Science.gov

Sample records for adipocyte number insulin

  1. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  2. Adipocyte lipolysis and insulin resistance.

    PubMed

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved. PMID:26542285

  3. Adipocyte iron regulates adiponectin and insulin sensitivity

    PubMed Central

    Gabrielsen, J. Scott; Gao, Yan; Simcox, Judith A.; Huang, Jingyu; Thorup, David; Jones, Deborah; Cooksey, Robert C.; Gabrielsen, David; Adams, Ted D.; Hunt, Steven C.; Hopkins, Paul N.; Cefalu, William T.; McClain, Donald A.

    2012-01-01

    Iron overload is associated with increased diabetes risk. We therefore investigated the effect of iron on adiponectin, an insulin-sensitizing adipokine that is decreased in diabetic patients. In humans, normal-range serum ferritin levels were inversely associated with adiponectin, independent of inflammation. Ferritin was increased and adiponectin was decreased in type 2 diabetic and in obese diabetic subjects compared with those in equally obese individuals without metabolic syndrome. Mice fed a high-iron diet and cultured adipocytes treated with iron exhibited decreased adiponectin mRNA and protein. We found that iron negatively regulated adiponectin transcription via FOXO1-mediated repression. Further, loss of the adipocyte iron export channel, ferroportin, in mice resulted in adipocyte iron loading, decreased adiponectin, and insulin resistance. Conversely, organismal iron overload and increased adipocyte ferroportin expression because of hemochromatosis are associated with decreased adipocyte iron, increased adiponectin, improved glucose tolerance, and increased insulin sensitivity. Phlebotomy of humans with impaired glucose tolerance and ferritin values in the highest quartile of normal increased adiponectin and improved glucose tolerance. These findings demonstrate a causal role for iron as a risk factor for metabolic syndrome and a role for adipocytes in modulating metabolism through adiponectin in response to iron stores. PMID:22996660

  4. Retroendocytosis of insulin in rat adipocytes

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1986-08-01

    A variety of ligands internalized by receptor-mediated endocytosis follow a short circuit pathway that does not lead to degradation but results in rapid exocytosis of intact ligand, a process termed retroendocytosis. We studied the time course of (/sup 125/I)iodoinsulin processing and retroendocytosis after internalization in isolated rat adipocytes. After steady state binding and internalization, surface receptor-bound insulin was removed by exposing cells to a low pH at low temperatures. The cells containing internalized (/sup 125/I)iodoinsulin were reincubated in fresh medium; subsequently, the radioactivity remaining within the cells and released into the medium were analyzed at various times by trichloroacetic acid (TCA) precipitation, Sephadex G-50 gel filtration, and reverse phase HPLC. Cell-associated radioactivity progressively decreased after reincubation in 37 C buffer, with 50% released in 9 min and 85% by 45 min. In the media, TCA-precipitable material appeared quickly, with a t1/2 of 2 min, and plateaued by 10 min. TCA-soluble material was released continually throughout the 45-min period. The release of both TCA-precipitable and TCA-soluble material was temperature and energy dependent. Sephadex G-50 chromatography demonstrated the loss of insulin from the intracellular pool and its appearance in the medium with a time course similar to that of TCA-precipitable material. Reverse phase HPLC demonstrated that the intracellular and medium radioactivity eluting in peak II (insulin peak) on Sephadex G-50 was composed of both intact insulin and intermediates. After the internalization of insulin, rat adipocytes release not only small mol wt degradation products of insulin, but also insulin intermediates and intact insulin. The rate of retroendocytosis reported here is almost identical to the rate of insulin receptor recycling in rat adipocytes.

  5. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  6. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  7. Neuropoietin Attenuates Adipogenesis and Induces Insulin Resistance in Adipocytes*

    PubMed Central

    White, Ursula A.; Stewart, William C.; Mynatt, Randall L.; Stephens, Jacqueline M.

    2008-01-01

    Recent findings have implicated gp130 receptor ligands, particularly ciliary neurotrophic factor (CNTF), as potential anti-obesity therapeutics. Neuropoietin (NP) is a recently discovered cytokine in the gp130 family that shares functional and structural features with CNTF and signals via the CNTF receptor tripartite complex comprised of CNTFRα, LIF receptor, and gp130. NP plays a role in the development of the nervous system, but the effects of NP on adipocytes have not been previously examined. Because CNTF exerts anti-obesogenic effects in adipocytes and NP shares the same receptor complex, we investigated the effects of NP on adipocyte development and insulin action. Using cultured 3T3-L1 adipocytes, we observed that NP has the ability to block adipogenesis in a dose- and time-dependent manner. We also observed that cultured adipocytes, as well as murine adipose tissue, are highly responsive to acute NP treatment. Rodents injected with NP had a substantial increase in STAT3 tyrosine phosphorylation and ERK 1 and 2 activation. We also observed the induction of SOCS-3 mRNA in 3T3-L1 adipocytes following NP treatment. Unlike CNTF, our studies have revealed that NP also substantially attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In addition, NP blocks insulin action in adipose tissue in vivo. These observations are supported by data demonstrating that NP impairs insulin signaling via decreased activation of both IRS-1 and Akt. In summary, we have observed that both adipocytes in vitro and in vivo are highly responsive to NP, and this cytokine has the ability to affect insulin signaling in fat cells. These novel observations suggest that NP, unlike CNTF, may not be a viable obesity therapeutic. PMID:18562323

  8. Chelation of intracellular calcium blocks insulin action in the adipocyte

    SciTech Connect

    Pershadsingh, H.A.; Shade, D.L.; Delfert, D.M.; McDonald, J.M.

    1987-02-01

    The hypothesis that intracellular Ca/sup 2 +/ is an essential component of the intracellular mechanism of insulin action in the adipocyte was evaluated. Cells were loaded with the Ca/sup 2 +/ chelator quin-2, by preincubating them with quin-2 AM, the tetrakis(acetoxymethyl) ester of quin-2. Quin-2 loading inhibited insulin-stimulated glucose transport without affecting basal activity. The ability of insulin to stimulate glucose uptake in quin-2-loaded cells could be partially restored by preincubating cells with buffer supplemented with 1.2 mM CaCl/sub 2/ and the Ca/sup 2 +/ ionophore A23187. These conditions had no effect on basal activity and omission of CaCl/sub 2/ from the buffer prevented the restoration of insulin-stimulated glucose uptake by A23187. Quin-2 loading also inhibited insulin-stimulated glucose oxidation and the ability of insulin to inhibit cAMP-stimulated lipolysis without affecting their basal activities. Incubation of cells with 100 ..mu..M quin-2 or quin-2 AM had no effect on intracellular ATP concentration or the specific binding of /sup 125/I=labeled insulin to adipocytes. These findings suggest that intracellular Ca/sup 2 +/ is an essential component in the coupling of the insulin-activated receptor complex to cellular physiological/metabolic machinery. Furthermore, differing quin-2 AM dose-response profiles suggest the presence of dual Ca/sup 2 +/-dependent pathways in the adipocyte. One involves insulin stimulation of glucose transport and oxidation, whereas the other involves the antilipolytic action of insulin.

  9. Insulin binding and glucose uptake of adipocytes in rats adapted to hypergravitational force

    NASA Technical Reports Server (NTRS)

    Kobayashi, M.; Mondon, C. E.; Oyama, J.

    1980-01-01

    Rats were exposed to 4.15 g for 1 yr and weight and age matched, and lean noncentrifuged rats were used as control groups. Rats exposed to chronic hypergravity (hypergravic rats) were found to show lower ambient insulin levels, greater food intake with smaller body weight gain, and decreased size of isolated adipocytes. The ability of adipocytes from the hypergravic rats to bind insulin was increased. With Scatchard analysis, both number and affinity of receptors were increased. In contrast to the increased binding, glucose transport was found to be decreased in adipocytes from these animals. However, when the data were expressed as a percentage of maximal effect, the half maximal insulin effect for both the hypergravic and lean control groups was produced at an insulin concentration of 0.23 + or - 0.02 ng/ml, which was lower than the insulin concentration of 0.31 + or - 0.02 ng/ml for the weight-matched control group (P less than 0.05). This increased insulin sensitivity in the hypergravic group was accounted for by an increased number of receptors.

  10. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance

    PubMed Central

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-01-01

    Background/Objectives: Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Subjects/Methods: Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Results: Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R2=0.751, P<0.001). Conclusions: During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance. PMID:26563815

  11. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  12. Long-term effect of insulin on glucose transport and insulin binding in cultured adipocytes from normal and obese humans with and without non-insulin-dependent diabetes.

    PubMed Central

    Sinha, M K; Taylor, L G; Pories, W J; Flickinger, E G; Meelheim, D; Atkinson, S; Sehgal, N S; Caro, J F

    1987-01-01

    We have tested the hypothesis that in vitro exposure of insulin-resistant adipocytes with insulin results in improved insulin action. A primary culture system of adipocytes from obese subjects with or without non-insulin-dependent diabetes mellitus (NIDDM) and nonobese control subjects has been developed. The adipocytes when cultured in serum-free medium do not lose their original characteristics in regard to insulin binding and glucose transport. The adipocytes from three groups were incubated with insulin (0, 10(-10) M, and 10(-7) M) for 24 h at 37 degrees C, receptor-bound insulin was dissociated, and basal and insulin (1 X 10(-11)-10(-7) M)-stimulated glucose transport and 125I-insulin binding were determined. The 24-h insulin exposure of adipocytes from control subjects decreased basal and insulin-stimulated glucose transport. The effects of 1 X 10(-7) M insulin were more pronounced than 1 X 10(-10) M insulin. Similarly, insulin exposure decreased insulin sensitivity and responsiveness of cultured adipocytes from obese and NIDDM patients. The insulin-induced reduction in insulin sensitivity and responsiveness for glucose transport in three groups were due to alterations at insulin binding and postbinding levels. In conclusion, insulin induces insulin resistance in control adipocytes and further worsens the insulin resistance of adipocytes from obese and NIDDM subjects. For insulin to improve the insulin resistance of adipocytes from NIDDM patients, either more prolonged in vitro insulin exposure and/or other hormonal factors might be required. PMID:3308958

  13. CDK4 is an essential insulin effector in adipocytes

    PubMed Central

    Lagarrigue, Sylviane; Lopez-Mejia, Isabel C.; Denechaud, Pierre-Damien; Escoté, Xavier; Castillo-Armengol, Judit; Jimenez, Veronica; Chavey, Carine; Giralt, Albert; Lai, Qiuwen; Zhang, Lianjun; Martinez-Carreres, Laia; Delacuisine, Brigitte; Annicotte, Jean-Sébastien; Blanchet, Emilie; Huré, Sébastien; Abella, Anna; Tinahones, Francisco J.; Vendrell, Joan; Dubus, Pierre; Bosch, Fatima; Kahn, C. Ronald; Fajas, Lluis

    2015-01-01

    Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4R24C). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT. PMID:26657864

  14. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats.

    PubMed

    Shum, Michaël; Pinard, Sandra; Guimond, Marie-Odile; Labbé, Sébastien M; Roberge, Claude; Baillargeon, Jean-Patrice; Langlois, Marie-France; Alterman, Mathias; Wallinder, Charlotta; Hallberg, Anders; Carpentier, André C; Gallo-Payet, Nicole

    2013-01-15

    This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity. PMID:23149621

  15. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity.

    PubMed

    Schmidt, Vanessa; Schulz, Nadja; Yan, Xin; Schürmann, Annette; Kempa, Stefan; Kern, Matthias; Blüher, Matthias; Poy, Matthew N; Olivecrona, Gunilla; Willnow, Thomas E

    2016-07-01

    In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer's disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA. PMID:27322061

  16. Fat intake leads to differential response of rat adipocytes to glucose, insulin and ascorbic acid.

    PubMed

    Garcia-Diaz, Diego F; Campion, Javier; Arellano, Arianna V; Milagro, Fermin I; Moreno-Aliaga, Maria J; Martinez, J Alfredo

    2012-04-01

    Antioxidant-based treatments have emerged as novel and interesting approaches to counteract fat accumulation in obesity and associated metabolic disturbances. Adipocytes from rats that were fed on chow or high-fat diet (HFD) for 50 d were isolated (primary adipocytes) and incubated (72 h) on low (LG; 5.6 mmol/L) or high (HG; 25 mmol/L) glucose levels, in the presence or absence of 1.6 nmol/L insulin and 200 μmol/L vitamin C (VC). Adipocytes from HFD-fed animals presented lower insulin-induced glucose uptake, lower lactate and glycerol release, and lower insulin-induced secretion of some adipokines as compared with controls. HG treatment restored the blunted response to insulin regarding apelin secretion in adipocytes from HFD-fed rats. VC treatment inhibited the levels of nearly all variables, irrespective of the adipocytes' dietary origin. The HG treatment reduced adipocyte viability, and VC protected from this toxic effect, although more drastically in control adipocytes. Summing up, in vivo chow or HFD intake determines a differential response to insulin and glucose treatments that appears to be dependent on the insulin-resistance status of the adipocytes, while VC modifies some responses from adipocytes independently of the previous dietary intake of the animals. PMID:22454546

  17. Lipid-Overloaded Enlarged Adipocytes Provoke Insulin Resistance Independent of Inflammation

    PubMed Central

    Kim, Jong In; Huh, Jin Young; Sohn, Jee Hyung; Choe, Sung Sik; Lee, Yun Sok; Lim, Chun Yan; Jo, Ala; Park, Seung Bum; Han, Weiping

    2015-01-01

    In obesity, adipocyte hypertrophy and proinflammatory responses are closely associated with the development of insulin resistance in adipose tissue. However, it is largely unknown whether adipocyte hypertrophy per se might be sufficient to provoke insulin resistance in obese adipose tissue. Here, we demonstrate that lipid-overloaded hypertrophic adipocytes are insulin resistant independent of adipocyte inflammation. Treatment with saturated or monounsaturated fatty acids resulted in adipocyte hypertrophy, but proinflammatory responses were observed only in adipocytes treated with saturated fatty acids. Regardless of adipocyte inflammation, hypertrophic adipocytes with large and unilocular lipid droplets exhibited impaired insulin-dependent glucose uptake, associated with defects in GLUT4 trafficking to the plasma membrane. Moreover, Toll-like receptor 4 mutant mice (C3H/HeJ) with high-fat-diet-induced obesity were not protected against insulin resistance, although they were resistant to adipose tissue inflammation. Together, our in vitro and in vivo data suggest that adipocyte hypertrophy alone may be crucial in causing insulin resistance in obesity. PMID:25733684

  18. Effect of a β-Hydroxyphosphonate Analogue of ʟ-Carnitine on Insulin-Sensitive and Insulin-Resistant 3T3-L1 Adipocytes.

    PubMed

    Avalos-Soriano, Anaguiven; De la Cruz-Cordero, Ricardo; López-Martínez, Francisco Josue; Rosado, Jorge L; Duarte-Vázquez, Miguel Ángel; Garcia-Gasca, Teresa

    2015-01-01

    This study investigated the effect of a β-x200B;hydroxyphosphonate analog of ʟ-carnitine (L-CA) (CAS number: 1220955-x200B;20-3, Component: 1221068-91-2, C12H29NO4PI), (3-Hexanaminium, 1-(dimethoxyphosphinyl)-2-hydroxy-N,N,N,5-x200B;tetramethy-iodide (1:1), (2R, 3S)) on parameters related with type-2 diabetes in an in vitro model. Nontoxic concentrations of L-CA were assayed and compared to commercial ʟ-carnitine effects. L-CA did not affect adipogenesis in normal cells, but an increment of TG accumulation was observed on insulin-resistant adipocytes (80%) when compared with resistant control. L-CA also stimulated glucose analog 2-NBDG uptakes on insulin-resistant adipocytes in a similar way as insulin when compared to insulin-resistant cells. Our results show that the L-CA promoted insulin-like responses on insulin-resistant adipocytes without appreciable pro-adipogenic effect in sensitive adipocytes. PMID:26160659

  19. Different effects of insulin and insulin-like growth factors I and II on osteoprogenitors and adipocyte progenitors in fetal rat bone cell populations.

    PubMed

    Bellows, C G; Jia, D; Jia, Y; Hassanloo, A; Heersche, J N M

    2006-07-01

    We investigated the effects of insulin (1-1,000 nM), insulin-like growth factor (IGF)-I, and IGF-II (3-100 nM each) alone or together with 10 nM dexamethasone (DEX) or 10 nM 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D(3)) on proliferation and differentiation of adipocyte and osteoblast progenitors in bone cell populations derived from fetal rat calvaria. The effects on differentiation were evaluated by counting the number of bone or osteoid nodules and adipocyte colonies and the effects on proliferation, by measuring their size by image analysis. The types of cells studied were 1,25(OH)(2)D(3)- and DEX-responsive adipocyte progenitors and DEX-dependent and independent osteoprogenitors. Both IGF-I and IGF-II stimulated osteoprogenitor differentiation both alone and in the presence of DEX, while insulin stimulated osteoprogenitor differentiation only in the absence of DEX. Neither IGF-I/-II nor insulin affected proliferation of osteoprogenitors. Insulin had little effect on adipocyte differentiation by itself but strongly stimulated differentiation in the presence of either 1,25(OH)(2)D(3) or DEX, while IGF-II stimulated adipocyte differentiation in both the absence and presence of 1,25(OH)(2)D(3) or DEX. IGF-I by itself or in the presence of DEX strongly stimulated adipocyte cell differentiation but had little effect in the presence of 1,25(OH)(2)D(3). Our results demonstrate that insulin, IGF-II, and IGF-I have specific and different effects on the differentiation and proliferation of different groups of progenitor cells. PMID:16897348

  20. Reduced DPP4 activity improves insulin signaling in primary human adipocytes.

    PubMed

    Röhrborn, Diana; Brückner, Julia; Sell, Henrike; Eckel, Jürgen

    2016-03-11

    DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling. PMID:26872429

  1. Differentiation of the insulin-sensitive glucose transporter in 3T3-L1 adipocytes

    SciTech Connect

    Frost, S.C.; Baly, D.L.; Cushman, S.W.; Lane, M.D.; Simpson, I.A.

    1986-05-01

    3T3-L1 fibroblasts differentiate in culture to resemble adipocytes both morphologically and biochemically. Insulin-sensitive glucose transport, as measured by 2-deoxy-(1-/sup 14/C)- glucose uptake in the undifferentiated cell is small (2X). In contrast, the rate of glucose transport in fully differentiated cells is elevated 15-fold over basal in the presence of insulin. To determine if this is due to an increase in the number of transporters/cell or accessibility to the transporters, the number of transporters was measured in subcellular fractions over differentiation using a /sup 3/H-cytochalasin B binding assay. The increase in the rate of insulin-sensitive glucose transport directly parallels an increase in the number of transporters which reside in an insulin-responsive intracellular compartment. This observation was confirmed by identifying the transporters by immunoblotting using an antibody generated against the human erythrocyte transporter. The molecular weight of this transporter increases over differentiation from a single band of 40kDa to a heterogeneous triplet of 40, 44 and 48kDa. These data suggest that the transporter undergoes differential processing and that the functional, insulin-responsive transporter may be different from the insulin-insensitive (basal) transporter.

  2. Differences in Organizational Structure of Insulin Receptor on Rat Adipocyte and Liver Plasma Membranes: Role of Disulfide Bonds

    NASA Astrophysics Data System (ADS)

    Schweitzer, John B.; Smith, Robert M.; Jarett, Leonard

    1980-08-01

    Binding of 125I-labeled insulin to rat liver and adipocyte plasma membranes has been investigated after treatment of the membranes with agents that modify disulfide bonds or sulfhydryl groups. Dithiothreitol, a disulfide-reducing agent, produced a bimodal response in adipocyte plasma membranes with dose-dependent increases in binding occurring over the range of 0-1 mM dithiothreitol; 5 mM dithiothreitol produced decreased binding. Insulin binding reached its maximal increase at 1 mM and was 3 times control values. Scatchard analysis of the 1 mM dithiothreitol effect revealed a straight line plot indicative of one class of sites with a Ka of 1.0× 108 M-1 which is intermediate between the two Kas obtained from the curvilinear Scatchard plot of control membranes. There was a 20-fold increase in the number of intermediate-affinity receptors compared to high-affinity receptors. The increased 125I-labeled insulin binding after dithiothreitol treatment was reversed by oxidized glutathione in a dose-dependent manner. Interposition of treatment with N-ethylmaleimide, an alkylating agent, prevented oxidized glutathione from reversing the dithiothreitol effect. Reduced glutathione produced the same effect as dithiothreitol. Liver plasma membranes treated with up to 1 mM dithiothreitol exhibited a maximum increase in insulin binding of 20% compared to control. Dithiothreitol at 5 mM decreased insulin binding below that of control membranes. The results indicate that the dithiothreitol effect on insulin binding to adipocyte plasma membranes is due to disruption of disulfide bonds, and that the structural organization of the insulin receptor on the plasma membranes is different for liver and for adipose tissue. The data imply that the insulin receptors on the plasma membrane of adipocytes possess at least two functionally distinct subclasses of disulfide bond but liver insulin receptors do not.

  3. Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by an insulin-receptor mediated process

    SciTech Connect

    Smith, R.M.; Jarett, L.

    1987-01-01

    Monomeric ferritin-labeled insulin (F/sub m/-Ins), a biologically active, electron-dense marker of occupied insulin receptors, was used to characterize the internalization of insulin in 3T3-L1 adipocytes. F/sub m/-Ins bound specifically to insulin receptors and was internalized in a time- and temperature-dependent manner. In the nucleus, several F/sub m/-Ins particles usually were found in the same general location-near nuclear pores, associated with the periphery of the condensed chromatin. Addition of a 250-fold excess of unlabeled insulin or incubation at 15/sup 0/C reduced the number of F/sub m/-Ins particles found in nuclei after 90 min by 99% or 92%, respectively. Nuclear accumulation of unlabeled ferritin was only 2% of that found with F/sub m/-Ins after 90 min at 37/sup 0/C. Biochemical experiments utilizing /sup 125/I-labeled insulin and subcellular fractionation indicated that intact 3T3-L1 adipocytes internalized insulin rapidly and that approx. = 3% of the internalized ligand accumulated in nuclei after 1 hr. These data provide biochemical and high-resolution ultrastructural evidence that 3T3-L1 adipocytes accumulate potentially significant amounts of insulin in nuclei by an insulin receptor-mediated process. The transport of insulin or the insulin-receptor complex to nuclei in this cell or in others may be directly involved in the long-term biological effects of insulin - in particular, in the control of DNA and RNA synthesis.

  4. Chronic hyperinsulinemia reduces insulin sensitivity and metabolic functions of brown adipocyte.

    PubMed

    Rajan, Sujith; Shankar, Kripa; Beg, Muheeb; Varshney, Salil; Gupta, Abhishek; Srivastava, Ankita; Kumar, Durgesh; Mishra, Raj K; Hussain, Zakir; Gayen, Jiaur R; Gaikwad, Anil N

    2016-09-01

    The growing pandemics of diabetes have become a real threat to world economy. Hyperinsulinemia and insulin resistance are closely associated with the pathophysiology of type 2 diabetes. In pretext of brown adipocytes being considered as the therapeutic strategy for the treatment of obesity and insulin resistance, we have tried to understand the effect of hyperinsulinemia on brown adipocyte function. We here with for the first time report that hyperinsulinemia-induced insulin resistance in brown adipocyte is also accompanied with reduced insulin sensitivity and brown adipocyte characteristics. CI treatment decreased expression of brown adipocyte-specific markers (such as PRDM16, PGC1α, and UCP1) and mitochondrial content as well as activity. CI-treated brown adipocytes showed drastic decrease in oxygen consumption rate (OCR) and spare respiratory capacity. Morphological study indicates increased accumulation of lipid droplets in CI-treated brown adipocytes. We have further validated these findings in vivo in C57BL/6 mice implanted with mini-osmotic insulin pump for 8weeks. CI treatment in mice leads to increased body weight gain, fat mass and impaired glucose intolerance with reduced energy expenditure and insulin sensitivity. CI-treated mice showed decreased BAT characteristics and function. We also observed increased inflammation and ER stress markers in BAT of CI-treated animals. The above results conclude that hyperinsulinemia has deleterious effect on brown adipocyte function, making it susceptible to insulin resistance. Thus, the above findings have greater implication in designing approaches for the treatment of insulin resistance and diabetes via recruitment of brown adipocytes. PMID:27340034

  5. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes

    PubMed Central

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif

    2014-01-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. PMID:24918199

  6. Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice

    PubMed Central

    Monden, Masayo; Koyama, Hidenori; Otsuka, Yoshiko; Morioka, Tomoaki; Mori, Katsuhito; Shoji, Takuhito; Mima, Yohei; Motoyama, Koka; Fukumoto, Shinya; Shioi, Atsushi; Emoto, Masanori; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Nishizawa, Yoshiki; Kurajoh, Masafumi; Yamamoto, Tetsuya; Inaba, Masaaki

    2013-01-01

    Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined mechanisms underlying how RAGE regulates adiposity and insulin sensitivity. RAGE overexpression in 3T3-L1 preadipocytes using adenoviral gene transfer accelerated adipocyte hypertrophy, whereas inhibitions of RAGE by small interfering RNA significantly decrease adipocyte hypertrophy. Furthermore, double knockdown of high mobility group box-1 and S100b, both of which are RAGE ligands endogenously expressed in 3T3-L1 cells, also canceled RAGE-medicated adipocyte hypertrophy, implicating a fundamental role of ligands–RAGE ligation. Adipocyte hypertrophy induced by RAGE overexpression is associated with suppression of glucose transporter type 4 and adiponectin mRNA expression, attenuated insulin-stimulated glucose uptake, and insulin-stimulated signaling. Toll-like receptor (Tlr)2 mRNA, but not Tlr4 mRNA, is rapidly upregulated by RAGE overexpression, and inhibition of Tlr2 almost completely abrogates RAGE-mediated adipocyte hypertrophy. Finally, RAGE−/− mice exhibited significantly less body weight, epididymal fat weight, epididymal adipocyte size, higher serum adiponectin levels, and higher insulin sensitivity than wild-type mice. RAGE deficiency is associated with early suppression of Tlr2 mRNA expression in adipose tissues. Thus, RAGE appears to be involved in mouse adipocyte hypertrophy and insulin sensitivity, whereas Tlr2 regulation may partly play a role. PMID:23011593

  7. Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes

    PubMed Central

    Adamson, Samantha E.; Meher, Akshaya K.; Chiu, Yu-hsin; Sandilos, Joanna K.; Oberholtzer, Nathaniel P.; Walker, Natalie N.; Hargett, Stefan R.; Seaman, Scott A.; Peirce-Cottler, Shayn M.; Isakson, Brant E.; McNamara, Coleen A.; Keller, Susanna R.; Harris, Thurl E.; Bayliss, Douglas A.; Leitinger, Norbert

    2015-01-01

    Objective Defective glucose uptake in adipocytes leads to impaired metabolic homeostasis and insulin resistance, hallmarks of type 2 diabetes. Extracellular ATP-derived nucleotides and nucleosides are important regulators of adipocyte function, but the pathway for controlled ATP release from adipocytes is unknown. Here, we investigated whether Pannexin 1 (Panx1) channels control ATP release from adipocytes and contribute to metabolic homeostasis. Methods We assessed Panx1 functionality in cultured 3T3-L1 adipocytes and in adipocytes isolated from murine white adipose tissue by measuring ATP release in response to known activators of Panx1 channels. Glucose uptake in cultured 3T3-L1 adipocytes was measured in the presence of Panx1 pharmacologic inhibitors and in adipocytes isolated from white adipose tissue from wildtype (WT) or adipocyte-specific Panx1 knockout (AdipPanx1 KO) mice generated in our laboratory. We performed in vivo glucose uptake studies in chow fed WT and AdipPanx1 KO mice and assessed insulin resistance in WT and AdipPanx1 KO mice fed a high fat diet for 12 weeks. Panx1 channel function was assessed in response to insulin by performing electrophysiologic recordings in a heterologous expression system. Finally, we measured Panx1 mRNA in human visceral adipose tissue samples by qRT-PCR and compared expression levels with glucose levels and HOMA-IR measurements in patients. Results Our data show that adipocytes express functional Pannexin 1 (Panx1) channels that can be activated to release ATP. Pharmacologic inhibition or selective genetic deletion of Panx1 from adipocytes decreased insulin-induced glucose uptake in vitro and in vivo and exacerbated diet-induced insulin resistance in mice. Further, we identify insulin as a novel activator of Panx1 channels. In obese humans Panx1 expression in adipose tissue is increased and correlates with the degree of insulin resistance. Conclusions We show that Panx1 channel activity regulates insulin

  8. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  9. Effects of insulin on lipolysis and lipogenesis in adipocytes from genetically obese (ob/ob) mice.

    PubMed Central

    Carnie, J A; Smith, D G; Mavris-Vavayannis, M

    1979-01-01

    A method for the preparation of isolated adipocytes from obese mice is described. Similar yields of adipocytes (50--60%), as judged by several criteria, are obtained from obese mice and lean controls. Few fat-globules and no free nuclei were observed in cell preparations, which are metabolically active, respond to hormonal control and appear to be representative of intact adipose tissue. Noradrenaline-stimulated lipolysis was inhibited by insulin, equally in adipocytes from lean and obese mice. Inhibition in obese cells required exogenous glucose, and the insulin dose--response curve was shifted to the right. Basal lipogenesis from glucose was higher in adipocytes from obese mice, and the stimulatory effect of insulin was greater in cells from obese mice compared with lean controls. A rightward shift in the insulin dose--response curve was again observed with cells from obese animals. This suggests that adipose tissue from obese mice is insulin-sensitive at the high blood insulin concentrations found in vivo. The resistance of obese mice to the hypoglycaemic effect of exogenous insulin and their impaired tolerance to glucose loading appear to be associated with an impaired insulin response by muscle rather than by adipose tissue. PMID:534511

  10. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    NASA Astrophysics Data System (ADS)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  11. Interference with Akt signaling pathway contributes curcumin-induced adipocyte insulin resistance.

    PubMed

    Zhang, Deling; Zhang, Yemin; Ye, Mao; Ding, Youming; Tang, Zhao; Li, Mingxin; Zhou, Yu; Wang, Changhua

    2016-07-01

    Previous study has shown that curcumin directly or indirectly suppresses insulin signaling in 3T3-L1 adipocytes. However, the underlying mechanism remains unclear. Here we experimentally demonstrate that curcumin inhibited the ubiquitin-proteasome system (UPS) function, activated autophagy, and reduced protein levels of protein kinase B (Akt) in a dose- and time-dependent manner in 3T3-L1 adipocytes, accompanied with attenuation of insulin-stimulated Akt phosphorylation, plasma membrane translocation of glucose transporter type 4 (GLUT4), and glucose uptake. These in vitro inhibitory effects of curcumin on Akt protein expression and insulin action were reversed by pharmacological and genetic inhibition of autophagy but not by inhibition of the UPS and caspases. In addition, Akt reduction in adipose tissues of mice treated with curcumin could be recovered by administration of autophagy inhibitor bafilomycin A1 (BFA). This new finding provides a novel mechanism by which curcumin induces insulin resistance in adipocytes. PMID:27113027

  12. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte

    PubMed Central

    Kusminski, Christine M.; Gallardo-Montejano, Violeta I.; Wang, Zhao V.; Hegde, Vijay; Bickel, Perry E.; Dhurandhar, Nikhil V.; Scherer, Philipp E.

    2015-01-01

    Background/Purpose Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. Methods We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Results Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. Conclusion We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte. PMID:26500839

  13. Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements.

    PubMed

    Morley, Thomas S; Xia, Jonathan Y; Scherer, Philipp E

    2015-01-01

    Dysfunctional adipose tissue represents a hallmark of type 2 diabetes and systemic insulin resistance, characterized by fibrotic deposition of collagens and increased immune cell infiltration within the depots. Here we generate an inducible model of loss of function of the protein phosphatase and tensin homologue (PTEN), a phosphatase critically involved in turning off the insulin signal transduction cascade, to assess the role of enhanced insulin signalling specifically in mature adipocytes. These mice gain more weight on chow diet and short-term as well as long-term high-fat diet exposure. Despite the increase in weight, they retain enhanced insulin sensitivity, show improvements in oral glucose tolerance tests, display reduced adipose tissue inflammation and maintain elevated adiponectin levels. These improvements also lead to reduced hepatic steatosis and enhanced hepatic insulin sensitivity. Prolonging insulin action selectively in the mature adipocyte is therefore sufficient to maintain normal systemic metabolic homeostasis. PMID:26243466

  14. Go-6976 reverses hyperglycemia-induced insulin resistance independently of cPKC inhibition in adipocytes.

    PubMed

    Robinson, Katherine A; Hegyi, Krisztina; Hannun, Yusuf A; Buse, Maria G; Sethi, Jaswinder K

    2014-01-01

    Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used "specific" inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not -β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241

  15. Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation

    PubMed Central

    Lu, Hongyun; Gao, Zhanguo; Zhao, Zhiyun; Weng, Jianping; Ye, Jianping

    2015-01-01

    Objective To investigate the impact of transient (2-4 h) hypoxia on metabolic reprogramming of adipocytes. Methods The impact of transient hypoxia on metabolic reprogramming was investigated in 3T3-L1 cells before and after differentiation. Glucose uptake, fatty acid oxidation, lipolysis, and mitochondria were examined to determine the hypoxia effects. Preadipocytes were exposed to transient hypoxia (4h/day) in the course of differentiation. Insulin sensitivity and TG accumulation was examined in the cells at the end of differentiation to determine the reprogramming effects. AMPK activity and gene expression were determined by quantitative RT-PCR and Western blotting in search for mechanism of the reprogramming. Results In acute response to hypoxia, adipocytes exhibited an increase in insulin-dependent and -independent glucose uptake. Fatty acid β-oxidation and pyruvate dehydrogenase (PDH) activity were decreased. Multiple exposures of differentiating adipocytes to transient hypoxia enhanced insulin signaling, TG accumulation, expression of antioxidant genes in differentiated adipocytes in the absence of hypoxia. The metabolic memory was associated with elevated AMPK activity and gene expression (GLUT1, PGC-1α, PPARγ, SREBP, NRF-1, ESRRα, LPL). The enhanced insulin sensitivity was blocked by an AMPK inhibitor. Conclusions Repeated exposure of differentiating adipocytes to transient hypoxia is able to reprogram the cells for increased TG accumulation and enhanced insulin sensitivity. The metabolic alterations were observed in post-differentiated cells under normoxia. The reprogramming involves AMPK activation and gene expression in the metabolic pathways in cytosol and mitochondria. PMID:26219415

  16. Lipogenesis in rat brown adipocytes. Effects of insulin and noradrenaline, contributions from glucose and lactate as precursors and comparisons with white adipocytes.

    PubMed

    Saggerson, E D; McAllister, T W; Baht, H S

    1988-05-01

    1. Brown adipocytes were isolated from the interscapular depot of male rats maintained at approx. 21 degrees C. In some experiments parallel studies were made with white adipocytes from the epididymal depot. 2. Insulin increased and noradrenaline decreased [U-14C]glucose incorporation into fatty acids by brown adipocytes. Brown adipocytes differed from white adipocytes in that exogenous fatty acid (palmitate) substantially decreased fatty acid synthesis from glucose. Both noradrenaline and insulin increased lactate + pyruvate formation by brown adipocytes. Brown adipocytes converted a greater proportion of metabolized glucose into lactate + pyruvate and a smaller proportion into fatty acids than did white adipocytes. 3. In brown adipocytes, when fatty acid synthesis from [U-14C]glucose was decreased by noradrenaline or palmitate, incorporation of 3H2O into fatty acids was also decreased to an extent which would not support proposals for extensive recycling into fatty acid synthesis of acetyl-CoA derived from fatty acid oxidation. 4. In the absence of glucose, [U-14C]lactate was a poor substrate for lipogenesis in brown adipocytes, but its use was facilitated by glucose. When brown adipocytes were incubated with 1 mM-lactate + 5 mM-glucose, lactate-derived carbon generally provided at least 50% of the precursor for fatty acid synthesis. 5. Both insulin and noradrenaline increased [U-14C]glucose conversion into CO2 by brown adipocytes (incubated in the presence of lactate) and, in combination, stimulation of glucose oxidation by these two agents showed synergism. Rates of 14CO2 formation from glucose by brown adipocytes were relatively small compared with maximum rates of oxygen consumption by these cells, suggesting that glucose is unlikely to be a major substrate for thermogenesis. 6. Brown adipocytes from 6-week-old rats had considerably lower maximum rates of fatty acid synthesis, relative to cell DNA content, than white adipocytes. By contrast, rates of fatty

  17. Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes

    PubMed Central

    Zhou, Jun; Wang, Qilong; Ding, Ye; Zou, Ming-Hui

    2015-01-01

    We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH2-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO− inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO− mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes. PMID:25381390

  18. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes.

    PubMed

    Wang, Chih-Hao; Wang, Ching-Chu; Huang, Hsin-Chang; Wei, Yau-Huei

    2013-02-01

    Adipocytes play an integrative role in the regulation of energy metabolism and glucose homeostasis in the human body. Functional defects in adipocytes may cause systemic disturbance of glucose homeostasis. Recent studies revealed mitochondrial abnormalities in the adipose tissue of patients with type 2 diabetes. In addition, patients with mitochondrial diseases usually manifest systemic metabolic disorder. However, it is unclear how mitochondrial dysfunction in adipocytes affects the regulation of glucose homeostasis. In this study, we induced mitochondrial dysfunction and overproduction of reactive oxygen species (ROS) by addition of respiratory inhibitors oligomycin A and antimycin A and by knockdown of mitochondrial transcription factor A (mtTFA), respectively. We found an attenuation of the insulin response as indicated by lower glucose uptake and decreased phosphorylation of Akt upon insulin stimulation of adipocytes with mitochondrial dysfunction. Furthermore, the expression of glucose transporter 4 (Glut4) and secretion of adiponectin were decreased in adipocytes with increased ROS generated by defective mitochondria. Moreover, the severity of insulin insensitivity was correlated with the extent of mitochondrial dysfunction. These results suggest that higher intracellular ROS levels elicited by mitochondrial dysfunction resulted in impairment of the function of adipocytes in the maintenance of glucose homeostasis through attenuation of insulin signaling, downregulation of Glut4 expression, and decrease in adiponectin secretion. Our findings substantiate the important role of mitochondria in the regulation of glucose homeostasis in adipocytes and also provide a molecular basis for the explanation of the manifestation of diabetes mellitus or insulin insensitivity in a portion of patients with mitochondrial diseases such as MELAS or MERRF syndrome. PMID:23253816

  19. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo

    PubMed Central

    Koren, Shlomit; DiPilato, Lisa M.; Emmett, Matthew J.; Shearin, Abigail L.; Chu, Qingwei; Monks, Bob; Birnbaum, Morris J.

    2015-01-01

    Aim/hypothesis The release of fatty acids from adipocytes, i.e. lipolysis, is maintained under tight control, primarily by the opposing actions of catecholamines and insulin. A widely accepted model is that insulin antagonises catecholamine-dependent lipolysis through phosphorylation and activation of cAMP phosphodiesterase 3B (PDE3B) by the serine-threonine protein kinase Akt (protein kinase B). Recently, this hypothesis has been challenged, as in cultured adipocytes insulin appears, under some conditions, to suppress lipolysis independently of Akt. Methods To address the requirement for Akt2, the predominant isoform expressed in classic insulin target tissues, in the suppression of fatty acid release in vivo, we assessed lipolysis in mice lacking Akt2. Results In the fed state and following an oral glucose challenge, Akt2 null mice were glucose intolerant and hyperinsulinaemic, but nonetheless exhibited normal serum NEFA and glycerol levels, suggestive of normal suppression of lipolysis. Furthermore, insulin partially inhibited lipolysis in Akt2 null mice during an insulin tolerance test (ITT) and hyperinsulinaemic–euglycaemic clamp, respectively. In support of these in vivo observations, insulin antagonised catecholamine-induced lipolysis in primary brown fat adipocytes from Akt2-deficient nice. Conclusion These data suggest that suppression of lipolysis by insulin in hyperinsulinaemic states can take place in the absence of Akt2. PMID:25740694

  20. Insulin-regulated aminopeptidase in adipocyte is Cys-specific and affected by obesity.

    PubMed

    Alponti, Rafaela Fadoni; Viana, Luciana Godoy; Yamanouye, Norma; Silveira, Paulo Flavio

    2015-08-01

    Insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) in adipocytes is well known to traffic between high (HDM) and low (LDM) density microsomal fractions toward the plasma membrane (MF) under stimulation by insulin. However, its catalytic preference for aminoacyl substrates with N-terminal Leu or Cys is controversial. Furthermore, possible changes in its traffic under metabolic challenges are unknown. The present study investigated the catalytic activity attributable to EC 3.4.11.3 in HDM, LDM and MF from isolated adipocytes of healthy (C), food deprived (FD) and monosodium glutamate (MSG) obese rats on aminoacyl substrates with N-terminal Cys or Leu, in absence or presence of insulin. Efficacy and reproducibility of subcellular adipocyte fractionation procedure were demonstrated. Comparison among HDM vs LDM vs MF intragroup revealed that hydrolytic activity trafficking from LDM to MF under influence of insulin in C, MSG and FD is only on N-terminal Cys. In MSG the same pattern of anterograde traffic and aminoacyl preference occurred independently of insulin stimulation. The pathophysiological significance of IRAP in adipocytes seems to be linked to comprehensive energy metabolism related roles of endogenous substrates with N-terminal cysteine pair such as vasopressin and oxytocin. PMID:25999180

  1. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes

    SciTech Connect

    Carter-Su, C.; Okamoto, K.

    1987-04-01

    The ability of glucocorticoids to modify the effect of insulin on glucose (L-1-/sup 3/H(N))glucose and D-(/sup 14/C-U)glucose) transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested. Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in /sup 125/I insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in V/sub max/ rather than an increase in K/sub t/ of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with (/sup 3/H)cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of (/sup 3/H)cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions.

  2. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    SciTech Connect

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  3. Novel adipocyte aminopeptidases are selectively upregulated by insulin in healthy and obese rats.

    PubMed

    Alponti, Rafaela Fadoni; Alves, Patricia Lucio; Silveira, Paulo Flavio

    2016-02-01

    The lack of a complete assembly of the sensitivity of subcellular aminopeptidase (AP) activities to insulin in different pathophysiological conditions has hampered the complete view of the adipocyte metabolic pathways and its implications in these conditions. Here we investigated the influence of insulin on basic AP (APB), neutral puromycin-sensitive AP (PSA), and neutral puromycin-insensitive AP (APM) in high and low density microsomal and plasma membrane fractions from adipocytes of healthy and obese rats. Catalytic activities of these enzymes were fluorometrically monitoring in these fractions with or without insulin stimulus. Canonical traffic such as insulin-regulated AP was not detected for these novel adipocyte APs in healthy and obese rats. However, insulin increased APM in low density microsomal and plasma membrane fractions from healthy rats, APB in high density microsomal fraction from obese rats and PSA in plasma membrane fraction from healthy rats. A new concept of intracellular compartment-dependent upregulation of AP enzyme activities by insulin emerges from these data. This relatively selective regulation has pathophysiological significance, since these enzymes are well known to act as catalysts and receptor of peptides directly related to energy metabolism. Overall, the regulation of each one of these enzyme activities reflects certain dysfunction in obese individuals. PMID:26577934

  4. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation. PMID:27325693

  5. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis

    PubMed Central

    Bozec, Aline; Hannemann, Nicole

    2016-01-01

    Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes. PMID:27284940

  6. Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tristetraprolin (TTP/ZFP36) family proteins bind and destabilize AU-rich element-containing mRNAs encoding cytokines such as vascular endothelial growth factor (VEGF). Little is known about the expression and insulin-regulation of TTP family and related genes in adipocytes. We analyzed the relative ...

  7. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases.

    PubMed

    Scazzocchio, Beatrice; Varì, Rosaria; D'Archivio, Massimo; Santangelo, Carmela; Filesi, Carmelina; Giovannini, Claudio; Masella, Roberta

    2009-05-01

    Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (-40%) through reduced glucose transporter 4 (GLUT4) recruitment to the plasma membrane (-70%), without affecting GLUT4 gene expression. These findings were associated to the impairment of insulin signaling. Specifically, in oxLDL-treated cells insulin receptor (IR) substrate-1 (IRS-1) was highly degraded likely because of the enhanced Ser(307)phosphorylation. This process was largely mediated by the activation of the inhibitor of kappaB-kinase beta (IKKbeta) and the c-Jun NH(2)-terminal kinase (JNK). Moreover, the activation of IKKbeta positively regulated the nuclear content of nuclear factor kappaB (NF-kappaB), by inactivating the inhibitor of NF-kappaB (IkappaBalpha). The activated NF-kappaB further impaired per se GLUT4 functionality. Specific inhibitors of IKKbeta, JNK, and NF-kappaB restored insulin sensitivity in adipocytes treated with oxLDL. These data provide the first evidence that oxLDL, by activating serine/threonine kinases, impaired adipocyte response to insulin affecting pathways involved in the recruitment of GLUT4 to plasma membranes (PM). This suggests that oxLDL might participate in the development of insulin resistance. PMID:19136667

  8. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases

    PubMed Central

    Scazzocchio, Beatrice; Varì, Rosaria; D'Archivio, Massimo; Santangelo, Carmela; Filesi, Carmelina; Giovannini, Claudio; Masella, Roberta

    2009-01-01

    Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (−40%) through reduced glucose transporter 4 (GLUT4) recruitment to the plasma membrane (−70%), without affecting GLUT4 gene expression. These findings were associated to the impairment of insulin signaling. Specifically, in oxLDL-treated cells insulin receptor (IR) substrate-1 (IRS-1) was highly degraded likely because of the enhanced Ser307phosphorylation. This process was largely mediated by the activation of the inhibitor of κB-kinase β (IKKβ) and the c-Jun NH2-terminal kinase (JNK). Moreover, the activation of IKKβ positively regulated the nuclear content of nuclear factor κB (NF-κB), by inactivating the inhibitor of NF-κB (IκBα). The activated NF-κB further impaired per se GLUT4 functionality. Specific inhibitors of IKKβ, JNK, and NF-κB restored insulin sensitivity in adipocytes treated with oxLDL. These data provide the first evidence that oxLDL, by activating serine/threonine kinases, impaired adipocyte response to insulin affecting pathways involved in the recruitment of GLUT4 to plasma membranes (PM). This suggests that oxLDL might participate in the development of insulin resistance. PMID:19136667

  9. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  10. Galanin antagonist increases insulin resistance by reducing glucose transporter 4 effect in adipocytes of rats.

    PubMed

    Guo, Lili; Shi, Mingyi; Zhang, Ling; Li, Guangzhi; Zhang, Lingxiang; Shao, Hu; Fang, Penghua; Ma, Yingping; Li, Jian; Shi, Qiaojia; Sui, Yumei

    2011-08-01

    Seeing that galanin increases animal body weight on the conditions of inhibiting insulin secretion and animals with metabolic disorder of galanin easily suffer from diabetes, we postulate that endogenous galanin is necessary to reduce insulin resistance in adipocytes. To test this hypothesis, we compared four groups of rats to examine whether an increase in galanin secretion stimulated by swimming may reduce insulin resistance. The rats from sedentary and trained drug groups were injected by M35, a galanin antagonist. The rats from trained control and trained drug groups swam after each injection for four weeks. We found that exercise significantly elevated plasma galanin contents and glucose transporter 4 (GLUT4) mRNA levels in adipocytes. Meanwhile, M35 treatment reduced GLUT4 and GLUT4 mRNA levels, and glucose infusing rates in euglycemic-hyperinsulinemic clamp tests. The ratios of GLUT4 concentrations at plasma membranes to total cell membranes in both drug groups were lower compared with each control group, respectively. These observations suggest that endogenous galanin reduces insulin resistance by increasing GLUT4 contents and promoting GLUT4 transportation from intracellular membranes to plasma membranes in adipocytes. Galanin is an important hormone to reduce insulin resistance in rats. PMID:21664358

  11. Interferon γ Attenuates Insulin Signaling, Lipid Storage, and Differentiation in Human Adipocytes via Activation of the JAK/STAT Pathway*

    PubMed Central

    McGillicuddy, Fiona C.; Chiquoine, Elise H.; Hinkle, Christine C.; Kim, Roy J.; Shah, Rachana; Roche, Helen M.; Smyth, Emer M.; Reilly, Muredach P.

    2009-01-01

    Recent reports demonstrate T-cell infiltration of adipose tissue in early obesity. We hypothesized that interferon (IFN) γ, a major T-cell inflammatory cytokine, would attenuate human adipocyte functions and sought to establish signaling mechanisms. Differentiated human adipocytes were treated with IFNγ ± pharmacological inhibitors prior to insulin stimulation. [3H]Glucose uptake and AKT phosphorylation were assessed as markers of insulin sensitivity. IFNγ induced sustained loss of insulin-stimulated glucose uptake in human adipocytes, coincident with reduced Akt phosphorylation and down-regulation of the insulin receptor, insulin receptor substrate-1, and GLUT4. Loss of adipocyte triglyceride storage was observed with IFNγ co-incident with reduced expression of peroxisome proliferator-activated receptor γ, adiponectin, perilipin, fatty acid synthase, and lipoprotein lipase. Treatment with IFNγ also blocked differentiation of pre-adipocytes to the mature phenotype. IFNγ-induced robust STAT1 phosphorylation and SOCS1 mRNA expression, with modest, transient STAT3 phosphorylation and SOCS3 induction. Preincubation with a non-selective JAK inhibitor restored glucose uptake and Akt phosphorylation while completely reversing IFNγ suppression of adipogenic mRNAs and adipocyte differentiation. Specific inhibition of JAK2 or JAK3 failed to block IFNγ effects suggesting a predominant role for JAK1-STAT1. We demonstrate that IFNγ attenuates insulin sensitivity and suppresses differentiation in human adipocytes, an effect most likely mediated via sustained JAK-STAT1 pathway activation. PMID:19776010

  12. Insulin regulation of protein biosynthesis in differentiated 3T3 adipocytes. Regulation of glyceraldehyde-3-phosphate dehydrogenase

    SciTech Connect

    Alexander, M.; Curtis, G.; Avruch, J.; Goodman, H.M.

    1985-10-05

    The effect of insulin on protein biosynthesis was examined in differentiated 3T3-L1 and 3T3-F442A adipocytes. Insulin altered the relative rate of synthesis of specific proteins independent of its ability to hasten conversion of the fibroblast (preadipocyte) phenotype to the adipocyte phenotype. Although more than one pattern of response to insulin was observed, the authors focused on the induction of a Mr 33,000 protein which was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Exposure of 3T3 adipocytes to insulin throughout differentiation specifically increased GAPDH activity and protein content by 2- to 3-fold as compared to 3T3 adipocytes differentiated in the absence of insulin. These changes in enzyme activity and content could be accounted for by a 4-fold increase in the relative rate of synthesis of GAPDH and a 9-fold increase in hybridizable mRNA levels. Within 2 h of insulin addition to 3T3 adipocytes differentiated in the absence of hormone, hybridizable GAPDH mRNA levels increased 3-fold, and within 24 h GAPDH mRNA levels increased 8-fold, and (TVS) methionine incorporation into GAPDH protein increased 5-fold. These studies demonstrate that insulin, as the sole hormonal perturbant, can increase the synthesis of certain 3T3 adipocyte proteins by altering the cellular content of a specific mRNA.

  13. Phospho-dephospho-control by insulin is mimicked by a phospho-oligosaccharide in adipocytes.

    PubMed

    Alemany, S; Mato, J M; Strålfors, P

    The mechanism of insulin action is only partly understood. At one end of the signalling chain, the structure of the insulin receptor is known in detail, and at the other end, insulin controls cellular metabolism by regulating the phosphorylation of serine and threonine residues in key target enzymes. The molecular events linking the occupied receptor to changes in target enzyme phosphorylation have remained obscure. Recently, insulin was shown to promote the hydrolysis of a phosphatidylinositol glycan with release of its polar head-group. The head group was reported to activate a high-affinity cyclic AMP-phosphodiesterase and pyruvate dehydrogenase, to inhibit catecholamine-stimulated lipolysis, and also to inhibit phospholipid methyltransferase and adenylate cyclase. We report here that in intact adipocytes this head-group faithfully copies the insulin-directed effects on the phosphorylation and dephosphorylation of target proteins of the hormone. PMID:3313056

  14. The Importance of Palmitoleic Acid to Adipocyte Insulin Resistance and Whole-Body Insulin Sensitivity in Type 1 Diabetes

    PubMed Central

    Howard, David; Schauer, Irene E.; Maahs, David M.; Snell-Bergeon, Janet K.; Clement, Timothy W.; Eckel, Robert H.; Perreault, Leigh; Rewers, Marian

    2013-01-01

    Context: Type 1 diabetes is an insulin-resistant state, but it is less clear which tissues are affected. Our previous report implicated skeletal muscle and liver insulin resistance in people with type 1 diabetes, but this occurred independently of generalized, visceral, or ectopic fat. Objective: The aim of the study was to measure adipose tissue insulin sensitivity and plasma triglyceride composition in individuals with type 1 diabetes after overnight insulin infusion to lower fasting glucose. Design, Patients, and Methods: Fifty subjects (25 individuals with type 1 diabetes and 25 controls without) were studied. After 3 d of dietary control and overnight insulin infusion, we performed a three-stage hyperinsulinemic/euglycemic clamp infusing insulin at 4, 8, and 40 mU/m2 · min. Infusions of [1,1,2,3,3-2H2]glycerol and [1-13C]palmitate were used to quantify lipid metabolism. Results: Basal glycerol and palmitate rates of appearance were similar between groups, decreased more in control subjects during the first two stages of the clamp, and similarly suppressed during the highest insulin dose. The concentration of insulin required for 50% inhibition of lipolysis was twice as high in individuals with type 1 diabetes. Plasma triglyceride saturation was similar between groups, but palmitoleic acid in plasma triglyceride was inversely related to adipocyte insulin sensitivity. Unesterified palmitoleic acid in plasma was positively related to insulin sensitivity in controls, but not in individuals with type 1 diabetes. Conclusions: Adipose tissue insulin resistance is a significant feature of type 1 diabetes. Palmitoleic acid is not related to insulin sensitivity in type 1 diabetes, as it was in controls, suggesting a novel mechanism for insulin resistance in this population. PMID:23150678

  15. Quantitative secretome and glycome of primary human adipocytes during insulin resistance

    PubMed Central

    2014-01-01

    Adipose tissue is both an energy storage depot and an endocrine organ. The impaired regulation of the secreted proteins of adipose tissue, known as adipocytokines, observed during obesity contributes to the onset of whole-body insulin resistance and the pathobiology of type 2 diabetes mellitus (T2DM). In addition, the global elevation of the intracellular glycosylation of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) via either genetic or pharmacological methods is sufficient to induce insulin resistance in both cultured cells and animal models. The elevation of global O-GlcNAc levels is associated with the altered expression of many adipocytokines. We have previously characterized the rodent adipocyte secretome during insulin sensitive and insulin resistant conditions. Here, we characterize and quantify the secretome and glycome of primary human adipocytes during insulin responsive and insulin resistant conditions generated by the classical method of hyperglycemia and hyperinsulinemia or by the pharmacological manipulation of O-GlcNAc levels. Using a proteomic approach, we identify 190 secreted proteins and report a total of 20 up-regulated and 6 down-regulated proteins that are detected in both insulin resistant conditions. Moreover, we apply glycomic techniques to examine (1) the sites of N-glycosylation on secreted proteins, (2) the structures of complex N- and O-glycans, and (3) the relative abundance of complex N- and O-glycans structures in insulin responsive and insulin resistant conditions. We identify 91 N-glycosylation sites derived from 51 secreted proteins, as well as 155 and 29 released N- and O-glycans respectively. We go on to quantify many of the N- and O-glycan structures between insulin responsive and insulin resistance conditions demonstrating no significant changes in complex glycosylation in the time frame for the induction of insulin resistance. Thus, our data support that the O-GlcNAc modification is involved in the regulation of

  16. High levels of chorionic gonadotrophin attenuate insulin sensitivity and promote inflammation in adipocytes.

    PubMed

    Ma, Qinyun; Fan, Jianxia; Wang, Jiqiu; Yang, Shuai; Cong, Qing; Wang, Rui; Lv, Qianqian; Liu, Ruixin; Ning, Guang

    2015-04-01

    Gestational diabetes mellitus (GDM) presents with moderate inflammation, insulin resistance and impaired glucose uptake, which may result from increased maternal fat mass and increased circulation of placental hormones and adipokines. In this study, we set out to test whether the surge in chorionic gonadotrophin (CG) secretion is a cause of inflammation and impaired insulin sensitivity in GDM. We first found that LH/chorionic gonadotrophin receptors (CG/LHR) were expressed at low levels in insulin-sensitive murine 3T3-L1 adipocytes and murine C2C12 myocytes. CG treatment not only directly reduced insulin-responsive gene expression, including that of glucose transporter 4 (GLUT4), but also impaired insulin-stimulated glucose uptake in 3T3-L1 cells. Moreover, CG treatment increased the expression of the proinflammatory cytokine monocyte chemotactic protein 1 (MCP1) and upregulated nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in 3T3-L1 cells. Clinically, pregnant women who had higher CG levels and elevated MCP1 developed GDM. Above all, apart from prepregnancy BMI and MCP1 level, CG level was associated with abnormal glucose tolerance. In summary, our findings confirmed that higher CG levels in pregnancy possibly played a role in GDM development partly by impairing the functions of insulin, such those involved in as glucose uptake, while promoting inflammation in adipocyte. PMID:25691497

  17. In preeclampsia, maternal third trimester subcutaneous adipocyte lipolysis is more resistant to suppression by insulin than in healthy pregnancy.

    PubMed

    Huda, Shahzya S; Forrest, Rachel; Paterson, Nicole; Jordan, Fiona; Sattar, Naveed; Freeman, Dilys J

    2014-05-01

    Obesity increases preeclampsia risk, and maternal dyslipidemia may result from exaggerated adipocyte lipolysis. We compared adipocyte function in preeclampsia with healthy pregnancy to establish whether there is increased lipolysis. Subcutaneous and visceral adipose tissue biopsies were collected at caesarean section from healthy (n=31) and preeclampsia (n=13) mothers. Lipolysis in response to isoproterenol (200 nmol/L) and insulin (10 nmol/L) was assessed. In healthy pregnancy, subcutaneous adipocytes had higher diameter than visceral adipocytes (P<0.001). Subcutaneous and visceral adipocyte mean diameter in preeclampsia was similar to that in healthy pregnant controls, but cell distribution was shifted toward smaller cell diameter in preeclampsia. Total lipolysis rates under all conditions were lower in healthy visceral than subcutaneous adipocytes but did not differ after normalization for cell diameter. Visceral adipocyte insulin sensitivity was lower than subcutaneous in healthy pregnancy and inversely correlated with plasma triglyceride (r=-0.50; P=0.004). Visceral adipose tissue had lower ADRB3, LPL, and leptin and higher insulin receptor messenger RNA expression than subcutaneous adipose tissue. There was no difference in subcutaneous adipocyte lipolysis rates between preeclampsia and healthy controls, but subcutaneous adipocytes had lower sensitivity to insulin in preeclampsia, independent of cell diameter (P<0.05). In preeclampsia, visceral adipose tissue had higher LPL messenger RNA expression than subcutaneous. In conclusion, in healthy pregnancy, the larger total mass of subcutaneous adipose tissue may release more fatty acids into the circulation than visceral adipose tissue. Reduced insulin suppression of subcutaneous adipocyte lipolysis may increase the burden of plasma fatty acids that the mother has to process in preeclampsia. PMID:24591340

  18. Coupling between insulin binding and activation of glucose transport in rat adipocytes

    SciTech Connect

    Ahn, N.G.; Lipkin, E.W.; Teller, D.C.; de Haeen, C.

    1986-05-01

    Previous studies have shown that the kinetics of binding of insulin (I) to its receptor (R) in isolated rat adipocytes at 15/sup 0/C, where insulin degradation was observed to be negligible, could best be described by the model: R+I in equilibrium RI in equilibrium R'I. According to this model, bound insulin is distributed between two kinetically distinct states of the occupied receptor, RI and R'I. The quantities of RI and R'I contributing to the observed total binding of insulin to cells can be obtained from the four rate constants describing the model. In order to examine the possible roles of RI and R'I in mediating hormone action, insulin stimulation of carrier-mediated 3-0-methyl-(U-/sup 14/C) glucose transport at 15/sup 0/C was studied. The results show that insulin activation of the rate of glucose transport was sigmoidal with time, and this was qualitatively similar to the formation of R'I with time. In contrast, formation of RI was described by an exponential approach to a plateau. This finding raises the possibility that R'I is the form of the insulin receptor directly mediating insulin activation of glucose transport.

  19. Low expression of insulin signaling molecules impairs glucose uptake in adipocytes after early overnutrition.

    PubMed

    Rodrigues, Ananda L; De Souza, Erica P G; Da Silva, Simone V; Rodrigues, Dayane S B; Nascimento, Aline B; Barja-Fidalgo, Christina; De Freitas, Marta S

    2007-12-01

    Experimental and clinical studies have demonstrated that early postnatal overnutrition represents a risk factor for later obesity and associated metabolic and cardiovascular disturbance. In the present study, we assessed the levels of glucose transporter 4 (GLUT-4), GLUT-1, insulin receptor (IR), IR substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt expression, as well as insulin-stimulated glucose transport and Akt activity in adipocytes from adult rats previously raised in small litters (SL). The normal litter (NL) served as control group. We also investigated glycemia, insulinemia, plasma lipid levels, and glucose tolerance. Our data demonstrated that early postnatal overfeeding induced a persistent hyperphagia accompanied by a significant increase in body weight until 90 days of age. The SL group also presented a significant increase ( approximately 42%) in epidydimal fat weight. Blood glucose, plasma insulin, and lipid levels were similar among the animals from the SL and NL groups. While insulin-stimulated glucose uptake was approximately twofold higher in adipocytes from the NL group, no stimulatory effect was observed in the SL group. The impaired insulin-stimulated glucose transport in adipose cells from the SL rats was associated with a significant decrease in GLUT-4, IRS-1 and PI3K expression, and Akt activity. In contrast, IR and Akt expression in adipocytes was not different between the SL and NL groups. Despite these alterations, our results showed no differences in glucose tolerance test in rats raised under different feeding conditions. Our findings reinforce a potent and long-term effect of neonatal overfeeding, which can program major changes in the metabolic regulatory mechanisms. PMID:18000310

  20. Cellular mechanism of the insulin-like effect of growth hormone in adipocytes. Rapid translocation of the HepG2-type and adipocyte/muscle glucose transporters.

    PubMed Central

    Tanner, J W; Leingang, K A; Mueckler, M M; Glenn, K C

    1992-01-01

    The cellular mechanism whereby growth hormone (GH) acutely stimulates adipocyte glucose uptake was studied in cultures of primary rat adipocytes differentiated in vitro. Preadipocytes were isolated by collagenase digestion of inguinal fat-pads from young rats and were differentiated in the presence of 3-isobutyl-1-methylxanthine, insulin and dexamethasone. The development of an adipocyte morphology (i.e. lipid inclusions) was observed over 6 days after initiation of differentiation. Coincident with this phenotypic change was an increase in glyceraldehyde-3-phosphate dehydrogenase (GPDH) activity and in cellular content of the HepG2-type (Glut1) and adipocyte/muscle (Glut4) glucose transporter isoforms as determined by Western immunoblotting of total cellular protein. Age-matched undifferentiated cells expressed the Glut1 transporter and low levels of GPDH, but neither accumulated lipid nor exhibited measurable expression of the Glut4 protein. On day 6 after the initiation of differentiation, GH and insulin stimulated 2-deoxy[14C]glucose uptake in a dose- and time-dependent fashion in adipocytes cultured under serum-free conditions for at least 15 h. Western-blot analysis of subcellular fractions revealed that both GH and insulin rapidly (within 20 min) stimulated translocation of the Glut1 and Glut4 proteins from a low-density microsomal fraction to the plasma membrane. Confirmatory evidence was provided in immunocytochemical experiments utilizing antisera directed against the C-terminal region of the Glut4 protein and a fluorescein isothiocyanate-labelled second antibody. Observation of the cells via confocal laser microscopic imaging was consistent with glucose transporter redistribution from an intracellular region to the plasma membrane after treatment with GH or insulin. On the basis of these data, we suggest that the insulin-like effect of GH on adipocyte glucose transport involves translocation of the Glut1 and Glut4 proteins to the plasma membrane

  1. Insulin resistance in SHR/NDmc-cp rats correlates with enlarged perivascular adipocytes and endothelial cell dysfunction in skeletal muscle.

    PubMed

    Hariya, Natsuyo; Mochizuki, Kazuki; Inoue, Seiya; Morioka, Kosuke; Shimada, Masaya; Okuda, Tohru; Goda, Toshinao

    2014-01-01

    Ectopic adipose tissue in skeletal muscle is implicated in the development of insulin resistance, which is frequently induced by abnormal dietary habits such as excessive eating and a high-fat diet. However, the characteristics of ectopic adipocytes are unknown. In this study, we investigated the characteristics of ectopic adipocytes in the skeletal muscle of spontaneously hypertensive corpulent congenic (SHR/NDmc-cp) rats as a model of insulin resistance from excessive eating. SHR/NDmc-cp rats displayed overt insulin resistance with high plasma glucose, insulin, and triacylglycerol concentrations relative to control Wistar-Kyoto (WKY) rats. In contrast, streptozotocin (STZ)-treated WKY rats had high glucose but low insulin concentrations. Ectopic adipocytes were found around blood vessels in the gastrocnemius in SHR/NDmc-cp rats. Areas of perivascular adipocytes and protein expression of resistin were greater in SHR/NDmc-cp rats than in control and STZ-treated WKY rats. The level of the phosphorylated (active) form of endothelial nitric oxide synthase in the gastrocnemius was lower in SHR/NDmc-cp rats than in the other groups. Insulin-resistant SHR/NDmc-cp rats showed enlarged perivascular adipocytes and greater endothelial cell dysfunction in the gastrocnemius. PMID:24759260

  2. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance

    PubMed Central

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-01-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9−/−) macrophages. Fat-fed Tlr9−/− mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9−/− mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography–determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance. PMID:27051864

  3. Essential Role of Insulin Receptor Substrate 1 in Differentiation of Brown Adipocytes

    PubMed Central

    Fasshauer, Mathias; Klein, Johannes; Kriauciunas, Kristina M.; Ueki, Kohjiro; Benito, Manuel; Kahn, C. Ronald

    2001-01-01

    The most widely distributed members of the family of insulin receptor substrate (IRS) proteins are IRS-1 and IRS-2. These proteins participate in insulin and insulin-like growth factor 1 signaling, as well as the actions of some cytokines, growth hormone, and prolactin. To more precisely define the specific role of IRS-1 in adipocyte biology, we established brown adipocyte cell lines from wild-type and IRS-1 knockout (KO) animals. Using differentiation protocols, both with and without insulin, preadipocyte cell lines derived from IRS-1 KO mice exhibited a marked decrease in differentiation and lipid accumulation (10 to 40%) compared to wild-type cells (90 to 100%). Furthermore, IRS-1 KO cells showed decreased expression of adipogenic marker proteins, such as peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), fatty acid synthase, uncoupling protein-1, and glucose transporter 4. The differentiation deficit in the KO cells could be reversed almost completely by retrovirus-mediated reexpression of IRS-1, PPARγ, or C/EBPα but not the thiazolidinedione troglitazone. Phosphatidylinositol 3-kinase (PI 3-kinase) assays performed at various stages of the differentiation process revealed a strong and transient activation in IRS-1, IRS-2, and phosphotyrosine-associated PI 3-kinase in the wild-type cells, whereas the IRS-1 KO cells showed impaired phosphotyrosine-associated PI 3-kinase activation, all of which was associated with IRS-2. Akt phosphorylation was reduced in parallel with the total PI 3-kinase activity. Inhibition of PI 3-kinase with LY294002 blocked differentiation of wild-type cells. Thus, IRS-1 appears to be an important mediator of brown adipocyte maturation. Furthermore, this signaling molecule appears to exert its unique role in the differentiation process via activation of PI 3-kinase and its downstream target, Akt, and is upstream of the effects of PPARγ and C/EBPα. PMID:11113206

  4. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

    PubMed

    Bordicchia, M; Ceresiani, M; Pavani, M; Minardi, D; Polito, M; Wabitsch, M; Cannone, V; Burnett, J C; Dessì-Fulgheri, P; Sarzani, R

    2016-07-01

    Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes. PMID:27101299

  5. Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo

    PubMed Central

    Richard, Allison J.; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P.; Mynatt, Randall; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Background Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. Methods In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Results Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. Conclusion SCO has metabolically beneficial

  6. Adrenomedullin 2 Improves Early Obesity-Induced Adipose Insulin Resistance by Inhibiting the Class II MHC in Adipocytes.

    PubMed

    Zhang, Song-Yang; Lv, Ying; Zhang, Heng; Gao, Song; Wang, Ting; Feng, Juan; Wang, Yuhui; Liu, George; Xu, Ming-Jiang; Wang, Xian; Jiang, Changtao

    2016-08-01

    MHC class II (MHCII) antigen presentation in adipocytes was reported to trigger early adipose inflammation and insulin resistance. However, the benefits of MHCII inhibition in adipocytes remain largely unknown. Here, we showed that human plasma polypeptide adrenomedullin 2 (ADM2) levels were negatively correlated with HOMA of insulin resistance in obese human. Adipose-specific human ADM2 transgenic (aADM2-tg) mice were generated. The aADM2-tg mice displayed improvements in high-fat diet-induced early adipose insulin resistance. This was associated with increased insulin signaling and decreased systemic inflammation. ADM2 dose-dependently inhibited CIITA-induced MHCII expression by increasing Blimp1 expression in a CRLR/RAMP1-cAMP-dependent manner in cultured adipocytes. Furthermore, ADM2 treatment restored the high-fat diet-induced early insulin resistance in adipose tissue, mainly via inhibition of adipocyte MHCII antigen presentation and CD4(+) T-cell activation. This study demonstrates that ADM2 is a promising candidate for the treatment of early obesity-induced insulin resistance. PMID:27207558

  7. Isoproterenol stimulates phosphorylation of the insulin-regulatable glucose transporter in rat adipocytes

    SciTech Connect

    James, D.E.; Hiken, J.; Lawrence, J.C. Jr. )

    1989-11-01

    The authors have examined the acute effect of insulin and isoproterenol on the phosphorylation state of the insulin-regulatable glucose transporter (IRGT) in rat adipocytes. The IRGT was immunoprecipitated from either detergent-solubilized whole-cell homogenates or subcellular fraction of {sup 32}P-labeled fat cells and subjected to sodium dodecyl sulfate/polyarcylamide gel electrophoresis. The {sup 32}P-labeled IRGT was detected by autoradiography as a species of apparent M{sub r} 46,000. Insulin stimulated translocation of the IRGT from low-density microsomes to the plasma membrane but did not affect phosphorylation of the transporter in either fraction. Isoproterenol inhibited insulin-stimulated glucose transport by 40% but was without effect on the subcellar distribution of the transporter in either the presence or absence of insulin. Isoproterenol stimulated phosphorylation of the IRGT 2-fold. Incubating cells with dibutyryl-cAMP and 8-bromo-cAMP also stimulated phosphorylation 2-fold, and the transporter was phosphorylated in vitro when IRGT-enriched vesicles were incubated with cAMP-dependent protein kinase and ({gamma}-{sup 32}P)ATP. These results suggest that isoproterenol stimulates phosphorylation of the IRGT via a cAMP-dependent pathway and that phosphorylation of the transporter may modulate its ability to transport glucose.

  8. Isolation of insulin-sensitive phosphatidylinositol-glycan from rat adipocytes. Its impaired breakdown in the streptozotocin-diabetic rat.

    PubMed Central

    Macaulay, S L; Larkins, R G

    1990-01-01

    In this study an insulin-sensitive glycophospholipid from rat adipocytes was isolated and partially characterized. A material that activated pyruvate dehydrogenase was extracted from rat adipocyte membrane supernatants. Its release was stimulated by insulin and phosphatidylinositol-specific-phospholipase C and its activity was destroyed by nitrous acid deamination. These findings suggested that insulin might stimulate breakdown of a glycophospholipid containing inositol and glucosamine, as previously reported for some other cell types [Low & Saltiel (1988) Science 239, 268-275]. A lipid that incorporated [3H]glucosamine, [3H]galactose, [3H]inositol, and [3H]myristate and whose turnover was stimulated by insulin was subsequently isolated from intact adipocytes by sequential t.l.c. using an acidic solvent system followed by a basic solvent system. The effects of insulin on turnover of the lipid in these cells were transient, with maximal effects at 1 min, and there was a typical concentration-response curve to insulin (0.07 nM-7 nM), with effects being detected over the physiological range of insulin concentrations. In contrast with studies in other cells, there was appreciable turnover of the sugar labels. The majority of the [3H]glucosamine and [3H]galactose labels were cycled through to triacylglycerol in the adipocyte. However, of that recovered in the glycophospholipid band, a major proportion (less than 40%) was recovered as the native label. Digestion of the purified molecule with phosphatidylinositol-specific phospholipase C generated a material that activated both pyruvate dehydrogenase and low-Km cyclic AMP phosphodiesterase. Impairment in insulin-stimulated breakdown of the molecule in adipocytes of streptozotocin-diabetic rats was found, consistent with the impaired insulin activation of pyruvate dehydrogenase and glucose utilization seen in this model. These findings suggest that insulin stimulates breakdown of this glycophospholipid by stimulating an

  9. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    PubMed Central

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-01-01

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats. PMID:7972005

  10. Intracerebroventricular administration of galanin antagonist sustains insulin resistance in adipocytes of type 2 diabetic trained rats.

    PubMed

    Zhang, Zhenwen; Sheng, Shudong; Guo, Lili; Li, Guangzhi; Zhang, Ling; Zhang, Linxiang; Shi, Mingyi; Bo, Ping; Zhu, Yan

    2012-09-25

    The aim of this study is to investigate whether galanin (GAL) central receptors are involved in regulation of insulin resistance. To test it, a GAL antagonist, M35 was intracerebroventricularly administrated in trained type 2 diabetic rats. The euglycemic-hyperinsulinemic clamp test was conducted for an index of glucose infusion rates. The epididymal fat pads were processed for determination of glucose uptake and Glucose Transporter 4 (GLUT4) amounts. The Gal mRNA expression levels in hypothalamus were quantitatively assessed too. We found an inhibitory effect of M35 on glucose uptake into adipocytes, Gal mRNA expression levels in hypothalamus, glucose infusion rates in the clamp test and GLUT4 concentration in plasma membranes and total cell membranes of adipocytes. The ratios of GLUT4 contents of the former to the latter in M35 groups were lower. These results suggest a facilitating role for GAL on GLUT4 translocation and insulin sensitivity via its central receptors in rats. PMID:22564511

  11. Insulin affects the sodium affinity of the rat adipocyte (Na ,K )-ATPase

    SciTech Connect

    Lytton, J.

    1985-08-25

    The K0.5 for intracellular sodium of the two forms of (Na ,K )-ATPase which exist in rat adipocytes has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na pump and allow sodium to equilibrate into the cell. The activity of (Na ,K )-ATPase was then monitored with YWRb /K pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and SSNa tracer equilibration were used to determine the actual intracellular (Na ) under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular (Na+) nor on the Vmax of YWRb /K pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha and 33 mM for alpha(+). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions.

  12. CONJUGATED LINOLEIC ACID PROMOTES HUMAN ADIPOCYTE INSULIN RESISTANCE THROUGH NFκB-DEPENDENT CYTOKINE PRODUCTION

    PubMed Central

    Chung1, Soonkyu; Brown2, J. Mark; Provo1, J. Nathan; Hopkins1, Robin; McIntosh1, Michael K.

    2005-01-01

    We previously demonstrated that trans-10, cis-12 conjugated linoleic acid (CLA) reduced the triglyceride (TG) content of human adipocytes by activating mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling via interleukins-6 (IL-6) and 8 (IL-8). However, the upstream mechanism is unknown. Here we show that CLA increased (≥ 6 h) the secretion of IL-6 and IL-8 in cultures containing both differentiated adipocytes and stromal vascular (SV) cells, non-differentiated SV cells, and adipose tissue explants. CLA’s isomer-specific induction of IL-6 and tumor necrosis factor-α (TNF-α) was associated with the activation of nuclear factor κB (NFκB) as evidenced by: 1) phosphorylation of IκBα, IκBα kinase (IKK), and NFκB p65; 2) IκBα degradation; and 3) nuclear translocation of NFκB. Pretreatment with selective NFκB inhibitors and the MEK/ERK inhibitor U0126 blocked CLA-mediated IL-6 gene expression. Trans-10, cis-12 CLA’s suppression of insulin-stimulated glucose uptake at 24 h was associated with decreased total and plasma membrane glucose transporter 4 (Glut4) proteins. Inhibition of NFκB activation or depletion of NFκB by RNA interference using siNFκB p65 attenuated CLA’s suppression of Glut4 and peroxisome proliferator activated receptor gamma (PPARγ) proteins and glucose uptake. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA promotes NFκB activation and subsequent induction of IL-6 which are, at least in part, responsible for trans-10, cis-12 CLA-mediated suppression of PPARγ target gene expression and insulin sensitivity in mature human adipocytes. PMID:16155293

  13. Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes

    PubMed Central

    Lee, Darwin V.; Li, Dongmei; Yan, Qingyun; Zhu, Yimin; Goodwin, Bryan; Calle, Roberto; Brenner, Martin B.; Talukdar, Saswata

    2014-01-01

    Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway. PMID:25365322

  14. Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity

    PubMed Central

    Sparling, David P.; Yu, Junjie; Kim, KyeongJin; Zhu, Changyu; Brachs, Sebastian; Birkenfeld, Andreas L.; Pajvani, Utpal B.

    2015-01-01

    Objective As the obesity pandemic continues to expand, novel molecular targets to reduce obesity-related insulin resistance and Type 2 Diabetes (T2D) continue to be needed. We have recently shown that obesity is associated with reactivated liver Notch signaling, which, in turn, increases hepatic insulin resistance, opening up therapeutic avenues for Notch inhibitors to be repurposed for T2D. Herein, we tested the systemic effects of γ-secretase inhibitors (GSIs), which prevent endogenous Notch activation, and confirmed these effects through creation and characterization of two different adipocyte-specific Notch loss-of-function mouse models through genetic ablation of the Notch transcriptional effector Rbp-Jk (A-Rbpj) and the obligate γ-secretase component Nicastrin (A-Nicastrin). Methods Glucose homeostasis and both local adipose and systemic insulin sensitivity were examined in GSI-treated, A-Rbpj and A-Nicastrin mice, as well as vehicle-treated or control littermates, with complementary in vitro studies in primary hepatocytes and 3T3-L1 adipocytes. Results GSI-treatment increases hepatic insulin sensitivity in obese mice but leads to reciprocal lowering of adipose glucose disposal. While A-Rbpj mice show normal body weight, adipose development and mass and unchanged adipose insulin sensitivity as control littermates, A-Nicastrin mice are relatively insulin-resistant, mirroring the GSI effect on adipose insulin action. Conclusions Notch signaling is dispensable for normal adipocyte function, but adipocyte-specific γ-secretase blockade reduces adipose insulin sensitivity, suggesting that specific Notch inhibitors would be preferable to GSIs for application in T2D. PMID:26909319

  15. Global O-GlcNAc Levels Modulate Transcription of the Adipocyte Secretome during Chronic Insulin Resistance

    PubMed Central

    Wollaston-Hayden, Edith E.; Harris, Ruth B. S.; Liu, Bingqiang; Bridger, Robert; Xu, Ying; Wells, Lance

    2015-01-01

    Increased flux through the hexosamine biosynthetic pathway and the corresponding increase in intracellular glycosylation of proteins via O-linked β-N-acetylglucosamine (O-GlcNAc) is sufficient to induce insulin resistance (IR) in multiple systems. Previously, our group used shotgun proteomics to identify multiple rodent adipocytokines and secreted proteins whose levels are modulated upon the induction of IR by indirectly and directly modulating O-GlcNAc levels. We have validated the relative levels of several of these factors using immunoblotting. Since adipocytokines levels are regulated primarily at the level of transcription and O-GlcNAc alters the function of many transcription factors, we hypothesized that elevated O-GlcNAc levels on key transcription factors are modulating secreted protein expression. Here, we show that upon the elevation of O-GlcNAc levels and the induction of IR in mature 3T3-F442a adipocytes, the transcript levels of multiple secreted proteins reflect the modulation observed at the protein level. We validate the transcript levels in male mouse models of diabetes. Using inguinal fat pads from the severely IR db/db mouse model and the mildly IR diet-induced mouse model, we have confirmed that the secreted proteins regulated by O-GlcNAc modulation in cell culture are likewise modulated in the whole animal upon a shift to IR. By comparing the promoters of similarly regulated genes, we determine that Sp1 is a common cis-acting element. Furthermore, we show that the LPL and SPARC promoters are enriched for Sp1 and O-GlcNAc modified proteins during insulin resistance in adipocytes. Thus, the O-GlcNAc modification of proteins bound to promoters, including Sp1, is linked to adipocytokine transcription during insulin resistance. PMID:25657638

  16. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Hyejin; Li, Hua; Noh, Minsoo; Ryu, Jae-Ha

    2016-01-01

    The fruit of Psoralea corylifolia L. (Fabaceae) (PC), known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO) cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα). Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4) translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK) pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways. PMID:27070585

  17. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes.

    PubMed

    Lee, Hyejin; Li, Hua; Noh, Minsoo; Ryu, Jae-Ha

    2016-01-01

    The fruit of Psoralea corylifolia L. (Fabaceae) (PC), known as "Bo-Gol-Zhee" in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO) cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα). Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4) translocation by activating the Akt and 5'AMP-activated protein kinase (AMPK) pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways. PMID:27070585

  18. 12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.

    PubMed

    Chakrabarti, Swarup K; Cole, Banumathi K; Wen, Yeshao; Keller, Susanna R; Nadler, Jerry L

    2009-09-01

    Inflammation and insulin resistance associated with visceral obesity are important risk factors for the development of type 2 diabetes, atherosclerosis, and the metabolic syndrome. The 12/15-lipoxygenase (12/15-LO) enzyme has been linked to inflammatory changes in blood vessels that precede the development of atherosclerosis. The expression and role of 12/15-LO in adipocytes have not been evaluated. We found that 12/15-LO mRNA was dramatically upregulated in white epididymal adipocytes of high-fat fed mice. 12/15-LO was poorly expressed in 3T3-L1 fibroblasts and was upregulated during differentiation into adipocytes. Interestingly, the saturated fatty acid palmitate, a major component of high fat diets, augmented expression of 12/15-LO in vitro. When 3T3-L1 adipocytes were treated with the 12/15-LO products, 12-hydroxyeicosatetranoic acid (12(S)-HETE) and 12-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), expression of proinflammatory cytokine genes, including tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein 1 (MCP-1), interleukin 6 (IL-6), and IL-12p40, was upregulated whereas anti-inflammatory adiponectin gene expression was downregulated. 12/15-LO products also augmented c-Jun N-terminal kinase 1 (JNK-1) phosphorylation, a known negative regulator of insulin signaling. Consistent with impaired insulin signaling, we found that insulin-stimulated 3T3-L1 adipocytes exhibited decreased IRS-1(Tyr) phosphorylation, increased IRS-1(Ser) phosphorylation, and impaired Akt phosphorylation when treated with 12/15-LO product. Taken together, our data suggest that 12/15-LO products create a proinflammatory state and impair insulin signaling in 3T3-L1 adipocytes. Because 12/15-LO expression is upregulated in visceral adipocytes by high-fat feeding in vivo and also by addition of palmitic acid in vitro, we propose that 12/15-LO plays a role in promoting inflammation and insulin resistance associated with obesity. PMID:19521344

  19. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice

    PubMed Central

    Satoh, Masashi; Hoshino, Miyuki; Fujita, Koki; Iizuka, Misao; Fujii, Satoshi; Clingan, Christopher S.; Van Kaer, Luc; Iwabuchi, Kazuya

    2016-01-01

    It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity. PMID:27329323

  20. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice.

    PubMed

    Satoh, Masashi; Hoshino, Miyuki; Fujita, Koki; Iizuka, Misao; Fujii, Satoshi; Clingan, Christopher S; Van Kaer, Luc; Iwabuchi, Kazuya

    2016-01-01

    It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity. PMID:27329323

  1. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-05-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase (A-kinase), from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from /sup 32/P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the /sup 32/P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase.

  2. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes.

    PubMed Central

    Lönnroth, P; Assmundsson, K; Edén, S; Enberg, G; Gause, I; Hall, K; Smith, U

    1987-01-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC50 for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells). However, the maximal incremental effect of insulin on IGF-II binding was reduced approximately 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced (t1/2, approximately 10 min), but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approximately equal to 10 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGF-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGF-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding. PMID:2954159

  3. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue (AT) inflammation promotes insulin resistance (IR) and other obesity complications. AT inflammation and IR are associated with oxidative stress, adipocyte death, and the scavenging of dead adipocytes by proinflammatory CD11c+ AT macrophages (ATMF). We tested the hypothesis that supple...

  4. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    NASA Technical Reports Server (NTRS)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  5. Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a Novel Regulator of Insulin Action in Adipocytes*

    PubMed Central

    Fazakerley, Daniel J.; Naghiloo, Sheyda; Chaudhuri, Rima; Koumanov, Françoise; Burchfield, James G.; Thomas, Kristen C.; Krycer, James R.; Prior, Matthew J.; Parker, Ben L.; Murrow, Beverley A.; Stöckli, Jacqueline; Meoli, Christopher C.; Holman, Geoffrey D.; James, David E.

    2015-01-01

    Insulin signaling augments glucose transport by regulating glucose transporter 4 (GLUT4) trafficking from specialized intracellular compartments, termed GLUT4 storage vesicles (GSVs), to the plasma membrane. Proteomic analysis of GSVs by mass spectrometry revealed enrichment of 59 proteins in these vesicles. We measured reduced abundance of 23 of these proteins following insulin stimulation and assigned these as high confidence GSV proteins. These included established GSV proteins such as GLUT4 and insulin-responsive aminopeptidase, as well as six proteins not previously reported to be localized to GSVs. Tumor suppressor candidate 5 (TUSC5) was shown to be a novel GSV protein that underwent a 3.7-fold increase in abundance at the plasma membrane in response to insulin. siRNA-mediated knockdown of TUSC5 decreased insulin-stimulated glucose uptake, although overexpression of TUSC5 had the opposite effect, implicating TUSC5 as a positive regulator of insulin-stimulated glucose transport in adipocytes. Incubation of adipocytes with TNFα caused insulin resistance and a concomitant reduction in TUSC5. Consistent with previous studies, peroxisome proliferator-activated receptor (PPAR) γ agonism reversed TNFα-induced insulin resistance. TUSC5 expression was necessary but insufficient for PPARγ-mediated reversal of insulin resistance. These findings functionally link TUSC5 to GLUT4 trafficking, insulin action, insulin resistance, and PPARγ action in the adipocyte. Further studies are required to establish the exact role of TUSC5 in adipocytes. PMID:26240143

  6. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes

    SciTech Connect

    Harrison, S.A.; Buxton, J.M.; Czech, M.P. )

    1991-09-01

    Previous studies indicated that the erythroid-type (GLUT1) glucose transporter isoform contributes to basal but not insulin-stimulated hexose transport in mouse 3T3-L1 adipocytes. In the present studies it was found that basal hexose uptake in 3T3-L1 adipocytes was about 50% lower than that in 3T3-L1 or CHO-K1 fibroblasts. Intrinsic catalytic activities of GLUT1 transporters in CHO-K1 and 3T3-L1 cells were compared by normalizing these hexose transport rates to GLUT1 content on the cell surface, as measured by two independent methods. Cell surface GLUT1 levels in 3T3-L1 fibroblasts and adipocytes were about 10- and 25-fold higher, respectively, than in CHO-K1 fibroblasts, as assessed with an anti-GLUT1 exofacial domain antiserum, delta. The large excess of cell surface GLUT1 transporters in 3T3-L1 adipocytes relative to CHO-K1 fibroblasts was confirmed by GLUT1 protein immunoblot analysis and by photoaffinity labeling (with 3-({sup 125}I)iodo-4-azidophenethylamido-7-O-succinyldeacetylforskolin) of glucose transporters in isolated plasma membranes. Thus, GLUT1 intrinsic activity is markedly reduced in 3T3-L1 fibroblasts compared with the CHO-K1 fibroblasts, and further reduction occurs upon differentiation to adipocytes. The authors conclude that a mechanism that markedly suppresses basal hexose transport catalyzed by GLUT1 is a major contributor to the dramatic insulin sensitivity of glucose uptake in 3T3-L1 adipocytes.

  7. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

    PubMed

    Xu, Yingke; Nan, Di; Fan, Jiannan; Bogan, Jonathan S; Toomre, Derek

    2016-05-15

    Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation. PMID:27076519

  8. Differentiation of rat brown adipocytes during late foetal development: role of insulin-like growth factor I.

    PubMed Central

    Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M

    1995-01-01

    Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409

  9. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells.

    PubMed

    Gao, Yue; Yao, Yang; Zhu, Yinging; Ren, Guixing

    2015-11-11

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05). PMID:26494490

  10. Phosphorylation state of the glucose transporter from 3T3-L1 adipocytes: effect of insulin and phorbol ester

    SciTech Connect

    Gibbs, E.M.; Allard, W.J.; Lienhard, G.E.

    1986-05-01

    Polyclonal antibodies against the purified human erythrocyte glucose transporter (GT) were used to study the phosphorylation state of GT in (/sup 32/P)orthophosphate-labeled 3T3-L1 adipocytes that were exposed to insulin or phorbol ester. Conditions were established in which the recovery of GT (identified as a polypeptide of M/sub r/ 51,000) after immunoprecipitation from detergent-solubilized adipocytes was about 50% of total cellular transporter, as quantitated by immunoblot analysis. Exposure of adipocytes to insulin (100 nM) for 10 min after prelabeling in /sup 32/P for 90 min, followed by the addition of phorbol myristate acetate (PMA; 1 ..mu..M) for 20 min elicited a marked phosphorylation of GT. Addition of excess purified human erythrocyte GT completely abolished the immunoprecipitation of the 51 K phosphoprotein; this finding validates the conclusion that this phosphoprotein is GT. Treatment with PMA alone resulted in only 30% of the incorporation of /sup 32/P into the 51 K region of the gel compared to that seen with the combination of PMA and insulin. Insulin alone gave only about 20% /sup 32/P incorporation into this region compared to the combination treatment. It remains to be determined if the phosphorylation into the 51 K region of the gel seen after treatment with either of the two agonists alone is into GT. The authors tentative hypothesis is that GT is not phosphorylated in basal cells, and that insulin causes little or no increase in the phosphorylation state. On the other hand, PMA elicits some phosphorylation of GT that can be increased about 3-fold by prior treatment with insulin. Presumably, this increase is due to the translocation of GT to the plasma membrane where it is a better substrate for activated protein kinase C.

  11. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  12. Insulin-stimulated conversion of D-(5-/sup 3/H) glucose to /sup 3/HOH in the perifused isolated rat adipocyte

    SciTech Connect

    Duckworth, W.C.; Peavy, D.E.; Frechette, P.; Solomon, S.S.

    1986-10-01

    Characteristics of basal and insulin-stimulated glucose utilization by perifused adipocytes have been investigated by measuring the formation of /sup 3/HOH from D-(5-/sup 3/H) glucose. At a glucose concentration of 0.55 mmol/L, basal glucose utilization ranged from 0.5 to 1.0 nmol/min/10(6) cells. Perifused adipocytes showed a maximal response to insulin of a threefold to fourfold increase in the conversion of (5-/sup 3/H) glucose to /sup 3/HOH with a half-maximal response at an insulin concentration of 20 microU/mL. The response to insulin was blocked by phlorizin and cytochalasin B, competitive inhibitors of glucose transport, consistent with an effect of insulin on glucose transport. Insulin increased the Vmax for glucose metabolism but had no effect on the apparent affinity for glucose utilization. The characteristics of glucose utilization and the stimulation of glucose metabolism by insulin in the perifused adipocyte are therefore similar to characteristics previously observed with incubated adipocytes. Because insulin can readily be removed from the system, perifused adipocytes are especially suited for studying the termination of insulin action. The termination of insulin-stimulated glucose metabolism occurred at the same rate in the presence of tracer (1 nmol/L) (5-/sup 3/H)-glucose alone as when 0.55 mmol/L glucose or 2 mmol/L pyruvate were added to the perifusion buffer. The halftime for this process in both cases was approximately 40 minutes. These data suggest that the presence of metabolizable substrate is not required for the termination of the insulin response, but the time course suggests that termination requires more than simply insulin-receptor dissociation.

  13. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M.

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  14. Effect of bisphenol A on SOCS-3 and insulin signaling transduction in 3T3-L1 adipocytes.

    PubMed

    Dai, Yue-E; Chen, Wei; Qi, Humin; Liu, Qian-Qi

    2016-07-01

    The aim of the present study was to investigate whether environmental endocrine disrupting chemical, bisphenol A (BPA), affects secretion of suppressor of cytokine signaling 3 (SOCS-3) and insulin signaling transduction in 3T3-L1 adipocytes. 3T3-L1 adipocytes were treated for 0, 2, 6, 12 and 24 h with BPA at 80 µM in serum‑deprived medium. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to detect the mRNA expression levels of SOCS‑3 and protein expression levels of SOCS‑3, insulin receptor substrate 1 (IRS‑1), phosphorylated (p)‑IRS‑1, Akt and p‑Akt. The levels of p‑IRS‑1, Akt and p‑Akt in cultures treated for 6 h with BPA were also analyzed by immunofluorescence. The SOCS‑3 mRNA and protein expression levels were decreased in the 6, 12 and 24 h groups. The levels of p‑IRS‑1 and p‑Akt protein were markedly downregulated, while the level of IRS‑1 and Akt protein remained unaltered among these groups, which was consistent with the results observed using immunofluorescence. BPA may inhibit insulin signal transduction and result in the occurrence of insulin resistance via promoting the expression of SOCS-3. PMID:27176707

  15. Insulin alters cAMP-activated lipolysis but not cAMP-inhibited glycogen synthase in permeabilized adipocytes

    SciTech Connect

    Mooney, R.A.; Wisniewski, J.L.

    1986-05-01

    Lipolysis and, to a lesser extent, glycogen synthase activity are regulated in adipocytes by cellular cAMP and counter-regulated by insulin. These activities were measured in situ in digitonin (20 ..mu..g/ml) permeabilized rat adipocytes. Incorporation of /sup 3/H UDP-glucose into endogenous glycogen in the presence of KF, EDTA and 10mM glucose-6-phosphate was the basis of the G.S. assay. Cellular GS activity determined by this technique was 1.4 +/- 0.2 fold greater than that of matched homogenates. Insulin treatment of intact cells prior to permeabilization increased GS activity ratio (-/+ G-6-P) 2.5 fold when subsequently measured by the in situ assay. Following digitonin permeabilization, addition of cAMP to the suspension medium increased lipolysis 7 fold and decreased GS activity ratio to 0.38 +/- 0.01 from a basal value of 0.44 +/- 0.06. ATP had a negligible effect on lipolysis but decreased GS to 0.16 +/- 0.04. ATP plus cAMP was only slightly more effective on GS than ATP alone. Insulin at 10/sup -9/M inhibited cAMP-dependent lipolysis by 27% but had no effect on the cAMP- or ATP-dependent decrease in GS. These results suggest that insulin's counter-regulatory mechanisms on these two cAMP-dependent processes may be different.

  16. NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice.

    PubMed

    Stromsdorfer, Kelly L; Yamaguchi, Shintaro; Yoon, Myeong Jin; Moseley, Anna C; Franczyk, Michael P; Kelly, Shannon C; Qi, Nathan; Imai, Shin-Ichiro; Yoshino, Jun

    2016-08-16

    Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD(+) biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle and adipose tissue dysfunction, manifested by increased plasma free fatty acid concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. These deleterious alterations were normalized by administering rosiglitazone or a key NAD(+) intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance. PMID:27498863

  17. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes.

    PubMed

    Bruno, Joanne; Brumfield, Alexandria; Chaudhary, Natasha; Iaea, David; McGraw, Timothy E

    2016-07-01

    RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10-SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4. PMID:27354378

  18. Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes.

    PubMed

    Rajan, Meenu Rohini; Nyman, Elin; Kjølhede, Preben; Cedersund, Gunnar; Strålfors, Peter

    2016-07-22

    Insulin resistance is a major aspect of type 2 diabetes (T2D), which results from impaired insulin signaling in target cells. Signaling to regulate forkhead box protein O1 (FOXO1) may be the most important mechanism for insulin to control transcription. Despite this, little is known about how insulin regulates FOXO1 and how FOXO1 may contribute to insulin resistance in adipocytes, which are the most critical cell type in the development of insulin resistance. We report a detailed mechanistic analysis of insulin control of FOXO1 in human adipocytes obtained from non-diabetic subjects and from patients with T2D. We show that FOXO1 is mainly phosphorylated through mTORC2-mediated phosphorylation of protein kinase B at Ser(473) and that this mechanism is unperturbed in T2D. We also demonstrate a cross-talk from the MAPK branch of insulin signaling to stimulate phosphorylation of FOXO1. The cellular abundance and consequently activity of FOXO1 are halved in T2D. Interestingly, inhibition of mTORC1 with rapamycin reduces the abundance of FOXO1 to the levels in T2D. This suggests that the reduction of the concentration of FOXO1 is a consequence of attenuation of mTORC1, which defines much of the diabetic state in human adipocytes. We integrate insulin control of FOXO1 in a network-wide mathematical model of insulin signaling dynamics based on compatible data from human adipocytes. The diabetic state is network-wide explained by attenuation of an mTORC1-to-insulin receptor substrate-1 (IRS1) feedback and reduced abundances of insulin receptor, GLUT4, AS160, ribosomal protein S6, and FOXO1. The model demonstrates that attenuation of the mTORC1-to-IRS1 feedback is a major mechanism of insulin resistance in the diabetic state. PMID:27226562

  19. Evodiamine inhibits insulin-stimulated mTOR-S6K activation and IRS1 serine phosphorylation in adipocytes and improves glucose tolerance in obese/diabetic mice.

    PubMed

    Wang, Ting; Kusudo, Tatsuya; Takeuchi, Tamaki; Yamashita, Yukari; Kontani, Yasuhide; Okamatsu, Yuko; Saito, Masayuki; Mori, Nozomu; Yamashita, Hitoshi

    2013-01-01

    Evodiamine, an alkaloid extracted from the dried unripe fruit of the tree Evodia rutaecarpa Bentham (Rutaceae), reduces obesity and insulin resistance in obese/diabetic mice; however, the mechanism underlying the effect of evodiamine on insulin resistance is unknown. This study investigated the effect of evodiamine on signal transduction relating to insulin resistance using obese/diabetic KK-Ay mice and an in vitro adipocyte culture. There is a significant decrease in the mammalian target of rapamycin (mTOR) and ribosomal S6 protein kinase (S6K) signaling in white adipose tissue (WAT) in KK-Ay mice treated with evodiamine, in which glucose tolerance is improved. In addition, reduction of insulin receptor substrate 1 (IRS1) serine phosphorylation, an indicator of insulin resistance, was detected in their WAT, suggesting suppression of the negative feedback loop from S6K to IRS1. As well as the stimulation of IRS1 and Akt serine phosphorylation, insulin-stimulated phosphorylation of mTOR and S6K is time-dependent in 3T3-L1 adipocytes, whereas evodiamine does not affect their phosphorylation except for an inhibitory effect on mTOR phosphorylation. Moreover, evodiamine inhibits the insulin-stimulated phosphorylation of mTOR and S6K, leading to down-regulation of IRS1 serine phosphorylation in the adipocytes. Evodiamine also stimulates phosphorylation of AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, which may cause down-regulation of mTOR signaling in adipocytes. A similar effect on AMPK, mTOR and IRS1 phosphorylation was found in adipocytes treated with rosiglitazone. These results suggest evodiamine improves glucose tolerance and prevents the progress of insulin resistance associated with obese/diabetic states, at least in part, through inhibition of mTOR-S6K signaling and IRS1 serine phosphorylation in adipocytes. PMID:24391749

  20. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    PubMed

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells. PMID:27117918

  1. Cinnamon extract exhibits insulin-like and independent effects on gene expression in adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamon is beneficial to people with insulin resistance due in part to the insulin-like activity of the cinnamon extract (CE). Molecular effects of CE are limited. This study tested the hypothesis that CE has insulin-like and insulin-independent effects at the molecular level. Quantitative real-tim...

  2. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function.

    PubMed

    Mottillo, Emilio P; Desjardins, Eric M; Crane, Justin D; Smith, Brennan K; Green, Alex E; Ducommun, Serge; Henriksen, Tora I; Rebalka, Irena A; Razi, Aida; Sakamoto, Kei; Scheele, Camilla; Kemp, Bruce E; Hawke, Thomas J; Ortega, Joaquin; Granneman, James G; Steinberg, Gregory R

    2016-07-12

    Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role in regulating BAT and WAT metabolism is unclear. We generated an inducible model for deletion of the two AMPK β subunits in adipocytes (iβ1β2AKO) and found that iβ1β2AKO mice were cold intolerant and resistant to β-adrenergic activation of BAT and beiging of WAT. BAT from iβ1β2AKO mice had impairments in mitochondrial structure, function, and markers of mitophagy. In response to a high-fat diet, iβ1β2AKO mice more rapidly developed liver steatosis as well as glucose and insulin intolerance. Thus, AMPK in adipocytes is vital for maintaining mitochondrial integrity, responding to pharmacological agents and thermal stress, and protecting against nutrient-overload-induced NAFLD and insulin resistance. PMID:27411013

  3. Verification of the antidiabetic effects of cinnamon (Cinnamomum zeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes.

    PubMed

    Shen, Yan; Fukushima, Misato; Ito, Yoshimasa; Muraki, Etsuko; Hosono, Takashi; Seki, Taiichiro; Ariga, Toyohiko

    2010-01-01

    It has long been believed that an intake of cinnamon (Cinnamomum zeylanicum) alleviates diabetic pathological conditions. However, it is still controversial whether the beneficial effect is insulin-dependent or insulin-mimetic. This study was aimed at determining the insulin-independent effect of cinnamon. Streptozotocin-induced diabetic rats were divided into four groups and orally administered with an aqueous cinnamon extract (CE) for 22 d. The diabetic rats that had taken CE at a dose of more than 30 mg/kg/d were rescued from their hyperglycemia and nephropathy, and these rats were found to have upregulation of uncoupling protein-1 (UCP-1) and glucose transporter 4 (GLUT4) in their brown adipose tissues as well as in their muscles. This was verified by using 3T3-L1 adipocytes in which CE upregulates GLUT4 translocation and increases the glucose uptake. CE exhibited its anti-diabetic effect independently from insulin by at least two mechanisms: i) upregulation of mitochondrial UCP-1, and ii) enhanced translocation of GLUT4 in the muscle and adipose tissues. PMID:21150113

  4. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity

    PubMed Central

    Zhou, Xiaoshuang; Li, Rongshan; Liu, Xinyan; Wang, Lihua; Hui, Peng; Chan, Lawrence; Saha, Pradip K.; Hu, Zhaoyong

    2016-01-01

    Irisin reportedly promotes the conversion of preadipocytes into “brown-like” adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice. PMID:27411515

  5. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity.

    PubMed

    Zhou, Xiaoshuang; Li, Rongshan; Liu, Xinyan; Wang, Lihua; Hui, Peng; Chan, Lawrence; Saha, Pradip K; Hu, Zhaoyong

    2016-01-01

    Irisin reportedly promotes the conversion of preadipocytes into "brown-like" adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice. PMID:27411515

  6. PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin resistant high-fat fed rats.

    PubMed

    Sato, Daisuke; Oda, Kanako; Kusunoki, Masataka; Nishina, Atsuyoshi; Takahashi, Kazuaki; Feng, Zhonggang; Tsutsumi, Kazuhiko; Nakamura, Takao

    2016-02-15

    It was reported that adipocyte size is potentially correlated in part to amount of long chain polyunsaturated fatty acids (PUFAs) and insulin resistance because several long chain PUFAs can be ligands of peroxisome proliferator-activated receptors (PPARs). In our previous study, marked reduction of PUFAs was observed in insulin-resistant high-fat fed rats, which may indicate that PUFAs are consumed to improve insulin resistance. Although PPARγ agonist, well known as an insulin sensitizer, proliferates small adipocytes, the effects of PPARγ agonist on FA composition in adipose tissue have not been clarified yet. In the present study, we administered pioglitazone, a PPARγ agonist, to high-fat fed rats, and measured their FA composition of triglyceride fraction in adipose tissue and adipocyte diameters in pioglitazone-treated (PIO) and non-treated (control) rats. Insulin sensitivity was obtained with hyperinsulinemic euglycemic clamp. Average adipocyte diameter in the PIO group were smaller than that in the control one without change in tissue weight. In monounsaturated FAs (MUFAs), 14:1n-5, 16:1n-7, and 18:1n-9 contents in the PIO group were lower than those, respectively, in the control group. In contrast, 22:6n-3, 20:3n-6, 20:4n-6, and 22:4n-6 contents in the PIO group were higher than those, respectively, in the control group. Insulin sensitivity was higher in the PIO group than in the control one. These findings suggest that PPARγ activation lowered MUFAs whereas suppressed most of C20 or C22 PUFAs reduction, and that the change of fatty acid composition may be relevant with increase in small adipocytes. PMID:26825545

  7. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase

    PubMed Central

    Duran, Xavier; Pachón, Gisela; Vázquez-Carballo, Ana; Roche, Kelly; Núñez-Roa, Catalina; Garrido-Sánchez, Lourdes; Tinahones, Francisco J.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. Methods ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. Results ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. Conclusions ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner. PMID:26068931

  8. Characterization of Insulin-Responsive GLUT4 Storage Vesicles Isolated from 3T3-L1 Adipocytes

    PubMed Central

    Hashiramoto, Mitsuru; James, David E.

    2000-01-01

    Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GLUT4 storage compartment in order to determine the relationship of this compartment to other organelles, its components, and its presence in different cell types. A crude intracellular membrane fraction was prepared from 3T3-L1 adipocytes and subjected to iodixanol equilibrium sedimentation analysis. Two distinct GLUT4-containing vesicle peaks were resolved by this procedure. The lighter of the two peaks (peak 2) was comprised of two overlapping peaks: peak 2b contained recycling endosomal markers such as the transferrin receptor (TfR), cellubrevin, and Rab4, and peak 2a was enriched in TGN markers (syntaxin 6, the cation-dependent mannose 6-phosphate receptor, sortilin, and sialyltransferase). Peak 1 contained a significant proportion of GLUT4 with a smaller but significant amount of cellubrevin and relatively little TfR. In agreement with these data, internalized transferrin (Tf) accumulated in peak 2 but not peak 1. There was a quantitatively greater loss of GLUT4 from peak 1 than from peak 2 in response to insulin stimulation. These data, combined with the observation that GLUT4 became more sensitive to ablation with Tf-horseradish peroxidase following insulin treatment, suggest that the vesicles enriched in peak 1 are highly insulin responsive. Iodixanol gradient analysis of membranes isolated from other cell types indicated that a substantial proportion of GLUT4 was targeted to peak 1 in skeletal muscle, whereas in CHO cells most of the GLUT4 was targeted to peak 2. These results indicate that in insulin-sensitive cells GLUT4 is targeted to a subpopulation of vesicles

  9. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    SciTech Connect

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  10. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes.

    PubMed

    Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Wabitsch, Martin; Storelli, Carlo; Wright, Matthew; De Caterina, Raffaele

    2016-05-01

    Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism. PMID:26976796

  11. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    PubMed Central

    Hafizi Abu Bakar, Mohamad; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-01-01

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes. PMID:25474091

  12. Compartment ablation analysis of the insulin-responsive glucose transporter (GLUT4) in 3T3-L1 adipocytes.

    PubMed Central

    Livingstone, C; James, D E; Rice, J E; Hanpeter, D; Gould, G W

    1996-01-01

    The translocation of a unique facilitative glucose transporter isoform (GLUT4) from an intracellular site to the plasma membrane accounts for the large insulin-dependent increase in glucose transport observed in muscle and adipose tissue. The intracellular location of GLUT4 in the basal state and the pathway by which it reaches the cell surface upon insulin stimulation are unclear. Here, we have examined the colocalization of GLUT4 with the transferrin receptor, a protein which is known to recycle through the endosomal system. Using an anti-GLUT4 monoclonal antibody we immunoisolated a vesicular fraction from an intracellular membrane fraction of 3T3-L1 adipocytes that contained > 90% of the immunoreactive GLUT4 found in this fraction, but only 40% of the transferrin receptor (TfR). These results suggest only a limited degree of colocalization of these proteins. Using a technique to cross-link and render insoluble ("ablate') intracellular compartments containing the TfR by means of a transferrin-horseradish peroxidase conjugate (Tf-HRP), we further examined the relationship between the endosomal recycling pathway and the intracellular compartment containing GLUT4 in these cells. Incubation of non-stimulated cells with Tf-HRP for 3 h at 37 degrees C resulted in quantitative ablation of the intracellular TfR, GLUT1 and mannose-6-phosphate receptor and a shift in the density of Rab5-positive membranes. In contrast, only 40% of intracellular GLUT4 was ablated under the same conditions. Ablation was specific for the endosomal system as there was no significant ablation of either TGN38 or lgp120, which are markers for the trans Golgi reticulum and lysosomes respectively. Subcellular fractionation analysis revealed that most of the ablated pools of GLUT4 and TfR were found in the intracellular membrane fraction. The extent of ablation of GLUT4 from the intracellular fraction was unchanged in cells which were insulin-stimulated prior to ablation, whereas GLUT1 exhibited

  13. FDP-E induces adipocyte inflammation and suppresses insulin-stimulated glucose disposal: effect of inflammation and obesity on fibrinogen Bβ mRNA.

    PubMed

    Kang, Minsung; Vaughan, Roger A; Paton, Chad M

    2015-12-01

    Obesity is associated with increased fibrinogen production and fibrin formation, which produces fibrin degradation products (FDP-E and FDP-D). Fibrin and FDPs both contribute to inflammation, which would be expected to suppress glucose uptake and insulin signaling in adipose tissue, yet the effect of FDP-E and FDP-D on adipocyte function and glucose disposal is completely unknown. We tested the effects of FDPs on inflammation in 3T3-L1 adipocytes and primary macrophages and adipocyte glucose uptake in vitro. High-fat-fed mice increased hepatic fibrinogen mRNA expression ninefold over chow-fed mice, with concomitant increases in plasma fibrinogen protein levels. Obese mice also displayed increased fibrinogen content of epididymal fat pads. We treated cultured 3T3-L1 adipocytes and primary macrophages with FDP-E, FDP-D, or fibrinogen degradation products (FgnDP-E). FDP-D and FgnDP-E had no effect on inflammation or glucose uptake. Cytokine mRNA expression in RAW264.7 macrophage-like cells and 3T3-L1 adipocytes treated with FDP-E induced inflammation with maximal effects at 100 nM and 6 h. Insulin-stimulated 2-deoxy-d-[(3)H]glucose uptake was reduced by 71% in adipocytes treated with FDP-E. FDP-E, but not FDP-D or FgnDP-E, induces inflammation in macrophages and adipocytes and decreases glucose uptake in vitro. FDP-E may contribute toward obesity-associated acute inflammation and glucose intolerance, although its chronic role in obesity remains to be elucidated. PMID:26447203

  14. Adipocyte-specific Disruption of Fat-specific Protein 27 Causes Hepatosteatosis and Insulin Resistance in High-fat Diet-fed Mice*

    PubMed Central

    Tanaka, Naoki; Takahashi, Shogo; Matsubara, Tsutomu; Jiang, Changtao; Sakamoto, Wataru; Chanturiya, Tatyana; Teng, Ruifeng; Gavrilova, Oksana; Gonzalez, Frank J.

    2015-01-01

    White adipose tissue (WAT) functions as an energy reservoir where excess circulating fatty acids are transported to WAT, converted to triglycerides, and stored as unilocular lipid droplets. Fat-specific protein 27 (FSP27, CIDEC in humans) is a lipid-coating protein highly expressed in mature white adipocytes that contributes to unilocular lipid droplet formation. However, the influence of FSP27 in adipose tissue on whole-body energy homeostasis remains unclear. Mice with adipocyte-specific disruption of the Fsp27 gene (Fsp27ΔAd) were generated using an aP2-Cre transgene with the Cre/LoxP system. Upon high-fat diet feeding, Fsp27ΔAd mice were resistant to weight gain. In the small WAT of these mice, small adipocytes containing multilocular lipid droplets were dispersed. The expression levels of the genes associated with mitochondrial abundance and brown adipocyte identity were increased, and basal lipolytic activities were significantly augmented in adipocytes isolated from Fsp27ΔAd mice compared with the Fsp27F/F counterparts. The impaired fat-storing function in Fsp27ΔAd adipocytes and the resultant lipid overflow from WAT led to marked hepatosteatosis, dyslipidemia, and systemic insulin resistance in high-fat diet-treated Fsp27ΔAd mice. These results demonstrate a critical role for FSP27 in the storage of excess fat in WAT with minimizing ectopic fat accumulation that causes insulin-resistant diabetes and non-alcoholic fatty liver disease. This mouse model may be useful for understanding the significance of fat-storing properties of white adipocytes and the role of local FSP27 in whole-body metabolism and estimating the pathogenesis of human partial lipodystrophy caused by CIDEC mutations. PMID:25477509

  15. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    SciTech Connect

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. )

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  16. SPARC is over-expressed in adipose tissues of diet-induced obese rats and causes insulin resistance in 3T3-L1 adipocytes.

    PubMed

    Shen, Yang; Zhao, Yuyan; Yuan, Lizhi; Yi, Wei; Zhao, Rui; Yi, Qianru; Yong, Tongwu

    2014-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a secretory multifunctional matricellular glycoprotein. High circulating levels of SPARC have been reported to be associated with obesity and insulin resistance. The aim of the present study was to investigate whether SPARC induces insulin resistance and mitochondrial dysfunction in adipocytes. Our results showed that feeding high fat diet to rats for 12 weeks significantly increased SPARC expression in adipose tissues at both mRNA and protein levels. Moreover, SPARC overexpression in stably transfected 3T3-L1 cells induced insulin resistance and mitochondrial dysfunction, as evidenced by inhibition of insulin-stimulated glucose transport, lower ATP synthesis and mitochondrial membrane potential, reduced expression of glucose transporter 4 (GLUT4), and increased levels of reactive oxygen species (ROS) in mature adipocytes. Finally, overexpression of SPARC also modulated the expression levels of several inflammatory cytokines, which play important roles in insulin resistance, glucose and lipid metabolism during adipogenesis. In conclusion, our data suggest that SPARC is involved in obesity-induced adipose insulin resistance and may serve as a potential target in the treatment of obesity and obesity-related insulin resistance. PMID:23910024

  17. The interaction of /sup 125/I-insulin with cultured 3T3-L1 adipocytes: quantitative analysis by the hypothetical grain method

    SciTech Connect

    Fan, J.Y.; Carpentier, J.L.; Van Obberghen, E.; Blackett, N.M.; Grunfeld, C.; Gorden, P.; Orci, L.

    1983-07-01

    The murine 3T3-L1 fibroblast under appropriate incubation conditions differentiates into an adipocyte phenotype. This 3T3-L1 adipocyte exhibits many of the morphologic, biochemical, and insulin-responsive features of the normal rodent adipocyte. Using quantitative electron microscopic (EM) autoradiography we find that, when /sup 125/I-insulin is incubated with 3T3-L1 adipocytes, the ligand at early times of incubation localizes to the plasma membrane of the cell preferentially to microvilli and coated pits. When the incubation is continued at 37 degrees C, /sup 125/I-insulin is internalized by the cells and preferential binding to the villous surface is lost. With the internalization of the ligand, two intracellular structures become labeled, as determined by the method of hypothetical grain analysis. These include large clear, presumably endocytotic, vesicles and multivesicular bodies. Over the first hour of incubation the labeling of these structures increases in parallel, but in the second hour they diverge: the labeling of multivesicular bodies and other lysosomal forms continuing to increase and the labeling of large clear vesicles decreasing. At 3 hours limited but significant labeling occurs in small Golgi-related vesicles that have the typical distribution of GERL. The distinct morphologic features of this cell make it ideal for a quantitative morphologic analysis and allow for an unambiguous view of the sequence of events involved in receptor-mediated endocytosis of a polypeptide hormone. These events are likely to be representative of the processing of insulin by the mature rodent adipocyte.

  18. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Chan, Pei-Chi; Hsiao, Fone-Ching; Chang, Hao-Ming; Wabitsch, Martin; Hsieh, Po Shiuan

    2016-06-01

    We examined the involvement of adipocyte cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2)-prostaglandin E receptor (EP)3-mediated signaling during hypertrophy and hypoxia in the development of obesity-associated adipose tissue (AT) inflammation and insulin resistance. The experiments were conducted with high-fat diet (HFD)-induced obese rats, db/db mice, human subjects, and 3T3-L1 and the human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes; the groups were treated with selective inhibitors of COX-2 [celecoxib 30 mg/kg, half maximal inhibitory concentration (IC50) ≈ 0.04 µM] and EP3 (L-798106 100 µg/kg, IC50 ≈ 0.5 µM) or a short interfering RNA. There were strong, positive correlations between adipocyte COX-2 and EP3 gene expressions and the AT TNF-α and monocyte chemotactic protein-1 contents and the homeostatic model assessment for insulin resistance in HFD-induced obese rats, as well as body mass index in human subjects. Treatment with COX-2 and EP3 inhibitors significantly reversed AT inflammatory gene and protein expressions (-50%) and impaired glucose and insulin tolerance in db/db mice. COX-2 inhibition diminished the chemotaxis of adipocytes isolated from HFD rats to macrophages and T cells. Targeting inhibition of adipocyte COX-2 and EP3 during hypertrophy and hypoxia reversed the release of the augmented proinflammatory adipokines and the diminished adiponectin and also suppressed NF-κB and hypoxia-inducible factor-1α transcription activation. These findings suggest that adipocyte COX-2 PGE2-EP3-mediated signaling is crucially involved in the development of obesity-associated AT inflammation and insulin resistance.-Chan, P.-C., Hsiao, F.-C., Chang, H.-M., Wabitsch, M., Hsieh, P. S. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. PMID:26932930

  19. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling.

    PubMed

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L; Piroli, Gerardo G; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J; Koh, Ho-Jin

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. PMID:26801556

  20. Expression of a dominant interfering dynamin mutant in 3T3L1 adipocytes inhibits GLUT4 endocytosis without affecting insulin signaling.

    PubMed

    Kao, A W; Ceresa, B P; Santeler, S R; Pessin, J E

    1998-09-25

    To examine the role of clathrin-coated vesicle endocytosis in insulin receptor signaling and GLUT4 trafficking, we used recombinant adenovirus to express a dominant interfering mutant of dynamin (K44A/dynamin) in 3T3L1 adipocytes. Functional expression of K44A/dynamin, as measured by inhibition of transferrin receptor internalization, did not affect insulin-stimulated insulin receptor autophosphorylation, Shc tyrosine phosphorylation, or mitogen-activated protein kinase activation. Although the tyrosine phosphorylation of insulin receptor substrate-1 was slightly reduced, correlating with a 25% decrease in insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, insulin-stimulated Akt kinase activation was unaffected. In contrast, expression of K44A/dynamin resulted in the cell-surface accumulation of GLUT4 under basal conditions and an inhibition of GLUT4 endocytosis without affecting insulin-stimulated GLUT4 exocytosis. These data demonstrate that disruption of clathrin-mediated endocytosis does not significantly perturb insulin receptor signal transduction pathways. Furthermore, K44A/dynamin expression causes an accumulation of GLUT4 at the cell surface, suggesting that GLUT4 vesicles exist in at least two distinct intracellular compartments, one that undergoes continuous recycling and a second that is responsive to insulin. PMID:9738014

  1. Age-related changes in the response of rat adipocytes to insulin: evidence for a critical role for inositol phosphoglycans and cAMP.

    PubMed

    Kunjara, Sirilaksana; Greenbaum, A Leslie; Rademacher, Thomas W; McLean, Patricia

    2010-08-01

    Adipose tissue plays a pivotal role in ageing and longevity; many studies, both human and animal, have focussed on the effects of food limitation. Here we present a new model based on striking differences between two 'normal' inbred strains of albino Wistar rats the Charles River (CR) and Harlan Olac (HO) that have marked differences in age-related accumulation of fat and insulin-stimulated rates of glucose incorporation into lipid in the epididymal fat pads (EFP). The incorporation [U-(14)C]glucose into lipid by adipocytes showed that the CR group had a twofold higher basal rate of lipogenesis and a greater response to insulin in vitro, exceptionally, adipocytes from CR group maintained the high response to insulin to late adulthood while retaining the lower EFP weight/100 g body weight. Inositol phosphoglycan A-type (IPG-A), a putative insulin second messenger, was 3.5-fold higher and cAMP significantly lower per EFP in the CR versus HO groups. Plasma insulin levels were similar and plasma leptin higher in CR versus HO groups. The anomaly of a higher rate of lipogenesis and response to insulin and lower EFP weight in the CR group is interpreted as the resultant effect of a faster turnover of lipid and stimulating effect of leptin in raising fatty acid oxidation by muscle, potentially key to the lower accumulation of visceral fat. The metabolic profile of the CR strain provides a template that could be central to therapies that may lead to the lowering of both adipose and non-adipocyte lipid accumulation in humans in ageing. PMID:20336370

  2. Isomeric C12-alkamides from the roots of Echinacea purpurea improve basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Kotowska, Dorota; El-Houri, Rime B; Borkowski, Kamil; Petersen, Rasmus K; Fretté, Xavier C; Wolber, Gerhard; Grevsen, Kai; Christensen, Kathrine B; Christensen, Lars P; Kristiansen, Karsten

    2014-12-01

    Echinacea purpurea has been used in traditional medicine as a remedy for the treatment and prevention of upper respiratory tract infections and the common cold. Recent investigations have indicated that E. purpurea also has an effect on insulin resistance. A dichloromethane extract of E. purpurea roots was found to enhance glucose uptake in adipocytes and to activate peroxisome proliferator-activated receptor γ. The purpose of the present study was to identify the bioactive compounds responsible for the potential antidiabetic effect of the dichloromethane extract using a bioassay-guided fractionation approach. Basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes were used to assess the bioactivity of extract, fractions and isolated metabolites. A peroxisome proliferator-activated receptor γ transactivation assay was used to determine the peroxisome proliferator-activated receptor γ activating properties of the extract, active fractions and isolated metabolites. Two novel isomeric dodeca-2E,4E,8Z,10E/Z-tetraenoic acid 2-methylbutylamides together with two known C12-alkamides and α-linolenic acid were isolated from the active fractions. The isomeric C12-alkamides were found to activate peroxisome proliferator-activated receptor γ, to increase basal and insulin-dependent glucose uptake in adipocytes in a dose-dependent manner, and to exhibit characteristics of a peroxisome proliferator-activated receptor γ partial agonist. PMID:25371981

  3. Postnatal testosterone exposure results in insulin resistance, enlarged mesenteric adipocytes, and an atherogenic lipid profile in adult female rats: comparisons with estradiol and dihydrotestosterone.

    PubMed

    Alexanderson, Camilla; Eriksson, Elias; Stener-Victorin, Elisabet; Lystig, Theodore; Gabrielsson, Britt; Lönn, Malin; Holmäng, Agneta

    2007-11-01

    Postnatal events contribute to features of the metabolic syndrome in adulthood. In this study, postnatally administered testosterone reduced insulin sensitivity and increased the mesenteric fat depot, the size of mesenteric adipocytes, serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides, and the atherogenic index in adult female rats. To assess the involvement of estrogen and androgen receptors in these programming effects, we compared testosterone-exposed rats to rats exposed to estradiol or dihydrotestosterone (DHT). Estradiol-treated rats had lower insulin sensitivity than testosterone-treated rats and, like those rats, had enlarged mesenteric adipocytes and increased triglyceride levels. DHT also reduced insulin sensitivity but did not mimic the other metabolic effects of testosterone. All treated rats were probably anovulatory, but only those treated with testosterone had reduced testosterone levels. This study confirms our previous finding that postnatal administration of testosterone reduces insulin sensitivity in adult female rats and shows that this effect is accompanied by unfavorable changes in mesenteric fat tissue and in serum lipid levels. The findings in the estradiol and DHT groups suggest that estrogen receptors exert stronger metabolic programming effects than androgen receptors. Thus, insults such as sex hormone exposure in early life may have long-lasting effects, thereby creating a predisposition to disturbances in insulin sensitivity, adipose tissue, and lipid profile in adulthood. PMID:17656458

  4. Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamon has been used to treat people with type 2 diabetes based on the insulin-like activity of cinnamon polyphenol extract (CPE) observed in cell culture, animal, and human studies. Molecular characterization of the effect of CPE, however, is limited. This study tested the hypothesis that CPE has...

  5. Effect of insulin on the rates of synthesis and degradation of GLUT1 and GLUT4 glucose transporters in 3T3-L1 adipocytes.

    PubMed Central

    Sargeant, R J; Pâquet, M R

    1993-01-01

    The effect of continuous insulin stimulation on the rates of turnover and on the total cellular contents of the glucose-transporter proteins GLUT1 and GLUT4 in 3T3-L1 adipocytes was investigated. Pulse-and-chase studies with [35S]methionine followed by immunoprecipitation of GLUT1 and GLUT4 with isoform-specific antibodies revealed the half-lives of these proteins to be 19 h and 50 h respectively. Inclusion of 100 nM insulin in the chase medium resulted in a decrease in the half-lives of both proteins to about 15.5 h. This effect of insulin was specific for the glucose-transporter proteins, as the average half-life of all proteins was found to be 55 h both with and without insulin stimulation. The effect of insulin on the rate of synthesis of the glucose transporters was determined by the rate of incorporation of [35S]methionine. After 24 h of insulin treatment, the rate of synthesis of GLUT1 and GLUT4 were elevated over control levels by 3.5-fold and 2-fold respectively. After 72 h of treatment under the same conditions, the rate of synthesis of GLUT1 remained elevated by 2.5-fold, whereas the GLUT4 synthesis rate was not different from control levels. Western-blot analysis of total cellular membranes revealed a 4.5-fold increase in total cellular GLUT1 content and a 50% decrease in total cellular GLUT4 after 72 h of insulin treatment. These observations suggest that the rates of synthesis and degradation of GLUT1 and GLUT4 in 3T3-L1 adipocytes are regulated independently and that these cells respond to prolonged insulin treatment by altering the metabolism of GLUT1 and GLUT4 proteins in a specific manner. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8457217

  6. 4-Hydroxyisoleucine ameliorates an insulin resistant-like state in 3T3-L1 adipocytes by regulating TACE/TIMP3 expression

    PubMed Central

    Gao, Feng; Du, Wen; Zafar, Mohammad Ishraq; Shafqat, Raja Adeel; Jian, Liumeng; Cai, Qin; Lu, Furong

    2015-01-01

    Background Obesity-associated insulin resistance (IR) is highly correlated with soluble tumor necrosis factor-α (sTNF-α), which is released from transmembranous TNF-α by TNF-α converting enzyme (TACE). In vivo, TACE activity is suppressed by tissue inhibitor of metalloproteinase 3 (TIMP3). Agents that can interact with TACE/TIMP3 to improve obesity-related IR would be highly valuable. In the current study, we assessed whether (2S,3R,4S)-4-hydroxyisoleucine (4-HIL) could modulate TACE/TIMP3 and ameliorate an obesity-induced IR-like state in 3T3-L1 adipocytes. Materials and methods 3T3-L1 adipocytes were incubated in the presence of 25 mM glucose and 0.6 nM insulin to induce an IR-like state, and were then treated with different concentrations of 4-HIL or 10 µM pioglitazone (positive control). The glucose uptake rate was determined using the 2-deoxy-[3H]-d-glucose method, and the levels of sTNF-α in the cell supernatant were determined using ELISA. The protein expression of TACE, TIMP3, and insulin signaling-related molecules was measured using western blotting. Results Exposure to high glucose and insulin for 18 hours increased the levels of sTNF-α in the cell supernatant. The phosphorylation of insulin receptor substrate-1 (IRS-1) Ser307 and Akt Ser473 was increased, whereas the protein expression of IRS-1, Akt, and glucose transporter-4 was decreased. The insulin-induced glucose uptake was reduced by 67% in 3T3-L1 adipocytes, which indicated the presence of an IR-like state. The above indexes, which demonstrated the successful induction of an IR-like state, were reversed by 4-HIL in a dose-dependent manner by downregulating and upregulating the protein expression of TACE and TIMP3 proteins, respectively. Conclusion 4-HIL improved an obesity-associated IR-like state in 3T3-L1 adipocytes by targeting TACE/TIMP3 and the insulin signaling pathway. PMID:26527864

  7. Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity.

    PubMed

    Ryan, M; McInerney, D; Owens, D; Collins, P; Johnson, A; Tomkin, G H

    2000-02-01

    Abnormalities in endothelial function may be associated with increased cardiovascular risk in diabetic patients. We examined the effect of an oleic-acid-rich diet on insulin resistance and endothelium-dependent vasoreactivity in type 2 diabetes. Eleven type 2 diabetic patients were changed from their usual linoleic-acid-rich diet and treated for 2 months with an oleic-acid-rich diet. Insulin-mediated glucose transport was measured in isolated adipocytes. Fatty acid composition of the adipocyte membranes was determined by gas-liquid chromatography and flow-mediated endothelium-dependent and -independent vasodilatation were measured in the superficial femoral artery at the end of each dietary period. There was a significant increase in oleic acid and a decrease in linoleic acid on the oleic-acid-rich diet (p<0.0001). Diabetic control was not different between the diets, but there was a small but significant decrease in fasting glucose/insulin on the oleic-acid-rich diet. Insulin-stimulated (1 ng/ml) glucose transport was significantly greater on the oleic- acid-rich diet (0.56+/-0.17 vs. 0.29+/-0.14 nmol/10(5) cells/3 min, p<0.0001). Endothelium-dependent flow-mediated vasodilatation (FMD) was significantly greater on the oleic-acid-rich diet (3.90+/-0.97% vs. 6.12+/-1.36% p<0.0001). There was a significant correlation between adipocyte membrane oleic/linoleic acid and insulin-mediated glucose transport (p<0.001) but no relationship between insulin-stimulated glucose transport and change in endothelium-dependent FMD. There was a significant positive correlation between adipocyte membrane oleic/linoleic acid and endothelium-dependent FMD (r=0.61, p<0.001). Change from polyunsaturated to monounsaturated diet in type 2 diabetes reduced insulin resistance and restored endothelium-dependent vasodilatation, suggesting an explanation for the anti-atherogenic benefits of a Mediterranean-type diet. PMID:10700478

  8. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition.

    PubMed

    Aikio, Mari; Elamaa, Harri; Vicente, David; Izzi, Valerio; Kaur, Inderjeet; Seppinen, Lotta; Speedy, Helen E; Kaminska, Dorota; Kuusisto, Sanna; Sormunen, Raija; Heljasvaara, Ritva; Jones, Emma L; Muilu, Mikko; Jauhiainen, Matti; Pihlajamäki, Jussi; Savolainen, Markku J; Shoulders, Carol C; Pihlajaniemi, Taina

    2014-07-29

    Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia. These abnormalities did not develop in P1-null mice, which produce medium/long collagen XVIII. White adipose tissue samples from P2-null mice contain larger reserves of a cell population enriched in early adipocyte progenitors; however, their embryonic fibroblasts had ∼ 50% lower adipocyte differentiation potential. Differentiating 3T3-L1 fibroblasts into mature adipocytes produced striking increases in P2 gene-products and dramatic falls in P1-transcribed mRNA, whereas Wnt3a-induced dedifferentiation of mature adipocytes produced reciprocal changes in P1 and P2 transcript levels. P2-derived gene-products containing frizzled-like sequences bound the potent adipogenic inhibitor, Wnt10b, in vitro. Previously, we have shown that these same sequences bind Wnt3a, inhibiting Wnt3a-mediated signaling. P2-transcript levels in visceral fat were positively correlated with serum free fatty acid levels, suggesting that collagen α1 (XVIII) expression contributes to regulation of adipose tissue metabolism in visceral obesity. Medium/long collagen XVIII is deposited in the Space of Disse, and interaction between hepatic apolipoprotein E and this proteoglycan is lost in P2-null mice. These results describe a previously unidentified extracellular matrix-directed mechanism contributing to the control of the multistep adipogenic program that determines the number of precursors committing to adipocyte differentiation, the maintenance of the differentiated state, and the physiological consequences of its impairment on ectopic fat

  9. Cyanidin-3-O-β-Glucoside and Protocatechuic Acid Exert Insulin-Like Effects by Upregulating PPARγ Activity in Human Omental Adipocytes

    PubMed Central

    Scazzocchio, Beatrice; Varì, Rosaria; Filesi, Carmelina; D’Archivio, Massimo; Santangelo, Carmela; Giovannini, Claudio; Iacovelli, Annunziata; Silecchia, Gianfranco; Volti, Giovanni Li; Galvano, Fabio; Masella, Roberta

    2011-01-01

    OBJECTIVE Insulin resistance (IR) represents an independent risk factor for metabolic, cardiovascular, and neoplastic disorders. Preventing/attenuating IR is a major objective to be reached to preserve population health. Because many insulin-sensitizing drugs have shown unwanted side effects, active harmless compounds are sought after. Dietary anthocyanins have been demonstrated to ameliorate hyperglycemia and insulin sensitivity. This study aimed at investigating whether cyanidin-3-O-β-glucoside (C3G) and its metabolite protocatechuic acid (PCA) might have a role in glucose transport activation in human omental adipocytes and 3T3-L1 cells. RESEARCH DESIGN AND METHODS In cells treated with 50 µmol/L C3G and 100 µmol/L PCA, [3H]-2-deoxyglucose uptake, GLUT4 translocation by immunoblotting, adiponectin secretion, and peroxisome proliferator–activated receptor-γ (PPARγ) activation by enzyme-linked immunosorbent assay kits were evaluated. Parallel experiments were carried out in murine adipocyte 3T3-L1. To define the role of PPARγ in modulating polyphenol effects, small interfering RNA technique and PPARγ antagonist were used to inhibit transcription factor activity. RESULTS C3G and PCA increased adipocyte glucose uptake (P < 0.05) and GLUT4 membrane translocation (P < 0.01). Significant increases (P < 0.05) in nuclear PPARγ activity, as well as in adiponectin and GLUT4 expressions (P < 0.01), were also shown. It is interesting that PPARγ inhibition counteracted the polyphenol-induced adiponectin and GLUT4 upregulations, suggesting a direct involvement of PPARγ in this process. CONCLUSIONS Our study provides evidence that C3G and PCA might exert insulin-like activities by PPARγ activation, evidencing a causal relationship between this transcription factor and adiponectin and GLUT4 upregulation. Dietary polyphenols could be included in the preventive/therapeutic armory against pathological conditions associated with IR. PMID:21788573

  10. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila.

    PubMed

    Armstrong, Alissa R; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2014-12-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk. PMID:25359724

  11. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila

    PubMed Central

    Armstrong, Alissa R.; Laws, Kaitlin M.; Drummond-Barbosa, Daniela

    2014-01-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk. PMID:25359724

  12. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  13. Potential impact of mature adipocyte dedifferentiation in terms of cell numbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature adipocytes possess the capability to dedifferentiate and form proliferative-competent progeny cells. Little is currently known about the daughter cells, or the impact of such in vitro physiology in an in vivo situation. The present paper discusses implications of and impact of this physiology...

  14. Optimized mixture of hops rho iso-alpha acids-rich extract and acacia proanthocyanidins-rich extract reduces insulin resistance in 3T3-L1 adipocytes and improves glucose and insulin control in db/db mice

    PubMed Central

    Darland, Gary; Konda, Veera Reddy; Pacioretty, Linda M.; Chang, Jyh-Lurn; Bland, Jeffrey S.; Babish, John G.

    2012-01-01

    Rho iso-alpha acids-rich extract (RIAA) from Humulus lupulus (hops) and proanthocyanidins-rich extracts (PAC) from Acacia nilotica exert anti-inflammatory and anti-diabetic activity in vitro and in vivo. We hypothesized that a combination of these two extracts would exert enhanced effects in vitro on inflammatory markers and insulin signaling, and on nonfasting glucose and insulin in db/db mice. Over 49 tested combinations, RIAA:PAC at 5:1 (6.25 µg/mL) exhibited the greatest reductions in TNFα-stimulated lipolysis and IL-6 release in 3T3-L1 adipocytes, comparable to 5 µg/mL troglitazone. Pretreatment of 3T3-L1 adipocytes with this combination (5 µg/mL) also led to a 3-fold increase in insulin-stimulated glucose uptake that was comparable to 5 µg/mL pioglitazone or 901 µg/mL aspirin. Finally, db/db mice fed with RIAA:PAC at 5:1 (100 mg/kg) for 7 days resulted in 22% decrease in nonfasting glucose and 19% decrease in insulin that was comparable to 0.5 mg/kg rosiglitazone and better than 100 mg/kg metformin. RIAA:PAC mixture may have the potential to be an alternative when conventional therapy is undesirable or ineffective, and future research exploring its long-term clinical application is warranted. PMID:23198019

  15. Inhibition of acetyl-CoA carboxylase activity in isolated rat adipocytes incubated with glucagon. Interactions with the effects of insulin, adrenaline and adenosine deaminase

    PubMed Central

    Zammit, Victor A.; Corstorphine, Clark G.

    1982-01-01

    1. Adipocytes isolated from epididymal fat-pads of fed rats were incubated with different concentrations of glucagon, insulin, adrenaline and adenosine deaminase, and the effects of these agents on the `initial' activity of acetyl-CoA carboxylase in the cells were studied. 2. Glucagon (at concentrations between 0.1 and 10nm) inhibited acetyl-CoA carboxylase activity. Maximal inhibition was approx. 70% of the `control' activity in the absence of added hormone, and the concentration of hormone required for half-maximal inhibition was 0.3–0.5nm-glucagon. 3. Incubation of cells with adenosine deaminase resulted in a similar inhibition of acetyl-CoA carboxylase activity. Preincubation of adipocytes with adenosine deaminase did not alter either the sensitivity of carboxylase activity to increasing concentrations of glucagon or the maximal extent of inhibition. 4. Adrenaline inhibited acetyl-CoA carboxylase to the same extent as glucagon. Preincubation of the cells with glucagon did not alter the sensitivity of enzyme activity to adrenaline or the degree of maximal inhibition. 5. Insulin activated the enzyme by 70–80% of `control' activity. Preincubation of the cells with glucagon did not alter the concentration of insulin required to produce half the maximal stimulatory effect (about 12μunits of insulin/ml). The effects of insulin and glucagon appeared to be mediated completely independently, and were approximately quantitatively similar but opposite. These characteristics resulted in the mutual cancellation of the effects of the two hormones when they were both present at equally effective concentrations. 6. The implications of these findings with regard to current concepts about the mechanism of regulation of acetyl-CoA carboxylase and to the regulation of the enzyme in vivo are discussed. PMID:6131671

  16. Regulation of adipocyte lipolysis.

    PubMed

    Frühbeck, Gema; Méndez-Giménez, Leire; Fernández-Formoso, José-Antonio; Fernández, Secundino; Rodríguez, Amaia

    2014-06-01

    In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms. PMID:24872083

  17. Glut4 Is Sorted from a Rab10 GTPase-independent Constitutive Recycling Pathway into a Highly Insulin-responsive Rab10 GTPase-dependent Sequestration Pathway after Adipocyte Differentiation.

    PubMed

    Brewer, Paul Duffield; Habtemichael, Estifanos N; Romenskaia, Irina; Mastick, Cynthia Corley; Coster, Adelle C F

    2016-01-01

    The RabGAP AS160/TBC1D4 controls exocytosis of the insulin-sensitive glucose transporter Glut4 in adipocytes. Glut4 is internalized and recycled through a highly regulated secretory pathway in these cells. Glut4 also cycles through a slow constitutive endosomal pathway distinct from the fast transferrin (Tf) receptor recycling pathway. This slow constitutive pathway is the only Glut4 cycling pathway in undifferentiated fibroblasts. The α2-macroglobulin receptor LRP1 cycles with Glut4 and the Tf receptor through all three exocytic pathways. To further characterize these pathways, the effects of knockdown of AS160 substrates on the trafficking kinetics of Glut4, LRP1, and the Tf receptor were measured in adipocytes and fibroblasts. Rab10 knockdown decreased cell surface Glut4 in insulin-stimulated adipocytes by 65%, but not in basal adipocytes or in fibroblasts. This decrease was due primarily to a 62% decrease in the rate constant of Glut4 exocytosis (kex), although Rab10 knockdown also caused a 1.4-fold increase in the rate constant of Glut4 endocytosis (ken). Rab10 knockdown in adipocytes also decreased cell surface LRP1 by 30% by decreasing kex 30-40%. There was no effect on LRP1 trafficking in fibroblasts or on Tf receptor trafficking in either cell type. These data confirm that Rab10 is an AS160 substrate that limits exocytosis through the highly insulin-responsive specialized secretory pathway in adipocytes. They further show that the slow constitutive endosomal (fibroblast) recycling pathway is Rab10-independent. Thus, Rab10 is a marker for the specialized pathway in adipocytes. Interestingly, mathematical modeling shows that Glut4 traffics predominantly through the specialized Rab10-dependent pathway both before and after insulin stimulation. PMID:26527681

  18. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes[S

    PubMed Central

    Wu, Di; Xi, Qian-Yun; Cheng, Xiao; Dong, Tao; Zhu, Xiao-Tong; Shu, Gang; Wang, Li-Na; Jiang, Qing-Yan; Zhang, Yong-Liang

    2016-01-01

    TNF-α is a multifunctional cytokine participating in immune disorders, inflammation, and tumor development with regulatory effects on energy metabolism. Our work focused on the function of TNF-α in adipogenesis of primary porcine adipocytes. TNF-α could suppress the insulin receptor (IR) at the mRNA and protein levels. Microarray analysis of TNF-α-treated porcine adipocytes was used to screen out 29 differentially expressed microRNAs (miRNAs), 13 of which were remarkably upregulated and 16 were intensely downregulated. These 29 differentially expressed miRNAs were predicted to mainly participate in the insulin signaling pathway, adipocytokine signaling pathway, and type 2 diabetes mellitus pathway by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. miR-146a-5p, reportedly involved in immunity and cancer relevant processes, was one of the most highly differentially expressed miRNAs after TNF-α treatment. Red Oil O staining and TG assay revealed that miR-146a-5p suppressed adipogenesis. A dual-luciferase reporter and siRNA assay verified that miR-146a-5p targeted IR and could inhibit its protein expression. miR-146a-5p was also validated to be involved in the insulin signaling pathway by reducing tyrosine phosphorylation of insulin receptor substrate-1. Our study provides the first evidence of miR-146a-5p targeting IR, which facilitates future studies related to obesity and diabetes using pig models. PMID:27324794

  19. Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period.

    PubMed

    De Koster, J; Van den Broeck, W; Hulpio, L; Claeys, E; Van Eetvelde, M; Hermans, K; Hostens, M; Fievez, V; Opsomer, G

    2016-03-01

    The aim of the present research was to describe characteristics of adipose tissue lipolysis in dairy cows with a variable body condition score (BCS). Ten clinically healthy Holstein Friesian cows were selected based on BCS and euthanized 10 to 13 d before the expected parturition date. Immediately after euthanasia, adipose tissue samples were collected from subcutaneous and omental fat depots. In both depots, we observed an increase in adipocyte size with increasing BCS. Using an in vitro explant culture of subcutaneous and omental adipose tissue, we aimed to determine the influence of adipocyte size and localization of adipose depot on the lipolytic activity in basal conditions and after addition of isoproterenol (nonselective β-agonist) and insulin in different concentrations. Glycerol release in the medium was used as a measure for lipolytic activity. We observed that the basal lipolytic activity of subcutaneous and omental adipose tissue increased with adipocyte volume, meaning that larger fat cells have higher basal lipolytic activity independent of the location of the adipose depot. Dose-response curves were created between the concentration of isoproterenol or insulin and the amount of glycerol released. The shape of the dose-response curves is determined by the concentration of isoproterenol and insulin needed to elicit the half-maximal effect and the maximal amount of stimulated glycerol release or the maximal inhibitory effect of insulin. We observed that larger fat cells released more glycerol upon maximal stimulation with isoproterenol and this was more pronounced in subcutaneous adipose tissue. Additionally, larger fat cells had a higher sensitivity toward lipolytic signals. We observed a trend for larger adipocytes to be more resistant to the maximal antilipolytic effect of insulin. The insulin concentration needed to elicit the half-maximal inhibitory effect of insulin was within the physiological range of insulin and was not influenced by adipocyte

  20. Dietary Blueberry Attenuates Whole-Body Insulin Resistance in High Fat-Fed Mice by Reducing Adipocyte Death and Its Inflammatory Sequelae1–3

    PubMed Central

    DeFuria, Jason; Bennett, Grace; Strissel, Katherine J.; Perfield, James W.; Milbury, Paul E.; Greenberg, Andrew S.; Obin, Martin S.

    2009-01-01

    Adipose tissue (AT) inflammation promotes insulin resistance (IR) and other obesity complications. AT inflammation and IR are associated with oxidative stress, adipocyte death, and the scavenging of dead adipocytes by proinflammatory CD11c+ AT macrophages (ATMΦ). We tested the hypothesis that supplementation of an obesitogenic (high-fat) diet with whole blueberry (BB) powder protects against AT inflammation and IR. Male C57Bl/6j mice were maintained for 8 wk on 1 of 3 diets: low-fat (10% of energy) diet (LFD), high-fat (60% of energy) diet (HFD) or the HFD containing 4% (wt:wt) whole BB powder (1:1 Vaccinium ashei and V. corymbosum) (HFD+B). BB supplementation (2.7% of total energy) did not affect HFD-associated alterations in energy intake, metabolic rate, body weight, or adiposity. We observed an emerging pattern of gene expression in AT of HFD mice indicating a shift toward global upregulation of inflammatory genes (tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein 1, inducible nitric oxide synthase), increased M1-polarized ATMΦ (CD11c+), and increased oxidative stress (reduced glutathione peroxidase 3). This shift was attenuated or nonexistent in HFD+B-fed mice. Furthermore, mice fed the HFD+B were protected from IR and hyperglycemia coincident with reductions in adipocyte death. Salutary effects of BB on adipocyte physiology and ATMΦ gene expression may reflect the ability of BB anthocyanins to alter mitogen-activated protein kinase and nuclear factor-κB stress signaling pathways, which regulate cell fate and inflammatory genes. These results suggest that cytoprotective and antiinflammatory actions of dietary BB can provide metabolic benefits to combat obesity-associated pathology. PMID:19515743

  1. Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes

    PubMed Central

    Sharma, Bhesh Raj; Rhyu, Dong Young

    2014-01-01

    Objective To evaluate anti-diabetic effect of Caulerpa lentillifera (C. lentillifera). Methods The inhibitory effect of C. lentillifera extract on dipeptidyl peptidase-IV and α-glucosidase enzyme was measured in a cell free system. Then, interleukin-1β and interferon-γ induced cell death and insulin secretion were measured in rat insulinoma (RIN) cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and ELISA kit, respectively. Glucose uptake and glucose transporter expression were measured by fluorometry and western blotting, using 3T3-L1 adipocytes. Results C. lentillifera extract significantly decreased dipeptidyl peptidase-IV and α-glucosidase enzyme activities, and effectively inhibited cell death and iNOS expression in interleukin-1β and interferon-γ induced RIN cells. Furthermore, C. lentillifera extract significantly enhanced insulin secretion in RIN cells and glucose transporter expression and glucose uptake in 3T3-L1 adipocytes. Conclusions Thus, our results suggest that C. lentillifera could be used as a potential anti-diabetic agent. PMID:25183280

  2. Arsenic Induces Insulin Resistance in Mouse Adipocytes and Myotubes Via Oxidative Stress-Regulated Mitochondrial Sirt3-FOXO3a Signaling Pathway.

    PubMed

    Padmaja Divya, Sasidharan; Pratheeshkumar, Poyil; Son, Young-Ok; Vinod Roy, Ram; Andrew Hitron, John; Kim, Donghern; Dai, Jin; Wang, Lei; Asha, Padmaja; Huang, Bin; Xu, Mei; Luo, Jia; Zhang, Zhuo

    2015-08-01

    Chronic exposure to arsenic via drinking water is associated with an increased risk for development of type 2 diabetes mellitus (T2DM). This study investigates the role of mitochondrial oxidative stress protein Sirtuin 3 (Sirt3) and its targeting proteins in chronic arsenic-induced T2DM in mouse adipocytes and myotubes. The results show that chronic arsenic exposure significantly decreased insulin-stimulated glucose uptake (ISGU) in correlation with reduced expression of insulin-regulated glucose transporter type 4 (Glut4). Expression of Sirt3, a mitochondrial deacetylase, was dramatically decreased along with its associated transcription factor, forkhead box O3 (FOXO3a) upon arsenic exposure. A decrease in mitochondrial membrane potential (Δψm) was observed in both 3T3L1 adipocytes and C2C12 myotubes treated by arsenic. Reduced FOXO3a activity by arsenic exhibited a decreased binding affinity to the promoters of both manganese superoxide dismutase (MnSOD) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, a broad and powerful regulator of reactive oxygen species (ROS) metabolism. Forced expression of Sirt3 or MnSOD in mouse myotubes elevated Δψm and restored ISGU inhibited by arsenic exposure. Our results suggest that Sirt3/FOXO3a/MnSOD signaling plays a significant role in the inhibition of ISGU induced by chronic arsenic exposure. PMID:25979314

  3. 14-3-3ζ: A numbers game in adipocyte function?

    PubMed Central

    Lim, Gareth E.; Johnson, James D.

    2016-01-01

    ABSTRACT Molecular scaffolds are often viewed as passive signaling molecules that facilitate protein-protein interactions. However, new evidence gained from the use of loss-of-function or gain-of-function models is dispelling this notion. Our own recent discovery of 14-3-3ζ as an essential regulator of adipogenesis highlights the complex roles of this member of the 14-3-3 protein family. Depletion of the 14-3-3ζ isoform affected parallel pathways that drive adipocyte development, including pathways controlling the stability of key adipogenic transcription factors and cell cycle progression. Going beyond adipocyte differentiation, this study opens new avenues of research in the context of metabolism, as 14-3-3ζ binds to a variety of well-established metabolic proteins that harbor its canonical phosphorylation binding motifs. This suggests that 14-3-3ζ may contribute to key metabolic signaling pathways, such as those that facilitate glucose uptake and fatty acid metabolism. Herein, we discuss these novel areas of research, which will undoubtedly shed light onto novel roles of 14-3-3ζ, and perhaps its related family members, on glucose homeostasis. PMID:27386155

  4. Post-Irradiated Human Submandibular Glands Display High Collagen Deposition, Disorganized Cell Junctions, and an Increased Number of Adipocytes.

    PubMed

    Nam, Kihoon; Maruyama, Christina L; Trump, Bryan G; Buchmann, Luke; Hunt, Jason P; Monroe, Marcus M; Baker, Olga J

    2016-06-01

    Salivary glands are vital for maintaining oral health. Head and neck radiation therapy is one of the most common causes of salivary gland hypofunction. Little is known about the structural changes that occur in salivary glands after radiation therapy. The aim of this study is to understand the structural changes that occur in post-irradiated human (submandibular gland [SMG]) as compared with untreated ones. We determined changes in epithelial polarity, presence of collagen deposition, and alteration in adipose tissue. We used formalin-fixed paraffin-embedded human SMG from two female subjects exposed to head and neck irradiation. We utilized hematoxylin and eosin staining and Masson's Trichrome staining. The immunostained tissue sections were examined using confocal microscopy. The number and size of adipocytes per tissue section were calculated using ImageJ, Prism, and SPSS software. Post-irradiated human SMG displayed high collagen deposition, disorganized cell junctions, and an increased number of adipocytes as compared with non-irradiated controls. These findings are important to improve our understanding of the individual risk and variation in radiation-related salivary gland dysfunction. PMID:27126825

  5. Visceral Adipocyte Hypertrophy is Associated With Dyslipidemia Independent of Body Composition and Fat Distribution in Women

    PubMed Central

    Veilleux, Alain; Caron-Jobin, Maude; Noël, Suzanne; Laberge, Philippe Y.; Tchernof, André

    2011-01-01

    OBJECTIVE We assessed whether subcutaneous and omental adipocyte hypertrophy are related to metabolic alterations independent of body composition and fat distribution in women. RESEARCH DESIGN AND METHODS Mean adipocyte diameter of paired subcutaneous and omental adipose tissue samples was obtained in lean to obese women. Linear regression models predicting adipocyte size in both adipose tissue depots were computed using body composition and fat distribution measures (n = 150). In a given depot, women with larger adipocytes than predicted by the regression were considered as having adipocyte hypertrophy, whereas women with smaller adipocytes than predicted were considered as having adipocyte hyperplasia. RESULTS Women characterized by omental adipocyte hypertrophy had higher plasma and VLDL triglyceride levels as well as a higher total-to-HDL cholesterol ratio compared with women characterized by omental adipocyte hyperplasia (P < 0.05). Conversely, women characterized by subcutaneous adipocyte hypertrophy or hyperplasia showed a similar lipid profile. In logistic regression analyses, a 10% enlargement of omental adipocytes increased the risk of hypertriglyceridemia (adjusted odds ratio [OR] 4.06, P < 0.001) independent of body composition and fat distribution measures. A 10% increase in visceral adipocyte number also raised the risk of hypertriglyceridemia (adjusted OR 1.55, P < 0.02). Associations between adipocyte size and homeostasis model assessment of insulin resistance were not significant once adjusted for adiposity and body fat distribution. CONCLUSIONS These results suggest that omental, but not subcutaneous, adipocyte hypertrophy is associated with an altered lipid profile independent of body composition and fat distribution in women. PMID:21421806

  6. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutane...

  7. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41.

    PubMed

    Han, Joo-Hui; Kim, In-Su; Jung, Sang-Hyuk; Lee, Sang-Gil; Son, Hwa-Young; Myung, Chang-Seon

    2014-01-01

    Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes. PMID:24748202

  8. Vesicle-associated membrane protein 2 plays a specific role in the insulin-dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3-L1 adipocytes.

    PubMed

    Martin, L B; Shewan, A; Millar, C A; Gould, G W; James, D E

    1998-01-16

    Vesicle-associated membrane protein 2 (VAMP2) has been implicated in the insulin-regulated trafficking of GLUT4 in adipocytes. It has been proposed that VAMP2 co-localizes with GLUT4 in a postendocytic storage compartment (Martin, S., Tellam, J., Livingstone, C., Slot, J. W., Gould, G. W., and James, D. E. (1996) J. Cell Biol. 134, 625-635), suggesting that it may play a role distinct from endosomal v-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) such as cellubrevin that are also expressed in adipocytes. The present study examines the effects of recombinant glutathione S-transferase (GST) fusion proteins encompassing the entire cytoplasmic tails of VAMP1, VAMP2, and cellubrevin on insulin-stimulated GLUT4 translocation in streptolysin O permeabilized 3T3-L1 adipocytes. GST-VAMP2 inhibited insulin-stimulated GLUT4 translocation by approximately 35%, whereas GST-VAMP1 and GST-cellubrevin were without effect. A synthetic peptide corresponding to the unique N terminus of VAMP2 also inhibited insulin-stimulated GLUT4 translocation in a dose-dependent manner. This peptide had no effect on either guanosine 5'-3-O-(thio)triphosphate-stimulated GLUT4 translocation or on insulin-stimulated GLUT1 translocation. These results imply that GLUT4 and GLUT1 may undergo insulin-stimulated translocation to the cell surface from separate intracellular compartments. To confirm this, adipocytes were incubated with a transferrin-horseradish peroxidase conjugate to fill the itinerant endocytic system after which cells were incubated with H2O2 and diaminobenzidine. This treatment completely blocked insulin-stimulated movement of GLUT1, whereas in the case of GLUT4, movement to the surface was delayed but still reached similar levels to that observed in insulin-stimulated control cells after 30 min. These results suggest that the N terminus of VAMP2 plays a unique role in the insulin-dependent recruitment of GLUT4 from its intracellular storage compartment

  9. NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic inflammation is associated with obesity and insulin resistance. However, the underlying mechanisms are not fully understood. Pattern recognition receptors Toll-like receptors and Nucleotide-oligomerization domain containing proteins play critical roles in innate immune response. Here we repo...

  10. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  11. Control of endogenous phosphorylation of the major cAMP-dependent protein kinase substrate in adipocytes by insulin and beta-adrenergic stimulation

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C. )

    1990-11-05

    In isolated, 32Pi-loaded, rat adipocytes, we have examined phosphorylation of the major cAMP-dependent protein kinase (A-kinase) substrate, a protein that appears to be associated with the lipid storage droplet and migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 65-67-kDa doublet. In control cells, a strong phosphorylation signal is detected as the (+/- cAMP) A-kinase activity ratio ranges from approximately 0.1 to approximately 0.3-0.4 with increasing isoproterenol concentrations. By contrast, insulin-treated cells exhibiting A-kinase activity ratios over the range of 0.1-0.25 contain less 32P in the 65-67-kDa protein than control cells exhibiting identical A-kinase activity ratios. At higher activity ratios (greater than 0.3), this reduction in phosphorylation of the 65-67-kDa protein by insulin disappears. It is concluded that insulin stimulates a phosphatase activity that acts on the 65-67-kDa protein. Insulin actions aside, these studies reveal two interesting phenomena. (1) Whereas elevated, steady-state A-kinase activities are established rapidly (1-2 min) upon isoproterenol stimulation, phosphorylation of the 65-67-kDa substrate proceeds through a burst, followed by a decline to a steady-state level by 10-12 min. An adaptation mechanism, providing for a constant response to a constant stimulus, may underlie this lack of parallelism between the time course of phosphorylation and A-kinase activity. (2) Removal of (32Pi) orthophosphate immediately before isoproterenol stimulation leads to a rapid (t approximately 10 min) loss in labeling of the 65-67-kDa protein, whereas the phosphorylation state of other phosphoproteins are not changed. These data suggest that elevation of A-kinase activity leads to a rapid exchange of external Pi with an ATP pool that is used by A-kinase.

  12. Control of endogenous phosphorylation of the major cAMP-dependent protein kinase substrate in adipocytes by insulin and beta-adrenergic stimulation.

    PubMed

    Egan, J J; Greenberg, A S; Chang, M K; Londos, C

    1990-11-01

    In isolated, 32Pi-loaded, rat adipocytes, we have examined phosphorylation of the major cAMP-dependent protein kinase (A-kinase) substrate, a protein that appears to be associated with the lipid storage droplet and migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 65-67-kDa doublet. In control cells, a strong phosphorylation signal is detected as the (+/- cAMP) A-kinase activity ratio ranges from approximately 0.1 to approximately 0.3-0.4 with increasing isoproterenol concentrations. By contrast, insulin-treated cells exhibiting A-kinase activity ratios over the range of 0.1-0.25 contain less 32P in the 65-67-kDa protein than control cells exhibiting identical A-kinase activity ratios. At higher activity ratios (greater than 0.3), this reduction in phosphorylation of the 65-67-kDa protein by insulin disappears. It is concluded that insulin stimulates a phosphatase activity that acts on the 65-67-kDa protein. Insulin actions aside, these studies reveal two interesting phenomena. 1) Whereas elevated, steady-state A-kinase activities are established rapidly (1-2 min) upon isoproterenol stimulation, phosphorylation of the 65-67-kDa substrate proceeds through a burst, followed by a decline to a steady-state level by 10-12 min. An "adaptation" mechanism, providing for a constant response to a constant stimulus, may underlie this lack of parallelism between the time course of phosphorylation and A-kinase activity. 2) Removal of [32Pi] orthophosphate immediately before isoproterenol stimulation leads to a rapid (t approximately 10 min) loss in labeling of the 65-67-kDa protein, whereas the phosphorylation state of other phosphoproteins are not changed. These data suggest that elevation of A-kinase activity leads to a rapid exchange of external Pi with an ATP pool that is used by A-kinase. PMID:2172232

  13. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    PubMed

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  14. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    PubMed Central

    Parimala, Mabel; Debjani, M.; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  15. Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice.

    PubMed

    Magdalon, Juliana; Chimin, Patricia; Belchior, Thiago; Neves, Rodrigo X; Vieira-Lara, Marcel A; Andrade, Maynara L; Farias, Talita S; Bolsoni-Lopes, Andressa; Paschoal, Vivian A; Yamashita, Alex S; Kowaltowski, Alicia J; Festuccia, William T

    2016-05-01

    Mechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents. Adipocyte-specific Tsc1 deletion reduced visceral, but not subcutaneous, fat mass, as well as adipocyte number and diameter, phenotypes that were associated with increased lipolysis, UCP-1 content (browning) and mRNA levels of pro-browning transcriptional factors C/EBPβ and ERRα. Adipocyte Tsc1 deletion enhanced mitochondrial oxidative activity, fatty acid oxidation and the expression of PGC-1α and PPARα in both visceral and subcutaneous fat. In brown adipocytes, however, Tsc1 deletion did not affect UCP-1 content and basal respiration. Adipocyte Tsc1 deletion also reduced visceral adiposity and enhanced glucose tolerance, liver and muscle insulin signaling and adiponectin secretion in mice fed with purified low- or high-fat diet. In conclusion, adipocyte-specific Tsc1 deletion enhances mitochondrial activity, induces browning and reduces visceral adiposity in mice. PMID:26923434

  16. Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism

    PubMed Central

    Norseen, Julie; Hosooka, Tetsuya; Hammarstedt, Ann; Yore, Mark M.; Kant, Shashi; Aryal, Pratik; Kiernan, Urban A.; Phillips, David A.; Maruyama, Hiroshi; Kraus, Bettina J.; Usheva, Anny; Davis, Roger J.; Smith, Ulf

    2012-01-01

    Retinol-binding protein 4 (RBP4), the sole retinol transporter in blood, is secreted from adipocytes and liver. Serum RBP4 levels correlate highly with insulin resistance, other metabolic syndrome factors, and cardiovascular disease. Elevated serum RBP4 causes insulin resistance, but the molecular mechanisms are unknown. Here we show that RBP4 induces expression of proinflammatory cytokines in mouse and human macrophages and thereby indirectly inhibits insulin signaling in cocultured adipocytes. This occurs through activation of c-Jun N-terminal protein kinase (JNK) and Toll-like receptor 4 (TLR4) pathways independent of the RBP4 receptor, STRA6. RBP4 effects are markedly attenuated in JNK1−/− JNK2−/− macrophages and TLR4−/− macrophages. Because RBP4 is a retinol-binding protein, we investigated whether these effects are retinol dependent. Unexpectedly, retinol-free RBP4 (apo-RBP4) is as potent as retinol-bound RBP4 (holo-RBP4) in inducing proinflammatory cytokines in macrophages. Apo-RBP4 is likely to be physiologically significant since RBP4/retinol ratios are increased in serum of lean and obese insulin-resistant humans compared to ratios in insulin-sensitive humans, indicating that higher apo-RBP4 is associated with insulin resistance independent of obesity. Thus, RBP4 may cause insulin resistance by contributing to the development of an inflammatory state in adipose tissue through activation of proinflammatory cytokines in macrophages. This process reveals a novel JNK- and TLR4-dependent and retinol- and STRA6-independent mechanism of action for RBP4. PMID:22431523

  17. Nuclear estradiol binding in rat adipocytes. Regional variations and regulatory influences of hormones.

    PubMed

    Pedersen, S B; Børglum, J D; Eriksen, E F; Richelsen, B

    1991-06-01

    The nuclear estrogen receptor was characterised in isolated rat adipocytes. The binding reaction with [3H]estradiol was performed with intact isolated rat adipocytes and the radioactivity associated with the nucleus was subsequently determined after cell lysis. The nuclear uptake of [3H]estrogen in rat adipocytes was temperature dependent and steroid specific. The steady-state binding was achieved after 30 min at 37 degrees C and was constant for several hours. Estradiol was found to bind to a homogeneous class of nuclear receptors in epididymal adipocytes with an apparent Kd of 3.1 +/- 0.76 nM and a Bmax of 7.98 +/- 1.11 fmol/10(6) cells corresponding to about 4800 receptors per nucleus. The estradiol binding exhibited regional variations in isolated adipocytes. In lean rats the highest receptor number was found in epididymal adipocytes, whereas there was a significantly lower number of nuclear binding sites in perirenal and subcutaneous adipocytes (P less than 0.05), unlike in older and more obese rats where the nuclear estradiol binding was greatest in adipocytes from the perirenal fat depot. Incubations with isoproterenol (10 microM) and dibutyryl-cAMP (2.5 mM) both reduced estradiol binding by 56% (P less than 0.005), while insulin (1 nM) enhanced the estradiol binding by 37% (P less than 0.01). In conclusion, a specific and high affinity nuclear estradiol receptor was demonstrated in rat adipocytes and regional differences in nuclear estradiol binding were detected. Furthermore, it was demonstrated that nuclear estradiol binding could be modulated by other agents known to affect adipocyte metabolism. PMID:1646650

  18. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  19. Decreased beige adipocyte number and mitochondrial respiration coincide with increased histone methyl transferase (G9a) and reduced FGF21 gene expression in Sprague-Dawley rats fed prenatal low protein and postnatal high-fat diets.

    PubMed

    Claycombe, Kate J; Vomhof-DeKrey, Emilie E; Garcia, Rolando; Johnson, William Thomas; Uthus, Eric; Roemmich, James N

    2016-05-01

    We have shown that prenatal low-protein (LP) followed by postnatal high-fat (HF) diets result in a rapid increase in subcutaneous adipose tissue (subc-AT) mass in the offspring, contributing to development of obesity and insulin resistance. Studies have shown that a key transcription factor, PR domain containing 16 (PRDM16), and fibroblast growth factor 21 (FGF21) are involved in conversion of precursor cells into mitochondria (mt)-enriched beige adipocytes (BA). Our hypothesis is that a maternal LP and postnatal HF diets increase the risk of obesity and insulin resistance in offspring, in part, by reducing the conversion of precursor cell into BA in the subc-AT of offspring. Using obese-prone Sprague-Dawley rats fed 8% LP or 20% normal-protein (NP) diets for 3 weeks prior to conception and throughout pregnancy and lactation followed by 12 weeks of 10% normal-fat (NF) or 45% HF diet feeding, we investigated whether prenatal LP and postnatal HF diets affect BA number and oxidative respiratory function in subc-AT. Results showed that subc-AT and liver FGF21, PRDM16 and BA marker CD137 mRNA increase with postnatal HF diet in maternal NP group rats. In contrast, rats fed maternal LP and postnatal HF diets showed no increase in subc-AT mt copy number, oxygen consumption rate, FGF21, PRDM16 and CD137 mRNA, whereas protein expression of an inhibitor for FGF21 transcription (histone methyltransferase, G9a) increased. These findings suggest that LPHF diets cause offspring metabolic alterations by reduced BA and FGF21 mRNA and increased G9a protein expression in subc-AT. PMID:27133430

  20. Protein Carbonylation and Adipocyte Mitochondrial Function*

    PubMed Central

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  1. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue

    PubMed Central

    Fairbridge, Nicholas A.; Southall, Thomas M.; Ayre, D. Craig; Komatsu, Yumiko; Raquet, Paula I.; Brown, Robert J.; Randell, Edward; Kovacs, Christopher S.; Christian, Sherri L.

    2015-01-01

    CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO). We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT) sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35%) or high fat (45%) diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels. PMID:26536476

  2. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue.

    PubMed

    Fairbridge, Nicholas A; Southall, Thomas M; Ayre, D Craig; Komatsu, Yumiko; Raquet, Paula I; Brown, Robert J; Randell, Edward; Kovacs, Christopher S; Christian, Sherri L

    2015-01-01

    CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO). We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT) sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35%) or high fat (45%) diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels. PMID:26536476

  3. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    SciTech Connect

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-10-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono-/sup 125/I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis.

  4. Insulin demand regulates β cell number via the unfolded protein response.

    PubMed

    Sharma, Rohit B; O'Donnell, Amy C; Stamateris, Rachel E; Ha, Binh; McCloskey, Karen M; Reynolds, Paul R; Arvan, Peter; Alonso, Laura C

    2015-10-01

    Although stem cell populations mediate regeneration of rapid turnover tissues, such as skin, blood, and gut, a stem cell reservoir has not been identified for some slower turnover tissues, such as the pancreatic islet. Despite lacking identifiable stem cells, murine pancreatic β cell number expands in response to an increase in insulin demand. Lineage tracing shows that new β cells are generated from proliferation of mature, differentiated β cells; however, the mechanism by which these mature cells sense systemic insulin demand and initiate a proliferative response remains unknown. Here, we identified the β cell unfolded protein response (UPR), which senses insulin production, as a regulator of β cell proliferation. Using genetic and physiologic models, we determined that among the population of β cells, those with an active UPR are more likely to proliferate. Moreover, subthreshold endoplasmic reticulum stress (ER stress) drove insulin demand-induced β cell proliferation, through activation of ATF6. We also confirmed that the UPR regulates proliferation of human β cells, suggesting that therapeutic UPR modulation has potential to expand β cell mass in people at risk for diabetes. Together, this work defines a stem cell-independent model of tissue homeostasis, in which differentiated secretory cells use the UPR sensor to adapt organ size to meet demand. PMID:26389675

  5. Insulin demand regulates β cell number via the unfolded protein response

    PubMed Central

    Sharma, Rohit B.; O’Donnell, Amy C.; Stamateris, Rachel E.; Ha, Binh; McCloskey, Karen M.; Reynolds, Paul R.; Arvan, Peter; Alonso, Laura C.

    2015-01-01

    Although stem cell populations mediate regeneration of rapid turnover tissues, such as skin, blood, and gut, a stem cell reservoir has not been identified for some slower turnover tissues, such as the pancreatic islet. Despite lacking identifiable stem cells, murine pancreatic β cell number expands in response to an increase in insulin demand. Lineage tracing shows that new β cells are generated from proliferation of mature, differentiated β cells; however, the mechanism by which these mature cells sense systemic insulin demand and initiate a proliferative response remains unknown. Here, we identified the β cell unfolded protein response (UPR), which senses insulin production, as a regulator of β cell proliferation. Using genetic and physiologic models, we determined that among the population of β cells, those with an active UPR are more likely to proliferate. Moreover, subthreshold endoplasmic reticulum stress (ER stress) drove insulin demand–induced β cell proliferation, through activation of ATF6. We also confirmed that the UPR regulates proliferation of human β cells, suggesting that therapeutic UPR modulation has potential to expand β cell mass in people at risk for diabetes. Together, this work defines a stem cell–independent model of tissue homeostasis, in which differentiated secretory cells use the UPR sensor to adapt organ size to meet demand. PMID:26389675

  6. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation. PMID:27498007

  7. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  8. Recombinant human FIZZ3/resistin stimulates lipolysis in cultured human adipocytes, mouse adipose explants, and normal mice.

    PubMed

    Ort, Tatiana; Arjona, Anibal A; MacDougall, John R; Nelson, Pam J; Rothenberg, Mark E; Wu, Frank; Eisen, Andrew; Halvorsen, Yuan-Di C

    2005-05-01

    Human FIZZ3 (hFIZZ3) was identified as an ortholog of mouse resistin (mResistin), an adipocyte-specific secreted factor linked to insulin resistance in rodents. Unlike mResistin, hFIZZ3 is expressed in macrophages and monocytes, but is undetectable in adipose tissue. The profound macrophage infiltration of adipose that occurs during obesity suggests that hFIZZ3 may play an important role in adipocyte biology. Using a recombinant protein produced in Escherichia coli, we report here that chronic treatment of cultured human adipocytes with hFIZZ3 results in hypotropic cells with smaller lipid droplets. Recombinant hFIZZ3 facilitates preadipocyte proliferation and stimulates adipocyte triglyceride lipolysis, whereas recombinant mResistin inhibits adipocyte differentiation, with no detectable effect on proliferation or lipolysis. In addition, insulin-stimulated glucose uptake and Akt phosphorylation are not altered in hFIZZ3-treated adipocytes, indicating an intact insulin response. In mouse adipose explants, hFIZZ3 accelerates simultaneously triglyceride lipolysis and fatty acid reesterification, as assessed by measurement of glycerol and fatty acid release. Consistent with the in vitro findings, acute administration of recombinant hFIZZ3 into normal mice caused a significant increase in serum glycerol concentration with no elevation in free fatty acid at 45 min post injection. Taken together, the data suggest that recombinant hFIZZ3 can influence adipose metabolism by regulating preadipocyte cell number, adipocyte lipid content, and energy expenditure via accelerating the fatty acid/triglyceride futile cycle. PMID:15705777

  9. The Exocyst Complex Regulates Free Fatty Acid Uptake by Adipocytes

    PubMed Central

    Inoue, Mayumi; Akama, Takeshi; Jiang, Yibin; Chun, Tae-Hwa

    2015-01-01

    The exocyst is an octameric molecular complex that drives vesicle trafficking in adipocytes, a rate-limiting step in insulin-dependent glucose uptake. This study assessed the role of the exocyst complex in regulating free fatty acid (FFA) uptake by adipocytes. Upon differentiating into adipocytes, 3T3-L1 cells acquire the ability to incorporate extracellular FFAs in an insulin-dependent manner. A kinetic assay using fluoresceinated FFA (C12 dodecanoic acid) uptake allows the real-time monitoring of FFA internalization by adipocytes. The insulin-dependent uptake of C12 dodecanoic acid by 3T3-L1 adipocytes is mediated by Akt and phosphatidylinositol 3 (PI3)-kinase. Gene silencing of the exocyst components Exo70 and Sec8 significantly reduced insulin-dependent FFA uptake by adipocytes. Consistent with the roles played by Exo70 and Sec8 in FFA uptake, mCherry-tagged Exo70 and HA-tagged Sec8 partially colocalize with lipid droplets within adipocytes, suggesting their active roles in the development of lipid droplets. Tubulin polymerization was also found to regulate FFA uptake in collaboration with the exocyst complex. This study demonstrates a novel role played by the exocyst complex in the regulation of FFA uptake by adipocytes. PMID:25768116

  10. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    SciTech Connect

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-06-15

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.

  11. Palmitate Antagonizes Wnt/Beta-catenin Signaling in 3T3-L1 Pre-adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long chain saturated free fatty acids such as palmitate (PA) produce insulin resistance, endoplasmic reticulum stress, and apoptosis in mature adipocytes and pre-adipocytes. In pre-adipocytes, saturated free fatty acids also promote adipogenic induction in the presence of adipogenic hormones. Wnt/be...

  12. Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans.

    PubMed Central

    Müller, G.; Wied, S.; Piossek, C.; Bauer, A.; Bauer, J.; Frick, W.

    1998-01-01

    Phosphoinositolglycan molecules isolated from insulin-sensitive mammalian tissues have been demonstrated in numerous in vitro studies to exert partial insulin-mimetic activity on glucose and lipid metabolism in insulin-sensitive cells. However, their ill-defined structures, heterogeneous nature, and limited availability have prohibited the analysis of the underlying molecular mechanism. Phosphoinositolglycan-peptide (PIG-P) of defined and homogeneous structure prepared in large scale from the core glycan of a glycosyl-phosphatidylinositol-anchored membrane protein from Saccharomyces cerevisiae has recently been shown to stimulate glucose transport as well as a number of glucose-metabolizing enzymes and pathways to up to 90% (at 2 to 10 microns) of the maximal insulin effect in isolated rat adipocytes, cardiomyocytes, and diaphragms (G. Müller et al., 1997, Endocrinology 138: 3459-3476). Consequently, we used this PIG-P for the present study in which we compare its intracellular signaling with that of insulin. The activation of glucose transport by both PIG-P and insulin in isolated rat adipocytes and diaphragms was found to require stimulation of phosphatidylinositol (PI) 3-kinase but to be independent of functional p70S6kinase and mitogen-activated protein kinase. The increase in glycerol-3-phosphate acyltransferase activity in rat adipocytes in response to PIG-P and insulin was dependent on both PI 3-kinase and p70S6kinase. This suggest that the signaling pathways for PIG-P and insulin to glucose transport and metabolism converage at the level of PI 3-kinase. A component of the PIG-P signaling pathway located up-stream of PI 3-kinase was identified by desensitization of isolated rat adipocytes for PIG-P action by combined treatment with trypsin and NaCl under conditions that preserved cell viability and the insulin-mimetic activity of sodium vanadate but completely blunted the insulin response. Incubation of the cells with either trypsin or NaCl alone was

  13. Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages ▿ §

    PubMed Central

    Lefterova, Martina I.; Steger, David J.; Zhuo, David; Qatanani, Mohammed; Mullican, Shannon E.; Tuteja, Geetu; Manduchi, Elisabetta; Grant, Gregory R.; Lazar, Mitchell A.

    2010-01-01

    The nuclear receptor peroxisome proliferator activator receptor γ (PPARγ) is the target of antidiabetic thiazolidinedione drugs, which improve insulin resistance but have side effects that limit widespread use. PPARγ is required for adipocyte differentiation, but it is also expressed in other cell types, notably macrophages, where it influences atherosclerosis, insulin resistance, and inflammation. A central question is whether PPARγ binding in macrophages occurs at genomic locations the same as or different from those in adipocytes. Here, utilizing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we demonstrate that PPARγ cistromes in mouse adipocytes and macrophages are predominantly cell type specific. In thioglycolate-elicited macrophages, PPARγ colocalizes with the hematopoietic transcription factor PU.1 in areas of open chromatin and histone acetylation, near a distinct set of immune genes in addition to a number of metabolic genes shared with adipocytes. In adipocytes, the macrophage-unique binding regions are marked with repressive histone modifications, typically associated with local chromatin compaction and gene silencing. PPARγ, when introduced into preadipocytes, bound only to regions depleted of repressive histone modifications, where it increased DNA accessibility, enhanced histone acetylation, and induced gene expression. Thus, the cell specificity of PPARγ function is regulated by cell-specific transcription factors, chromatin accessibility, and histone marks. Our data support the existence of an epigenomic hierarchy in which PPARγ binding to cell-specific sites not marked by repressive marks opens chromatin and leads to local activation marks, including histone acetylation. PMID:20176806

  14. Insulin resistance and insulin sensitizers.

    PubMed

    Stumvoll, M; Häring, H

    2001-01-01

    Insulin resistance is a key factor in the pathogenesis of type 2 diabetes mellitus and a co-factor in the development of dyslipidaemia, hypertension and atherosclerosis. The causes of insulin resistance include factors such as obesity and physical inactivity, and there may also be genetic factors. The mechanism of obesity-related insulin resistance involves the release of factors from adipocytes which exert a negative effect on glucose metabolism: free fatty acids, tumour necrosis factor-alpha and the recently discovered hormone, resistin. The two resulting abnormalities observed consistently in glucose-intolerant states are impaired suppression of endogenous glucose production, and impaired stimulation of glucose uptake. Among the genetic factors, a polymorphism (Pro12Ala) in the peroxisome proliferator-activated receptor (PPAR) gamma is associated with a reduced risk of type 2 diabetes mellitus and increased insulin sensitivity, primarily that of lipolysis. On the other hand, the association with insulin resistance of a common polymorphism (Gly972Arg) in the insulin receptor substrate 1, long believed to be a plausible candidate gene, is weak at best. This polymorphism may instead be associated with reduced insulin secretion, which, in view of the recent recognition of the insulin signalling system in beta-cells, results in the development of a novel pathogenic concept. Finally, fine-mapping and positional cloning of the susceptibility locus on chromosome 2 resulted in the identification of a polymorphism (UCSNP-43 G/A) in the calpain-10 gene. In non-diabetic Pima Indians, this polymorphism was associated with insulin resistance of glucose disposal. The pharmacological treatment of insulin resistance has recently acquired a novel class of agents: the thiazolidinediones. They act through regulation of PPARgamma-dependent genes and probably interfere favourably with factors released from adipocytes which mediate obesity-associated insulin resistance. PMID:11684868

  15. Regulation of De Novo Adipocyte Differentiation Through Cross Talk Between Adipocytes and Preadipocytes.

    PubMed

    Challa, Tenagne D; Straub, Leon G; Balaz, Miroslav; Kiehlmann, Elke; Donze, Olivier; Rudofsky, Gottfried; Ukropec, Jozef; Ukropcova, Barbara; Wolfrum, Christian

    2015-12-01

    There are many known adipokines differentially secreted from the different adipose depots; however, their paracrine and autocrine effects on de novo adipocyte formation are not fully understood. By developing a coculture method of preadipocytes with primary subcutaneous and visceral adipocytes or tissue explants, we could show that the total secretome inhibited preadipocyte differentiation. Using a proteomics approach with fractionated secretome samples, we were able to identify a spectrum of factors that either positively or negatively affected adipocyte formation. Among the secreted factors, Slc27a1, Vim, Cp, and Ecm1 promoted adipocyte differentiation, whereas Got2, Cpq, interleukin-1 receptor-like 1/ST2-IL-33, Sparc, and Lgals3bp decreased adipocyte differentiation. In human subcutaneous adipocytes of lean subjects, obese subjects, and obese subjects with type 2 diabetes, Vim and Slc27a1 expression was negatively correlated with adipocyte size and BMI and positively correlated with insulin sensitivity, while Sparc and Got2 showed the opposite trend. Furthermore, we demonstrate that Slc27a1 was increased upon weight loss in morbidly obese patients, while Sparc expression was reduced. Taken together, our findings identify adipokines that regulate adipocyte differentiation through positive or negative paracrine and autocrine feedback loop mechanisms, which could potentially affect whole-body energy metabolism. PMID:26340931

  16. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling

    PubMed Central

    Jünger, Martin A; Rintelen, Felix; Stocker, Hugo; Wasserman, Jonathan D; Végh, Mátyás; Radimerski, Thomas; Greenberg, Michael E; Hafen, Ernst

    2003-01-01

    Background Forkhead transcription factors belonging to the FOXO subfamily are negatively regulated by protein kinase B (PKB) in response to signaling by insulin and insulin-like growth factor in Caenorhabditis elegans and mammals. In Drosophila, the insulin-signaling pathway regulates the size of cells, organs, and the entire body in response to nutrient availability, by controlling both cell size and cell number. In this study, we present a genetic characterization of dFOXO, the only Drosophila FOXO ortholog. Results Ectopic expression of dFOXO and human FOXO3a induced organ-size reduction and cell death in a manner dependent on phosphoinositide (PI) 3-kinase and nutrient levels. Surprisingly, flies homozygous for dFOXO null alleles are viable and of normal size. They are, however, more sensitive to oxidative stress. Furthermore, dFOXO function is required for growth inhibition associated with reduced insulin signaling. Loss of dFOXO suppresses the reduction in cell number but not the cell-size reduction elicited by mutations in the insulin-signaling pathway. By microarray analysis and subsequent genetic validation, we have identified d4E-BP, which encodes a translation inhibitor, as a relevant dFOXO target gene. Conclusion Our results show that dFOXO is a crucial mediator of insulin signaling in Drosophila, mediating the reduction in cell number in insulin-signaling mutants. We propose that in response to cellular stresses, such as nutrient deprivation or increased levels of reactive oxygen species, dFOXO is activated and inhibits growth through the action of target genes such as d4E-BP. PMID:12908874

  17. Characterization of nuclear corticosteroid receptors in rat adipocytes. Regional variations and modulatory effects of hormones.

    PubMed

    Pedersen, S B; Børglum, J D; Møller-Pedersen, T; Richelsen, B

    1992-04-01

    The corticosteroid receptor was investigated in isolated rat adipocytes with a new technique which characterizes the corticosteroid receptors that can be activated and tightly bound to the nucleus. The binding reaction with [3H]triamcinolone was performed with intact isolated adipocytes and the radioactivity associated with nucleus was subsequently determined after cell lysis. Scatchard analysis revealed a homogeneous class of nuclear corticosteroid receptors in rat epididymal adipocytes with an apparent Kd of 4.93 +/- 1.5 nM and a Bmax of 21.8 +/- 6.6 fmol/10(6) cells corresponding to about 13,000 receptors per nucleus. The corticosteroid binding exhibited regional variations in isolated adipocytes. The highest receptor number was found in epididymal adipocytes (Bmax 25.8 +/- 3.9 fmol/10(6) cells) whereas there were significantly lower nuclear binding sites in perirenal adipocytes (16.5 +/- 5.5 fmol/10(6) cells) (P less than 0.05) and subcutaneous adipocytes (4.8 +/- 1.5 fmol/10(6) cells) (P less than 0.01). The apparent affinity in the three fat depots were similar with Kd values about 4 nM. The nuclear corticosteroid receptor in adipocytes was steroid specific, as neither unlabelled estradiol nor testosterone were able to displace the [3H]triamcinolone binding at concentrations up to 100 microM. However, unlabelled progesterone and promegestrone (R5020) were able to compete with triamcinolone-binding (by 50-80%). In order to investigate whether the nuclear corticosteroid binding in adipocytes were under influence of other hormones we examined the effects of lipolytic and antilipolytic compounds on the binding. Preincubation with isoproterenol and dibutryl-cAMP for 1 h was able to decrease the corticosteroid binding by 30-50%. However, the antilipolytic hormone insulin had no effect in preincubations performed for up to 2 h. In conclusion, high affinity nuclear corticosteroid receptors were found in rat adipocytes. These receptors exhibited regional variations

  18. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin recepter, and glucose transporter 4 in mouse 3T3-L1 adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary factors are involved in the regulation and prevention of type 2 diabetes mellitus. We have shown that cinnamon improves glucose and lipid profiles of people with type 2 diabetes and that a water-soluble cinnamon extract and HPLC-purified cinnamon polyphenols (CP) display insulin-like activit...

  19. Tributyltin Differentially Promotes Development of a Phenotypically Distinct Adipocyte

    PubMed Central

    Regnier, Shane M.; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L.; Sargis, Robert M.

    2015-01-01

    Objective Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being pro-adipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. Methods The co-stimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. Results TBT enhanced expression of the adipocyte marker C/EBPα with co-exposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of co-treatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. Conclusions TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. PMID:26243053

  20. Regional differences in adipocyte lactate production from glucose

    SciTech Connect

    Newby, F.D.; Sykes, M.N.; DiGirolamo, M. )

    1988-11-01

    Having shown that lactate is an important product of glucose metabolism by rat epididymal adipocytes, the authors investigated possible regional differences in adipocyte lactate production and the role of the animals' nutritional state and stage of development. (U-{sup 14}C)glucose metabolism, lactate production, and response to insulin were measured in fat cells isolated from four adipose regions from young lean and older fatter rats, killed either in the fed state or after fasting for 48 h. In the absence of insulin, mesenteric fat cells from either age group metabolized significantly more glucose per cell and converted more glucose to lactate than cells from other depots, regardless of nutritional state. Adipocytes from fasted lean rats showed a significant increase in the relative glucose conversion to lactate in all depots when compared with cells from fed lean rats. Fasting of older fatter rats, however, had limited effects on the relative adipocyte glucose conversion to lactate since lactate production was already high. Mesenteric fat cells had the lowest relative response to insulin, possibly due to the high basal rate of glucose metabolism. These findings indicate that differences exist among adipose regions in the rates of glucose metabolism, lactate production and response to insulin. The anatomical location of the mesenteric adipose depot, coupled with a high metabolic rate and blood perfusion, suggests that mesenteric adipocytes may provide a unique and more direct contribution of metabolic substrates for hepatic metabolism than adipocytes from other depots.

  1. Pioglitazone enhances small-sized adipocyte proliferation in subcutaneous adipose tissue.

    PubMed

    Kajita, Kazuo; Mori, Ichiro; Hanamoto, Takayuki; Ikeda, Takahide; Fujioka, Kei; Yamauchi, Masahiro; Okada, Hideyuki; Usui, Taro; Takahashi, Noriko; Kitada, Yoshihiko; Taguchi, Kohichiro; Kajita, Toshiko; Uno, Yoshihiro; Morita, Hiroyuki; Ishizuka, Tatsuo

    2012-01-01

    The possibility that mature adipocytes proliferate has not been fully investigated. In this study, we demonstrate that adipocytes can proliferate. 5-bromo-2'-deoxyuridine (BrdU)-labeled adipocyte like cells, most of which were less than 30 μm in diameter, were observed in adipose tissue. Proliferating cell nuclear antigen (PCNA) was simultaneously detected in BrdU-labeled nuclei. Observation of individual mature adipocytes of smeared specimens on glass slides revealed that small sized adipocytes more frequently incorporated BrdU. Cultured mature adipocytes using the ceiling-cultured method showed clustering of proliferating cells in small-sized adipocytes. These small cultured adipocytes, but not large ones, extensively incorporated BrdU. Quantified analysis of BrdU incorporation demonstrated that mature visceral adipocytes, including epididymal, mesenteric and perirenal adipocytes, proliferated more actively than subcutaneous ones. On the other hand, treatment with pioglitazone (Pio), a ligand of peroxisome proliferator-activated receptor γ, containing food for 2w, elevated BrdU incorporation and expression of PCNA in mature adipocytes isolated from subcutaneous, but not visceral adipose tissue. Moreover, Pio induced increased BrdU-labeled small-sized subcutaneous adipocytes, which was associated with an increased number of total small adipocytes in subcutaneous adipose tissue. In conclusion, mature adipocytes have a subgroup representing the potential to replicate, and this proliferation is more active in visceral adipocytes. Treatment with Pio increases proliferation in subcutaneous adipocytes. These results may explain the mechanism of Pio-induced hyperplasia especially in subcutaneous adipocytes. PMID:22972172

  2. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes

    PubMed Central

    Emont, Margo P.; Mantis, Stelios; Kahn, Jonathan H.; Landeche, Michael; Han, Xuan; Sargis, Robert M

    2015-01-01

    Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function. PMID:25766503

  3. Cadmium modulates adipocyte functions in metallothionein-null mice

    SciTech Connect

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  4. Effects of heparin on insulin binding and biological activity

    SciTech Connect

    Kriauciunas, K.M.; Grigorescu, F.; Kahn, C.R.

    1987-02-01

    The effect of heparin, a polyanionic glycosaminoglycan known to alter the function of many proteins, on insulin binding and bioactivity was studied. Cultured human lymphocytes (IM-9) were incubated with varying concentrations of heparin, then extensively washed, and /sup 125/I-labeled insulin binding was measured. Heparin at concentrations used clinically for anticoagulation (1-50 U/ml) inhibited binding in a dose-dependent manner; 50% inhibition of binding occurred with 5-10 U/ml. Scatchard analysis indicated that the decrease in binding was due to a decrease in both the affinity and the apparent number of available insulin receptors. The effect occurred within 10 min at 22 degrees C and persisted even after the cells were extensively washed. Inhibition of insulin binding also occurred when cells were preincubated with heparinized plasma or heparinized serum but not when cells were incubated with normal serum or plasma from blood anticoagulated with EDTA. By contrast, other polyanions and polycations, e.g., poly-L-glutamic acid, poly-L-lysine, succinylated poly-L-lysine, and histone, did not inhibit binding. Heparin also inhibited insulin binding in Epstein-Barr (EB) virus-transformed lymphocytes but had no effect on insulin binding to isolated adipocytes, human erythrocytes, or intact hepatoma cells. When isolated adipocytes were incubated with heparin, there was a dose-dependent inhibition of insulin-stimulated glucose oxidation and, to a lesser extent, of basal glucose oxidation. Although heparin has no effect on insulin binding to intact hepatoma cells, heparin inhibited both insulin binding and insulin-stimulated autophosphorylation in receptors solubilized from these cells.

  5. Decelerating Mature Adipocyte Dedifferentiation by Media Composition.

    PubMed

    Huber, Birgit; Kluger, Petra J

    2015-12-01

    The establishment of adipose tissue test systems is still a major challenge in the investigation of cellular and molecular interactions responsible for the pathogenesis of inflammatory diseases involving adipose tissue. Mature adipocytes are mainly involved in these pathologies, but rarely used in vitro, due to the lack of an appropriate culture medium which inhibits dedifferentiation and maintains adipocyte functionality. In our study, we showed that Dulbecco's Modified Eagle's Medium/Ham's F-12 with 10% fetal calf serum (FCS) reported for the culture of mature adipocytes favors dedifferentiation, which was accompanied by a high glycerol release, a decreasing release of leptin, and a low expression of the adipocyte marker perilipin A, but high expression of CD73 after 21 days. Optimized media containing FCS, biotin, pantothenate, insulin, and dexamethasone decelerated the dedifferentiation process. These cells showed a lower lipolysis rate, a high level of leptin release, as well as a high expression of perilipin A. CD73-positive dedifferentiated fat cells were only found in low quantity. In this work, we showed that mature adipocytes when cultured under optimized conditions could be highly valuable for adipose tissue engineering in vitro. PMID:26228997

  6. Studies of the regulated assembly of SNARE complexes in adipocytes.

    PubMed

    Kioumourtzoglou, Dimitrios; Sadler, Jessica B A; Black, Hannah L; Berends, Rebecca; Wellburn, Cassie; Bryant, Nia J; Gould, Gwyn W

    2014-10-01

    Insulin plays a fundamental role in whole-body glucose homeostasis. Central to this is the hormone's ability to rapidly stimulate the rate of glucose transport into adipocytes and muscle cells [1]. Upon binding its receptor, insulin stimulates an intracellular signalling cascade that culminates in redistribution of glucose transporter proteins, specifically the GLUT4 isoform, from intracellular stores to the plasma membrane, a process termed 'translocation' [1,2]. This is an example of regulated membrane trafficking [3], a process that also underpins other aspects of physiology in a number of specialized cell types, for example neurotransmission in brain/neurons and release of hormone-containing vesicles from specialized secretory cells such as those found in pancreatic islets. These processes invoke a number of intriguing biological questions as follows. How is the machinery involved in these membrane trafficking events mobilized in response to a stimulus? How do the signalling pathways that detect the external stimulus interface with the trafficking machinery? Recent studies of insulin-stimulated GLUT4 translocation offer insight into such questions. In the present paper, we have reviewed these studies and draw parallels with other regulated trafficking systems. PMID:25233421

  7. Dynamics of Adipocyte Turnover in Humans

    SciTech Connect

    Spalding, K; Arner, E; Westermark, P; Bernard, S; Buchholz, B; Bergmann, O; Blomqvist, L; Hoffstedt, J; Naslund, E; Britton, T; Concha, H; Hassan, M; Ryden, M; Frisen, J; Arner, P

    2007-07-16

    Obesity is increasing in an epidemic fashion in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells is thought to be most important. We show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese and even under extreme conditions, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analyzing the integration of {sup 14}C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in obesity, suggesting a tight regulation of fat cell number that is independent of metabolic profile in adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.

  8. Transdifferentiation properties of adipocytes in the adipose organ.

    PubMed

    Cinti, Saverio

    2009-11-01

    Mammals have two types of adipocytes, white and brown, but their anatomy and physiology is different. White adipocytes store lipids, and brown adipocytes burn them to produce heat. Previous descriptions implied their localization in distinct sites, but we demonstrated that they are mixed in many depots, raising the concept of adipose organ. We explain the reason for their cohabitation with the hypothesis of reversible physiological transdifferentiation; they are able to convert one into each other. If needed, the brown component of the organ could increase at the expense of the white component and vice versa. This plasticity is important because the brown phenotype of the organ associates with resistance to obesity and related disorders. Another example of physiological transdifferetiation of adipocytes is offered by the mammary gland; the pregnancy hormonal stimuli seems to trigger a reversible transdifferentiation of adipocytes into milk-secreting epithelial glands. The obese adipose organ is infiltrated by macrophages inducing chronic inflamation that is widely considered as a causative factor for insulin resistance. We showed that the vast majority of macrophages infiltrating the obese organ are arranged around dead adipocytes, forming characteristic crown-like structures. We recently found that visceral fat is more infiltrated than the subcutaneous fat despite a smaller size of visceral adipocytes. This suggests a different susceptibility of visceral and subcutaneous adipocytes to death, raising the concept of smaller critical death size that could be important to explain the key role of visceral fat for the metabolic disorders associated with obesity. PMID:19458063

  9. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes.

    PubMed

    Chung, K Y; Smith, S B; Choi, S H; Johnson, B J

    2016-05-01

    We hypothesized that fatty acids would differentially affect G protein coupled receptor (GPR) 43 mRNA expression and GPR43 protein concentrations in bovine intramuscular (IM) and subcutaneous (SC) adipocytes. The GPR43 protein was detected in bovine liver, pancreas, and semimembranosus (MUS) muscle in samples taken at slaughter. Similarly, GPR43 protein levels were similar in IM adipose tissue and SM muscle but was barely detectable in SC adipose tissue. Primary cultures of IM and SC stromal vascular cells were isolated from bovine adipose tissues. Oleic acid (100 μ) stimulated PPARγ gene expression and decreased stearoyl-CoA desaturase (SCD) gene expression but had no effect on GPR43 gene expression, which was readily detectable in both IM and SC adipocytes. Differentiation cocktail (Diff; 10 μ insulin, 4 μ dexamethasone, and 10 μ ciglitizone) stimulated CCAAT/enhancer-binding protein β (C/EBPβ) and PPARγ gene expression in SC but not IM adipocytes, but Diff increased SCD gene expression in both cell types. Linoleic acid (10 µ) increased PPARγ gene expression relative to Diff cocktail in SC adipocytes, whereas linoleic acid and α-linolenic decreased SCD gene expression relative to control adipocytes and adipocytes incubated with Diff ( < 0.05). Increasing concentrations of oleic acid (1, 10, 100, and 500 μM) increased GPR43 protein and mRNA expression in IM but not SC adipocytes. These data indicated that oleic acid alters mRNA and protein concentrations of GPR43 in bovine IM adipocytes. PMID:27285685

  10. Adipocyte cell size enlargement involves plasma membrane area increase.

    PubMed

    Chowdhury, H H; Zorec, R

    2012-07-01

    The adipocyte enlargement is associated with an increase in the cytoplasmic lipid content, but how the plasma membrane area follows this increase is poorly understood. We monitored single-cell membrane surface area fluctuations, which mirror the dynamics of exocytosis and endocytosis. We employed the patch-clamp technique to measure membrane capacitance (C(m)), a parameter linearly related to the plasma membrane area. Specifically, we studied whether insulin affects membrane area dynamics in adipocytes. A five-minute cell exposure to insulin increased resting C(m) by 12 ± 4%; in controls the change in C(m) was not different from zero. We measured cell diameter of isolated rat adipocytes microscopically. Twenty-four hour exposure of cells to insulin resulted in a significant increase in cell diameter by 5.1 ± 0.6%. We conclude that insulin induces membrane area increase, which may in chronic hyperinsulinemia promote the enlargement of plasma membrane area, acting in concert with other insulin-mediated metabolic effects on adipocytes. PMID:22540353

  11. Decreased beige adipocyte number and mitochondrial respiration coincide with reduced FGF21 gene expression in Sprague Dawley rats fed prenatal low protein and postnatal high fat diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have shown that protein malnutrition during fetal growth followed by postnatal high-fat diets results in a rapid increase in subcutaneous adipose tissue mass in the offspring contributing to development of obesity and insulin resistance. Recent studies have shown that the absence of a key transcr...

  12. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance.

    PubMed

    Henstridge, Darren C; Bruce, Clinton R; Drew, Brian G; Tory, Kálmán; Kolonics, Attila; Estevez, Emma; Chung, Jason; Watson, Nadine; Gardner, Timothy; Lee-Young, Robert S; Connor, Timothy; Watt, Matthew J; Carpenter, Kevin; Hargreaves, Mark; McGee, Sean L; Hevener, Andrea L; Febbraio, Mark A

    2014-06-01

    Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised. PMID:24430435

  13. Grapefruit oil attenuates adipogenesis in cultured subcutaneous adipocytes.

    PubMed

    Haze, Shinichiro; Sakai, Keiko; Gozu, Yoko; Moriyama, Mio

    2010-07-01

    We investigated the effects of different essential oils on adipogenesis in rat subcutaneous adipocytes. Subcutaneous preadipocytes were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing insulin, transferrin, fibroblast growth factor, dexamethasone, indomethacin, fetal bovine serum, and an essential oil at 37 degrees C in 5% CO2 to induce their differentiation. After 7 days, the number of viable cells and the amount of triglycerides accumulated in the cells were determined. Differentiation markers such as the enzymatic activity of glycerol-3-phosphate dehydrogenase (GPDH) and the expression of GPDH and peroxisome proliferator-activated receptor gamma (PPAR gamma) genes were also measured, as well as the intracellular Ca2+ levels. We found that grapefruit oil inhibited the accumulation of triglycerides in a dose-dependent manner at concentrations of 50 to 400 microg/mL. Furthermore, it suppressed the expression of GPDH and caused a 70% decrease in the enzymatic activity of GPDH at a concentration of 50 microg/mL. Grapefruit oil also caused a nearly 2-fold increase in the intracellular concentration of Ca2+ and suppressed the expression of PPAR gamma genes. Our results demonstrate that grapefruit oil efficiently inhibits adipogenesis in cultured subcutaneous preadipocytes and adipocytes. PMID:20143292

  14. Opposite effects of genistein on the regulation of insulin-mediated glucose homeostasis in adipose tissue

    PubMed Central

    Wang, M; Gao, X J; Zhao, W W; Zhao, W J; Jiang, C H; Huang, F; Kou, J P; Liu, B L; Liu, K

    2013-01-01

    BACKGROUND AND PURPOSE Genistein is an isoflavone phytoestrogen found in a number of plants such as soybeans and there is accumulating evidence that it has beneficial effects on the regulation of glucose homeostasis. In this study we evaluated the effect of genistein on glucose homeostasis and its underlying mechanisms in normal and insulin-resistant conditions. EXPERIMENTAL APPROACH To induce insulin resistance, mice or differentiated 3T3-L1 adipocytes were treated with macrophage-derived conditioned medium. A glucose tolerance test was used to investigate the effect of genistein. Insulin signalling activation, glucose transporter-4 (GLUT4) translocation and AMP-activated PK (AMPK) activation were detected by Western blot analysis or elisa. KEY RESULTS Genistein impaired glucose tolerance and attenuated insulin sensitivity in normal mice by inhibiting the insulin-induced phosphorylation of insulin receptor substrate-1 (IRS1) at tyrosine residues, leading to inhibition of insulin-mediated GLUT4 translocation in adipocytes. Mac-CM, an inflammatory stimulus induced glucose intolerance accompanied by impaired insulin sensitivity; genistein reversed these changes by restoring the disturbed IRS1 function, leading to an improvement in GLUT4 translocation. In addition, genistein increased AMPK activity under both normal and inflammatory conditions; this was shown to contribute to the anti-inflammatory effect of genistein, which leads to an improvement in insulin signalling and the amelioration of insulin resistance. CONCLUSION AND IMPLICATIONS Genistein showed opposite effects on insulin sensitivity under normal and inflammatory conditions in adipose tissue and this action was derived from its negative or positive regulation of IRS1 function. Its up-regulation of AMPK activity contributes to the inhibition of inflammation implicated in insulin resistance. PMID:23763311

  15. Alterations in insulin binding accompanying differentiation of 3T3-L1 preadipocytes.

    PubMed Central

    Reed, B C; Kaufmann, S H; Mackall, J C; Student, A K; Lane, M D

    1977-01-01

    Expression of the adipocyte phenotype by differentiating 3T3-L1 preadipocytes occurs upon exposure of the cells to insulin. Differentiation-linked changes in 125I-labeled insulin binding to 3T3-L1 cells were monitored and compared with those in nondifferentiating 3T3-C2 controls treated similarly. Without chronic insulin treatment, 3T3-L1 cells failed to express the adipocyte phenotype but maintained a level of 25,000-35,000 insulin-binding sites per cell. Treatment of 3T3-L1 cells with insulin resulted in an initial suppression of insulin binding followed by a 12-fold increase that paralleled the appearance of differentiated cells. A maximum of 170,000 insulin-binding sites per cell was attained for a population in which greater than 75% of the cells had differentiated. The increase of insulin receptor level appears to be differentiation-dependent and is not a general response of cells to the culture conditions. 3T3-C2 cells maintained in the presence of insulin for 30 days exhibited the undifferentiated phenotype and suppressed levels of insulin binding (35,000 sites per cell). The binding capacity of 3T3-L1 cells for epidermal growth factor remained unchanged between 25,000 and 40;000 sites per cell and was independent of the state of differentiation. Thus, induction by insulin in receptor-specific changes. Insulin receptors increase in number but epidermal growth factor receptors remain constant. PMID:303773

  16. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance.

    PubMed

    Vazirani, Reema P; Verma, Akanksha; Sadacca, L Amanda; Buckman, Melanie S; Picatoste, Belen; Beg, Muheeb; Torsitano, Christopher; Bruno, Joanne H; Patel, Rajesh T; Simonyte, Kotryna; Camporez, Joao P; Moreira, Gabriela; Falcone, Domenick J; Accili, Domenico; Elemento, Olivier; Shulman, Gerald I; Kahn, Barbara B; McGraw, Timothy E

    2016-06-01

    Insulin controls glucose uptake into adipose and muscle cells by regulating the amount of GLUT4 in the plasma membrane. The effect of insulin is to promote the translocation of intracellular GLUT4 to the plasma membrane. The small Rab GTPase, Rab10, is required for insulin-stimulated GLUT4 translocation in cultured 3T3-L1 adipocytes. Here we demonstrate that both insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane are reduced by about half in adipocytes from adipose-specific Rab10 knockout (KO) mice. These data demonstrate that the full effect of insulin on adipose glucose uptake is the integrated effect of Rab10-dependent and Rab10-independent pathways, establishing a divergence in insulin signal transduction to the regulation of GLUT4 trafficking. In adipose-specific Rab10 KO female mice, the partial inhibition of stimulated glucose uptake in adipocytes induces insulin resistance independent of diet challenge. During euglycemic-hyperinsulinemic clamp, there is no suppression of hepatic glucose production despite normal insulin suppression of plasma free fatty acids. The impact of incomplete disruption of stimulated adipocyte GLUT4 translocation on whole-body glucose homeostasis is driven by a near complete failure of insulin to suppress hepatic glucose production rather than a significant inhibition in muscle glucose uptake. These data underscore the physiological significance of the precise control of insulin-regulated trafficking in adipocytes. PMID:27207531

  17. Staphylococcal Superantigens Stimulate Immortalized Human Adipocytes to Produce Chemokines

    PubMed Central

    Vu, Bao G.; Gourronc, Francoise A.; Bernlohr, David A.; Schlievert, Patrick M.; Klingelhutz, Aloysius J.

    2013-01-01

    Background Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs) on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. Methodology/Principal Findings Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT) and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. Conclusions/Significance Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to understand further the

  18. Altered adipocyte structure and function in nutritionally programmed microswine offspring.

    PubMed

    DuPriest, E A; Kupfer, P; Lin, B; Sekiguchi, K; Morgan, T K; Saunders, K E; Chatkupt, T T; Denisenko, O N; Purnell, J Q; Bagby, S P

    2012-06-01

    Adipose tissue (AT) dysfunction links obesity of any cause with cardiometabolic disease, but whether early-life nutritional deficiency can program adipocyte dysfunction independently of obesity is untested. In 3-5-month-old juvenile microswine offspring exposed to isocaloric perinatal maternal protein restriction (MPR) and exhibiting accelerated prepubertal fat accrual without obesity, we assessed markers of acquired obesity: adiponectin and tumor necrosis factor (TNF)-α messenger ribonucleic acid (mRNA) levels and adipocyte size in intra-abdominal (ABD-AT) and subcutaneous (SC-AT) adipose tissues. Plasma cortisol, leptin and insulin levels were measured in fetal, neonatal and juvenile offspring. In juvenile low-protein offspring (LPO), adipocyte size in ABD-AT was reduced 22% (P = 0.011 v. controls), whereas adipocyte size in SC-AT was increased in female LPO (P = 0.05) and normal in male LPO; yet, adiponectin mRNA in LPO was low in both sexes and in both depots (P < 0.001). Plasma leptin (P = 0.004) and cortisol (P < 0.05) were reduced only in neonatal LPO during MPR. In juveniles, correlations between % body fat and adiponectin mRNA, TNF-α mRNA or plasma leptin were significant in normal-protein offspring (NPO) but absent in LPO. Plasma glucose in juvenile LPO was increased in males but decreased in females (interaction, P = 0.023); plasma insulin levels and insulin sensitivity were unaffected. Findings support nutritional programming of adipocyte size and gene expression and subtly altered glucose homeostasis. Reduced adiponectin mRNA and adipokine dysregulation in juvenile LPO following accelerated growth occurred independently of obesity, adipocyte hypertrophy or inflammatory markers; thus, perinatal MPR and/or growth acceleration can alter adipocyte structure and disturb adipokine homeostasis in metabolically adverse patterns predictive of enhanced disease risk. PMID:25102010

  19. Adipocyte Secreted Factors Enhance Aggressiveness of Prostate Carcinoma Cells

    PubMed Central

    Moreira, Ângela; Pereira, Sofia S.; Costa, Madalena; Morais, Tiago; Pinto, Ana; Fernandes, Rúben; Monteiro, Mariana P.

    2015-01-01

    Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade. PMID:25928422

  20. Adipocyte Death, Adipose Tissue Remodeling and Obesity Complications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the role of adipocyte death in obesity-induced adipose tissue (AT) inflammation and obesity complications. Male C57BL/6 mice were fed a high fat diet for 20 weeks to induce obesity. Every four weeks, insulin resistance (IR) was assessed by intraperitoneal...

  1. Characteristics of metabolic changes in adipocytes of growing rats.

    PubMed

    Gwóźdź, Kinga; Szkudelski, Tomasz; Szkudelska, Katarzyna

    2016-06-01

    Adipocytes, cells of white fat tissue, store energy in the form of lipids and have also endocrine functions. Disturbances in adipocyte metabolism lead to decreased or excessive fat tissue accumulation and are associated with numerous diseases. Pathologic alterations in adipose tissue are known to develop with age, however, changes in young, growing subjects are poorly elucidated. In the present study, glucose transport and metabolism, hyperpolarization of the inner mitochondrial membrane and the lipolytic activity were compared in the epididymal adipocytes of 8-week-old and 16-week-old rats. It was demonstrated that glucose conversion to lipids, glucose transport and oxidation was decreased in the adipocytes of the older animals. These effects were accompanied by increase in lactate release and by decrease in hyperpolarization of the mitochondrial membrane. Lipolytic response to epinephrine was increased (at lower concentrations of the hormone) or reduced (at higher concentration) in the adipocytes of the older rats. However, induction of lipolysis by the direct activation of protein kinase A induced similar response. It was also demonstrated that inhibition of phosphodiesterase 3B or adenosine A1 receptor blocking caused lower lipolysis in the cells of the older rats. Moreover, antilipolytic action of insulin was impaired in the adipocytes of these rats, probably due to changes in the initial steps of the insulin signaling pathway. However, the use of the pharmacologic inhibitor of protein kinase A instead of insulin resulted in similar antilipolysis in both groups of cells. These results show that, in spite of relatively small age difference, substantial changes in adipose tissue metabolism develop in these animals. Decreased response to insulin action seems to be particularly relevant finding. PMID:27060433

  2. Cell line models of differentiation: preadipocytes and adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intense study of adipocyte biology spurred by interest in regulating body composition and metabolism has given rise to a number of in vitro cell models. These in vitro models have been invaluable in determining the mechanisms involved in adipocyte differentiation. In addition in vitro cell sys...

  3. Cellular and molecular implications of mature adipocyte dedifferentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When one looks at the voluminous amount of scientific literature dealing with the molecular regulation of carcass composition, obesity, metabolic syndrome, or diabetes a profound number of papers are printed each week regarding adipocyte involvement in each. To form adipocytes (process termed adipo...

  4. Expression, regulation and functional assessment of the 80 amino acid Small Adipocyte Factor 1 (Smaf1) protein in adipocytes.

    PubMed

    Ren, Gang; Eskandari, Parisa; Wang, Siqian; Smas, Cynthia M

    2016-01-15

    The gene for Small Adipocyte Factor 1, Smaf1 (also known as adipogenin, ADIG), encodes a ∼600 base transcript that is highly upregulated during 3T3-L1 in vitro adipogenesis and markedly enriched in adipose tissues. Based on the lack of an obvious open reading frame in the Smaf1 transcript, it is not known if the Smaf1 gene is protein coding or non-coding RNA. Using a peptide from a putative open reading frame of Smaf1 as antigen, we generated antibodies for western analysis. Our studies prove that Smaf1 encodes an adipose-enriched protein which in western blot analysis migrates at ∼10 kDa. Rapid induction of Smaf1 protein occurs during in vitro adipogenesis and its expression in 3T3-L1 adipocytes is positively regulated by insulin and glucose. Moreover, siRNA studies reveal that expression of Smaf1 in adipocytes is wholly dependent on PPARγ. On the other hand, use of siRNA for Smaf1 to nearly abolish its protein expression in adipocytes revealed that Smaf1 does not have a major role in adipocyte triglyceride accumulation, lipolysis or insulin-stimulated pAkt induction. However, immunolocalization studies using HA-tagged Smaf1 reveal enrichment at adipocyte lipid droplets. Together our findings show that Smaf1 is a novel small protein endogenous to adipocytes and that Smaf1 expression is closely tied to PPARγ-mediated signals and the adipocyte phenotype. PMID:26427354

  5. Biosimilar Insulins

    PubMed Central

    Hompesch, Marcus

    2014-01-01

    Until now most of the insulin used in developed countries has been manufactured and distributed by a small number of multinational companies. Beyond the established insulin manufacturers, a number of new players have developed insulin manufacturing capacities based on modern biotechnological methods. Because the patents for many of the approved insulin formulations have expired or are going to expire soon, these not yet established companies are increasingly interested in seeking market approval for their insulin products as biosimilar insulins (BI) in highly regulated markets like the EU and the United States. Differences in the manufacturing process (none of the insulin manufacturing procedures are 100% identical) can lead to insulins that to some extent may differ from the originator insulin. The key questions are if subtle differences in the structure of the insulins, purity, and so on are clinically relevant and may result in different biological effects. The aim of this article is to introduce and discuss basic aspects that may be of relevance with regard to BI. PMID:24876530

  6. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  7. Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora.

    PubMed

    Okabe, Yui; Shimada, Tsutomu; Horikawa, Takumi; Kinoshita, Kaoru; Koyama, Kiyotaka; Ichinose, Koji; Aburada, Masaki; Takahashi, Kunio

    2014-05-15

    We previously demonstrated that ethyl acetate extracts of Kaempferia parviflora Wall. Ex Baker (KPE) improve insulin resistance in TSOD mice and showed that its components induce differentiation and adipogenesis in 3T3-L1 preadipocytes. The present study was undertaken to examine whether KPE and its isolated twelve components suppress further lipid accumulation in 3T3-L1 mature adipocytes. KPE reduced intracellular triglycerides in mature adipocytes, as did two of its components, 3,5,7,3',4'-pentamethoxyflavone and 5,7,4'-trimethoxyflavone. Shrinkage of lipid droplets in mature adipocytes was observed, and mRNA expression levels of adipose tissue triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) were up-regulated by these two polymethoxyflavonoids (PMFs). Furthermore, the protein expression level of ATGL and the release level of glycerol into the cell culture medium increased. In contrast, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, troglitazone, did not decrease intracellular triglycerides in mature adipocytes, and the mRNA expression level of PPARγ was not up-regulated in mature adipocytes treated with the two active PMFs. Therefore, suppression of lipid accumulation in mature adipocytes is unlikely to be enhanced by transcriptional activation of PPARγ. These results suggest that KPE and its active components enhance lipolysis in mature adipocytes by activation of ATGL and HSL independent of PPARγ transcription, thus preventing adipocyte hypertrophy. On the other hand, the full hydroxylated flavonoid quercetin did not show the suppressive effects of lipid accumulation in mature adipocyte in the same conditions. Consequently, methoxy groups in the flavones are important for the activity. PMID:24629599

  8. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes.

    PubMed

    Ost, Anita; Svensson, Kristoffer; Ruishalme, Iida; Brännmark, Cecilia; Franck, Niclas; Krook, Hans; Sandström, Per; Kjolhede, Preben; Strålfors, Peter

    2010-01-01

    Type 2 diabetes (T2D) is strongly linked to obesity and an adipose tissue unresponsive to insulin. The insulin resistance is due to defective insulin signaling, but details remain largely unknown. We examined insulin signaling in adipocytes from T2D patients, and contrary to findings in animal studies, we observed attenuation of insulin activation of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). As a consequence, mTORC1 downstream effects were also affected in T2D: feedback signaling by insulin to signal-mediator insulin receptor substrate-1 (IRS1) was attenuated, mitochondria were impaired and autophagy was strongly upregulated. There was concomitant autophagic destruction of mitochondria and lipofuscin particles, and a dependence on autophagy for ATP production. Conversely, mitochondrial dysfunction attenuated insulin activation of mTORC1, enhanced autophagy and attenuated feedback to IRS1. The overactive autophagy was associated with large numbers of cytosolic lipid droplets, a subset with colocalization of perlipin and the autophagy protein LC3/atg8, which can contribute to excessive fatty acid release. Patients with diagnoses of T2D and overweight were consecutively recruited from elective surgery, whereas controls did not have T2D. Results were validated in a cohort of patients without diabetes who exhibited a wide range of insulin sensitivities. Because mitochondrial dysfunction, inflammation, endoplasmic-reticulum stress and hypoxia all inactivate mTORC1, our results may suggest a unifying mechanism for the pathogenesis of insulin resistance in T2D, although the underlying causes might differ. PMID:20386866

  9. Relationship of Adipocyte Size with Adiposity and Metabolic Risk Factors in Asian Indians

    PubMed Central

    Meena, Ved Prakash; Seenu, V.; Sharma, M. C.; Mallick, Saumya Ranjan; Bhalla, Ashu Seith; Gupta, Nandita; Mohan, Anant; Guleria, Randeep; Pandey, Ravindra M.; Luthra, Kalpana; Vikram, Naval K.

    2014-01-01

    Background Enlargement of adipocyte is associated with their dysfunction and alterations in metabolic functions. Objectives We evaluated the association of adipocyte size of subcutaneous and omental adipose tissue with body composition and cardiovascular risk factors in Asian Indians. Methodology Eighty (40 males and 40 females) non-diabetic adult subjects undergoing elective abdominal surgery were included. Pre-surgery evaluation included anthropometric measurements, % body fat by bioimpedance, abdominal fat area at L2–3 level (computed tomography) and biochemical investigations (fasting blood glucose and insulin, lipids and hsCRP). During surgery, about 5 grams each of omental and subcutaneous adipose tissue was obtained for adipocyte size determination. Results Females had higher BMI, % body fat, skinfold thickness, total and subcutaneous abdominal fat area as compared to males. Overweight was present in 42.5% and 67.5%, and abdominal obesity in 5% and 52.5% males and females, respectively. Subcutaneous adipocyte size was significantly higher than omental adipocyte size. Omental adipocyte size correlated more strongly than subcutaneous adipocyte size with measures of adiposity (BMI, waist circumference, %BF), total and subcutaneous abdominal fat area and biochemical measures (fasting glucose, total cholesterol, triglycerides and HOMA-IR), the correlations being stronger in females. The correlation of adipocyte size with metabolic parameters was attenuated after adjusting for measures of adiposity. Conclusion Omental adipocyte size, though smaller than the subcutaneous adipocyte size, was more closely related to measures of adiposity and metabolic parameters. However, the relationship was not independent of measures of adiposity. PMID:25251402

  10. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes.

    PubMed

    Isidor, Marie S; Winther, Sally; Basse, Astrid L; Petersen, M Christine H; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B

    2016-01-01

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo "browning." In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells. PMID:27386153

  11. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance.

    PubMed

    Tinkov, Alexey A; Sinitskii, Anton I; Popova, Elizaveta V; Nemereshina, Olga N; Gatiatulina, Evgenia R; Skalnaya, Margarita G; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The mechanisms of association between obesity and the related metabolic disturbances in general and insulin resistance in particular are extensively studied. Taking into account a key role of adipose tissue insulin resistance in the development of systemic obesity-related insulin resistance, the estimation of mechanisms linking increased adiposity and impaired insulin signaling in adipocytes will allow to develop novel prophylactic and therapeutic approaches to treatment of these states. A number of trace elements like chromium, zinc, and vanadium have been shown to take part in insulin signaling via various mechanisms. Taking into account a key role of adipocyte in systemic carbohydrate homeostasis it can be asked if trace element homeostasis in adipose tissue may influence regulatory mechanisms of glucose metabolism. We hypothesize that caloric excess through currently unknown mechanisms results in decreased chromium, vanadium, and zinc content in adipocytes. Decreased content of trace elements in the adipose tissue causes impairment of intra-adipocyte insulin signaling subsequently leading to adipose tissue insulin resistance. The latter significantly contributes to systemic insulin resistance and further metabolic disruption in obesity. It is also possible that decreased adipose tissue trace element content is associated with dysregulation of insulin-sensitizing and proinflammatory adipokines also leading to insulin resistance. We hypothesize that insulin resistance and adipokine dysbalance increase the severity of obesity subsequently aggravating alteration of adipose tissue trace element balance. Single indications of high relative adipose tissue trace element content, decreased Cr, V, and Zn content in obese adipose tissue, and tight association between fat tissue chromium, vanadium, and zinc levels and metabolic parameters in obesity may be useful for hypothesis validation. If our hypothesis will be confirmed by later studies, adipose tissue chromium

  12. Biosimilar insulins.

    PubMed

    Heinemann, Lutz

    2012-08-01

    Until now most insulin used in developed countries is manufactured and distributed by a small number of multinational companies. Other pharmaceutical companies - many of these are located in countries such as India or China - are also able to manufacture insulin with modern biotechnological methods. Additionally, the patents for many insulin formulations have expired or are going to expire soon. This enables such companies to produce insulins and to apply for market approval of these as biosimilar insulins (BIs) in highly regulated markets such as the EU or the US. To understand the complexity of BIs' approval and usage, scientific and regulatory aspects have to be discussed. Differences in the manufacturing process (none of the insulin-manufacturing procedures are identical) result in the fact that all insulin that might become BIs differ from the originator insulin to some extent. The question is, have such differences in the structure of the insulin molecule and or the purity and so on clinically relevant consequences for the biological effects induced or not. The guidelines already in place in the EU for market approval require that the manufacturer demonstrates that his insulin has a safety and efficacy profile that is similar to that of the 'original' insulin formulation. Recently guidelines for biosimilars were issued in the US; however, these do not cover insulin. Although a challenging approval process for insulins to become BI might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant, and do warrant a careful and evidence-driven approval process. Nevertheless, it is very likely that in the next years, BIs will come to the market also in highly regulated markets. PMID:22583127

  13. Bisphenol A effects on gene expression in adipocytes from children: association with metabolic disorders.

    PubMed

    Menale, Ciro; Piccolo, Maria Teresa; Cirillo, Grazia; Calogero, Raffaele A; Papparella, Alfonso; Mita, Luigi; Del Giudice, Emanuele Miraglia; Diano, Nadia; Crispi, Stefania; Mita, Damiano Gustavo

    2015-06-01

    Bisphenol A (BPA) is a xenobiotic endocrine-disrupting chemical. In vitro and in vivo studies have indicated that BPA alters endocrine-metabolic pathways in adipose tissue, which increases the risk of metabolic disorders and obesity. BPA can affect adipose tissue and increase fat cell numbers or sizes by regulating the expression of the genes that are directly involved in metabolic homeostasis and obesity. Several studies performed in animal models have accounted for an obesogen role of BPA, but its effects on human adipocytes - especially in children - have been poorly investigated. The aim of this study is to understand the molecular mechanisms by which environmentally relevant doses of BPA can interfere with the canonical endocrine function that regulates metabolism in mature human adipocytes from prepubertal, non-obese children. BPA can act as an estrogen agonist or antagonist depending on the physiological context. To identify the molecular signatures associated with metabolism, transcriptional modifications of mature adipocytes from prepubertal children exposed to estrogen were evaluated by means of microarray analysis. The analysis of deregulated genes associated with metabolic disorders allowed us to identify a small group of genes that are expressed in an opposite manner from that of adipocytes treated with BPA. In particular, we found that BPA increases the expression of pro-inflammatory cytokines and the expression of FABP4 and CD36, two genes involved in lipid metabolism. In addition, BPA decreases the expression of PCSK1, a gene involved in insulin production. These results indicate that exposure to BPA may be an important risk factor for developing metabolic disorders that are involved in childhood metabolism dysregulation. PMID:25878060

  14. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes

    PubMed Central

    Wang, Xiaoyan; Chen, Tingfeng; Zhang, Yani; Li, Bichun; Xu, Qi; Song, Chengyi

    2015-01-01

    Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes. PMID:26556335

  15. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes.

    PubMed

    Wang, Xiaoyan; Chen, Tingfeng; Zhang, Yani; Li, Bichun; Xu, Qi; Song, Chengyi

    2015-01-01

    Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes. PMID:26556335

  16. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes

    PubMed Central

    Ariemma, Fabiana; D’Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  17. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    PubMed

    Ariemma, Fabiana; D'Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  18. Cystathionine γ lyase-hydrogen sulfide increases peroxisome proliferator-activated receptor γ activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes.

    PubMed

    Cai, Junyan; Shi, Xiaoqin; Wang, Huamin; Fan, Jinghui; Feng, Yongliang; Lin, Xianjuan; Yang, Jichun; Cui, Qinghua; Tang, Chaoshu; Xu, Guoheng; Geng, Bin

    2016-05-01

    Adipocytes express the cystathionine γ lyase (CSE)-hydrogen sulfide (H2S) system. CSE-H2S promotes adipogenesis but ameliorates adipocyte insulin resistance. We investigated the mechanism of how CSE-H2S induces these paradoxical effects. First, we confirmed that an H2S donor or CSE overexpression promoted adipocyte differentiation. Second, we found that H2S donor inhibited but CSE inhibition increased phosphodiesterase (PDE) activity. H2S replacing isobutylmethylxanthine in the differentiation program induced adipocyte differentiation in part. Inhibiting PDE activity by H2S induced peroxisome proliferator activated receptor γ (PPARγ) protein and mRNA expression. Of note, H2S directly sulfhydrated PPARγ protein. Sulfhydrated PPARγ increased its nuclear accumulation, DNA binding activity and adipogenesis gene expression, thereby increasing glucose uptake and lipid storage, which were blocked by the desulfhydration reagent DTT. H2S induced PPARγ sulfhydration, which was blocked by mutation of the C139 site of PPARγ. In mice fed a high-fat diet (HFD) for 4 weeks, the CSE inhibitor decreased but H2S donor increased adipocyte numbers. In obese mice fed an HFD for 13 weeks, H2S treatment increased PPARγ sulfhydration in adipose tissues and attenuated insulin resistance but did not increase obesity. In conclusion, CSE-H2S increased PPARγ activity by direct sulfhydration at the C139 site, thereby changing glucose into triglyceride storage in adipocytes. CSE-H2S-mediated PPARγ activation might be a new therapeutic target for diabetes associated with obesity. PMID:26946260

  19. Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program.

    PubMed

    Shao, Mengle; Ishibashi, Jeff; Kusminski, Christine M; Wang, Qiong A; Hepler, Chelsea; Vishvanath, Lavanya; MacPherson, Karen A; Spurgin, Stephen B; Sun, Kai; Holland, William L; Seale, Patrick; Gupta, Rana K

    2016-06-14

    The transcriptional regulators Ebf2 and Prdm16 establish and maintain the brown and/or beige fat cell identity. However, the mechanisms operating in white adipocytes to suppress the thermogenic gene program and maintain an energy-storing phenotype are less understood. Here, we report that the transcriptional regulator Zfp423 is critical for maintaining white adipocyte identity through suppression of the thermogenic gene program. Zfp423 expression is enriched in white versus brown adipocytes and suppressed upon cold exposure. Doxycycline-inducible inactivation of Zfp423 in mature adipocytes, combined with β-adrenergic stimulation, triggers a conversion of differentiated adiponectin-expressing inguinal and gonadal adipocytes into beige-like adipocytes; this reprogramming event is sufficient to prevent and reverse diet-induced obesity and insulin resistance. Mechanistically, Zfp423 acts in adipocytes to inhibit the activity of Ebf2 and suppress Prdm16 activation. These data identify Zfp423 as a molecular brake on adipocyte thermogenesis and suggest a therapeutic strategy to unlock the thermogenic potential of white adipocytes in obesity. PMID:27238639

  20. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells

    PubMed Central

    Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés

    2016-01-01

    We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs. PMID:27049396

  1. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells.

    PubMed

    Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés

    2016-01-01

    We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs. PMID:27049396

  2. Developmental aspects of the rat brain insulin receptor: loss of sialic acid and fluctuation in number characterize fetal development

    SciTech Connect

    Brennan, W.A. Jr.

    1988-06-01

    In this study, I have investigated the structure of the rat brain insulin receptor during fetal development. There is a progressive decrease in the apparent molecular size of the brain alpha-subunit during development: 130K on day 16 of gestation, 126K at birth, and 120K in the adult. Glycosylation was investigated as a possible reason for the observed differences in the alpha-subunit molecular size. The results show that the developmental decrease in the brain alpha-subunit apparent molecular size is due to a parallel decrease in sialic acid content. This was further confirmed by measuring the retention of autophosphorylated insulin receptors on wheat germ agglutinin (WGA)-Sepharose. An inverse correlation between developmental age and retention of /sup 32/P-labeled insulin receptors on the lectin column was observed. Insulin binding increases 6-fold between 16 and 20 days of gestation (61 +/- 25 (+/- SE) fmol/mg protein and 364 +/- 42 fmol/mg, respectively). Thereafter, binding in brain membranes decreases to 150 +/- 20 fmol/mg by 2 days after birth, then reaches the adult level of 63 +/- 15 fmol/mg. In addition, the degree of insulin-stimulated autophosphorylation closely parallels the developmental changes in insulin binding. Between 16 and 20 days of fetal life, insulin-stimulated phosphorylation of the beta-subunit increases 6-fold. Thereafter, the extent of phosphorylation decreases rapidly, reaching adult values identical with those in 16-day-old fetal brain. These results suggest that the embryonic brain possesses competent insulin receptors whose expression changes markedly during fetal development. This information should be important in defining the role of insulin in the developing nervous system.

  3. Extra Fructose in the Growth Medium Fuels Lipogenesis of Adipocytes

    PubMed Central

    Robubi, Armin; Huber, Klaus R.; Krugluger, Walter

    2014-01-01

    Fructose in excessive amounts exerts negative effects on insulin sensitivity, blood pressure, and liver metabolism. These adverse outcomes were attributed to its disturbances of key metabolic pathways in the liver. Recently, possible consequences of high fructose levels directly on adipocytes in vivo have been considered. We have cultured adipocytes in growth media containing 1 g/L fructose additionally to glucose and monitored the cells fate. Cells developed lipid vesicles much earlier with fructose and showed altered kinetics of the expression of mRNAs involved in lipogenesis and hexose uptake. Adiponectin secretion, too, peaked earlier in fructose containing media than in media with glucose only. From these data it can be speculated that similar effects of fructose containing diets happen in vivo also. Apart from toxic action on liver cells, adipocytes might be stimulated to take up extra fructose and generate new lipid vesicles, further dysregulating energy homeostasis. PMID:24693420

  4. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes

    PubMed Central

    Kuroda, Masashi; Tominaga, Ayako; Nakagawa, Kasumi; Nishiguchi, Misa; Sebe, Mayu; Miyatake, Yumiko; Kitamura, Tadahiro; Tsutsumi, Rie; Harada, Nagakatsu; Nakaya, Yutaka; Sakaue, Hiroshi

    2016-01-01

    Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis. PMID:27494408

  5. cis9, trans11-Conjugated Linoleic Acid Differentiates Mouse 3T3-L1 Preadipocytes into Mature Small Adipocytes through Induction of Peroxisome Proliferator-activated Receptor γ.

    PubMed

    Sakuma, Satoru; Nishioka, Yuki; Imanishi, Ryohta; Nishikawa, Kenji; Sakamoto, Hirotada; Fujisawa, Junji; Wada, Koichiro; Kamisaki, Yoshinori; Fujimoto, Yohko

    2010-09-01

    Dietary conjugated linoleic acid (CLA) has been reported to exhibit a number of therapeutic effects in animal models and patients, such as anti-hypertensive, anti-hyperlipidemic, anti-arteriosclerotic, anti-carcinogenic, and anti-diabetic effects. However, the underlying mechanism is not well-characterized. In the present study, the effects of cis(c)9, trans(t)11-CLA on the differentiation of mouse 3T3-L1 preadipocytes into mature adipocytes were examined. Treatment with c9, t11-CLA in the presence of insulin, dexamethasone, and 3-isobutyl-1-methyl-xanthine (differentiation cocktail) significantly stimulated the accumulation of triacylglycerol. The microscopic observation of cells stained by Oil Red O demonstrated that c9, t11-CLA increases the amount and proportion of small mature adipocytes secreting adiponectin, a benign adipocytokine, when compared to the differentiation cocktail alone. Furthermore, c9, t11-CLA increased bioactive peroxisome proliferator-activated receptor γ (PPARγ) levels in a nuclear extract of 3T3-L1 cells, suggesting the enhancing effect of this fatty acid on the nuclear transmission of PPARγ, a master regulator of adipocyte differentiation, in 3T3-L1 cells. These results suggest that the therapeutic effects of c9, t11-CLA on lifestyle-related diseases are partially due to the enhanced formation of small adipocytes from preadipocytes via PPARγ stimulation. PMID:20838573

  6. Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes.

    PubMed

    Chai, Jen-Wai; Lim, Siang-Ling; Kanthimathi, M S; Kuppusamy, Umah Rani

    2011-05-01

    The nutraceutical benefits of β-sitosterol (SIT) are well documented. The present study investigated the in vitro effects of SIT on adipogenesis, glucose transport, and lipid mobilization in rat adipocytes. Primary cultures of rat preadipocytes and differentiated adipocytes were used in this study. Glucose uptake was measured by the uptake of radio-labeled glucose. Adipogenesis and lipolysis were measured by oil-red-O and glycerol quantification methods, respectively. The expression of protein kinase B (Akt), glucose transporter 4 (GLUT4), hormone sensitive lipase (HSL), and phosphatidylinositol-3-kinase (PI3 K) genes in SIT-treated adipocytes were assessed by real-time reverse transcription polymerase chain reaction (RT-PCR). The data showed that SIT induced glucose uptake in adipocytes. It also stimulated adipogenesis in differentiating preadipocytes. Interestingly, although SIT displayed general insulin-mimetic activity by stimulating glucose uptake and adipogenesis, it also induced lipolysis in adipocytes. Furthermore, the SIT-induced lipolysis was not attenuated by insulin and co-incubation of SIT with epinephrine improved epinephrine-induced lipolysis. GLUT4 gene expression was highly down-regulated in SIT-treated adipocytes, compared to insulin-treated adipocytes, which was up-regulated. Insulin- and SIT-treated adipocytes showed similar levels of Akt, HSL, and PI3 K gene down-regulation. These observations suggest that the elevation of glucose uptake in SIT-treated adipocytes was unrelated to de novo synthesis of GLUT4 and the SIT-induced lipolysis is associated with the down-regulation of Akt and PI3K genes. The unique effects of SIT on the regulation of glucose uptake, adipogenesis, and lipolysis in adipocytes show that it has potential to be utilized in diabetes and weight management. PMID:21484150

  7. Between brown and white: novel aspects of adipocyte differentiation.

    PubMed

    Cinti, Saverio

    2011-03-01

    In all mammals including humans, most white and brown adipocytes are found together in visceral and subcutaneous depots (adipose organ) despite the well known difference in their function, respectively of storing energy and producing heat. A growing body of evidence suggests that the reason for such anatomical arrangement is their plasticity, which under appropriate stimulation allows direct conversion of one cell type into the other. In conditions of chronic cold exposure white-to-brown conversion meets the need for thermogenesis, whereas an obesogenic diet induces brown-to-white conversion to meet the need for storing energy. White-to-brown transdifferentiation is of medical interest, because the brown phenotype of the adipose organ is associated to obesity resistance, and drugs inducing this phenotype curb murine obesity and related disorders. Type 2 diabetes is the most common disorder associated to visceral obesity. Macrophages infiltrating the adipose organ are responsible for the low-grade chronic inflammation related to the removal of dead adipocytes, which leads to insulin resistance and T2 diabetes. Adipocyte death is closely related to their growth up to the critical death size. The critical death size of visceral adipocytes is smaller than that of subcutaneous adipocytes, likely accounting for the greater morbidity related to visceral fat. PMID:21254898

  8. Radiation inactivation target size of rat adipocyte glucose transporter

    SciTech Connect

    Jung, C.Y.; Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.

    1987-05-01

    In situ assembly states of rat adipocyte glucose transport protein in plasma membrane (PM) and in microsomal pool (MM) were assessed by measuring target size (TS) of D glucose-sensitive, cytochalasin B binding activity. High energy radiation inactivated the binding in both PM and MM by reducing the total capacity of the binding (B/sub T/) without affecting the dissociation constant (K/sub D/). The reduction in B/sub T/ as a function of radiation dose was analyzed based on classical target theory, from which TS was calculated. TS in the PM of insulin-treated adipocytes was 58 KDa. TS in the MM of noninsulin-treated and insulin-treated adipocytes were 112 and 109 KDa, respectively. With MM, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses showing a shoulder in the semilog plots, which may be due to an interaction with a radiation sensitive inhibitor. With these results, they propose the following model: Adipocyte glucose transporter, while exists as a monomer (T) in PM, occurs in MM either as a homodimer (T/sub 2/) or as a heterodimer (TX) with a protein X of a similar size. These dimers (T/sub 2/ or TX) in MM, furthermore, may form a multi-molecular assembly with another, large (300-400 KDa) protein Y, and insulin increases this assembly formation. These putative, transporter-associated proteins X and Y may play an important role in control of transporter distribution between PM and MM, particularly in response to insulin.

  9. Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors

    PubMed Central

    Donati, Giacomo; Proserpio, Valentina; Lichtenberger, Beate Maria; Natsuga, Ken; Sinclair, Rodney; Fujiwara, Hironobu; Watt, Fiona M.

    2014-01-01

    It has long been recognized that the hair follicle growth cycle and oscillation in the thickness of the underlying adipocyte layer are synchronized. Although factors secreted by adipocytes are known to regulate the hair growth cycle, it is unclear whether the epidermis can regulate adipogenesis. We show that inhibition of epidermal Wnt/β-catenin signaling reduced adipocyte differentiation in developing and adult mouse dermis. Conversely, ectopic activation of epidermal Wnt signaling promoted adipocyte differentiation and hair growth. When the Wnt pathway was activated in the embryonic epidermis, there was a dramatic and premature increase in adipocytes in the absence of hair follicle formation, demonstrating that Wnt activation, rather than mature hair follicles, is required for adipocyte generation. Epidermal and dermal gene expression profiling identified keratinocyte-derived adipogenic factors that are induced by β-catenin activation. Wnt/β-catenin signaling-dependent secreted factors from keratinocytes promoted adipocyte differentiation in vitro, and we identified ligands for the bone morphogenetic protein and insulin pathways as proadipogenic factors. Our results indicate epidermal Wnt/β-catenin as a critical initiator of a signaling cascade that induces adipogenesis and highlight the role of epidermal Wnt signaling in synchronizing adipocyte differentiation with the hair growth cycle. PMID:24706781

  10. DAPK2 Downregulation Associates With Attenuated Adipocyte Autophagic Clearance in Human Obesity.

    PubMed

    Soussi, Hedi; Reggio, Sophie; Alili, Rohia; Prado, Cecilia; Mutel, Sonia; Pini, Maria; Rouault, Christine; Clément, Karine; Dugail, Isabelle

    2015-10-01

    Adipose tissue dysfunction in obesity has been linked to low-grade inflammation causing insulin resistance. Transcriptomic studies have identified death-associated protein kinase 2 (DAPK2) among the most strongly downregulated adipose tissue genes in human obesity, but the role of this kinase is unknown. We show that mature adipocytes rather than the stromal vascular cells in adipose tissue mainly expressed DAPK2 and that DAPK2 mRNA in obese patients gradually recovered after bariatric surgery-induced weight loss. DAPK2 mRNA is also downregulated in high-fat diet-induced obese mice. Adenoviral-mediated DAPK2 overexpression in 3T3-L1 adipocytes did not affect lipid droplet size or cell viability but did increase autophagic clearance in nutrient-rich conditions, dependent on protein kinase activity. Conversely, DAPK2 inhibition in human preadipocytes by small interfering RNA decreased LC3-II accumulation rates with lysosome inhibitors. This led us to assess autophagic clearance in adipocytes freshly isolated from subcutaneous adipose tissue of obese patients. Severe reduction in autophagic flux was observed in obese adipocytes compared with control adipocytes, inversely correlated to fat cell lipids. After bariatric surgery, adipocyte autophagic clearance partially recovered proportional to the extent of fat cell size reduction. This study links adipocyte expression of an autophagy-regulating kinase, lysosome-mediated clearance and fat cell lipid accumulation; it demonstrates obesity-related attenuated autophagy in adipocytes, and identifies DAPK2 dependence in this regulation. PMID:26038578

  11. Neonatal streptozotocin-induced diabetes mellitus: a model of insulin resistance associated with loss of adipose mass.

    PubMed

    Takada, Julie; Machado, Magaly A; Peres, Sidney B; Brito, Luciana C; Borges-Silva, Cristina N; Costa, Cecília E M; Fonseca-Alaniz, Miriam H; Andreotti, Sandra; Lima, Fabio Bessa

    2007-07-01

    The use of experimental models of diabetes mellitus (DM) has been useful in understanding the complex pathogenesis of DM. Streptozotocin (STZ) injected in rats during the neonatal period has usually led to the major features described in diabetic patients (hyperglycemia, polyphagia, polydipsia, polyuria, and abnormal glucose tolerance) in a short period. Diabetes mellitus is a product of low insulin sensibility and pancreatic beta-cell dysfunction. Its process is characterized by a symptomless prediabetic phase before the development of the disease. In this study, we investigated the long-term effects of diabetes induction regarding the cellular metabolic aspects of this model and its similarities with diabetes found in humans. Male Wistar rats (5-day old) were intraperitoneally injected with STZ (150 mg/kg) and followed up for 12 weeks. On the 12th week, animals were decapitated and peri-epididymal fat pads were excised for adipocyte isolation. The following studies were performed: insulin-stimulated 2-deoxy-d-[(3)H]glucose uptake; incorporation of d-[U-(14)C]-glucose into lipids and conversion into (14)CO(2); and insulin binding. The weight gain rate of the STZ-treated group became significantly lower by the eighth week. These rats developed polyphagia, polydipsia, polyuria, and glycosuria, and impaired glucose tolerance. Biological tests with isolated adipocytes revealed a reduction in the insulin receptor number and an impairment in their ability to oxidize glucose as well as to incorporate it into lipids. Interestingly, parallel to reduced body weight, the adipocyte size of STZ rats was significantly small. We concluded that apart of a decrease in pancreatic insulin content, this experimental model of DM promotes a remarkable and sustained picture of insulin resistance in adulthood that is strongly related to a loss in adipose mass. PMID:17570261

  12. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    SciTech Connect

    Omar, Bilal; Banke, Elin; Guirguis, Emilia; Aakesson, Lina; Manganiello, Vincent; Lyssenko, Valeriya; Groop, Leif; Gomez, Maria F.; Degerman, Eva

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  13. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    SciTech Connect

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  14. Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1.

    PubMed

    Chi, Wendy; Dao, Dyda; Lau, Trevor C; Henriksbo, Brandyn D; Cavallari, Joseph F; Foley, Kevin P; Schertzer, Jonathan D

    2014-01-01

    Obesity is associated with inflammation that can drive metabolic defects such as hyperlipidemia and insulin resistance. Specific metabolites can contribute to inflammation, but nutrient intake and obesity are also associated with altered bacterial load in metabolic tissues (i.e. metabolic endotoxemia). These bacterial cues can contribute to obesity-induced inflammation. The specific bacterial components and host receptors that underpin altered metabolic responses are emerging. We previously showed that Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) activation with bacterial peptidoglycan (PGN) caused insulin resistance in mice. We now show that PGN induces cell-autonomous lipolysis in adipocytes via NOD1. Specific bacterial PGN motifs stimulated lipolysis in white adipose tissue (WAT) explants from WT, but not NOD1⁻/⁻mice. NOD1-activating PGN stimulated mitogen activated protein kinases (MAPK),protein kinase A (PKA), and NF-κB in 3T3-L1 adipocytes. The NOD1-mediated lipolysis response was partially reduced by inhibition of ERK1/2 or PKA alone, but not c-Jun N-terminal kinase (JNK). NOD1-stimulated lipolysis was partially dependent on NF-κB and was completely suppressed by inhibiting ERK1/2 and PKA simultaneously or hormone sensitive lipase (HSL). Our results demonstrate that bacterial PGN stimulates lipolysis in adipocytes by engaging a stress kinase, PKA, NF-κB-dependent lipolytic program. Bacterial NOD1 activation is positioned as a component of metabolic endotoxemia that can contribute to hyperlipidemia, systemic inflammation and insulin resistance by acting directly on adipocytes. PMID:24828250

  15. The transcriptional basis of adipocyte development.

    PubMed

    Rosen, Evan D

    2005-07-01

    Adipogenesis is the developmental process by which a multipotent mesenchymal stem cell differentiates into a mature adipocyte. This process involves a highly regulated and coordinated cascade of transcription factors that together lead to the establishment of the differentiated state. In the presence of the correct hormonal cues, committed pre-adipocytes express the bZIP factors C/EBPb and C/EBPd. These factors in turn induce the expression of C/EBPa and peroxisome proliferator-activated receptor g (PPARg). C/EBPa and PPARg together promote differentiation by activating adipose-specific gene expression and by maintaining each others expression at high levels. We have investigated the relative contributions of PPARg and C/EBPa to adipogenesis by selectively ablating these genes in mouse embryonic fibroblasts (MEFs). MEFs that lack C/EBPa are able to undergo adipogenesis, but only when PPARg is ectopically expressed. Interestingly, these cells are not sensitive to the metabolic actions of insulin. By way of contrast, cells that lack PPARg are utterly incapable of adipogenic conversion, even when supplemented with high levels of C/EBPa. Our current investigations are centered on the identification of novel adipogenic transcription factors, utilizing a variety of techniques, ranging from BAC transgenics to computational approaches. These approaches will be discussed, along with the roles of some new transcriptional players in adipogenesis, including the O/E family of proteins. PMID:15936931

  16. Mitigation of isolation-associated adipocyte interleukin-6 secretion following rapid dissociation of adipose tissue.

    PubMed

    Thompson, Airlia C S; Nuñez, Martha; Davidson, Ryan; Horm, Teresa; Schnittker, Karina; Hart, Madeline V; Suarez, Allen M; Tsao, Tsu-Shuen

    2012-12-01

    Primary adipocyte isolation by collagenase digestion is a widely used technique to study metabolic regulation and insulin action in adipocytes. However, induction of a proinflammatory response characterized by enhanced secretion of interleukin (IL)-6 has been tightly linked to the isolation process itself. To test the hypothesis that the shaking mechanical force exerted on adipocytes stimulates inflammation during isolation, rat primary adipocytes were prepared by collagenase digestion in orbital shaking incubators maintained at varying speeds. Contrary to expectation, the isolation-induced release of IL-6 was attenuated by increasing the rotational speed of digestion and the concentration of collagenase, both of which resulted in rapid dissociation of adipocytes from the vasculature. In addition, the attenuation of IL-6 secretion was associated with decreased phosphorylation of the stress-related p38 mitogen-activated protein kinase (p38 MAPK) and preserved insulin action. The data suggest that optimization of parameters including, but not limited to, mincing technique, time of digestion, and collagenase concentration will make it possible to isolate primary adipocytes without activation of a proinflammatory response leading to elevated secretion of IL-6. PMID:22911046

  17. Functional characterization of retromer in GLUT4 storage vesicle formation and adipocyte differentiation.

    PubMed

    Yang, Zhe; Hong, Lee Kian; Follett, Jordan; Wabitsch, Martin; Hamilton, Nicholas A; Collins, Brett M; Bugarcic, Andrea; Teasdale, Rohan D

    2016-03-01

    Insulin-stimulated translocation of glucose transporter 4 (GLUT4) storage vesicles (GSVs), the specialized intracellular compartments within mature adipocytes, to the plasma membrane (PM) is a fundamental cellular process for maintaining glucose homeostasis. Using 2 independent adipocyte cell line models, human primary Simpson-Golabi-Behmel syndrome and mouse 3T3-L1 fibroblast cell lines, we demonstrate that the endosome-associated protein-sorting complex retromer colocalizes with GLUT4 on the GSVs by confocal microscopy in mature adipocytes. By use of both confocal microscopy and differential ultracentrifugation techniques, retromer is redistributed to the PM of mature adipocytes upon insulin stimulation. Furthermore, stable knockdown of the retromer subunit-vacuolar protein-sorting 35, or the retromer-associated protein sorting nexin 27, by lentivirus-delivered small hairpin RNA impaired the adipogenesis process when compared to nonsilence control. The knockdown of retromer decreased peroxisome proliferator activated receptor γ expression during differentiation, generating adipocytes with decreased levels of GSVs, lipid droplet accumulation, and insulin-stimulated glucose uptake. In conclusion, our study demonstrates a role for retromer in the GSV formation and adipogenesis. PMID:26581601

  18. Visfatin expression analysis in association with recruitment and activation of human and rodent brown and brite adipocytes.

    PubMed

    Pisani, Didier F; Dumortier, Olivier; Beranger, Guillaume E; Casamento, Virginie; Ghandour, Rayane A; Giroud, Maude; Gautier, Nadine; Balaguer, Thierry; Chambard, Jean-Claude; Virtanen, Kirsi A; Nuutila, Pirjo; Niemi, Tarja; Taittonen, Markku; Van Obberghen, Emmanuel; Hinault, Charlotte; Amri, Ez-Zoubir

    2016-01-01

    Human brown adipocytes are able to burn fat and glucose and are now considered as a potential strategy to treat obesity, type 2 diabetes and metabolic disorders. Besides their thermogenic function, brown adipocytes are able to secrete adipokines. One of these is visfatin, a nicotinamide phosphoribosyltransferase involved in nicotinamide dinucleotide synthesis, which is known to participate in the synthesis of insulin by pancreatic β cells. In a therapeutic context, it is of interest to establish whether a potential correlation exists between brown adipocyte activation and/or brite adipocyte recruitment, and adipokine expression. We analyzed visfatin expression, as a pre-requisite to its secretion, in rodent and human biopsies and cell models of brown/brite adipocytes. We found that visfatin was preferentially expressed in mature adipocytes and that this expression was higher in brown adipose tissue of rodents compared to other fat depots. However, using various rodent models we were unable to find any correlation between visfatin expression and brown or brite adipocyte activation or recruitment. Interestingly, the situation is different in humans where visfatin expression was found to be equivalent between white and brown or brite adipocytes in vivo and in vitro. In conclusion, visfatin can be considered only as a rodent brown adipocyte biomarker, independently of tissue activation. PMID:27386154

  19. Monoclonal Antibodies to the Human Insulin Receptor that Activate Glucose Transport but not Insulin Receptor Kinase Activity

    NASA Astrophysics Data System (ADS)

    Forsayeth, John R.; Caro, Jose F.; Sinha, Madhur K.; Maddux, Betty A.; Goldfine, Ira D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  20. Bmp4 Promotes a Brown to White-like Adipocyte Shift.

    PubMed

    Modica, Salvatore; Straub, Leon G; Balaz, Miroslav; Sun, Wenfei; Varga, Lukas; Stefanicka, Patrik; Profant, Milan; Simon, Eric; Neubauer, Heike; Ukropcova, Barbara; Ukropec, Jozef; Wolfrum, Christian

    2016-08-23

    While Bmp4 has a well-established role in the commitment of mesenchymal stem cells into the adipogenic lineage, its role in brown adipocyte formation and activity is not well defined. Here, we show that Bmp4 has a dual function in adipogenesis by inducing adipocyte commitment while inhibiting the acquisition of a brown phenotype during terminal differentiation. Selective brown adipose tissue overexpression of Bmp4 in mice induces a shift from a brown to a white-like adipocyte phenotype. This effect is mediated by Smad signaling and might be in part due to suppression of lipolysis, via regulation of hormone sensitive lipase expression linked to reduced Ppar activity. Given that we observed a strong correlation between BMP4 levels and adipocyte size, as well as insulin sensitivity in humans, we propose that Bmp4 is an important factor in the context of obesity and type 2 diabetes. PMID:27524617

  1. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes.

    PubMed

    Yoshida, Hiroki; Watanabe, Wataru; Oomagari, Hiroyuki; Tsuruta, Eisuke; Shida, Mikiko; Kurokawa, Masahiko

    2013-07-01

    Toll-like receptors (TLRs) were recently shown to be involved in obesity-induced inflammation in adipose tissue, which contributes to the development of insulin resistance and type 2 diabetes. Thus, the appropriate regulation of TLR expression or activation is an important strategy for improving obesity-related diseases. In this report, we show that naringenin, a citrus flavonoid, inhibits TLR2 expression during adipocyte differentiation. This effect is mediated in part through peroxisome proliferator-activated receptor γ activation. In addition, naringenin suppresses TLR2 expression induced by the co-culture of differentiated adipocytes and macrophages and also inhibits tumor necrosis factor-α (TNF-α)-induced TLR2 expression by inhibiting the activation of nuclear factor-κB and c-Jun NH2-terminal kinase pathways in differentiated adipocytes. Furthermore, naringenin decreases TLR2 expression in adipose tissue of high-fat diet-fed mice. These results are correlated with the improvement of hyperglycemia and the suppression of inflammatory mediators, including TNF-α and monocyte chemotactic protein-1. Taken together, these data suggest that naringenin exhibits anti-inflammatory properties, presumably by inhibiting TLR2 expression in adipocytes. Our findings suggest a molecular mechanism by which naringenin exerts beneficial effects against obesity-related diseases. PMID:23333096

  2. Adipocytes under Assault: Environmental Disruption of Adipose Physiology

    PubMed Central

    Regnier, Shane M.; Sargis, Robert M.

    2013-01-01

    The burgeoning obesity epidemic has placed enormous strains on individual and societal health mandating a careful search for pathogenic factors, including the contributions made by endocrine disrupting chemicals (EDCs). In addition to evidence that some exogenous chemicals have the capacity to modulate classical hormonal signaling axes, there is mounting evidence that several EDCs can also disrupt metabolic pathways and alter energy homeostasis. Adipose tissue appears to be a particularly important target of these metabolic disruptions. A diverse array of compounds has been shown to alter adipocyte differentiation, and several EDCs have been shown to modulate adipocyte physiology, including adipocytic insulin action and adipokine secretion. This rapidly emerging evidence demonstrating that environmental contaminants alter adipocyte function emphasizes the potential role that disruption of adipose physiology by EDCs may play in the global epidemic of metabolic disease. Further work is required to better characterize the molecular targets responsible for mediating the effects of EDCs on adipose tissue. Improved understanding of the precise signaling pathways altered by exposure to environmental contaminants will enhance our understanding of which chemicals pose a threat to metabolic health and how those compounds synergize with lifestyle factors to promote obesity and its associated complications. This knowledge may also improve our capacity to predict which synthetic compounds may alter energy homeostasis before they are released into the environment while also providing critical evidentiary support for efforts to restrict the production and use of chemicals that pose the greatest threat to human metabolic health. PMID:23735214

  3. IKKβ Is Essential for Adipocyte Survival and Adaptive Adipose Remodeling in Obesity.

    PubMed

    Park, Se-Hyung; Liu, Zun; Sui, Yipeng; Helsley, Robert N; Zhu, Beibei; Powell, David K; Kern, Philip A; Zhou, Changcheng

    2016-06-01

    IκB kinase β (IKKβ), a central coordinator of inflammatory responses through activation of nuclear factor-κB (NF-κB), has been implicated as a critical molecular link between inflammation and metabolic disorders; however, the role of adipocyte IKKβ in obesity and related metabolic disorders remains elusive. Here we report an essential role of IKKβ in the regulation of adipose remodeling and adipocyte survival in diet-induced obesity. Targeted deletion of IKKβ in adipocytes does not affect body weight, food intake, and energy expenditure but results in an exaggerated diabetic phenotype when challenged with a high-fat diet (HFD). IKKβ-deficient mice have multiple histopathologies in visceral adipose tissue, including increased adipocyte death, amplified macrophage infiltration, and defective adaptive adipose remodeling. Deficiency of IKKβ also leads to increased adipose lipolysis, elevated plasma free fatty acid (FFA) levels, and impaired insulin signaling. Mechanistic studies demonstrated that IKKβ is a key adipocyte survival factor and that IKKβ protects murine and human adipocytes from HFD- or FFA-elicited cell death through NF-κB-dependent upregulation of antiapoptotic proteins and NF-κB-independent inactivation of proapoptotic BAD protein. Our findings establish IKKβ as critical for adipocyte survival and adaptive adipose remodeling in obesity. PMID:26993069

  4. Adipocytes as a Link Between Gut Microbiota-Derived Flagellin and Hepatocyte Fat Accumulation

    PubMed Central

    Munukka, Eveliina; Wiklund, Petri; Partanen, Tiina; Välimäki, Sakari; Laakkonen, Eija K.; Lehti, Maarit; Fischer-Posovzsky, Pamela; Wabitsch, Martin; Cheng, Sulin; Huovinen, Pentti; Pekkala, Satu

    2016-01-01

    While the role of both elevated levels of circulating bacterial cell wall components and adipose tissue in hepatic fat accumulation has been recognized, it has not been considered that the bacterial components-recognizing adipose tissue receptors contribute to the hepatic fat content. In this study we found that the expression of adipose tissue bacterial flagellin (FLG)-recognizing Toll-like receptor (TLR) 5 associated with liver fat content (r = 0.699, p = 0.003) and insulin sensitivity (r = -0.529, p = 0.016) in humans (n = 23). No such associations were found for lipopolysaccharides (LPS)-recognizing TLR4. To study the underlying molecular mechanisms of these associations, human HepG2 hepatoma cells were exposed in vitro to the conditioned culture media derived from FLG or LPS-challenged human adipocytes. The adipocyte-mediated effects were also compared to the effects of direct HepG2 exposure to FLG and LPS. We found that the media derived from FLG-treated adipocytes stimulated fat accumulation in HepG2 cells, whereas either media derived from LPS-treated adipocytes or direct FLG or LPS exposure did not. This is likely due to that FLG-treatment of adipocytes increased lipolysis and secretion of glycerol, which is known to serve a substrate for triglyceride synthesis in hepatocytes. Similarly, only FLG-media significantly decreased insulin signaling-related Akt phosphorylation, IRS1 expression and mitochondrial respiratory chain ATP5A. In conclusion, our results suggest that the FLG-induced TLR5 activation in adipocytes increases glycerol secretion from adipocytes and decreases insulin signaling and mitochondrial functions, and increases fat accumulation in hepatocytes. These mechanisms could, at least partly, explain the adipose tissue TLR5 expression associated with liver fat content in humans. PMID:27035341

  5. [B17-D-leucine]insulin and [B17-norleucine]insulin: synthesis and biological properties.

    PubMed

    Knorr, R; Danho, W; Büllesbach, E E; Gattner, H G; Zahn, H; King, G L; Kahn, C R

    1983-11-01

    The chemical synthesis of two porcine insulin analogues is described. Leucine in position B17 of the native molecule was substituted by its D-enantiomer and by L-norleucine, respectively. Both B-chain derivatives were synthesized by fragment condensation and purified as di-S-sulphonates by gel filtration followed by ion exchange chromatography on SP-Sephadex at pH3. Combination with native sulphhydryl A-chain yielded [DLeuB17]insulin and [NleB17]insulin. Both insulin analogues were isolated by gel filtration followed by ion exchange chromatography on CM-cellulose at pH 4.0. Biological activities of the analogues were determined relative to native pork insulin: 1) glucose oxidation in rat epididymal adipocytes was 6% for [DLeuB17]insulin and 16% for [NleB17]insulin, 2) receptor-binding affinity tested with cultured human fibroblasts and with rat adipocytes was 3% for [DLeuB17]insulin and 26% for [NleB17]insulin, and 3) thymidine incorporation into DNA of human fibroblasts was 35% for [DLeuB17]insulin and 100% for [NleB17]insulin. PMID:6363268

  6. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes.

    PubMed

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  7. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demo...

  8. Adenovirusmediated interference of FABP4 regulates ADIPOQ, LEP and LEPR expression in bovine adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid binding protein 4 plays an important role in fatty acid transportation in adipocytes and its expression is related to obesity, insulin resistance, metabolic syndrome and intramuscular fat content. Yet little is understood about FABP4 functions at the cellular level in the bovine. Thus, we...

  9. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes

    PubMed Central

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  10. Insulin Signaling in Type 2 Diabetes

    PubMed Central

    Brännmark, Cecilia; Nyman, Elin; Fagerholm, Siri; Bergenholm, Linnéa; Ekstrand, Eva-Maria; Cedersund, Gunnar; Strålfors, Peter

    2013-01-01

    Type 2 diabetes originates in an expanding adipose tissue that for unknown reasons becomes insulin resistant. Insulin resistance reflects impairments in insulin signaling, but mechanisms involved are unclear because current research is fragmented. We report a systems level mechanistic understanding of insulin resistance, using systems wide and internally consistent data from human adipocytes. Based on quantitative steady-state and dynamic time course data on signaling intermediaries, normally and in diabetes, we developed a dynamic mathematical model of insulin signaling. The model structure and parameters are identical in the normal and diabetic states of the model, except for three parameters that change in diabetes: (i) reduced concentration of insulin receptor, (ii) reduced concentration of insulin-regulated glucose transporter GLUT4, and (iii) changed feedback from mammalian target of rapamycin in complex with raptor (mTORC1). Modeling reveals that at the core of insulin resistance in human adipocytes is attenuation of a positive feedback from mTORC1 to the insulin receptor substrate-1, which explains reduced sensitivity and signal strength throughout the signaling network. Model simulations with inhibition of mTORC1 are comparable with experimental data on inhibition of mTORC1 using rapamycin in human adipocytes. We demonstrate the potential of the model for identification of drug targets, e.g. increasing the feedback restores insulin signaling, both at the cellular level and, using a multilevel model, at the whole body level. Our findings suggest that insulin resistance in an expanded adipose tissue results from cell growth restriction to prevent cell necrosis. PMID:23400783

  11. WAT is a functional adipocyte?

    PubMed Central

    Church, Christopher; Horowitz, Mark; Rodeheffer, Matthew

    2012-01-01

    In vertebrates, adipose tissue is the main storage site for lipids within specialized lipid-laden mature adipocytes. While many species have evolved cells capable of lipid storage, the adipocyte represents a unique specialized cell involved in fuel storage, endocrine, nervous and immune function. However, the adipocytes are not the only cell type in mammals that can accumulate lipid droplets. The ectopic accumulation of lipid in non-adipose tissues including the liver, skeletal muscle, bone, pancreas, and heart in combination with its excessive accumulation in adipose tissue contributes to metabolic disease. Determining the lipid processing components that are necessary and sufficiently for lipid accumulation in adipose and non-adipose tissues, in addition to endocrine function, will lead to a clearer definition of an adipocyte. PMID:23700509

  12. Linkage disequilibrium in the insulin gene region is related to the exact number of repeat units present at the 5{prime} flanking polymorphism

    SciTech Connect

    McGinnis, R.E.; Spielman, R.S.

    1994-09-01

    Tandem DNA repeat units (RUs) located 5{prime} to the insulin (INS) gene give rise to a {open_quotes}5{prime} flanking polymorphism{close_quotes} (5{prime}FP) with minisatellite alleles belonging to 3 size classes. The shortest or {open_quotes}class 1{close_quotes} alleles (mean length of {approximately}40 RUs) are associated with insulin-dependent diabetes mellitus (IDDM), and the 5{prime}FP is one of several INS region loci in strong linkage disequilibrium with IDDM. We have amplified class 1 alleles and have determined the exact number of RUs in individual class 1 alleles found in parents of 50 IDDM families. We also obtained INS region haplotypes by typing two loci near tyrosine hydroxylase (TH) and two loci near insulin-like growth factor II (IGF2). We obtained these results: (1) Class 1 alleles (n=101) were found at every integer length from 30 to 44 RUs, the lengths of smallest and largest class 1 alleles observed. The allele frequency distribution was trimodal with peaks at 31, 40 and 42 RUs; 18%, 34% and 48% of the alleles belonged to the three components, respectively. (2) Allelic variation at each flanking locus was highly associated with the exact number of RUs present at the 5{prime}FP. Our results suggest that creation of new 5{prime}FP or other minisatellite haplotypes may be {open_quotes}constrained{close_quotes} in that flanking alleles usually become associated with a new minisatellite length different by only one or two RUs. Furthermore, since many flanking alleles were associated with a single narrow range of class 1 integer lengths, determining exact RU length may aid in visualizing linkage disequilibrium and allelic associations involving other minisatellite loci.

  13. Aquaporin-10 Represents an Alternative Pathway for Glycerol Efflux from Human Adipocytes

    PubMed Central

    Laforenza, Umberto; Scaffino, Manuela F.; Gastaldi, Giulia

    2013-01-01

    Background Glycerol outflow from adipocytes has been considered for a decade to be mediated by aquaporin-7, an aquaglyceroporin highly expressed in the adipose tissue. Its involvement in glycerol metabolism has been widely studied also in humans. Recent studies in different aquaporin-7 KO mice models pose two different questions 1) the exact localization of aquaporin-7 in human white adipose tissue; 2) the existence of other aquaglyceroporins that work with aquaporin-7 to guarantee glycerol efflux and thus a normal adiposity in humans. To this purpose we investigated the expression, the localization and the functioning of aquaglyceroporin-10 in subcutaneous white adipose tissue, in isolated and cultured differentiated adipocytes. Methodology/Principal Findings Aquaporin-7 and -10 were expressed in the white adipose tissue both at mRNA and at protein level. Immunofluorescence revealed aquaporin-7 and -10 labelling in the human adipose tissue both to the plasma membrane and to a thin rim of cytoplasm of adipocytes. Aquaporin-7, but not aquaporin-10, colocalized with the endothelial marker CD34. Human cultured differentiated adipocytes showed an aquaporin-7 and -10 labelling mainly in the cytoplasm and in the lipid droplets with insulin reinforcing the lipid droplets staining and isoproterenol inducing its translocation to the plasma membrane compartment. Water and glycerol permeability measurements using adipocytes and adipose membrane vesicles confirmed the presence of functioning aquaglyceroporins. Aquaporin-10 silencing in human differentiated adipocytes resulted in a 50% decrease of glycerol and osmotic water permeability. Conclusions/Significance The results indicate that aquaporin-7, differently from mice, is present in both adipocyte and capillary plasma membranes of human adipose tissue. Aquaporin-10, on the contrary, is expressed exclusively in the adipocytes. The expression of two aquaglyceroporins in human adipose tissue is particularly important for the

  14. Pathologic endoplasmic reticulum stress induced by glucotoxic insults inhibits adipocyte differentiation and induces an inflammatory phenotype.

    PubMed

    Longo, Michele; Spinelli, Rosa; D'Esposito, Vittoria; Zatterale, Federica; Fiory, Francesca; Nigro, Cecilia; Raciti, Gregory A; Miele, Claudia; Formisano, Pietro; Beguinot, Francesco; Di Jeso, Bruno

    2016-06-01

    Adipocyte differentiation is critical in obesity. By controlling new adipocyte recruitment, adipogenesis contrasts adipocyte hypertrophy and its adverse consequences, such as insulin resistance. Contrasting data are present in literature on the effect of endoplasmic reticulum (ER) stress and subsequent unfolded protein response (UPR) on adipocyte differentiation, being reported to be either necessary or inhibitory. In this study, we sought to clarify the effect of ER stress and UPR on adipocyte differentiation. We have used two different cell lines, the widely used pre-adipocyte 3T3-L1 cells and a murine multipotent mesenchymal cell line, W20-17 cells. A strong ER stress activator, thapsigargin, and a pathologically relevant inducer of ER stress, glucosamine (GlcN), induced ER stress and UPR above those occurring in the absence of perturbation and inhibited adipocyte differentiation. Very low concentrations of 4-phenyl butyric acid (PBA, a chemical chaperone) inhibited only the overactivation of ER stress and UPR elicited by GlcN, leaving unaltered the part physiologically activated during differentiation, and reversed the inhibitory effect of GlcN on differentiation. In addition, GlcN stimulated proinflammatory cytokine release and PBA prevented these effects. An inhibitor of NF-kB also reversed the effects of GlcN on cytokine release. These results indicate that while ER stress and UPR activation is "physiologically" activated during adipocyte differentiation, the "pathologic" part of ER stress activation, secondary to a glucotoxic insult, inhibits differentiation. In addition, such a metabolic insult, causes a shift of the preadipocyte/adipocyte population towards a proinflammatory phenotype. PMID:26940722

  15. Early postnatal oestradiol exposure causes insulin resistance and signs of inflammation in circulation and skeletal muscle.

    PubMed

    Alexanderson, Camilla; Eriksson, Elias; Stener-Victorin, Elisabet; Lönn, Malin; Holmäng, Agneta

    2009-04-01

    Early postnatal events can predispose to metabolic and endocrine disease in adulthood. In this study, we evaluated the programming effects of a single early postnatal oestradiol injection on insulin sensitivity in adult female rats. We also assessed the expression of genes involved in inflammation and glucose metabolism in skeletal muscle and adipose tissue and analysed circulating inflammation markers as possible mediators of insulin resistance. Neonatal oestradiol exposure reduced insulin sensitivity and increased plasma levels of monocyte chemoattractant protein-1 (MCP-1) and soluble intercellular adhesion molecule-1. In skeletal muscle, oestradiol increased the expression of genes encoding complement component 3 (C3), Mcp-1, retinol binding protein-4 (Rbp4) and transforming growth factor beta1 (Tgfbeta1). C3 and MCP-1 are both related to insulin resistance, and C3, MCP-1 and TGFbeta1 are also involved in inflammation. Expression of genes encoding glucose transporter-4 (Glut 4), carnitine-palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor delta (Ppard) and uncoupling protein 3 (Ucp3), which are connected to glucose uptake, lipid oxidation, and energy uncoupling, was down regulated. Expression of several inflammatory genes in skeletal muscle correlated negatively with whole-body insulin sensitivity. In s.c. inguinal adipose tissue, expression of Tgfbeta1, Ppard and C3 was decreased, while expression of Rbp4 and Cpt1b was increased. Inguinal adipose tissue weight was increased but adipocyte size was unaltered, suggesting an increased number of adipocytes. We suggest that early neonatal oestrogen exposure may reduce insulin sensitivity by inducing chronic, low-grade systemic and skeletal muscle inflammation and disturbances of glucose and lipid metabolism in skeletal muscle in adulthood. PMID:19193715

  16. Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents.

    PubMed

    Kang, Wonyoung; Hong, Hyun Ju; Guan, Jian; Kim, Dong Geon; Yang, Eun-Jin; Koh, Gwanpyo; Park, Doekbae; Han, Chang Hoon; Lee, Young-Jae; Lee, Dae-Ho

    2012-03-01

    Resveratrol (RSV) has various metabolic effects, especially with relatively high-dose therapy. However, the ability of RSV to modulate insulin signaling has not been completely evaluated. Here, we determined whether RSV alters insulin signaling in insulin-responsive cells and tissues. The effects of RSV on insulin signaling in 3T3-L1 adipocytes under both insulin-sensitive and insulin-resistant states and in insulin-sensitive tissues of high fat-fed diet-induced obese (DIO) mice were investigated. Insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation (Y612) was suppressed in RSV-treated adipocytes compared with untreated adipocytes, as was the insulin-stimulated Akt phosphorylation (Ser473). However, under an insulin-resistant condition that was made by incubating 3T3-L1 adipocytes in the conditioned medium from lipopolysaccharide-stimulated LAW264.7 cells, RSV reduced inducible nitric oxide synthase expression and IκBα protein degradation and improved insulin-stimulated Akt phosphorylation (Ser473). In DIO mice, relatively low-dose RSV (30 mg/kg daily for 2 weeks) therapy lowered fasting blood glucose level and serum insulin, increased hepatic glycogen content, and ameliorated fatty liver without change in body weight. The insulin-stimulated Akt phosphorylation was decreased in the liver and white adipose tissue of DIO mice, but it was completely normalized by RSV treatment. However, in the skeletal muscle of DIO mice, insulin signaling was not improved by RSV treatment, whereas the phosphorylation of adenosine monophosphate-activated protein kinase α (Thr172) was improved by it. Our results show that RSV enhances insulin action only under insulin-resistant conditions and suggest that the effect of RSV may depend on the type of tissue being targeted and its metabolic status. PMID:21945106

  17. Wogonin suppresses osteopontin expression in adipocytes by activating PPARα

    PubMed Central

    Zhang, Ye-min; Li, Ming-xin; Tang, Zhao; Wang, Chang-hua

    2015-01-01

    Aim: Wogonin (5,7-dihydroxy-8-methoxyflavone), a major bioactive compound of the flavonoid family, is commonly extracted from the traditional Chinese medicine Scutellaria baicalensis and possesses antioxidant and anti-inflammatory activities and is assumed to have anti-diabetes function. Indeed, a current study has shown that it can possibly treat metabolic disorders such as those found in db/db mice. However, the underlying molecular mechanism remains largely unclear. The aim of this study was to investigate the impact of wogonin on osteopontin (OPN) expression in adipose tissue from type 1 diabetic mice and in 3T3-L1 adipocytes. Methods: Type 1 diabetes was induced by streptozotocin (STZ) injection. 3T3-L1 preadipocytes were converted to 3T3-L1 adipocytes through treatment with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IBMX). Western blot analysis and RT-PCR were performed to detect protein expression and mRNA levels, respectively. Results: Wogonin treatment suppressed the increase in serum OPN levels and reduced OPN expression in adipose tissue from STZ-induced type 1 diabetic mice. Administration of wogonin enhanced PPARα expression and activity. Silencing of PPARα diminished the inhibitory effects of wogonin on OPN expression in 3T3-L1 adipocytes. Furthermore, the levels of c-Fos and phosphorylated c-Jun were reduced in wogonin-treated adipose tissue and 3T3-L1 adipocytes. In addition, wogonin treatment dramatically mitigated p38 MAPK phosphorylation. Pharmacological inhibition of p38 MAPK by its specific inhibitor SB203580 increased PPARα activity and decreased OPN expression. Conclusion: Our results suggest that wogonin downregulated OPN expression in adipocytes through the inhibition of p38 MAPK and the sequential activation of the PPARα pathway. Given the adverse effects of high OPN levels on metabolism, our results provide evidence for the potential administration of wogonin as a treatment for diabetes. PMID:26073326

  18. Failure to initiate early insulin therapy – A risk factor for diabetic retinopathy in insulin users with Type 2 diabetes mellitus: Sankara Nethralaya-Diabetic Retinopathy Epidemiology and Molecular Genetics Study (SN-DREAMS, Report number 35)

    PubMed Central

    Gupta, Aditi; Delhiwala, Kushal S; Raman, Rajiv P G; Sharma, Tarun; Srinivasan, Sangeetha; Kulothungan, Vaitheeswaran

    2016-01-01

    Context: Insulin users have been reported to have a higher incidence of diabetic retinopathy (DR). Aim: The aim was to elucidate the factors associated with DR among insulin users, especially association between duration, prior to initiating insulin for Type 2 diabetes mellitus (DM) and developing DR. Materials and Methods: Retrospective cross-sectional observational study included 1414 subjects having Type 2 DM. Insulin users were defined as subjects using insulin for glycemic control, and insulin nonusers as those either not using any antidiabetic treatment or using diet control or oral medications. The duration before initiating insulin after diagnosis was calculated by subtracting the duration of insulin usage from the duration of DM. DR was clinically graded using Klein's classification. SPSS (version 9.0) was used for statistical analysis. Results: Insulin users had more incidence of DR (52.9% vs. 16.3%, P < 0.0001) and sight threatening DR (19.1% vs. 2.4%, P < 0.0001) in comparison to insulin nonusers. Among insulin users, longer duration of DM (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.00–1.25, P = 0.044) and abdominal obesity (OR 1.15, 95% CI 1.02–1.29, P = 0.021) was associated with DR. The presence of DR was significantly associated with longer duration (≥5 years) prior to initiating insulin therapy, overall (38.0% vs. 62.0%, P = 0.013), and in subjects with suboptimal glycemic control (32.5% vs. 67.5%, P = 0.022). Conclusions: The presence of DR is significantly associated with longer duration of diabetes (>5 years) and sub-optimal glycemic control (glycosylated hemoglobin <7.0%). Among insulin users, abdominal obesity was found to be a significant predictor of DR; DR is associated with longer duration prior to initiating insulin therapy in Type 2 DM subjects with suboptimal glycemic control. PMID:27488152

  19. Gallic Acid, the Active Ingredient of Terminalia bellirica, Enhances Adipocyte Differentiation and Adiponectin Secretion.

    PubMed

    Makihara, Hiroko; Koike, Yuka; Ohta, Masatomi; Horiguchi-Babamoto, Emi; Tsubata, Masahito; Kinoshita, Kaoru; Akase, Tomoko; Goshima, Yoshio; Aburada, Masaki; Shimada, Tsutomu

    2016-01-01

    Visceral obesity induces the onset of metabolic disorders such as insulin resistance and diabetes mellitus. Adipose tissue is considered as a potential pharmacological target for treating metabolic disorders. The fruit of Terminalia bellirica is extensively used in Ayurvedic medicine to treat patients with diseases such as diabetes mellitus. We previously investigated the effects of a hot water extract of T. bellirica fruit (TB) on obesity and insulin resistance in spontaneously obese type 2 diabetic mice. To determine the active ingredients of TB and their molecular mechanisms, we focused on adipocyte differentiation using mouse 3T3-L1 cells, which are widely used to study adipocyte physiology. We show here that TB enhanced the differentiation of 3T3-L1 cells to mature adipocytes and that one of the active main components was identified as gallic acid. Gallic acid (10-30 µM) enhanced the expression and secretion of adiponectin via adipocyte differentiation and also that of fatty acid binding protein-4, which is the target of peroxisome proliferator-activated receptor gamma (PPARγ), although it does not alter the expression of the upstream genes PPARγ and CCAAT enhancer binding protein alpha. In the PPARγ ligand assay, the binding of gallic acid to PPARγ was undetectable. These findings indicate that gallic acid mediates the therapeutic effects of TB on metabolic disorders by regulating adipocyte differentiation. Therefore, TB shows promise as a candidate for preventing and treating patients with metabolic syndrome. PMID:27374289

  20. Lipodystrophy, Diabetes and Normal Serum Insulin in PPARγ-Deficient Neonatal Mice

    PubMed Central

    O’Donnell, Peter E.; Ye, Xiu Zhen; DeChellis, Melissa A.; Davis, Vannessa M.; Duan, Sheng Zhong; Mortensen, Richard M.; Milstone, David S.

    2016-01-01

    Peroxisome proliferator activated receptor gamma (PPARγ) is a pleiotropic ligand activated transcription factor that acts in several tissues to regulate adipocyte differentiation, lipid metabolism, insulin sensitivity and glucose homeostasis. PPARγ also regulates cardiomyocyte homeostasis and by virtue of its obligate role in placental development is required for embryonic survival. To determine the postnatal functions of PPARγ in vivo we studied globally deficient neonatal mice produced by epiblast-restricted elimination of PPARγ. PPARγ-rescued placentas support development of PPARγ-deficient embryos that are viable and born in near normal numbers. However, PPARγ-deficient neonatal mice show severe lipodystrophy, lipemia, hepatic steatosis with focal hepatitis, relative insulin deficiency and diabetes beginning soon after birth and culminating in failure to thrive and neonatal lethality between 4 and 10 days of age. These abnormalities are not observed with selective PPARγ2 deficiency or with deficiency restricted to hepatocytes, skeletal muscle, adipocytes, cardiomyocytes, endothelium or pancreatic beta cells. These observations suggest important but previously unappreciated functions for PPARγ1 in the neonatal period either alone or in combination with PPARγ2 in lipid metabolism, glucose homeostasis and insulin sensitivity. PMID:27505464

  1. Phenylarsine oxide and vanadate: apparent paradox of inhibition of protein phosphotyrosine phosphatases in rat adipocytes.

    PubMed

    Li, J; Elberg, G; Shechter, Y

    1996-07-24

    Vanadate mimics, whereas phenylarsine oxide (PAO) antagonizes, the effects of insulin in rat adipocytes. Both vanadate and PAO are documented inhibitors of protein-phosphotyrosine phosphatases. The relationship between the inhibition of 'inhibitory' PTPase and 'stimulatory' PTPase has been studied here in primary rat adipocytes. Low concentrations of PAO (IC50 = 0.6-2.0 microM) blocked the stimulating effects of insulin, vanadate and pervanadate on hexose uptake and glucose metabolism. Inhibition of isoproterenol-mediating lipolysis by vanadate and insulin was not blocked by PAO. The activating effects of okadaic acid on hexose uptake and glucose metabolism, which occur at points downstream to tyrosine phosphorylation, were also not blocked by PAO. Subsequent studies suggested that the PAO-sensitive PTPase comprises a minute fraction of the total adipocytic PTPase activity. To identify its location we applied procedures involving fractionations and activation of non-receptor adipocytic protein tyrosine kinase by PAO and vanadate in cell free assays. We found that the 'inhibitory' PTPase is exclusively associated with the membrane fraction whereas the 'stimulatory' PTPases are present in both the cytosolic and plasma membrane compartments. We next searched for markers, possibly associated with PAO-dependent desensitization and found that several proteins became phosphorylated on tyrosine moieties in the supernatant of PAO but not in vanadate pretreated adipocytes. In summary, we propose the presence of a minute, plasma membrane associated PTPase in primary rat adipocytes, inhibition of which arrests the activation of glucose metabolism. In contrast, inhibition of all the other cellular adipose PTPases, ultimately activates rather than inhibits these same bioeffects. PMID:8703991

  2. Loss of neuronatin promotes "browning" of primary mouse adipocytes while reducing Glut1-mediated glucose disposal.

    PubMed

    Gburcik, Valentina; Cleasby, Mark E; Timmons, James A

    2013-04-15

    Failure of white adipose tissue to appropriately store excess metabolic substrate seems to underpin obesity-associated type 2 diabetes. Encouraging "browning" of white adipose has been suggested as a therapeutic strategy to help dispose of excess stored lipid and ameliorate the resulting insulin resistance. Genetic variation at the DNA locus encoding the novel proteolipid neuronatin has been associated with obesity, and we recently observed that neuronatin expression is reduced in subcutaneous adipose tissue from obese humans. Thus, to explore the function of neuronatin further, we used RNAi to silence its expression in murine primary adipocyte cultures and examined the effects on adipocyte phenotype. We found that primary adipocytes express only the longer isoform of neuronatin. Loss of neuronatin led to increased mitochondrial biogenesis, indicated by greater intensity of MitoTracker Green staining. This was accompanied by increased expression of UCP1 and the key genes in mitochondrial oxidative phosphorylation, PGC-1α, Cox8b, and Cox4 in primary subcutaneous white adipocytes, indicative of a "browning" effect. In addition, phosphorylation of AMPK and ACC was increased, suggestive of increased fatty acid utilization. Similar, but less pronounced, effects of neuronatin silencing were also noted in primary brown adipocytes. In contrast, loss of neuronatin caused a reduction in both basal and insulin-stimulated glucose uptake and glycogen synthesis, likely mediated by a reduction in Glut1 protein upon silencing of neuronatin. In contrast, loss of neuronatin had no effect on insulin signaling. In conclusion, neuronatin appears to be a novel regulator of browning and metabolic substrate disposal in white adipocytes. PMID:23482445

  3. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    PubMed Central

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.; Arner, Peter

    2014-01-01

    Summary White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High fat diet-intervention in Ebf1+/− mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy and insulin resistance. PMID:24856929

  4. Neuropeptide B and W regulate leptin and resistin secretion, and stimulate lipolysis in isolated rat adipocytes.

    PubMed

    Skrzypski, Marek; Pruszyńska-Oszmałek, Ewa; Ruciński, Marcin; Szczepankiewicz, Dawid; Sassek, Maciej; Wojciechowicz, Tatiana; Kaczmarek, Przemysław; Kołodziejski, Paweł A; Strowski, Mathias Z; Malendowicz, Ludwik K; Nowak, Krzysztof W

    2012-06-10

    Neuropeptide B (NPB) and W (NPW) regulate food intake and energy homeostasis in humans via two G-protein-coupled receptor subtypes, termed as GPR7 and GPR8. Rodents express GPR7 only. In animals, NPW decreases insulin and leptin levels, whereas the deletion of either NPB or GPR7 leads to obesity and hyperphagia. Metabolic and endocrine in vitro activities of NPW/NPB in adipocytes are unknown. We therefore characterize the effects of NPB and NPW on the secretion and expression of leptin and resistin, and on lipolysis, using rat adipocytes. Isolated rat adipocytes express GPR7 mRNA. NPB and NPW are expressed in macrophages and preadipocytes but are absent in mature adipocytes. Both, NPB and NPW reduce the secretion and expression of leptin from isolated rat adipocytes. NPB stimulates the secretion and expression of resistin, whereas both, NPB and NPW increase lipolysis. Our study demonstrates for the first time that NPB and NPW regulate the expression and secretion of leptin and resistin, and increase lipolysis in isolated rat adipocytes. These effects are presumably mediated via GPR7. The increase of resistin secretion, stimulation of lipolysis and the decrease of leptin secretion may represent mechanisms, through which NPB and NPW can affect glucose and lipid homeostasis, and food intake in rodents. PMID:22484289

  5. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity.

    PubMed

    Zhang, Wenliang; Mottillo, Emilio P; Zhao, Jiawei; Gartung, Allison; VanHecke, Garrett C; Lee, Jen-Fu; Maddipati, Krishna R; Xu, Haiyan; Ahn, Young-Hoon; Proia, Richard L; Granneman, James G; Lee, Menq-Jer

    2014-11-14

    Adipocyte lipolysis can increase the production of inflammatory cytokines such as interleukin-6 (IL-6) that promote insulin resistance. However, the mechanisms that link lipolysis with inflammation remain elusive. Acute activation of β3-adrenergic receptors (ADRB3) triggers lipolysis and up-regulates production of IL-6 in adipocytes, and both of these effects are blocked by pharmacological inhibition of hormone-sensitive lipase. We report that stimulation of ADRB3 induces expression of sphingosine kinase 1 (SphK1) and increases sphingosine 1-phosphate production in adipocytes in a manner that also depends on hormone-sensitive lipase activity. Mechanistically, we found that adipose lipolysis-induced SphK1 up-regulation is mediated by the c-Jun N-terminal kinase (JNK)/activating protein-1 signaling pathway. Inhibition of SphK1 by sphingosine kinase inhibitor 2 diminished the ADRB3-induced IL-6 production both in vitro and in vivo. Induction of IL-6 by ADRB3 activation was suppressed by siRNA knockdown of Sphk1 in cultured adipocytes and was severely attenuated in Sphk1 null mice. Conversely, ectopic expression of SphK1 increased IL-6 expression in adipocytes. Collectively, these data demonstrate that SphK1 is a critical mediator in lipolysis-triggered inflammation in adipocytes. PMID:25253697

  6. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    PubMed Central

    Kim, Eun Young; Kim, Won Kon; Oh, Kyoung-Jin; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2015-01-01

    Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases. PMID:25734986

  7. Selection of Aptamers for Mature White Adipocytes by Cell SELEX Using Flow Cytometry

    PubMed Central

    Kim, Eun Young; Kim, Ji Won; Kim, Won Kon; Han, Baek Soo; Park, Sung Goo; Chung, Bong Hyun; Lee, Sang Chul; Bae, Kwang-Hee

    2014-01-01

    Background Adipose tissue, mainly composed of adipocytes, plays an important role in metabolism by regulating energy homeostasis. Obesity is primarily caused by an abundance of adipose tissue. Therefore, specific targeting of adipose tissue is critical during the treatment of obesity, and plays a major role in overcoming it. However, the knowledge of cell-surface markers specific to adipocytes is limited. Methods and Results We applied the CELL SELEX (Systematic Evolution of Ligands by EXponential enrichment) method using flow cytometry to isolate molecular probes for specific recognition of adipocytes. The aptamer library, a mixture of FITC-tagged single-stranded random DNAs, is used as a source for acquiring molecular probes. With the increasing number of selection cycles, there was a steady increase in the fluorescence intensity toward mature adipocytes. Through 12 rounds of SELEX, enriched aptamers showing specific recognition toward mature 3T3-L1 adipocyte cells were isolated. Among these, two aptamers (MA-33 and 91) were able to selectively bind to mature adipocytes with an equilibrium dissociation constant (Kd) in the nanomolar range. These aptamers did not bind to preadipocytes or other cell lines (such as HeLa, HEK-293, or C2C12 cells). Additionally, it was confirmed that MA-33 and 91 can distinguish between mature primary white and primary brown adipocytes. Conclusions These selected aptamers have the potential to be applied as markers for detecting mature white adipocytes and monitoring adipogenesis, and could emerge as an important tool in the treatment of obesity. PMID:24844710

  8. Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment

    PubMed Central

    Zoico, Elena; Darra, Elena; Rizzatti, Vanni; Budui, Simona; Franceschetti, Guido; Mazzali, Gloria; Rossi, Andrea P; Fantin, Francesco; Menegazzi, Marta; Cinti, Saverio; Zamboni, Mauro

    2016-01-01

    A significant epidemiological association between obesity and pancreatic ductal adenocarcinoma (PDAC) has previously been described, as well as a correlation between the degree of pancreatic steatosis, PDAC risk and prognosis. The underlying mechanisms are still not completely known. After co-culture of 3T3-L1 adipocytes and MiaPaCa2 with an in vitro transwell system we observed the appearance of fibroblast-like cells, along with a decrease in number and size of remaining adipocytes. RT-PCR analyses of 3T3-L1 adipocytes in co-culture showed a decrease in gene expression of typical markers of mature adipocytes, in parallel with an increased expression of fibroblast-specific and reprogramming genes. We found an increased WNT5a gene and protein expression early in MiaPaCa2 cells in co-culture. Additionally, EMSA of c-Jun and AP1 in 3T3-L1 demonstrated an increased activation in adipocytes after co-culture. Treatment with WNT5a neutralizing antibody completely reverted the activation of c-Jun and AP1 observed in co-cultured adipocytes. Increasing doses of recombinant SFRP-5, a competitive inhibitor for WNT5a receptor, added to the co-culture medium, were able to block the dedifferentiation of adipocytes in co-culture. These data support a WNT5a-mediated dedifferentiation process with adipocytes reprogramming toward fibroblast-like cells that might profoundly influence cancer microenvironment. PMID:26958939

  9. Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment.

    PubMed

    Zoico, Elena; Darra, Elena; Rizzatti, Vanni; Budui, Simona; Franceschetti, Guido; Mazzali, Gloria; Rossi, Andrea P; Fantin, Francesco; Menegazzi, Marta; Cinti, Saverio; Zamboni, Mauro

    2016-04-12

    A significant epidemiological association between obesity and pancreatic ductal adenocarcinoma (PDAC) has previously been described, as well as a correlation between the degree of pancreatic steatosis, PDAC risk and prognosis. The underlying mechanisms are still not completely known.After co-culture of 3T3-L1 adipocytes and MiaPaCa2 with an in vitro transwell system we observed the appearance of fibroblast-like cells, along with a decrease in number and size of remaining adipocytes. RT-PCR analyses of 3T3-L1 adipocytes in co-culture showed a decrease in gene expression of typical markers of mature adipocytes, in parallel with an increased expression of fibroblast-specific and reprogramming genes. We found an increased WNT5a gene and protein expression early in MiaPaCa2 cells in co-culture. Additionally, EMSA of c-Jun and AP1 in 3T3-L1 demonstrated an increased activation in adipocytes after co-culture. Treatment with WNT5a neutralizing antibody completely reverted the activation of c-Jun and AP1 observed in co-cultured adipocytes.Increasing doses of recombinant SFRP-5, a competitive inhibitor for WNT5a receptor, added to the co-culture medium, were able to block the dedifferentiation of adipocytes in co-culture.These data support a WNT5a-mediated dedifferentiation process with adipocytes reprogramming toward fibroblast-like cells that might profoundly influence cancer microenvironment. PMID:26958939

  10. Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats.

    PubMed

    Huang, Hui-Ling; Hong, Ya-Wen; Wong, You-Hong; Chen, Ying-Nien; Chyuan, Jong-Ho; Huang, Ching-Jang; Chao, Pei-Min

    2008-02-01

    Bitter melon (Momordica charantia; BM) has been shown to ameliorate diet-induced obesity and insulin resistance. To examine the effect of BM supplementation on cell size and lipid metabolism in adipose tissues, three groups of rats were respectively fed a high-fat diet supplemented without (HF group) or with 5 % lyophilised BM powder (HFB group), or with 0.01 % thiazolidinedione (TZD) (HFT group). A group of rats fed a low-fat diet was also included as a normal control. Hyperinsulinaemia and glucose intolerance were observed in the HF group but not in HFT and HFB groups. Although the number of large adipocytes (>180 microm) of both the HFB and HFT groups was significantly lower than that of the HF group, the adipose tissue mass, TAG content and glycerol-3-phosphate dehydrogenase activity of the HFB group were significantly lower than those of the HFT group, implying that BM might reduce lipogenesis in adipose tissue. Experiment 2 was then conducted to examine the expression of lipogenic genes in adipose tissues of rats fed low-fat, HF or HFB diets. The HFB group showed significantly lower mRNA levels of fatty acid synthase, acetyl-CoA carboxylase-1, lipoprotein lipase and adipocyte fatty acid-binding protein than the HF group (P < 0.05). These results indicate BM can reduce insulin resistance as effective as the anti-diabetic drug TZD. Furthermore, BM can suppress the visceral fat accumulation and inhibit adipocyte hypertrophy, which may be associated with markedly down regulated expressions of lipogenic genes in the adipose. PMID:17651527

  11. Decreased beige adipocyte number and mitochondrial respiration coincide with increased histone methyl transferase (G9a) and reduced FGF21 gene expression in Sprague Dawley rats fed prenatal low protein and postnatal high fat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have shown that protein malnutrition during fetal growth followed by postnatal high-fat diets results in a rapid increase in subcutaneous adipose tissue mass in the offspring contributing to development of obesity and insulin resistance. Recent studies have shown that the absence of a key transcr...

  12. Oral Insulin Reloaded

    PubMed Central

    Heinemann, Lutz; Plum-Mörschel, Leona

    2014-01-01

    Optimal coverage of insulin needs is the paramount aim of insulin replacement therapy in patients with diabetes mellitus. To apply insulin without breaking the skin barrier by a needle and/or to allow a more physiological provision of insulin are the main reasons triggering the continuous search for alternative routes of insulin administration. Despite numerous attempts over the past 9 decades to develop an insulin pill, no insulin for oral dosing is commercially available. By way of a structured approach, we aim to provide a systematic update on the most recent developments toward an orally available insulin formulation with a clear focus on data from clinical-experimental and clinical studies. Thirteen companies that claim to be working on oral insulin formulations were identified. However, only 6 of these companies published new clinical trial results within the past 5 years. Interestingly, these clinical data reports make up a mere 4% of the considerably high total number of publications on the development of oral insulin formulations within this time period. While this picture clearly reflects the rising research interest in orally bioavailable insulin formulations, it also highlights the fact that the lion’s share of research efforts is still allocated to the preclinical stages. PMID:24876606

  13. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice.

    PubMed

    DiSilvestro, David J; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L James; Kalyanasundaram, Anuradha; Gilor, Chen L; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  14. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice

    PubMed Central

    DiSilvestro, David J.; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L. James; Kalyanasundaram, Anuradha; Gilor, Chen L.; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  15. Neural control of white, beige and brown adipocytes.

    PubMed

    Bartness, T J; Ryu, V

    2015-08-01

    Reports of brown-like adipocytes in traditionally white adipose tissue (WAT) depots occurred ~30 years ago, but interest in white adipocyte 'browning' only has gained attention more recently. We integrate some of what is known about the sympathetic nervous system (SNS) innervation of WAT and brown adipose tissue (BAT) with the few studies focusing on the sympathetic innervation of the so-called 'brite' or 'beige' adipocytes that appear when WAT sympathetic drive increases (for example, cold exposure and food deprivation). Only one brain site, the dorsomedial hypothalamic nucleus (DMH), selectively browns some (inguinal WAT (IWAT) and dorsomedial subcutaneous WAT), but not all WAT depots and only when DMH neuropeptide Y gene expression is knocked down, a browning effect is mediated by WAT SNS innervation. Other studies show that WAT sympathetic fiber density is correlated with the number of brown-like adipocytes (multilocular lipid droplets, uncoupling protein-1 immunoreactivity) at both warm and cold ambient temperatures. WAT and BAT have sensory innervation, the latter important for acute BAT cold-induced temperature increases, therefore suggesting the possible importance of sensory neural feedback from brite/beige cells for heat production. Only one report shows browned WAT capable of producing heat in vivo. Collectively, increases in WAT sympathetic drive and the phenotype of these stimulated adipocytes seems critical for the production of new and/or transdifferentiation of white to brite/beige adipocytes. Selective harnessing of WAT SNS drive to produce browning or selective browning independent of the SNS to counter increases in adiposity by increasing expenditure appears to be extremely challenging. PMID:27152173

  16. Neural control of white, beige and brown adipocytes

    PubMed Central

    Bartness, T J; Ryu, V

    2015-01-01

    Reports of brown-like adipocytes in traditionally white adipose tissue (WAT) depots occurred ~30 years ago, but interest in white adipocyte ‘browning' only has gained attention more recently. We integrate some of what is known about the sympathetic nervous system (SNS) innervation of WAT and brown adipose tissue (BAT) with the few studies focusing on the sympathetic innervation of the so-called ‘brite' or ‘beige' adipocytes that appear when WAT sympathetic drive increases (for example, cold exposure and food deprivation). Only one brain site, the dorsomedial hypothalamic nucleus (DMH), selectively browns some (inguinal WAT (IWAT) and dorsomedial subcutaneous WAT), but not all WAT depots and only when DMH neuropeptide Y gene expression is knocked down, a browning effect is mediated by WAT SNS innervation. Other studies show that WAT sympathetic fiber density is correlated with the number of brown-like adipocytes (multilocular lipid droplets, uncoupling protein-1 immunoreactivity) at both warm and cold ambient temperatures. WAT and BAT have sensory innervation, the latter important for acute BAT cold-induced temperature increases, therefore suggesting the possible importance of sensory neural feedback from brite/beige cells for heat production. Only one report shows browned WAT capable of producing heat in vivo. Collectively, increases in WAT sympathetic drive and the phenotype of these stimulated adipocytes seems critical for the production of new and/or transdifferentiation of white to brite/beige adipocytes. Selective harnessing of WAT SNS drive to produce browning or selective browning independent of the SNS to counter increases in adiposity by increasing expenditure appears to be extremely challenging. PMID:27152173

  17. MicroRNA-192* impairs adipocyte triglyceride storage.

    PubMed

    Mysore, Raghavendra; Zhou, You; Sädevirta, Sanja; Savolainen-Peltonen, Hanna; Nidhina Haridas, P A; Soronen, Jarkko; Leivonen, Marja; Sarin, Antti-Pekka; Fischer-Posovszky, Pamela; Wabitsch, Martin; Yki-Järvinen, Hannele; Olkkonen, Vesa M

    2016-04-01

    We investigated the expression of miR-192* (miR-192-3p) in the visceral adipose tissue (VAT) of obese subjects and its function in cultured human adipocytes. This miRNA is a 3' arm derived from the same pre-miRNA as miR-192 (miR-192-5p) implicated in type 2 diabetes, liver disease and cancers, and is predicted to target key genes in lipid metabolism. In morbidly obese subjects undergoing bariatric surgery preceded by a very low calorie diet, miR-192* in VAT correlated negatively (r=-0.387; p=0.046) with serum triglyceride (TG) and positively with high-density lipoprotein (HDL) concentration (r=0.396; p=0.041). In a less obese patient cohort, the miRNA correlated negatively with the body mass index (r=-0.537; p=0.026). To characterize the function of miR-192*, we overexpressed it in cultured adipocytes and analyzed the expression of adipogenic differentiation markers as well as cellular TG content. Reduced TG and expression of the adipocyte marker proteins aP2 (adipocyte protein 2) and perilipin 1 were observed. The function of miR-192* was further investigated by transcriptomic profiling of adipocytes expressing this miRNA, revealing impacts on key lipogenic genes. A number of the mRNA alterations were validated by qPCR. Western analysis confirmed a marked reduction of the lipogenic enzyme SCD (stearoyl coenzyme A desaturase-1), the fatty aldehyde dehydrogenase ALDH3A2 (aldehyde dehydrogenase 3 family member A2) and the high-density lipoprotein receptor SCARB1 (scavenger receptor B, type I). SCD and ALDH3A2 were demonstrated to be direct targets of miR-192*. To conclude, the present data identify miR-192* as a novel controller of adipocyte differentiation and lipid homeostasis. PMID:26747651

  18. Etiology of the membrane potential of rat white fat adipocytes.

    PubMed

    Bentley, Donna C; Pulbutr, Pawitra; Chan, Sue; Smith, Paul A

    2014-07-15

    The plasma membrane potential (Vm) is key to many physiological processes; however, its ionic etiology in white fat adipocytes is poorly characterized. To address this question, we employed the perforated patch current clamp and cell-attached patch clamp methods in isolated primary white fat adipocytes and their cellular model 3T3-L1. The resting Vm of primary and 3T3-L1 adipocytes were -32.1 ± 1.2 mV (n = 95) and -28.8 ± 1.2 mV (n = 87), respectively. Vm was independent of cell size and fat content. Elevation of extracellular K(+) to 50 mM by equimolar substitution of bath Na(+) did not affect Vm, whereas substitution of bath Na(+) with the membrane-impermeant cation N-methyl-D-glucamine(+)-hyperpolarized Vm by 16 mV, data indicative of a nonselective cation permeability. Substitution of 133 mM extracellular Cl(-) with gluconate-depolarized Vm by 25 mV, whereas Cl(-) substitution with I(-) caused a -9 mV hyperpolarization. Isoprenaline (10 μM), but not insulin (100 nM), significantly depolarized Vm. Single-channel ion activity was voltage independent; currents were indicative for Cl(-) with an inward slope conductance of 16 ± 1.3 pS (n = 11) and a reversal potential close to the Cl(-) equilibrium potential, -29 ± 1.6 mV. Although the reduction of extracellular Cl(-) elevated the intracellular Ca(2+) of adipocytes, this was not as large as that produced by elevation of extracellular K(+). In conclusion, the Vm of white fat adipocytes is well described by the Goldman-Hodgkin-Katz equation with a predominant permeability to Cl(-), where its biophysical and single-channel properties suggest a volume-sensitive anion channel identity. Consequently, changes in serum Cl(-) homeostasis or the adipocyte's permeability to this anion via drugs will affect its Vm, intracellular Ca(2+), and ultimately its function and its role in metabolic control. PMID:24865982

  19. A gene expression signature for insulin resistance.

    PubMed

    Konstantopoulos, Nicky; Foletta, Victoria C; Segal, David H; Shields, Katherine A; Sanigorski, Andrew; Windmill, Kelly; Swinton, Courtney; Connor, Tim; Wanyonyi, Stephen; Dyer, Thomas D; Fahey, Richard P; Watt, Rose A; Curran, Joanne E; Molero, Juan-Carlos; Krippner, Guy; Collier, Greg R; James, David E; Blangero, John; Jowett, Jeremy B; Walder, Ken R

    2011-02-11

    Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes. PMID:21081660

  20. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    SciTech Connect

    Hashimoto, Ryota; Katoh, Youichi; Miyamoto, Yuki; Itoh, Seigo; Daida, Hiroyuki; Nakazato, Yuji; Okada, Takao

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption may accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation. - Highlights:

  1. Turnover of growth hormone receptors in rat adipocytes

    SciTech Connect

    Gorin, E.; Goodman, H.M.

    1985-05-01

    Adipocytes isolated from the epididymal fat pads of normal rats specifically bound (/sup 125/I)human GH (( /sup 125/I)hGH). Preincubation of cells with 20 micrograms/ml cycloheximide, an inhibitor of protein synthesis, produced a progressive loss of ability to bind (/sup 125/I)hGH specifically. Loss of binding sites with time followed first order kinetics and had a half-time of about 45 min regardless of whether GH was present or absent during treatment with cycloheximide. Nonspecific binding of labeled hormone was unchanged by cycloheximide. Similar results were obtained when adipocytes were incubated with 200 micrograms/ml puromycin, another inhibitor of translation, but incubation with 5 micrograms/ml actinomycin D, an inhibitor of transcription, for 2.5 h had no effect on the binding of (/sup 125/I)hGH by adipocytes. The findings are not attributable to cell death, since oxidation of (U-/sup 14/C) glucose to /sup 14/CO/sub 2/ and binding of (/sup 125/I)insulin were unaffected in replicate cell populations exposed to the same treatments. Diminished binding could not be attributed to an effect of cycloheximide to hasten the degradation of receptor-bound hGH. Treatment of adipocytes with 0.1 mg/ml trypsin for 10 min virtually abolished their ability to bind (/sup 125/I)hGH specifically, but binding capability gradually returned after removal of trypsin and was nearly restored to pretrypsin levels by 2 h. Addition of cycloheximide to the incubation medium after removal of trypsin completely prevented recovery of binding capability.

  2. Di-(2-Ethylhexyl)-Phthalate (DEHP) Causes Impaired Adipocyte Function and Alters Serum Metabolites

    PubMed Central

    Klöting, Nora; Hesselbarth, Nico; Gericke, Martin; Kunath, Anne; Biemann, Ronald; Chakaroun, Rima; Kosacka, Joanna; Kovacs, Peter; Kern, Matthias; Stumvoll, Michael; Fischer, Bernd; Rolle-Kampczyk, Ulrike; Feltens, Ralph; Otto, Wolfgang; Wissenbach, Dirk K.; von Bergen, Martin; Blüher, Matthias

    2015-01-01

    Di-(2-ethylhexyl)-phthalate (DEHP), an ubiquitous environmental contaminant, has been shown to cause adverse effects on glucose homeostasis and insulin sensitivity in epidemiological studies, but the underlying mechanisms are still unknown. We therefore tested the hypothesis that chronic DEHP exposure causes impaired insulin sensitivity, affects body weight, adipose tissue (AT) function and circulating metabolic parameters of obesity resistant 129S6 mice in vivo. An obesity-resistant mouse model was chosen to reduce a potential obesity bias of DEHP effects on metabolic parameters and AT function. The metabolic effects of 10-weeks exposure to DEHP were tested by insulin tolerance tests and quantitative assessment of 183 metabolites in mice. Furthermore, 3T3-L1 cells were cultured with DEHP for two days, differentiated into mature adipocytes in which the effects on insulin stimulated glucose and palmitate uptake, lipid content as well as on mRNA/protein expression of key adipocyte genes were investigated. We observed in female mice that DEHP treatment causes enhanced weight gain, fat mass, impaired insulin tolerance, changes in circulating adiponectin and adipose tissue Pparg, adiponectin and estrogen expression. Serum metabolomics indicated a general increase in phospholipid and carnitine concentrations. In vitro, DEHP treatment increases the proliferation rate and alters glucose uptake in adipocytes. Taken together, DEHP has significant effects on adipose tissue (AT) function and alters specific serum metabolites. Although, DEHP treatment led to significantly impaired insulin tolerance, it did not affect glucose tolerance, HOMA-IR, fasting glucose, insulin or triglyceride serum concentrations. This may suggest that DEHP treatment does not cause impaired glucose metabolism at the whole body level. PMID:26630026

  3. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway.

    PubMed

    Wang, Xukai; He, Gang; Peng, Yan; Zhong, Weitian; Wang, Yan; Zhang, Bo

    2015-01-01

    Insulin resistance (IR) is a common feature of Type II diabetes, metabolic disorders, hypertension and other vascular diseases. Recent studies showed that obesity-induced inflammation may be critical for IR. To investigate the anti-inflammatory effect of sodium butyrate (NaB) on obesity-induced inflammation, the db/db mice were intraperitoneally injected with NaB for 6 weeks. Glucose control was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT). Adipose tissue was harvested for gene expression analysis. 3T3-L1 adipocytes were treated with Tnf-α to mimic the inflammatory state and gene expression was detected by realtime PCR and Western blotting. Our results showed that NaB treatment improved glucose control in db/db mice as determined by GTT and ITT tests. Gene expression analysis showed that NaB inhibited cytokines and immunological markers including CD68, Interferon-γ and Mcp in adipose tissues in db/db mice. Moreover, NaB inhibited cytokine releasing in 3T3-L1 adipocytes treated with TNF-α. Further analysis of inflammation pathway showed that NLRP3 was activated in db/db mice, which was efficiently inhibited by NaB treatment. Our data suggest that inhibition of obesity-induced inflammation alleviates IR, and NaB might be a potential anti-inflammatory agent for obesity. PMID:26234821

  4. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway

    PubMed Central

    Wang, Xukai; He, Gang; Peng, Yan; Zhong, Weitian; Wang, Yan; Zhang, Bo

    2015-01-01

    Insulin resistance (IR) is a common feature of Type II diabetes, metabolic disorders, hypertension and other vascular diseases. Recent studies showed that obesity-induced inflammation may be critical for IR. To investigate the anti-inflammatory effect of sodium butyrate (NaB) on obesity-induced inflammation, the db/db mice were intraperitoneally injected with NaB for 6 weeks. Glucose control was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT). Adipose tissue was harvested for gene expression analysis. 3T3-L1 adipocytes were treated with Tnf-α to mimic the inflammatory state and gene expression was detected by realtime PCR and Western blotting. Our results showed that NaB treatment improved glucose control in db/db mice as determined by GTT and ITT tests. Gene expression analysis showed that NaB inhibited cytokines and immunological markers including CD68, Interferon-γ and Mcp in adipose tissues in db/db mice. Moreover, NaB inhibited cytokine releasing in 3T3-L1 adipocytes treated with TNF-α. Further analysis of inflammation pathway showed that NLRP3 was activated in db/db mice, which was efficiently inhibited by NaB treatment. Our data suggest that inhibition of obesity-induced inflammation alleviates IR, and NaB might be a potential anti-inflammatory agent for obesity. PMID:26234821

  5. The Acute Phase Protein Serum Amyloid A Induces Lipolysis and Inflammation in Human Adipocytes through Distinct Pathways

    PubMed Central

    Faty, Aurélie; Ferré, Pascal; Commans, Stéphane

    2012-01-01

    Background The acute phase response (APR) is characterized by alterations in lipid and glucose metabolism leading to an increased delivery of energy substrates. In adipocytes, there is a coordinated decrease in Free Fatty acids (FFAs) and glucose storage, in addition to an increase in FFAs mobilization. Serum Amyloid A (SAA) is an acute phase protein mainly associated with High Density Lipoproteins (HDL). We hypothesized that enrichment of HDL with SAA, during the APR, could be implicated in the metabolic changes occurring in adipocytes. Methodology/Principal Findings In vitro differentiated human adipocytes (hMADS) were treated with SAA enriched HDL or recombinant SAA and the metabolic phenotype of the cells analyzed. In hMADS, SAA induces an increased lipolysis through an ERK dependent pathway. At the molecular level, SAA represses PPARγ2, C/EBPα and SREBP-1c gene expression, three transcription factors involved in adipocyte differentiation or lipid synthesis. In addition, the activation of the NF-κB pathway by SAA leads to the induction of pro-inflammatory cytokines and chemokines, as in the case of immune cells. These latter findings were replicated in freshly isolated mature human adipocytes. Conclusions/Significance Besides its well-characterized role in cholesterol metabolism, SAA has direct metabolic effects on human adipocytes. These metabolic changes could be at least partly responsible for alterations of adipocyte metabolism observed during the APR as well as during pathophysiological conditions such as obesity and conditions leading to insulin resistant states. PMID:22532826

  6. Downregulation of CPPED1 expression improves glucose metabolism in vitro in adipocytes.

    PubMed

    Vaittinen, Maija; Kaminska, Dorota; Käkelä, Pirjo; Eskelinen, Matti; Kolehmainen, Marjukka; Pihlajamäki, Jussi; Uusitupa, Matti; Pulkkinen, Leena

    2013-11-01

    We have previously demonstrated that the expression of calcineurin-like phosphoesterase domain containing 1 (CPPED1) decreases in adipose tissue (AT) after weight reduction. However, the function of CPPED1 in AT is unknown. Therefore, we investigated whether the change in CPPED1 expression is connected to changes in adipocyte glucose metabolism. First, we confirmed that the expression of CPPED1 decreased after weight loss in subcutaneous AT. Second, the expression of CPPED1 did not change during adipocyte differentiation. Third, CPPED1 knockdown with small interfering RNA increased expression of genes involved in glucose metabolism (adiponectin, adiponectin receptor 1, and GLUT4) and improved insulin-stimulated glucose uptake. To conclude, CPPED1 is a novel molecule involved in AT biology, and CPPED1 is involved in glucose uptake in adipocytes. PMID:23939394

  7. Downregulation of CPPED1 Expression Improves Glucose Metabolism In Vitro in Adipocytes

    PubMed Central

    Vaittinen, Maija; Kaminska, Dorota; Käkelä, Pirjo; Eskelinen, Matti; Kolehmainen, Marjukka; Pihlajamäki, Jussi; Uusitupa, Matti; Pulkkinen, Leena

    2013-01-01

    We have previously demonstrated that the expression of calcineurin-like phosphoesterase domain containing 1 (CPPED1) decreases in adipose tissue (AT) after weight reduction. However, the function of CPPED1 in AT is unknown. Therefore, we investigated whether the change in CPPED1 expression is connected to changes in adipocyte glucose metabolism. First, we confirmed that the expression of CPPED1 decreased after weight loss in subcutaneous AT. Second, the expression of CPPED1 did not change during adipocyte differentiation. Third, CPPED1 knockdown with small interfering RNA increased expression of genes involved in glucose metabolism (adiponectin, adiponectin receptor 1, and GLUT4) and improved insulin-stimulated glucose uptake. To conclude, CPPED1 is a novel molecule involved in AT biology, and CPPED1 is involved in glucose uptake in adipocytes. PMID:23939394

  8. The gp130 Receptor Cytokine Family: Regulators of Adipocyte Development and Function

    PubMed Central

    White, Ursula A.; Stephens, Jacqueline M.

    2011-01-01

    Gp130 cytokines are involved in the regulation of numerous biological processes, including hematopoiesis, immune response, inflammation, cardiovascular action, and neuronal survival. These cytokines share glycoprotein 130 as a common signal transducer in their receptor complex and typically activate STAT3. Most gp130 cytokines have paracrine or endocrine actions, and their levels can be measured in circulation in rodents and humans. In recent years, various laboratories have conducted studies to demonstrate that gp130 cytokines can modulate adipocyte development and function. Therefore, these studies suggest that some gp130 cytokines may be viable anti-obesity therapeutics. In this review, we will summarize the reported effects of gp130 cytokines on adipocyte differentiation and adipocyte function. In addition, the modulation of gp130 cytokines in conditions of obesity, insulin resistance, and Type 2 diabetes will be presented. PMID:21375496

  9. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage.

    PubMed

    Raz, Itamar; Eldor, Roi; Cernea, Simona; Shafrir, Eleazar

    2005-01-01

    We present multiple findings on derangements in lipid metabolism in type 2 diabetes. The increase in the intracellular deposition of triglycerides (TG) in muscles, liver and pancreas in subjects prone to diabetes is well documented and demonstrated to attenuate glucose metabolism by interfering with insulin signaling and insulin secretion. The obesity often associated with type 2 diabetes is mainly central, resulting in the overload of abdominal adipocytes with TG and reducing fat depot capacity to protect other tissues from utilizing a large proportion of dietary fat. In contrast to subcutaneous adipocytes, the central adipocytes exhibit a high rate of basal lipolysis and are highly sensitive to fat mobilizing hormones, but respond poorly to lipolysis restraining insulin. The enlarged visceral adipocytes are flooding the portal circulation with free fatty acids (FFA) at metabolically inappropriate time, when FFA should be oxidized, thus exposing nonadipose tissues to fat excess. This leads to ectopic TG accumulation in muscles, liver and pancreatic beta-cells, resulting in insulin resistance and beta-cell dysfunction. This situation, based on a large number of observations in humans and experimental animals, confirms that peripheral adipose tissue is closely regulated, performing a vital role of buffering fluxes of FFA in the circulation. The central adipose tissues tend to upset this balance by releasing large amounts of FFA. To reduce the excessive fat outflow from the abdominal depots and prevent the ectopic fat deposition it is important to decrease the volume of central fat stores or increase the peripheral fat stores. One possibility is to downregulate the activity of lipoprotein lipase, which is overexpressed in abdominal relatively to subcutaneous fat stores. This can be achieved by gastrointestinal bypass or gastroplasty, which decrease dietary fat absorption, or by direct means that include surgical removal of mesenteric fat. Indirect treatment consists

  10. Adipocyte in vascular wall can induce the rupture of abdominal aortic aneurysm

    PubMed Central

    Kugo, Hirona; Zaima, Nobuhiro; Tanaka, Hiroki; Mouri, Youhei; Yanagimoto, Kenichi; Hayamizu, Kohsuke; Hashimoto, Keisuke; Sasaki, Takeshi; Sano, Masaki; Yata, Tatsuro; Urano, Tetsumei; Setou, Mitsutoshi; Unno, Naoki; Moriyama, Tatsuya

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a vascular disease involving the gradual dilation of the abdominal aorta. It has been reported that development of AAA is associated with inflammation of the vascular wall; however, the mechanism of AAA rupture is not fully understood. In this study, we investigated the mechanism underlying AAA rupture using a hypoperfusion-induced animal model. We found that the administration of triolein increased the AAA rupture rate in the animal model and that the number of adipocytes was increased in ruptured vascular walls compared to non-ruptured walls. In the ruptured group, macrophage infiltration and the protein levels of matrix metalloproteinases 2 and 9 were increased in the areas around adipocytes, while collagen-positive areas were decreased in the areas with adipocytes compared to those without adipocytes. The administration of fish oil, which suppresses adipocyte hypertrophy, decreased the number and size of adipocytes, as well as decreased the risk of AAA rupture ratio by 0.23 compared to the triolein administered group. In human AAA samples, the amount of triglyceride in the adventitia was correlated with the diameter of the AAA. These results suggest that AAA rupture is related to the abnormal appearance of adipocytes in the vascular wall. PMID:27499372

  11. Adipocyte in vascular wall can induce the rupture of abdominal aortic aneurysm.

    PubMed

    Kugo, Hirona; Zaima, Nobuhiro; Tanaka, Hiroki; Mouri, Youhei; Yanagimoto, Kenichi; Hayamizu, Kohsuke; Hashimoto, Keisuke; Sasaki, Takeshi; Sano, Masaki; Yata, Tatsuro; Urano, Tetsumei; Setou, Mitsutoshi; Unno, Naoki; Moriyama, Tatsuya

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a vascular disease involving the gradual dilation of the abdominal aorta. It has been reported that development of AAA is associated with inflammation of the vascular wall; however, the mechanism of AAA rupture is not fully understood. In this study, we investigated the mechanism underlying AAA rupture using a hypoperfusion-induced animal model. We found that the administration of triolein increased the AAA rupture rate in the animal model and that the number of adipocytes was increased in ruptured vascular walls compared to non-ruptured walls. In the ruptured group, macrophage infiltration and the protein levels of matrix metalloproteinases 2 and 9 were increased in the areas around adipocytes, while collagen-positive areas were decreased in the areas with adipocytes compared to those without adipocytes. The administration of fish oil, which suppresses adipocyte hypertrophy, decreased the number and size of adipocytes, as well as decreased the risk of AAA rupture ratio by 0.23 compared to the triolein administered group. In human AAA samples, the amount of triglyceride in the adventitia was correlated with the diameter of the AAA. These results suggest that AAA rupture is related to the abnormal appearance of adipocytes in the vascular wall. PMID:27499372

  12. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty; Patel, Yashomati M.

    2008-10-15

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.

  13. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    SciTech Connect

    Salhanick, A.I.; Amatruda, J.M. )

    1988-08-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5{prime}-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5{prime}-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable ({sup 14}C)sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.

  14. Carnitine palmitoyltransferase 1A prevents fatty acid-induced adipocyte dysfunction through suppression of c-Jun N-terminal kinase.

    PubMed

    Gao, Xuefei; Li, Kuai; Hui, Xiaoyan; Kong, Xiangping; Sweeney, Gary; Wang, Yu; Xu, Aimin; Teng, Maikun; Liu, Pentao; Wu, Donghai

    2011-05-01

    The adipocyte is the principal cell type for fat storage. CPT1 (carnitine palmitoyltransferase-1) is the rate-limiting enzyme for fatty acid β-oxidation, but the physiological role of CPT1 in adipocytes remains unclear. In the present study, we focused on the specific role of CPT1A in the normal functioning of adipocytes. Three 3T3-L1 adipocyte cell lines stably expressing hCPT1A (human CPT1A) cDNA, mouse CPT1A shRNA (short-hairpin RNA) or GFP (green fluorescent protein) were generated and the biological functions of these cell lines were characterized. Alteration in CPT1 activity, either by ectopic overexpression or pharmacological inhibition using etomoxir, did not affect adipocyte differentiation. However, overexpression of hCPT1A significantly reduced the content of intracellular NEFAs (non-esterified fatty acids) compared with the control cells when adipocytes were challenged with fatty acids. The changes were accompanied by an increase in fatty acid uptake and a decrease in fatty acid release. Interestingly, CPT1A protected against fatty acid-induced insulin resistance and expression of pro-inflammatory adipokines such as TNF-α (tumour necrosis factor-α) and IL-6 (interleukin-6) in adipocytes. Further studies demonstrated that JNK (c-Jun N terminal kinase) activity was substantially suppressed upon CPT1A overexpression, whereas knockdown or pharmacological inhibition of CPT1 caused a significant enhancement of JNK activity. The specific inhibitor of JNK SP600125 largely abolished the changes caused by the shRNA- and etomoxir-mediated decrease in CPT1 activity. Moreover, C2C12 myocytes co-cultured with adipocytes pre-treated with fatty acids displayed altered insulin sensitivity. Taken together, our findings have identified a favourable role for CPT1A in adipocytes to attenuate fatty acid-evoked insulin resistance and inflammation via suppression of JNK. PMID:21348853

  15. ADIPOCYTES FROM WOMEN WITH POLYCYSTIC OVARY SYNDROME DEMONSTRATE ALTERED PHOSPHORYLATION AND ACTIVITY OF GLYCOGEN SYNTHASE KINASE 3

    PubMed Central

    Chang, Wendy; Goodarzi, Mark O.; Williams, Heith; Magoffin, Denis A.; Pall, Marita; Azziz, Ricardo

    2009-01-01

    Objective To test the hypothesis that an abnormality in glycogen synthase kinase-3 (GSK3) is a pathogenic factor in PCOS. Design Prospective experimental study (adipocytes). Setting Tertiary care academic medical center and teaching hospital Patients Patients with PCOS and healthy controls. Interventions Blood sampling, physical exam, biopsy of subcutaneous lower abdominal fat. Main Outcome Measure(s) Glucose transport and protein levels and phosphorylation state of GSK3α and GSK3β in adipocytes, assessment of GSK3β activity. Results Basal protein levels of glycogen synthase kinase (GSK3α and GSK3β) did not differ between controls and women with PCOS, nor did basal or insulin-stimulated levels of serine phosphorylated GSK3α. However, in adipocytes of PCOS women insulin stimulation was not associated with increased serine phosphorylation of GSK3β, in contrast to controls. Tyrosine phosphorylation of GSK3β was also higher in PCOS compared to controls. Consistent with the phosphorylation data, GSK3β activity was elevated in PCOS adipocytes. Conclusions These data suggest GSK3β is hyperactivated and resistant to downregulation by insulin in PCOS. Using physiologic approaches, we demonstrated that abnormal GSK3β regulation is a potential mechanism for the insulin resistance seen in some women with PCOS, which may contribute to their development of the syndrome. PMID:18178198

  16. Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells.

    PubMed

    Contador, David; Ezquer, Fernando; Espinosa, Maximiliano; Arango-Rodriguez, Martha; Puebla, Carlos; Sobrevia, Luis; Conget, Paulette

    2015-09-01

    The final product of adipogenesis is a functional adipocyte. This mature cell acquires the necessary machinery for lipid metabolism, loses its proliferation potential, increases its insulin sensitivity, and secretes adipokines. Multipotent mesechymal stromal cells have been recognized as a source of adipocytes both in vivo and in vitro. The in vitro adipogenic differentiation of human MSC (hMSC) has been induced up to now by using a complex stimulus which includes dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin (a classical cocktail) and evaluated according to morphological changes. The present work was aimed at demonstrating that the simultaneous activation of dexamethasone's canonical signaling pathways, through the glucocorticoid receptor and CCAAT-enhancer-binding proteins (C/EBPs) and rosiglitazone through peroxisome proliferator-activated receptor gamma (PPAR-gamma) is sufficient yet necessary for inducing hMSC adipogenic differentiation. It was also ascertained that hMSC exposed just to dexamethasone and rosiglitazone (D&R) differentiated into cells which accumulated neutral lipid droplets, expressed C/EBP-alpha, PPAR-gamma, aP2, lipoprotein lipase, acyl-CoA synthetase, phosphoenolpyruvate carboxykinase, adiponectin, and leptin genes but did not proliferate. Glucose uptake was dose dependent on insulin stimulus and high levels of adipokines were secreted (i.e. displaying not only the morphology but also expressing mature adipocytes' specific genes and functional characteristics). This work has demonstrated that (i) the activating C/EBPs and PPAR-gamma signaling pathways were sufficient to induce adipogenic differentiation from hMSC, (ii) D&R producing functional adipocytes from hMSC, (iii) D&R induce adipogenic differentiation from mammalian MSC (including those which are refractory to classical adipogenic differentiation stimuli). D&R would thus seem to be a useful tool for MSC characterization, studying adipogenesis pathways and

  17. Lipocalin 2 expression and secretion is highly regulated by metabolic stress, cytokines, and nutrients in adipocytes.

    PubMed

    Zhang, Yuanyuan; Foncea, Rocio; Deis, Jessica A; Guo, Hong; Bernlohr, David A; Chen, Xiaoli

    2014-01-01

    Lipocalin 2 (Lcn2) has been recently characterized as a new adipokine having a role in innate immunity and energy metabolism. Nonetheless, the metabolic regulation of Lcn2 production in adipocytes has not been comprehensively studied. To better understand the Lcn2 biology, we investigated the regulation of Lcn2 expression in adipose tissue in response to metabolic stress in mice as well as the control of Lcn2 expression and secretion by cytokines and nutrients in 3T3-L1 adipocytes. Our results showed that the mRNA expression of Lcn2 was upregulated in white and brown adipose tissues as well as liver during fasting and cold stress in mice. Among pro-inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β showed most profound effect on Lcn2 expression and secretion in 3T3-L1 adipocytes. Insulin stimulated Lcn2 expression and secretion in a dose-dependent manner; this insulin effect was significantly abolished in the presence of low concentration of glucose. Moreover, insulin-stimulated Lcn2 expression and secretion was also attenuated when glucose was replaced by 3-O-methyl-d-glucose or by blocking NFκB pathway activation. Additionally, we showed that palmitate and oleate induced Lcn2 expression and secretion more significantly than EPA, while phytanic acid reduced Lcn2 production. Our results demonstrated that Lcn2 production in adipocytes is highly responsive to metabolic stress, cytokines, and nutrient signals, suggesting an important role of Lcn2 in adipocyte metabolism and inflammation. PMID:24818605

  18. Control of Adipocyte Differentiation in Different Fat Depots; Implications for Pathophysiology or Therapy

    PubMed Central

    Ma, Xiuquan; Lee, Paul; Chisholm, Donald J.; James, David E.

    2015-01-01

    Adipocyte differentiation and its impact on restriction or expansion of particular adipose tissue depots have physiological and pathophysiological significance in view of the different functions of these depots. Brown or “beige” fat [brown adipose tissue (BAT)] expansion can enhance thermogenesis, lipid oxidation, insulin sensitivity, and glucose tolerance; conversely expanded visceral fat [visceral white adipose tissue (VAT)] is associated with insulin resistance, low grade inflammation, dyslipidemia, and cardiometabolic risk. The largest depot, subcutaneous white fat [subcutaneous white adipose tissue (SAT)], has important beneficial characteristics including storage of lipid “out of harms way” and secretion of adipokines, especially leptin and adiponectin, with positive metabolic effects including lipid oxidation, energy utilization, enhanced insulin action, and an anti-inflammatory role. The absence of these functions in lipodystrophies leads to major metabolic disturbances. An ability to expand white adipose tissue adipocyte differentiation would seem an important defense mechanism against the detrimental effects of energy excess and limit harmful accumulation of lipid in “ectopic” sites, such as liver and muscle. Adipocyte differentiation involves a transcriptional cascade with PPARγ being most important in SAT but less so in VAT, with increased angiogenesis also critical. The transcription factor, Islet1, is fairly specific to VAT and in vitro inhibits adipocyte differentiation. The physiological importance of Islet1 requires further study. Basic control of differentiation is similar in BAT but important differences include the effect of PGC-1α on mitochondrial biosynthesis and upregulation of UCP1; also PRDM16 plays a pivotal role in expression of the BAT phenotype. Modulation of the capacity or function of these different adipose tissue depots, by altering adipocyte differentiation or other means, holds promise for interventions that can be

  19. Rab18 Dynamics in Adipocytes in Relation to Lipogenesis, Lipolysis and Obesity

    PubMed Central

    Pulido, Marina R.; Diaz-Ruiz, Alberto; Jiménez-Gómez, Yolanda; Garcia-Navarro, Socorro; Gracia-Navarro, Francisco; Tinahones, Francisco; López-Miranda, José; Frühbeck, Gema; Vázquez-Martínez, Rafael; Malagón, Maria M.

    2011-01-01

    Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed. PMID:21829560

  20. Insulin depletion leads to adipose-specific cell death in obese but not lean mice.

    PubMed

    Loftus, T M; Kuhajda, F P; Lane, M D

    1998-11-24

    Mutation of the obese gene produces obesity, hyperinsulinemia, and compensatory "overexpression" of the defective gene. As insulin activates obese gene expression, it seemed possible that hyperinsulinemia might be responsible for overexpression of the gene. To address this question we rapidly neutralized circulating insulin by injection of an insulin antibody. Unexpectedly, insulin depletion in obese (ob/ob or db/db) mice caused massive adipose RNA degradation confirmed by histological analysis to result from adipocyte cell death by a largely necrotic mechanism. This effect was not observed in lean littermates and was completely corrected by coadministration of insulin. Comparison of multiple tissues demonstrated that the effect was restricted to adipose tissue. Insulin depletion in obese mice by administration of streptozotocin also led to cell death, but this death was less extensive and appeared to be apoptotic in mechanism. Thus insulin may promote the survival side of the physiological balance between adipocyte survival and death. PMID:9826672

  1. Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice

    PubMed Central

    Chartoumpekis, Dionysios V.; Palliyaguru, Dushani L.; Wakabayashi, Nobunao; Khoo, Nicholas K.H.; Schoiswohl, Gabriele; O'Doherty, Robert M.; Kensler, Thomas W.

    2015-01-01

    Objective The Notch family of intermembrane receptors is highly conserved across species and is involved in cell fate and lineage control. Previous in vitro studies have shown that Notch may inhibit adipogenesis. Here we describe the role of Notch in adipose tissue by employing an in vivo murine model which overexpresses Notch in adipose tissue. Methods Albino C57BL/6J RosaNICD/NICD::Adipoq-Cre (Ad-NICD) male mice were generated to overexpress the Notch intracellular domain (NICD) specifically in adipocytes. Male RosaNICD/NICD mice were used as controls. Mice were evaluated metabolically at the ages of 1 and 3 months by assessing body weights, serum metabolites, body composition (EchoMRI), glucose tolerance and insulin tolerance. Histological sections of adipose tissue depots as well as of liver were examined. The mRNA expression profile of genes involved in adipogenesis was analyzed by quantitative real-time PCR. Results The Ad-NICD mice were heavier with significantly lower body fat mass compared to the controls. Small amounts of white adipose tissue could be seen in the 1-month old Ad-NICD mice, but was almost absent in the 3-months old mice. The Ad-NICD mice also had higher serum levels of glucose, insulin, triglyceride and non-esterified fatty acids. These differences were more prominent in the older (3-months) than in the younger (1-month) mice. The Ad-NICD mice also showed severe insulin resistance along with a steatotic liver. Gene expression analysis in the adipose tissue depots showed a significant repression of lipogenic (Fasn, Acacb) and adipogenic pathways (C/ebpα, C/ebpβ, Pparγ2, Srebf1). Conclusions Increased Notch signaling in adipocytes in mice results in blocked expansion of white adipose tissue which leads to ectopic accumulation of lipids and insulin resistance, thus to a lipodystrophic phenotype. These results suggest that further investigation of the role of Notch signaling in adipocytes could lead to the manipulation of this pathway for

  2. Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Liu, Qing; Kim, Seon Beom; Ahn, Jong Hoon; Hwang, Bang Yeon; Kim, Sung Yeon; Lee, Mi Kyeong

    2012-01-01

    To search for anti-diabetic and insulin-sensitising natural products, the effect on adipocyte differentiation was investigated by assessing fat accumulation in 3T3-L1 preadipocytes using Oil Red O staining. Fractionation and separation of n-hexane and CHCl₃ fractions of Morinda officinalis (Rubiaceae) using several chromatographic methods led to the isolation of three anthraquinones, 1,2-dimethoxyanthraquinone (1), alizarin-2-methyl ether (2) and rubiadin-1-methyl ether (3). Among them, alizarin-2-methyl ether (2) showed the strongest enhancing activity, followed by rubiadin-1-methyl ether (3) and 1,2-dimethoxyanthraquinone (1). At a concentration of 100 µM, alizarin-2-methyl ether (2) enhanced adipocyte differentiation by up to 131% (compared to insulin-treated cells). Thus, these compounds could be beneficial in the treatment of diabetes. PMID:22008000

  3. Adipocyte glucocorticoid receptor has a minor contribution in adipose tissue growth.

    PubMed

    Desarzens, Sébastien; Faresse, Nourdine

    2016-07-01

    The glucocorticoids bind and activate both the glucocorticoid receptor (GR) as well as the mineralocorticoid receptor in adipocytes. Despite several studies to determine the function of these two receptors in mediating glucocorticoids effects, their relative contribution in adipose tissue expansion and obesity is unclear. To investigate the effect of GR in adipose tissue function, we generated an adipocyte-specific Gr-knockout mouse model (Gr(ad-ko)). These mice were submitted either to a standard diet or a high-fat high sucrose diet. We found that adipocyte-specific deletion of Gr did not affect body weight gain or adipose tissue formation and distribution. However, the lack of Gr in adipocyte promotes a diet-induced inflammation determined by higher pro-inflammatory genes expression and macrophage infiltration in the fat pads. Surprisingly, the adipose tissue inflammation in Gr(ad-ko) mice was not correlated with insulin resistance or dyslipidemia, but with disturbed glucose tolerance. Our data demonstrate that adipocyte-specific ablation of Gr in vivo may affect the adipose tissue function but not its expansion during a high calorie diet. PMID:27106108

  4. Antiobesity Action of ACAM by Modulating the Dynamics of Cell Adhesion and Actin Polymerization in Adipocytes.

    PubMed

    Murakami, Kazutoshi; Eguchi, Jun; Hida, Kazuyuki; Nakatsuka, Atsuko; Katayama, Akihiro; Sakurai, Miwa; Choshi, Haruki; Furutani, Masumi; Ogawa, Daisuke; Takei, Kohji; Otsuka, Fumio; Wada, Jun

    2016-05-01

    Coxsackie virus and adenovirus receptor-like membrane protein (CLMP) was identified as the tight junction-associated transmembrane protein of epithelial cells with homophilic binding activities. CLMP is also recognized as adipocyte adhesion molecule (ACAM), and it is upregulated in mature adipocytes in rodents and humans with obesity. Here, we present that aP2 promoter-driven ACAM transgenic mice are protected from obesity and diabetes with the prominent reduction of adipose tissue mass and smaller size of adipocytes. ACAM is abundantly expressed on plasma membrane of mature adipocytes and associated with formation of phalloidin-positive polymerized form of cortical actin (F-actin). By electron microscopy, the structure of zonula adherens with an intercellular space of ∼10-20 nm was observed with strict parallelism of the adjoining cell membranes over distances of 1-20 μm, where ACAM and γ-actin are abundantly expressed. The formation of zonula adherens may increase the mechanical strength, inhibit the adipocyte hypertrophy, and improve the insulin sensitivity. PMID:26956488

  5. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  6. Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipogenesis.

    PubMed

    Dusseault, Julie; Li, Bing; Haider, Nida; Goyette, Marie-Anne; Côté, Jean-François; Larose, Louise

    2016-09-01

    Obesity results from an excessive expansion of white adipose tissue (WAT) from hypertrophy of preexisting adipocytes and enhancement of precursor differentiation into mature adipocytes. We report that Nck2-deficient mice display progressive increased adiposity associated with adipocyte hypertrophy. A negative relationship between the expression of Nck2 and WAT expansion was recapitulated in humans such that reduced Nck2 protein and mRNA levels in human visceral WAT significantly correlate with the degree of obesity. Accordingly, Nck2 deficiency promotes an adipogenic program that not only enhances adipocyte differentiation and lipid droplet formation but also results in dysfunctional elevated lipogenesis and lipolysis activities in mouse WAT as well as in stromal vascular fraction and 3T3-L1 preadipocytes. We provide strong evidence to support that through a mechanism involving primed PERK activation and signaling, Nck2 deficiency in adipocyte precursors is associated with enhanced adipogenesis in vitro and adiposity in vivo. Finally, in agreement with elevated circulating lipids, Nck2-deficient mice develop glucose intolerance, insulin resistance, and hepatic steatosis. Taken together, these findings reveal that Nck2 is a novel regulator of adiposity and suggest that Nck2 is important in limiting WAT expansion and dysfunction in mice and humans. PMID:27325288

  7. A Microfluidic Interface for the Culture and Sampling of Adiponectin from Primary Adipocytes

    PubMed Central

    Godwin, Leah A.; Brooks, Jessica C.; Hoepfner, Lauren D.; Wanders, Desiree; Judd, Robert L.; Easley, Christopher J.

    2014-01-01

    Secreted from adipose tissue, adiponectin is a vital endocrine hormone that acts in glucose metabolism, thereby establishing its crucial role in diabetes, obesity, and other metabolic disease states. Insulin exposure to primary adipocytes cultured in static conditions has been shown to stimulate adiponectin secretion. However, conventional, static methodology for culturing and stimulating adipocytes falls short of truly mimicking physiological environments. Along with decreases in experimental costs and sample volume, and increased temporal resolution, microfluidic platforms permit small-volume flowing cell culture systems, which more accurately represent the constant flow conditions through vasculature in vivo. Here, we have integrated a customized primary tissue culture reservoir into a passively operated microfluidic device made of polydimethylsiloxane (PDMS). Fabrication of the reservoir was accomplished through unique PDMS “landscaping” above sampling channels, with a design strategy targeted to primary adipocytes to overcome issues of positive cell buoyancy. This reservoir allowed three-dimensional culture of primary murine adipocytes, accurate control over stimulants via constant perfusion, and sampling of adipokine secretion during various treatments. As the first report of primary adipocyte culture and sampling within microfluidic systems, this work sets the stage for future studies in adipokine secretion dynamics. PMID:25423362

  8. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment.

    PubMed

    Hu, Xiaoqian; Cifarelli, Vincenza; Sun, Shishuo; Kuda, Ondrej; Abumrad, Nada A; Su, Xiong

    2016-04-01

    Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis. PMID:26912395

  9. Macadamia oil supplementation attenuates inflammation and adipocyte hypertrophy in obese mice.

    PubMed

    Lima, Edson A; Silveira, Loreana S; Masi, Laureane N; Crisma, Amanda R; Davanso, Mariana R; Souza, Gabriel I G; Santamarina, Aline B; Moreira, Renata G; Martins, Amanda Roque; de Sousa, Luis Gustavo O; Hirabara, Sandro M; Rosa Neto, Jose C

    2014-01-01

    Excess of saturated fatty acids in the diet has been associated with obesity, leading to systemic disruption of insulin signaling, glucose intolerance, and inflammation. Macadamia oil administration has been shown to improve lipid profile in humans. We evaluated the effect of macadamia oil supplementation on insulin sensitivity, inflammation, lipid profile, and adipocyte size in high-fat diet (HF) induced obesity in mice. C57BL/6 male mice (8 weeks) were divided into four groups: (a) control diet (CD), (b) HF, (c) CD supplemented with macadamia oil by gavage at 2 g/Kg of body weight, three times per week, for 12 weeks (CD + MO), and (d) HF diet supplemented with macadamia oil (HF + MO). CD and HF mice were supplemented with water. HF mice showed hypercholesterolemia and decreased insulin sensitivity as also previously shown. HF induced inflammation in adipose tissue and peritoneal macrophages, as well as adipocyte hypertrophy. Macadamia oil supplementation attenuated hypertrophy of adipocytes and inflammation in the adipose tissue and macrophages. PMID:25332517

  10. Macadamia Oil Supplementation Attenuates Inflammation and Adipocyte Hypertrophy in Obese Mice

    PubMed Central

    Lima, Edson A.; Silveira, Loreana S.; Masi, Laureane N.; Crisma, Amanda R.; Davanso, Mariana R.; Souza, Gabriel I. G.; Santamarina, Aline B.; Moreira, Renata G.; Roque Martins, Amanda; de Sousa, Luis Gustavo O.; Hirabara, Sandro M.; Rosa Neto, Jose C.

    2014-01-01

    Excess of saturated fatty acids in the diet has been associated with obesity, leading to systemic disruption of insulin signaling, glucose intolerance, and inflammation. Macadamia oil administration has been shown to improve lipid profile in humans. We evaluated the effect of macadamia oil supplementation on insulin sensitivity, inflammation, lipid profile, and adipocyte size in high-fat diet (HF) induced obesity in mice. C57BL/6 male mice (8 weeks) were divided into four groups: (a) control diet (CD), (b) HF, (c) CD supplemented with macadamia oil by gavage at 2 g/Kg of body weight, three times per week, for 12 weeks (CD + MO), and (d) HF diet supplemented with macadamia oil (HF + MO). CD and HF mice were supplemented with water. HF mice showed hypercholesterolemia and decreased insulin sensitivity as also previously shown. HF induced inflammation in adipose tissue and peritoneal macrophages, as well as adipocyte hypertrophy. Macadamia oil supplementation attenuated hypertrophy of adipocytes and inflammation in the adipose tissue and macrophages. PMID:25332517

  11. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells.

    PubMed

    Lee, Ok-Hwan; Seo, Dong-Ho; Park, Cheon-Seok; Kim, Young-Cheul

    2010-01-01

    Puerarin, a major isoflavone glycoside from Kudzu root (Pueraria lobata), has been reported to exert antihyperglycemic and antioxidant effects and thus have pharmacological actions in the treatment of diabetes and cardiovascular diseases. We investigated the effects of puerarin on the changes of key gene expression associated with adipocyte differentiation and insulin sensitivity and link to cellular antioxidant response pathways. Puerarin treatment significantly enhanced differentiation of 3T3-L1 preadipocytes accompanying increased lipid accumulation and glucose-6-phosphate dehydrogenase (G6PDH) activity. At a molecular level, puerarin upregulated mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes, an adipocyte-specific fatty acid binding protein (aP2) and GLUT4. Puerarin also caused a significant increase in mRNA level of adiponectin, an important insulin-sensitizing adipocytokine that is downregulated in insulin-resistant and diabetic states. In addition, treatment with puerarin was found to upregulate mRNA levels of G6PDH, glutathione reductase, and catalase, all of which are important for endogenous antioxidant responses. These data suggest that the hypoglycemic effects of puerarin can be attributed to the upregulation of PPARγ and its downstream target genes, GLUT4 and adiponectin expression, leading to increased glucose utilization. Puerarin may also be effective in preventing the rise of oxidative stress during adipocyte differentiation by increasing endogenous antioxidant responses. PMID:20806284

  12. Insulin-like growth factor-1 receptor protein expression and gene copy number alterations in non-small cell lung carcinomas.

    PubMed

    Tsuta, Koji; Mimae, Takahiro; Nitta, Hiroaki; Yoshida, Akihiko; Maeshima, Akiko M; Asamura, Hisao; Grogan, Thomas M; Furuta, Koh; Tsuda, Hitoshi

    2013-06-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor implicated in the pathogenesis of several malignancies and is potentially an attractive target for anticancer treatment. In this study, we included 379 patients who underwent surgical resection (179 diagnosed as having adenocarcinoma [ADC]; 150, squamous cell carcinoma [SCC]; 41, sarcomatoid carcinoma and 9, large cell carcinoma). IGF-1R expression and gene copy number were assessed by immunohistochemistry and bright-field in situ hybridization (BISH), respectively. IGF-1R expression in non-small cell lung carcinoma was observed in 41.4% of samples and was more prevalent in SCC (69.3%) than in ADC (25.1%), large cell carcinoma (33.3%), and sarcomatoid carcinoma (12.2%) (P < .001). Among ADCs, most mucinous ADCs (75%) showed strong membranous staining with the IGF-1R antibody. Compared with protein expression, IGF-1R gene alteration was rare (8.4%). A statistically significant correlation between IGF-1R expression and positive IGF-1R BISH was observed (γ = 0.762, P < .001). IGF-1R-positive tumors were more common in smokers (P = .004), and these tumors were larger (P = .006) than the IGF-1R-negative tumors. IGF-1R BISH positivity was not correlated with any clinicopathologic factor. IGF-1R expression and IGF-1R BISH positivity were not correlated with overall survival. IGF-1R is highly expressed in SCC and mucinous ADC, although copy number alterations in the IGF-1R gene were rare. These findings may have important implications for future anti-IGF-1R therapeutic approaches. PMID:23266446

  13. Genistein reduced insulin resistance index through modulating lipid metabolism in ovariectomized rats.

    PubMed

    Choi, Joo Sun; Koh, In-Uk; Song, Jihyun

    2012-11-01

    Postmenopausal women are at higher risk for obesity and insulin resistance due to the decline of estrogen, but genistein, a phytoestrogen, may reduce the risks of these diet-related diseases. In this study, we hypothesized that supplemental genistein has beneficial effects on insulin resistance in an ovariectomized rat model by modulating lipid metabolism. Three weeks after a sham surgery (sham) or an ovariectomy (OVX), ovariectomized Sprague-Dawley rats were placed on a diet containing 0 (OVX group) or 0.1% genistein for 4 weeks. The sham rats were fed a high-fat diet containing 0% genistein and served as the control group (sham group). The ovariectomized rats showed increases in body weight and insulin resistance index, but genistein reduced insulin resistance index and the activity of hepatic fatty acid synthetase. Genistein was also associated with increased activity of succinate dehydrogenase and carnitine palmitoyltransferase and the rate of β-oxidation in the fat tissue of rats. The ovariectomized rats given genistein had smaller-sized adipocytes. Using gene-set enrichment analysis (GSEA) of microarray data, we found that a number of gene sets of fatty acid metabolism, insulin resistance, and oxidative stress were differentially expressed by OVX and reversed by genistein. This systemic approach of GSEA enables the identification of such consensus between the gene expression changes and phenotypic changes caused by OVX and genistein supplementation. Genistein treatment could help reduce insulin resistance through the amelioration of OVX-induced metabolic dysfunction, and the GSEA approach may be useful in proposing putative targets related to insulin resistance. PMID:23176795

  14. Implication for Functions of the Ectopic Adipocyte Copper Amine Oxidase (AOC3) from Purified Enzyme and Cell-Based Kinetic Studies

    PubMed Central

    Shen, Sam H.; Wertz, Diana L.; Klinman, Judith P.

    2012-01-01

    AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in vivo substrate(s) of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme's function. Expression of untagged, soluble human AOC3 in insect cells provides a relatively simple means of obtaining pure enzyme. Characterization of enzyme indicates a 6% titer for the active site 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor and corrected kcat values as high as 7 s−1. Substrate kinetic profiling shows that the enzyme accepts a variety of primary amines with different chemical features, including nonphysiological branched-chain and aliphatic amines, with measured kcat/Km values between 102 and 104 M−1 s−1. Km(O2) approximates the partial pressure of oxygen found in the interstitial space. Comparison of the properties of purified murine to human enzyme indicates kcat/Km values that are within 3 to 4-fold, with the exception of methylamine and aminoacetone that are ca. 10-fold more active with human AOC3. With drug development efforts investigating AOC3 as an anti-inflammatory target, these studies suggest that caution is called for when screening the efficacy of inhibitors designed against human enzymes in non-transgenic mouse models. Differentiated murine 3T3-L1 adipocytes show a uniform distribution of AOC3 on the cell surface and whole cell Km values that are reasonably close to values measured using purified enzymes. The latter studies support a relevance of the kinetic parameters measured with isolated AOC3 variants to adipocyte function. From our studies, a number of possible substrates with relatively high kcat/Km have been discovered, including dopamine and cysteamine, which may implicate a role for adipocyte AOC3 in insulin-signaling and fatty acid metabolism, respectively. Finally, the demonstrated AOC3 turnover of primary amines that are non-native to human tissue suggests possible roles for the

  15. Effects of glucocorticoids on human brown adipocytes.

    PubMed

    Barclay, Johanna L; Agada, Hadiya; Jang, Christina; Ward, Micheal; Wetzig, Neil; Ho, Ken K Y

    2015-02-01

    Clinical cases of glucocorticoid (GC) excess are characterized by increased fat mass and obesity through the accumulation of white adipocytes. The effects of GCs on growth and function of brown adipose tissue are unknown and may contribute to the negative energy balance observed clinically. This study aims to evaluate the effect of GCs on proliferation, differentiation, and metabolic function of brown adipocytes. Human brown adipocytes sourced from supraclavicular fat biopsies were grown in culture and differentiated to mature adipocytes. Human white adipocytes sourced from subcutaneous abdominal fat biopsies were cultured as controls. Effects of dexamethasone on growth, differentiation (UCP1, CIDEA, and PPARGC1A expression), and function (oxygen consumption rate (OCR)) of brown adipocytes were quantified. Dexamethasone (1 μM) significantly stimulated the proliferation of brown preadipocytes and reduced that of white preadipocytes. During differentiation, dexamethasone (at 0.1, 1, and 10 μM) stimulated the expression of UCP1, CIDEA, and PPARGC1A in a concentration-dependent manner and enhanced by fourfold to sixfold the OCR of brown adipocytes. Isoprenaline (100 nM) significantly increased (P<0.05) expression of UCP1 and OCR of brown adipocytes. These effects were significantly reduced (P<0.05) by dexamethasone. Thus, we show that dexamethasone stimulates the proliferation, differentiation, and function of human brown adipocytes but inhibits adrenergic stimulation of the functioning of brown adipocytes. We conclude that GCs exert complex effects on development and function of brown adipocytes. These findings provide strong evidence for an effect of GCs on the biology of human brown adipose tissue (BAT) and for the involvement of the BAT system in the metabolic manifestation of Cushing's syndrome. PMID:25385872

  16. Adipocyte (Pro)Renin-Receptor Deficiency Induces Lipodystrophy, Liver Steatosis and Increases Blood Pressure in Male Mice.

    PubMed

    Wu, Chia-Hua; Mohammadmoradi, Shayan; Thompson, Joel; Su, Wen; Gong, Ming; Nguyen, Genevieve; Yiannikouris, Frédérique

    2016-07-01

    Adipose tissue dysfunction related to obesity is overwhelmingly associated with increased risk of developing cardiovascular diseases. In the setting of obesity, (pro)renin receptor (PRR) is increased in adipose tissue of mice. We sought to determine the physiological consequences of adipocyte-PRR deficiency using adiponectin-Cre mice. We report a unique model of adipocyte-PRR-deficient mice (PRR(Adi/Y)) with almost no detectable white adipose tissues. As a consequence, the livers of PRR(Adi/Y) mice were enlarged and demonstrated a marked accumulation of lipids. Adipocyte-specific deficiency of PRR increased systolic blood pressure and the concentration of soluble PRR in plasma. To determine whether adipocyte-PRR was involved in the development of obesity-induced hypertension, mice were fed a low-fat or a high-fat diet for 16 weeks. Adipocyte-PRR-deficient mice were resistant to diet-induced obesity. Both high-fat- and low-fat-fed PRR(Adi/Y) mice had elevated insulin levels. Interestingly, adipocyte-PRR deficiency improved glucose tolerance in high-fat-fed PRR(Adi/Y) mice. In response to feeding either low-fat or high-fat diets, systolic blood pressure was greater in PRR(Adi/Y) mice than in control mice. High-fat feeding elevated soluble PRR concentration in control and PRR(Adi/Y) mice. In vitro knockdown of PRR by siRNA significantly decreased mRNA abundance of PPARγ (peroxisome proliferator-activated receptor gamma), suggesting an important role for PRR in adipogenesis. Our data indicate that adipocyte-PRR is involved in lipid homeostasis and glucose and insulin homeostasis, and that soluble PRR may be a predictor of metabolic disturbances and play a role in systolic blood pressure regulation. PMID:27185751

  17. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  18. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression

    PubMed Central

    Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang

    2015-01-01

    Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction. PMID:26596471

  19. Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue.

    PubMed

    Ma, Yuhang; Gao, Jing; Yin, Jiajing; Gu, Liping; Liu, Xing; Chen, Su; Huang, Qianfang; Lu, Huifang; Yang, Yuemin; Zhou, Hu; Wang, Yufan; Peng, Yongde

    2016-02-01

    Gestational diabetes mellitus (GDM) is considered as an early stage of type 2 diabetes mellitus. In this study, we compared demographic and clinical data between six GDM subjects and six normal glucose tolerance (NGT; healthy controls) subjects and found that homeostasis model of assessment for insulin resistance index (HOMA-IR) increased in GDM. Many previous studies demonstrated that omental adipose tissue dysfunction could induce insulin resistance. Thus, to investigate the cause of insulin resistance in GDM, we used label-free proteomics to identify differentially expressed proteins in omental adipose tissues from GDM and NGT subjects (data are available via ProteomeXchange with identifier PXD003095). A total of 3528 proteins were identified, including 66 significantly changed proteins. Adipocyte plasma membrane-associated protein (APMAP, a.k.a. C20orf3), one of the differentially expressed proteins, was down-regulated in GDM omental adipose tissues. Furthermore, mature 3T3-L1 adipocytes were used to simulate omental adipocytes. The inhibition of APMAP expression by RNAi impaired insulin signaling and activated NFκB signaling in these adipocytes. Our study revealed that the down-regulation of APMAP in omental adipose tissue may play an important role in insulin resistance in the pathophysiology of GDM. PMID:26767403

  20. Progeny from dedifferentiated adipocytes display protracted adipogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Progeny of adipofibroblast cells, derived from mature bovine adipocytes, were used to determine their ability to redifferentiate into lipid-assimilating adipocytes. Traditional cell biology methods were used, including the expression of adipogenic markers such as PPAR'. When exposed to medium supple...

  1. Adiporedoxin, an upstream regulator of ER oxidative folding and protein secretion in adipocytes

    PubMed Central

    Jedrychowski, Mark P.; Liu, Libin; Laflamme, Collette J.; Karastergiou, Kalypso; Meshulam, Tova; Ding, Shi-Ying; Wu, Yuanyuan; Lee, Mi-Jeong; Gygi, Steven P.; Fried, Susan K.; Pilch, Paul F.

    2015-01-01

    Objective Adipocytes are robust protein secretors, most notably of adipokines, hormone-like polypeptides, which act in an endocrine and paracrine fashion to affect numerous physiological processes such as energy balance and insulin sensitivity. To understand how such proteins are assembled for secretion we describe the function of a novel endoplasmic reticulum oxidoreductase, adiporedoxin (Adrx). Methods Adrx knockdown and overexpressing 3T3-L1 murine adipocyte cell lines and a knockout mouse model were used to assess the influence of Adrx on secreted proteins as well as the redox state of ER resident chaperones. The metabolic phenotypes of Adrx null mice were characterized and compared to WT mice. The correlation of Adrx levels BMI, adiponectin levels, and other inflammatory markers from adipose tissue of human subjects was also studied. Results Adiporedoxin functions via a CXXC active site, and is upstream of protein disulfide isomerase whose direct function is disulfide bond formation, and ultimately protein secretion. Over and under expression of Adrx in vitro enhances and reduces, respectively, the secretion of the disulfide-bonded proteins including adiponectin and collagen isoforms. On a chow diet, Adrx null mice have normal body weights, and glucose tolerance, are moderately hyperinsulinemic, have reduced levels of circulating adiponectin and are virtually free of adipocyte fibrosis resulting in a complex phenotype tending towards insulin resistance. Adrx protein levels in human adipose tissue correlate positively with adiponectin levels and negatively with the inflammatory marker phospho-Jun kinase. Conclusion These data support the notion that Adrx plays a critical role in adipocyte biology and in the regulation of mouse and human metabolism via its modulation of adipocyte protein secretion. PMID:26629401

  2. Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

    PubMed Central

    Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  3. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway.

    PubMed

    Park, Hyoung Joon; Yun, Jisoo; Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  4. Emerging Complexities in Adipocyte Origins and Identity.

    PubMed

    Sanchez-Gurmaches, Joan; Hung, Chien-Min; Guertin, David A

    2016-05-01

    The global incidence of obesity and its comorbidities continues to rise along with a demand for novel therapeutic interventions. Brown adipose tissue (BAT) is attracting attention as a therapeutic target because of its presence in adult humans and high capacity to dissipate energy as heat, and thus burn excess calories, when stimulated. Another potential avenue for therapeutic intervention is to induce, within white adipose tissue (WAT), the formation of brown-like adipocytes called brite (brown-like-in-white) or beige adipocytes. However, understanding how to harness the potential of these thermogenic cells requires a deep understanding of their developmental origins and regulation. Recent cell-labeling and lineage-tracing experiments are beginning to shed light on this emerging area of adipocyte biology. We review here adipocyte development, giving particular attention to thermogenic adipocytes. PMID:26874575

  5. Skin aging: are adipocytes the next target?

    PubMed Central

    Kruglikov, Ilja L.; Scherer, Philipp E.

    2016-01-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as “adipocyte-myofibroblast transition” (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging. PMID:27434510

  6. Mitochondria in White, Brown, and Beige Adipocytes

    PubMed Central

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  7. Skin aging: are adipocytes the next target?

    PubMed

    Kruglikov, Ilja L; Scherer, Philipp E

    2016-07-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as "adipocyte-myofibroblast transition" (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging. PMID:27434510

  8. De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific

    PubMed Central

    Majka, Susan M.; Fox, Keith E.; Psilas, John C.; Helm, Karen M.; Childs, Christine R.; Acosta, Alistaire S.; Janssen, Rachel C.; Friedman, Jacob E.; Woessner, Brian T.; Shade, Theodore R.; Varella-Garcia, Marileila; Klemm, Dwight J.

    2010-01-01

    It is generally assumed that white adipocytes arise from resident adipose tissue mesenchymal progenitor cells. We challenge this paradigm by defining a hematopoietic origin for both the de novo development of a subset of white adipocytes in adults and a previously uncharacterized adipose tissue resident mesenchymal progenitor population. Lineage and cytogenetic analysis revealed that bone marrow progenitor (BMP)-derived adipocytes and adipocyte progenitors arise from hematopoietic cells via the myeloid lineage in the absence of cell fusion. Global gene expression analysis indicated that the BMP-derived fat cells are bona fide adipocytes but differ from conventional white or brown adipocytes in decreased expression of genes involved in mitochondrial biogenesis and lipid oxidation, and increased inflammatory gene expression. The BMP-derived adipocytes accumulate with age, occur in higher numbers in visceral than in subcutaneous fat, and in female versus male mice. BMP-derived adipocytes may, therefore, account in part for adipose depot heterogeneity and detrimental changes in adipose metabolism and inflammation with aging and adiposity. PMID:20679227

  9. Differentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis

    PubMed Central

    Famulla, Susanne; Schlich, Raphaela; Sell, Henrike; Eckel, Jürgen

    2012-01-01

    Adipose tissue (AT) hypoxia occurs in obese humans and mice. Acute hypoxia in adipocytes causes dysregulation of adipokine secretion with an increase in inflammatory factors and diminished adiponectin release. O2 levels in humans range between 3 and 11% revealing that conventional in vitro culturing at ambient air and acute hypoxia treatment (1% O2) are performed under non-physiological conditions. In this study, we mimicked physiological conditions by differentiating human primary adipocytes under 10% or 5% O2 in comparison to 21% O2. Induction of differentiation markers was comparable between all three conditions. Adipokine release by adipocytes differentiated at lower oxygen levels was altered, with a marked upregulation of adiponectin, IL-6 and DPP4 secretion, and reduced leptin levels compared with adipocytes differentiated at 21% O2. Isoproterenol-induced lipolysis was significantly elevated in adipocytes differentiated at 10% and 5% compared with 21% O2. This effect was accompanied by increased protein expression of β-1 and -2 adrenergic receptor, HSL and perilipin. Conditioned medium (CM) of adipocytes differentiated at the three different conditions was generated for stimulation of human skeletal muscle cells (SkMC) or smooth muscle cells (SMC). CM-induced insulin resistance in SkMC was comparable for the different CMs. However, the SMC proliferative effect of CM from adipocytes differentiated at 10% O2 was significantly reduced compared with 21% O2. This study demonstrates that oxygen levels during adipogenesis are important factors altering adipocyte functionality such as adipokine release, in particular adiponectin secretion, as well as the hormone-induced lipolytic pathway. PMID:23700522

  10. Differentiation of Pre-Adipocytes in Modelled Microgravity

    NASA Astrophysics Data System (ADS)

    Coinu, R.; Postiglione, I.; Meloni, M. A.; Galleri, G.; Pippia, P.; Palumbo, G.

    2008-06-01

    It has been demonstrated that microgravity affects biological and biochemical functions of cells including: morphology, cytoskeleton and embryogenesis [1]; proliferation, reduction of DNA, protein synthesis and glucose transport [2]; signalling, reduction of EGF-dependant c-fos and c-jun expression [3]; gene expression, reduction of IL2 expression and release by activated T-cells [4]. Moreover it has be found that peroxisome proliferators activated receptor γ (PPARγ2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4, are highly expressed in response to modelled microgravity [5]. These findings prompted us to investigate the effects of microgravity on cellular differentiation rate using a well characterized model. Such model consists in murine pre-adipocyte cells (3T3-L1) properly stimulated with insulin, dexamethazone and isobuthylmethyl-xantine (DMI protocol). The adipogenic program is completed within a short time. The entire process requires coordinated and temporarily beated molecular events. Early events. Growth arrest at confluence; Clonal expansion (this process involves synchronous entry of cells into S phase of the cell cycle, leading to one or two rounds of mitosis); Early expression of C/EBPβ and C/EBPδ. Late events. Expression of PPARγ and C/EBPα Assumption of rounded morphology and accumulation of lipid droplets.

  11. miR-133a Regulates Adipocyte Browning In Vivo

    PubMed Central

    Shan, Tizhong; Yang, Xin; Yin, Hang; Wang, Yong-Xu; Liu, Ning; Rudnicki, Michael A.; Kuang, Shihuan

    2013-01-01

    Prdm16 determines the bidirectional fate switch of skeletal muscle/brown adipose tissue (BAT) and regulates the thermogenic gene program of subcutaneous white adipose tissue (SAT) in mice. Here we show that miR-133a, a microRNA that is expressed in both BAT and SATs, directly targets the 3′ UTR of Prdm16. The expression of miR-133a dramatically decreases along the commitment and differentiation of brown preadipocytes, accompanied by the upregulation of Prdm16. Overexpression of miR-133a in BAT and SAT cells significantly inhibits, and conversely inhibition of miR-133a upregulates, Prdm16 and brown adipogenesis. More importantly, double knockout of miR-133a1 and miR-133a2 in mice leads to elevations of the brown and thermogenic gene programs in SAT. Even 75% deletion of miR-133a (a1−/−a2+/−) genes results in browning of SAT, manifested by the appearance of numerous multilocular UCP1-expressing adipocytes within SAT. Additionally, compared to wildtype mice, miR-133a1−/−a2+/− mice exhibit increased insulin sensitivity and glucose tolerance, and activate the thermogenic gene program more robustly upon cold exposure. These results together elucidate a crucial role of miR-133a in the regulation of adipocyte browning in vivo. PMID:23874225

  12. Oral Insulin

    PubMed Central

    2010-01-01

    Oral insulin is an exciting area of research and development in the field of diabetology. This brief review covers the various approaches used in the development of oral insulin, and highlights some of the recent data related to novel oral insulin preparation. PMID:21059246

  13. Effects of antibodies to adipocytes on body weight, food intake, and adipose tissue cellularity in obese rats.

    PubMed

    Flint, D J

    1998-11-01

    Female Wistar rats were fed on a high fat diet for 18 weeks, during which their energy intake increased by 25% and body weight by 50% due to a doubling of adipose tissue tissue stores. Animals were then treated with increasing doses of a sheep polyclonal antiserum to rat adipocytes on days 1-4 and 7 after which they remained untreated for 14 weeks. Antibody treatment reduced body weight by 10% and the weight of parametrial and subcutaneous adipose tissue by 30-40%. This decrease was explicable entirely in terms of a decrease in the number of adipocytes presumably due to adipocyte lysis. These favourable changes in body fat mass were accompanied by improvement in at least one metabolic factor associated with obesity - serum leptin concentrations were significantly reduced in treated animals compared with high fat controls. Genetically obese Zucker rats also showed decreases in the number of adipocytes after treatment with antibodies but in contrast to diet-induced obese rats, they showed a compensatory increase in adipocyte volume which attenuated the effects on body fat mass. These results demonstrate for the first time, the potential to treat diet-induced obesity with antibodies to adipocytes by producing long-term reductions in the number of adipocytes, with minimal side-effects. PMID:9813180

  14. White-to-brown metabolic conversion of human adipocytes by JAK inhibition.

    PubMed

    Moisan, Annie; Lee, Youn-Kyoung; Zhang, Jitao David; Hudak, Carolyn S; Meyer, Claas A; Prummer, Michael; Zoffmann, Sannah; Truong, Hoa Hue; Ebeling, Martin; Kiialainen, Anna; Gérard, Régine; Xia, Fang; Schinzel, Robert T; Amrein, Kurt E; Cowan, Chad A

    2015-01-01

    The rising incidence of obesity and related disorders such as diabetes and heart disease has focused considerable attention on the discovery of new therapeutics. One promising approach has been to increase the number or activity of brown-like adipocytes in white adipose depots, as this has been shown to prevent diet-induced obesity and reduce the incidence and severity of type 2 diabetes. Thus, the conversion of fat-storing cells into metabolically active thermogenic cells has become an appealing therapeutic strategy to combat obesity. Here, we report a screening platform for the identification of small molecules capable of promoting a white-to-brown metabolic conversion in human adipocytes. We identified two inhibitors of Janus kinase (JAK) activity with no precedent in adipose tissue biology that stably confer brown-like metabolic activity to white adipocytes. Importantly, these metabolically converted adipocytes exhibit elevated UCP1 expression and increased mitochondrial activity. We further found that repression of interferon signalling and activation of hedgehog signalling in JAK-inactivated adipocytes contributes to the metabolic conversion observed in these cells. Our findings highlight a previously unknown role for the JAK-STAT pathway in the control of adipocyte function and establish a platform to identify compounds for the treatment of obesity. PMID:25487280

  15. White-to-brown metabolic conversion of human adipocytes by JAK inhibition

    PubMed Central

    Moisan, Annie; Lee, Youn-Kyoung; Zhang, Jitao David; Hudak, Carolyn S.; Meyer, Claas A.; Prummer, Michael; Zoffmann, Sannah; Truong, Hoa Hue; Ebeling, Martin; Kiialainen, Anna; Gérard, Régine; Xia, Fang; Schinzel, Robert T.; Amrein, Kurt E.; Cowan, Chad A.

    2014-01-01

    The rising incidence of obesity and related disorders such as diabetes and heart disease has focused considerable attention on the discovery of novel therapeutics. One promising approach has been to increase the number or activity of brown-like adipocytes in white adipose depots, as this has been shown to prevent diet-induced obesity and reduce the incidence and severity of type 2 diabetes. Thus, the conversion of fat-storing cells into metabolically active thermogenic cells has become an appealing therapeutic strategy to combat obesity. Here, we report a screening platform for the identification of small molecules capable of promoting a white-to-brown metabolic conversion in human adipocytes. We identified two inhibitors of Janus Kinase (JAK) activity with no precedent in adipose tissue biology that stably confer brown-like metabolic activity to white adipocytes. Importantly, these metabolically converted adipocytes exhibit elevated UCP1 expression and increased mitochondrial activity. We further found that repression of interferon signalling and activation of hedgehog signalling in JAK-inactivated adipocytes contributes to the metabolic conversion observed in these cells. Our findings highlight a novel role for the JAK/STAT pathway in the control of adipocyte function and establish a platform to identify compounds for the treatment of obesity. PMID:25487280

  16. Insulin use: preventable errors.

    PubMed

    2014-01-01

    Insulin is vital for patients with type 1 diabetes and useful for certain patients with type 2 diabetes. The serious consequences of insulin-related medication errors are overdose, resulting in severe hypoglycaemia, causing seizures, coma and even death; or underdose, resulting in hyperglycaemia and sometimes ketoacidosis. Errors associated with the preparation and administration of insulin are often reported, both outside and inside the hospital setting. These errors are preventable. By analysing reports from organisations devoted to medication error prevention and from poison control centres, as well as a few studies and detailed case reports of medication errors, various types of error associated with insulin use have been identified, especially in the hospital setting. Generally, patients know more about the practicalities of their insulin treatment than healthcare professionals with intermittent involvement. Medication errors involving insulin can occur at each step of the medication-use process: prescribing, data entry, preparation, dispensing and administration. When prescribing insulin, wrong-dose errors have been caused by the use of abbreviations, especially "U" instead of the word "units" (often resulting in a 10-fold overdose because the "U" is read as a zero), or by failing to write the drug's name correctly or in full. In electronic prescribing, the sheer number of insulin products is a source of confusion and, ultimately, wrong-dose errors, and often overdose. Prescribing, dispensing or administration software is rarely compatible with insulin prescriptions in which the dose is adjusted on the basis of the patient's subsequent capillary blood glucose readings, and can therefore generate errors. When preparing and dispensing insulin, a tuberculin syringe is sometimes used instead of an insulin syringe, leading to overdose. Other errors arise from confusion created by similar packaging, between different insulin products or between insulin and other

  17. Effect of inhibition of glutathione synthesis on insulin action: in vivo and in vitro studies using buthionine sulfoximine.

    PubMed Central

    Khamaisi, M; Kavel, O; Rosenstock, M; Porat, M; Yuli, M; Kaiser, N; Rudich, A

    2000-01-01

    Decreased cellular GSH content is a common finding in experimental and human diabetes, in which increased oxidative stress appears to occur. Oxidative stress has been suggested to play a causative role in the development of impaired insulin action on adipose tissue and skeletal muscle. In this study we undertook to investigate the potential of GSH depletion to induce insulin resistance, by utilizing the GSH synthesis inhibitor, L-buthionine-[S,R]-sulfoximine (BSO). GSH depletion (20-80% in various tissues), was achieved in vivo by treating rats for 20 days with BSO, and in vitro (80%) by treating 3T3-L1 adipocytes with BSO for 18 h. No demonstrable change in the GSH/GSSG ratio was observed following BSO treatment. GSH depletion was progressively associated with abnormal glucose tolerance test, which could not be attributed to impaired insulin secretion. Skeletal muscle insulin responsiveness was unaffected by GSH depletion, based on normal glucose response to exogenous insulin, 2-deoxyglucose uptake measurements in isolated soleus muscle, and on normal skeletal muscle expression of GLUT4 protein. Adipocyte insulin responsiveness in vitro was assessed in 3T3-L1 adipocytes, which displayed decreased insulin-stimulated tyrosine phosphorylation of insulin-receptor-substrate proteins and of the insulin receptor, but exaggerated protein kinase B phosphorylation. However, insulin-stimulated glucose uptake was unaffected by GSH depletion. In accordance, normal adipose tissue insulin sensitivity was observed in BSO-treated rats in vivo, as demonstrated by normal inhibition of circulating non-esterified fatty acid levels by endogenous insulin secretion. In conclusion, GSH depletion by BSO results in impaired glucose tolerance, but preserved adipocyte and skeletal muscle insulin responsiveness. This suggests that alternative oxidation-borne factors mediate the induction of peripheral insulin resistance by oxidative stress. PMID:10880357

  18. Oral Insulin and Buccal Insulin: A Critical Reappraisal

    PubMed Central

    Heinemann, Lutz; Jacques, Yves

    2009-01-01

    Despite the availability of modern insulin injection devices with needles that are so sharp and thin that practically no injection pain takes place, it is still the dream of patients with diabetes to, for example, swallow a tablet with insulin. This is not associated with any pain and would allow more discretion. Therefore, availability of oral insulin would not only ease insulin therapy, it would certainly increase compliance. However, despite numerous attempts to develop such a “tablet” in the past 85 years, still no oral insulin is commercially available. Buccal insulin is currently in the last stages of clinical development by one company and might become available in the United States and Europe in the coming years (it is already on the market in some other countries). The aim of this review is to critically describe the different approaches that are currently under development. Optimal coverage of prandial insulin requirements is the aim with both routes of insulin administration (at least with most approaches). The speed of onset of metabolic effect seen with some oral insulin approaches is rapid, but absorption appears to be lower when the tablet is taken immediately prior to a meal. With all approaches, considerable amounts of insulin have to be applied in order to induce therapeutically relevant increases in the metabolic effect because of the low relative biopotency of buccal insulin. Unfortunately, the number of publications about clinical–experimental and clinical studies is surprisingly low. In addition, there is no study published in which the variability of the metabolic effect induced (with and without a meal) was studied adequately. In summary, after the failure of inhaled insulin, oral insulin and buccal insulin are hot candidates to come to the market as the next alternative routes of insulin administration. PMID:20144297

  19. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization

    PubMed Central

    Sears, D. D.; Hsiao, G.; Hsiao, A.; Yu, J. G.; Courtney, C. H.; Ofrecio, J. M.; Chapman, J.; Subramaniam, S.

    2009-01-01

    Cellular and tissue defects associated with insulin resistance are coincident with transcriptional abnormalities and are improved after insulin sensitization with thiazolidinedione (TZD) PPARγ ligands. We characterized 72 human subjects by relating their clinical phenotypes with functional pathway alterations. We transcriptionally profiled 364 biopsies harvested before and after hyperinsulinemic-euglycemic clamp studies, at baseline and after 3-month TZD treatment. We have identified molecular and functional characteristics of insulin resistant subjects and distinctions between TZD treatment responder and nonresponder subjects. Insulin resistant subjects exhibited alterations in skeletal muscle (e.g., glycolytic flux and intramuscular adipocytes) and adipose tissue (e.g., mitochondrial metabolism and inflammation) that improved relative to TZD-induced insulin sensitization. Pre-TZD treatment expression of MLXIP in muscle and HLA-DRB1 in adipose tissue from insulin resistant subjects was linearly predictive of post-TZD insulin sensitization. We have uniquely characterized coordinated cellular and tissue functional pathways that are characteristic of insulin resistance, TZD-induced insulin sensitization, and potential TZD responsiveness. PMID:19841271

  20. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity. PMID:25798622

  1. Insulin degludec for diabetes mellitus.

    PubMed

    2013-07-01

    Over the last few years there has been a steady increase in the number of prescriptions dispensed in primary care for intermediate and long-acting insulin analogues and a reduction in prescriptions for biphasic isophane insulin. For example, in England, the volume of intermediate and long-acting insulin analogues in general practice has risen from approximately 650,000 prescriptions per quarter in 2007 to over 850,000 per quarter in 2012.(1) ▾Insulin degludec (Tresiba, Novo Nordisk) is a new long acting basal insulin analogue for the management of diabetes mellitus in adults.(2) Two strengths of insulin degludec (100 units/mL and 200 units/mL) were launched in the UK in February 2013. Here we discuss evidence for the effectiveness and safety of insulin degludec. PMID:23842634

  2. Modulation of activity of the adipocyte aquaglyceroporin channel by plant extracts.

    PubMed

    Cals-Grierson, M-M

    2007-02-01

    The plasma membrane protein, aquaglyceroporin-7 (AQP7) is exclusively expressed in adipocytes and appears to be a channel for glycerol entry and exit. It is possible that by facilitating the opening of these channels, the loss of intracellular glycerol could be encouraged and thus reduce the size of the lipid reservoir. Human preadipocytes and mouse 3T3-L1 preadipocytes were induced to develop an adipocytic phenotype by culture in a semi-defined medium. After 7 days, the expression of AQP7 message had increased by 37-fold, a level which could be further up-regulated by troglitazone or retinoic acid or down-regulated by insulin. The mature adipocytes also expressed immunoreactive aquaporin (AQP) channel protein as assessed by immunocytochemistry and Western blot. The addition of adrenaline to the culture medium stimulated the release of glycerol (blockable by HgCl(2)). Plant extracts, with potential anti-cellulite properties, were tested for their effect on glycerol elimination. These included wild yam root (Dioscorea opposita), cocoa bean (Theobroma cacao), horse chestnut tree (Aesculus hippocastanum) seed and bark and tomato (Solanum lycopersicum). Of these, D. opposita appeared to induce a dose-dependent glycerol release. The results show that our assay can help to identify modulators of AQP7 channel expression and activation in adipocytes. PMID:18489306

  3. Exercise-induced galanin release facilitated GLUT4 translocation in adipocytes of type 2 diabetic rats.

    PubMed

    Liang, Yan; Sheng, Shudong; Fang, Penghua; Ma, Yinping; Li, Jian; Shi, Qiaojia; Sui, Yumei; Shi, Mingyi

    2012-01-01

    Although galanin has been shown to increase insulin sensitivity in skeletal muscle of rats, there is no literature available about the effect of galanin on Glucose Transporter 4 (GLUT4) translocation from intracellular membrane pools to plasma membranes in adipocytes of type 2 diabetic rats. In the present study M35, a galanin antagonist was used to elucidate whether exercise-induced galanin release increased GLUT4 translocation in adipocytes of streptozotocin-induced diabetic rats. The present findings showed that plasma galanin levels after swimming training in all four trained groups were higher compared with each sedentary control. M35 treatment had an inhibitory effect on glucose infusion rates in the euglycemic-hyperinsulinemic clamp test and GLUT4 mRNA expression levels in adipocytes. Moreover, M35 treatment reduced GLUT4 concentration in both plasma membranes and total cell membranes. The ratios of GLUT4 contents in plasma membranes to total cell membranes in four drug groups were lower compared with each control. These data demonstrate a beneficial role of endogenous galanin to transfer GLUT4 from internal stores to plasma membranes in adipocytes of type 2 diabetic rats. Galanin plays a significant role in regulation of glucose metabolic homeostasis and is an important hormone relative to diabetes. PMID:22079346

  4. A novel thermoregulatory role for PDE10A in mouse and human adipocytes.

    PubMed

    Hankir, Mohammed K; Kranz, Mathias; Gnad, Thorsten; Weiner, Juliane; Wagner, Sally; Deuther-Conrad, Winnie; Bronisch, Felix; Steinhoff, Karen; Luthardt, Julia; Klöting, Nora; Hesse, Swen; Seibyl, John P; Sabri, Osama; Heiker, John T; Blüher, Matthias; Pfeifer, Alexander; Brust, Peter; Fenske, Wiebke K

    2016-01-01

    Phosphodiesterase type 10A (PDE10A) is highly enriched in striatum and is under evaluation as a drug target for several psychiatric/neurodegenerative diseases. Preclinical studies implicate PDE10A in the regulation of energy homeostasis, but the mechanisms remain unclear. By utilizing small-animal PET/MRI and the novel radioligand [(18)F]-AQ28A, we found marked levels of PDE10A in interscapular brown adipose tissue (BAT) of mice. Pharmacological inactivation of PDE10A with the highly selective inhibitor MP-10 recruited BAT and potentiated thermogenesis in vivo In diet-induced obese mice, chronic administration of MP-10 caused weight loss associated with increased energy expenditure, browning of white adipose tissue, and improved insulin sensitivity. Analysis of human PET data further revealed marked levels of PDE10A in the supraclavicular region where brown/beige adipocytes are clustered in adults. Finally, the inhibition of PDE10A with MP-10 stimulated thermogenic gene expression in human brown adipocytes and induced browning of human white adipocytes. Collectively, our findings highlight a novel thermoregulatory role for PDE10A in mouse and human adipocytes and promote PDE10A inhibitors as promising candidates for the treatment of obesity and diabetes. PMID:27247380

  5. Effects of adipocyte-secreted factors on decidualized endometrial cells: modulation of endometrial receptivity in vitro.

    PubMed

    Gamundi-Segura, Silvia; Serna, Jose; Oehninger, Sergio; Horcajadas, Jose A; Arbones-Mainar, Jose M

    2015-09-01

    Obesity is defined as an excessive accumulation of adipose tissue that may lead to health complications. Mounting evidence indicates that obesity has a negative impact on fertility. Yet, the link between adipose tissue biology and infertility remains unclear. We aimed to investigate the communication between the adipose tissue and the reproductive system and the importance of this cross talk for the development of a receptive endometrium. To that end, we generated an in vitro model with endometrial and adipocyte cell lines. Sexual hormones, progesterone and estradiol, were used to decidualize endometrial cells and sensitize adipocytes. Decidualization produced a simultaneous increase of adipokine receptors in endometrial cells paralleling changes in their receptivity status. Furthermore, sensitization of 3T3-L1 adipocytes increased mRNA levels of leptin and resistin and decreased the expression of adiponectin and chemerin levels. This was accompanied by increased isoproterenol-induced lipolysis and reduced insulin-stimulated glucose uptake. Lastly, conditioned culture medium of those sensitized adipocytes was used to feed endometrial cells. This treatment resulted in (i) upregulation of genes previously identified as positive regulators of endometrial receptivity, such as leukemia inhibitory factor and glutathione peroxidase 3, and (ii) downregulation of interleukin-15 and mucin1, both genes negatively related with endometrial receptivity. Our results indicate that the endocrine communication between adipose tissue and the reproductive system is bidirectional and stress the importance of the adipose tissue to modulate the reproductive fitness. PMID:25686566

  6. Hsp90 chaperones PPARγ and regulates differentiation and survival of 3T3-L1 adipocytes

    PubMed Central

    Nguyen, M T; Csermely, P; Sőti, C

    2013-01-01

    Adipose tissue dysregulation has a major role in various human diseases. The peroxisome proliferator-activated receptor-γ (PPARγ) is a key regulator of adipocyte differentiation and function, as well as a target of insulin-sensitizing drugs. The Hsp90 chaperone stabilizes a diverse set of signaling ‘client' proteins, thereby regulates various biological processes. Here we report a novel role for Hsp90 in controlling PPARγ stability and cellular differentiation. Specifically, we show that the Hsp90 inhibitors geldanamycin and novobiocin efficiently impede the differentiation of murine 3T3-L1 preadipocytes. Geldanamycin at higher concentrations also inhibits the survival of both developing and mature adipocytes, respectively. Further, Hsp90 inhibition disrupts an Hsp90-PPARγ complex, leads to the destabilization and proteasomal degradation of PPARγ, and inhibits the expression of PPARγ target genes, identifying PPARγ as an Hsp90 client. A similar destabilization of PPARγ and a halt of adipogenesis also occur in response to protein denaturing stresses caused by a single transient heat-shock or proteasome inhibition. Recovery from stress restores PPARγ stability and adipocyte differentiation. Thus, our findings reveal Hsp90 as a critical stress-responsive regulator of adipocyte biology and offer a potential therapeutic target in obesity and the metabolic syndrome. PMID:24096869

  7. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues

    PubMed Central

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.—Shan, T., Liu, W., Kuang, S. Fatty acid-binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. PMID:23047894

  8. A retrospective database analysis of insulin use patterns in insulin-naïve patients with type 2 diabetes initiating basal insulin or mixtures

    PubMed Central

    Bonafede, Machaon MK; Kalsekar, Anupama; Pawaskar, Manjiri; Ruiz, Kimberly M; Torres, Amelito M; Kelly, Karen R; Curkendall, Suellen M

    2010-01-01

    Objective: To describe insulin persistence among patients with type 2 diabetes initiating insulin therapy with basal insulin or insulin mixtures and determine factors associated with nonpersistence. Research design and methods: The Thomson Reuters MarketScan® databases were used to retrospectively analyze insulin-naïve patients with type 2 diabetes by initiating insulin therapy. Insulin use was described using a variety of measures. The persistence to insulin was described using both a gap-based measure and the number of claims measure. Results: Patients in the basal insulin cohort (N = 15,255) primarily used insulin analogs (88.1%) and vial and syringe (97%). Patients in the mixture cohort (N = 2,732) were more likely to initiate on human insulin mixtures (62.5%) and vial and syringe (68.1%). Average time between insulin refills was 80 and 71 days for basal and mixture initiators, respectively. Nearly, 75% of basal insulin initiators and 65% of insulin mixture initiators had a 90-day gap in insulin prescriptions. More than half of all the patients had at least one insulin prescription per quarter. Patients initiating with insulin analogs were more likely to be persistent compared with those initiating with human insulin across both cohorts and measures of persistence (P < 0.001). Conclusion: Persistence to insulin therapy is poorer than one would anticipate, but appears to be higher in users of insulin analogs and insulin mixtures. PMID:20622915

  9. Adipocyte Gene Expression Is Altered in Formerly Obese Mice and As a Function of Diet Composition123

    PubMed Central

    Miller, Ryan S.; Becker, Kevin G.; Prabhu, Vinayakumar; Cooke, David W.

    2009-01-01

    In the development of obesity, the source of excess energy may influence appetite and metabolism. To determine the effects of differences in diet composition in obesity, mice were fed either a high-carbohydrate diet (HC; 10% fat energy) or a high-fat energy–restricted diet (HFR; 60% fat energy) over 18 wk in weight-matched groups of mice. To identify obesity-associated genes with persistently altered expression following weight reduction, mice were fed either a standard low-fat diet (LF; 10% fat energy), an unrestricted high-fat diet (HF; 60% fat energy), or a HF diet followed by weight reduction (WR). Mice fed a HF diet had significantly greater gonadal fat mass and higher whole blood glucose concentrations than mice fed an HC diet. Of the mice fed a high-fat diet, total body weight and serum insulin concentrations were greater in HF than in HFR. Microarray analysis revealed that HF vs. HC feeding resulted in global differences in adipocyte gene expression patterns. Although we identified genes whose expression was altered in both moderately and severely obese mice, there were also a large number of genes with altered expression only in severe obesity. Formerly obese, WR mice did not differ significantly from lean controls in total body weight or physiological measures. However, microarray analysis revealed distinctly different patterns of adipocyte gene expression. Furthermore, there were 398 genes with altered expression in HF mice that persisted in WR mice. Genes with persistently altered expression following obesity may play a role in rebound weight gain following weight reduction. PMID:18492830

  10. Mesenteric Fat Lipolysis Mediates Obesity-Associated Hepatic Steatosis and Insulin Resistance.

    PubMed

    Wueest, Stephan; Item, Flurin; Lucchini, Fabrizio C; Challa, Tenagne D; Müller, Werner; Blüher, Matthias; Konrad, Daniel

    2016-01-01

    Hepatic steatosis and insulin resistance are among the most prevalent metabolic disorders and are tightly associated with obesity and type 2 diabetes. However, the underlying mechanisms linking obesity to hepatic lipid accumulation and insulin resistance are incompletely understood. Glycoprotein 130 (gp130) is the common signal transducer of all interleukin 6 (IL-6) cytokines. We provide evidence that gp130-mediated adipose tissue lipolysis promotes hepatic steatosis and insulin resistance. In obese mice, adipocyte-specific gp130 deletion reduced basal lipolysis and enhanced insulin's ability to suppress lipolysis from mesenteric but not epididymal adipocytes. Consistently, free fatty acid levels were reduced in portal but not in systemic circulation of obese knockout mice. Of note, adipocyte-specific gp130 knockout mice were protected from high-fat diet-induced hepatic steatosis as well as from insulin resistance. In humans, omental but not subcutaneous IL-6 mRNA expression correlated positively with liver lipid accumulation (r = 0.31, P < 0.05) and negatively with hyperinsulinemic-euglycemic clamp glucose infusion rate (r = -0.28, P < 0.05). The results show that IL-6 cytokine-induced lipolysis may be restricted to mesenteric white adipose tissue and that it contributes to hepatic insulin resistance and steatosis. Therefore, blocking IL-6 cytokine signaling in (mesenteric) adipocytes may be a novel approach to blunting detrimental fat-liver crosstalk in obesity. PMID:26384383

  11. [The polycystic ovary syndrome and insulin resistance].

    PubMed

    Kreze, A; Hrnciar, J; Dobáková, M; Pekarová, E

    1997-10-01

    The insulin resistance syndrome and the polycystic ovary syndrome (PCOS) appear to have some following coincidences: the existence of subclinical acanthosis nigricans in PCOS hyperinsulinemic women, correlation of insulin levels and free testosterone, insulin-like growth factor I binding protein (IGFIBP), and sex-hormone binding globulin. Insulin and IGFI act synergically with luteinizing hormone increasing the activity of cytochrome P450c17 and its enzymatic activity in the adrenals. The decrease in IGFI level and IGFI receptors in the ovarian granulosa cells reduce the steroids aromatisation. The increased expression of IGFI receptors in the theca cells favours the androgens' synthesis. Long-term insulin therapy results in an increase in ovary volume and the blood androgens levels. The deterioration of insulin resistance in PSOC women progresses also by the reduction of type I of skeletal muscle fibres which are sensitive to insulin, and the increase of type II fibres which are resistant to insulin in hyperandrogenemia. Testosterone deteriorates the skeletal as well as hepatic insulin sensitivity by both its facilitating effect on lipolysis and the increase of free fatty acids. Abdominal obesity seen in PCOS and insulin resistance is composed by adipocytes with glucocorticoid receptors, which after cortisol stimulation activate the lipoprotein lipase and fat accumulation. Gynoid obesity with the preferential aromatisation of steroids is not evolved because of the low estrogens and progesterone levels in PCOS. Low progesterone levels (with anticortisol effect) support the development of abdominal obesity. Ultimately, the early peak of insulin secretion (4-8 min) in PCOS is higher. This fact should testify a certain diabetic disposition. (Ref. 37.) PMID:9490171

  12. Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype.

    PubMed

    Kohlstedt, Karin; Trouvain, Caroline; Namgaladze, Dmitry; Fleming, Ingrid

    2011-03-01

    Human monocytes/macrophages express the angiotensin-converting enzyme (ACE) but nothing is known about its role under physiological conditions. As adipose tissue contains resident macrophages that have been implicated in the generation of insulin resistance in expanding fat mass, we determined whether adipocytes release factors that affect ACE expression and function in monocytes. Incubation of human monocyte-derived macrophages with conditioned medium from freshly isolated human adipocytes (BMI = 25.4 ± 0.96) resulted in a 4-fold increase in ACE expression. The effect was insensitive to denaturation and different proteases but abolished after lipid extraction. mRNA levels of the major histocompatibility complex class II protein increased in parallel with ACE, whereas the expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and cyclooxygenase-2 decreased. As a consequence of the reduction in MCP-1, monocyte recruitment was also attenuated. Moreover, adipocyte-conditioned medium prevented the interferon (IFN)-γ induced formation of TNF-α, IL-6, and MCP-1, all markers of classically-activated (M1 type) macrophages. The decrease in cytokine expression in adipocyte-conditioned medium-treated macrophages was sensitive to ACE silencing by small interfering RNA (siRNA). Accordingly, ACE overexpression in THP-1 cells mimicked the effect of adipocyte-conditioned medium. In both cell types, ACE inhibition failed to affect the changes induced by adipocyte conditioned-medium treatment and ACE overexpression. Thus, the modulation of macrophage polarization by ACE appears to be mediated independently of enzyme activity, probably via intracellular signaling. Interestingly, human macrophage ACE expression was also upregulated by IL-4 and IL-13, which promote the "alternative" activation of macrophages and decreased by LPS and IFN-γ. Mechanistically, adipocyte-conditioned medium stimulated the phosphorylation of

  13. Adipocyte and leptin accumulation in tumor-induced thymic involution.

    PubMed

    Lamas, Alejandro; Lopez, Elena; Carrio, Roberto; Lopez, Diana M

    2016-01-01

    Cell-mediated immunity is an important defense mechanism against pathogens and developing tumor cells. The thymus is the main lymphoid organ involved in the formation of the cell-mediated immune response by the maturation and differentiation of lymphocytes that travel from the bone marrow, through the lymphatic ducts, to become T lymphocytes. Thymic involution has been associated with aging; however, other factors such as obesity, viral infection and tumor development have been shown to increase the rate of shrinkage of this organ. The heavy infiltration of adipocyte fat cells has been reported in the involuted thymuses of aged mice. In the present study, the possible accumulation of such cells in the thymus during tumorigenesis was examined by immunohistochemistry. A significant number of adipocytes around and infiltrating the thymuses of tumor-bearing mice was observed. Leptin is a pro-inflammatory adipocytokine that enhances thymopoiesis and modulates T cell immune responses. The levels of leptin and adiponectin, another adipocytokine that has anti-inflammatory properties, were examined by western blot analysis. While no changes were observed in the amounts of adiponectin present in the thymuses of the normal and tumor-bearing mice, significantly higher levels of leptin were detected in the thymocytes of the tumor-bearing mice. This correlated with an increase in the expression of certain cytokines, such as interleukin (IL)-2, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF). The co-culture of thymocytes isolated from normal mice with ex vivo isolated adipocytes from tumor-bearing mice yielded similar results. Our findings suggest that the infiltration and accumulation of adipocytes in the thymuses of tumor-bearing mice play an important role in their altered morphology and functions. PMID:26530443

  14. Human obesity and insulin resistance: lessons from experiments of nature.

    PubMed

    O'Rahilly, Stephen

    2007-01-01

    The past decade or so has seen the adipocyte catapulted from a position of relative obscurity onto the centre stage of biomedical science. Having long been viewed largely as a passive storage depot for energy in times of plenty and a fuel reservoir called upon in times of need, the discovery that the adipocyte is an active participant in the control mechanisms for both energy balance and intermediary metabolism represents one of the most stunning paradigm shifts in modern mammalian biology. The normal control of energy homeostasis is now known to be highly dependent on the adipocyte-secreted hormone, leptin. Defects in the leptin signalling pathway, both inherited and acquired, are now known to contribute to the important clinical problem of obesity. Dysfunction of adipocytes, in both obesity and lipodystrophies, is now considered to be critically involved in the pathogenesis of insulin resistance, the metabolic syndrome and type 2 diabetes. The range of metabolites, steroids and bioactive peptides now known to be actively produced by adipocytes and influencing organs as diverse as brain, muscle, liver and pancreatic islet has increased dramatically. Our understanding of how these are co-ordinated to regulate normal metabolism and are dysregulated in metabolic disease is still in its infancy. However what is clear is that the adipocyte, until recently the 'Cinderella Cell' of metabolism, has rapidly become the 'Belle of the Ball'. PMID:18269171

  15. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes.

    PubMed

    Lu, Juu-Chin; Chang, Yu-Tzu; Wang, Chih-Tien; Lin, Yu-Chun; Lin, Chun-Ken; Wu, Zhong-Sheng

    2013-01-01

    In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects

  16. Effects of alpha-lipoic acid on chemerin secretion in 3T3-L1 and human adipocytes.

    PubMed

    Prieto-Hontoria, Pedro L; Pérez-Matute, Patricia; Fernández-Galilea, Marta; López-Yoldi, Miguel; Sinal, Christopher J; Martínez, J Alfredo; Moreno-Aliaga, María J

    2016-03-01

    Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA. PMID:26721419

  17. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    SciTech Connect

    Chen, Neal X.; O’Neill, Kalisha; Akl, Nader Kassis; Moe, Sharon M.

    2014-06-20

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  18. Variability of NPH Insulin Preparations

    PubMed Central

    Belmonte, M. M.; Colle, E.; deBelle, R.; Murthy, D. Y. N.

    1971-01-01

    In 1968-69 certain juvenile diabetics receiving NPH insulin began having pre-breakfast glucosuria and mid-morning hypoglycemic reactions. A mail survey of our clinic population and a study done at the Quebec camp for diabetic children in 1969 revealed that certain lot numbers were associated with poor control and that a change to new lot numbers or alternate insulin preparations resulted in better control. “Suspect” insulin preparations and non-suspect insulins were given to newly diagnosed diabetics, and plasma insulin and glucose levels were measured over a 24-hour period. The data confirmed that the “suspect” insulins were causing early hypoglycemia and failing to control hyperglycemia during the latter hours of the 24-hour period. The lower glucose levels were associated with higher plasma insulin levels. The “suspect” insulins were further found to have elevated levels of free insulin in the supernatant fluid. The requirements for quality control of modified insulin preparations are reviewed and suggestions are offered for their improvement. PMID:5539004

  19. Resveratrol protects against polychlorinated biphenyl-mediated impairment of glucose homeostasis in adipocytes.

    PubMed

    Baker, Nicki A; English, Victoria; Sunkara, Manjula; Morris, Andrew J; Pearson, Kevin J; Cassis, Lisa A

    2013-12-01

    Resveratrol (RSV) is a plant polyphenol that exhibits several favorable effects on glucose homeostasis in adipocytes. Recent studies from our laboratory demonstrated that coplanar polychlorinated biphenyls (PCBs) that are ligands of the aryl hydrocarbon receptor impair glucose homeostasis in mice. PCB-induced impairment of glucose homeostasis was associated with augmented expression of inflammatory cytokines in adipose tissue, a site for accumulation of lipophilic PCBs. This study determined if RSV protects against PCB-77 induced impairment of glucose disposal in vitro and in vivo and if these beneficial effects are associated with enhanced nuclear factor erythoid 2-related factor 2 (Nrf2) signaling in adipose tissue. PCB-77 increased oxidative stress and abolished insulin stimulated 2-deoxy-d-glucose uptake in 3 T3-L1 adipocytes. These effects were restored by RSV, which resulted in a concentration-dependent increase in NAD(P)H:quinone oxidoreductase 1 (NQO1), the downstream target of Nrf2 signaling. We quantified glucose and insulin tolerance and components of Nrf2 and insulin signaling cascades in adipose tissue of male C57BL/6 mice administered vehicle or PCB-77 (50 mg/kg) and fed a diet with or without resVida (0.1%, or 160 mg/kg per day). PCB-77 impaired glucose and insulin tolerance, and these effects were reversed by RSV. PCB-77 induced reductions in insulin signaling in adipose tissue were also abolished by RSV, which increased NQO1 expression. These results demonstrate that coplanar PCB-induced impairment of glucose homeostasis in mice can be prevented by RSV, potentially through stimulation of Nrf2 signaling and enhanced insulin stimulated glucose disposal in adipose tissue. PMID:24231106

  20. Resveratrol protects against polychlorinated biphenyl-mediated impairment of glucose homeostasis in adipocytes

    PubMed Central

    Baker, Nicki A.; English, Victoria; Sunkara, Manjula; Morris, Andrew J.; Pearson, Kevin J.; Cassis, Lisa A.

    2014-01-01

    Resveratrol (RSV) is a plant polyphenol that exhibits several favorable effects on glucose homeostasis in adipocytes. Recent studies from our laboratory demonstrated that coplanar polychlorinated biphenyls (PCBs) that are ligands of the aryl hydrocarbon receptor (AhR) impair glucose homeostasis in mice. PCB-induced impairment of glucose homeostasis was associated with augmented expression of inflammatory cytokines in adipose tissue, a site for accumulation of lipophilic PCBs. This study determined if RSV protects against PCB-77 induced impairment of glucose disposal in vitro and in vivo, and if these beneficial effects are associated with enhanced nuclear factor erythoid 2-related factor 2 (Nrf2) signaling in adipose tissue. PCB-77 increased oxidative stress and abolished insulin stimulated 2-deoxy-D-glucose (2DG) uptake in 3T3-L1 adipocytes. These effects were restored by RSV, which resulted in a concentration-dependent increase in NAD(P)H:quinone oxidoreductase 1 (NQO1), the downstream target of Nrf2 signaling. We quantified glucose and insulin tolerance and components of Nrf2 and insulin signaling cascades in adipose tissue of male C57BL/6 mice administered vehicle or PCB-77 (50 mg/kg) and fed a diet with or without resVida® (0.1%, or 160 mg/kg/day). PCB-77 impaired glucose and insulin tolerance, and these effects were reversed by RSV. PCB-77 induced reductions in insulin signaling in adipose tissue were also abolished by RSV, which increased NQO1 expression. These results demonstrate that coplanar PCB-induced impairment of glucose homeostasis in mice can be prevented by RSV, potentially through stimulation of Nrf2 signaling and enhanced insulin stimulated glucose disposal in adipose tissue. PMID:24231106

  1. Mechanisms Linking Inflammation to Insulin Resistance

    PubMed Central

    Chen, Li; Wang, Hua

    2015-01-01

    Obesity is now widespread around the world. Obesity-associated chronic low-grade inflammation is responsible for the decrease of insulin sensitivity, which makes obesity a major risk factor for insulin resistance and related diseases such as type 2 diabetes mellitus and metabolic syndromes. The state of low-grade inflammation is caused by overnutrition which leads to lipid accumulation in adipocytes. Obesity might increase the expression of some inflammatory cytokines and activate several signaling pathways, both of which are involved in the pathogenesis of insulin resistance by interfering with insulin signaling and action. It has been suggested that specific factors and signaling pathways are often correlated with each other; therefore, both of the fluctuation of cytokines and the status of relevant signaling pathways should be considered during studies analyzing inflammation-related insulin resistance. In this paper, we discuss how these factors and signaling pathways contribute to insulin resistance and the therapeutic promise targeting inflammation in insulin resistance based on the latest experimental studies. PMID:26136779

  2. Mechanisms Linking Inflammation to Insulin Resistance.

    PubMed

    Chen, Li; Chen, Rui; Wang, Hua; Liang, Fengxia

    2015-01-01

    Obesity is now widespread around the world. Obesity-associated chronic low-grade inflammation is responsible for the decrease of insulin sensitivity, which makes obesity a major risk factor for insulin resistance and related diseases such as type 2 diabetes mellitus and metabolic syndromes. The state of low-grade inflammation is caused by overnutrition which leads to lipid accumulation in adipocytes. Obesity might increase the expression of some inflammatory cytokines and activate several signaling pathways, both of which are involved in the pathogenesis of insulin resistance by interfering with insulin signaling and action. It has been suggested that specific factors and signaling pathways are often correlated with each other; therefore, both of the fluctuation of cytokines and the status of relevant signaling pathways should be considered during studies analyzing inflammation-related insulin resistance. In this paper, we discuss how these factors and signaling pathways contribute to insulin resistance and the therapeutic promise targeting inflammation in insulin resistance based on the latest experimental studies. PMID:26136779

  3. The origin of lipofuscin in brown adipocytes of hyperinsulinaemic rats: the role of lipid peroxidation and iron.

    PubMed

    Markelic, Milica; Velickovic, Ksenija; Golic, Igor; Klepal, Waltraud; Otasevic, Vesna; Stancic, Ana; Jankovic, Aleksandra; Vucetic, Milica; Buzadzic, Biljana; Korac, Bato; Korac, Aleksandra

    2013-04-01

    The aim of this study was to investigate lipofuscin origin in brown adipocytes of hyperinsulinaemic rats and the possible role of lipid peroxidation and iron in this process. Ultrastructural examination revealed hyperinsulinaemia-induced enhancement in the lipofuscin production, accompanied by an increase of mitochondrial damage in brown adipocytes. Extensive fusions of lipid droplets and mitochondria with lysosomes were also observed. Confocal microscopy showed lipofuscin autofluorescence emission in brown adipose tissue (BAT) after excitation at 488 nm and 633 nm, particularly in the insulin-treated groups. The presence and distribution of lipid peroxidation product, 4-hydroxy-2-nonenal (4-HNE), in brown adipocytes was assessed by immunohistochemical examination revealing its higher content after treatment with insulin. The iron content was quantified by electron dispersive X-ray analysis (EDX) showing its higher content in the hyperinsulinaemic groups. The ultrastucture of the majority of lipofuscin granules suggests their mitochondrial origin, which was additionally confirmed by their co-localization with ATP synthase. In conclusion, our results suggest that increased lipofuscinogenesis in the brown adipocytes of hyperinsulinaemic rats is a consequence of lipid peroxidation, mitochondrial damage and iron accumulation. PMID:23335278

  4. Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase.

    PubMed

    Urbanet, Riccardo; Nguyen Dinh Cat, Aurelie; Feraco, Alessandra; Venteclef, Nicolas; El Mogrhabi, Soumaya; Sierra-Ramos, Catalina; Alvarez de la Rosa, Diego; Adler, Gail K; Quilliot, Didier; Rossignol, Patrick; Fallo, Francesco; Touyz, Rhian M; Jaisser, Frédéric

    2015-07-01

    Metabolic syndrome is a major risk factor for the development of diabetes mellitus and cardiovascular diseases. Pharmacological antagonism of the mineralocorticoid receptor (MR), a ligand-activated transcription factor, limits metabolic syndrome in preclinical models, but mechanistic studies are lacking to delineate the role of MR activation in adipose tissue. In this study, we report that MR expression is increased in visceral adipose tissue in a preclinical mouse model of metabolic syndrome and in obese patients. In vivo conditional upregulation of MR in mouse adipocytes led to increased weight and fat mass, insulin resistance, and metabolic syndrome features without affecting blood pressure. We identified prostaglandin D2 synthase as a novel MR target gene in adipocytes and AT56, a specific inhibitor of prostaglandin D2 synthase enzymatic activity, blunted adipogenic aldosterone effects. Moreover, translational studies showed that expression of MR and prostaglandin D2 synthase is strongly correlated in adipose tissues from obese patients. PMID:25966493

  5. Glucocorticoid Paradoxically Recruits Adipose Progenitors and Impairs Lipid Homeostasis and Glucose Transport in Mature Adipocytes

    PubMed Central

    Ayala-Sumuano, Jorge-Tonatiuh; Velez-delValle, Cristina; Beltrán-Langarica, Alicia; Marsch-Moreno, Meytha; Hernandez-Mosqueira, Claudia; Kuri-Harcuch, Walid

    2013-01-01

    Chronic treatment with glucocorticoids increases the mass of adipose tissue and promotes metabolic syndrome. However little is known about the molecular effects of dexamethasone on adipose biology. Here, we demonstrated that dexamethasone induces progenitor cells to undergo adipogenesis. In the adipogenic pathway, at least two cell types are found: cells with the susceptibility to undergo staurosporine-induced adipose conversion and cells that require both staurosporine and dexamethasone to undergo adipogenesis. Dexamethasone increased and accelerated the expression of main adipogenic genes such as pparg2, cebpa and srebf1c. Also, dexamethasone altered the phosphorylation pattern of C/EBPβ, which is an important transcription factor during adipogenesis. Dexamethasone also had effect on mature adipocytes mature adipocytes causing the downregulation of some lipogenic genes, promoted a lipolysis state, and decreased the uptake of glucose. These paradoxical effects appear to explain the complexity of the action of glucocorticoids, which involves the hyperplasia of adipose cells and insulin resistance. PMID:23999235

  6. Dissociation of in vitro sensitivities of glucose transport and antilipolysis to insulin in NIDDM

    SciTech Connect

    Yki-Jaervinen, H.; Kubo, K.; Zawadzki, J.; Lillioja, S.; Young, A.; Abbott, W.; Foley, J.E.

    1987-09-01

    It is unclear from previous studies whether qualitative or only quantitative differences exist in insulin action in adipocytes obtained from obese subjects with non-insulin-dependent diabetes mellitus (NIDDM) when compared with equally obese nondiabetic subjects. In addition, the role of changes in insulin binding as a cause of insulin resistance in NIDDM is still controversial. The authors compared the sensitivities of (/sup 14/C)-glucose transport and antilipolysis to insulin and measured (/sup 125/I)-insulin binding in abdominal adipocytes obtained from 45 obese nondiabetic, obese diabetic, and 15 nonobese female southwestern American Indians. Compared with the nonobese group, the sensitivities of glucose transport antilipolysis were reduced in both the obese nondiabetic and obese diabetic groups. Compared with the obese nondiabetic subjects, the ED/sub 50/ for stimulation of glucose transport was higher in the obese patients with NIDDM. In contrast, the ED/sub 50/S for antilipolysis were similar in obese diabetic patients and obese nondiabetic subjects. No differences was found in insulin binding in patients with NIDDM when compared with the equally obese nondiabetic subjects. These data indicate 1) the mechanism of insulin resistance differs in NIDDM and obesity, and 2) the selective loss of insulin sensitivity in NIDDM precludes changes in insulin binding as a cause of insulin resistance in this disorder.

  7. Hibiscus sabdariffa L. water extract inhibits the adipocyte differentiation through the PI3-K and MAPK pathway.

    PubMed

    Kim, Jin-Kyung; So, Hongseob; Youn, Myung-Ja; Kim, Hyung-Jin; Kim, Yunha; Park, Channy; Kim, Se-Jin; Ha, Young-Ae; Chai, Kyu-Yun; Kim, Shin-Moo; Kim, Ki-Young; Park, Raekil

    2007-11-01

    Hibiscus sabdariffa L., a tropical beverage material and medical herb, is used commonly as in folk medicines against hypertension, pyrexia, inflammation, liver disorders, and obesity. This report was designed to investigate the inhibitory mechanisms of hibiscus extract on adipocyte differentiation in 3T3-L1 preadipocytes. The possible inhibitory pathways that regulate the adipocyte differentiation contain the adipogenic transcription factors, C/EBPalpha and PPARgamma, PI3-kinase, and MAPK pathway. In this study, we examined whether hibiscus extract affected the adipogenesis via these three pathways. To differentiate preadipocyte in adipocyte, confluent 3T3-L1 preadipocytes were treated with the hormone mixture including isobutylmethylxanthine, dexamethasone, and insulin (MDI). Hibiscus extract inhibited significantly the lipid droplet accumulation by MDI in a dose-dependent manner and attenuated dramatically the protein and mRNA expressions of adipogenic transcriptional factors, C/EBPalpha and PPARgamma, during adipogenesis. The increase of phosphorylation and expression of PI3-K/Akt during adipocytic differentiation was markedly inhibited by treatment with hibiscus extract or PI3-K inhibitors. Furthermore, the phosphorylation and expression of MEK-1/ERK known to regulate the early phase of adipogenesis were clearly decreased with the addition of hibiscus extract. Taken together, this report suggests that hibiscus extract inhibits the adipocyte differentiation through the modulation of PI3-K/Akt and ERK pathway that play pivotal roles during adipogenesis. PMID:17904778

  8. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Watanabe, Akio; Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  9. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    SciTech Connect

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  10. Myocardial Fat Accumulation Is Independent of Measures of Insulin Sensitivity

    PubMed Central

    Noureldin, Radwa; Ouwerkerk, Ronald; Liu, Elizabeth Y.; Madan, Ritu; Abel, Brent S.; Mullins, Katherine; Walter, Mary F.; Skarulis, Monica C.; Gharib, Ahmed M.

    2015-01-01

    Background: Myocardial steatosis, an independent predictor of diastolic dysfunction, is frequently present in type 2 diabetes mellitus. High free fatty acid flux, hyperglycemia, and hyperinsulinemia may play a role in myocardial steatosis. There are no prior studies examining the relationship between insulin sensitivity (antilipolytic and glucose disposal actions of insulin) and cardiac steatosis. Objective: Using a cross-sectional study design of individuals with and without metabolic syndrome (MetSyn), we examined the relationships between cardiac steatosis and the sensitivity of the antilipolytic and glucose disposal actions of insulin. Methods: Pericardial fat (PF) volume, intramyocardial and hepatic fat (MF and HF) content, visceral fat (VF) and sc fat content were assessed by magnetic resonance imaging in 77 subjects (49 without MetSyn and 28 with MetSyn). In a subset of the larger cohort (n = 52), peripheral insulin sensitivity index (SI) and adipocyte insulin sensitivity (Adipo-SI) were determined from an insulin-modified frequently sampled iv glucose tolerance test. The Quantitative Insulin Sensitivity Check Index was used as a surrogate for hepatic insulin sensitivity. Results: Individuals with the MetSyn had significantly higher body mass index, total body fat, and MF, PF, HF, and VF content. HF and VF, but not MF, were negatively correlated with the Quantitative Insulin Sensitivity Check Index, Adipo-SI, and SI. Stepwise regression revealed that waist circumference and serum triglyceride levels independently predicted MF and PF, respectively. Adipo-SI and serum triglyceride levels independently predict HF. Conclusion: Myocardial steatosis is unrelated to hepatic, adipocyte, or peripheral insulin sensitivity. Although it is frequently observed in insulin-resistant subjects, further studies are necessary to identify and delineate pathogenic mechanisms that differentially affect cardiac and hepatic steatosis. PMID:26020762

  11. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway

    PubMed Central

    Nepali, Sarmila; Son, Ji-Seon; Poudel, Barun; Lee, Ji-Hyun; Lee, Young-Mi; Kim, Dae-Ki

    2015-01-01

    Background: Inflammation of adipocytes has been a therapeutic target for treatment of obesity and metabolic disorders which cause insulin resistance and hence lead to type II diabetes. Luteolin is a bioflavonoid with many beneficial properties such as antioxidant, antiproliferative, and anti-cancer. Objectives: To elucidate the potential anti-inflammatory response and the underlying mechanism of luteolin in 3T3-L1 adipocytes. Materials and Methods: We stimulated 3T3-L1 adipocytes with the mixture of tumor necrosis factor-α, lipopolysaccharide, and interferon-γ (TLI) in the presence or absence of luteolin. We performed Griess’ method for nitric oxide (NO) production and measure mRNA and protein expressions by real-time polymerase chain reaction and western blotting, respectively. Results: Luteolin opposed the stimulation of inducible nitric oxide synthase and NO production by simultaneous treatment of adipocytes with TLI. Furthermore, it reduced the pro-inflammatory genes such as cyclooxygenase-2, interleukin-6, resistin, and monocyte chemoattractant protein-1. Furthermore, luteolin improved the insulin sensitivity by enhancing the expression of insulin receptor substrates (IRS1/2) and glucose transporter-4 via phosphatidylinositol-3K signaling pathway. This inhibition was associated with suppression of Iκ-B-α degradation and subsequent inhibition of nuclear factor-κB (NF-κB) p65 translocation to the nucleus. In addition, luteolin blocked the phosphorylation of ERK1/2, c-Jun N-terminal Kinases and also p38 mitogen-activated protein kinases (MAPKs). Conclusions: These results illustrate that luteolin attenuates inflammatory responses in the adipocytes through suppression of NF-κB and MAPKs activation, and also improves insulin sensitivity in 3T3-L1 cells, suggesting that luteolin may represent a therapeutic agent to prevent obesity-associated inflammation and insulin resistance. PMID:26246742

  12. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes

    PubMed Central

    Crown, Scott B.; Marze, Nicholas; Antoniewicz, Maciek R.

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA. PMID:26710334

  13. Computer image analysis of intramuscular adipocytes and marbling in the longissimus muscle of cattle.

    PubMed

    Yang, X J; Albrecht, E; Ender, K; Zhao, R Q; Wegner, J

    2006-12-01

    The deposition of fat in muscle, recognized by the consumer as marbling, is an important meat quality trait. The objective of the study was to provide additional insights into the quantitative extent of marbling by means of computer image analysis. Fifty-one F(2) generation German Holstein and Charolais crossbreed cattle, 18 mo of age, were used to determine relationships among marbling traits, adipocyte size, and the amount of adipose tissue in different depots. Differences were recorded among the size of i.m. adipocytes in different groups of marbling flecks, divided according to the location in the muscle cross-section and to the size of the marbling flecks. The results showed positive correlation between i.m. adipocyte size and the weight of s.c. fat, intestinal fat, omental fat, and perirenal fat (r = 0.50, 0.61, 0.70, and 0.63, respectively, P < 0.001). The i.m. adipocyte size was correlated with i.m. fat content, number of marbling flecks, proportion of marbling fleck area, and total length of marbling flecks (r = 0.71, 0.44, 0.62, and 0.55, respectively, P < 0.01). The number of marbling flecks was also correlated with i.m. fat content, proportion of marbling fleck area, and total length of marbling flecks (r = 0.58, 0.62, and 0.91, P < 0.01, respectively). The ventral marbling flecks had a 5-fold larger fleck area, 4-fold more adipocytes, and larger adipocytes (P < 0.001). Larger marbling flecks contained larger adipocytes (P < 0.001). Moreover, compared with the small marbling flecks, there was a 48-fold larger fleck area and 26-fold more adipocytes in the large marbling flecks. The results indicate that i.m. fat deposition increases concurrently with the other fat depots but is still independent. Furthermore, the i.m. fat is preferentially deposited in the ventral area of LM. Although the i.m. adipocyte size has an important effect on the traits of marbling flecks, cell number plays a greater role in i.m. fat deposition than cell size. PMID:17093217

  14. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  15. Alpha-tocopheryl-phosphate regulation of gene expression in pre-adipocytes and adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A correct function of adipocytes in connection with cellular fatty acid loading and release is a vital aspect of energy homeostasis; dysregulation of these reactions can result in obesity and type 2 diabetes mellitus. In addition, adipocytes have been proposed to play a major role in preventing lipo...

  16. On the control of lipolysis in adipocytes.

    PubMed

    Londos, C; Brasaemle, D L; Schultz, C J; Adler-Wailes, D C; Levin, D M; Kimmel, A R; Rondinone, C M

    1999-11-18

    The lipolytic reaction in adipocytes is one of the most important reactions in the management of bodily energy reserves, and dysregulation of this reaction may contribute to the symptoms of Type 2 diabetes mellitus. Yet, progress on resolving the molecular details of this reaction has been relatively slow. However, recent developments at the molecular level begin to paint a clearer picture of lipolysis and point to a number of unanswered questions. While HSL has long been known to be the rate-limiting enzyme of lipolysis, the mechanism by which HSL attacks the droplet lipids is not yet firmly established. Certainly, the immunocytochemical evidence showing the movement of HSL to the lipid droplet upon stimulation leaves little doubt that this translocation is a key aspect of the lipolytic reaction, but whether or not HSL phosphorylation contributes to the translocation, and at which site(s), is as yet unresolved. It will be important to establish whether there is an activation step in addition to the translocation reaction. The participation of perilipin A is indicated by the findings that this protein can protect neutral lipids within droplets from hydrolysis, but active participation in the lipolytic reaction is yet to be proved. Again, it will be important to determine whether mutations of serine residues of PKA phosphorylation sites of perilipins prevent lipolysis, and whether such modifications abolish the physical changes in the droplet surfaces that accompany lipolysis. PMID:10842661

  17. Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics

    PubMed Central

    Hahn, Wendy S.; Kuzmicic, Jovan; Burrill, Joel S.; Donoghue, Margaret A.; Foncea, Rocio; Jensen, Michael D.; Lavandero, Sergio; Arriaga, Edgar A.

    2014-01-01

    Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Macrophage infiltration of adipose tissue and the chronic low-grade production of inflammatory cytokines have been mechanistically linked to the development of insulin resistance, the forerunner of type 2 diabetes mellitus. In this study, we evaluated the chronic effects of TNFα, IL-6, and IL-1β on adipocyte mitochondrial metabolism and morphology using the 3T3-L1 model cell system. TNFα treatment of cultured adipocytes led to significant changes in mitochondrial bioenergetics, including increased proton leak, decreased ΔΨm, increased basal respiration, and decreased ATP turnover. In contrast, although IL-6 and IL-1β decreased maximal respiratory capacity, they had no effect on ΔΨm and varied effects on ATP turnover, proton leak, or basal respiration. Only TNFα treatment of 3T3-L1 cells led to an increase in oxidative stress (as measured by superoxide anion production and protein carbonylation) and C16 ceramide synthesis. Treatment of 3T3-L1 adipocytes with cytokines led to decreased mRNA expression of key transcription factors and control proteins implicated in mitochondrial biogenesis, including PGC-1α and eNOS as well as deceased expression of COX IV and Cyt C. Whereas each cytokine led to effects on expression of mitochondrial markers, TNFα exclusively led to mitochondrial fragmentation and decreased the total level of OPA1 while increasing OPA1 cleavage, without expression of levels of mitofusin 2, DRP-1, or mitofilin being affected. In summary, these results indicate that inflammatory cytokines have unique and specialized effects on adipocyte metabolism, but each leads to decreased mitochondrial function and a reprogramming of fat cell biology. PMID:24595304

  18. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    SciTech Connect

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  19. Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development.

    PubMed

    Daquinag, A C; Tseng, C; Salameh, A; Zhang, Y; Amaya-Manzanares, F; Dadbin, A; Florez, F; Xu, Y; Tong, Q; Kolonin, M G

    2015-02-01

    Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity. PMID:25342467

  20. Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development

    PubMed Central

    Daquinag, A C; Tseng, C; Salameh, A; Zhang, Y; Amaya-Manzanares, F; Dadbin, A; Florez, F; Xu, Y; Tong, Q; Kolonin, M G

    2015-01-01

    Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity. PMID:25342467

  1. Leucaena leucocephala Fruit Aqueous Extract Stimulates Adipogenesis, Lipolysis, and Glucose Uptake in Primary Rat Adipocytes

    PubMed Central

    Kuppusamy, Umah Rani; Azaman, Nooriza; Jen Wai, Chai

    2014-01-01

    Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro “insulin-like” activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties. PMID:25180205

  2. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo.

    PubMed

    Shu, Gang; Lu, Nai-Sheng; Zhu, Xiao-Tong; Xu, Yong; Du, Min-Qing; Xie, Qiu-Ping; Zhu, Can-Jun; Xu, Qi; Wang, Song-Bo; Wang, Li-Na; Gao, Ping; Xi, Qian-Yun; Zhang, Yong-Liang; Jiang, Qing-Yan

    2014-12-01

    Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demonstrated that phloretin enhanced the lipid accumulation in porcine primary adipocytes in a time-dependent manner. Furthermore, phloretin increased the utilization of glucose and nonesterified fatty acid, while it decreased the lactate output. Microarray analysis revealed that genes associated with peroxisome proliferator-activated receptor-γ (PPARγ), mitogen-activated protein kinase and insulin signaling pathways were altered in response to phloretin. We further confirmed that phloretin enhanced expression of PPARγ, CAAT enhancer binding protein-α (C/EBPα) and adipose-related genes, such as fatty acids translocase and fatty acid synthase. In addition, phloretin activated the Akt (Thr308) and extracellular signal-regulated kinase, and therefore, inactivated Akt targets protein. Wortmannin effectively blocked the effect of phloretin on Akt activity and the protein levels of PPARγ, C/EBPα and fatty acid binding protein-4 (FABP4/aP2). Oral administration of 5 or 10 mg/kg phloretin to C57BL BKS-DB mice significantly decreased the serum glucose level and improved glucose tolerance. In conclusion, phloretin promotes the adipogenesis of porcine primary preadipocytes through Akt-associated signaling pathway. These findings suggested that phloretin might be able to increase insulin sensitivity and alleviate the metabolic diseases. PMID:25283330

  3. The Glucose Sensor ChREBP Links De Novo Lipogenesis to PPARγ Activity and Adipocyte Differentiation.

    PubMed

    Witte, Nicole; Muenzner, Matthias; Rietscher, Janita; Knauer, Miriam; Heidenreich, Steffi; Nuotio-Antar, Alli M; Graef, Franziska A; Fedders, Ronja; Tolkachov, Alexander; Goehring, Isabel; Schupp, Michael

    2015-11-01

    Reduced de novo lipogenesis in adipose tissue, often observed in obese individuals, is thought to contribute to insulin resistance. Besides trapping excess glucose and providing for triglycerides and energy storage, endogenously synthesized lipids can function as potent signaling molecules. Indeed, several specific lipids and their molecular targets that mediate insulin sensitivity have been recently identified. Here, we report that carbohydrate-response element-binding protein (ChREBP), a transcriptional inducer of glucose use and de novo lipogenesis, controls the activity of the adipogenic master regulator peroxisome proliferator-activated receptor (PPAR)γ. Expression of constitutive-active ChREBP in precursor cells activated endogenous PPARγ and promoted adipocyte differentiation. Intriguingly, ChREBP-constitutive-active ChREBP expression induced PPARγ activity in a fatty acid synthase-dependent manner and by trans-activating the PPARγ ligand-binding domain. Reducing endogenous ChREBP activity by either small interfering RNA-mediated depletion, exposure to low-glucose concentrations, or expressing a dominant-negative ChREBP impaired differentiation. In adipocytes, ChREBP regulated the expression of PPARγ target genes, in particular those involved in thermogenesis, similar to synthetic PPARγ ligands. In summary, our data suggest that ChREBP controls the generation of endogenous fatty acid species that activate PPARγ. Thus, increasing ChREBP activity in adipose tissue by therapeutic interventions may promote insulin sensitivity through PPARγ. PMID:26181104

  4. Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep

    PubMed Central

    Lie, Shervi; Morrison, Janna L.; Williams-Wyss, Olivia; Suter, Catherine M.; Humphreys, David T.; Ozanne, Susan E.; Zhang, Song; MacLaughlin, Severence M.; Kleemann, David O.; Walker, Simon K.; Roberts, Claire T.

    2014-01-01

    This study aimed to determine whether exposure of the oocyte and/or embryo to maternal undernutrition results in the later programming of insulin action in the liver and factors regulating gluconeogenesis. To do this, we collect livers from singleton and twin fetal sheep that were exposed to periconceptional (PCUN; −60 to 7 days) or preimplantation (PIUN; 0–7 days) undernutrition at 136–138 days of gestation (term = 150 days). The mRNA and protein abundance of insulin signaling and gluconeogenic factors were then quantified using qRT-PCR and Western blotting, respectively, and global microRNA expression was quantified using deep sequencing methodology. We found that hepatic PEPCK-C mRNA (P < 0.01) and protein abundance and the protein abundance of IRS-1 (P < 0.01), p110β (P < 0.05), PTEN (P < 0.05), CREB (P < 0.01), and pCREB (Ser133; P < 0.05) were decreased in the PCUN and PIUN singletons. In contrast, hepatic protein abundance of IRS-1 (P < 0.01), p85 (P < 0.01), p110β (P < 0.001), PTEN (P < 0.01), Akt2 (P < 0.01), p-Akt (Ser473; P < 0.01), and p-FOXO-1 (Thr24) (P < 0.01) was increased in twins. There was a decrease in PEPCK-C mRNA (P < 0.01) but, paradoxically, an increase in PEPCK-C protein (P < 0.001) in twins. Both PCUN and PIUN altered the hepatic expression of 23 specific microRNAs. We propose that the differential impact of maternal undernutrition in the presence of one or two embryos on mRNAs and proteins involved in the insulin signaling and gluconeogenesis is explained by changes in the expression of a suite of specific candidate microRNAs. PMID:24496309

  5. Cellular levels of feedback regulator of adenylate cyclase and the effect of epinephrine and insulin.

    PubMed Central

    Ho, R j; Russell, T R; Asakawa, T; Sutherland, E W

    1975-01-01

    We have obtained direct evidence that shows the cellular formation and subsequent release of a potent inhibitor (feedback regulator) of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by adipocytes, upon stimulation with epinephrine. The appearance of such a feedback regulator in adipocytes preceded its release into the medium. During a 30 min incubation, intracellular regulator levels rose rapidly and reached 39-61 units/g of adipocyte at 10 min. Release of inhibitor into the medium increased slowly and was 11-16 units/g of adipocyte at 10 min. Upon continued incubation, the cells at 30 min contained 30-41 units/g of ingibitor, slightly less than the content at 30 min; meanwhile, the medium content rose more than 3-fold. The inhibitor from both locations appeared to have the same characteristics, judging from the purification procedures and the biological activities on hormone-stimulated adenylate cyclase. Adenylate cyclase was inhibited by the feedback regulator in vitro when either epinephrine, corticotropin (ACTH), or glucagon was used as activator. The site of action of this inhibitor is therefore most likely beyond the specific hormone receptors. A new in vitro action of insulin has been found. Insulin, 50-500 microunits/ml, inhibited the formation and release of this factor from isolated rat or hamster adipocytes by 29-81% after these cells were stimulated by hormones that raise intracellular adenosine 3':5'-cyclic monophosphate. This factor enhaced the effect of insulin in lowering the adenosine 3':5'-cyclic monophosphate levels in fresh rat adipocytes. A reduced formation of such a factor may modify the metabolic events in adipocytes, and some as yet unexplained effects of insulin could therefore be linked to the metabolic effects of this factor. PMID:174073

  6. Novel repressor regulates insulin sensitivity through interaction with Foxo1

    PubMed Central

    Nakae, Jun; Cao, Yongheng; Hakuno, Fumihiko; Takemori, Hiroshi; Kawano, Yoshinaga; Sekioka, Risa; Abe, Takaya; Kiyonari, Hiroshi; Tanaka, Toshiya; Sakai, Juro; Takahashi, Shin-Ichiro; Itoh, Hiroshi

    2012-01-01

    Forkhead box-containing protein o (Foxo) 1 is a key transcription factor in insulin and glucose metabolism. We identified a Foxo1-CoRepressor (FCoR) protein in mouse adipose tissue that inhibits Foxo1's activity by enhancing acetylation via impairment of the interaction between Foxo1 and the deacetylase Sirt1 and via direct acetylation. FCoR is phosphorylated at Threonine 93 by catalytic subunit of protein kinase A and is translocated into nucleus, making it possible to bind to Foxo1 in both cytosol and nucleus. Knockdown of FCoR in 3T3-F442A cells enhanced expression of Foxo target and inhibited adipocyte differentiation. Overexpression of FCoR in white adipose tissue decreased expression of Foxo-target genes and adipocyte size and increased insulin sensitivity in Leprdb/db mice and in mice fed a high-fat diet. In contrast, Fcor knockout mice were lean, glucose intolerant, and had decreased insulin sensitivity that was accompanied by increased expression levels of Foxo-target genes and enlarged adipocytes. Taken together, these data suggest that FCoR is a novel repressor that regulates insulin sensitivity and energy metabolism in adipose tissue by acting to fine-tune Foxo1 activity. PMID:22510882

  7. Iodixanol Gradient Centrifugation to Separate Components of the Low-Density Membrane Fraction from 3T3-L1 Adipocytes.

    PubMed

    Sadler, Jessica B A; Lamb, Christopher A; Gould, Gwyn W; Bryant, Nia J

    2016-02-01

    We optimized a set of fractionation techniques to facilitate the isolation of subcellular compartments containing insulin-sensitive glucose transporter isoform 4 (GLUT4), which is mobilized from GLUT4 storage vesicles (GSVs) in fat and muscle cells in response to insulin. In the absence of insulin, GLUT4 undergoes a continuous cycle of GSV formation and fusion with other compartments. Full membrane fractionation of 3T3-L1 adipocytes produces a low-density membrane fraction that contains both the constitutive recycling pool (the endosomal recycling compartments) and the insulin-sensitive pool (the GSVs). These two pools can be separated based on density using iodixanol gradient centrifugation, described here. PMID:26832683

  8. Endothelial Cell Surface Expressed Chemotaxis and Apoptosis Regulator (ECSCR) Regulates Lipolysis in White Adipocytes via the PTEN/AKT Signaling Pathway

    PubMed Central

    Kilari, Sreenivasulu; Cossette, Stephanie; Pooya, Shabnam; Bordas, Michelle; Huang, Yi-Wen

    2015-01-01

    Elevated plasma triglycerides are associated with increased susceptibility to heart disease and stroke, but the mechanisms behind this relationship are unclear. A clearer understanding of gene products which influence plasma triglycerides might help identify new therapeutic targets for these diseases. The Endothelial Cell Surface expressed Chemotaxis and apoptosis Regulator (ECSCR) was initially studied as an endothelial cell marker, but has recently been identified in white adipocytes, the primary storage cell type for triglycerides. Here we confirm ECSCR expression in white adipocytes and show that Ecscr knockout mice show elevated fasting plasma triglycerides. At a cellular level, cultured 3T3-L1 adipocytes silenced for Ecscr show a blunted Akt phosphorylation response. Additionally we show that the phosphatase and tensin homology containing (PTEN) lipid phosphatase association with ECSCR is increased by insulin stimulation. These data suggest a scenario by which ECSCR contributes to control of white adipocyte lipolysis. In this scenario, white adipocytes lacking Ecscr display elevated PTEN activity, thereby reducing AKT activation and impairing insulin-mediated suppression of lipolysis. Collectively, these results suggest that ECSCR plays a critical function in regulating lipolysis in white adipose tissue. PMID:26692198

  9. Mitochondrial (Dys)function in Adipocyte (De)differentiation and Systemic Metabolic Alterations

    PubMed Central

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria. PMID:19700756

  10. The insulin-like effects of phorbol myristate acetate (PMA) in the isolated fat cell

    SciTech Connect

    Solomon, S.S.; Palazzolo, M. )

    1989-01-01

    Recent data from many laboratories suggest that insulin stimulates diacylglycerol formation. Data presented in this manuscript demonstrate an insulin-like effect of PMA, a tumor promoting agent that mimics the action of diacylglycerol, in isolated adipocytes on; (a) glucose oxidation using uniformly labelled, C-1-labelled and C-6-labelled glucose, (b) epinephrine-induced lipolysis and (c) low Km cAMP phosphodiesterase activity. Additionally, a lipolytic effect of PMA is identified when unopposed by epinephrine. These data not only demonstrate an insulin-like effect of phorbol esters in adipose tissue but they lend support to the concept of diacylglycerol involvement in the mechanism of insulin action.

  11. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue

    PubMed Central

    Mcilroy, George D.; Tammireddy, Seshu R.; Maskrey, Benjamin H.; Grant, Louise; Doherty, Mary K.; Watson, David G.; Delibegović, Mirela; Whitfield, Phillip D.; Mody, Nimesh

    2016-01-01

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  12. Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin expression and secretion in rainbow trout.

    PubMed

    Salmerón, Cristina; Johansson, Marcus; Angotzi, Anna R; Rønnestad, Ivar; Jönsson, Elisabeth; Björnsson, Björn Thrandur; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación

    2015-01-01

    As leptin has a key role on appetite, knowledge about leptin regulation is important in order to understand the control of energy balance. We aimed to explore the modulatory effects of adiposity on plasma leptin levels in vivo and the role of potential regulators on leptin expression and secretion in rainbow trout adipocytes in vitro. Fish were fed a regular diet twice daily ad libitum or a high-energy diet once daily at two ration levels; satiation (SA group) or restricted (RE group) to 25% of satiation, for 8weeks. RE fish had significantly reduced growth (p<0.001) and adipose tissue weight (p<0.001), and higher plasma leptin levels (p=0.022) compared with SA fish. Moreover, plasma leptin levels negatively correlated with mesenteric fat index (p=0.009). Adipocytes isolated from the different fish were treated with insulin, ghrelin, leucine, eicosapentaenoic acid or left untreated (control). In adipocytes from fish fed regular diet, insulin and ghrelin increased leptin secretion dose-dependently (p=0.002; p=0.033, respectively). Leptin secretion in control adipocytes was significantly higher in RE than in SA fish (p=0.022) in agreement with the in vivo findings, indicating that adipose tissue may contribute to the circulating leptin levels. No treatment effects were observed in adipocytes from the high-energy diet groups, neither in leptin expression nor secretion, except that leptin secretion was significantly reduced by leucine in RE fish adipocytes (p=0.025). Overall, these data show that the regulation of leptin in rainbow trout adipocytes by hormones and nutrients seems to be on secretion, rather than at the transcriptional level. PMID:25448259

  13. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue.

    PubMed

    Mcilroy, George D; Tammireddy, Seshu R; Maskrey, Benjamin H; Grant, Louise; Doherty, Mary K; Watson, David G; Delibegović, Mirela; Whitfield, Phillip D; Mody, Nimesh

    2016-01-15

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  14. Adipocyte iron regulates leptin and food intake

    PubMed Central

    Gao, Yan; Li, Zhonggang; Gabrielsen, J. Scott; Simcox, Judith A.; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T.; McClain, Donald A.

    2015-01-01

    Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810

  15. Adipocyte iron regulates leptin and food intake.

    PubMed

    Gao, Yan; Li, Zhonggang; Gabrielsen, J Scott; Simcox, Judith A; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T; McClain, Donald A

    2015-09-01

    Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810

  16. Hypoxic adipocytes pattern early heterotopic bone formation.

    PubMed

    Olmsted-Davis, Elizabeth; Gannon, Francis H; Ozen, Mustafa; Ittmann, Michael M; Gugala, Zbigniew; Hipp, John A; Moran, Kevin M; Fouletier-Dilling, Christine M; Schumara-Martin, Shannon; Lindsey, Ronald W; Heggeness, Michael H; Brenner, Malcolm K; Davis, Alan R

    2007-02-01

    The factors contributing to heterotopic ossification, the formation of bone in abnormal soft-tissue locations, are beginning to emerge, but little is known about microenvironmental conditions promoting this often devastating disease. Using a murine model in which endochondral bone formation is triggered in muscle by bone morphogenetic protein 2 (BMP2), we studied changes near the site of injection of BMP2-expressing cells. As early as 24 hours later, brown adipocytes began accumulating in the lesional area. These cells stained positively for pimonidazole and therefore generated hypoxic stress within the target tissue, a prerequisite for the differentiation of stem cells to chondrocytes and subsequent heterotopic bone formation. We propose that aberrant expression of BMPs in soft tissue stimulates production of brown adipocytes, which drive the early steps of heterotopic endochondral ossification by lowering oxygen tension in adjacent tissue, creating the correct environment for chondrogenesis. Results in misty gray lean mutant mice not producing brown fat suggest that white adipocytes convert into fat-oxidizing cells when brown adipocytes are unavailable, providing a compensatory mechanism for generation of a hypoxic microenvironment. Manipulation of the transcriptional control of adipocyte fate in local soft-tissue environments may offer a means to prevent or treat development of bone in extraskeletal sites. PMID:17255330

  17. Dynamics of protein secretion during adipocyte differentiation.

    PubMed

    Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Muroya, Susumu; Nishimura, Takanori

    2016-08-01

    The major functions of adipocytes include both lipid storage and the production of secretory factors. However, the type of proteins released from mouse 3T3-L1 cells during adipocyte differentiation remains poorly understood. We examined the dynamics of secreted proteins during adipocyte differentiation using mass spectrometry (MS) combined with an iTRAQ (®) labeling method that enables the simultaneous analysis of relative protein expression levels. A total of 215 proteins were identified and quantified from approximately 10 000 MS/MS spectra. Of these, approximately 38% were categorized as secreted proteins based on gene ontology classification. Adipokine secretion levels were increased with the progression of differentiation. By contrast, levels of fibril collagen components, such as subunits of type I and III collagens, were decreased during differentiation. Basement membrane components attained their peak levels at day 4 when small lipid droplets accumulated in differentiated 3T3-L1 cells. Simultaneously, peak levels of collagen microfibril components that comprise type V and VI collagen subunits were also observed. Our data demonstrated that extracellular matrix components were predominantly released during the early and middle stages of adipocyte differentiation, with a subsequent increase in the secretion of adipokines. This suggests that 3T3-L1 cells secrete adipokines after their ECM is constructed during adipocyte differentiation. PMID:27516960

  18. Lipolysis, lipogenesis, and adiposity are reduced while fatty acid oxidation is increased in visceral and subcutaneous adipocytes of endurance-trained rats

    PubMed Central

    Pistor, Kathryn E; Sepa-Kishi, Diane M; Hung, Steven; Ceddia, Rolando B

    2014-01-01

    This study examined the alterations in triglyceride (TG) breakdown and storage in subcutaneous inguinal (SC Ing) and epididymal (Epid) fat depots following chronic endurance training. Male Wistar rats were either kept sedentary (Sed) or subjected to endurance training (Ex) at 70–85% peak VO2 for 6 weeks. At weeks 0, 3, and 6 blood was collected at rest and immediately after a bout of submaximal exercise of similar relative intensity to assess whole-body lipolysis. At week 6, adipocytes were isolated from Epid and SC Ing fat pads for the determination of lipolysis under basal or isoproterenol- and forskolin-stimulated conditions, basal and insulin-stimulated glucose incorporation into lipids, and fatty acid oxidation (FAO). Body weight, fat pad mass, and insulin were reduced by endurance training. Also, circulating non-esterified fatty acids (NEFAs) were 33% lower in Ex than Sed rats when exercising at the same relative intensity. This coincided with reduced isoproterenol-stimulated lipolysis in the Epid (27%) and SC Ing (25%) adipocytes in Ex rats. Similarly, forskolin-stimulated lipolysis was reduced in Epid (51%) and SC Ing (49%) adipocytes from Ex rats. Insulin-stimulated glucose incorporation into lipids in adipocytes from both fat depots from Ex rats was also lower (∼43%) than Sed controls. Conversely, FAO was increased in Epid (1.71-fold) and SC Ing (1.82-fold) adipocytes of Ex rats. In conclusion, chronic endurance exercise reduced lipolysis and lipogenesis while increasing FAO in Epid and SC Ing adipocytes. These are compatible with an energy-sparing adaptive response to reduced adiposity under chronic endurance training conditions. PMID:26167399

  19. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

    PubMed Central

    Gu, Harvest F.; Östenson, Claes-Göran; Mannerås-Holm, Louise; Stener-Victorin, Elisabet; Wan Mohamud, Wan Nazaimoon

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP) and PCOS-control (1 mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100 μg/mL LP and compared to untreated control and 10 μM of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway. PMID:23935612

  20. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes.

    PubMed

    Mansor, Fazliana; Gu, Harvest F; Ostenson, Claes-Göran; Mannerås-Holm, Louise; Stener-Victorin, Elisabet; Wan Mohamud, Wan Nazaimoon

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP) and PCOS-control (1 mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100  μ g/mL LP and compared to untreated control and 10  μ M of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway. PMID:23935612

  1. Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation.

    PubMed

    Torabi, Sheida; Mo, Huanbiao

    2016-03-01

    Based on our finding that depletion of mevalonate-derived metabolites inhibits adipocyte differentiation, we hypothesize that trans, trans-farnesol (farnesol), a mevalonate-derived sesquiterpene, induces adipocyte differentiation. Farnesol dose-dependently (25-75 μmol/L) increased intracellular triglyceride content of murine 3T3-F442A pre-adipocytes measured by AdipoRed™ Assay and Oil Red-O staining. Concomitantly, farnesol dose-dependently increased glucose uptake and glucose transport protein 4 (GLUT4) expression without affecting cell viability. Furthermore, quantitative real-time polymerase chain reaction and Western blot showed that farnesol increased the mRNA and protein levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, and the mRNA levels of PPARγ-regulated fatty acid-binding protein 4 and adiponectin; in contrast, farnesol downregulated Pref-1 gene, a marker of pre-adipocytes. GW9662 (10 µmol/L), an antagonist of PPARγ, reversed the effects of farnesol on cellular lipid content, suggesting that PPARγ signaling pathway may mediate the farnesol effect. Farnesol (25-75 μmol/L) did not affect the mRNA level of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in the mevalonate pathway. Farnesol may be the mevalonate-derived inducer of adipocyte differentiation and potentially an insulin sensitizer via activation of PPARγ and upregulation of glucose uptake. PMID:26660152

  2. Thiazolidinedione (pioglitazone) blocks P. gingivalis- and F. nucleatum, but not E. coli, lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) production in adipocytes.

    PubMed

    Yamaguchi, M; Nishimura, F; Naruishi, H; Soga, Y; Kokeguchi, S; Takashiba, S

    2005-03-01

    An elevated level of C-reactive protein (CRP) predicts the future development of coronary heart disease. Periodontitis appears to up-regulate CRP. CRP is produced by hepatocytes in response to interleukin-6 (IL-6). A major source of IL-6 in obese subjects is adipocytes. We hypothesized that lipopolysaccharide (LPS) from periodontal pathogens stimulated adipocytes to produce IL-6, and that the production was suppressed by the drugs targeted against insulin resistance, thiazolidinedione (pioglitazone), since this agent potentially showed an anti-inflammatory effect. Mouse 3T3-L1 adipocytes were stimulated with E. coli, P. gingivalis, and F. nucleatum LPS. The IL-6 concentration in culture supernatants was measured. All LPS stimulated adipocytes to produce IL-6. Although pioglitazone changed adipocyte appearance from large to small, and completely suppressed P. gingivalis and F. nucleatum LPS-induced IL-6 production, E. coli LPS-induced IL-6 production was not efficiently blocked. Thus, pioglitazone completely blocked periodontal-bacteria-derived LPS-induced IL-6 production in adipocytes, a major inducer of CRP. PMID:15723863

  3. MicroRNAs involved in the browning process of adipocytes.

    PubMed

    Arias, N; Aguirre, L; Fernández-Quintela, A; González, M; Lasa, A; Miranda, J; Macarulla, M T; Portillo, M P

    2016-09-01

    The present review focuses on the role of miRNAs in the control of white adipose tissue browning, a process which describes the recruitment of adipocytes showing features of brown adipocytes in white adipose tissue. MicroRNAs (miRNAs) are a class of short non-coding RNAs (19-22 nucleotides) involved in gene regulation. Although the main effect of miRNAs is the inhibition of the translational machinery, thereby preventing the production of the protein product, the activation of protein translation has also been described in the literature. In addition to modifying translation, miRNAs binding to its target mRNAs also trigger the recruitment and association of mRNA decay factors, leading to mRNA destabilization, degradation, and thus to the decrease in expression levels. Although a great number of miRNAs have been reported to potentially regulate genes that play important roles in the browning process, only a reduced number of studies have demonstrated experimentally an effect on this process associated to changes in miRNA expressions, so far. These studies have shown, by using either primary adipocyte cultures or experimental models of mice (KO mice, mice overexpressing a specific miRNA) that miR-196a, miR-26 and miR-30 are needed for browning process development. By contrast, miR-155, miR-133, miR-27b and miR-34 act as negative regulators of this process. Further studies are needed to fully describe the miRNA network-involved white adipose tissue browning regulation. PMID:26695012

  4. IκB kinase epsilon expression in adipocytes is upregulated by interaction with macrophages.

    PubMed

    Sanada, Yohei; Kumoto, Takahiro; Suehiro, Haruna; Yamamoto, Takafumi; Nishimura, Fusanori; Kato, Norihisa; Yanaka, Noriyuki

    2014-01-01

    Macrophage infiltration in the adipose tissue, and the interaction with adipocytes, is well documented to be involved in fat inflammation and obesity-associated complications. In this study, we isolated IκB kinase ε (IKKε) as a key adipocyte factor that is potentially affected by interaction with macrophages in adipose tissue in vivo. We showed that IKKε mRNA expression levels in white adipose tissue were increased in both genetic and diet-induced obese mouse. Furthermore, IKKε mRNA expression was decreased by the administration of vitamin B6, an anti-inflammatory vitamin, and that IKKε expression levels in adipose tissue were closely correlated with the numbers of infiltrating macrophages. In a co-culture system, we showed that IKKε expression in adipocytes was upregulated by interaction with activated macrophages. This study provides novel insight into IKKε, which is involved in adipose tissue inflammation during the development of obesity. PMID:25130737

  5. Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways.

    PubMed

    Ceresa, B P; Kao, A W; Santeler, S R; Pessin, J E

    1998-07-01

    To examine the role of clathrin-dependent insulin receptor internalization in insulin-stimulated signal transduction events, we expressed a dominant-interfering mutant of dynamin (K44A/dynamin) by using a recombinant adenovirus in the H4IIE hepatoma and 3T3L1 adipocyte cell lines. Expression of K44A/dynamin inhibited endocytosis of the insulin receptor as determined by both cell surface radioligand binding and trypsin protection analysis. The inhibition of the insulin receptor endocytosis had no effect on either the extent of insulin receptor autophosphorylation or insulin receptor substrate 1 (IRS1) tyrosine phosphorylation. In contrast, expression of K44A/dynamin partially inhibited insulin-stimulated Shc tyrosine phosphorylation and activation of the mitogen-activated protein kinases ERK1 and -2. Although there was an approximately 50% decrease in the insulin-stimulated activation of the phosphatidylinositol 3-kinase associated with IRS1, insulin-stimulated Akt kinase phosphorylation and activation were unaffected. The expression of K44A/dynamin increased the basal rate of amino acid transport, which was additive with the effect of insulin but had no effect on the basal or insulin-stimulated DNA synthesis. In 3T3L1 adipocytes, expression of K44A/dynamin increased the basal rate of glucose uptake, glycogen synthesis, and lipogenesis without any significant effect on insulin stimulation. Together, these data demonstrate that the acute actions of insulin are largely independent of insulin receptor endocytosis and are initiated by activation of the plasma membrane-localized insulin receptor. PMID:9632770

  6. Inhibition of Clathrin-Mediated Endocytosis Selectively Attenuates Specific Insulin Receptor Signal Transduction Pathways

    PubMed Central

    Ceresa, Brian P.; Kao, Aimee W.; Santeler, Scott R.; Pessin, Jeffrey E.

    1998-01-01

    To examine the role of clathrin-dependent insulin receptor internalization in insulin-stimulated signal transduction events, we expressed a dominant-interfering mutant of dynamin (K44A/dynamin) by using a recombinant adenovirus in the H4IIE hepatoma and 3T3L1 adipocyte cell lines. Expression of K44A/dynamin inhibited endocytosis of the insulin receptor as determined by both cell surface radioligand binding and trypsin protection analysis. The inhibition of the insulin receptor endocytosis had no effect on either the extent of insulin receptor autophosphorylation or insulin receptor substrate 1 (IRS1) tyrosine phosphorylation. In contrast, expression of K44A/dynamin partially inhibited insulin-stimulated Shc tyrosine phosphorylation and activation of the mitogen-activated protein kinases ERK1 and -2. Although there was an approximately 50% decrease in the insulin-stimulated activation of the phosphatidylinositol 3-kinase associated with IRS1, insulin-stimulated Akt kinase phosphorylation and activation were unaffected. The expression of K44A/dynamin increased the basal rate of amino acid transport, which was additive with the effect of insulin but had no effect on the basal or insulin-stimulated DNA synthesis. In 3T3L1 adipocytes, expression of K44A/dynamin increased the basal rate of glucose uptake, glycogen synthesis, and lipogenesis without any significant effect on insulin stimulation. Together, these data demonstrate that the acute actions of insulin are largely independent of insulin receptor endocytosis and are initiated by activation of the plasma membrane-localized insulin receptor. PMID:9632770

  7. Effects of dopamine on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients

    PubMed Central

    Alvarez-Aguilar, Cleto; Alvarez-Paredes, Alfonso Rafael; Lindholm, Bengt; Stenvinkel, Peter; García-López, Elvia; Mejía-Rodríguez, Oliva; López-Meza, Joel Edmundo; Amato, Dante; Paniagua, Ramon

    2013-01-01

    Background A reduction of dopaminergic (DAergic) activity with increased prolactin levels has been found in obese and hypertensive patients, suggesting its involvement as a pathophysiological mechanism promoting hypertension. Similarly, leptin action increasing sympathetic activity has been proposed to be involved in mechanisms of hypertension. The aim of this study was to analyze the effects of DA, norepinephrine (NE), and prolactin on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients. Methods Leptin release and OB gene expression were analyzed in cultured adipocytes from 16 obese and hypertensive patients treated with DA (0.001, 0.01, 0.1, and 1.0 μmol/L), NE (1.0 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L), and from five nonobese and normotensive controls treated with DA (1 μmol/L), NE (1 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L). Results A dose-related reduction of leptin release and OB gene messenger ribonucleic acid expression under different doses of DA was observed in adipocytes from obese hypertensive patients. Whereas prolactin treatment elicited a significant increase of both leptin release and OB gene expression, NE reduced these parameters. Although similar effects of DA and NE were observed in adipocytes from controls, baseline values in controls were reduced to 20% of the value in adipocytes from obese hypertensive patients. Conclusion These results suggest that DAergic deficiency contributes to metabolic disorders linked to hyperleptinemia in obese and hypertensive patients. PMID:24348062

  8. Insights into an adipocyte whitening program

    PubMed Central

    Hill, Bradford G

    2015-01-01

    White adipose tissue plays a critical role in regulating systemic metabolism and can remodel rapidly in response to changes in nutrient availability. Nevertheless, little is known regarding the metabolic changes occurring in adipocytes during obesity. Our laboratory recently addressed this issue in a commonly used, high-fat-diet mouse model of obesity. We found remarkable changes in adipocyte metabolism that occur prior to infiltration of macrophages in expanding adipose tissue. Results of metabolomic analyses, adipose tissue respirometry, electron microscopy, and expression analyses of key genes and proteins revealed dysregulation of several metabolic pathways, loss of mitochondrial biogenetic capacity, and apparent activation of mitochondrial autophagy which were followed in time by downregulation of numerous mitochondrial proteins important for maintaining oxidative capacity. These findings demonstrate the presence of an adipocyte whitening program that may be critical for regulating adipose tissue remodeling under conditions of chronic nutrient excess. PMID:26167407

  9. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    PubMed Central

    Barquissau, V.; Beuzelin, D.; Pisani, D.F.; Beranger, G.E.; Mairal, A.; Montagner, A.; Roussel, B.; Tavernier, G.; Marques, M.-A.; Moro, C.; Guillou, H.; Amri, E.-Z.; Langin, D.

    2016-01-01

    Objective Fat depots with thermogenic activity have been identified in humans. In mice, the appearance of thermogenic adipocytes within white adipose depots (so-called brown-in-white i.e., brite or beige adipocytes) protects from obesity and insulin resistance. Brite adipocytes may originate from direct conversion of white adipocytes. The purpose of this work was to characterize the metabolism of human brite adipocytes. Methods Human multipotent adipose-derived stem cells were differentiated into white adipocytes and then treated with peroxisome proliferator-activated receptor (PPAR)γ or PPARα agonists between day 14 and day 18. Gene expression profiling was determined using DNA microarrays and RT-qPCR. Variations of mRNA levels were confirmed in differentiated human preadipocytes from primary cultures. Fatty acid and glucose metabolism was investigated using radiolabelled tracers, Western blot analyses and assessment of oxygen consumption. Pyruvate dehydrogenase kinase 4 (PDK4) knockdown was achieved using siRNA. In vivo, wild type and PPARα-null mice were treated with a β3-adrenergic receptor agonist (CL316,243) to induce appearance of brite adipocytes in white fat depot. Determination of mRNA and protein levels was performed on inguinal white adipose tissue. Results PPAR agonists promote a conversion of white adipocytes into cells displaying a brite molecular pattern. This conversion is associated with transcriptional changes leading to major metabolic adaptations. Fatty acid anabolism i.e., fatty acid esterification into triglycerides, and catabolism i.e., lipolysis and fatty acid oxidation, are increased. Glucose utilization is redirected from oxidation towards glycerol-3-phophate production for triglyceride synthesis. This metabolic shift is dependent on the activation of PDK4 through inactivation of the pyruvate dehydrogenase complex. In vivo, PDK4 expression is markedly induced in wild-type mice in response to CL316,243, while this increase is blunted

  10. Insulin Test

    MedlinePlus

    ... people with type 2 diabetes , polycystic ovarian syndrome (PCOS) , prediabetes or heart disease , or metabolic syndrome . A ... resistance), especially in obese individuals and those with PCOS . This test involves an IV-infusion of insulin, ...

  11. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor.

    PubMed

    Yang, Kaiping; Guan, Haiyan; Arany, Edith; Hill, David J; Cao, Xiang

    2008-07-01

    Neuropeptide Y (NPY) is synthesized in neural tissue of the central and peripheral nervous systems and has a number of important functions besides regulating appetite and energy homeostasis. Here we identify a novel site of NPY biosynthesis and a role for NPY in promoting proliferation of adipocyte precursor cells. We show that NPY mRNA is not only expressed in visceral adipose tissue (VAT) but that its levels are up-regulated 6-fold in our early-life programmed rat model of increased visceral adiposity. This is accompanied by a parallel rise in NPY protein, demonstrating that VAT is a novel peripheral site of NPY biosynthesis. Furthermore, NPY mRNA expression is also elevated >2-fold in VAT of obese Zucker rats. Importantly, NPY stimulates proliferation of primary rat preadipocytes as well as 3T3-L1 preadipocytes in vitro. This mitogenic effect appears to be mediated by the Y1 receptor and involves the activation of extracellular related kinase 1/2. In addition, insulin and glucocorticoid up-regulate VAT NPY expression in lean but not obese Zucker rats. Taken together, these results suggest that an enhanced local expression of NPY within VAT may be a common feature of and contribute to the molecular mechanisms underlying increased visceral adiposity. PMID:18323405

  12. RASSF6 expression in adipocytes is down-regulated by interaction with macrophages.

    PubMed

    Sanada, Yohei; Kumoto, Takahiro; Suehiro, Haruna; Nishimura, Fusanori; Kato, Norihisa; Hata, Yutaka; Sorisky, Alexander; Yanaka, Noriyuki

    2013-01-01

    Macrophage infiltration into adipose tissue is associated with obesity and the crosstalk between adipocytes and infiltrated macrophages has been investigated as an important pathological phenomenon during adipose tissue inflammation. Here, we sought to identify adipocyte mRNAs that are regulated by interaction with infiltrated macrophages in vivo. An anti-inflammatory vitamin, vitamin B6, suppressed macrophage infiltration into white adipose tissue and altered mRNA expression. We identified >3500 genes whose expression is significantly altered during the development of obesity in db/db mice, and compared them to the adipose tissue mRNA expression profile of mice supplemented with vitamin B6. We identified PTX3 and MMP3 as candidate genes regulated by macrophage infiltration. PTX3 and MMP3 mRNA expression in 3T3-L1 adipocytes was up-regulated by activated RAW264.7 cells and these mRNA levels were positively correlated with macrophage number in adipose tissue in vivo. Next, we screened adipose genes down-regulated by the interaction with macrophages, and isolated RASSF6 (Ras association domain family 6). RASSF6 mRNA in adipocytes was decreased by culture medium conditioned by activated RAW264.7 cells, and RASSF6 mRNA level was negatively correlated with macrophage number in adipose tissue, suggesting that adipocyte RASSF6 mRNA expression is down-regulated by infiltrated macrophages in vivo. Finally, this study also showed that decreased RASSF6 expression up-regulates mRNA expression of several genes, such as CD44 and high mobility group protein HMGA2. These data provide novel insights into the biological significance of interactions between adipocytes and macrophages in adipose tissue during the development of obesity. PMID:23626755

  13. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling

    PubMed Central

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V.

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling. PMID:27537838

  14. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    PubMed

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling. PMID:27537838

  15. Essential Role of IGFIR in the Onset of Male Brown Fat Thermogenic Function: Regulation of Glucose Homeostasis by Differential Organ-Specific Insulin Sensitivity.

    PubMed

    Viana-Huete, Vanesa; Guillén, Carlos; García-Aguilar, Ana; García, Gema; Fernández, Silvia; Kahn, C R; Benito, Manuel

    2016-04-01

    Brown fat is a thermogenic tissue that generates heat to maintain body temperature in cold environments and dissipate excess energy in response to overfeeding. We have addressed the role of the IGFIR in the brown fat development and function. Mice lacking IGFIR exhibited normal brown adipose tissue/body weight in knockout (KO) vs control mice. However, lack of IGFIR decreased uncoupling protein 1 expression in interscapular brown fat and beige cells in inguinal fat. More importantly, the lack of IGFIR resulted in an impaired cold acclimation. No differences in the total fat volume were found in the KO vs control mice. Epididymal fat showed larger adipocytes but with a lower number of adipocytes in KO vs control mice at age 12 months. In addition, KO mice showed a sustained moderate hyperinsulinemia and hypertriglyceridemia upon time and hepatic insulin insensitivity associated with lipid accumulation, with the outcome of a global insulin resistance. In addition, we found that the expression of uncoupling protein 3 in the skeletal muscle was decreased and its expression was increased in the heart in parallel with the expression of beta-2 adrenergic receptors. Upon nonobesogenic high-fat diet, we found a severe insulin resistance in the liver and in the skeletal muscle, but unchanged insulin sensitivity in the heart. In conclusion, our data suggest that IGFIR it is not an essential growth factor in the brown fat development in the presence of the IR and very high plasma levels of IGF-I, but it is indispensable for full brown fat functionality. PMID:26910308

  16. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    SciTech Connect

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk; Lee, Nam-Ho; Kim, Se-Jae

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  17. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides.

    PubMed

    Nässel, Dick R; Vanden Broeck, Jozef

    2016-01-01

    Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism. PMID:26472340

  18. Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis.

    PubMed

    Han, Yong Hwan; Buffolo, Márcio; Pires, Karla Maria; Pei, Shaobo; Scherer, Philipp E; Boudina, Sihem

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress (OS). The causal role of adipose OS in the pathogenesis of these conditions is unknown. To address this issue, we generated mice with an adipocyte-selective deletion of manganese superoxide dismutase (MnSOD). When fed a high-fat diet (HFD), the AdSod2 knockout (KO) mice exhibited less adiposity, reduced adipocyte hypertrophy, and decreased circulating leptin. The resistance to diet-induced adiposity was the result of an increased metabolic rate and energy expenditure. Furthermore, palmitate oxidation was elevated in the white adipose tissue (WAT) and brown adipose tissue of AdSod2 KO mice fed an HFD, and the expression of key fatty acid oxidation genes was increased. To gain mechanistic insight into the increased fat oxidation in HFD-fed AdSod2 KO mice, we quantified the mitochondrial function and mitochondrial content in WAT and found that MnSOD deletion increased mitochondrial oxygen consumption and induced mitochondrial biogenesis. This effect was preserved in cultured adipocytes from AdSod2 KO mice in vitro. As expected from the enhanced fat oxidation, circulating levels of free fatty acids were reduced in the HFD-fed AdSod2 KO mice. Finally, HFD-fed AdSod2 KO mice were protected from hepatic steatosis, adipose tissue inflammation, and glucose and insulin intolerance. Taken together, these results demonstrate that MnSOD deletion in adipocytes triggered an adaptive stress response that activated mitochondrial biogenesis and enhanced mitochondrial fatty acid oxidation, thereby preventing diet-induced obesity and insulin resistance. PMID:27284109

  19. Ivy gourd (Coccinia grandis L. Voigt) root suppresses adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2014-01-01

    Background Ivy gourd (Coccinia grandis L. Voigt) is a tropical plant widely distributed throughout Asia, Africa, and the Pacific Islands. The anti-obesity property of this plant has been claimed but still remains to be scientifically proven. We therefore investigated the effects of ivy gourd leaf, stem, and root on adipocyte differentiation by employing cell culture model. Methods Dried roots, stems, and leaves of ivy gourd were separately extracted with ethanol. Each extract was then applied to 3T3-L1 pre-adipocytes upon induction with a mixture of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone, for anti-adipogenesis assay. The active extract was further fractionated by a sequential solvent partitioning method, and the resulting fractions were examined for their abilities to inhibit adipogenesis in 3T3-L1 cells. Differences in the expression of adipogenesis-related genes between the treated and untreated cells were determined from their mRNA and protein levels. Results Of the three ivy gourd extracts, the root extract exhibited an anti-adipogenic effect. It significantly reduced intracellular fat accumulation during the early stages of adipocyte differentiation. Together with the suppression of differentiation, expression of the genes encoding PPARγ, C/EBPα, adiponectin, and GLUT4 were down-regulated. Hexane-soluble fraction of the root extract also inhibited adipocyte differentiation and decreased the mRNA levels of various adipogenic genes in the differentiating cells. Conclusions This is the first study to demonstrate that ivy gourd root may prevent obesity based mainly on the ability of its active constituent(s) to suppress adipocyte differentiation in vitro. Such an inhibitory effect is mediated by at least down-regulating the expression of PPARγ-the key transcription factor of adipogenesis in pre-adipocytes during their early differentiation processes. PMID:24884680

  20. [Oxidative stress in adipose tissue as a primary link in pathogenesis of insulin resistance].

    PubMed

    Kuzmenko, D I; Udintsev, S N; Klimentyeva, T K; Serebrov, V Yu

    2016-01-01

    Obesity is a leading risk factor of diabetes mellitus type 2, impairments of lipid metabolism and cardiovascular diseases. Dysfunctions of the accumulating weight of the visceral fat are primarily linked to pathogenesis of systemic insulin resistance. The review considers modern views about biochemical mechanisms underlying formation of oxidative stress in adipocytes at obesity, as one of key elements of impairments of their metabolism triggering formation of systemic insulin resistance. PMID:26973182

  1. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    SciTech Connect

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  2. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation.

    PubMed

    Joo, Jeong In; Kim, Dong Hyun; Yun, Jong Won

    2010-11-01

    Chaga mushroom (Inonotus obliquus) has long been used as a folk medicine due to its numerous biological functions such as antibacterial, antiallergic, antiinflammatory and antioxidative activities. In the present study, it was found that the I. obliquus hot water extract (IOWE) activated adipogenesis of 3T3-L1 preadipocytes. Even in the absence of adipogenic stimuli by insulin, the IOWE strongly induced adipogenesis of 3T3-L1 preadipocytes. The major constituent of IOWE was glucose-rich polysaccharides with a molecular mass of 149  kDa. IOWE enhanced the differentiation of 3T3-L1 preadipocytes, increasing TG (triacylglycerol) accumulation that is critical for acquisition of the adipocyte phenotype, in a dose-dependent manner. IOWE stimulated gene expression of C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome proliferator-activated receptors γ) during adipocyte differentiation, and induced the expression of PPARγ target genes such as aP2 (adipocyte protein 2), LPL (lipoprotein lipase) and CD36 (fatty acid translocase). Immunoblot analysis revealed that IOWE increased the expression of adipogenic makers such as PPARγ and GLUT4 (glucose transporter 4). The luciferase reporter assay demonstrated that IOWE did not exhibit PPARγ ligand activity. Although these results require further investigation, the ability of natural mushroom product to increase PPARγ transcriptional activities may be expected to be therapeutic targets for dyslipidemia and type 2 diabetes. PMID:21031614

  3. Higher white adipocyte area and lower leptin production in adult rats overfed during lactation.

    PubMed

    Conceição, E P S; Trevenzoli, I H; Oliveira, E; Franco, J G; Carlos, A S; Nascimento-Saba, C C A; Moura, E G; Lisboa, P C

    2011-06-01

    Litter size reduction during lactation is a good model for childhood obesity since it induces overnutrition and programming for obesity at adulthood. Adult offspring develop higher fat mass content, hyperinsulinemia and insulin resistance, hypertension, lower HDL cholesterol, hyperphagia, and leptin resistance. Leptin resistance is often associated with hyperleptinemia. Although we observed higher SOCS3 and lower STAT3 in the hypothalamus of rats raised in small litters featuring a central leptin resistance, they showed unexpected normoleptinemia at 180 days old. Then, to clarify why early overfed rats did not develop hyperleptinemia when adult, we studied the leptin production by the visceral and subcutaneous adipose tissue and skeletal muscle as well as the morphology in the 2 different fat depots. To induce EO, litter size was reduced to 3 pups/litter (SL group) on the 3 (rd) day of life. In controls (NL group), litter size was adjusted to 10 pups/litter. Rats were killed at 180 days old. The programming of adipose tissue morphology by early overnutrition is specific between the different fat depots with hypertrophy only in the visceral compartment. In addition, the visceral adipocyte showed lower leptin content that may indicate a reduced leptin synthesis. These data suggest that adipocytes from SL rats are dysfunctional, since a higher leptin production in larger adipose cells is expected. In conclusion, postnatal nutrition is determinant for future leptin production by different fat depots as well as adipocyte morphology. These changes seem to be related to the severity of obesity and its metabolic consequences. PMID:21512961

  4. Fucoxanthinol, Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells.

    PubMed

    Maeda, Hayato; Kanno, Shogo; Kodate, Mei; Hosokawa, Masashi; Miyashita, Kazuo

    2015-08-01

    Fucoxanthin (Fx) is a marine carotenoid found in edible brown seaweeds. We previously reported that dietary Fx metabolite into fucoxanthinol (FxOH), attenuates the weight gain of white adipose tissue of diabetic/obese KK-Ay mice. In this study, to evaluate anti-diabetic effects of Fx, we investigated improving the effect of insulin resistance on the diabetic model of KK-Ay mice. Furthermore, preventing the effect of FxOH on low-grade chronic inflammation related to oxidative stress was evaluated on 3T3-L1 adipocyte cells and a RAW264.7 macrophage cell co-culture system. A diet containing 0.1% Fx was fed to diabetic model KK-Ay mice for three weeks, then glucose tolerance was observed. Fx diet significantly improved glucose tolerance compared with the control diet group.  In in vitro studies, FxOH showed suppressed tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) mRNA expression and protein levels in a co-culture of adipocyte and macrophage cells. These findings suggest that Fx ameliorates glucose tolerance in the diabetic model mice. Furthermore, FxOH, a metabolite of Fx, suppresses low-grade chronic inflammation in adipocyte cells. PMID:26248075

  5. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth.

    PubMed

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M; Krautbauer, Sabrina; Buechler, Christa

    2016-07-01

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role in cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to sto