, Colorado, 5,924 feet above sea level) and Intermountain Medical Center (Murray, Utah, 4,500 feet), the decompression obligation for IAs is managed with U.S. Navy Standard Air Tables corrected for altitude, Bühlmann Tables, and the Nobendem© calculator. IAs also breathe supplemental oxygen while compressed. Presbyterian/St. Luke's (0.83 atmospheres absolute/atm abs) uses gauge pressure, uncorrected for altitude, at 45 feet of sea water (fsw) (2.2 atm abs) for routine wound care HBO2 and 66 fsw (2.8 atm abs) for carbon monoxide/cyanide poisoning. Presbyterian/St. Luke's provides oxygen breathing for the IAs at 2.2 atm abs. At Intermountain (0.86 atm abs), HBO2 is provided at 2.0 atm abs for routine treatments and 3.0 atm abs for carbon monoxide poisoning. Intermountain IAs breathe intermittent 50% nitrogen/50% oxygen at 3.0 atm abs and 100% oxygen at 2.0 atm abs. The chamber profiles include a safety stop. From 1990-2013, Presbyterian/St. Luke's had 26,900 total IA exposures: 25,991 at 45 fsw (2.2 atm abs) and 646 at 66 fsw (2.8 atm abs); there have been four cases of IA DCS. From 2008-2013, Intermountain had 1,847 IA exposures: 1,832 at 2 atm abs and 15 at 3 atm abs, with one case of IA DCS. At both facilities, DCS incidents occurred soon after the chambers were placed into service. Based on these results, chamber inside attendant risk for DCS at increased altitude is low when the inside attendants breathe supplemental oxygen.

  15. Piezosurgery for orbital decompression surgery in thyroid associated orbitopathy.

    PubMed

    Ponto, Katharina A; Zwiener, Isabella; Al-Nawas, Bilal; Kahaly, George J; Otto, Anna F; Karbach, Julia; Pfeiffer, Norbert; Pitz, Susanne

    2014-12-01

    The purpose of this study was to assess a piezosurgical device as a novel tool for bony orbital decompression surgery. At a multidisciplinary orbital center, 62 surgeries were performed in 40 patients with thyroid associated orbitopathy (TAO). Within this retrospective case-series, we analyzed the medical records of these consecutive unselected patients. The reduction of proptosis was the main outcome measure. Indications for a two (n = 27, 44%) or three wall (35, 56%) decompression surgery were proptosis (n = 50 orbits, 81%) and optic neuropathy (n = 12, 19%). Piezosurgery enabled precise bone cuts without intraoperative complications. Proptosis decreased from 23.6 ± 2.8 mm (SD) by 3 mm (95% CI: -3.6 to -2.5 mm) after surgery and stayed stable at 3 months (-3 mm, 95% CI: -3.61 to -2.5 mm, p < 0.001, respectively). The effect was higher in those with preoperatively higher values (>24 mm versus ≤ 24 mm: -3.4 mm versus -2.81 mm before discharge from hospital and -4.1 mm versus -2.1 mm at 3 months: p < 0.001, respectively). After a mean long-term follow-up period of 14.6 ± 10.4 months proptosis decreased by further -0.7 ± 2.0 mm (p < 0.001). Signs of optic nerve compression improved after surgery. Infraorbital hypesthesia was present in 11 of 21 (52%) orbits 3 months after surgery. The piezosurgical device is a useful tool for orbital decompression surgery in TAO. By cutting bone selectively, it is precise and reduces the invasiveness of surgery. Nevertheless, no improvement in outcome or reduction in morbidity over conventional techniques has been shown so far. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Delayed Unilateral Soft Palate Palsy without Vocal Cord Involvement after Microvascular Decompression for Hemifacial Spasm

    PubMed Central

    Park, Jae Han; Jo, Kyung Il

    2013-01-01

    Microvascular decompression is a very effective and relatively safe surgical modality in the treatment of hemifacial spasm. But rare debilitating complications have been reported such as cranial nerve dysfunctions. We have experienced a very rare case of unilateral soft palate palsy without the involvement of vocal cord following microvascular decompression. A 33-year-old female presented to our out-patient clinic with a history of left hemifacial spasm for 5 years. On postoperative 5th day, patient started to exhibit hoarsness with swallowing difficulty. Symptoms persisted despite rehabilitation. Various laboratory work up with magnetic resonance image showed no abnormal lesions. Two years after surgery patient showed complete recovery of unitaleral soft palate palsy. Various etiologies of unilateral soft palate palsy are reviewed as the treatment and prognosis differs greatly on the cause. Although rare, it is important to keep in mind that such complication could occur after microvascular decompression. PMID:24003372

  17. 2014 Decompression Sickness/Extravehicular Activity Risks Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2014 Decompression Sickness (DCS)/Extravehicular Activity (EVA) Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on November 4 - 5, 2014. The SRP reviewed the updated Evidence Reports for The Risk of Decompression Sickness (from here on referred to as the 2014 DCS Evidence Report) and the Risk of Injury and Compromised Performance due to EVA Operations (from here on referred to as the 2014 EVA Evidence Report), as well as the Research Plans for these Risks. The SRP appreciated the time and effort that the DCS and EVA disciplines put into their review documents and presentations. The SRP felt that the 2014 DCS Evidence Report and the 2014 EVA Evidence Reports were very thorough and addressed the majority of the known DCS and EVA issues. The researchers at NASA Johnson Space Center (JSC) have the knowledge base to deal with the DCS and EVA issues. Overall, the SRP thinks the DCS and EVA research teams have compiled excellent reports which address the majority of the literature and background information.

  18. Simulation of gas bubbles in hypobaric decompressions: roles of O2, CO2, and H2O.

    PubMed

    Van Liew, H D; Burkard, M E

    1995-01-01

    To gain insight into the special features of bubbles that may form in aviators and astronauts, we simulated the growth and decay of bubbles in two hypobaric decompressions and a hyperbaric one, all with the same tissue ratio (TR), where TR is defined as tissue PN2 before decompression divided by barometric pressure after. We used an equation system which is solved by numerical methods and accounts for simultaneous diffusion of any number of gases as well as other major determinants of bubble growth and absorption. We also considered two extremes of the number of bubbles which form per unit of tissue. A) Because physiological mechanisms keep the partial pressures of the "metabolic" gases (O2, CO2, and H2O) nearly constant over a range of hypobaric pressures, their fractions in bubbles are inversely proportional to pressure and their large volumes at low pressure add to bubble size. B) In addition, the large fractions facilitate the entry of N2 into bubbles, and when bubble density is low, enhance an autocatalytic feedback on bubble growth due to increasing surface area. C) The TR is not closely related to bubble size; that is when two different decompressions have the same TR, metabolic gases cause bubbles to grow larger at lower hypobaric pressures. We conclude that the constancy of partial pressures of metabolic gases, unimportant in hyperbaric decompressions, affects bubble size in hypobaric decompressions in inverse relation to the exposure pressure.

  19. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment.

    PubMed

    Lee, Byung Jae; Bang, Jin Wook; Shin, Kyung Joon; Kim, Yun Yong

    2014-12-08

    In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise ( Q ∞ ) and the ternary blended cement mixture had the lowest reaction factor ( r ). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q ∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

  20. Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian

    USGS Publications Warehouse

    Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.

    2011-01-01

    We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.

  1. Adiabatic tapered optical fiber fabrication in two step etching

    NASA Astrophysics Data System (ADS)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  2. Novel developments and applications of the classical adiabatic dynamics technique

    NASA Astrophysics Data System (ADS)

    Rosso, Lula

    The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is

  3. Oxygen fugacity profile of the oceanic upper mantle and the depth of redox melting beneath ridges

    NASA Astrophysics Data System (ADS)

    Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) of a mantle mineral assemblage, controlled primarily by Fe redox chemistry, sets the depth of the diamond to carbonated melt reaction (DCO3). Near-surface fO2 recorded by primitive MORB glasses and abyssal peridotites anchor the fO2 profile of the mantle at depth. If the fO2-depth relationship of the mantle is known, then the depth of the DCO3 can be predicted. Alternatively, if the DCO3 can be detected geophysically, then its depth can be used to infer physical and chemical characteristics of upwelling mantle. We present an expanded version of a model of the fO2-depth profile of adiabatically upwelling mantle first presented by Stagno et al. (2013), kindly provided by D. Frost. The model uses a chemical mass balance and empirical fits to experimental data to calculate compositions and modes of mantle minerals at specified P, T, and bulk Fe3+/ƩFe. We added P and T dependences to the partitioning of Al and Ca to better simulate the mineralogical changes in peridotite at depth and included majorite component in garnet to increase the depth range of the model. We calculate fO2 from the mineral assemblages using the grt-ol-opx oxybarometer (Stagno et al., 2013). The onset of carbonated melting occurs at the intersection of a Fe3+/ƩFe isopleth with the DCO3. Upwelling mantle is tied to the DCO3 until all native C is oxidized to form carbonated melts by reduction of Fe3+ to Fe2+. The depth of intersection of a parcel of mantle with the DCO3 is a function of bulk Fe3+/ƩFe, potential temperature, and bulk composition. We predict that fertile mantle (PUM) along a 1400 °C adiabat, with 50 ppm bulk C, and Fe3+/ƩFe = 0.05 after C oxidation begins redox melting at a depth of 250 km. The model contextualizes observations of MORB redox chemistry. Because fertile peridotite is richer in Al2O3, the Fe2O3-bearing components of garnet are diluted leading to lower fO2 at a given depth compared to refractory mantle under the same conditions. This may indicate

  4. Acquisition of an Adiabatic Demagnetization Refrigerator for Quantum Information Science with Superconducting Circuits

    DTIC Science & Technology

    2015-11-23

    SECURITY CLASSIFICATION OF: The DURIP award provided funds for acquiring a cryogen-free adiabatic demagnetization refrigerator at Syracuse University...The new refrigerator has been installed and is now fully operational. The PI has intensive research efforts in the area of Quantum Information...Aug-2014 24-Aug-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of an Adiabatic Demagnetization Refrigerator for

  5. Statistical comparison of pooled nitrogen washout data of various altitude decompression response groups

    NASA Technical Reports Server (NTRS)

    Edwards, B. F.; Waligora, J. M.; Horrigan, D. J., Jr.

    1985-01-01

    This analysis was done to determine whether various decompression response groups could be characterized by the pooled nitrogen (N2) washout profiles of the group members, pooling individual washout profiles provided a smooth time dependent function of means representative of the decompression response group. No statistically significant differences were detected. The statistical comparisons of the profiles were performed by means of univariate weighted t-test at each 5 minute profile point, and with levels of significance of 5 and 10 percent. The estimated powers of the tests (i.e., probabilities) to detect the observed differences in the pooled profiles were of the order of 8 to 30 percent.

  6. Microendoscopic posterior decompression for the treatment of thoracic myelopathy caused by ossification of the ligamentum flavum: a technical report.

    PubMed

    Baba, Satoshi; Oshima, Yasushi; Iwahori, Tomoyuki; Takano, Yuichi; Inanami, Hirohiko; Koga, Hisashi

    2016-06-01

    Ossification of the ligamentum flavum (OLF) is a common cause of progressive thoracic myelopathy in East Asia. Good surgical results are expected for patients who already show myelopathy. Surgical decompression using a posterior approach is commonly used to treat OLF. This study investigated the use of microendoscopic posterior decompression for the treatment of thoracic OLF. Microendoscopic posterior decompression was performed on 9 patients with myelopathy. Patients had a mean age of 59.8 years and single-level involvement, mostly at the T10-11 and T11-12 vertebrae. Computed tomography and magnetic resonance imaging were used to classify the OLF. A tubular retractor and endoscopic system were used for microendoscopic posterior decompression. Midline and unilateral paramedian approaches were performed in 2 and 7 patients, respectively. Intraoperative motor evoked potentials (MEPs) of 7 patients were monitored. Pre- and postoperative neurological status was evaluated using the modified Japanese Orthopaedic Association (mJOA) score. Thoracic OLF for all patients were classed as bilateral type with a round morphology. Improvement of MEPs at least one muscle area was recorded in all patients following posterior decompression. A dural tear in one patient was the only observed complication. The mean recovery rate was 44.9 %, as calculated from mJOA scores at a mean follow-up period of 20 months. Microendoscopic posterior decompression combined with MEP monitoring can be used to treat patients with thoracic OLF. The optimal surgical indication is OLF at a single vertebral level and of a unilateral or bilateral nature, without comma and tram track signs, and a round morphology.

  7. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  8. Enough positive rate of paraspinal mapping and diffusion tensor imaging with levels which should be decompressed in lumbar spinal stenosis.

    PubMed

    Chen, Hua-Biao; Zhong, Zhi-Wei; Li, Chun-Sheng; Bai, Bo

    2016-07-01

    In lumbar spinal stenosis, correlating symptoms and physical examination findings with decompression levels based on common imaging is not reliable. Paraspinal mapping (PM) and diffusion tensor imaging (DTI) may be possible to prevent the false positive occurrences with MRI and show clear benefits to reduce the decompression levels of lumbar spinal stenosis than conventional magnetic resonance imaging (MRI) + neurogenic examination (NE). However, they must have enough positive rate with levels which should be decompressed at first. The study aimed to confirm that the positive of DTI and PM is enough in levels which should be decompressed in lumbar spinal stenosis. The study analyzed the positive of DTI and PM as well as compared the preoperation scores to the postoperation scores, which were assessed preoperatively and at 2 weeks, 3 months 6 months, and 12 months postoperatively. 96 patients underwent the single level decompression surgery. The positive rate among PM, DTI, and (PM or DTI) was 76%, 98%, 100%, respectively. All post-operative Oswestry Disability Index (ODI), visual analog scale for back pain (VAS-BP) and visual analog scale for leg pain (VAS-LP) scores at 2 weeks postoperatively were measured improvement than the preoperative ODI, VAS-BP and VAS-LP scores with statistically significance (p-value = 0.000, p-value = 0.000, p-value = 0.000, respectively). In degenetive lumbar spinal stenosis, the positive rate of (DTI or PM) is enough in levels which should be decompressed, thence using the PM and DTI to determine decompression levels will not miss the level which should be operated. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  9. Pediatric and adult vision restoration after optic nerve sheath decompression for idiopathic intracranial hypertension.

    PubMed

    Bersani, Thomas A; Meeker, Austin R; Sismanis, Dimitrios N; Carruth, Bryant P

    2016-06-01

    To compare presentations of idiopathic intracranial hypertension and efficacy of optic nerve sheath decompression between adult and pediatric patients, a retrospective cohort study was completed All idiopathic intracranial hypertension patients undergoing optic nerve sheath decompression by one surgeon between 1991 and 2012 were included. Pre-operative and post-operative visual fields, visual acuity, color vision, and optic nerve appearance were compared between adult and pediatric (<18 years) populations. Outcome measures included percentage of patients with complications or requiring subsequent interventions. Thirty-one adults (46 eyes) and eleven pediatric patients (18 eyes) underwent optic nerve sheath decompression for vision loss from idiopathic intracranial hypertension. Mean deviation on visual field, visual acuity, color vision, and optic nerve appearance significantly improved across all subjects. Pre-operative mean deviation was significantly worse in children compared to adults (p=0.043); there was no difference in mean deviation post-operatively (p=0.838). Significantly more pediatric eyes (6) presented with light perception only or no light perception than adult eyes (0) (p=0.001). Pre-operative color vision performance in children (19%) was significantly worse than in adults (46%) (p=0.026). Percentage of patients with complications or requiring subsequent interventions did not differ between groups. The consistent improvement after surgery and low rate of complications suggest optic nerve sheath decompression is safe and effective in managing vision loss due to adult and pediatric idiopathic intracranial hypertension. Given the advanced pre-operative visual deficits seen in children, one might consider a higher index of suspicion in diagnosing, and earlier surgical intervention in treating pediatric idiopathic intracranial hypertension.

  10. Improved chest recoil using an adhesive glove device for active compression–decompression CPR in a pediatric manikin model☆

    PubMed Central

    Udassi, Jai P.; Udassi, Sharda; Lamb, Melissa A.; Lamb, Kenneth E.; Theriaque, Douglas W.; Shuster, Jonathan J.; Zaritsky, Arno L.; Haque, Ikram U.

    2013-01-01

    Objective We developed an adhesive glove device (AGD) to perform ACD-CPR in pediatric manikins, hypothesizing that AGD-ACD-CPR provides better chest decompression compared to standard (S)-CPR. Design Split-plot design randomizing 16 subjects to test four manikin-technique models in a crossover fashion to AGD-ACD-CPR vs. S-CPR. Healthcare providers performed 5 min of CPR with 30:2 compression:ventilation ratio in the four manikin models: (1) adolescent; (2) child two-hand; (3) child one-hand; and (4) infant two-thumb. Methods Modified manikins recorded compression pressure (CP), compression depth (CD) and decompression depth (DD). The AGD consisted of a modified oven mitt with an adjustable strap; a Velcro patch was sewn to the palmer aspect. The counter Velcro patch was bonded to the anterior chest wall. For infant CPR, the thumbs of two oven mitts were stitched together with Velcro. Subjects were asked to actively pull up during decompression. Subjects’ heart rate (HR), respiratory rate (RR) and recovery time (RT) for HR/RR to return to baseline were recorded. Subjects were blinded to data recordings. Data (mean ± SEM) were analyzed using a two-tailed paired t-test. Significance was defined qualitatively as P ≤ 0.05. Results Mean decompression depth difference was significantly greater with AGD-ACD-CPR compared to S-CPR; 38–75% of subjects achieved chest decompression to or beyond baseline. AGD-ACD-CPR provided 6–12% fewer chest compressions/minute than S-CPR group. There was no significant difference in CD, CP, HR, RR and RT within each group comparing both techniques. Conclusion A simple, inexpensive glove device for ACD-CPR improved chest decompression with emphasis on active pull in manikins without excessive rescuer fatigue. The clinical implication of fewer compressions/minute in the AGD group needs to be evaluated. PMID:19683849

  11. Generation of Primary Kilauea Magmas: Constraints on Pressure, Temperature and Composition of Melts

    NASA Astrophysics Data System (ADS)

    Gudfinnsson, G. H.; Presnall, D. C.

    2004-12-01

    . The calculation assumes that the temperature at the point of melt segregation is close to the temperature of the solid adiabat. If extensive melting has occurred prior to the segregation, this will be incorrect. Secondly, it is assumed that the melting is occurring at the non-conducting part of the geotherm. Provided this is the case and the Kilauea primary melt composition truly represents a near-primary melt composition, we derive a potential temperature for the mantle beneath Kilauea of about 1500° C. The very high temperature and pressure conditions for magma generation at Hawaii appear to be unmatched by any other currently active volcanism on the Earth. Thus, of all the candidates for plume status, Hawaii appears to be the most robust.

  12. Is the liquid or the solid phase responsible for the low melting points of ionic liquids? Alkyl-chain-length dependence of thermodynamic properties of [C nmim][Tf 2N

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshitaka; Ohte, Yoko; Yamamura, Yasuhisa; Saito, Kazuya

    2009-03-01

    To establish the alkyl-chain-length dependences of thermodynamic properties of typical ionic liquids [C nmim][Tf 2N], the heat capacities of compounds with n = 2 and 18 were measured by adiabatic calorimetry. The comparison with other ionic liquids and typical molecular substances reveals that the low melting point of [C nmim][Tf 2N] with a short alkyl chain mainly originate in the large fusion entropy arising from the low entropy of the crystalline phase.

  13. Peridotite xenoliths from the Chersky belt (Yakutia): Infiltrated carbonate-rich melts leaving no metasomatic record

    NASA Astrophysics Data System (ADS)

    Tschegg, C.; Ntaflos, Th.

    2012-04-01

    The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian-North American continental plate. The geodynamic evolution of this continent-continent setting is highly complex and it remains a matter of debate, how the extent of the Mid-Arctic Ocean spreading influenced the North Asian continent in this region since the Eocene. We constrained a model (Tschegg et al. 2011, Lithos) showing that volcanism in the Chersky area was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle at 37 Ma. This implicates that the rift tectonics of the Mid-Arctic Ocean, at that time, affected the North Asian continent causing volcanic activity. Luckily, the basanites that were studied for these purposes host a representative number of peridotite xenoliths, which allow further constraints on the evolution of this area. The suite of spinel peridotites (lherzolites and harzburgites), pyroxenites and mega-crysts enable to characterize upper mantle conditions as well as to observe different processes within the lithospheric mantle beneath the Chersky belt. Equilibration temperatures of the spinel lherzolites reveal approx. 900-1000 °C at pressures of 1-2 GPa, with melt extraction volumes around 4 %. The analyzed spinel harzburgites reflect equilibration at lower P-T conditions and around 8 % higher melt extraction rates. We were able to find a completely preserved interstitial melt droplet in a lherzolite, in which a primary dolomite is in perfect phase contact with Na-rich alumosilicate glass and sodalite. Based on detailed and integrated investigations, we reconstructed origin and evolution of this spectacular carbonatic liquid that at depth differentiated from a carbonated silicate melt to an immiscible carbonate and silicate liquid, entered the lherzolite and quenched shortly before it was transported in the xenolith to the earth surface. To our surprise, the carbonate-rich melt infiltration did not

  14. Combined microwave ablation and minimally invasive open decompression for the management of thoracic metastasis in breast cancer.

    PubMed

    Liu, Bin; Yuan, Zhenchao; Wei, Chang Yuan

    2018-01-01

    The incidence rate of thoracic metastasis from breast cancer is increasing. Microwave ablation is one type of clinical therapy used to treat metastatic spine disease, although it can cause protein denaturation and immediate cell death, and coagulative necrosis can occur. Minimally invasive open decompression is associated with lower rates of surgical complications in comparison to traditional open surgery. Therefore, it is an alternative therapeutic option for spinal metastases. This study aimed to assess the efficacy of microwave ablation with minimally invasive open decompression in the management of breast cancer patients with thoracic metastasis. This single-institution retrospective study investigated 23 cases of thoracic metastasis from breast cancer treated with combined microwave ablation and minimally invasive open decompression. Patients that presented with indications for surgery underwent surgical treatment. Data were collected for pain scores, the Frankel Grade classification system for acute spinal injury, the Karnofsky performance status (KPS) scale and complications due to treatment. Of the 23 patients included in this study, all were successfully treated with microwave ablation and minimal invasive open decompression using our metrics. Of those, 18 patients (78.3%) showed improvement in their KPS results while 5 (21.7%) had alleviation of KPS. All 23 patients showed improvement in their Frankel Grade, suggesting improved neurological function following surgery. Most of the patients reported pain relief. Postoperative complications occurred in 4 patients. Microwave ablation combined with minimally invasive open decompression therapy for breast cancer patients with thoracic metastatic tumors is an alternative treatment that maintains or improves functional outcome in comparison to open surgery.

  15. A harmonic adiabatic approximation to calculate highly excited vibrational levels of ``floppy molecules''

    NASA Astrophysics Data System (ADS)

    Lauvergnat, David; Nauts, André; Justum, Yves; Chapuisat, Xavier

    2001-04-01

    The harmonic adiabatic approximation (HADA), an efficient and accurate quantum method to calculate highly excited vibrational levels of molecular systems, is presented. It is well-suited to applications to "floppy molecules" with a rather large number of atoms (N>3). A clever choice of internal coordinates naturally suggests their separation into active, slow, or large amplitude coordinates q', and inactive, fast, or small amplitude coordinates q″, which leads to an adiabatic (or Born-Oppenheimer-type) approximation (ADA), i.e., the total wave function is expressed as a product of active and inactive total wave functions. However, within the framework of the ADA, potential energy data concerning the inactive coordinates q″ are required. To reduce this need, a minimum energy domain (MED) is defined by minimizing the potential energy surface (PES) for each value of the active variables q', and a quadratic or harmonic expansion of the PES, based on the MED, is used (MED harmonic potential). In other words, the overall picture is that of a harmonic valley about the MED. In the case of only one active variable, we have a minimum energy path (MEP) and a MEP harmonic potential. The combination of the MED harmonic potential and the adiabatic approximation (harmonic adiabatic approximation: HADA) greatly reduces the size of the numerical computations, so that rather large molecules can be studied. In the present article however, the HADA is applied to our benchmark molecule HCN/CNH, to test the validity of the method. Thus, the HADA vibrational energy levels are compared and are in excellent agreement with the ADA calculations (adiabatic approximation with the full PES) of Light and Bačić [J. Chem. Phys. 87, 4008 (1987)]. Furthermore, the exact harmonic results (exact calculations without the adiabatic approximation but with the MEP harmonic potential) are compared to the exact calculations (without any sort of approximation). In addition, we compare the densities of

  16. Multiple Small Diameter Drillings Increase Femoral Neck Stability Compared with Single Large Diameter Femoral Head Core Decompression Technique for Avascular Necrosis of the Femoral Head.

    PubMed

    Brown, Philip J; Mannava, Sandeep; Seyler, Thorsten M; Plate, Johannes F; Van Sikes, Charles; Stitzel, Joel D; Lang, Jason E

    2016-10-26

    Femoral head core decompression is an efficacious joint-preserving procedure for treatment of early stage avascular necrosis. However, postoperative fractures have been described which may be related to the decompression technique used. Femoral head decompressions were performed on 12 matched human cadaveric femora comparing large 8mm single bore versus multiple 3mm small drilling techniques. Ultimate failure strength of the femora was tested using a servo-hydraulic material testing system. Ultimate load to failure was compared between the different decompression techniques using two paired ANCOVA linear regression models. Prior to biomechanical testing and after the intervention, volumetric bone mineral density was determined using quantitative computed tomography to account for variation between cadaveric samples and to assess the amount of bone disruption by the core decompression. Core decompression, using the small diameter bore and multiple drilling technique, withstood significantly greater load prior to failure compared with the single large bore technique after adjustment for bone mineral density (p< 0.05). The 8mm single bore technique removed a significantly larger volume of bone compared to the 3mm multiple drilling technique (p< 0.001). However, total fracture energy was similar between the two core decompression techniques. When considering core decompression for the treatment of early stage avascular necrosis, the multiple small bore technique removed less bone volume, thereby potentially leading to higher load to failure.

  17. (Non-adiabatic) string creation on nice slices in Schwarzschild black holes

    NASA Astrophysics Data System (ADS)

    Puhm, Andrea; Rojas, Francisco; Ugajin, Tomonori

    2017-04-01

    Nice slices have played a pivotal role in the discussion of the black hole information paradox as they avoid regions of strong spacetime curvature and yet smoothly cut through the infalling matter and the outgoing Hawking radiation, thus, justifying the use of low energy field theory. To avoid information loss it has been argued recently, however, that local effective field theory has to break down at the horizon. To assess the extent of this breakdown in a UV complete framework we study string-theoretic effects on nice slices in Schwarzschild black holes. Our purpose is two-fold. First, we use nice slices to address various open questions and caveats of [1] where it was argued that boost-enhanced non-adiabatic string-theoretic effects at the horizon could provide a dynamical mechanism for the firewall. Second, we identify two non-adiabatic effects on nice slices in Schwarzschild black holes: pair production of open strings near the horizon enhanced by the presence of the infinite tower of highly excited string states and a late-time non-adiabatic effect intrinsic to nice slices.

  18. Nerve decompression and neuropathy complications in diabetes: Are attitudes discordant with evidence?

    PubMed Central

    Nickerson, D. Scott

    2017-01-01

    ABSTRACT External neurolysis of the nerve at fibro-osseous tunnels has been proprosed to treat or prevent signs, symptoms, and complications in the lower extremity of diabetes patients with sensorimotor polyneuropathy. Nerve decompression is justified in the presence of symptomatic compressed nerves in the several fibro-osseous tunnels of the extremities, which are known to be frequent in diabetes. Quite a body of literature has accumulated reporting results after such nerve decompression in the leg, describing pain relief and sensibility improvement, as well as balance recovery, diabetic foot ulcer prevention, curtailed ulcer recurrence risk, and amputation avoidance. Historical academic hesitance to endorse surgical treatments for pain and numbness in diabetes was based primarily on the early retrospective reports’ potential for bias and placebo effects, and that the hypothetical basis for surgery lies outside the traditional etiology paradigm of length-dependent axonopathy. This reticence is here critiqued in view of recent studies using objective, measured outcome protocols which nullify such potential confounders. Pain relief is now confirmed with Level 1 studies, and Level 2 prospective information suggests protection from initial diabetic foot ulceration and most neuropathic ulcer recurrences. In view of the potential for nerve decompression to be useful in addressing some of the more difficult, expensive, and life altering complications of diabetic neuropathy, this secondary compression thesis and operative treatment methodology may deserve reassessment. PMID:28959382

  19. Kinetic D/H fractionation during hydration and dehydration of silicate glasses, melts and nominally anhydrous minerals

    NASA Astrophysics Data System (ADS)

    Roskosz, M.; Deloule, E.; Ingrin, J.; Depecker, C.; Laporte, D.; Merkel, S.; Remusat, L.; Leroux, H.

    2018-07-01

    The distribution of hydrogen isotopes during diffusion-driven aqueous processes in silicate glasses, melts and crystals was investigated. Hydration/dehydration experiments were performed on silica glasses at 1000 °C and 1 bar total pressure. Dehydration triggered by decompression-driven bubble nucleation and growth was performed on rhyolitic melts at 800 °C and a few hundred MPa. Hydrogen extraction from a nominally anhydrous mineral (grossular) single crystal was carried out at 800 °C and ambient pressure. After these three series of experiments, pronounced water (sensu lato) concentration profiles were observed in all recovered samples. In the grossular single-crystal, a large spatial variation in H isotopes (δD variation > 550‰) was measured across the sample. This isotopic distribution correlates with the hydrogen extraction profile. The fit to the data suggests an extreme decoupling between hydrogen and deuterium diffusion coefficients (DH and DD respectively), akin to the decoupling expected in a dilute ideal gas (DH/DD ≈ 1.41). Conversely, no measurable spatially- and time-resolved isotopic variations were measured in silicate glasses and melts. This contrasted behavior of hydrogen isotopes likely stands in the different water speciation and solution mechanisms in the three different materials. Glasses and melts contain essentially hydroxyl and molecular water groups but the mobile species is molecular water in both cases. Protonated defects make up most of the water accommodated in grossular and other nominally anhydrous minerals (NAM). These defects are also the mobile species that diffuse against polarons. These results are crucial to accurately model the degassing behavior of terrestrial and lunar magmas and to derive the initial D/H of water trapped in fluid inclusions commonly analyzed in mantle NAMs, which suffered complex geological histories.

  20. A photometric mode identification method, including an improved non-adiabatic treatment of the atmosphere

    NASA Astrophysics Data System (ADS)

    Dupret, M.-A.; De Ridder, J.; De Cat, P.; Aerts, C.; Scuflaire, R.; Noels, A.; Thoul, A.

    2003-02-01

    We present an improved version of the method of photometric mode identification of Heynderickx et al. (\\cite{hey}). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. (\\cite{dup}). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology). The non-adiabatic eigenfunctions needed for the mode identification are available upon request from the authors.