Sample records for adipogenic differentiation medium

  1. The Role of Paracrine and Autocrine Signaling in the Early Phase of Adipogenic Differentiation of Adipose-derived Stem Cells

    PubMed Central

    Hemmingsen, Mette; Vedel, Søren; Skafte-Pedersen, Peder; Sabourin, David; Collas, Philippe; Bruus, Henrik; Dufva, Martin

    2013-01-01

    Introduction High cell density is known to enhance adipogenic differentiation of mesenchymal stem cells, suggesting secretion of signaling factors or cell-contact-mediated signaling. By employing microfluidic biochip technology, we have been able to separate these two processes and study the secretion pathways. Methods and results Adipogenic differentiation of human adipose-derived stem cells (ASCs) cultured in a microfluidic system was investigated under perfusion conditions with an adipogenic medium or an adipogenic medium supplemented with supernatant from differentiating ASCs (conditioned medium). Conditioned medium increased adipogenic differentiation compared to adipogenic medium with respect to accumulation of lipid-filled vacuoles and gene expression of key adipogenic markers (C/EBPα, C/EBPβ, C/EBPδ, PPARγ, LPL and adiponectin). The positive effects of conditioned medium were observed early in the differentiation process. Conclusions Using different cell densities and microfluidic perfusion cell cultures to suppress the effects of cell-released factors, we have demonstrated the significant role played by auto- or paracrine signaling in adipocyte differentiation. The cell-released factor(s) were shown to act in the recruitment phase of the differentiation process. PMID:23723991

  2. Effect of cell density on adipogenic differentiation of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hongxu; Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Guo, Likun

    2009-04-10

    The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10{sup 3} to 3 x 10{sup 4} cells/cm{sup 2} was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed thatmore » adipogenesis marker genes encoding peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.« less

  3. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Schwandt, Alina Maria; Kluger, Petra Juliane

    In vitro composed vascularized adipose tissue is and will continue to be in great demand e.g. for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Up to date, the lack of adequate culture conditions, mainly a culture medium, decelerates further achievements. In our study, we evaluated the influence of epidermal growth factor (EGF) and hydrocortisone (HC), often supplemented in endothelial cell (EC) specific media, on the co-culture of adipogenic differentiated adipose-derived stem cells (ASCs) and microvascular endothelial cells (mvECs). In ASCs, EGF and HC are thought to inhibit adipogenic differentiation and have lipolytic activities. Our results showed that in indirect co-culture for 14 days, adipogenic differentiated ASCs further incorporated lipids and partly gained an univacuolar morphology when kept in media with low levels of EGF and HC. In media with high EGF and HC levels, cells did not incorporate further lipids, on the contrary, cells without lipid droplets appeared. Glycerol release, to measure lipolysis, also increased with elevated amounts of EGF and HC in the culture medium. Adipogenic differentiated ASCs were able to release leptin in all setups. MvECs were functional and expressed the cell specific markers, CD31 and von Willebrand factor (vWF), independent of the EGF and HC content as long as further EC specific factors were present. Taken together, our study demonstrates that adipogenic differentiated ASCs can be successfully co-cultured with mvECs in a culture medium containing low or no amounts of EGF and HC, as long as further endothelial cell and adipocyte specific factors are available. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions

    USDA-ARS?s Scientific Manuscript database

    The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic d...

  5. Increased adipogenicity of cells from regenerating skeletal muscle.

    PubMed

    Yamanouchi, Keitaro; Yada, Erica; Ishiguro, Naomi; Hosoyama, Tohru; Nishihara, Masugi

    2006-09-10

    Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.

  6. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakudo, Natsuko; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of humanmore » ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.« less

  7. [INFLUENCE OF INHIBITION OF ACTIN POLYMERIZATION ON ADIPOGENIC DIFFERENTIATION OF RAT Achilles-DERIVED TENDON STEM CELLS IN VITRO].

    PubMed

    Chen, Bo; Tang, Kanglai; Zhang, Jiqiang; Guo, Yupeng; Liu, Xiangzhou; Shi, Youxin

    2015-02-01

    To investigate the effect of cytoskeleton modification on the adipogenic differentiation of rat Achilles-derived tendon stem cells (TSCs) in vitro. TSCs were isolated from the tendon tissue of male Sprague Dawley rats (aged 3 weeks) by enzymatic digestion method and cultured for 3 passages. After the 3rd passage cells were cultured with DMEM medium containing 15% fetal bovine serum and cytochalasin D (CYD) at the concentrations of 0, 50, 100, 500, and 1 000 ng/mL, the cell survival condition and morphology changes were observed by inverted phase contrast microscope, the cytoskeleton was observed through fibrous actin (F-actin) staining, and the ratio of F-actin/ soluble globular actin (G-actin) was detected and calculated through Western blot. According to the above results, the effective concentration of CYD was selected and used for next experiments. After TSCs were cultured for 3 and 7 days respectively with adipogenic induction media (induction group), adipogenic induction media containing CYD (CYD+induction group), ordinary medium (ordinary group), and ordinary medium containing CYD (CYD+ordinary group), the real-time quantitative PCR (qRT-PCR) and Western blot were carried out to measure the mRNA and protein expressions of adipogenic differentiation-related markers, including peroxisome proliferator-activated receptor y (PPARγ), lipoprotein lipase (LPL), and fatty acid binding protein (aP2). The final CYD concentration of 100 ng/mL can inhibit effectively G-actin polymerization into F-actin, but could not affect TSCs survival, which was used for next experiments. qRT-PCR and Western blot suggested that the mRNA expressions of PPARγ, LPL, and aP2 and the protein expressions of PPARγ and aP2 were increased significantly in the CYD+induction group at 3 and 7 days when compared with the induction group (P < 0.05). In the CYD+ordinary group, there still was a significant increase in the mRNA expressions of PPARγ, LPL, and aP2 when compared with the ordinary

  8. Effect of gold nanoparticles on adipogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Kohl, Yvonne; Gorjup, Erwin; Katsen-Globa, Alisa; Büchel, Claudia; von Briesen, Hagen; Thielecke, Hagen

    2011-12-01

    Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4-21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.

  9. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de; Navarrete Santos, Anne; Navarrete Santos, Alexander

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study,more » we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.« less

  10. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cellsmore » were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18

  11. Prmt7 is dispensable in tissue culture models for adipogenic differentiation.

    PubMed

    Hu, Yu-Jie; Sif, Saïd; Imbalzano, Anthony N

    2013-01-01

    Protein arginine methylation is a common posttranslational modification that has been implicated in numerous biological processes including gene expression. The mammalian genome encodes nine protein arginine methyltransferases (Prmts) that catalyze monomethylation, asymmetric dimethylation, and symmetric dimethylation on arginine residues. Protein arginine methyltransferase 7 (Prmt7) is categorized as a type II and type III enzyme that produces symmetric dimethylated arginine and monomethylated arginine, respectively. However, the biological role of Prmt7 is not well characterized. We previously showed that Prmt5, a type II Prmt that associates with Brg1-based SWI/SNF chromatin remodeling complex, is required for adipocyte differentiation. Since Prmt7 also associates with Brg1-based SWI/SNF complex and modifies core histones, we hypothesized that Prmt7 might play a role in transcriptional regulation of adipogenesis. In the present study, we determined that the expression of Prmt7 did not change throughout adipogenic differentiation of C3H10T1/2 mesenchymal cells. Knockdown or over-expression of Prmt7 had no effect on lipid accumulation or adipogenic gene expression in differentiating C3H10T1/2 cells or in C/EBPα-reprogrammed NIH3T3 fibroblasts. Based on these results, we conclude that Prmt7, unlike Prmt5, is dispensable for adipogenic differentiation in tissue culture models.

  12. Prmt7 is dispensable in tissue culture models for adipogenic differentiation

    PubMed Central

    Imbalzano, Anthony N.

    2013-01-01

    Protein arginine methylation is a common posttranslational modification that has been implicated in numerous biological processes including gene expression. The mammalian genome encodes nine protein arginine methyltransferases (Prmts) that catalyze monomethylation, asymmetric dimethylation, and symmetric dimethylation on arginine residues. Protein arginine methyltransferase 7 (Prmt7) is categorized as a type II and type III enzyme that produces symmetric dimethylated arginine and monomethylated arginine, respectively. However, the biological role of Prmt7 is not well characterized. We previously showed that Prmt5, a type II Prmt that associates with Brg1-based SWI/SNF chromatin remodeling complex, is required for adipocyte differentiation. Since Prmt7 also associates with Brg1-based SWI/SNF complex and modifies core histones, we hypothesized that Prmt7 might play a role in transcriptional regulation of adipogenesis. In the present study, we determined that the expression of Prmt7 did not change throughout adipogenic differentiation of C3H10T1/2 mesenchymal cells. Knockdown or over-expression of Prmt7 had no effect on lipid accumulation or adipogenic gene expression in differentiating C3H10T1/2 cells or in C/EBPα-reprogrammed NIH3T3 fibroblasts. Based on these results, we conclude that Prmt7, unlike Prmt5, is dispensable for adipogenic differentiation in tissue culture models. PMID:24715966

  13. The Role of Cellular Proliferation in Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Marquez, Maribel P; Alencastro, Frances; Madrigal, Alma; Jimenez, Jossue Loya; Blanco, Giselle; Gureghian, Alex; Keagy, Laura; Lee, Cecilia; Liu, Robert; Tan, Lun; Deignan, Kristen; Armstrong, Brian; Zhao, Yuanxiang

    2017-11-01

    Mitotic clonal expansion has been suggested as a prerequisite for adipogenesis in murine preadipocytes, but the precise role of cell proliferation during human adipogenesis is unclear. Using adipose tissue-derived human mesenchymal stem cells as an in vitro cell model for adipogenic study, a group of cell cycle regulators, including Cdk1 and CCND1, were found to be downregulated as early as 24 h after adipogenic initiation and consistently, cell proliferation activity was restricted to the first 48 h of adipogenic induction. Cell proliferation was either further inhibited using siRNAs targeting cell cycle genes or enhanced by supplementing exogenous growth factor, basic fibroblast growth factor (bFGF), at specific time intervals during adipogenesis. Expression knockdown of Cdk1 at the initiation of adipogenic induction resulted in significantly increased adipocytes, even though total number of cells was significantly reduced compared to siControl-treated cells. bFGF stimulated proliferation throughout adipogenic differentiation, but exerted differential effect on adipogenic outcome at different phases, promoting adipogenesis during mitotic phase (first 48 h), but significantly inhibiting adipogenesis during adipogenic commitment phase (days 3-6). Our results demonstrate that cellular proliferation is counteractive to adipogenic commitment in human adipogenesis. However, cellular proliferation stimulation can be beneficial for adipogenesis during the mitotic phase by increasing the population of cells capable of committing to adipocytes before adipogenic commitment.

  14. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.

  15. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  16. microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells.

    PubMed

    Hamam, Dana; Ali, Dalia; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M

    2015-02-15

    microRNAs (miRNAs) constitute complex regulatory network, fine tuning the expression of a myriad of genes involved in different biological and physiological processes, including stem cell differentiation. Mesenchymal stem cells (MSCs) are multipotent stem cells present in the bone marrow stroma, and the stroma of many other tissues, and can give rise to a number of mesoderm-type cells including adipocytes and osteoblasts, which form medullary fat and bone tissues, respectively. The role of bone marrow fat in bone mass homeostasis is an area of intensive investigation with the aim of developing novel approaches for enhancing osteoblastic bone formation through inhibition of bone marrow fat formation. A number of recent studies have reported several miRNAs that enhance or inhibit adipogenic differentiation of MSCs and with potential use in microRNA-based therapy to regulate adipogenesis in the context of treating bone diseases and metabolic disorders. The current review focuses on miRNAs and their role in regulating adipogenic differentiation of MSCs.

  17. Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells

    PubMed Central

    Ohlstein, Jason F; Strong, Amy L; McLachlan, John A; Gimble, Jeffrey M; Burow, Matthew E; Bunnell, Bruce A

    2016-01-01

    Exposure of humans to the endocrine disrupter bisphenol A (BPA) has been associated with increased weight and obesity. However, the mechanism(s) by which BPA increases adipose tissue in humans remains to be determined. The goal of this study was to determine the effects of BPA on adipogenesis of cultured human adipose stromal/stem cells (ASCs), precursors to mature adipocytes. ASCs from three donors were cultured for either 14 or 21 days in adipogenic differentiation media containing increasing concentrations of BPA (100 pM–10 μM). The extent of adipogenic differentiation in the ASCs was assessed by staining with Oil Red O to visualize adipogenic differentiation and then quantified by extraction and optical density measurement of the retained dye. BPA significantly enhanced adipogenesis at a concentration of 1 μM after 21 days of culture. Additionally, we found that BPA increased transcription of the estrogen receptor (ER (ESR1)) and that treatment with the ER antagonist ICI 182 780, blocked the effects of BPA, indicating that BPA may act via an ER-mediated pathway. The results of molecular analyses indicated that the expression of the adipogenesis-associated genes dual leucine zipper-bearing kinase (DLK (MAP3K12)), IGF1, CCAAT/enhancer-binding protein alpha (C/EBPα (CEBPA)), peroxisome proliferator-activated receptor gamma (PPARγ (PPARG)), and lipoprotein lipase (LPL) was temporally accelerated and increased by BPA. In summary, these results indicate that BPA significantly enhances adipogenesis in ASCs through an ER-mediated pathway at physiologically relevant concentrations. PMID:25143472

  18. The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA.

    PubMed

    Li, Ming; Xie, Zhongyu; Wang, Peng; Li, Jinteng; Liu, Wenjie; Tang, Su'an; Liu, Zhenhua; Wu, Xiaohua; Wu, Yanfeng; Shen, Huiyong

    2018-05-10

    Mesenchymal stem cells (MSCs) are important pluripotent stem cells and a major source of adipocytes in the body. However, the mechanism of adipogenic differentiation has not yet been completely elucidated. In this study, the long noncoding RNA GAS5 was found to be negatively correlated with MSC adipogenic differentiation. GAS5 overexpression negatively regulated adipocyte formation, whereas GAS5 knockdown had the opposite effect. Further mechanistic analyses using luciferase reporter assays revealed that GAS5 regulates the adipogenic differentiation of MSCs by acting as competing endogenous RNA (ceRNA) to sponge miR-18a, which promotes adipogenic differentiation. Mutation of the binding sites for GAS5 in miR-18a abolished the effect of the interaction. The miR-18a mimic and inhibitor reversed the negative regulatory effect of GAS5 on MSCs adipogenic differentiation. In addition, GAS5 inhibited miR-18a, which downregulates connective tissue growth factor (CTGF) expression, to negatively regulate the adipogenic differentiation of MSCs. Taken together, the results show that GAS5 serves as a sponge for miR-18a, inhibiting its capability to suppress CTGF protein translation and ultimately decreasing the adipogenic differentiation of MSCs. GAS5 is an important molecule involved in the adipogenic differentiation of MSCs and may contribute to the functional regulation and clinical applications of MSCs.

  19. Moringa oleifera Lam. improves lipid metabolism during adipogenic differentiation of human stem cells.

    PubMed

    Barbagallo, I; Vanella, L; Distefano, A; Nicolosi, D; Maravigna, A; Lazzarino, G; Di Rosa, M; Tibullo, D; Acquaviva, R; Li Volti, G

    2016-12-01

    Moringa oleifera Lam., a multipurpose tree, is used traditionally for its nutritional and medicinal properties. It has been used for the treatment of a variety of conditions, including inflammation, cancer and metabolic disorders. We investigated the effect of Moringa oleifera Lam. on adipogenic differentiation of human adipose-derived mesenchymal stem cells and its impact on lipid metabolism and cellular antioxidant systems. We showed that Moringa oleifera Lam. treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein 1 (UCP1), sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor alpha (PPARα), and coactivator 1 alpha (PGC1α). In addition, Moringa oleifera Lam. induces heme oxygenase-1 (HO-1), a well established protective and antioxidant enzyme. Finally Moringa oleifera Lam. significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Our results suggest that Moringa oleifera Lam. may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis.

  20. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    PubMed Central

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-01-01

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation. PMID:26204837

  1. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-07-22

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  2. Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells*

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Sen, Buer; Rubin, Janet; Pike, J. Wesley

    2016-01-01

    Terminal differentiation of multipotent stem cells is achieved through a coordinated cascade of activated transcription factors and epigenetic modifications that drive gene transcription responsible for unique cell fate. Within the mesenchymal lineage, factors such as RUNX2 and PPARγ are indispensable for osteogenesis and adipogenesis, respectively. We therefore investigated genomic binding of transcription factors and accompanying epigenetic modifications that occur during osteogenic and adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs). As assessed by ChIP-sequencing and RNA-sequencing analyses, we found that genes vital for osteogenic identity were linked to RUNX2, C/EBPβ, retinoid X receptor, and vitamin D receptor binding sites, whereas adipocyte differentiation favored PPARγ, retinoid X receptor, C/EBPα, and C/EBPβ binding sites. Epigenetic marks were clear predictors of active differentiation loci as well as enhancer activities and selective gene expression. These marrow-derived MSCs displayed an epigenetic pattern that suggested a default preference for the osteogenic pathway; however, these patterns were rapidly altered near the Adipoq, Cidec, Fabp4, Lipe, Plin1, Pparg, and Cebpa genes during adipogenic differentiation. Surprisingly, we found that these cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment, as assessed by staining, gene expression, and ChIP-quantitative PCR analysis. The osteogenic default pathway may be subverted during pathological conditions, leading to skeletal fragility and increased marrow adiposity during aging, estrogen deficiency, and skeletal unloading. Taken together, our data provide an increased mechanistic understanding of the epigenetic programs necessary for multipotent differentiation of MSCs that may prove beneficial in the development of therapeutic strategies. PMID:27402842

  3. Role of Alternative Polyadenylation during Adipogenic Differentiation: An In Silico Approach

    PubMed Central

    Spangenberg, Lucía; Correa, Alejandro; Dallagiovanna, Bruno; Naya, Hugo

    2013-01-01

    Post-transcriptional regulation of stem cell differentiation is far from being completely understood. Changes in protein levels are not fully correlated with corresponding changes in mRNAs; the observed differences might be partially explained by post-transcriptional regulation mechanisms, such as alternative polyadenylation. This would involve changes in protein binding, transcript usage, miRNAs and other non-coding RNAs. In the present work we analyzed the distribution of alternative transcripts during adipogenic differentiation and the potential role of miRNAs in post-transcriptional regulation. Our in silico analysis suggests a modest, consistent, bias in 3′UTR lengths during differentiation enabling a fine-tuned transcript regulation via small non-coding RNAs. Including these effects in the analyses partially accounts for the observed discrepancies in relative abundance of protein and mRNA. PMID:24143171

  4. Extracellular Purines Promote the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to the Osteogenic and Adipogenic Lineages

    PubMed Central

    Zini, Roberta; Rossi, Lara; Salvestrini, Valentina; Ferrari, Davide; Manfredini, Rossella; Lemoli, Roberto M.

    2013-01-01

    Extracellular nucleotides are potent signaling molecules mediating cell-specific biological functions, mostly within the processes of tissue damage and repair and flogosis. We previously demonstrated that adenosine 5′-triphosphate (ATP) inhibits the proliferation of human bone marrow-derived mesenchymal stem cells (BM-hMSCs), while stimulating, in vitro and in vivo, their migration. Here, we investigated the effects of ATP on BM-hMSC differentiation capacity. Molecular analysis showed that ATP treatment modulated the expression of several genes governing adipogenic and osteoblastic (ie, WNT-pathway-related genes) differentiation of MSCs. Functional studies demonstrated that ATP, under specific culture conditions, stimulated adipogenesis by significantly increasing the lipid accumulation and the expression levels of the adipogenic master gene PPARγ (peroxisome proliferator-activated receptor-gamma). In addition, ATP stimulated osteogenic differentiation by promoting mineralization and expression of the osteoblast-related gene RUNX2 (runt-related transcription factor 2). Furthermore, we demonstrated that ATP stimulated adipogenesis via its triphosphate form, while osteogenic differentiation was induced by the nucleoside adenosine, resulting from ATP degradation induced by CD39 and CD73 ectonucleotidases expressed on the MSC membrane. The pharmacological profile of P2 purinergic receptors (P2Rs) suggests that adipogenic differentiation is mainly mediated by the engagement of P2Y1 and P2Y4 receptors, while stimulation of the P1R adenosine-specific subtype A2B is involved in adenosine-induced osteogenic differentiation. Thus, we provide new insights into molecular regulation of MSC differentiation. PMID:23259837

  5. Heparan sulfates and the decrease of N-glycans promote early adipogenic differentiation rather than myogenesis of murine myogenic progenitor cells.

    PubMed

    Grassot, Vincent; Bouchatal, Amel; Da Silva, Anne; Chantepie, Sandrine; Papy-Garcia, Dulce; Maftah, Abderrahman; Gallet, Paul-François; Petit, Jean-Michel

    In vitro, extracted muscle satellite cells, called myogenic progenitor cells, can differentiate either in myotubes or preadipocytes, depending on environmental factors and the medium. Transcriptomic analyses on glycosylation genes during satellite cells differentiation into myotubes showed that 31 genes present a significant variation of expression at the early stages of murine myogenic progenitor cells (MPC) differentiation. In the present study, we analyzed the expression of 383 glycosylation related genes during murine MPC differentiation into preadipocytes and compared the data to those previously obtained during their differentiation into myotubes. Fifty-six glycosylation related genes are specifically modified in their expression during early adipogenesis. The variations correspond mainly to: a decrease of N-glycans, and of alpha (2,3) and (2,6) linked sialic acids, and to a high level of heparan sulfates. A high amount of TGF-β1 in extracellular media during early adipogenesis was also observed. It seems that the increases of heparan sulfates and TGF-β1 favor pre-adipogenic differentition of MPC and possibly prevent their myogenic differentiation. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  6. Long noncoding RNA H19 mediates LCoR to impact the osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188.

    PubMed

    Wang, Yijun; Liu, Wentao; Liu, Yadong; Cui, Jianli; Zhao, Zhiwei; Cao, Hui; Fu, Zhuo; Liu, Bin

    2018-04-16

    The research aimed to examine the expression of lncRNA H19, miR-188, and LCoR in mouse bone marrow stromal stem cells (mBMSCs), and to investigate the regulatory mechanism of lncRNA H19/miR-188/LCoR in osteogenic and adipogenic differentiation of mBMSCs. The expression of miR-188 in mBMSCs and osteogenesis induced mBMSCs was detected by stem-loop RT-PCR, while the expression of H19 and LCoR in mBMSCs and adipogenesis induced mBMSCs was examined by qRT-PCR. Luciferase reporter assay verified the targeted relationship between miR-188 and H19 or LCoR. Cell proliferation ability was determined by MTT assay, while cell surface markers of mBMSCs were analyzed via flow cytometry. Alkaline phosphatase staining and Alizarin red staining was utilized to detect the osteogenic differentiation capability of mBMSCs, whereas Oil red O staining was applied to examine the ability of adipogenic differentiation of mBMSCs. The expression of miR-188 was lower in osteogenesis induced mBMSCs compared with normal mBMSCs, while H19 and LCoR were downregulated in adipogenic induced mBMSCs. Si-H19 could significantly increase the mRNA level of miR-188. Meanwhile, miR-188 directly regulated LCoR in mBMSCs. Overexpression of miR-188 and knockdown of LCoR suppressed osteogenic differentiation and induced adipogenic differentiation in mBMSCs. Long noncoding RNA H19 mediates LCoR to regulate the balance between osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. © 2018 Wiley Periodicals, Inc.

  7. Comparative epigenetic influence of autologous versus fetal bovine serum on mesenchymal stem cells through in vitro osteogenic and adipogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fani, Nesa; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran

    Mesenchymal stem cells (MSCs) derived from bone marrow (BM) represents a useful source of adult stem cells for cell therapy and tissue engineering. MSCs are present at a low frequency in the BM; therefore expansion is necessary before performing clinical studies. Fetal bovine serum (FBS) as a nutritional supplement for in vitro culture of MSCs is a suitable additive for human cell culture, but not regarding subsequent use of these cells for clinical treatment of human patients due to the risk of viral and prion transmission as well as xenogeneic immune responses after transplantation. Recently, autologous serum (AS) has beenmore » as a supplement to replace FBS in culture medium. We compared the effect of FBS versus AS on the histone modification pattern of MSCs through in vitro osteogenesis and adipogenesis. Differentiation of stem cells under various serum conditions to a committed state involves global changes in epigenetic patterns that are critically determined by chromatin modifications. Chromatin immunoprecipitation (ChIP) coupled with real-time PCR showed significant changes in the acetylation and methylation patterns in lysine 9 (Lys9) of histone H3 on the regulatory regions of stemness (Nanog, Sox2, Rex1), osteogenic (Runx2, Oc, Sp7) and adipogenic (Ppar-γ, Lpl, adiponectin) marker genes in undifferentiated MSCs, FBS and AS. All epigenetic changes occurred in a serum dependent manner which resulted in higher expression level of stemness genes in undifferentiated MSCs compared to differentiated MSCs and increased expression levels of osteogenic genes in AS compared to FBS. Adipogenic genes showed greater expression in FBS compared to AS. These findings have demonstrated the epigenetic influence of serum culture conditions on differentiation potential of MSCs, which suggest that AS is possibly more efficient serum for osteogenic differentiation of MSCs in cell therapy purposes. - Highlights: • Bone marrow derived MSC could proliferate in AS as well as

  8. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes

    PubMed Central

    Lumbera, Wenchie Marie L.; dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-01-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat

  9. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes.

    PubMed

    Lumbera, Wenchie Marie L; Dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-03-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat

  10. [Regulation effects of liuwei dihuang pill, jingui shenqi pill, jiangu erxian pill containing serums on adipogenic and osteogenic differentiation-related genes expressions in the differentiation process of preadipocytes to osteoblasts].

    PubMed

    Cheng, Zhi-An; Han, Ling; Wei, Jian-An; Sun, Jing; Duan, Xiao-Dong

    2013-02-01

    To study the effects of Chinese medical recipes for invigorating Shen on rat bone marrow mesenchymal stem cells (BMSCs)-derived preadipocytes' differentiation to osteoblasts. The BMSCs were cultured using whole bone marrow adherence wall method. The BMSCs were induced to preadipocytes by classic chemical method. The osteogenic differentiation process of preadipocytes was intervened by Liuwei Dihuang Pill (LDP), Jingui Shenqi Pill (JSP), or Jiangu Erxian Pill (JEP)-containing serums (with the concentRation of 10%, on behalf of tonifying Shen yin, tonifying Shen yang, and tonifying Shen essence). Reverse transcription-real time fluorescent quantitative-PCR (RT real time qPCR) was used to detect RUNX2, ALP, BGP, BMP2, BMP4, SPP1, and IGF1 mRNA expressions of osteogenic differentiation-related genes, mRNA expressions of LPL, FABP4, and PPARgamma of adipogenic differentiation-related genes on the 6th, the 12th, and the 18th day. As for the osteogenic differentiation-related gene, when compared with the control group, there was no statistical difference in the gene expression level in the experimental groups on the 6th day (2.0 > Ratio > 0.5). On the 12th day, the mRNA expressions of IGF1 and Runx2 increased more significantly in the JSP group, with their relative quantification (Ratio) being 2.97 and 1.81 respectively. On the 18th day the IGF1 mRNA expression significantly increased, being the Ratio value of 3.74, 12.60, and 8.35, respectively, in the LDP group, the JSP group, and the JEP group. The SPP1 mRNA expression also significantly increased, with the Ratio value of 2.94, 3.18, and 2.62, respectively, in the LDP group, the JSP group, and the JEP group. As for adipogenic differentiation-related genes, on the 6th day, when compared with the control group, FABP4 mRNA expression significantly decreased in the LDP group and the JSP group (with the Ratio value of 0.47 and 0.40 respectively). The expression levels of other genes were all down-regulated, but not

  11. N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers.

    PubMed

    Hamouda, Houda; Ullah, Mujib; Berger, Markus; Sittinger, Michael; Tauber, Rudolf; Ringe, Jochen; Blanchard, Véronique

    2013-12-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are easy to isolate and expand, develop into several tissues, including fat, migrate to diseased organs, have immunosuppressive properties and secrete regenerative factors. This makes MSCs ideal for regenerative medicine. For application and regulatory purposes, knowledge of (bio)markers characterizing MSCs and their development stages is of paramount importance. The cell surface is coated with glycans that possess lineage-specific nature, which makes glycans to be promising candidate markers. In the context of soft tissue generation, we aimed to identify glycans that could be markers for MSCs and their adipogenically differentiated progeny. MSCs were isolated from human bone marrow, adipogenically stimulated for 15 days and adipogenesis was verified by staining the lipid droplets and quantitative real time polymerase chain reaction of the marker genes peroxisome proliferator-activated receptor gamma (PPARG) and fatty acid binding protein-4 (FABP4). Using matrix-assisted laser desorption-ionization-time of flight mass spectrometry combined with exoglycosidase digestions, we report for the first time the N-glycome of MSCs during adipogenic differentiation. We were able to detect more than 100 different N-glycans, including high-mannose, hybrid, and complex N-glycans, as well as poly-N-acetyllactosamine chains. Adipogenesis was accompanied by an increased amount of biantennary fucosylated structures, decreased amount of fucosylated, afucosylated tri- and tetraantennary structures and increased sialylation. N-glycans H6N5F1 and H7N6F1 were significantly overexpressed in undifferentiated MSCs while H3N4F1 and H5N4F3 were upregulated in adipogenically differentiated MSCs. These glycan structures are promising candidate markers to detect and distinguish MSCs and their adipogenic progeny.

  12. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts.

    PubMed

    Zhang, Yu; Yang, Jian-Hong

    2013-11-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, and osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma, adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation, which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence, suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia. © 2013 Wiley Periodicals, Inc.

  13. Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells.

    PubMed

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; Aluko, Rotimi E; Strappe, Padraig

    2015-10-15

    This study assessed the ability of canola protein isolate (CPI) and enzymatic hydrolysates (CPHs) to inhibit adipogenic differentiation of C3H10T1/2 murine mesenchymal stem cells in vitro. Cell viability was maintained at concentrations of 60 μg/ml of sample. Cells treated with Alcalase hydrolysate demonstrated a higher reduction in anti-adipogenic differentiation through quantitation by oil-red O staining. qPCR analysis showed that CPI and CPH-treated cells significantly inhibited PPARγ expression, a key transcription factor involved in adipocyte differentiation, as evident in an ∼ 60-80% fold reduction of PPARγ mRNA. Immunofluorescence staining for PPARγ protein also showed a reduced expression in some treated cells when compared to differentiated untreated cells. The 50% inhibition concentration (IC50) of CPI, CPHs and their membrane ultrafiltration fractions on pancreatic lipase (PL) activity ranged between 0.75 and 2.5 mg/ml, (p < 0.05) for the hydrolysed and unhydrolysed samples. These findings demonstrate that CPI and CPHs contain bioactive components which can modulate in vitro adipocyte differentiation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    PubMed

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  15. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  16. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Rui; Yao, Rui; Du, Juan

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stemmore » cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs. - Highlights: • Depletion of KDM2A enhances adipogenic/chondrogenic differentiation in SCAPs. • Depletion of KDM2A enhances the differentiation of SCAPs by activate SOX2 and NANOG. • Silence of KDM2A increases histone H3 Lysine 4 trimethylation in SOX2 and NANOG. • BCOR is co-factor of KDM2A involved in the differentiation regulation.« less

  17. A comparative study of metabolic state of stem cells during osteogenic and adipogenic differentiations via fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sandeep; Ou, Meng-Hsin; Kuo, Jean-Cheng; Chiou, Arthur

    2016-10-01

    Cellular metabolic state can serve as a biomarker to indicate the differentiation potential of stem cells into other specialized cell lineages. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was applied to determine the fluorescence lifetime and the amounts of the auto-fluorescent metabolic co-factor reduced nicotinamide adenine dinucleotide (NADH) to elucidate the cellular metabolism of human mesenchymal stem cells (hMSCs) in osteogenic and adipogenic differentiation processes. 2P-FLIM provides the free to protein-bound NADH ratio which can serve as the indicator of cellular metabolic state. We measured NADH fluorescence lifetime at 0, 7, and 14 days after hMSCs were induced for either osteogenesis or adipogenesis. In both cases, the average fluorescence lifetime increased significantly at day 14 (P < 0.001), while the ratio of free to protein-bound NADH ratio decreased significantly in 7- days (P < 0.001) and 14-days (P < 0.001). Thus, our results indicated a higher metabolic rate in both osteogenic and adipogenic differentiation processes when compared with undifferentiated hMSCs. This approach may be further utilized to study proliferation efficiency and differentiation potential of stem cells into other specialized cell lineages.

  18. Effects of water extract of Cajanus cajan leaves on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts.

    PubMed

    Zhang, Jinchao; Liu, Cuilian; Sun, Jing; Liu, Dandan; Wang, Peng

    2010-01-01

    The effects of water extract of Cajanus cajan (Linn.) Millsp. (Leguminosae) leaves (WECML) on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (BMSCs) and the adipocytic trans-differentiation of mouse primary osteoblasts (OBs) were studied. The results indicated that WECML promoted the proliferation of BMSCs and OBs at most concentrations. WECML promoted the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentrations of 0.1, 1, and 10 microg/mL, but inhibited the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentration of 0.01 microg/mL. WECML inhibited the adipogenic differentiation of BMSCs and adipocytic trans-differentiation of OBs at concentrations of 0.001, 0.1, 1, 10, and 100 microg/mL, but had no effects at concentration of 0.01 microg/mL. The results suggest that WECML has protective effects on bone and these protective effects may be mediated by decreasing adipocytic cell formation from BMSCs, which may promote the proliferation, differentiation, and mineralization function of OBs. The defined active ingredients in the WECML and the active mechanism need to be further studied.

  19. A Co-Drug of Butyric Acid Derived from Fermentation Metabolites of the Human Skin Microbiome Stimulates Adipogenic Differentiation of Adipose-Derived Stem Cells: Implications in Tissue Augmentation.

    PubMed

    Wang, Yanhan; Zhang, Lingjuan; Yu, Jinghua; Huang, Stephen; Wang, Zhenping; Chun, Kimberly Ann; Lee, Tammy Ling; Chen, Ying-Tung; Gallo, Richard L; Huang, Chun-Ming

    2017-01-01

    We show that Staphylococcus epidermidis, a commensal bacterium in the human skin microbiome, produces short-chain fatty acids by glycerol fermentation that can induce adipogenesis. Although the antimicrobial and anti-inflammatory activities of short-chain fatty acids have been previously well characterized, little is known about the contribution of short-chain fatty acids to the adipogenic differentiation of adipose-derived stem cells (ADSCs). We show that ADSCs differentiated into adipocytes and accumulated lipids in the cytoplasm when cultured with butyric acid, a principal short-chain fatty acid in the fermentation metabolites of S. epidermidis. Additionally, a co-drug, butyric acid 2-(2-butyryloxyethoxy) ethyl ester (BA-DEG-BA), released active butyric acid when it was intradermally injected into mouse ears and induced ADSC differentiation, characterized by an increased expression of cytoplasmic lipids and perilipin A. The BA-DEG-BA-induced adipogenic differentiation was mediated via peroxisome proliferator-activated receptor gamma. Furthermore, intradermal injection of ADSCs along with BA-DEG-BA into mouse ears markedly enhanced the adipogenic differentiation of ADSCs, leading to dermal augmentation. Our study introduces BA-DEG-BA as an enhancer of ADSC adipogenesis and suggests an integral interaction between the human skin microbiome and ADSCs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

    PubMed Central

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. Conclusions 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism. PMID:23336004

  1. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibiting miR-21/Spry1 functional axis.

    PubMed

    Yang, Nan; Li, Yang; Wang, Guang; Ding, Yin; Jin, Yan; Xu, Yiquan

    Periodontitis is a chronic infectious disease that leads to progressive destruction of periodontal tissue. Human periodontal ligament stem cells (PDLSCs) are the most favorable candidate for the reconstruction of tissues destroyed by periodontal diseases. PDLSCs derived from inflammatory microenvironment show attenuated differentiation potential, however the mechanism is still unclear. MicroRNAs (miRNAs) are a newly discovered class of posttranscriptional regulators, and they play key roles in regulating cell differentiation. Recent studies have demonstrated that inflammatory cytokines could regulate miRNAs and contribute to some inflammatory diseases. Tumor necrosis factor (TNF-α) is a potent negative regulator of cell differentiation. Elevated levels of TNF-α were confirmed to be associated with the severity of periodontal disease. Here, we found TNF-α inhibited the adipogenic and osteogenic differentiation of PDLSCs. Based on this, we hypothesized that TNF-α could participate in PDLSC differentiation by regulating miRNA signal pathway. Moreover, we demonstrated that the expression of miR-21 was suppressed by TNF-α in impaired adipogenic and osteogenic differentiation of PDLSCs. Upregulating miR-21 can partly rescue TNF-α-impaired adipogenesis and osteogenesis by repressing its target gene Spry1, suggested that miR-21/Spry1 functional axis plays critical role in PDLSC differentiation under inflammatory microenvironment. During adipogenesis and osteogenesis, TNF-α significantly increased Spry1 levels and overexpression of miR-21 dramatically decreased Spry1 levels in the presence of TNF-α, indicated important roles of miR-21 in modulating link between TNF-α and Spry1. Our findings introduce a molecular mechanism in which TNF-α suppresses adipogenic and osteogenic differentiation of PDLSCs by inhibiting miR-21/Spry1 functional axis. This study may indicate a molecular basis for novel therapeutic strategies against periodontitis and other inflammatory

  2. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells.

    PubMed

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg-Gly-Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration.

  3. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells

    PubMed Central

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898

  4. Commercial Fucoidans from Fucus vesiculosus Can Be Grouped into Antiadipogenic and Adipogenic Agents.

    PubMed

    Oliveira, Ruth Medeiros; Câmara, Rafael Barros Gomes; Monte, Jessyka Fernanda Santiago; Viana, Rony Lucas Silva; Melo, Karoline Rachel Teodosio; Queiroz, Moacir Fernandes; Filgueira, Luciana Guimarães Alves; Oyama, Lila Missae; Rocha, Hugo Alexandre Oliveira

    2018-06-04

    Fucus vesiculosus is a brown seaweed used in the treatment of obesity. This seaweed synthesizes various bioactive molecules, one of them being a sulfated polysaccharide known as fucoidan (FF). This polymer can easily be found commercially, and has antiadipogenic and lipolytic activity. Using differential precipitation with acetone, we obtained four fucoidan-rich fractions (F0.5/F0.9/F1.1/F2.0) from FF. These fractions contain different proportions of fucose:glucuronic acid:galactose:xylose:sulfate, and also showed different electrophoretic mobility and antioxidant activity. Using 3T3-L1 adipocytes, we found that all samples had lipolytic action, especially F2.0, which tripled the amount of glycerol in the cellular medium. Moreover, we observed that FF, F1.0, and F2.0 have antiadipogenic activity, as they inhibited the oil red staining by cells at 40%, 40%, and 50%, respectively. In addition, they decreased the expression of key proteins of adipogenic differentiation (C/EBPα, C/EBPβ, and PPARγ). However, F0.5 and F0.9 stimulated the oil red staining at 80% and increased the expression of these proteins. Therefore, these fucoidan fractions have an adipogenic effect. Overall, the data show that F2.0 has great potential to be used as an agent against obesity as it displays better antioxidant, lipolytic and antiadipogenic activities than the other fucoidan fractions that we tested.

  5. Inhibition of adipogenic differentiation by myostatin is alleviated by arginine supplementation in porcine-muscle-derived mesenchymal stem cells.

    PubMed

    Lei, Hulong; Yu, Bing; Yang, Xuerong; Liu, Zehui; Huang, Zhiqing; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2011-10-01

    Porcine mesenchymal stem cells in postnatal muscle have been demonstrated to differentiate into adipocytes. This increases adipocyte number and lipid accumulation, and is thought to be the origin of intramuscular fat. In this study, the effects of myostatin and arginine on adipogenic differentiation in mesenchymal stem cells derived from porcine muscle (pMDSCs) were investigated in vitro. Intracellular triglyceride levels were reduced by exogenous myostatin and increased by arginine supplementation or myostatin antibody (P<0.01). The inhibition of lipid accumulation by myostatin in pMDSCs was alleviated by arginine supplementation (P<0.01). Expression patterns of adipogenic transcription factors showed that exogenous myostatin suppressed PPARγ2 and aP2 expression (P<0.01), while supplemental arginine or myostatin antibody promoted ADD1 expression (P<0.01). Furthermore, compared with the addition of either myostatin protein or antibody alone, ADD1 and PPARδ expression were promoted by the combination of arginine and myostatin (P<0.01), and arginine combined with myostatin antibody promoted the expression of ADD1, PPARδ, C/EBPα, PPARγ2 and LPL in pMDSCs (P<0.05). These results suggest that myostatin inhibits adipogenesis in pMDSCs, and that this can be alleviated by arginine supplementation, at least in part, through promoting ADD1 and PPARδ expression.

  6. Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review

    PubMed Central

    Ruiz-Ojeda, Francisco Javier; Rupérez, Azahara Iris; Gomez-Llorente, Carolina; Gil, Angel; Aguilera, Concepción María

    2016-01-01

    Over the last several years, the increasing prevalence of obesity has favored an intense study of adipose tissue biology and the precise mechanisms involved in adipocyte differentiation and adipogenesis. Adipocyte commitment and differentiation are complex processes, which can be investigated thanks to the development of diverse in vitro cell models and molecular biology techniques that allow for a better understanding of adipogenesis and adipocyte dysfunction associated with obesity. The aim of the present work was to update the different animal and human cell culture models available for studying the in vitro adipogenic differentiation process related to obesity and its co-morbidities. The main characteristics, new protocols, and applications of the cell models used to study the adipogenesis in the last five years have been extensively revised. Moreover, we depict co-cultures and three-dimensional cultures, given their utility to understand the connections between adipocytes and their surrounding cells in adipose tissue. PMID:27376273

  7. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, Paola; Brini, Anna Teresa; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositelymore » involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our

  8. MiR-27a is Essential for the Shift from Osteogenic Differentiation to Adipogenic Differentiation of Mesenchymal Stem Cells in Postmenopausal Osteoporosis.

    PubMed

    You, Li; Pan, Ling; Chen, Lin; Gu, Wensha; Chen, Jinyu

    2016-01-01

    Osteoporosis is a progressive bone disease characterized by a decrease in bone mass and density, which results in an increased risk of fractures. Mesenchymal stem cells (MSCs) are progenitor cells that can differentiate into osteoblasts, osteocytes and adipocytes in bone and fat formation. A reduction in the differentiation of MSCs into osteoblasts contributes to the impaired bone formation observed in osteoporosis. MicroRNAs (miRNAs) play a regulatory role in osteogenesis and MSC differentiation. MiR-27a has been reported to be down-regulated in the development of osteoporosis and during adipogenic differentiation. In this study, a miRNA microarray analysis was used to investigate expression profiles of miRNA in the serum of osteoporotic patients and healthy controls and this data was validated by quantitative real-time PCR (qRT-PCR). MSCs isolated from human and mice with miR-27a inhibition or overexpression were induced to differentiate into osteoblasts or adipocytes. TargetScan and PicTar were used to predict the target gene of miR-27a. The mRNA or protein levels of several specific proteins in MSCs were detected using qRT-PCR or western blot analysis. Ovariectomized mice were used as in vivo model of human postmenopausal osteoporosis for bone mineral density measurement, micro-CT analysis and histomorphometric analysis. Here, we analyzed the role of miR-27a in bone metabolism. Microarray analysis indicated that miR-27a expression was significantly reduced in osteoporotic patients. Analysis on MSCs derived from patients with osteoporosis indicated that osteoblastogenesis was reduced, whereas adipogenesis was increased. MSCs that had undergone osteoblast induction showed a significant increase in miR-27a expression, whereas cells that had undergone adipocyte induction showed a significant decrease in miR-27a expression, indicating that miR-27a was essential for MSC differentiation. We demonstrated that myocyte enhancer factor 2 c (Mef2c), a transcription factor

  9. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network

    PubMed Central

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-01-01

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.03346.001 PMID:25163748

  10. Hyperglycemia Augments the Adipogenic Transdifferentiation Potential of Tenocytes and Is Alleviated by Cyclic Mechanical Stretch.

    PubMed

    Wu, Yu-Fu; Huang, Yu-Ting; Wang, Hsing-Kuo; Yao, Chung-Chen Jane; Sun, Jui-Sheng; Chao, Yuan-Hung

    2017-12-28

    Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPAR γ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy

  11. Hypoxia-inducible Factor-2α-dependent Hypoxic Induction of Wnt10b Expression in Adipogenic Cells*

    PubMed Central

    Park, Young-Kwon; Park, Bongju; Lee, Seongyeol; Choi, Kang; Moon, Yunwon; Park, Hyunsung

    2013-01-01

    Adipocyte hyperplasia and hypertrophy in obesity can lead to many changes in adipose tissue, such as hypoxia, metabolic dysregulation, and enhanced secretion of cytokines. In this study, hypoxia increased the expression of Wnt10b in both human and mouse adipogenic cells, but not in hypoxia-inducible factor (HIF)-2α-deficient adipogenic cells. Chromatin immunoprecipitation analysis revealed that HIF-2α, but not HIF-1α, bound to the Wnt10b enhancer region as well as upstream of the Wnt1 gene, which is encoded by an antisense strand of the Wnt10b gene. Hypoxia-conditioned medium (H-CM) induced phosphorylation of lipoprotein-receptor-related protein 6 as well as β-catenin-dependent gene expression in normoxic cells, which suggests that H-CM contains canonical Wnt signals. Furthermore, adipogenesis of both human mesenchymal stem cells and mouse preadipocytes was inhibited by H-CM even under normoxic conditions. These results suggest that O2 concentration gradients influence the formation of Wnt ligand gradients, which are involved in the regulation of pluripotency, cell proliferation, and cell differentiation. PMID:23900840

  12. Multiphoton fluorescence lifetime imaging of metabolic status in mesenchymal stem cell during adipogenic differentiation

    NASA Astrophysics Data System (ADS)

    Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.

    2016-03-01

    Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.

  13. Prostaglandin E2 signals white-to-brown adipogenic differentiation

    PubMed Central

    García-Alonso, Verónica; Clària, Joan

    2014-01-01

    The formation of new adipocytes from precursor cells is a crucial aspect of normal adipose tissue function. During the adipogenic process, adipocytes differentiated from mesenchymal stem cells give rise to two main types of fat: white adipose tissue (WAT) characterized by the presence of adipocytes containing large unilocular lipid droplets, and brown adipose tissue (BAT) composed by multilocular brown adipocytes packed with mitochondria. WAT is not only important for energy storage but also as an endocrine organ regulating whole body homeostasis by secreting adipokines and other mediators, which directly impact metabolic functions in obesity. By contrast, BAT is specialized in dissipating energy in form of heat and has salutary effects in combating obesity and associated disorders. Unfortunately, WAT is the predominant fat type, whereas BAT is scarce and located in discrete pockets in adult humans. Luckily, another type of brown adipocytes, called beige or brite (brown-in-white) adipocytes, with similar functions to those of “classical” brown adipocytes has recently been identified in WAT. In this review, a close look is given into the role of bioactive lipid mediators in the regulation of adipogenesis, with a special emphasis on the role of the microsomal prostaglandin E (PGE) synthase-1, a terminal enzyme in PGE2 biosynthesis, as a key regulator of white-to-brown adipogenesis in WAT. PMID:26317053

  14. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells

    NASA Astrophysics Data System (ADS)

    Marędziak, Monika; Śmieszek, Agnieszka; Tomaszewski, Krzysztof A.; Lewandowski, Daniel; Marycz, Krzysztof

    2016-01-01

    The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties.

  15. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhixiao; University of Chinese Academy of Science, Beijing 100049; Tang, Yuzhao

    Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early daysmore » (Day 1–3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events. - Highlights: • Molecular events occur in the early adipogenic differentiation stage of hMSCs are studied by SR-FTIR. • SR-FTIR data suggest that lipids may play an important role in hMSCs determination. • As potential biomarkers, lipids peaks can identify the state of cell in early differentiation stage at single-cell level.« less

  16. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunfeng; Li, Jihua; Zhu, Songsong

    Highlights: Black-Right-Pointing-Pointer Strontium ranelate (SrR) inhibits proliferation of BMMSCs. Black-Right-Pointing-Pointer SrR increases osteoblastic but decreases adipocytic differentiation of BMMSCs. Black-Right-Pointing-Pointer SrR increases expression of Runx2, BSP and OCN by BMMSCs in osteogenic medium. Black-Right-Pointing-Pointer SrR decreases expression of PPAR{gamma}, aP2/ALBP and LPL by BMMSCs in adipogenic medium. -- Abstract: Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability ofmore » BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0 mM Sr{sup 2+}) under osteogenic or adipogenic medium for 1 and 2 weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPAR{gamma}2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPAR{gamma} in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.« less

  17. Macromolecular Crowding Amplifies Adipogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells by Enhancing the Pro-Adipogenic Microenvironment

    PubMed Central

    Ang, Xiu Min; Lee, Michelle H.C.; Blocki, Anna; Chen, Clarice; Ong, L.L. Sharon; Asada, H. Harry; Sheppard, Allan

    2014-01-01

    The microenvironment plays a vital role in both the maintenance of stem cells in their undifferentiated state (niche) and their differentiation after homing into new locations outside this niche. Contrary to conventional in-vitro culture practices, the in-vivo stem cell microenvironment is physiologically crowded. We demonstrate here that re-introducing macromolecular crowding (MMC) at biologically relevant fractional volume occupancy during chemically induced adipogenesis substantially enhances the adipogenic differentiation response of human bone marrow-derived mesenchymal stem cells (MSCs). Both early and late adipogenic markers were significantly up-regulated and cells accumulated 25–40% more lipid content under MMC relative to standard induction cocktails. MMC significantly enhanced deposition of extracellular matrix (ECM), notably collagen IV and perlecan, a heparan sulfate proteoglycan. As a novel observation, MMC also increased the presence of matrix metalloproteinase −2 in the deposited ECM, which was concomitant with geometrical ECM remodeling typical of adipogenesis. This suggested a microenvironment that was richer in both matrix components and associated ligands and was conducive to adipocyte maturation. This assumption was confirmed by seeding undifferentiated MSCs on decellularized ECM deposited by adipogenically differentiated MSCs, Adipo-ECM. On Adipo-ECM generated under crowding, MSCs differentiated much faster under a classical differentiation protocol. This was evidenced throughout the induction time course, by a significant up-regulation of both early and late adipogenic markers and a 60% higher lipid content on MMC-generated Adipo-ECM in comparison to standard induction on tissue culture plastic. This suggests that MMC helps build and endow the nascent microenvironment with adipogenic cues. Therefore, MMC initiates a positive feedback loop between cells and their microenvironment as soon as progenitor cells are empowered to build and shape

  18. Anti-adipogenic effects of KD025 (SLx-2119), a ROCK2-specific inhibitor, in 3T3-L1 cells.

    PubMed

    Diep, Duy Trong Vien; Hong, Kyungki; Khun, Triyeng; Zheng, Mei; Ul-Haq, Asad; Jun, Hee-Sook; Kim, Young-Bum; Chun, Kwang-Hoon

    2018-02-06

    Adipose tissue is a specialized organ that synthesizes and stores fat. During adipogenesis, Rho and Rho-associated kinase (ROCK) 2 are inactivated, which enhances the expression of pro-adipogenic genes and induces the loss of actin stress fibers. Furthermore, pan ROCK inhibitors enhance adipogenesis in 3T3-L1 cells. Here, we show that KD025 (formerly known as SLx-2119), a ROCK2-specific inhibitor, suppresses adipogenesis in 3T3-L1 cells partially through a ROCK2-independent mechanism. KD025 downregulated the expression of key adipogenic transcription factors PPARγ and C/EBPα during adipogenesis in addition to lipogenic factors FABP4 and Glut4. Interestingly, adipogenesis was blocked by KD025 during days 1~3 of differentiation; after differentiation terminated, lipid accumulation was unaffected. Clonal expansion occurred normally in KD025-treated cells. These results suggest that KD025 could function during the intermediate stage after clonal expansion. Data from depletion of ROCKs showed that KD025 suppressed cell differentiation partially independent of ROCK's activity. Furthermore, no further loss of actin stress fibers emerged in KD025-treated cells during and after differentiation compared to control cells. These results indicate that in contrast to the pro-adipogenic effect of pan-inhibitors, KD025 suppresses adipogenesis in 3T3-L1 cells by regulating key pro-adipogenic factors. This outcome further implies that KD025 could be a potential anti-adipogenic/obesity agent.

  19. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoigawa, Yoshiaki; Juntendo University School of Medicine, Tokyo; Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes.more » We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.« less

  20. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner.

    PubMed

    Munir, Hafsa; Ward, Lewis S C; Sheriff, Lozan; Kemble, Samuel; Nayar, Saba; Barone, Francesca; Nash, Gerard B; McGettrick, Helen M

    2017-06-01

    Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646. © 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. The Role of the Progressive Ankylosis Protein (ANK) in Adipogenic/Osteogenic Fate Decision of Precursor Cells

    PubMed Central

    Minashima, Takeshi; Quirno, Martin; Lee, You Jin; Kirsch, Thorsten

    2017-01-01

    The progressive ankylosis protein (ANK) is a transmembrane protein that transports intracellular pyrophosphate (PPi) to the extracellular milieu. In this study we show increased fatty degeneration of the bone marrow of adult ank/ank mice, which lack a functional ANK protein. In addition, isolated bone marrow stromal cells (BMSCs) isolated from ank/ank mice showed a decreased proliferation rate and osteogenic differentiation potential, and an increased adipogenic differentiation potential compared to BMSCs isolated from wild type (WT) littermates. Wnt signaling pathway PCR array analysis revealed that Wnt ligands, Wnt receptors and Wnt signaling proteins that stimulate osteoblast differentiation were expressed at markedly lower levels in ank/ank BMSCs than in WT BMSCs. Lack of ANK function also resulted in impaired bone fracture healing, as indicated by a smaller callus formed and delayed bone formation in the callus site. Whereas 5 weeks after fracture, the fractured bone in WT mice was further remodeled and restored to original shape, the fractured bone in ank/ank mice was not fully restored and remodeled to original shape. In conclusion, our study provides evidence that ANK plays a critical role in the adipogenic/osteogenic fate decision of adult mesenchymal precursor cells. ANK functions in precursor cells are required for osteogenic differentiation of these cells during adult bone homeostasis and repair, whereas lack of ANK functions favors adipogenic differentiation. PMID:28286238

  2. Adipogenic Effects of a Combination of the Endocrine-Disrupting Compounds Bisphenol A, Diethylhexylphthalate, and Tributyltin

    PubMed Central

    Biemann, Ronald; Fischer, Bernd; Navarrete Santos, Anne

    2014-01-01

    Objective The food contaminants bisphenol A (BPA), diethylhexylphthalate (DEHP), and tributyltin (TBT) are potent endocrine-disrupting compounds (EDC) known to interfere with adipogenesis. EDC usually act in mixtures and not as single compounds. The aim of this study was to investigate the effects of a simultaneous exposure of BPA, DEHP, and TBT on mesenchymal stem cell differentiation into adipocytes. Methods Multipotent murine mesenchymal stem cells (C3H10T1/2) were exposed to EDC mixtures in high concentrations, i.e. MIX-high (10 µmol/l BPA, 100 µmol/l DEHP, 100 nmol/l TBT), and in environmentally relevant concentrations, i.e. MIX-low (10 nmol/l BPA, 100 nmol/l DEHP, 1 nmol/l TBT). The exposure was performed either for the entire culture time (0-12 days) or at distinct stages of adipogenic differentiation. At day 12 of cell culture, the amount of adipocytes, triglyceride content (TG), and adipogenic marker gene expression were analyzed. Results MIX-high increased the development of adipocytes and the expression of adipogenic marker genes independently of the exposure window. The total TG amount was not increased. The low-concentrated EDC mixture had no obvious impact on adipogenesis. Conclusion In EDC mixtures, the adipogenic effect of TBT and DEHP predominates single effects of BPA. Mixture effects of EDC are not deducible from single compound experiments. PMID:24503497

  3. Decreased RB1 mRNA, Protein, and Activity Reflect Obesity-Induced Altered Adipogenic Capacity in Human Adipose Tissue

    PubMed Central

    Moreno-Navarrete, José María; Petrov, Petar; Serrano, Marta; Ortega, Francisco; García-Ruiz, Estefanía; Oliver, Paula; Ribot, Joan; Ricart, Wifredo; Palou, Andreu; Bonet, Mª Luisa; Fernández-Real, José Manuel

    2013-01-01

    Retinoblastoma (Rb1) has been described as an essential player in white adipocyte differentiation in mice. No studies have been reported thus far in human adipose tissue or human adipocytes. We aimed to investigate the possible role and regulation of RB1 in adipose tissue in obesity using human samples and animal and cell models. Adipose RB1 (mRNA, protein, and activity) was negatively associated with BMI and insulin resistance (HOMA-IR) while positively associated with the expression of adipogenic genes (PPARγ and IRS1) in both visceral and subcutaneous human adipose tissue. BMI increase was the main contributor to adipose RB1 downregulation. In rats, adipose Rb1 gene expression and activity decreased in parallel to dietary-induced weight gain and returned to baseline with weight loss. RB1 gene and protein expression and activity increased significantly during human adipocyte differentiation. In fully differentiated adipocytes, transient knockdown of Rb1 led to loss of the adipogenic phenotype. In conclusion, Rb1 seems to play a permissive role for human adipose tissue function, being downregulated in obesity and increased during differentiation of human adipocytes. Rb1 knockdown findings further implicate Rb1 as necessary for maintenance of adipogenic characteristics in fully differentiated adipocytes. PMID:23315497

  4. Visfatin alters the cytokine and matrix-degrading enzyme profile during osteogenic and adipogenic MSC differentiation.

    PubMed

    Tsiklauri, Lali; Werner, Janina; Kampschulte, Marian; Frommer, Klaus W; Berninger, Lucija; Irrgang, Martina; Glenske, Kristina; Hose, Dirk; El Khassawna, Thaqif; Pons-Kühnemann, Jörn; Rehart, Stefan; Wenisch, Sabine; Müller-Ladner, Ulf; Neumann, Elena

    2018-06-13

    Age-related bone loss is associated with bone marrow adiposity. Adipokines (e.g. visfatin, resistin, leptin) are adipocyte-derived factors with immunomodulatory properties and might influence differentiation of bone marrow-derived mesenchymal stem cells (MSC) in osteoarthritis (OA) and osteoporosis. Thus, the presence of adipokines and MMPs in bone marrow and their effects on MSC differentiation were analyzed. MSC and RNA were isolated from femoral heads after hip replacement surgery of OA or osteoporotic femoral neck fracture (FF) patients. Bone structural parameters were evaluated by μCT. MSC were differentiated towards adipocytes or osteoblasts with/without adipokines. Gene expression (adipokines, bone marker genes, MMPs, TIMPs) and cytokine production was evaluated by realtime-PCR and ELISA. Matrix mineralization was quantified using Alizarin red S staining. μCT showed an osteoporotic phenotype of FF compared to OA bone (reduced trabecular thickness and increased ratio of bone surface vs. volume of solid bone). Visfatin and leptin were increased in FF vs OA. Visfatin induced the secretion of IL-6, IL-8, and MCP-1 during osteogenic and adipogenic differentiation. In contrast to resistin and leptin, visfatin increased MMP2 and MMP13 during Adipognesis. In osteogenically differentiated cells, MMPs and TIMPs were reduced by visfatin. Visfatin significantly increased matrix mineralization during osteogenesis, whereas collagen type I expression was reduced. Visfatin-mediated increase of matrix mineralization and reduced collagen type I expression could contribute to bone fragility. Visfatin is involved in impaired bone remodeling at the adipose tissue/bone interface through induction of proinflammatory factors and dysregulated MMP/TIMP balance during MSC differentiation. Copyright © 2018. Published by Elsevier Ltd.

  5. Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed.

    PubMed

    Ferroni, Letizia; Tocco, Ilaria; De Pieri, Andrea; Menarin, Martina; Fermi, Enrico; Piattelli, Adriano; Gardin, Chiara; Zavan, Barbara

    2016-05-01

    Pulsed electromagnetic field (PEMF) therapy has been documented to be an effective, non-invasive, safe treatment method for a variety of clinical conditions, especially in settings of recalcitrant healing. The underlying mechanisms on the different biological components of tissue regeneration are still to be elucidated. The aim of the present study was to characterize the effects of extremely low frequency (ELF)-PEMFs on commitment of mesenchymal stem cell (MSCs) culture system, through the determination of gene expression pattern and cellular morphology. Human MSCs derived from adipose tissue (ADSCs) were cultured in presence of adipogenic, osteogenic, neural, or glial differentiative medium and basal medium, then exposed to ELF-PEMFs daily stimulation for 21days. Control cultures were performed without ELF-PEMFs stimulation for all cell populations. Effects on commitment were evaluated after 21days of cultures. The results suggested ELF-PEMFs does not influence ADSCs commitment and does not promote adipogenic, osteogenic, neural or glial differentiation. However, ELF-PEMFs treatment on ADSCs cultured in osteogenic differentiative medium markedly increased osteogenesis. We concluded that PEMFs affect the osteogenic differentiation of ADSCs only if they are pre-commitment and that this therapy can be an appropriate candidate for treatment of conditions requiring an acceleration of repairing process. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPβ and Modulating Its Transcriptional Activity.

    PubMed

    Luo, Xin; Ryu, Keun Woo; Kim, Dae-Seok; Nandu, Tulip; Medina, Carlos J; Gupte, Rebecca; Gibson, Bryan A; Soccio, Raymond E; Yu, Yonghao; Gupta, Rana K; Kraus, W Lee

    2017-01-19

    Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification of proteins mediated by PARP family members, such as PARP-1. Although PARylation has been studied extensively, few examples of definitive biological roles for site-specific PARylation have been reported. Here we show that C/EBPβ, a key pro-adipogenic transcription factor, is PARylated by PARP-1 on three amino acids in a conserved regulatory domain. PARylation at these sites inhibits C/EBPβ's DNA binding and transcriptional activities and attenuates adipogenesis in various genetic and cell-based models. Interestingly, PARP-1 catalytic activity drops precipitously during the first 48 hr of differentiation, corresponding to a release of C/EBPβ from PARylation-mediated inhibition. This promotes the binding of C/EBPβ at enhancers controlling the expression of adipogenic target genes and continued differentiation. Depletion or chemical inhibition of PARP-1, or mutation of the PARylation sites on C/EBPβ, enhances these early adipogenic events. Collectively, our results provide a clear example of how site-specific PARylation drives biological outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Maintenance of human adipose derived stem cell (hASC) differentiation capabilities using a 3D culture.

    PubMed

    Lin, Ching-Yu; Huang, Chi-Hui; Wu, Yuan-Kun; Cheng, Nai-Chen; Yu, Jiashing

    2014-07-01

    In this study, 3D culture system for human adipose-derived stem cell (hASC) using a BioLevitator as the bioreactor for microcarrier-based cultures was established. During the culturing period, hASCs preferred to grow in crevices between microcarriers and a high viability was maintained even when reaching confluency. Adipogenic or osteogenic differential medium was used to induce hASCs and differential potentials of these cells were compared between 2D and 3D environments via RT-PCR and staining quantifications. CEBP/α gene expression was significant higher in 3D condition at day 21 (P < 0.05). Staining quantification indicates that cells cultured in 3D condition have significant better differentiation potential from day 14 to 21 for both adipogenic and osteogenic lineages (P < 0.01).

  8. Adipocyte induction of preadipocyte differentiation in a gradient chamber.

    PubMed

    Lai, Ning; Sims, James K; Jeon, Noo Li; Lee, Kyongbum

    2012-12-01

    Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution patterning, while supporting long-term culture and differentiation of preadipocytes. Solution patterning was confirmed by selectively staining a fraction of uniformly seeded preadipocytes. An adipogenic cocktail gradient was used to induce the differentiation of a fraction of uniformly seeded preadipocytes and establish a spatially defined coculture of adipocytes and preadipocytes. Varying the adipogenic cocktail gradient generated cocultures of preadipocytes and adipocytes with different compositions. Transient application of the cocktail gradient, followed by basal medium treatment showed a biphasic induction of differentiation. The two phases of differentiation correlated with a spatial gradient in adipocyte size. Our results provide in vitro data supporting the size-dependent release of preadipocyte differentiation factors by enlarged adipocytes. Prospectively, the coculture system developed in this study could facilitate controlled, yet physiologically meaningful studies on paracrine interactions between adipocytes and preadipocytes during adipose tissue development.

  9. Enamel Matrix Derivative has No Effect on the Chondrogenic Differentiation of Mesenchymal Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groeneveldt, Lisanne C.; Knuth, Callie; Witte-Bouma, Janneke

    2014-09-02

    Background: Treatment of large bone defects due to trauma, tumor resection, or congenital abnormalities is challenging. Bone tissue engineering using mesenchymal stem cells (MSCs) represents a promising treatment option. However, the quantity and quality of engineered bone tissue are not sufficient to fill large bone defects. The aim of this study was to determine if the addition of enamel matrix derivative (EMD) improves in vitro chondrogenic priming of MSCs to ultimately improve in vivo MSC mediated endochondral bone formation. Methods: MSCs were chondrogenically differentiated in 2.0 × 10{sup 5} cell pellets in medium supplemented with TGFβ3 in the absence ormore » presence of 1, 10, or 100 μg/mL EMD. Samples were analyzed for gene expression of RUNX2, Col II, Col X, and Sox9. Protein and glycoaminoglycan (GAG) production were also investigated via DMB assays, histology, and immunohistochemistry. Osteogenic and adipogenic differentiation capacity were also assessed. Results: The addition of EMD did not negatively affect chondrogenic differentiation of adult human MSCs. EMD did not appear to alter GAG production or expression of chondrogenic genes. Osteogenic and adipogenic differentiation were also unaffected though a trend toward decreased adipogenic gene expression was observed. Conclusion: EMD does not affect chondrogenic differentiation of adult human MSCs. As such the use of EMD in combination with chondrogenically primed MSCs for periodontal bone tissue repair is unlikely to have negative effects on MSC differentiation.« less

  10. Animal serum-free expansion and differentiation of human mesenchymal stromal cells.

    PubMed

    Felka, Tino; Schäfer, Richard; De Zwart, Peter; Aicher, Wilhelm K

    2010-04-01

    Mesenchymal stromal cells (MSC) are attracting increasing interest for possible application in cell therapies. Fetal calf serum (FCS) is widely utilized for cell culture, but its use in the context of clinical applications is associated with too many risks. Therefore we tested FCS-free media for the expansion and differentiation of MSC in compliance with the European good manufacturing practice (GMP) regulations for medicinal products. MSC expansion medium was modified by replacing FCS with human plasma and platelet extract. Cells were characterized according to the defined minimal criteria for multipotent MSC. For chondrogenic differentiation, serum-free micromass cultures were employed. For adipogenic and osteogenic differentiation, the FCS was replaced by human plasma. After 28 days of incubation in differentiation media, cells were analyzed by cytochemical and immunohistochemical staining. Furthermore, mRNA expression of chondrogenic, adipogenic and osteogenic markers was investigated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Expansion and differentiation of MSC under FCS-free conditions yielded cells with chondrogenic, adipogenic and osteogenic phenotypes and a characteristic gene expression. Chondrocytes in micromass pellets revealed an accumulation of proteoglycans and type II collagen as well as a significantly increased mRNA expression of chondrogenic marker genes. The adipocytes displayed Oil red O staining and expressed peroxisome proliferator-activated receptor gamma(2) (ppARgamma2) and lipoprotein lipase (LPL) mRNA. The osteoblasts were positive for von Kossa staining and expressed mRNA of osteogenic marker genes. The results did not indicate any spontaneous differentiation. Human plasma is a suitable FCS replacement for the expansion and differentiation of MSC, providing a feasible alternative for tissue engineering with GMP-compatible protocols.

  11. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias

    2013-07-30

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.

  12. Antiadipogenic effects of subthermal electric stimulation at 448 kHz on differentiating human mesenchymal stem cells

    PubMed Central

    HERNÁNDEZ-BULE, MARÍA LUISA; MARTÍNEZ-BOTAS, JAVIER; TRILLO, MARÍA ÁNGELES; PAÍNO, CARLOS L; ÚBEDA, ALEJANDRO

    2016-01-01

    The 448 kHz capacitive-resistive electric transfer (CRET) is an electrothermal therapy currently applied in anticellulite and antiobesity treatments. The aim of the present study was to determine whether exposure to the CRET electric signal at subthermal doses affected early adipogenic processes in adipose-derived stem cells (ADSC) from human donors. ADSC were incubated for 2 or 9 days in the presence of adipogenic medium, and exposed or sham-exposed to 5 min pulses of 448 kHz electric signal at 50 µA/mm2 during the last 48 h of the incubation. Colorimetric, immunofluorescence, western blotting and reverse transcription-quantitative polymerase chain reaction assays were performed to assess adipogenic differentiation of the ADSC. Electric stimulation significantly decreased cytoplasmic lipid content, after both 2 and 9 days of differentiation. The antiadipogenic response in the 9 day samples was accompanied by activation of mitogen-activated protein kinase kinase 1/2, decreased expression and partial inactivation of peroxisome proliferator-activated receptor (PPAR) γ, which was translocated from the nucleus to the cytoplasm, together with a significant decrease in the expression levels of the PPARG1 gene, perilipin, angiopoietin-like protein 4 and fatty acid synthase. These results demonstrated that subthermal stimulation with CRET interferes with the early adipogenic differentiation in ADSC, indicating that the electric stimulus itself can modulate processes controlling the synthesis and mobilization of fat, even in the absence of the concomitant thermal and mechanical components of the thermoelectric therapy CRET. PMID:27035334

  13. Bioactive quinone derivatives from the marine brown alga Sargassum thunbergii induce anti-adipogenic and pro-osteoblastogenic activities.

    PubMed

    Kim, Jung-Ae; Karadeniz, Fatih; Ahn, Byul-Nim; Kwon, Myeong Sook; Mun, Ok-Ju; Bae, Min Joo; Seo, Youngwan; Kim, Mihyang; Lee, Sang-Hyeon; Kim, Yuck Yong; Mi-Soon, Jang; Kong, Chang-Suk

    2016-02-01

    Health problems related to the lack of bone formation are a major problem for ageing populations in the modern world. As a part of the ongoing trend to develop natural substances that attenuate bone loss in osteoporosis, the effects of the edible brown alga Sargassum thunbergii and its active contents on adipogenic differentiation in 3T3-L1 fibroblasts and osteoblast differentiation in MC3T3-E1 pre-osteoblasts were evaluated. Treatment with S. thunbergii significantly reduced lipid accumulation and expression of adipogenic differentiation markers such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α and sterol regulatory element binding protein 1c. In addition, S. thunbergii successfully enhanced osteoblast differentiation as indicated by increased alkaline phosphatase activity along raised levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin and collagen type I. Two compounds, sargaquinoic and sargahydroquinoic acid, were isolated from active extract and shown to be active by means of osteogenesis inducement. S. thunbergii could be a source for functional food ingredients for improved treatment of osteoporosis and obesity. © 2015 Society of Chemical Industry.

  14. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells

    PubMed Central

    Li, Chunmei; Luo, Tingting; Zheng, Zhaozhu; Murphy, Amanda R.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    Curcumin, a natural phenolic compound derived from the plant Curcuma longa, was physically entrapped and stabilized in silk hydrogel films and its influence on human bone marrow-derived mesenchymal stem cells (hBMSCs) was assessed related to adipogenic differentiation. The presence of curcumin significantly reduced silk gelation time and changed the porous morphology of gel matrix, but did not change the formation of silk beta-sheet structure. Based on spectrofluorimetric analysis, curcumin likely interacted with hydrophobic residues in silk, interacting with the beta-sheet domains formed in the hydrogels. The antioxidant activity of silk film-associated curcumin remained functional over at least one month in both the dry and hydrated state. Negligible curcumin was released from silk hydrogel films over 48 hours incubation in aqueous solution. For hBMSCs cultured on silk films containing more than 0.25 mg/mL curcumin, cell proliferation was inhibited while adipogenesis was significantly promoted based on transcripts as well as oil red O staining. When hBMSCs were cultured in media containing free curcumin, both proliferation and adipogenesis of hBMSCs were inhibited when curcumin concentrations exceeded 5 μM, which is more than 1,000-times higher than the level of curcumin released from the films in aqueous solution. Thus, silk film-associated curcumin exhibited different effects on hBMSC proliferation and differentiation when compared to curcumin in solution. PMID:25132274

  15. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin

    Highlights: Black-Right-Pointing-Pointer CBP sequence is identified from BSP and has collagen binding activity. Black-Right-Pointing-Pointer CBP directly activates the MAPK signaling, especially ERK1/2. Black-Right-Pointing-Pointer CBP increase osteoblastic differentiation by the activation of Runx2. Black-Right-Pointing-Pointer CBP decrease adipogenic differentiation by the inhibition of PPAR{gamma}. -- Abstract: Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Severalmore » recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor {gamma}. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken

  16. Increased adipogenic conversion of muscle satellite cells in obese Zucker rats.

    PubMed

    Scarda, A; Franzin, C; Milan, G; Sanna, M; Dal Prà, C; Pagano, C; Boldrin, L; Piccoli, M; Trevellin, E; Granzotto, M; Gamba, P; Federspil, G; De Coppi, P; Vettor, R

    2010-08-01

    Visceral and intermuscular adipose tissue (IMAT) depots account for most obesity-related metabolic and cardiovascular complications. Muscle satellite cells (SCs) are mesenchymal stem cells giving rise to myotubes and also to adipocytes, suggesting their possible contribution to IMAT origin and expansion. We investigated the myogenic differentiation of SCs and the adipogenic potential of both preadipocytes and SCs from genetically obese Zucker rats (fa/fa), focusing on the role of Wnt signaling in these differentiation processes. SCs were isolated by single-fiber technique from flexor digitorum brevis muscle and preadipocytes were extracted from subcutaneous adipose tissue (AT). Morphological features and gene expression profile were evaluated during in vitro myogenesis and adipogenesis. Wingless-type MMTV integration site family member 10b (Wnt10b) expression was quantified by quantitative PCR in skeletal muscle and AT. We did not observe any difference in the proliferation rate and in the myogenic differentiation of SCs from obese and lean rats. However, a decreased insulin-induced glucose uptake was present in myotubes originating from fa/fa rats. Under adipogenic conditions, preadipocytes and SCs of obese animals displayed an enhanced adipogenesis. Wnt10b expression was reduced in obese rats in both muscle and AT. Our data suggest that the increase in different fat depots including IMAT and the reduced muscle insulin sensitivity, the major phenotypical alteration of obese Zucker rats, could be ascribed to an intrinsic defect, either genetically determined or acquired, still present in both muscle and fat precursors. The involvement of Wnt10b as a regulator of both adipogenesis and muscle-to-fat conversion is suggested.

  17. Antiadipogenic effects of subthermal electric stimulation at 448 kHz on differentiating human mesenchymal stem cells.

    PubMed

    Hernández-Bule, María Luisa; Martínez-Botas, Javier; Trillo, María Ángeles; Paíno, Carlos L; Úbeda, Alejandro

    2016-05-01

    The 448 kHz capacitive‑resistive electric transfer (CRET) is an electrothermal therapy currently applied in anticellulite and antiobesity treatments. The aim of the present study was to determine whether exposure to the CRET electric signal at subthermal doses affected early adipogenic processes in adipose‑derived stem cells (ADSC) from human donors. ADSC were incubated for 2 or 9 days in the presence of adipogenic medium, and exposed or sham‑exposed to 5 min pulses of 448 kHz electric signal at 50 µA/mm2 during the last 48 h of the incubation. Colorimetric, immunofluorescence, western blotting and reverse transcription‑quantitative polymerase chain reaction assays were performed to assess adipogenic differentiation of the ADSC. Electric stimulation significantly decreased cytoplasmic lipid content, after both 2 and 9 days of differentiation. The antiadipogenic response in the 9 day samples was accompanied by activation of mitogen‑activated protein kinase kinase 1/2, decreased expression and partial inactivation of peroxisome proliferator‑activated receptor (PPAR) γ, which was translocated from the nucleus to the cytoplasm, together with a significant decrease in the expression levels of the PPARG1 gene, perilipin, angiopoietin‑like protein 4 and fatty acid synthase. These results demonstrated that subthermal stimulation with CRET interferes with the early adipogenic differentiation in ADSC, indicating that the electric stimulus itself can modulate processes controlling the synthesis and mobilization of fat, even in the absence of the concomitant thermal and mechanical components of the thermoelectric therapy CRET.

  18. Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo.

    PubMed

    Johnson, Jared S; Meliton, Vicente; Kim, Woo Kyun; Lee, Kwang-Bok; Wang, Jeffrey C; Nguyen, Khanhlinh; Yoo, Dongwon; Jung, Michael E; Atti, Elisa; Tetradis, Sotirios; Pereira, Renata C; Magyar, Clara; Nargizyan, Taya; Hahn, Theodore J; Farouz, Francine; Thies, Scott; Parhami, Farhad

    2011-06-01

    Stimulation of bone formation by osteoinductive materials is of great clinical importance in spinal fusion surgery, repair of bone fractures, and in the treatment of osteoporosis. We previously reported that specific naturally occurring oxysterols including 20(S)-hydroxycholesterol (20S) induce the osteogenic differentiation of pluripotent mesenchymal cells, while inhibiting their adipogenic differentiation. Here we report the characterization of two structural analogues of 20S, Oxy34 and Oxy49, which induce the osteogenic and inhibit the adipogenic differentiation of bone marrow stromal cells (MSC) through activation of Hedgehog (Hh) signaling. Treatment of M2-10B4 MSC with Oxy34 or Oxy49 induced the expression of osteogenic differentiation markers Runx2, Osterix (Osx), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN), as well as ALP enzymatic activity and robust mineralization. Treatment with oxysterols together with PPARγ activator, troglitazone (Tro), inhibited mRNA expression for adipogenic genes PPARγ, LPL, and aP2, and inhibited the formation of adipocytes. Efficacy of Oxy34 and Oxy49 in stimulating bone formation in vivo was assessed using the posterolateral intertransverse process rat spinal fusion model. Rats receiving collagen implants with Oxy 34 or Oxy49 showed comparable osteogenic efficacy to BMP2/collagen implants as measured by radiography, MicroCT, and manual inspection. Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopedic indications requiring local bone formation. Copyright © 2011 Wiley-Liss, Inc.

  19. Antioxidant and Anti-Adipogenic Activities of Trapa japonica Shell Extract Cultivated in Korea

    PubMed Central

    Lee, DooJin; Lee, Ok-Hwan; Choi, Geunpyo; Kim, Jong Dai

    2017-01-01

    Trapa japonica shell contains phenolic compounds such as tannins. Studies regarding the antioxidant and anti-adipogenic effects of Trapa japonica shell cultivated in Korea are still unclear. Antioxidant and anti-adipogenic activities were measured by in vitro assays such as 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, 2,2′-azinobis( 3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing ability of plasma assay, reducing power, superoxide dismutase-like activity, and iron chelating ability in 3T3-L1 cells. We also measured the total phenol and flavonoids contents (TPC and TFC, respectively) in Trapa japonica shell extract. Our results show that TPC and TFC of Trapa japonica shell extract were 157.7±0.70 mg gallic acid equivalents/g and 25.0±1.95 mg quercetin equivalents/g, respectively. Trapa japonica shell extract showed strong antioxidant activities in a dose-dependent manner in DPPH and ABTS radical scavenging activities and other methods. Especially, the whole antioxidant activity test of Trapa japonica shell extract exhibited higher levels than that of butylated hydroxytoluene as a positive control. Furthermore, Trapa japonica shell extract inhibited lipid accumulation and reactive oxygen species production during the differentiation of 3T3-L1 preadipocytes. Trapa japonica shell extract possessed a significant antioxidant and anti-adipogenic property, which suggests its potential as a natural functional food ingredient. PMID:29333386

  20. Adipogenic Signaling in Rat White Adipose Tissue: Modulation by Aging and Calorie Restriction

    PubMed Central

    Zhu, Min; Lee, Garrick D.; Ding, Liusong; Hu, Jingping; Qiu, Guang; de Cabo, Rafa; Bernier, Michel; Ingram, Donald K.; Zou, Sige

    2007-01-01

    Alterations in adipogenesis could have significant impact on several aging processes. We previously reported that calorie restriction (CR) in rats significantly increases the level of circulating adiponectin, a distinctive marker of differentiated adipocytes, leading to a concerted modulation in the expression of key transcription target genes and, as a result, to increased fatty acid oxidation and reduced deleterious lipid accumulation in other tissues. These findings led us to investigate further the effects of aging on adipocytes and to determine how CR modulates adipogenic signaling in vivo. CR for 2 and 25 months, significantly increased the expression of PPARγ, C/EBPβ and Cdk-4, and partially attenuated age-related decline in C/EBPα expression relative to rats fed ad libitum (AL). As a result, adiponectin was upregulated at both mRNA and protein levels, resulting in activation of target genes involved in fatty acid oxidation and fatty acid synthesis, and greater responsiveness of adipose tissue to insulin. Moreover, CR significantly decreased the ratio of C/EBPß isoforms LAP/LIP, suggesting the suppression of gene transcription associated with terminal differentiation while facilitating preadipocytes proliferation. Morphometric analysis revealed a greater number of small adipocytes in CR relative to AL feeding. Immunostaining confirmed that small adipocytes were more strongly positive for adiponectin than the large ones. Overall these results suggest that CR increased the expression of adipogenic factors, and maintained the differentiated state of adipocytes, which is critically important for adiponectin biosynthesis and insulin sensitivity. PMID:17624709

  1. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP).

    PubMed

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2012-03-09

    Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor γ. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a novel CBP could be a useful candidate for regenerating bone and treating osteoporosis, which result from an imbalance in osteogenesis and adipogenesis differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. 21 CFR 866.2320 - Differential culture medium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...

  3. 21 CFR 866.2320 - Differential culture medium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...

  4. 21 CFR 866.2320 - Differential culture medium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...

  5. 21 CFR 866.2320 - Differential culture medium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...

  6. 21 CFR 866.2320 - Differential culture medium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Differential culture medium. 866.2320 Section 866.2320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture...

  7. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes

    PubMed Central

    Colitti, Monica; Stefanon, Bruno

    2016-01-01

    Several natural compounds exhibit strong capacity for decreasing triglyceride accumulation, enhancing lipolysis and inducing apoptosis. The present study reports the anti-adipogenic effects of Silybum marianum (SL), Citrus aurantium (CA), Taraxacum officinale (TO), resveratrol (RE), Curcuma longa (CU), caffeine (CF), oleuropein (OL) and docosahexaenoic acid (DHA) in reducing differentiation and increasing lipolysis and apoptosis. Analyses were performed on human primary visceral pre-adipocytes after 10 (P10) and 20 (P20) days of treatment during differentiation and on mature adipocytes after 7 days of treatment (A7). The percentage of apoptosis induced by TO extract in P10 and P20 cells was significantly higher than that induced by all other compounds and in CTRL cells. Triglyceride accumulation was significantly lower in cells treated with DHA, CF, RE in comparison to cells treated with OL and in CTRL cells. Treatments with CF, DHA and OL significantly incremented lipolysis in P20 cells in comparison to other compounds and in CTRL cells. On the contrary, the treatment of A7 cells with OL, CA and TO compounds significantly increased cell lipolysis. The addition of CF in differentiating P20 pre-adipocytes significantly increased the expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT1, WNT3A, SFRP5, and DLK1. Genes involved in promoting adipogenesis such as CCND1, CEBPB and SREBF1 were significantly down-regulated by the treatment. The screening of bioactive compounds for anti-adipogenic effects showed that in differentiating cells TO extract was the most effective in inducing apoptosis and CF and DHA extracts were more efficient in inhibition of differentiation and in induction of cell lipolysis. PMID:27540349

  8. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de; Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de; Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, andmore » CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC

  9. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease

    PubMed Central

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E.; Zhang, Liping

    2016-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD) but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We have identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. PMID:27653838

  10. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    PubMed

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  11. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling.

    PubMed

    Zhou, Jie; Wang, Shan; Qi, Qi; Yang, Xiaoyue; Zhu, Endong; Yuan, Hairui; Li, Xuemei; Liu, Ying; Li, Xiaoxia; Wang, Baoli

    2017-05-01

    Nuclear factor I-C (NFIC) has recently been identified as an important player in osteogenesis and bone homeostasis in vivo However, the molecular mechanisms involved have yet to be defined. In the current study, Nfic expression was altered in primary marrow stromal cells and established progenitor lines after adipogenic and osteogenic treatment. Overexpression of Nfic in stromal cells ST2, mesenchymal cells C3H10T1/2, and primary marrow stromal cells inhibited adipogenic differentiation, whereas it promoted osteogenic differentiation. Conversely, silencing of endogenous Nfic in the cell lines enhanced adipogenic differentiation, whereas it blocked osteogenic differentiation. Mechanism investigations revealed that Nfic overexpression promoted nuclear translocation of β-catenin and increased nuclear protein levels of β-catenin and transcription factor 7-like 2 (TCF7L2). Promoter studies and the chromatin immunoprecipitation (ChIP) assay revealed that NFIC directly binds to the promoter of low-density lipoprotein receptor-related protein 5 (Lrp5) and thereafter transactivates the promoter. Finally, inactivation of canonical Wnt signaling in ST2 attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by NFIC. Our study suggests that NFIC balances adipogenic and osteogenic differentiation from progenitor cells through controlling canonical Wnt signaling and highlights the potential of NFIC as a target for new therapies to control metabolic disorders like osteoporosis and obesity.-Zhou, J., Wang, S., Qi, Q., Yang, X., Zhu, E., Yuan, H., Li, X., Liu, Y., Li, X., Wang, B. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling. © FASEB.

  12. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E; Zhang, Liping

    2017-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD), but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin, which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes, indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Silk ionomers for encapsulation and differentiation of human MSCs

    PubMed Central

    Calabrese, Rossella; Kaplan, David L.

    2012-01-01

    The response of human bone marrow derived human mesenchymal stem cells (hMSCs) encapsulated in silk ionomer hydrogels was studied. Silk aqueous solutions with silk-poly-L-lysine or silk-poly-L-glutamate were formed into hydrogels via ultrasonication in situ with different net charges. hMSCs were encapsulated within the hydrogels and the impact of matrix charge was assessed over weeks in osteogenic, adipogenic and maintenance growth media. These modified silk charged polymers supported cell viability and proliferative potential, and the hMSCs were able to differentiate toward osteogenic or adipogenic lineages in the corresponding differentiation media. The silk/silk-poly-L-lysine hydrogels exhibited a positive effect on selective osteogenesis of hMSCs, inducing differentiation toward an osteogenic lineage even in the absence of osteogenic supplements, while also inhibiting adipogenesis. In contrast, silk/silk fibroin-poly-L-glutamate hydrogels supported both osteogenic and adipogenic differentiation of hMSCs when cultured under induction conditions. The results demonstrate the potential utility of silk-based ionomers in gel formats for hMSCs encapsulation and for directing hMSCs long term functional differentiation toward specific lineages. PMID:22824008

  14. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal

    PubMed Central

    Yu, Haiyang; Gan, Xueqi

    2017-01-01

    Low magnitude high frequency vibration (LMHFV) has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm), 15min/d, on multipotent stem cells (MSCs), which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs) and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis. PMID:28253368

  15. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study.

    PubMed

    Csaki, C; Matis, U; Mobasheri, A; Ye, H; Shakibaei, M

    2007-12-01

    Musculoskeletal diseases with osteochondrotic articular cartilage defects, such as osteoarthritis, are an increasing problem for humans and companion animals which necessitates the development of novel and improved therapeutic strategies. Canine mesenchymal stem cells (cMSCs) offer significant promise as a multipotent source for cell-based therapies and could form the basis for the differentiation and cultivation of tissue grafts to replace damaged tissue. However, no comprehensive analysis has been undertaken to characterize the ultrastructure of in vitro differentiated cMSCs. The main goal of this paper was to focus on cMSCs and to analyse their differentiation capacity. To achieve this aim, bone marrow cMSCs from three canine patients were isolated, expanded in monolayer culture and characterized with respect to their ability for osteogenic, adipogenic and chondrogenic differentiation capacities. cMSCs showed proliferative potential and were capable of osteogenic, adipogenic and chondrogenic differentiation. cMSCs treated with the osteogenic induction medium differentiated into osteoblasts, produced typical bone matrix components, beta1-integrins and upregulated the osteogenic specific transcription factor Cbfa-1. cMSCs treated with the adipogenic induction medium showed typical adipocyte morphology, produced adiponectin, collagen type I and beta1-integrins, and upregulated the adipogenic specific transcription factor PPAR-gamma. cMSCs treated with the chondrogenic induction medium exhibited a round to oval shape, produced a cartilage-specific extracellular matrix, beta1-integrins and upregulated the chondrogenic specific transcription factor Sox9. These results demonstrate, at the biochemical, morphological and ultrastructural levels, the multipotency of cMSCs and thus highlight their potential therapeutic value for cell-based tissue engineering.

  16. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage

    PubMed Central

    Singh, Lakshman; Brennan, Tracy A.; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Johnson, F. Brad; Pignolo, Robert J.

    2016-01-01

    Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors toward an adipogenic fate. PMID:26805026

  17. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage.

    PubMed

    Singh, Lakshman; Brennan, Tracy A; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Brad Johnson, F; Pignolo, Robert J

    2016-04-01

    Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors towards an adipogenic fate. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Excess fructose intake-induced hypertrophic visceral adipose tissue results from unbalanced precursor cell adipogenic signals.

    PubMed

    Zubiría, María G; Fariña, Juan P; Moreno, Griselda; Gagliardino, Juan J; Spinedi, Eduardo; Giovambattista, Andrés

    2013-11-01

    We studied the effect of feeding normal adult male rats with a commercial diet supplemented with fructose added to the drinking water (10% w/v; fructose-rich diet, FRD) on the adipogenic capacity of stromal-vascular fraction (SVF) cells isolated from visceral adipose tissue (VAT) pads. Animals received either the commercial diet or FRD ad libitum for 3 weeks; thereafter, we evaluated the in vitro proliferative and adipogenic capacities of their VAT SVF cells. FRD significantly increased plasma insulin, triglyceride and leptin levels, VAT mass/cell size, and the in vitro adipogenic capacity of SVF cells. Flow cytometry studies indicated that the VAT precursor cell population number did not differ between groups; however, the accelerated adipogenic process could result from an imbalance between endogenous pro- and anti-adipogenic SVF cell signals, which are clearly shifted towards the former. The increased insulin milieu and its intracellular mediator (insulin receptor substrate-1) in VAT pads, as well as the enhanced SVF cell expression of Zpf423 and peroxisome proliferator receptor-γ2 (all pro-adipogenic modulators), together with a decreased SVF cell concentration of anti-adipogenic factors (pre-adipocyte factor-1 and wingless-type MMTV-10b), strongly supports this assumption. We hypothesize that the VAT mass expansion recorded in FRD rats results from the combination of initial accelerated adipogenesis and final cell hypertrophy. It remains to be determined whether FRD administration over longer periods could perpetuate both processes, or whether cell hypertrophy itself remains responsible for a further VAT mass expansion, as observed in advanced/morbid obesity. © 2013 FEBS.

  19. Enhanced differentiation of mesenchymal stromal cells by three-dimensional culture and azacitidine

    PubMed Central

    Bae, Yoo-Jin; Kwon, Yong-Rim; Kim, Hye Joung; Lee, Seok

    2017-01-01

    Background Mesenchymal stromal cells (MSCs) are useful for cell therapy because of their potential for multilineage differentiation. However, MSCs that are expanded in traditional two-dimensional (2D) culture systems eventually lose their differentiation abilities. Therefore, we investigated whether azacitidine (AZA) supplementation and three-dimensional culture (3D) could improve the differentiation properties of MSCs. Methods 2D- or 3D-cultured MSCs which were prepared according to the conventional or hanging-drop culture method respectively, were treated with or without AZA (1 µM for 72 h), and their osteogenic and adipogenic differentiation potential were determined and compared. Results AZA treatment did not affect the cell apoptosis or viability in both 2D- and 3D-cultured MSCs. However, compared to conventionally cultured 2D-MSCs, AZA-treated 2D-MSCs showed marginally increased differentiation abilities. In contrast, 3D-MSCs showed significantly increased osteogenic and adipogenic differentiation ability. When 3D culture was performed in the presence of AZA, the osteogenic differentiation ability was further increased, whereas adipogenic differentiation was not affected. Conclusion 3D culture efficiently promoted the multilineage differentiation of MSCs, and in combination with AZA, it could help MSCs to acquire greater osteogenic differentiation ability. This optimized culture method can enhance the therapeutic potential of MSCs. PMID:28401097

  20. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    PubMed Central

    2009-01-01

    Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP. PMID:19216795

  1. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  2. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acidmore » binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.« less

  3. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells

    PubMed Central

    Tirkkonen, Laura; Halonen, Heidi; Hyttinen, Jari; Kuokkanen, Hannu; Sievänen, Harri; Koivisto, Anna-Maija; Mannerström, Bettina; Sándor, George K. B.; Suuronen, Riitta; Miettinen, Susanna; Haimi, Suvi

    2011-01-01

    Mechanical stimulation is an essential factor affecting the metabolism of bone cells and their precursors. We hypothesized that vibration loading would stimulate differentiation of human adipose stem cells (hASCs) towards bone-forming cells and simultaneously inhibit differentiation towards fat tissue. We developed a vibration-loading device that produces 3g peak acceleration at frequencies of 50 and 100 Hz to cells cultured on well plates. hASCs were cultured using either basal medium (BM), osteogenic medium (OM) or adipogenic medium (AM), and subjected to vibration loading for 3 h d–1 for 1, 7 and 14 day. Osteogenesis, i.e. differentiation of hASCs towards bone-forming cells, was analysed using markers such as alkaline phosphatase (ALP) activity, collagen production and mineralization. Both 50 and 100 Hz vibration frequencies induced significantly increased ALP activity and collagen production of hASCs compared with the static control at 14 day in OM. A similar trend was detected for mineralization, but the increase was not statistically significant. Furthermore, vibration loading inhibited adipocyte differentiation of hASCs. Vibration did not affect cell number or viability. These findings suggest that osteogenic culture conditions amplify the stimulatory effect of vibration loading on differentiation of hASCs towards bone-forming cells. PMID:21613288

  4. In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

    PubMed

    Xie, Lin; Zhang, Nan; Marsano, Anna; Vunjak-Novakovic, Gordana; Zhang, Yanru; Lopez, Mandi J

    2013-12-01

    Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.

  5. Substrate micropatterns produced by polymer demixing regulate focal adhesions, actin anisotropy, and lineage differentiation of stem cells.

    PubMed

    Vega, Sebastián L; Arvind, Varun; Mishra, Prakhar; Kohn, Joachim; Sanjeeva Murthy, N; Moghe, Prabhas V

    2018-06-12

    Stem cells are adherent cells whose multipotency and differentiation can be regulated by numerous microenvironmental signals including soluble growth factors and surface topography. This study describes a simple method for creating distinct micropatterns via microphase separation resulting from polymer demixing of poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) and polystyrene (PS). Substrates with co-continuous (ribbons) or discontinuous (islands and pits) PDTEC regions were obtained by varying the ratio of PDTEC and sacrificial PS. Human mesenchymal stem cells (MSCs) cultured on co-continuous PDTEC substrates for 3 days in bipotential adipogenic/osteogenic (AD/OS) induction medium showed no change in cell morphology but exhibited increased anisotropic cytoskeletal organization and larger focal adhesions when compared to MSCs cultured on discontinuous micropatterns. After 14 days in bipotential AD/OS induction medium, MSCs cultured on co-continuous micropatterns exhibited increased expression of osteogenic markers, whereas MSCs on discontinuous PDTEC substrates showed a low expression of adipogenic and osteogenic differentiation markers. Substrates with graded micropatterns were able to reproduce the influence of local underlying topography on MSC differentiation, thus demonstrating their potential for high throughput analysis. This work presents polymer demixing as a simple, non-lithographic technique to produce a wide range of micropatterns on surfaces with complex geometries to influence cellular and tissue regenerative responses. Gaining a better understanding of how engineered microenvironments influence stem cell differentiation is integral to increasing the use of stem cells and materials in a wide range of tissue engineering applications. In this study, we show the range of topography obtained by polymer demixing is sufficient for investigating how surface topography affects stem cell morphology and differentiation. Our findings show that co

  6. Different origin of adipogenic stem cells influences the response to antiretroviral drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibellini, Lara; De Biasi, Sara; Nasi, Milena

    Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence ofmore » different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50 μM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at

  7. Isolation, Characterization, Cryopreservation of Human Amniotic Stem Cells and Differentiation to Osteogenic and Adipogenic Cells

    PubMed Central

    Gholizadeh-Ghaleh Aziz, Shiva; Pashaei-Asl, Fatima; Fardyazar, Zahra; Pashaiasl, Maryam

    2016-01-01

    Human stem cells and progenitor cells can be used to treat cancer and replace dysfunctional cells within a tissue or organ. The objective of this study was to identify the appropriate cells type in regenerative medicine and targeted therapy. As an alternative to embryonic and bone marrow stem cells, we examined human amniotic fluid stem cells (hAFSCs), one of the potential source of multipotent stem cells isolated from both cell pellet (using single-stage method), and supernatant of human amniotic fluid. Source of isolation and unique property of the cells emphasize that these cells are one of the promising new tools in therapeutic field. Double sources for isolation and availability of the left over samples in diagnostic laboratory at the same time have less legal and ethical concerns compared with embryonic stem cell studies. Cells were isolated, cultured for 18th passage for 6 months and characterized using qPCR and flow cytometry. Cells showed good proliferative ability in culture condition. The cells successfully differentiated into the adipogenic and osteogenic lineages. Based on these findings, amniotic fluid can be considered as an appropriate and convenient source of human amniotic fluid stem cells. These cells provide potential tools for therapeutic applications in the field of regenerative medicine. To get a better understanding of crosstalk between Oct4/NANOG with osteogenesis and adipogenesis, we used network analysis based on Common Targets algorithm and Common Regulators algorithm as well as subnetwork discovery based on gene set enrichment. Network analysis highlighted the possible role of MIR 302A and MIR let-7g. We demonstrated the high expression of MIR 302A and low expression of MIR let7g in hAFSCs by qPCR. PMID:27434028

  8. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells

    PubMed Central

    Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés

    2016-01-01

    We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs. PMID:27049396

  9. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells.

    PubMed

    Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés

    2016-04-02

    We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs.

  10. Conditioned medium as a strategy for human stem cells chondrogenic differentiation.

    PubMed

    Alves da Silva, M L; Costa-Pinto, A R; Martins, A; Correlo, V M; Sol, P; Bhattacharya, M; Faria, S; Reis, R L; Neves, Nuno M

    2015-06-01

    Paracrine signalling from chondrocytes has been reported to increase the synthesis and expression of cartilage extracellular matrix (ECM) by stem cells. The use of conditioned medium obtained from chondrocytes for stimulating stem cells chondrogenic differentiation may be a very interesting alternative for moving into the clinical application of these cells, as chondrocytes could be partially replaced by stem cells for this type of application. In the present study we aimed to achieve chondrogenic differentiation of two different sources of stem cells using conditioned medium, without adding growth factors. We tested both human bone marrow-derived mesenchymal stem cells (hBSMCs) and human Wharton's jelly-derived stem cells (hWJSCs). Conditioned medium obtained from a culture of human articular chondrocytes was used to feed the cells during the experiment. Cultures were performed in previously produced three-dimensional (3D) scaffolds, composed of a blend of 50:50 chitosan:poly(butylene succinate). Both types of stem cells were able to undergo chondrogenic differentiation without the addition of growth factors. Cultures using hWJSCs showed significantly higher GAGs accumulation and expression of cartilage-related genes (aggrecan, Sox9 and collagen type II) when compared to hBMSCs cultures. Conditioned medium obtained from articular chondrocytes induced the chondrogenic differentiation of MSCs and ECM formation. Obtained results showed that this new strategy is very interesting and should be further explored for clinical applications. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Tributyltin and triphenyltin exposure promotes in vitro adipogenic differentiation but alters the adipocyte phenotype in rainbow trout.

    PubMed

    Lutfi, Esmail; Riera-Heredia, Natàlia; Córdoba, Marlon; Porte, Cinta; Gutiérrez, Joaquim; Capilla, Encarnación; Navarro, Isabel

    2017-07-01

    Numerous environmental pollutants have been identified as potential obesogenic compounds affecting endocrine signaling and lipid homeostasis. Among them, well-known organotins such as tributyltin (TBT) and triphenyltin (TPT), can be found in significant concentrations in aquatic environments. The aim of the present study was to investigate in vitro the effects of TBT and TPT on the development and lipid metabolism of rainbow trout (Onchorynchus mykiss) primary cultured adipocytes. Results showed that TBT and TPT induced lipid accumulation and slightly enhanced peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) protein expression when compared to a control, both in the presence or absence of lipid mixture. However, the effects were higher when combined with lipid, and in the absence of it, the organotins did not cause complete mature adipocyte morphology. Regarding gene expression analyses, exposure to TBT and TPT caused an increase in fatty acid synthase (fasn) mRNA levels confirming the pro-adipogenic properties of these compounds. In addition, when added together with lipid, TBT and TPT significantly increased cebpa, tumor necrosis factor alpha (tnfa) and ATP-binding cassette transporter 1 (abca1) mRNA levels suggesting a synergistic effect. Overall, our data highlighted that TBT and TPT activate adipocyte differentiation in rainbow trout supporting an obesogenic role for these compounds, although by themselves they are not able to induce complete adipocyte development and maturation suggesting that these adipocytes might not be properly functional. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells.

    PubMed

    Dias, Isabelle; Salviano, Ísis; Mencalha, André; de Carvalho, Simone Nunes; Thole, Alessandra Alves; Carvalho, Laís; Cortez, Erika; Stumbo, Ana Carolina

    2018-04-17

    Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.

  13. Rho kinase inhibitor Y-27632 promotes the differentiation of human bone marrow mesenchymal stem cells into keratinocyte-like cells in xeno-free conditioned medium.

    PubMed

    Li, Zhenzhen; Han, Shichao; Wang, Xingqin; Han, Fu; Zhu, Xiongxiang; Zheng, Zhao; Wang, Hongtao; Zhou, Qin; Wang, Yunchuan; Su, Linlin; Shi, Jihong; Tang, Chaowu; Hu, Dahai

    2015-03-11

    Bone marrow mesenchymal stem cells (BMSCs), which have the ability to self-renew and to differentiate into multiple cell types, have recently become a novel strategy for cell-based therapies. The differentiation of BMSCs into keratinocytes may be beneficial for patients with burns, disease, or trauma. However, the currently available cells are exposed to animal materials during their cultivation and induction. These xeno-contaminations severely limit their clinical outcomes. Previous studies have shown that the Rho kinase (ROCK) inhibitor Y-27632 can promote induction efficiency and regulate the self-renewal and differentiation of stem cells. In the present study, we attempted to establish a xeno-free system for the differentiation of BMSCs into keratinocytes and to investigate whether Y-27632 can facilitate this differentiation. BMSCs isolated from patients were cultured by using a xeno-free system and characterised by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. Human primary keratinocytes were also isolated from patients. Then, the morphology, population doubling time, and β-galactosidase staining level of these cells were evaluated in the presence or absence of Y-27632 to determine the effects of Y-27632 on the state of the keratinocytes. Keratinocyte-like cells (KLCs) were detected at different time points by immunocytofluorescence analysis. Moreover, the efficiency of BMSC differentiation under different conditions was measured by quantitative real-time-polymerase chain reaction (RT-PCR) and Western blot analyses. The ROCK inhibitor Y-27632 promoted the proliferation and lifespan of human primary keratinocytes. In addition, we showed that keratinocyte-specific markers could be detected in BMSCs cultured in a xeno-free system using keratinocyte-conditioned medium (KCM) independent of the presence of Y-27632. However, the efficiency of the differentiation of BMSCs into KLCs was significantly higher in the presence of Y

  14. A Citrus bergamia Extract Decreases Adipogenesis and Increases Lipolysis by Modulating PPAR Levels in Mesenchymal Stem Cells from Human Adipose Tissue

    PubMed Central

    Lo Furno, Debora; Avola, Rosanna; Bonina, Francesco; Mannino, Giuliana

    2016-01-01

    The aim of this research was to assess the impact of a well-characterized extract from Citrus bergamia juice on adipogenesis and/or lipolysis using mesenchymal stem cells from human adipose tissue as a cell model. To evaluate the effects on adipogenesis, some cell cultures were treated with adipogenic medium plus 10 or 100 μg/mL of extract. To determine the properties on lipolysis, additional mesenchymal stem cells were cultured with adipogenic medium for 14 days and after this time added with Citrus bergamia for further 14 days. To verify adipogenic differentiation, oil red O staining at 7, 14, 21, and 28 days was performed. Moreover, the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), adipocytes fatty acid-binding protein (A-FABP), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), monoglyceride lipase (MGL), 5′-adenosine monophosphate-activated protein kinase (AMPK)α1/2, and pAMPKα1/2 was evaluated by Western blot analysis and the release of glycerol by colorimetric assay. Citrus bergamia extract suppressed the accumulation of intracellular lipids in mesenchymal stem cells during adipogenic differentiation and promoted lipolysis by repressing the expression of adipogenic genes and activating lipolytic genes. Citrus bergamia extract could be a useful natural product for improving adipose mobilization in obesity-related disorders. PMID:27403151

  15. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penza, M.; Jeremic, M.; Marrazzo, E.

    2011-08-15

    Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimatedmore » human intake (0.5 {mu}g/kg). At higher doses (50-500 {mu}g/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ER{alpha} or ER{beta}, TBT (in a dose range of 1-100 nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ER{alpha} in undifferentiated preadipocytic cells and by ER{beta} in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed. - Research Highlights: > The environmental organotin tributyltin chloride shows dose-dependent estrogenic and adipogenic activities in mice. > The duration and extent of these effects depend on the sex and the dose of the compound. > The estrogenic and adipogenic effects of TBT occur at doses

  16. Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness.

    PubMed

    Baer, Patrick C; Griesche, Nadine; Luttmann, Werner; Schubert, Ralf; Luttmann, Arlette; Geiger, Helmut

    2010-01-01

    The potential of cultured adipose-derived stem cells (ASC) in regenerative medicine and new cell therapeutic concepts has been shown recently by many investigations. However, while the method of isolation of ASC from liposuction aspirates depending on plastic adhesion is well established, a standard expansion medium optimally maintaining the undifferentiated state has not been described. We cultured ASC in five commonly used culture media (two laboratory-made media and three commercially available media) and compared them with a standard medium. We analyzed the effects on cell morphology, proliferation, hepatocyte growth factor (HGF) expression, stem cell marker profile and differentiation potential. Proliferation was measured with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a fluorescent assay. Release of HGF was assessed by an immunoassay. Expression of characteristic stem cell-related transcription factors and markers was evaluated by quantitative polymerase chain reaction (qPCR) (Nanog, Sox-2, Rex-1, nestin and Oct-4) and flow cytometry (CD44, CD73, CD90, CD105 and CD166), and differentiation was shown by adipogenic medium. The morphology and expansion of ASC were significantly affected by the media used, whereas none of the media influenced the ASC potential to differentiate into adipocytes. Furthermore, two of the media induced an increase in expression of transcription factors, an increased secretion of HGF and a decrease in CD105 expression. Culture of ASC in one of these two media before using the cells in cell therapeutic approaches may have a benefit on their regenerative potential.

  17. Role of Ox-PAPCs in the Differentiation of Mesenchymal Stem Cells (MSCs) and Runx2 and PPARγ2 Expression in MSCs-Like of Osteoporotic Patients

    PubMed Central

    Valenti, Maria Teresa; Garbin, Ulisse; Pasini, Andrea; Zanatta, Mirko; Stranieri, Chiara; Manfro, Stefania; Zucal, Chiara; Dalle Carbonare, Luca

    2011-01-01

    Background Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and adipocytes and conditions causing bone loss may induce a switch from the osteoblast to adipocyte lineage. In addition, the expression of Runx2 and the PPARγ2 transcription factor genes is essential for cellular commitment to an osteogenic and adipogenic differentiation, respectively. Modified lipoproteins derived from the oxidation of arachidonate-containing phospholipids (ox-PAPCs: POVPC, PGPC and PEIPC) are considered important factors in atherogenesis. Methodology We investigated the effect of ox-PAPCs on osteogenesis and adipogenesis in human mesenchymal stem cells (hMSCs). In particular, we analyzed the transcription factor Runx2 and the PPARγ2 gene expression during osteogenic and adipogenic differentiation in absence and in presence of ox-PAPCs. We also analyzed gene expression level in a panel of osteoblastic and adipogenic differentiation markers. In addition, as circulating blood cells can be used as a “sentinel” that responds to changes in the macro- or micro-environment, we analyzed the Runx2 and the PPARγ2 gene expression in MSCs-like and ox-PAPC levels in serum of osteoporotic patients (OPs). Finally, we examined the effects of sera obtained from OPs in hMSCs comparing the results with age-matched normal donors (NDs). Principal findings Quantitative RT-PCR demonstrated that ox-PAPCs enhanced PPARγ2 and adipogenic gene expression and reduced Runx2 and osteoblast differentiation marker gene expression in differentiating hMSCs. In OPs, ox-PAPC levels and PPARγ2 expression were higher than in NDs, whereas Runx2 was lower than in ND circulant MSCs-like. Conclusions Ox-PAPCs affect the osteogenic differentiation by promoting adipogenic differentiation and this effect may appear involved in bone loss in OPs. PMID:21674037

  18. A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Nwamaioha, Nwadiuto O; Ibrahim, Salam A

    2018-06-01

    Modified reinforced clostridial medium (mRCM) was developed and evaluated for the differential enumeration of Lactobacillus delbrueckii ssp. bulgaricus. Lactobacillus bulgaricus, an important species of lactic acid bacteria with health benefits, is used in the production of yogurt and other fermented foods. Our results showed that supplementing reinforced clostridial medium with 0.025% CaCl 2 , 0.01% uracil, and 0.2% Tween 80 (mRCM) significantly enhanced the growth rate of L. bulgaricus RR and ATCC 11842 strains as measured by the optical densities of these strains after 12 h of incubation at 42°C. The bacterial populations (plate count) of the RR and ATCC 11842 strains were 0.76 and 0.77 log cfu/g higher in mRCM than in de Man, Rogosa, and Sharpe and reinforced clostridial medium media, respectively. Conversely, the population counts for other bacterial species (Bifidobacterium, Lactobacillus rhamnosus, and Lactobacillus reuteri) were significantly inhibited in the mRCM medium. The addition of aniline blue dye to mRCM (mRCM-blue) improved the selectivity of L. bulgaricus in mixed lactic bacterial cultures compared with de Man, Rogosa, and Sharpe medium and lactic agar with regard to colony appearance and morphology. The mRCM-blue performed better than the conventional medium in culturing, enumerating, and differentiating L. bulgaricus. Therefore, mRCM-blue could be used as a selective medium to enhance the growth and differentiation of L. bulgaricus in order to meet the increasing demand for this beneficial species of bacteria. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Tributyltin Differentially Promotes Development of a Phenotypically Distinct Adipocyte

    PubMed Central

    Regnier, Shane M.; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L.; Sargis, Robert M.

    2015-01-01

    Objective Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being pro-adipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. Methods The co-stimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. Results TBT enhanced expression of the adipocyte marker C/EBPα with co-exposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of co-treatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. Conclusions TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. PMID:26243053

  20. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells.

    PubMed

    Chen, Li; Hu, Huimin; Qiu, Weimin; Shi, Kaikai; Kassem, Moustapha

    2018-05-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) or treating the cells by Phalloidin reduced adipocyte differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating hMSCs by Cytochalasin D inhibited ERK and Smad2 signaling and this was associated with enhanced adipocyte differentiation. On the other hand, Phalloidin enhanced ERK and Smad2 signaling, but inhibited adipocyte differentiation which was rescued by ERK specific chemical inhibitor U0126. Our data provide a link between restructuring of hMSCs cytoskeleton and hMSCs lineage commitment and differentiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of silver nanoparticles on human mesenchymal stem cell differentiation

    PubMed Central

    Diendorf, Jörg; Epple, Matthias; Schildhauer, Thomas A; Köller, Manfred

    2014-01-01

    Summary Background: Silver nanoparticles (Ag-NP) are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or depending on the coating technique, silver in nanoparticle or ion form can be released and may come into close contact with tissues and cells. Despite incorporation of Ag-NP as an antibacterial agent in different products, the toxicological and biological effects of silver in the human body after long-term and low-concentration exposure are not well understood. In the current study, we investigated the effects of both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs) into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan. Results: As shown through laser scanning microscopy, Ag-NP with a size of 80 nm (hydrodynamic diameter) were taken up into hMSCs as nanoparticulate material. After 24 h of incubation, these Ag-NP were mainly found in the endo-lysosomal cell compartment as agglomerated material. Cytotoxicity was observed for differentiated or undifferentiated hMSCs treated with high silver concentrations (≥20 µg·mL−1 Ag-NP; ≥1.5 µg·mL−1 Ag+ ions) but not with low-concentration treatments (≤10 µg·mL−1 Ag-NP; ≤1.0 µg·mL−1 Ag+ ions). Subtoxic concentrations of Ag-NP and Ag+ ions impaired the adipogenic and osteogenic differentiation of hMSCs in a concentration-dependent manner, whereas chondrogenic differentiation was unaffected after 21 d of incubation. In contrast to aggrecan, the inhibitory effect of adipogenic and osteogenic differentiation was confirmed by a decrease in the secretion of specific

  2. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Shin, Eunjin; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Lee, Chong-Kil; Hwang, Bang Yeon; Lee, Mi Kyeong

    2010-01-01

    In the course of screening anti-adipogenic activity of natural products employing the preadipocyte cell line, 3T3-L1 as an in vitro assay system, the EtOAc fraction of the stem barks of Fraxinus rhynchophylla DENCE (Oleaceae) showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of six coumarins such as esculetin (1), scopoletin (2), fraxetin (3), fraxidin (4) esculin (5) and fraxin (6). Among the six coumarins isolated, esculetin (1) showed the most potent inhibitory activity on adipocyte differentiation, followed by fraxetin (3). Further studies with interval treatment demonstrated that esculetin (1) exerted inhibitory activity on adipocyte differentiation when treated within 2 d (days 0-2) after differentiation induction. We further investigated the effect of esculetin (1) on peroxisome proliferator activated receptor gamma (PPARgamma), one of the early adipogenic transcription factors. Esculetin (1) significantly blocked the induction of PPARgamma protein expression and inhibited adipocyte differentiation induced by troglitazone, a PPARgamma agonist. Taken together, these results suggest that esculetin (1), an active compound from F. rhynchophylla, inhibited early stage of adipogenic differentiation, in part, via inhibition of PPARgamma-dependent pathway.

  3. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in themore » cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.« less

  4. Enhanced tenogenic differentiation and tendon-like tissue formation by CHIP overexpression in tendon-derived stem cells.

    PubMed

    Han, Weifeng; Chen, Lei; Liu, Junpeng; Guo, Ai

    2017-04-01

    The carboxyl terminus of Hsc70-interacting protein (CHIP, also known as STUB1) plays critical roles in the proliferation and differentiation of many types of cells. The potential function of CHIP in tendon-derived stem cells (TDSCs) remains largely unknown at present. Here, we investigated the effects of CHIP on tenogenic differentiation of TDSCs via lentivirus-mediated overexpression. Forced expression of CHIP induced morphological changes and significantly enhanced cell proliferation, as well as tendon differentiation in vitro. Upon stimulation with differentiation induction medium, CHIP-overexpressing TDSCs displayed significant inhibition of differentiation into osteogenic and adipogenic lineages. Subsequent implantation of TDSCs overexpressing CHIP with collagen sponges into nude mice induced a marked increase in ectopic tendon formation in vivo, compared with the control group. Our findings collectively suggest that CHIP is an important contributory factor to tenogenic tissue formation. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Tobacco Agar, a New Medium for Differentiating Candida dubliniensis from Candida albicans

    PubMed Central

    Khan, Zia U.; Ahmad, Suhail; Mokaddas, Eiman; Chandy, Rachel

    2004-01-01

    Isolates of Candida dubliniensis may be misidentified as Candida albicans in microbiological laboratories if only the germ tube and/or the chlamydospore test is used for identification to the species level. In this study, we have evaluated the efficacy of tobacco agar for the differentiation of C. dubliniensis from C. albicans. On this medium at 28°C, all 30 C. dubliniensis isolates produced yellowish-brown colonies with hyphal fringes and abundant chlamydospores, whereas 54 C. albicans isolates formed smooth, white-to-cream-colored colonies with no chlamydospore production. This medium provides a simple tool for presumptive differentiation of C. dubliniensis from C. albicans. PMID:15472343

  6. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2013-01-01

    Background The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. Methods To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0–2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Results Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. Conclusions These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway

  7. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Jung, Chang Hwa; Moon, Bo Kyung; Ha, Tae Youl

    2013-08-06

    The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0-2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway during the early stages of adipogenesis.

  8. The lipid fraction of human milk initiates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Fujisawa, Yasuko; Yamaguchi, Rie; Nagata, Eiko; Satake, Eiichiro; Sano, Shinichiro; Matsushita, Rie; Kitsuta, Kazunobu; Nakashima, Shinichi; Nakanishi, Toshiki; Nakagawa, Yuichi; Ogata, Tsutomu

    2013-09-01

    The prevalence of childhood obesity has increased worldwide over the past decade. Despite evidence that human milk lowers the risk of childhood obesity, the mechanism is not fully understood. We investigated the direct effect of human milk on differentiation of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were treated with donated human milk only or the combination of the standard hormone mixture; insulin, dexamethasone (DEX), and 3-isobututyl-1-methylxanthine (IBMX). Furthermore, the induction of preadipocyte differentiation by extracted lipids from human milk was tested in comparison to the cells treated with lipid extracts from infant formula. Adipocyte differentiation, specific genes as well as formation of lipid droplets were examined. We clearly show that lipids present in human milk initiate 3T3-L1 preadipocyte differentiation. In contrast, this effect was not observed in response to lipids present in infant formula. The initiation of preadipocyte differentiation by human milk was enhanced by adding the adipogenic hormone, DEX or insulin. The expression of late adipocyte markers in Day 7 adipocytes that have been induced into differentiation with human milk lipid extracts was comparable to those in control cells initiated by a standard adipogenic hormone cocktail. These results demonstrate that human milk contains bioactive lipids that can initiate preadipocyte differentiation in the absence of the standard adipogenic compounds via a unique pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Glycogen synthase kinase-3α/β inhibition promotes in vivo amplification of endogenous mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage.

    PubMed

    Gambardella, Alessandra; Nagaraju, Chandan K; O'Shea, Patrick J; Mohanty, Sindhu T; Kottam, Lucksy; Pilling, James; Sullivan, Michael; Djerbi, Mounira; Koopmann, Witte; Croucher, Peter I; Bellantuono, Ilaria

    2011-04-01

    Small molecules are attractive therapeutics to amplify and direct differentiation of stem cells. They also can be used to understand the regulation of their fate by interfering with specific signaling pathways. Mesenchymal stem cells (MSCs) have the potential to proliferate and differentiate into several cell types, including osteoblasts. Activation of canonical Wnt signaling by inhibition of glycogen synthase kinase 3 (GSK-3) has been shown to enhance bone mass, possibly by involving a number of mechanisms ranging from amplification of the mesenchymal stem cell pool to the commitment and differentiation of osteoblasts. Here we have used a highly specific novel inhibitor of GSK-3, AR28, capable of inducing β-catenin nuclear translocation and enhanced bone mass after 14 days of treatment in BALB/c mice. We have shown a temporally regulated increase in the number of colony-forming units-osteoblast (CFU-O) and -adipocyte (CFU-A) but not colony-forming units-fibroblast (CFU-F) in mice treated for 3 days. However, the number of CFU-O and CFU-A returned to normal levels after 14 days of treatment, and the number of CFU-F was decreased significantly. In contrast, the number of osteoblasts increased significantly only after 14 days of treatment, and this was seen together with a significant decrease in bone marrow adiposity. These data suggest that the increased bone mass is the result of an early temporal wave of amplification of a subpopulation of MSCs with both osteogenic and adipogenic potential, which is driven to osteoblast differentiation at the expense of adipogenesis. Copyright © 2011 American Society for Bone and Mineral Research.

  10. Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation

    PubMed Central

    2017-01-01

    Gelatin–hyaluronic acid (Gel–HA) hybrid hydrogels have been proposed as matrices for tissue engineering because of their ability to mimic the architecture of the extracellular matrix. Our aim was to explore whether tyramine conjugates of Gel and HA, producing injectable hydrogels, are able to induce a particular phenotype of encapsulated human mesenchymal stem cells without the need for growth factors. While pure Gel allowed good cell adhesion without remarkable differentiation and pure HA triggered chondrogenic differentiation without cell spreading, the hybrids, especially those rich in HA, promoted chondrogenic differentiation as well as cell proliferation and adhesion. Secretion of chondrogenic markers such as aggrecan, SOX-9, collagen type II, and glycosaminoglycans was observed, whereas osteogenic, myogenic, and adipogenic markers (RUNX2, sarcomeric myosin, and lipoproteinlipase, respectively) were not present after 2 weeks in the growth medium. The most promising matrix for chondrogenesis seems to be a mixture containing 70% HA and 30% Gel as it is the material with the best mechanical properties from all compositions tested here, and at the same time, it provides an environment suitable for balanced cell adhesion and chondrogenic differentiation. Thus, it represents a system that has a high potential to be used as the injectable material for cartilage regeneration therapies. PMID:29214232

  11. Simple low cost differentiation of Candida auris from Candida haemulonii complex using CHROMagar Candida medium supplemented with Pal's medium.

    PubMed

    Kumar, Anil; Sachu, Arun; Mohan, Karthika; Vinod, Vivek; Dinesh, Kavitha; Karim, Shamsul

    Candida auris is unique due to its multidrug resistance and misidentification as Candida haemulonii by commercial systems. Its correct identification is important to avoid inappropriate treatments. To develop a cheap method for differentiating C. auris from isolates identified as C. haemulonii by VITEK2. Fifteen C. auris isolates, six isolates each of C. haemulonii and Candida duobushaemulonii, and one isolate of Candida haemulonii var. vulnera were tested using CHROMagar Candida medium supplemented with Pal's agar for better differentiation. On CHROMagar Candida medium supplemented with Pal's agar all C. auris strains showed confluent growth of white to cream colored smooth colonies at 37°C and 42°C after 24 and 48h incubation and did not produce pseudohyphae. The isolates of the C. haemulonii complex, on the contrary, showed poor growth of smooth, light-pink colonies at 24h while at 48h the growth was semiconfluent with the production of pseudohyphae. C. haemulonii complex failed to grow at 42°C. We report a rapid and cheap method using CHROMagar Candida medium supplemented with Pal's agar for differentiating C. auris from isolates identified as C. haemulonii by VITEK2. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells

    PubMed Central

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Background: Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. Objective: The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. Materials and Methods: To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Results: Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Conclusion: Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. SUMMARY The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down

  13. A differential medium for the enumeration of the spoilage yeast Zygosaccharomyces bailii in wine.

    PubMed

    Schuller, D; Côrte-Real, M; Leão, C

    2000-11-01

    A collection of yeasts, isolated mostly from spoiled wines, was used in order to develop a differential medium for Zygosaccharomyces bailii. The 118 selected strains of 21 species differed in their origin and resistance to preservatives and belonged to the genera Pichia, Torulaspora, Dekkera, Debaryomyces, Saccharomycodes, Issatchenkia, Kluyveromyces, Kloeckera, Lodderomyces, Schizosaccharomyces, Rhodotorula, Saccharomyces, and Zygosaccharomyces. The design of the culture medium was based on the different ability of the various yeast species to grow in a mineral medium with glucose and formic acid (mixed-substrate medium) as the only carbon and energy sources and supplemented with an acid-base indicator. By manipulating the concentration of the acid and the sugar it was possible to select conditions where only Z. bailii strains gave rise to alkalinization, associated with a color change of the medium (positive response). The final composition of the mixed medium was adjusted as a compromise between the percentage of recovery and selectivity for Z. bailii. This was accomplished by the use of pure or mixed cultures of the yeast strains and applying the membrane filtration methodology. The microbiological analysis of two samples of contaminated Vinho Verde showed that the new medium can be considered as a differential medium to distinguish Z. bailii from other contaminating yeasts, having potential application in the microbiological control of wines and probably other beverages and foods.

  14. Growth hormone facilitates 5'-azacytidine-induced myogenic but inhibits 5'-azacytidine-induced adipogenic commitment in C3H10T1/2 mesenchymal stem cells.

    PubMed

    Jia, Dan; Zheng, Weijiang; Jiang, Honglin

    2018-06-01

    The C3H10T1/2 cells are considered mesenchymal stem cells (MSCs) because they can be induced to become the progenitor cells for myocytes, adipocytes, osteoblasts, and chondrocytes by the DNA methyltransferase inhibitor 5'-azacytidine. In this study, we determined the effect of growth hormone (GH) on the myogenic and adipogenic lineage commitment in C3H10T1/2 cells. The C3H10T1/2 cells were treated with recombinant bovine GH in the presence or absence of 5'-azacytidine for 4 days. The myogenic commitment in C3H10T1/2 cells was assessed by immunostaining them for MyoD, the marker for myoblasts, and by determining their capacity to differentiate into the multinucleated myotubes. The adipogenic commitment in C3H10T1/2 cells was assessed by determining their ability to differentiate into adipocytes. Myotubes and adipocyteswere identified by immunocytochemistry and Oil Red O staining, respectively. C3H10T1/2 cells treated with 5'-azacytidine and GH for 4 days contained a greater percentage of MyoD-positive cells than those treated with 5'-axacytidine alone (P < 0.05). The former generated more myotubes than the latter upon induced myoblast differentiation (P < 0.05). However, C3H10T1/2 cells treated with GH alone did not form any myotubes. C3H10T1/2 cells treated with 5'-azacytidine formed adipocytes upon adipocyte differentiation induction, whereas C3H10T1/2 cells treated with GH alone did not form any adipocytes. C3H10T1/2 cells treated with both 5'-azacytidine and GH formed fewer adipocytes than those treated with 5'-azacytidine alone (P < 0.05). Both GHR and IGF-I mRNA expression in C3H10T1/2 cells were increased by 5'-azacytidine (P < 0.05), but neither was affected by GH. Overall, this study showed that GH enhanced 5'-azacytidine-induced commitment in C3H10T1/2 cells to myoblasts but inhibited 5'-azacytidine-induced commitment to preadipocytes. These results support the possibility that GH stimulates skeletal muscle growth and inhibits adipose

  15. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation

    PubMed Central

    Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y.; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  16. High content analysis of differentiation and cell death in human adipocytes.

    PubMed

    Doan-Xuan, Quang Minh; Sarvari, Anitta K; Fischer-Posovszky, Pamela; Wabitsch, Martin; Balajthy, Zoltan; Fesus, Laszlo; Bacso, Zsolt

    2013-10-01

    Understanding adipocyte biology and its homeostasis is in the focus of current obesity research. We aimed to introduce a high-content analysis procedure for directly visualizing and quantifying adipogenesis and adipoapoptosis by laser scanning cytometry (LSC) in a large population of cell. Slide-based image cytometry and image processing algorithms were used and optimized for high-throughput analysis of differentiating cells and apoptotic processes in cell culture at high confluence. Both preadipocytes and adipocytes were simultaneously scrutinized for lipid accumulation, texture properties, nuclear condensation, and DNA fragmentation. Adipocyte commitment was found after incubation in adipogenic medium for 3 days identified by lipid droplet formation and increased light absorption, while terminal differentiation of adipocytes occurred throughout day 9-14 with characteristic nuclear shrinkage, eccentric nuclei localization, chromatin condensation, and massive lipid deposition. Preadipocytes were shown to be more prone to tumor necrosis factor alpha (TNFα)-induced apoptosis compared to mature adipocytes. Importantly, spontaneous DNA fragmentation was observed at early stage when adipocyte commitment occurs. This DNA damage was independent from either spontaneous or induced apoptosis and probably was part of the differentiation program. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  17. Evaluation of the maintenance of stemness, viability, and differentiation potential of gingiva-derived stem-cell spheroids.

    PubMed

    Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2017-05-01

    Gingiva-derived stem cells have been applied for tissue-engineering purposes and may be considered a favorable source of mesenchymal stem cells as harvesting stem cells from the mandible or maxilla may be performed with ease under local anesthesia. The present study was performed to fabricate stem-cell spheroids using concave microwells and to evaluate the maintenance of stemness, viability, and differentiation potential. Gingiva-derived stem cells were isolated, and the stem cells of 4×10 5 (group A) or 8×10 5 (group B) cells were seeded into polydimethylsiloxane-based, concave micromolds with 600 µm diameters. The morphology of the microspheres and the change of the diameters of the spheroids were evaluated. The viability of spheroids was qualitatively analyzed via Live/Dead kit assay. A cell viability analysis was performed on days 1, 3, 6, and 12 with Cell Counting Kit-8. The maintenance of stemness was evaluated with immunocytochemical staining using SSEA-4, TRA-1-60(R) (positive markers), and SSEA-1 (negative marker). Osteogenic, adipogenic, and chondrogenic differentiation potential was evaluated by incubating spheroids in osteogenic, adipogenic and chondrogenic induction medium, respectively. The gingiva-derived stem cells formed spheroids in the concave microwells. The diameters of the spheroids were larger in group A than in group B. The majority of cells in the spheroids emitted green fluorescence, indicating the presence of live cells at day 6. At day 12, the majority of cells in the spheroids emitted green fluorescence, and a small portion of red fluorescence was also noted, which indicated the presence of dead cells. The spheroids were positive for the stem-cell markers SSEA-4 and TRA-1-60(R) and were negative for SSEA-1, suggesting that these spheroids primarily contained undifferentiated human stem cells. Osteogenic, adipogenic, and chondrogenic differentiation was more evident with an increase of incubation time: Mineralized extracellular

  18. Amniotic-Fluid Stem Cells: Growth Dynamics and Differentiation Potential after a CD-117-Based Selection Procedure

    PubMed Central

    Arnhold, S.; Glüer, S.; Hartmann, K.; Raabe, O.; Addicks, K.; Wenisch, S.; Hoopmann, M.

    2011-01-01

    Amniotic fluid (AF) has become an interesting source of fetal stem cells. However, AF contains heterogeneous and multiple, partially differentiated cell types. After isolation from the amniotic fluid, cells were characterized regarding their morphology and growth dynamics. They were sorted by magnetic associated cell sorting using the surface marker CD 117. In order to show stem cell characteristics such as pluripotency and to evaluate a possible therapeutic application of these cells, AF fluid-derived stem cells were differentiated along the adipogenic, osteogenic, and chondrogenic as well as the neuronal lineage under hypoxic conditions. Our findings reveal that magnetic associated cell sorting (MACS) does not markedly influence growth characteristics as demonstrated by the generation doubling time. There was, however, an effect regarding an altered adipogenic, osteogenic, and chondrogenic differentiation capacity in the selected cell fraction. In contrast, in the unselected cell population neuronal differentiation is enhanced. PMID:21437196

  19. ToF-SIMS study of differentiation of human bone-derived stromal cells: new insights into osteoporosis.

    PubMed

    Schaepe, Kaija; Werner, Janina; Glenske, Kristina; Bartges, Tessa; Henss, Anja; Rohnke, Marcus; Wenisch, Sabine; Janek, Jürgen

    2017-07-01

    Lipids have numerous important functions in the human body, as they form the cells' plasma membranes and play a key role in many disease states, presumably also in osteoporosis. Here, the fatty acid composition of the outer plasma membranes of cells differentiated into the osteogenic and adipogenic direction is studied with surface-sensitive time-of-flight secondary ion mass spectrometry (ToF-SIMS). For data evaluation, principal component analysis (PCA) is applied. Human (bone-derived) mesenchymal stromal cells (hMSCs) from an osteoporotic donor and a control donor are compared to reveal differences in the fatty acid composition of the membranes. The chemical information is correlated to staining and real-time quantitative polymerase chain reaction (rt-qPCR) results to provide insight into the gene expression of several differentiation markers on the RNA level. Adipogenic differentiation of hMSCs from a non-osteoporotic donor correlates with increased relative intensities of all fatty acids under investigation. After osteogenic differentiation of non-osteoporotic cells, the relative mass signal intensities of unsaturated fatty acids such as oleic and linoleic acids are increased. However, the osteoporotic cells show increased levels of palmitic acid in the plasma membrane after exposure to osteogenic differentiation conditions, which correlates to an immature differentiation state relative to non-osteoporotic osteogenic cells. This immature differentiation state is confirmed by increased early osteogenic differentiation factor Runx2 on RNA level and by less calcium mineralization spots seen in von Kossa staining and ToF-SIMS images. Graphical abstract Time-of-flight secondary ion mass spectrometry is applied to analyze the fatty acid composition of the outer plasma membranes of cells differentiated into the adipogenic and osteogenic direction. Cells from an osteoporotic and a control donor are compared to reveal differences due to differentiation and disease stage

  20. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    PubMed Central

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α, and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS, and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodeling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα, and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes. PMID:26834634

  1. Hydroxyframoside B, a secoiridoid of Fraxinus rhynchophylla, inhibits adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Choi, Kyeong-Mi; Shin, Eunjin; Liu, Qing; Yoo, Hwan-Soo; Kim, Young Choong; Sung, Sang Hyun; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-07-01

    Fraxinus rhynchophylla showed significant inhibitory activity on adipocyte differentiation in the 3T3-L1 preadipocyte cell line as assessed by measuring fat accumulation using Oil Red O staining. Further fractionation led to the isolation of two secoiridoids, oleuropein and hydroxyframoside B. Hydroxyframoside B significantly reduced fat accumulation and triglyceride content in differentiated 3T3-L1 cells without affecting cell viability, whereas oleuropein showed little effect. Further studies with interval treatment demonstrated that hydroxyframoside B exerted inhibitory activity on adipocyte differentiation when treated within 2 days (days 0-2) after differentiation induction. In addition, hydroxyframoside B significantly blocked the induction of adipogenic transcription factors such as C/EBP α, C/EBP β, and PPAR γ. Taken together, these results suggest that hydroxyframoside B inhibited early/middle stage of adipogenic differentiation, in part, via inhibition of C/EBP α, C/EBP β, and PPAR γ-dependent pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Nuclear organization during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes.

    PubMed

    Stachecka, Joanna; Walczak, Agnieszka; Kociucka, Beata; Ruszczycki, Błażej; Wilczyński, Grzegorz; Szczerbal, Izabela

    2018-02-01

    Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres

  3. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose.

    PubMed

    Penza, M; Jeremic, M; Marrazzo, E; Maggi, A; Ciana, P; Rando, G; Grigolato, P G; Di Lorenzo, D

    2011-08-15

    Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimated human intake (0.5μg/kg). At higher doses (50-500μg/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ERα or ERβ, TBT (in a dose range of 1-100nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ERα in undifferentiated preadipocytic cells and by ERβ in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. TGFβ1-Induced Differentiation of Human Bone Marrow-Derived MSCs Is Mediated by Changes to the Actin Cytoskeleton.

    PubMed

    Elsafadi, Mona; Manikandan, Muthurangan; Almalki, Sami; Mobarak, Mohammad; Atteya, Muhammad; Iqbal, Zafar; Hashmi, Jamil Amjad; Shaheen, Sameerah; Alajez, Nehad; Alfayez, Musaad; Kassem, Moustapha; Dawud, Raed Abu; Mahmood, Amer

    2018-01-01

    TGF β is a potent regulator of several biological functions in many cell types, but its role in the differentiation of human bone marrow-derived skeletal stem cells (hMSCs) is currently poorly understood. In the present study, we demonstrate that a single dose of TGF β 1 prior to induction of osteogenic or adipogenic differentiation results in increased mineralized matrix or increased numbers of lipid-filled mature adipocytes, respectively. To identify the mechanisms underlying this TGF β -mediated enhancement of lineage commitment, we compared the gene expression profiles of TGF β 1-treated hMSC cultures using DNA microarrays. In total, 1932 genes were upregulated, and 1298 genes were downregulated. Bioinformatics analysis revealed that TGF β l treatment was associated with an enrichment of genes in the skeletal and extracellular matrix categories and the regulation of the actin cytoskeleton. To investigate further, we examined the actin cytoskeleton following treatment with TGF β 1 and/or cytochalasin D. Interestingly, cytochalasin D treatment of hMSCs enhanced adipogenic differentiation but inhibited osteogenic differentiation. Global gene expression profiling revealed a significant enrichment of pathways related to osteogenesis and adipogenesis and of genes regulated by both TGF β 1 and cytochalasin D. Our study demonstrates that TGF β 1 enhances hMSC commitment to either the osteogenic or adipogenic lineages by reorganizing the actin cytoskeleton.

  5. Effect of Medium Salt Concentration on Differentiation and Maturation of Somatic Embryos of Cassava (Manihot esculenta Crantz)

    PubMed Central

    GROLL, J.; MYCOCK, D. J.; GRAY, V. M.

    2002-01-01

    Culture of cassava somatic embryos on media with an altered macro‐ and micro‐nutrient salt concentration affected embryo development and germination capability. In the tests, quarter‐, half‐, full‐ or double‐strength Murashige and Skoog (MS) media were compared. The maximum number of somatic embryos differentiated from a proliferative nodular embryogenic callus (NEC) on either half‐ or full‐strength MS medium, and the greatest numbers of cotyledonary stage embryos were formed on full‐strength MS medium. Developed somatic embryos were then desiccated above a saturated K2SO4 solution for 10 d. After transfer to germination medium, embryos that had developed on half‐ and full‐strength MS medium yielded 8·3 and 8·6 germinants g–1 NEC tissue, respectively. For this important but often disregarded culture factor, either half‐ or full‐strength MS medium is recommended for both the differentiation and development of cassava somatic embryos that are capable of germination. PMID:12099540

  6. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype

    PubMed Central

    2010-01-01

    Introduction Mesenchymal stem cells (MSCs) offer promise for intervertebral disc (IVD) repair and regeneration because they are easily isolated and expanded, and can differentiate into several mesenchymal tissues. Notochordal (NC) cells contribute to IVD development, incorporate into the nucleus pulposus (NP), and stimulate mature disc cells. However, there have been no studies investigating the effects of NC cells on adult stem cell differentiation. The premise of this study is that IVD regeneration is more similar to IVD development than to IVD maintenance, and we hypothesize that soluble factors from NC cells differentiate MSCs to a phenotype characteristic of nucleus pulposus (NP) cells during development. The eventual clinical goal would be to isolate or chemically/recombinantly produce the active agent to induce the therapeutic effects, and to use it as either an injectable therapy for early intervention on disc disease, or in developing appropriately pre-differentiated MSC cells in a tissue engineered NP construct. Methods Human MSCs from bone marrow were expanded and pelleted to form high-density cultures. MSC pellets were exposed to either control medium (CM), chondrogenic medium (CM with dexamethasone and transforming growth factor, (TGF)-β3) or notochordal cell conditioned medium (NCCM). NCCM was prepared from NC cells maintained in serum free medium for four days. After seven days culture, MSC pellets were analyzed for appearance, biochemical composition (glycosaminoglycans and DNA), and gene expression profile (sox-9, collagen types-II and III, laminin-β1 and TIMP1(tissue inhibitor of metalloproteinases-1)). Results Significantly higher glycosaminoglycan accumulation was seen in NCCM treated pellets than in CM or TGFβ groups. With NCCM treatment, increased gene expression of collagen III, and a trend of increasing expression of laminin-β1 and decreased expression of sox-9 and collagen II relative to the TGFβ group was observed. Conclusions

  7. Soft-tissue tumor differentiation using 3D power Doppler ultrasonography with echo-contrast medium injection.

    PubMed

    Chiou, Hong-Jen; Chou, Yi-Hong; Chen, Wei-Ming; Chen, Winby; Wang, Hsin-Kai; Chang, Cheng-Yen

    2010-12-01

    We aimed to evaluate the ability of 3-dimensional power Doppler ultrasonography to differentiate soft-tissue masses from blood flow and vascularization with contrast medium. Twenty-five patients (mean age, 44.1 years; range, 12-77 years) with a palpable mass were enrolled in this study. Volume data were acquired using linear and convex 3-dimensional probes and contrast medium injected manually by bolus. Data were stored and traced slice by slice for 12 slices. All patients were scanned by the same senior sonologist. The vascular index (VI), flow index (FI), and vascular-flow index (VFI) were automatically calculated after the tumor was completely traced. All tumors were later confirmed by pathology. The study included 8 benign (mean, 36.5 mL; range, 2.4-124 mL) and 17 malignant (mean, 319.4 mL; range, 9.9-1,179.6 mL) tumors. Before contrast medium injection, mean VI, FI and VFI were, respectively, 3.22, 32.26 and 1.07 in benign tumors, and 1.97, 29.33 and 0.67 in malignant tumors. After contrast medium injection, they were, respectively, 20.85, 37.33 and 8.52 in benign tumors, and 40.12, 41.21 and 17.77 in malignant tumors. The mean differences between with and without contrast injection for VI, FI and VFI were, respectively, 17.63, 5.07 and 7.45 in benign tumors, and 38.15, 11.88 and 16.55 in malignant tumors. Tumor volume, VI, FI and VFI were not significantly different between benign and malignant tumors before and after echo-contrast medium injection. However, VI, FI and VFI under self-differentiation (differences between with and without contrast injection) were significantly different between malignant and benign tumors. Three-dimensional power Doppler ultrasound is a valuable tool for differential diagnosis of soft-tissue tumors, especially with the injection of an echo-contrast medium. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  8. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA andmore » protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.« less

  9. An advanced glycation end product (AGE)-receptor for AGEs (RAGE) axis restores adipogenic potential of senescent preadipocytes through modulation of p53 protein function.

    PubMed

    Chen, Chih-Yu; Abell, Allison Martorano; Moon, Yang Soo; Kim, Kee-Hong

    2012-12-28

    The impaired adipogenic potential of senescent preadipocytes is a hallmark of adipose aging and aging-related adipose dysfunction. Although advanced glycation end products (AGEs) derived from both foods and endogenous nonenzymatic glycation and AGE-associated signaling pathways are known to play a key role in aging and its related diseases, the role of AGEs in adipose aging remains elusive. We show a novel pro-adipogenic function of AGEs in replicative senescent preadipocytes and mouse embryonic fibroblasts, as well as primary preadipocytes isolated from aged mice. Using glycated bovine serum albumin (BSA) as a model protein of AGEs, we found that glycated BSA restores the impaired adipogenic potential of senescent preadipocytes in vitro and ex vivo. However, glycated BSA showed no effect on adipogenesis in nonsenescent preadipocytes. The AGE-induced receptor for AGE (RAGE) expression is required for the pro-adipogenic function of AGEs in senescent preadipocytes. RAGE is required for impairment of p53 expression and p53 function in regulating p21 expression in senescent preadipocytes. We also observed a direct binding between RAGE and p53 in senescent preadipocytes. Taken together, our findings reveal a novel pro-adipogenic function of the AGE-RAGE axis in p53-regulated adipogenesis of senescent preadipocytes, providing new insights into aging-dependent adiposity by diet-driven and/or endogenous glycated proteins.

  10. An Advanced Glycation End Product (AGE)-Receptor for AGEs (RAGE) Axis Restores Adipogenic Potential of Senescent Preadipocytes through Modulation of p53 Protein Function*

    PubMed Central

    Chen, Chih-Yu; Abell, Allison Martorano; Moon, Yang Soo; Kim, Kee-Hong

    2012-01-01

    The impaired adipogenic potential of senescent preadipocytes is a hallmark of adipose aging and aging-related adipose dysfunction. Although advanced glycation end products (AGEs) derived from both foods and endogenous nonenzymatic glycation and AGE-associated signaling pathways are known to play a key role in aging and its related diseases, the role of AGEs in adipose aging remains elusive. We show a novel pro-adipogenic function of AGEs in replicative senescent preadipocytes and mouse embryonic fibroblasts, as well as primary preadipocytes isolated from aged mice. Using glycated bovine serum albumin (BSA) as a model protein of AGEs, we found that glycated BSA restores the impaired adipogenic potential of senescent preadipocytes in vitro and ex vivo. However, glycated BSA showed no effect on adipogenesis in nonsenescent preadipocytes. The AGE-induced receptor for AGE (RAGE) expression is required for the pro-adipogenic function of AGEs in senescent preadipocytes. RAGE is required for impairment of p53 expression and p53 function in regulating p21 expression in senescent preadipocytes. We also observed a direct binding between RAGE and p53 in senescent preadipocytes. Taken together, our findings reveal a novel pro-adipogenic function of the AGE-RAGE axis in p53-regulated adipogenesis of senescent preadipocytes, providing new insights into aging-dependent adiposity by diet-driven and/or endogenous glycated proteins. PMID:23150674

  11. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.

    PubMed

    Sakai, Shinji; Ohi, Hiromi; Hotta, Tomoki; Kamei, Hidenori; Taya, Masahito

    2018-02-01

    Bioprinting has a great potential to fabricate three-dimensional (3D) functional tissues and organs. In particular, the technique enables fabrication of 3D constructs containing stem cells while maintaining cell proliferation and differentiation abilities, which is believed to be promising in the fields of tissue engineering and regenerative medicine. We aimed to demonstrate the utility of the bioprinting technique to create hydrogel constructs consisting of hyaluronic acid (HA) and gelatin derivatives through irradiation by visible light to fabricate 3D constructs containing human adipose stem cells (hADSCs). The hydrogel was obtained from a solution of HA and gelatin derivatives possessing phenolic hydroxyl moieties in the presence of ruthenium(II) tris-bipyridyl dication and sodium ammonium persulfate. hADSCs enclosed in the bioprinted hydrogel construct elongated and proliferated in the hydrogel. In addition, their differentiation potential was confirmed by examining the expression of pluripotency marker genes and cell surface marker proteins, and differentiation to adipocytes in adipogenic differentiation medium. Our results demonstrate the great potential of the bioprinting method and the resultant hADSC-laden HA/gelatin constructs for applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.

  12. The Effect of Antidepressants on Mesenchymal Stem Cell Differentiation.

    PubMed

    Kruk, Jeffrey S; Bermeo, Sandra; Skarratt, Kristen K; Fuller, Stephen J; Duque, Gustavo

    2018-02-01

    Use of antidepressant medications has been linked to detrimental impacts on bone mineral density and osteoporosis; however, the cellular basis behind these observations remains poorly understood. The effect does not appear to be homogeneous across the whole class of drugs and may be linked to affinity for the serotonin transporter system. In this study, we hypothesized that antidepressants have a class- and dose-dependent effect on mesenchymal stem cell (MSC) differentiation, which may affect bone metabolism. Human MSCs (hMSCs) were committed to differentiate when either adipogenic or osteogenic media was added, supplemented with five increasing concentrations of amitriptyline (0.001-10 µM), venlafaxine (0.01-25 µM), or fluoxetine (0.001-10 µM). Alizarin red staining (mineralization), alkaline phosphatase (osteoblastogenesis), and oil red O (adipogenesis) assays were performed at timed intervals. In addition, cell viability was assessed using a MTT. We found that fluoxetine had a significant inhibitory effect on mineralization. Furthermore, adipogenic differentiation of hMSC was affected by the addition of amitriptyline, venlafaxine, and fluoxetine to the media. Finally, none of the tested medications significantly affected cell survival. This study showed a divergent effect of three antidepressants on hMSC differentiation, which appears to be independent of class and dose. As fluoxetine and amitriptyline, but not venlafaxine, affected both osteoblastogenesis and adipogenesis, this inhibitory effect could be associated to the high affinity of fluoxetine to the serotonin transporter system.

  13. The Effect of Antidepressants on Mesenchymal Stem Cell Differentiation

    PubMed Central

    Kruk, Jeffrey S.; Bermeo, Sandra; Skarratt, Kristen K.; Fuller, Stephen J.

    2018-01-01

    Background Use of antidepressant medications has been linked to detrimental impacts on bone mineral density and osteoporosis; however, the cellular basis behind these observations remains poorly understood. The effect does not appear to be homogeneous across the whole class of drugs and may be linked to affinity for the serotonin transporter system. In this study, we hypothesized that antidepressants have a class- and dose-dependent effect on mesenchymal stem cell (MSC) differentiation, which may affect bone metabolism. Methods Human MSCs (hMSCs) were committed to differentiate when either adipogenic or osteogenic media was added, supplemented with five increasing concentrations of amitriptyline (0.001–10 µM), venlafaxine (0.01–25 µM), or fluoxetine (0.001–10 µM). Alizarin red staining (mineralization), alkaline phosphatase (osteoblastogenesis), and oil red O (adipogenesis) assays were performed at timed intervals. In addition, cell viability was assessed using a MTT. Results We found that fluoxetine had a significant inhibitory effect on mineralization. Furthermore, adipogenic differentiation of hMSC was affected by the addition of amitriptyline, venlafaxine, and fluoxetine to the media. Finally, none of the tested medications significantly affected cell survival. Conclusions This study showed a divergent effect of three antidepressants on hMSC differentiation, which appears to be independent of class and dose. As fluoxetine and amitriptyline, but not venlafaxine, affected both osteoblastogenesis and adipogenesis, this inhibitory effect could be associated to the high affinity of fluoxetine to the serotonin transporter system. PMID:29564305

  14. The fruits of Gleditsia sinensis Lam. inhibits adipogenesis through modulation of mitotic clonal expansion and STAT3 activation in 3T3-L1 cells.

    PubMed

    Lee, Ji-Hye; Go, Younghoon; Lee, Bonggi; Hwang, Youn-Hwan; Park, Kwang Il; Cho, Won-Kyung; Ma, Jin Yeul

    2018-08-10

    Gleditsia sinensis Lam. (G. sinensis) has been used in Oriental medicine for tumor, thrombosis, inflammation-related disease, and obesity. The pharmacological inhibitory effects of fruits of G. sinensis (GFE) on hyperlipidemia have been reported, but its inhibitory effects on adipogenesis and underlying mechanisms have not been elucidated. Herein we evaluated the anti-adipogenic effects of GFE and described the underlying mechanisms. The effects of ethanol extracts of GFE on adipocyte differentiation were examined in 3T3-L1 cells using biochemical and molecular analyses. During the differentiation of 3T3-L1 cells, GFE significantly reduced lipid accumulation and downregulated master adipogenic transcription factors, including CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, at mRNA and protein levels. These changes led to the suppression of several adipogenic-specific genes and proteins, including fatty acid synthase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase-1, and acetyl CoA carboxylase. However, the inhibitory effects of GFE on lipogenesis were only shown when GFE is treated in the early stage of adipogenesis within the first two days of differentiation. As a potential mechanism, during the early stages of differentiation, GFE inhibited cell proliferation by a decrease in the expression of DNA synthesis-related proteins and increased p27 expression and suppressed signal transducer and activator of transcription 3 (STAT3) activation induced in a differentiation medium. GFE inhibits lipogenesis by negative regulation of adipogenic transcription factors, which is associated with GFE-mediated cell cycle arrest and STAT3 inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells.

    PubMed

    Yang, Shan; Guo, Lijia; Su, Yingying; Wen, Jing; Du, Juan; Li, Xiaoyan; Liu, Yitong; Feng, Jie; Xie, Yongmei; Bai, Yuxing; Wang, Hao; Liu, Yi

    2018-05-02

    Critical tissues that undergo regeneration in periodontal tissue are of mesenchymal origin; thus, investigating the regulatory mechanisms underlying the fate of periodontal ligament stem cells could be beneficial for application in periodontal tissue regeneration. Nitric oxide (NO) regulates many biological processes in developing embryos and adult stem cells. The present study was designed to investigate the effects of NO on the function of human periodontal ligament stem cells (PDLSCs) as well as to elucidate the underlying molecular mechanisms. Immunofluorescent staining and flow cytometry were used for stem cell identification. Western blot, reverse transcription polymerase chain reaction (RT-PCR), immunofluorescent staining, and flow cytometry were used to examine the expression of NO-synthesizing enzymes. The proliferative capacity of PDLSCs was determined by EdU assays. The osteogenic potential of PDLSCs was tested using alkaline phosphatase (ALP) staining, Alizarin Red staining, and calcium concentration detection. Oil Red O staining was used to analyze the adipogenic ability. Western blot, RT-PCR, and staining were used to examine the signaling pathway. Human PDLSCs expressed both inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) and produced NO. Blocking the generation of NO with the NOS inhibitor L-N G -monomethyl arginine (L-NMMA) had no influence on PDLSC proliferation and apoptosis but significantly attenuated the osteogenic differentiation capacity and stimulated the adipogenic differentiation capacity of PDLSCs. Increasing the physiological level of NO with NO donor sodium nitroprusside (SNP) significantly promoted the osteogenic differentiation capacity but reduced the adipogenic differentiation capacity of PDLSCs. NO balances the osteoblast and adipocyte lineage differentiation in periodontal ligament stem cells via the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling pathway. NO is essential for

  16. Multipotency of skeletal muscle stem cells on their native substrate and the expression of Connexin 43 during adoption of adipogenic and osteogenic fate.

    PubMed

    Elashry, Mohamed I; Heimann, Manuela; Wenisch, Sabine; Patel, Ketan; Arnhold, Stefan

    2017-10-01

    Muscle regeneration is performed by resident muscle stem cells called satellite cells (SC). However they are multipotent, being able to adopt adipogenic and osteogenic fate under the correct stimuli. Since SC behavior can be regulated by the extra-cellular matrix, we examined the robustness of the myogenic programme of SC on their native substrate-the surface of a myofiber. We show that the native substrate supports myogenic differentiation judged by the expression of members of the Myogenic Determination Factor (MRF) family. However SC even on their native substrate can be induced into adopting adipogenic or osteogenic fate. Furthermore conditions that support adipose or bone formation inhibit the proliferation of SC progeny as well as their migration. We show that Connexin43 (Cx43), a gap junction complex protein, is only expressed by activated and not quiescent SC. Furthermore, it is not expressed by SC that are in the process of changing their fate. Lastly we show that intact adult mouse muscle contains numerous cells expressing Cx43 and that the density of these cells seems to be related to capillary density. We suggest the Cx43 expression is localized to angioblasts and is more prominent in oxidative slow muscle compared to glycolytic fast muscle. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.

  17. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    PubMed

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  18. Tributyltin differentially promotes development of a phenotypically distinct adipocyte.

    PubMed

    Regnier, Shane M; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L; Sargis, Robert M

    2015-09-01

    Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. The costimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. TBT enhanced expression of the adipocyte marker C/EBPα with coexposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of cotreatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. © 2015 The Obesity Society.

  19. Synthetic investigation of binary-ternary Cr(III)-hydroxycarboxylic acid-aromatic chelator systems. Structure-specific influence on adipogenic biomarkers linked to insulin mimesis.

    PubMed

    Tsave, O; Gabriel, C; Kafantari, M; Yavropoulou, M; Yovos, J G; Raptopoulou, C P; Psycharis, V; Terzis, A; Mateescu, C; Salifoglou, A

    2018-07-01

    In an attempt to understand the aqueous interactions of Cr(III) with low-molecular mass physiological ligands and examine its role as an adipogenic metallodrug agent in Diabetes mellitus II, the pH-specific synthesis in the binary-ternary Cr(III)-(HA = hydroxycarboxylic acid)-(N,N)-aromatic chelator (AC) (HA = 2-hydroxyethyl iminodiacetic acid/heidaH 2 , quinic acid; AC = 1,10-phenanthroline/phen) systems was pursued, leading to four new crystalline compounds. All materials were characterized by elemental analysis, UV-Visible, FT-IR, and ESI-MS spectroscopy, cyclic voltammetry, and X-Ray crystallography. Concurrently, the aqueous speciation of the binary Cr(III)-(2-hydroxyethyl iminodiacetic acid) system, complemented by ESI-MS, provided key-details of the species in solution correlating with the solid-state species. The structurally distinct Cr(III) soluble species were subsequently used in an in vitro investigation of their cytotoxic activity in 3T3-L1 fibroblast cultures. Compound 1 exhibited solubility, bioavailability, and atoxicity over a wide concentration range (0.1-100 μΜ) in contrast to 3, which was toxic. The adipogenic potential of 1 was subsequently investigated toward transformation of pre-adipocytes into mature adipocytes. Confirmation of that capacity relied on molecular biological techniques a) involving genes (glucose transporter type 4, peroxisome proliferator-activated receptor gamma, glucokinase, and adiponectin) serving as sensors of the transformation process, b) comparing the Cr(III)-adipogenicity potential to that of insulin, and c) exemplifying the ultimate maturity of adipocytes poised to catabolize glucose. The collective effort points out salient structural features in the coordination sphere of Cr(III) inducing adipogenic transformation relevant to combating hyperglycemia. The multiply targeted mechanistic insight into such a process exemplifies the role of well-defined Cr(III) complex forms as potential insulin

  20. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Peng-Yeh; Tsai, Chong-Bin; Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCRmore » analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.« less

  1. Genistein-mediated inhibition of mammary stromal adipocyte differentiation limits expansion of mammary stem/progenitor cells by paracrine signaling

    USDA-ARS?s Scientific Manuscript database

    Mammary adiposity may contribute to breast cancer development and progression by releasing cytokines and other inflammatory mediators that promote mammary epithelial proliferation. We evaluated the effects of soy isoflavone genistein (GEN) on the adipogenic differentiation of a SV40-immortalized mou...

  2. Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment.

    PubMed

    Zheng, Wei; Wang, Shi; Ma, Dandan; Tang, Liang; Duan, Yinzhong; Jin, Yan

    2009-09-01

    The application of periodontal ligament stem cells (PDLSCs) may be effective for periodontal regenerative therapy. As tissue regenerative potential may be negatively regulated by aging, whether aging and its microenvironment modify human PDLSCs remains a question. In this study, we compared the proliferation and differentiation capacity of PDLSCs obtained from young and aged donors. Then, we exposed aged PDLSCs to young periodontal ligament cell-conditioned medium (PLC-CM), and young PDLSCs were exposed to aged PLC-CM. Morphological appearance, colony-forming assay, cell cycle analysis, osteogenic and adipogenic induction media, gene expression of cementoblast phenotype, and in vivo differentiation capacities of PDLSCs were evaluated. PDLSCs obtained from aged donors exhibited decreased proliferation and differentiation capacity when compared with those from young donors. Young PLC-CM enhanced the proliferation and differentiation capacity of PDLSCs from aged donors. Aged PDLSCs induced by young PLC-CM showed enhanced tissue-regenerative capacity to produce cementum/periodontal ligament-like structures, whereas young PDLSCs induced by aged PLC-CM transplants mainly formed connective tissues. To our knowledge, this is the first study to mimic the developmental microenvironment of PDLSCs in vitro, and our data suggest that age influences the proliferation and differentiation potential of human PDLSCs, and that the activity of human PDLSCs can be modulated by the extrinsic microenvironment.

  3. [Selective-differential nutrient medium "Shewanella IRHLS agar" for isolation of Shewanella genus bacteria].

    PubMed

    Sivolodsky, E P

    2015-01-01

    Development of a selective-differential nutrient medium for isolation of Shewanella genus bacteria. 73 strains of Shewanella bacteria (S. algae--3, S. baltica--26, S. putrefaciens--44) and 80 strains of 22 other bacteria genera were used. Shewanella species were identified by methods and criteria proposed by Nozue H. et al., 1992; Khashe S. et al., 1998. Nutrient media "Shewanella IRHLS Agar" for shewanella isolation was developed. Medium selective factors: irgazan DP-300 (I). 0.14-0.2 g/l and rifampicin (R) 0.0005-0.001 g/l. Shevanella colonies were detected by the production of hydrogen sulfide (H), lipase presence (L), lack of sorbitol fermentation (S). The medium suppressed the growth of hydrogen sulfide producers (Salmonella, Proteus) and blocked hydrogen sulfide production by Citrobacter. Growth of Escherichia, Enterobacter, Klebsiella, Shigella, Staphylococcus, Bacillus was also suppressed, Analytical sensitivity of the medium was 1-2 CFU/ml for Shewanella and Stenotrophomonas, Aerombnas, Serratia genera bacteria. 72 strains of Shewanella were isolated from water of Neva river in this medium, 91.7 ± 3.2% of those produced H2S. 1 strain of S. algae was isolated from clinical material. The developed media allows to use it in a complex for Stenotrophomo- nas sp., Aeromonas sp., Serratia sp., Citrobactersp. and Shewanella bacteria isolation.

  4. Differentiated strategy, business performance, and intellectual capital: Evidence small medium enterprise from Indonesia

    NASA Astrophysics Data System (ADS)

    Hariyati; Venusita, L.; Dyani, Z. F.

    2018-01-01

    Small and Medium Enterprises (SMEs) have a very important position in Indonesian economics. Implementation of the differentiated strategy has been impacted on improving the business performance of SMEs where the role of intellectual capital strongly supports the success of the implementation of the differentiated strategy. This study applied quantitative research which used survey method. This research examines the relationship between differentiated strategy to the performance of SMEs with mediated by intellectual capital. The results of this study show that intellectual capital mediates the relationship between differentiation strategies and business performance of SMEs. This study theoretically proves the importance of contextual variables in contingency theory. The practical results of this study contribute to raising awareness of business unit managers or other equivalent positions, especially managers in East Java to understand the importance of the role of intellectual capital, this is because intellectual capital meets the criteria as a unique source of the company that is able to create competitive advantage and increase the firm’s value.

  5. Identification of suitable reference genes for quantitative gene expression analysis in rat adipose stromal cells induced to trilineage differentiation.

    PubMed

    Santos, Bruno Paiva Dos; da Costa Diesel, Luciana Fraga; da Silva Meirelles, Lindolfo; Nardi, Nance Beyer; Camassola, Melissa

    2016-12-15

    This study was designed to (i) identify stable reference genes for the analysis of gene expression during in vitro differentiation of rat adipose stromal cells (rASCs), (ii) recommend stable genes for individual treatment conditions, and (iii) validate these genes by comparison with normalization results from stable and unstable reference genes. On the basis of a literature review, eight genes were selected: Actb, B2m, Hprt1, Ppia, Rplp0, Rpl13a, Rpl5, and Ywhaz. Genes were ranked according to their stability under different culture conditions as assessed using GenNorm, NormFinder, and RefFinder algorithms. Although the employed algorithms returned different rankings, the most frequently top-ranked genes were: B2m and/or Ppia for all 28day treatments (ALL28); Ppia and Hprt1 (adipogenic differentiation; A28), B2m (chondrogenic differentiation; C28), Rpl5 (controls maintained in complete culture medium; CCM), Rplp0 (osteogenic differentiation for 3days; O3), Rpl13a and Actb (osteogenic differentiation for 7days; O7), Rplp0 and Ppia (osteogenic differentiation for 14days; O14), Hprt1 and Ppia (osteogenic differentiation for 28days; O28), as well as Actb (all osteogenesis time points combined; ALLOSTEO). The obtained results indicate that the performance of reference genes depends on the differentiation protocol and on the analysis time, thus providing valuable information for the design of RT-PCR experiments. Copyright © 2016. Published by Elsevier B.V.

  6. Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia.

    PubMed

    Park, Jeong-Ran; Lee, Hanbyeol; Kim, Chung-Hyo; Hong, Seok-Ho; Ha, Kwon-Soo; Yang, Se-Ran

    2016-05-01

    Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.

  7. Growth and differentiation of a murine interleukin-3-producing myelomonocytic leukemia cell line in a protein-free chemically defined medium.

    PubMed

    Kajigaya, Y; Ikuta, K; Sasaki, H; Matsuyama, S

    1990-10-01

    We established the continuous growth of WEHI-3B D+ cells in protein-free chemically defined F-12 medium by stepwise decreases in the concentration of fetal calf serum. This cell line, designated as WEHI-3B-Y1, has now been propagated in protein-free F-12 medium for 3 years. The population-doubling time of the cells in culture is about 24 hr. WEHI-3B-Y1 cells are immature undifferentiated cells which show positive staining for naphthol ASD chloroacetate esterase and alpha-naphthyl butyrate esterase and spontaneously exhibit a low level of differentiation to mature granulocytes and macrophages. Medium conditioned by WEHI-3B-Y1 cells stimulated the proliferation of an interleukin-3 (IL-3)-dependent FDCP-2 cell line. This conditioned medium was shown to have erythroid burst-promoting activity when assayed using normal murine bone marrow. The colony formation of WEHI-3B-Y1 cells in semi-solid agar culture was not stimulated by purified recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, in the presence of human transferrin, rhG-CSF enhanced the number of colonies of WEHI-3B-Y1 cells but did not induce their differentiation. These results suggest that WEHI-3B-Y1 cells cultured in protein-free medium produced murine IL-3. In addition, human G-CSF enhanced the clonal growth but did not induce the differentiation of WEHI-3B-Y1 cells cultured in serum-free medium.

  8. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro.

    PubMed

    He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.

  9. Adventitial adipogenic degeneration is an unidentified contributor to aortic wall weakening in the abdominal aortic aneurysm.

    PubMed

    Doderer, Stefan A; Gäbel, Gabor; Kokje, Vivianne B C; Northoff, Bernd H; Holdt, Lesca M; Hamming, Jaap F; Lindeman, Jan H N

    2018-06-01

    The processes driving human abdominal aortic aneurysm (AAA) progression are not fully understood. Although antiinflammatory and proteolytic strategies effectively quench aneurysm progression in preclinical models, so far all clinical interventions failed. These observations hint at an incomplete understanding of the processes involved in AAA progression and rupture. Interestingly, strong clinical and molecular associations exist between popliteal artery aneurysms (PAAs) and AAAs; however, PAAs have an extremely low propensity to rupture. We thus reasoned that differences between these aneurysms may provide clues toward (auxiliary) processes involved in AAA-related wall debilitation. A better understanding of the pathophysiologic processes driving AAA growth can contribute to pharmaceutical treatments in the future. Aneurysmal wall samples were collected during open elective and emergency repair. Control perirenal aorta was obtained during kidney transplantation, and reference popliteal tissue obtained from the anatomy department. This study incorporates various techniques including (immuno)histochemistry, Western Blot, quantitative polymerase chain reaction, microarray, and cell culture. Histologic evaluation of AAAs, PAAs, and control aorta shows extensive medial (PAA) and transmural fibrosis (AAA), and reveals abundant adventitial adipocytes aggregates as an exclusive phenomenon of AAAs (P < .001). Quantitative polymerase chain reaction, immunohistochemistry, Western blotting, and microarray analysis showed enrichment of adipogenic mediators (C/EBP family P = .027; KLF5 P < .000; and peroxisome proliferator activated receptor-γ, P = .032) in AAA tissue. In vitro differentiation tests indicated a sharply increased adipogenic potential of AAA adventitial mesenchymal cells (P < .0001). Observed enrichment of adipocyte-related genes and pathways in ruptured AAA (P < .0003) supports an association between the extent of fatty degeneration and rupture. This

  10. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  11. Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-γ in the early phase of adipogenesis.

    PubMed

    Zou, Bo; Ge, Zhenzhen; Zhu, Wei; Xu, Ze; Li, Chunmei

    2015-12-01

    Currently, obesity has become a worldwide health problem. Adipocyte differentiation is closely associated with the onset of obesity. Our previous studies suggested that persimmon tannin might be a potent anti-adipogenic dietary bioactive compound. However, the mechanism of persimmon tannin on adipocyte differentiation is still unknown. The purpose of this study was to investigate the effect of persimmon tannin on adipogenic differentiation in 3T3-L1 preadipocytes and the underlying mechanisms. Adipogenic differentiation was induced by cocktail in the presence or absence of persimmon tannin. Intracellular lipid accumulation was determined by Oil red O staining and enzymatic colorimetric methods. Gene expression and protein levels were measured by real time RT-PCR and Western blot. Persimmon tannin inhibited intracellular lipid accumulation markedly, and the inhibitory effect was largely limited to the early stage of adipocyte differentiation. Persimmon tannin suppressed the expression of C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ), significantly. Furthermore, genes related to lipogenesis, such as sterol regulatory element-binding protein 1, were down-regulated by persimmon tannin. In addition, adipocyte fatty acid binding protein (aP2), which is a target gene of PPARγ, was suppressed by persimmon tannin notably. Correspondingly, the expression of miR-27a and miR-27b were up-regulated by persimmon tannin from Day 2 to Day 8 significantly. Persimmon tannin inhibited adipocyte differentiation through regulation of PPARγ, C/EBPα and miR-27 in early stage of adipogenesis.

  12. PPARγ agonists promote differentiation of cancer stem cells by restraining YAP transcriptional activity

    PubMed Central

    Rattanakorn, Kirk; Gadi, Abhilash; Verma, Narendra; Maurizi, Giulia; Gunaratne, Preethi H.; Coarfa, Cristian; Kennedy, Oran D.; Garabedian, Michael J.; Basilico, Claudio; Mansukhani, Alka

    2016-01-01

    Osteosarcoma (OS) is a highly aggressive pediatric bone cancer in which most tumor cells remain immature and fail to differentiate into bone-forming osteoblasts. However, OS cells readily respond to adipogenic stimuli suggesting they retain mesenchymal stem cell-like properties. Here we demonstrate that nuclear receptor PPARγ agonists such as the anti-diabetic, thiazolidinedione (TZD) drugs induce growth arrest and cause adipogenic differentiation in human, mouse and canine OS cells as well as in tumors in mice. Gene expression analysis reveals that TZDs induce lipid metabolism pathways while suppressing targets of the Hippo-YAP pathway, Wnt signaling and cancer-related proliferation pathways. Significantly, TZD action appears to be restricted to the high Sox2 expressing cancer stem cell population and is dependent on PPARγ expression. TZDs also affect growth and cell fate by causing the cytoplasmic sequestration of the transcription factors SOX2 and YAP that are required for tumorigenicity. Finally, we identify a TZD-regulated gene signature based on Wnt/Hippo target genes and PPARγ that predicts patient outcomes. Together, this work highlights a novel connection between PPARγ agonist in inducing adipogenesis and mimicking the tumor suppressive hippo pathway. It also illustrates the potential of drug repurposing for TZD-based differentiation therapy for osteosarcoma. PMID:27528232

  13. Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds

    NASA Astrophysics Data System (ADS)

    Su, Wen-Ta; Pan, Yu-Jing

    2016-08-01

    Objective. Schwann cells (SCs) are primary structural and functional cells in the peripheral nervous system. These cells play a crucial role in peripheral nerve regeneration by releasing neurotrophic factors. This study evaluated the neural differentiation potential effects of stem cells from human exfoliated deciduous teeth (SHEDs) in a rat Schwann cell (RSC) culture medium. Approach. SHEDs and RSCs were individually cultured on a polydimethylsiloxane (PDMS) scaffold, and the effects of the RSC medium on the SHEDs differentiation between static and dynamic cultures were compared. Main results. Results demonstrated that the SHED cells differentiated by the RSC cultured medium in the static culture formed neurospheres after 7 days at the earliest, and SHED cells formed neurospheres within 3 days in the dynamic culture. These results confirm that the RSC culture medium can induce neurospheres formation, the speed of formation and the number of neurospheres (19.16 folds high) in a dynamic culture was superior to the static culture for 3 days culture. The SHED-derived spheres were further incubated in the RSCs culture medium, these neurospheres continuously differentiated into neurons and neuroglial cells. Immunofluorescent staining and RT-PCR revealed nestin, β-III tubulin, GFAP, and γ-enolase of neural markers on the differentiated cells. Significance. These results indicated that the RSC culture medium can induce the neural differentiation of SHED cells, and can be used as a new therapeutic tool to repair nerve damage.

  14. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu; Veréb, Zoltán, E-mail: jzvereb@gmail.com; Uray, Iván P., E-mail: ipuray@mdanderson.org

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism andmore » proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones

  15. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time formore » the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.« less

  16. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites

    PubMed Central

    Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis. PMID:26317351

  17. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites.

    PubMed

    Kim, Yang-Ji; Lee, Da-Hye; Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis.

  18. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com; Ludeña, Dolores; López, Marta

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12more » pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.« less

  19. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    USDA-ARS?s Scientific Manuscript database

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  20. Modulation of chondrogenic differentiation of human mesenchymal stem cells in jellyfish collagen scaffolds by cell density and culture medium.

    PubMed

    Pustlauk, W; Paul, B; Brueggemeier, S; Gelinsky, M; Bernhardt, A

    2017-06-01

    Studies on tissue-engineering approaches for the regeneration of traumatized cartilage focus increasingly on multipotent human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes. The present study applied porous scaffolds made of collagen from the jellyfish Rhopilema esculentum for the in vitro chondrogenic differentiation of hMSCs. Culture conditions in those scaffolds differ from conditions in high-density pellet cultures, making a re-examination of these data necessary. We systematically investigated the influence of seeding density, basic culture media [Dulbecco's modified Eagle's medium (DMEM), α-minimum essential medium (α-MEM)] with varying glucose content and supplementation with fetal calf serum (FCS) or bovine serum albumin (BSA) on the chondrogenic differentiation of hMSCs. Gene expression analyses of selected markers for chondrogenic differentiation and hypertrophic development were conducted. Furthermore, the production of cartilage extracellular matrix (ECM) was analysed by quantification of sulphated glycosaminoglycan and collagen type II contents. The strongest upregulation of chondrogenic markers, along with the highest ECM deposition was observed in scaffolds seeded with 2.4 × 10 6 cells/cm 3 after cultivation in high-glucose DMEM and 0.125% BSA. Lower seeding densities compared to high-density pellet cultures were sufficient to induce in vitro chondrogenic differentiation of hMSCs in collagen scaffolds, which reduces the amount of cells required for the seeding of scaffolds and thus the monolayer expansion period. Furthermore, examination of the impact of FCS and α-MEM on chondrogenic MSC differentiation is an important prerequisite for the development of an osteochondral medium for simultaneous osteogenic and chondrogenic differentiation in biphasic scaffolds for osteochondral tissue regeneration. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Protein Kinase Inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating Leukemia Inhibitory Factor

    PubMed Central

    Chen, Xin; Hausman, Bryan S.; Luo, Guangbin; Zhou, Guang; Murakami, Shunichi; Rubin, Janet; Greenfield, Edward M.

    2013-01-01

    The Protein Kinase Inhibitor (Pki) gene family inactivates nuclear PKA and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in MEFs, murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of Leukemia Inhibitory Factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. PMID:23963683

  2. Mesenchymal Stem Cell Differentiation into Adipocytes Is Equally Induced by Insulin and Proinsulin In Vitro.

    PubMed

    Pfützner, Andreas; Schipper, Dorothee; Pansky, Andreas; Kleinfeld, Claudia; Roitzheim, Barbara; Tobiasch, Edda

    2017-11-30

    In advanced β -cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β -cell dysfunction. Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β -cell dysfunction.

  3. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, Jong Ryeal; Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27; Ahmed, Mahmoud

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 wasmore » highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases

  4. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation[S

    PubMed Central

    Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren; Sundekilde, Ulrik; Hansen, Jacob B.; Blagoev, Blagoy; Madsen, Lise; Kristiansen, Karsten

    2014-01-01

    Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation. PMID:25312885

  5. Fibro/Adipogenic Progenitors (FAPs): Isolation by FACS and Culture.

    PubMed

    Low, Marcela; Eisner, Christine; Rossi, Fabio

    2017-01-01

    Fibro/adipogenic progenitors (FAPs ) are tissue-resident mesenchymal stromal cells (MSCs). Current literature supports a role for these cells in the homeostasis and repair of multiple tissues suggesting that FAPs may have extensive therapeutic potential in the treatment of numerous diseases. In this context, it is crucial to establish efficient and reproducible procedures to purify FAP populations from various tissues. Here, we describe a protocol for the isolation and cell culture of FAPs from murine skeletal muscle using fluorescence -activated cell sorting (FACS), which is particularly useful for experiments where high cell purity is an essential requirement. Identification, isolation, and cell culture of FAPs represent powerful tools that will help us to understand the role of these cells in different conditions and facilitate the development of safe and effective new treatments for diseases.

  6. Cinnamyl Alcohol, the Bioactive Component of Chestnut Flower Absolute, Inhibits Adipocyte Differentiation in 3T3-L1 Cells by Downregulating Adipogenic Transcription Factors.

    PubMed

    Hwang, Dae Il; Won, Kyung-Jong; Kim, Do-Yoon; Kim, Bokyung; Lee, Hwan Myung

    2017-01-01

    The extract of chestnut (Castanea crenata var. dulcis) flower (CCDF) has antioxidant and antimelanogenic properties, but its anti-obesity properties have not been previously examined. In this study, we tested the effect of CCDF absolute on adipocyte differentiation by using 3T3-L1 cells and determining the bioactive component of CCDF absolute in 3T3-L1 cell differentiation. CCDF absolute (0.1-100[Formula: see text][Formula: see text]g/mL) did not change 3T3-L1 cell viability. At 50[Formula: see text][Formula: see text]g/mL and 100[Formula: see text][Formula: see text]g/mL, the absolute significantly reduced the accumulation of lipid droplets in 3T3-L1 cells that were induced by culture in medium containing 3-isobutyl-1-methylxanthine/dexamethasone/insulin (MDI). GC/MS analysis showed that CCDF absolute contains 10 compounds. Among these compounds, cinnamyl alcohol (3-phenyl-2-propene-1-ol) dose-dependently inhibited the increased accumulation of lipid droplets in MDI-contained medium-cultured 3T3-L1 cells at a concentration range of 0.1[Formula: see text][Formula: see text]g/mL to 10[Formula: see text][Formula: see text]g/mL that did not cause cytotoxicity in 3T3-L1 cells. The inhibitory effect was significant at 5[Formula: see text][Formula: see text]g/mL ([Formula: see text] of response in MDI alone-treated state, [Formula: see text]) and 10[Formula: see text][Formula: see text]g/mL ([Formula: see text] of response in MDI alone-treated state, [Formula: see text]). Moreover, the enhanced expression of obesity-related proteins (PPAR[Formula: see text], C/EBP[Formula: see text], SREBP-1c, and FAS) in MDI medium-cultivated 3T3-L1 cells was significantly attenuated by the addition of cinnamyl alcohol at 5[Formula: see text][Formula: see text]g/mL and 10[Formula: see text][Formula: see text]g/mL. These findings demonstrate that cinnamyl alcohol suppresses 3T3-L1 cell differentiation by inhibiting anti-adipogenesis-related proteins, and it may be a main bioactive

  7. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation

    PubMed Central

    Seeger, Tanja; Hart, Melanie; Patarroyo, Manuel; Rolauffs, Bernd; Aicher, Wilhelm K.; Klein, Gerd

    2015-01-01

    Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells. PMID:26406476

  8. Development of Novel Monoclonal Antibodies that Define Differentiation Stages of Human Stromal (Mesenchymal) Stem Cells

    PubMed Central

    Andersen, Ditte C.; Kortesidis, Angela; Zannettino, Andrew C.W.; Kratchmarova, Irina; Chen, Li; Jensen, Ole N.; Teisner, Børge; Gronthos, Stan; Jensen, Charlotte H.; Kassem, Moustapha

    2011-01-01

    Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC surface proteins were developed by immunizing mice with hMSC, and by using a panel of subsequent screening methods. Flow cytometry analysis revealed that 83.5, 1.1, and 8.5% of primary cultures of hMSC were double positive for STRO-1 and either of DJ 3, 9, and 18, respectively. However, none of the three DJ antibodies allowed enrichment of clonogenic hMSC from BMMNCs as single reagents. Using mass-spectrometric analysis, we identified the antigen recognised by DJ3 as CD44, whereas DJ9 and DJ18 recognized HLA-DRB1 and Collagen VI, respectively. The identified proteins were highly expressed throughout in vitro osteogenic- and adipogenic differentiation. Interestingly, undifferentiated cells revealed a sole cytoplasmic distribution pattern of Collagen VI, which however changed to an extracellular matrix appearance upon osteogenic- and adipogenic differentiation. In relation to this, we found that STRO-1+/-/Collagen VI- sorted hMSC contained fewer differentiated alkaline phosphatase + cells compared to STRO-1+/-/Collagen VI+ hMSC, suggesting that Collagen VI on the cell membrane exclusively defines differentiated MSCs. In conclusion, we have generated a panel of high quality antibodies to be used for characterization of MSCs, and in addition our results may suggest that the DJ18 generated antibody against Collagen VI can be used for negative selection of cultured undifferentiated MSCs. PMID:21614487

  9. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  10. MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes.

    PubMed

    Larter, Claire Z; Yeh, Matthew M; Williams, Jacqueline; Bell-Anderson, Kim S; Farrell, Geoffrey C

    2008-09-01

    In these studies, we tested the hypothesis that increased lipid intake would exacerbate the severity of nutritional steatohepatitis. C57Bl/6J mice were fed methionine-and-choline deficient (MCD) diets containing 20% (high) or 5% (low) fat by weight for 3 weeks and compared to lipid-matched controls. MCD feeding increased serum ALT levels and induced hepatic steatosis, lobular inflammation and ballooning degeneration of hepatocytes, irrespective of dietary fat content. Hepatic triglyceride accumulation was similar between high and low-fat MCD-fed mice, but lipoperoxide levels were approximately 3-fold higher in the high-fat MCD-fed animals. Serum adiponectin levels increased in MCD-fed mice, although to a lesser extent in high-fat fed animals. AMPK phosphorylation was correspondingly increased in muscle of MCD-fed mice, but hepatic AMPK phosphorylation decreased, and there was little evidence of PPAR alpha activation, suggesting impaired adiponectin action in the livers of MCD-fed animals. Hepatocyte PPAR gamma mRNA levels increased in MCD-fed mice, and were associated with increased aP2 expression, indicating adipogenic transformation of hepatocytes. Increased dietary lipid intake did not alter steatohepatitis severity in MCD-fed mice despite increased lipoperoxide accumulation. Instead, steatohepatitis was associated with impaired hepatic adiponectin action, and adipogenic transformation of hepatocytes in both low and high-fat MCD-fed mice.

  11. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies.

    PubMed

    Ng, Elizabeth S; Davis, Richard; Stanley, Edouard G; Elefanty, Andrew G

    2008-01-01

    In order to promote the uniform and reproducible differentiation of human embryonic stem cells (HESCs) in response to exogenously added growth factors, we have developed a method (spin embryoid bodies (EBs)) that uses a recombinant protein-based, animal product-free medium in which HESCs are aggregated by centrifugation to form EBs. In this protocol we describe the formulation of this medium, denoted APEL (Albumin Polyvinylalcohol Essential Lipids), and its use in spin EB differentiation of HESCs. We also describe a more economical variant, BPEL (Bovine Serum Albumin (BSA) Polyvinylalchohol Essential Lipids), in which BSA replaces the recombinant human albumin. The integration of a medium that includes only defined and recombinant components with a defined number of cells to initiate EB formation results in a generally applicable, robust platform for growth factor-directed HESC differentiation.

  12. Supplementation of CHROMagar Candida Medium with Pal's Medium for Rapid Identification of Candida dubliniensis

    PubMed Central

    Sahand, Ismail H.; Moragues, María D.; Eraso, Elena; Villar-Vidal, María; Quindós, Guillermo; Pontón, José

    2005-01-01

    CHROMagar Candida medium is used for the isolation and identification of Candida species, but it does not differentiate Candida albicans from Candida dubliniensis. This differentiation can be achieved by using Pal's agar, which cannot be used in primary isolation. We have combined both media to obtain a new medium that can be used for the isolation and identification of C. dubliniensis in primary cultures. PMID:16272515

  13. Effects of parabens on adipocyte differentiation.

    PubMed

    Hu, Pan; Chen, Xin; Whitener, Rick J; Boder, Eric T; Jones, Jeremy O; Porollo, Aleksey; Chen, Jiangang; Zhao, Ling

    2013-01-01

    Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- < ethyl- < propyl- < butylparaben. The extension of the linear alkyl chain with an aromatic ring in benzylparaben further augments the adipogenic ability, whereas 4-hydroxybenzoic acid, the common metabolite of all parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose-derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further.

  14. Yolk Sac Mesenchymal Progenitor Cells from New World Mice (Necromys lasiurus) with Multipotent Differential Potential

    PubMed Central

    Favaron, Phelipe Oliveira; Mess, Andrea; Will, Sônia Elisabete; Maiorka, Paulo César; de Oliveira, Moacir Franco; Miglino, Maria Angelica

    2014-01-01

    Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in mice and human, whereas other cell types and species are dramatically underrepresented. Here we studied the nature and differentiation potential of yolk sac derived mesenchymal stem cells from a New World mouse, Necromys lasiurus. Explants from mid-gestation were cultured in DMEM-High glucose medium with 10% defined fetal bovine serum. The cells were characterized by standard methods including immunophenotyping by fluorescence and flow cytometry, growth and differentiation potential and tumorigenicity assays. The first adherent cells were observed after 7 days of cell culture and included small, elongated fibroblast-like cells (92.13%) and large, round epithelial-like cells with centrally located nuclei (6.5%). Only the fibroblast-like cells survived the first passages. They were positive to markers for mesenchymal stem cells (Stro-1, CD90, CD105, CD73) and pluripotency (Oct3/4, Nanog) as well as precursors of hematopoietic stem cells (CD117). In differentiation assays, they were classified as a multipotent lineage, because they differentiated into osteogenic, adipogenic, and chondrogenic lineages and, finally, they did not develop tumors. In conclusion, mesenchymal progenitor cells with multipotent differentiation potential and sufficient growth and proliferation abilities were able to be obtained from Necromys yolk sacs, therefore, we inferred that these cells may be promising for a wide range of applications in regenerative medicine. PMID:24918429

  15. GFP Labeling and Hepatic Differentiation Potential of Human Placenta-Derived Mesenchymal Stem Cells.

    PubMed

    Yu, Jiong; Su, Xiaoru; Zhu, Chengxing; Pan, Qiaoling; Yang, Jinfeng; Ma, Jing; Shen, Leyao; Cao, Hongcui; Li, Lanjuan

    2015-01-01

    Stem cell-based therapy in liver diseases has received increasing interest over the past decade, but direct evidence of the homing and implantation of transplanted cells is conflicting. Reliable labeling and tracking techniques are essential but lacking. The purpose of this study was to establish human placenta-derived mesenchymal stem cells (hPMSCs) expressing green fluorescent protein (GFP) and to assay their hepatic functional differentiation in vitro. The GFP gene was transduced into hPMSCs using a lentivirus to establish GFP(+) hPMSCs. GFP(+) hPMSCs were analyzed for their phenotypic profile, viability and adipogenic, osteogenic and hepatic differentiation. The derived GFP(+) hepatocyte-like cells were evaluated for their metabolic, synthetic and secretory functions, respectively. GFP(+) hPMSCs expressed high levels of HLA I, CD13, CD105, CD73, CD90, CD44 and CD29, but were negative for HLA II, CD45, CD31, CD34, CD133, CD271 and CD79. They possessed adipogenic, osteogenic and hepatic differentiation potential. Hepatocyte-like cells derived from GFP(+) hPMSCs showed typical hepatic phenotypes. GFP gene transduction has no adverse influences on the cellular or biochemical properties of hPMSCs or markers. GFP gene transduction using lentiviral vectors is a reliable labeling and tracking method. GFP(+) hPMSCs can therefore serve as a tool to investigate the mechanisms of MSC-based therapy, including hepatic disease therapy. © 2015 S. Karger AG, Basel.

  16. Reciprocal regulation of adipocyte and osteoblast differentiation of mesenchymal stem cells by Eupatorium japonicum prevents bone loss and adiposity increase in osteoporotic rats.

    PubMed

    Kim, Min-Ji; Jang, Woo-Seok; Lee, In-Kyoung; Kim, Jong-Keun; Seong, Ki-Seung; Seo, Cho-Rong; Song, No-Joon; Bang, Min-Hyuk; Lee, Young Min; Kim, Haeng Ran; Park, Ki-Moon; Park, Kye Won

    2014-07-01

    Pathological increases in adipogenic potential with decreases in osteogenic differentiation occur in osteoporotic bone marrow cells. Previous studies have shown that bioactive materials isolated from natural products can reciprocally regulate adipogenic and osteogenic fates of bone marrow cells. In this study, we showed that Eupatorium japonicum stem extracts (EJE) suppressed lipid accumulation and inhibited the expression of adipocyte markers in multipotent C3H10T1/2 and primary bone marrow cells. Conversely, EJE stimulated alkaline phosphatase activity and induced the expression of osteoblast markers in C3H10T1/2 and primary bone marrow cells. Daily oral administration of 50 mg/kg of EJE for 6 weeks to ovariectomized rats prevented body weight increase and bone mineral density decrease. Finally, activity-guided fractionation led to the identification of coumaric acid and coumaric acid methyl ester as bioactive anti-adipogenic and pro-osteogenic components in EJE. Taken together, our data indicate a promising possibility of E. japonicum as a functional food and as a therapeutic intervention for preventing osteoporosis and bone fractures.

  17. [In vitro differentiation of synovial-derived mesenchymal stem cells infected by adenovirus vector mediated by bone morphogenetic protein 2/7 genes into fibrocartilage cells in rabbits].

    PubMed

    Fu, Peiliang; Zhang, Lei; Wu, Haishan; Cong, Ruijun; Chen, Song; Ding, Zheru; Hu, Kaimen

    2013-03-01

    To investigate the feasibility of rabbit synovial-derived mesenchymal stem cells (SMSCs) differentiating into fibrocartilage cells by the recombinant adenovirus vector mediated by bone morphogenetic protein 2/7 (BMP-2/7) genes in vitro. SMSCs were isolated and purified from 3-month-old New Zealand white rabbits [male or female, weighing (2.1 +/- 0.3) kg]; the morphology was observed; the cells were identified with immunocytological fluorescent staining, flow cytometry, and cell cycles. The adipogenic, osteogenic, and chondrogenic differentiations were detected. The recombinant plasmid of pAdTrack-BMP-2-internal ribosome entry site (IRES)-BMP-7 was constructed and then was used to infect SMSCs. The cell DNA content and the oncogenicity were tested to determine the safety. Then infected SMSCs were cultured in incomplete chondrogenic medium in vitro. Chondrogenic differentiation of infected SMSCs was detected by RT-PCR, immunofluorescent staining, and toluidine blue staining. SMSCs expressed surface markers of stem cells, and had multi-directional potential. The transfection efficiency of SMSCs infected by recombinant plasmid of pAdTrack-BMP-2-IRES-BMP-7 was about 70%. The safety results showed that infected SMSCs had normal double time, normal chromosome number, and normal DNA content and had no oncogenicity. At 21 days after cultured in incomplete chondrocyte medium, RT-PCR results showed SMSCs had increased expressions of collegan type I and collegan type II, particularly collegan type II; the expressions of RhoA and Sox-9 increased obviously. Immunofluorescent staining and toluidine blue staining showed differentiation of SMSCs into fibrocartilage cells. It is safe to use pAdTrack-BMP-2-IRES-BMP-7 for infecting SMSCs. SMSCs infected by pAdTrack-BMP-2-IRES-BMP-7 can differentiate into fibrocartilage cells spontaneously in vitro.

  18. Adipogenic Effects and Gene Expression Profiling of Firemaster® 550 Components in Human Primary Preadipocytes

    PubMed Central

    Tung, Emily W.Y.; Peshdary, Vian; Gagné, Remi; Rowan-Carroll, Andrea; Yauk, Carole L.; Boudreau, Adéle

    2017-01-01

    Background: Exposure to flame retardants has been associated with negative health outcomes including metabolic effects. As polybrominated diphenyl ether flame retardants were pulled from commerce, human exposure to new flame retardants such as Firemaster® 550 (FM550) has increased. Although previous studies in murine systems have shown that FM550 and its main components increase adipogenesis, the effects of FM550 in human models have not been elucidated. Objectives: The objectives of this study were to determine if FM550 and its components are active in human preadipocytes, and to further investigate their mode of action. Methods: Human primary preadipocytes were differentiated in the presence of FM550 and its components. Differentiation was assessed by lipid accumulation and expression of peroxisome proliferator-activated receptor γ (PPARG), fatty acid binding protein (FABP) 4 and lipoprotein lipase (LPL). mRNA was collected for Poly (A) RNA sequencing and was used to identify differentially expressed genes (DEGs). Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. Results: FM550 triphenyl phosphate (TPP) and isopropylated triphenyl phosphates (IPTP), increased adipogenesis in human primary preadipocytes as assessed by lipid accumulation and mRNA expression of regulators of adipogenesis such as PPARγ, CCAAT enhancer binding protein (C/EBP) α and sterol regulatory element binding protein (SREBP) 1 as well as the adipogenic markers FABP4 LPL and perilipin. Poly (A) RNA sequencing analysis revealed potential modes of action including liver X receptor/retinoid X receptor (LXR/RXR) activation, thyroid receptor (TR)/RXR, protein kinase A, and nuclear receptor subfamily 1 group H members activation. Conclusions: We found that FM550, and two of its components, induced adipogenesis in human primary preadipocytes. Further, using global gene expression analysis we showed that both TPP and IPTP likely exert their effects through PPARG to induce

  19. Differential foraging preferences on seed size by rodents result in higher dispersal success of medium-sized seeds.

    PubMed

    Cao, Lin; Wang, Zhenyu; Yan, Chuan; Chen, Jin; Guo, Cong; Zhang, Zhibin

    2016-11-01

    Rodent preference for scatter-hoarding large seeds has been widely considered to favor the evolution of large seeds. Previous studies supporting this conclusion were primarily based on observations at earlier stages of seed dispersal, or on a limited sample of successfully established seedlings. Because seed dispersal comprises multiple dispersal stages, we hypothesized that differential foraging preference on seed size by animal dispersers at different dispersal stages would ultimately result in medium-sized seeds having the highest dispersal success rates. In this study, by tracking a large number of seeds for 5 yr, we investigated the effects of seed size on seed fates from seed removal to seedling establishment of a dominant plant Pittosporopsis kerrii (Icacinaceae) dispersed by scatter-hoarding rodents in tropical forest in southwest China. We found that small seeds had a lower survival rate at the early dispersal stage where more small seeds were predated at seed stations and after removal; large seeds had a lower survival rate at the late dispersal stage, more large seeds were recovered, predated after being cached, or larder-hoarded. Medium-sized seeds experienced the highest dispersal success. Our study suggests that differential foraging preferences by scatter-hoarding rodents at different stages of seed dispersal could result in conflicting selective pressures on seed size and higher dispersal success of medium-sized seeds. © 2016 by the Ecological Society of America.

  20. [Effects of different mechanical stretch conditions on differentiation of rat tendon stem cells].

    PubMed

    Li, Pao; Gao, Shang; Zhou, Mei; Tang, Hong; Mu, Miduo; Zhang, Jiqiang; Tang, Kanglai

    2017-04-01

    To investigate the effects of different mechanical stretch conditions on the differentiation of rat tendon stem cells (TSCs), to find the best uniaxial cyclic stretching for TSCs tenogenic differentiation, osteogenic differentiation, and adipogenic differentiation. TSCs were isolated from the Achilles tendons of 8-week-old male Sprague Dawley rats by enzymatic digestion method and cultured. The TSCs at passage 3 were randomly divided into 5 groups: group A (stretch strength of 4% and frequency of 1 Hz), group B (stretch strength of 4% and frequency of 2 Hz), group C (stretch strength of 8% and frequency of 1 Hz), group D (stretch strength of 8% and frequency of 2 Hz), and group E (static culture). At 12, 24, and 48 hours after mechanical stretch, the mRNA expressions of the tenogenic differentiation related genes [Scleraxis (SCX) and Tenascin C (TNC)], the osteogenic differentiation related genes [runt related transcription factor 2 (RUNX2) and distal-less homeobox 5 (DLX5)], and the adipogenic differentiation related genes [CCAAT-enhancer-binding protein-α (CEBPα) and lipoprteinlipase (LPL)] were detected by real-time fluorescent quantitative PCR and the protein expressions of TNC, CEBPα, and RUNX2 were detected by Western blot. The mRNA expressions of SCX and TNC in group B were significantly higher than those in groups A, C, D, and E at 24 hours after mechanical stretch ( P <0.05). The mRNA expressions of CEBPα and LPL in group D were significantly higher than those in groups A, B, C, and E at 48 hours after mechanical stretch ( P <0.05). The mRNA expressions of RUNX2 and DLX5 in group C were significantly higher than those in groups A, B, D, and E at 24 hours after mechanical stretch ( P <0.05). Western blot detection showed that higher protein expression of TNC in group B than group E at each time point after mechanical stretch ( P <0.05), and the protein expression of CEBPα was significantly inhibited when compared with group E at 24 hours after

  1. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathwaymore » (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  2. Myostatin inhibits porcine intramuscular preadipocyte differentiation in vitro.

    PubMed

    Sun, W X; Dodson, M V; Jiang, Z H; Yu, S G; Chu, W W; Chen, J

    2016-04-01

    This study assessed the effect of myostatin on adipogenesis by porcine intramuscular preadipocytes. Intramuscular preadipocytes were isolated from the longissimus dorsi muscle of newborn pigs. Myostatin inhibited intramuscular preadipocyte differentiation in a dose-dependent manner. Myostatin treatment during preadipocyte differentiation significantly (P < 0.05) inhibited the expression of the adipogenic marker genes CCAAT/enhancer-binding protein β, CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, fatty acid-binding protein, and adiponectin. Myostatin also significantly (P < 0.05) reduced the release of glycerol and decreased both adipose triglyceride lipase and hormone-sensitive lipase expression in intramuscular adipocytes. Our study suggests that myostatin acts as an extrinsic regulatory factor in regulating intramuscular adipogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Simple agarose micro-confinement array and machine-learning-based classification for analyzing the patterned differentiation of mesenchymal stem cells

    PubMed Central

    Sato, Asako; Vogel, Viola; Tanaka, Yo

    2017-01-01

    The geometrical confinement of small cell colonies gives differential cues to cells sitting at the periphery versus the core. To utilize this effect, for example to create spatially graded differentiation patterns of human mesenchymal stem cells (hMSCs) in vitro or to investigate underpinning mechanisms, the confinement needs to be robust for extended time periods. To create highly repeatable micro-fabricated structures for cellular patterning and high-throughput data mining, we employed here a simple casting method to fabricate more than 800 adhesive patches confined by agarose micro-walls. In addition, a machine learning based image processing software was developed (open code) to detect the differentiation patterns of the population of hMSCs automatically. Utilizing the agarose walls, the circular patterns of hMSCs were successfully maintained throughout 15 days of cell culture. After staining lipid droplets and alkaline phosphatase as the markers of adipogenic and osteogenic differentiation, respectively, the mega-pixels of RGB color images of hMSCs were processed by the software on a laptop PC within several minutes. The image analysis successfully showed that hMSCs sitting on the more central versus peripheral sections of the adhesive circles showed adipogenic versus osteogenic differentiation as reported previously, indicating the compatibility of patterned agarose walls to conventional microcontact printing. In addition, we found a considerable fraction of undifferentiated cells which are preferentially located at the peripheral part of the adhesive circles, even in differentiation-inducing culture media. In this study, we thus successfully demonstrated a simple framework for analyzing the patterned differentiation of hMSCs in confined microenvironments, which has a range of applications in biology, including stem cell biology. PMID:28380036

  4. Isolation, Characterization, and Differentiation of Dental Pulp Stem Cells in Ferrets.

    PubMed

    Homayounfar, Negar; Verma, Prashant; Nosrat, Ali; El Ayachi, Ikbale; Yu, Zongdong; Romberg, Elaine; Huang, George T-J; Fouad, Ashraf F

    2016-03-01

    The ferret canine tooth has been introduced as a suitable model for studying dental pulp regeneration. The aim of this study was to isolate and characterize ferret dental pulp stem cells (fDPSCs) and their differentiation potential. Dental pulp stem cells were isolated from freshly extracted ferret canine teeth. The cells were examined for the expression of stem cell markers STRO-1, CD90, CD105, and CD146. The osteo/odontogenic and adipogenic differentiation potential of fDPSCs was evaluated. Osteogenic and odontogenic marker genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) on days 1, 4, and 8 after osteo/odontogenic induction of fDPSCs including dentin sialophosphoprotein (DSPP), dentin matrix protein-1, osteopontin, and alkaline phosphatase. Human dental pulp cells were used as the control. The results were analyzed using 3-way analysis of variance. fDPSCs were positive for STRO1, CD90, and CD105 and negative for CD146 markers with immunohistochemistry. fDPSCs showed strong osteogenic and weak adipogenic potential. The overall expression of DSPP was not significantly different between fDPSCs and human dental pulp cells. The expression of DSPP in osteo/odontogenic media was significantly higher in fDPSCs on day 4 (P < .01). The overall expression of dentin matrix protein-1, osteopontin, and alkaline phosphatase was significantly higher in fDPSCs (P = .0005). fDPSCs were positive for several markers of dental pulp stem cells resembling human DPSCs and appeared to show a stronger potential to differentiate to osteoblastic rather than odontoblastic lineage. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Yin Yang 1 and Adipogenic Gene Network Expression in Longissimus Muscle of Beef Cattle in Response to Nutritional Management

    PubMed Central

    Moisá, Sonia J.; Shike, Daniel W.; Meteer, William T.; Keisler, Duane; Faulkner, Dan B.; Loor, Juan J.

    2013-01-01

    Among 36 differentially-expressed genes during growth in longissimus muscle (LM) of Angus steers, Yin Yang 1 (YY1) had the most relationships with other genes including some associated with adipocyte differentiation. The objective of this study was to examine the effect of nutritional management on mRNA expression of YY1 along with its targets genes PPARG, GTF2B, KAT2B, IGFBP5 and STAT5B. Longissimus from Angus and Angus × Simmental steers (7 total/treatment) on early weaning plus high-starch (EWS), normal weaning plus starch creep feeding (NWS), or normal weaning without starch creep feeding (NWN) was biopsied at 0, 96, and 240 days on treatments. Results suggest that YY1 does not exert control of adipogenesis in LM, and its expression is not sensitive to weaning age. Among the YY1-related genes, EWS led to greater IGFBP5 during growing and finishing phases. Pro-adipogenic transcriptional regulation was detected in EWS due to greater PPARG and VDR at 96 and 240 d vs. 0 d. GTF2B and KAT2B expression was lower in response to NWS and EWS than NWN, and was most pronounced at 240 d. The increase in PPARG and GTF2B expression between 96 and 240 d underscored the existence of a molecular programming mechanism that was sensitive to age and dietary starch. Such response partly explains the greater carcass fat deposition observed in response to NWS. PMID:23700364

  6. Yin yang 1 and adipogenic gene network expression in longissimus muscle of beef cattle in response to nutritional management.

    PubMed

    Moisá, Sonia J; Shike, Daniel W; Meteer, William T; Keisler, Duane; Faulkner, Dan B; Loor, Juan J

    2013-01-01

    Among 36 differentially-expressed genes during growth in longissimus muscle (LM) of Angus steers, Yin Yang 1 (YY1) had the most relationships with other genes including some associated with adipocyte differentiation. The objective of this study was to examine the effect of nutritional management on mRNA expression of YY1 along with its targets genes PPARG, GTF2B, KAT2B, IGFBP5 and STAT5B. Longissimus from Angus and Angus × Simmental steers (7 total/treatment) on early weaning plus high-starch (EWS), normal weaning plus starch creep feeding (NWS), or normal weaning without starch creep feeding (NWN) was biopsied at 0, 96, and 240 days on treatments. Results suggest that YY1 does not exert control of adipogenesis in LM, and its expression is not sensitive to weaning age. Among the YY1-related genes, EWS led to greater IGFBP5 during growing and finishing phases. Pro-adipogenic transcriptional regulation was detected in EWS due to greater PPARG and VDR at 96 and 240 d vs. 0 d. GTF2B and KAT2B expression was lower in response to NWS and EWS than NWN, and was most pronounced at 240 d. The increase in PPARG and GTF2B expression between 96 and 240 d underscored the existence of a molecular programming mechanism that was sensitive to age and dietary starch. Such response partly explains the greater carcass fat deposition observed in response to NWS.

  7. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts.

    PubMed

    Casado-Díaz, Antonio; Anter, Jaouad; Dorado, Gabriel; Quesada-Gómez, José Manuel

    2016-06-01

    Natural phenols may have beneficial properties against oxidative stress, which is associated with aging and major chronic aging-related diseases, such as loss of bone mineral mass (osteoporosis) and diabetes. The main aim of this study was to analyze the effect of quercetin, a major nutraceutical compound present in the "Mediterranean diet", on mesenchymal stem-cell (MSC) differentiation. Such cells were induced to differentiate into osteoblasts or adipocytes in the presence of two quercetin concentrations (0.1 and 10μM). Several physiological parameters and the expression of osteoblastogenesis and adipogenesis marker genes were monitored. Quercetin (10μM) inhibited cell proliferation, alkaline phosphatase (ALPL) activity and mineralization, down-regulating the expression of ALPL, collagen type I alpha 1 (COL1A1) and osteocalcin [bone gamma-carboxyglutamate protein (BGLAP)] osteoblastogenesis-related genes in MSC differentiating into osteoblasts. Moreover, in these cultures, CCAAT/enhancer-binding protein alpha (CEBPA) and peroxisome proliferator-activated receptor gamma 2 (PPARG2) adipogenic genes were induced, and cells differentiated into adipocytes were observed. Quercetin did not affect proliferation, but increased adipogenesis, mainly at 10-μM concentration in MSC induced to differentiate to adipocytes. β- and γ-catenin (plakoglobin) nuclear levels were reduced and increased, respectively, in quercetin-treated cultures. This suggests that the effect of high concentration of quercetin on MSC osteoblastic and adipogenic differentiation is mediated via Wnt/β-catenin inhibition. In conclusion, quercetin supplementation inhibited osteoblastic differentiation and promoted adipogenesis at the highest tested concentration. Such possible adverse effects of high quercetin concentrations should be taken into account in nutraceutical or pharmaceutical strategies using such flavonol. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy.

    PubMed

    Sommariva, E; Brambilla, S; Carbucicchio, C; Gambini, E; Meraviglia, V; Dello Russo, A; Farina, F M; Casella, M; Catto, V; Pontone, G; Chiesa, M; Stadiotti, I; Cogliati, E; Paolin, A; Ouali Alami, N; Preziuso, C; d'Amati, G; Colombo, G I; Rossini, A; Capogrossi, M C; Tondo, C; Pompilio, G

    2016-06-14

    Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder mainly due to mutations in desmosomal genes, characterized by progressive fibro-adipose replacement of the myocardium, arrhythmias, and sudden death. It is still unclear which cell type is responsible for fibro-adipose substitution and which molecular mechanisms lead to this structural change. Cardiac mesenchymal stromal cells (C-MSC) are the most abundant cells in the heart, with propensity to differentiate into several cell types, including adipocytes, and their role in ACM is unknown. The aim of the present study was to investigate whether C-MSC contributed to excess adipocytes in patients with ACM. We found that, in ACM patients' explanted heart sections, cells actively differentiating into adipocytes are of mesenchymal origin. Therefore, we isolated C-MSC from endomyocardial biopsies of ACM and from not affected by arrhythmogenic cardiomyopathy (NON-ACM) (control) patients. We found that both ACM and control C-MSC express desmosomal genes, with ACM C-MSC showing lower expression of plakophilin (PKP2) protein vs. Arrhythmogenic cardiomyopathy C-MSC cultured in adipogenic medium accumulated more lipid droplets than controls. Accordingly, the expression of adipogenic genes was higher in ACM vs. NON-ACM C-MSC, while expression of cell cycle and anti-adipogenic genes was lower. Both lipid accumulation and transcription reprogramming were dependent on PKP2 deficiency. Cardiac mesenchymal stromal cells contribute to the adipogenic substitution observed in ACM patients' hearts. Moreover, C-MSC from ACM patients recapitulate the features of ACM adipogenesis, representing a novel, scalable, patient-specific in vitro tool for future mechanistic studies. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  9. Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy

    PubMed Central

    Sommariva, E.; Brambilla, S.; Carbucicchio, C.; Gambini, E.; Meraviglia, V.; Dello Russo, A.; Farina, F.M.; Casella, M.; Catto, V.; Pontone, G.; Chiesa, M.; Stadiotti, I.; Cogliati, E.; Paolin, A.; Ouali Alami, N.; Preziuso, C.; d'Amati, G.; Colombo, G.I.; Rossini, A.; Capogrossi, M.C.; Tondo, C.; Pompilio, G.

    2016-01-01

    Abstract Aim Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder mainly due to mutations in desmosomal genes, characterized by progressive fibro-adipose replacement of the myocardium, arrhythmias, and sudden death. It is still unclear which cell type is responsible for fibro-adipose substitution and which molecular mechanisms lead to this structural change. Cardiac mesenchymal stromal cells (C-MSC) are the most abundant cells in the heart, with propensity to differentiate into several cell types, including adipocytes, and their role in ACM is unknown. The aim of the present study was to investigate whether C-MSC contributed to excess adipocytes in patients with ACM. Methods and results We found that, in ACM patients' explanted heart sections, cells actively differentiating into adipocytes are of mesenchymal origin. Therefore, we isolated C-MSC from endomyocardial biopsies of ACM and from not affected by arrhythmogenic cardiomyopathy (NON-ACM) (control) patients. We found that both ACM and control C-MSC express desmosomal genes, with ACM C-MSC showing lower expression of plakophilin (PKP2) protein vs. controls. Arrhythmogenic cardiomyopathy C-MSC cultured in adipogenic medium accumulated more lipid droplets than controls. Accordingly, the expression of adipogenic genes was higher in ACM vs. NON-ACM C-MSC, while expression of cell cycle and anti-adipogenic genes was lower. Both lipid accumulation and transcription reprogramming were dependent on PKP2 deficiency. Conclusions Cardiac mesenchymal stromal cells contribute to the adipogenic substitution observed in ACM patients' hearts. Moreover, C-MSC from ACM patients recapitulate the features of ACM adipogenesis, representing a novel, scalable, patient-specific in vitro tool for future mechanistic studies. PMID:26590176

  10. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Quinn, Kyle P.; Sridharan, Gautham V.; Hayden, Rebecca S.; Kaplan, David L.; Lee, Kyongbum; Georgakoudi, Irene

    2013-12-01

    The non-invasive high-resolution spatial mapping of cell metabolism within tissues could provide substantial advancements in assessing the efficacy of stem cell therapy and understanding tissue development. Here, using two-photon excited fluorescence microscopy, we elucidate the relationships among endogenous cell fluorescence, cell redox state, and the differentiation of human mesenchymal stem cells into adipogenic and osteoblastic lineages. Using liquid chromatography/mass spectrometry and quantitative PCR, we evaluate the sensitivity of an optical redox ratio of FAD/(NADH + FAD) to metabolic changes associated with stem cell differentiation. Furthermore, we probe the underlying physiological mechanisms, which relate a decrease in the redox ratio to the onset of differentiation. Because traditional assessments of stem cells and engineered tissues are destructive, time consuming, and logistically intensive, the development and validation of a non-invasive, label-free approach to defining the spatiotemporal patterns of cell differentiation can offer a powerful tool for rapid, high-content characterization of cell and tissue cultures.

  11. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de; Mueller, Thomas; Blasczyk, Rainer

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application andmore » transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the

  12. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes

    PubMed Central

    Zhang, Mingfeng; Lin, Qing; Qi, Tong; Wang, Tiankun; Chen, Ching-Cheng; Riggs, Arthur D.; Zeng, Defu

    2016-01-01

    We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9+ (Sox9+) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9+ ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9+ ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300–450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9+ ductal cell differentiation into β cells in adult mice. PMID:26733677

  13. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators.

    PubMed

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone; Dai, Jie; Rogowska-Wrzesinska, Adelina; Mandrup, Susanne; Jensen, Ole N

    2017-03-01

    Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency are associated with adverse metabolic function. Adipogenesis is the process whereby preadipocyte precursor cells differentiate into lipid-laden mature adipocytes. This process is driven by a network of transcriptional regulators (TRs). We hypothesized that protein PTMs, in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied MS-based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early stages (4 h) of preadipocyte differentiation. We identified a total of 4072 proteins including 2434 phosphorylated proteins, a majority of which were assigned as regulators of gene expression. Our results demonstrate that adipogenic stimuli increase the nuclear abundance and/or the phosphorylation levels of proteins involved in gene expression, cell organization, and oxidation-reduction pathways. Furthermore, proteins acting as negative modulators involved in negative regulation of gene expression, insulin stimulated glucose uptake, and cytoskeletal organization showed a decrease in their nuclear abundance and/or phosphorylation levels during the first 4 h of adipogenesis. Among 288 identified TRs, 49 were regulated within 4 h of adipogenic stimulation including several known and many novel potential adipogenic regulators. We created a kinase-substrate database for 3T3-L1 preadipocytes by investigating the relationship between protein kinases and protein phosphorylation sites identified in our dataset. A majority of the putative protein kinases belong to the cyclin-dependent kinase family and the mitogen-activated protein kinase family including P38 and c-Jun N-terminal kinases, suggesting that these kinases act as orchestrators of early adipogenesis. © 2016 WILEY

  14. Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Chung, Chang Hwa; Moon, BoKyung; Ha, Tae Youl

    2012-09-12

    Lithospermum erythrorhizon, which has traditionally been used as a vegetable and to make the liquor Jindo Hongju, contains several naphthoquinone pigments, including shikonin. This study aimed to evaluate the antiobesity effects of Lithospermum erythrorhizon ethanol extract (LE) and elucidate the underlying mechanism. C57BL/6J mice were fed a normal or high-fat diet with or without LE supplementation for 8 weeks. LE reduced high-fat diet-induced increases in body weight, white adipose tissue mass, serum triglyceride and total cholesterol levels, and hepatic lipid levels while decreasing lipogenic and adipogenic gene expression. Furthermore, acetylshikonin suppressed adipocyte differentiation in a dose-dependent manner and significantly attenuated adipogenic transcription factor expression in 3T3-L1 cells. These findings suggest that Lithospermum erythrorhizon prevents obesity by inhibiting adipogenesis through downregulation of genes involved in the adipogenesis pathway and may be a useful dietary supplement for the prevention of obesity.

  15. The novel anti-adipogenic effect and mechanisms of action of SGI-1776, a Pim-specific inhibitor, in 3T3-L1 adipocytes.

    PubMed

    Park, Yu-Kyoung; Hong, Victor Sukbong; Lee, Tae-Yoon; Lee, Jinho; Choi, Jong-Soon; Park, Dong-Soon; Park, Gi-Young; Jang, Byeong-Churl

    2016-01-01

    The proviral integration site for moloney murine leukemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, belongs to a family of serine/threonine kinases that are involved in controlling cell growth and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. SGI-1776, an inhibitor of Pim kinases, is widely used to assess the physiological roles of Pim kinases, particularly cell functions. In the present study, we examined the effects of SGI-1776 on adipogenesis. The anti‑adipogenic effect of SGI‑1776 was measured by Oil Red O staining and AdipoRed assays. The effect of SGI‑1776 on the growth of 3T3‑L1 adipocytes was determined by cell count analysis. The effects of SGI‑1776 on the protein and mRNA expression of adipogenesis-related proteins and adipokines in 3T3‑L1 adipocytes were also evaluated by western blot analysis and RT‑PCR, respectively. Notably, SGI-1776 markedly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. On a mechanistic level, SGI-1776 inhibited not only the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ) and fatty acid synthase (FAS), but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3). Moreover, SGI-1776 decreased the expression of adipokines, including the expression of leptin and regulated on activation, normal T cell expressed and secreted (RANTES) during adipocyte differentiation. These findings demonstrate that SGI-1776 inhibits adipogenesis by downregulating the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS and STAT-3.

  16. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation

    PubMed Central

    Nishikawa, Keizo; Nakashima, Tomoki; Takeda, Shu; Isogai, Masashi; Hamada, Michito; Kimura, Ayako; Kodama, Tatsuhiko; Yamaguchi, Akira; Owen, Michael J.; Takahashi, Satoru; Takayanagi, Hiroshi

    2010-01-01

    Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf–/– mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf+/– mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases. PMID:20877012

  17. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes.

    PubMed

    Li, Chunbo; Zhou, Lin

    2015-12-25

    6-Gingerol has been reported to inhibit adipogenesis and lipid content accumulation. However, the mechanism of its anti-adipogenic effect remains unclear. Our aim is to investigate the molecular mechanism of the anti-adipogenic effect of 6-gingerol. The lipid content in adipocytes was measured by Oil Red O staining and cell viability was analyzed by MTT assay. The extent of suppression of differentiation by 6-gingerol was characterized by measuring the triglyceride content and GPDH activity. The regulation of adipogenic markers and the components of the Wnt/β-catenin pathway were analyzed by real-time PCR and Western blotting. The nuclear location of β-catenin was identified using immunofluorescence assay. Small interfering RNA transfection was conducted to elucidate the crucial role of β-catenin in anti-adipogenic effect of 6-gingerol. Our results showed that 6-gingerol inhibited the adipogenesis and lowered the mRNA expression levels of transcription factors and the key lipogenic enzymes in 3T3-L1 cells. The effect of 6-gingerol on adipogenic differentiation was accompanied by stimulating the activation of the Wnt/β-catenin signaling. In addition, we found that 6-gingerol induced phosphorylations of glycogen synthase kinase-3β(GSK-3β), and promoted the nuclear accumulation of β-catenin. Importantly, the inhibitory effect of 6-gingerol on adipogenic differentiation was reversed after the siRNA knockdown of β-catenin was added. Our findings demonstrated that 6-gingerol inhibits the adipogenic differentiation of 3T3-L1 cells through activating the Wnt/β-catenin signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li-Wu; Wu, Qiangen; Green, Bridgett

    2012-07-15

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCSmore » (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.« less

  19. Key Transcription Factors in the Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Almalki, Sami G.; Agrawal, Devendra K.

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that represent a promising source for regenerative medicine. MSCs are capable of osteogenic, chondrogenic, adipogenic and myogenic differentiation. Efficacy of differentiated MSCs to regenerate cells in the injured tissues requires the ability to maintain the differentiation toward the desired cell fate. Since MSCs represent an attractive source for autologous transplantation, cellular and molecular signaling pathways and micro-environmental changes have been studied in order to understand the role of cytokines, chemokines, and transcription factors on the differentiation of MSCs. The differentiation of MSC into a mesenchymal lineage is genetically manipulated and promoted by specific transcription factors associated with a particular cell lineage. Recent studies have explored the integration of transcription factors, including Runx2, Sox9, PPARγ, MyoD, GATA4, and GATA6 in the differentiation of MSCs. Therefore, the overexpression of a single transcription factor in MSCs may promote trans-differentiation into specific cell lineage, which can be used for treatment of some diseases. In this review, we critically discussed and evaluated the role of transcription factors and related signaling pathways that affect the differentiation of MSCs toward adipocytes, chondrocytes, osteocytes, skeletal muscle cells, cardiomyocytes, and smooth muscle cells. PMID:27012163

  20. Hypoxia Promotes Osteogenesis but Suppresses Adipogenesis of Human Mesenchymal Stromal Cells in a Hypoxia-Inducible Factor-1 Dependent Manner

    PubMed Central

    Lohanatha, Ferenz L.; Hahne, Martin; Strehl, Cindy; Fangradt, Monique; Tran, Cam Loan; Schönbeck, Kerstin; Hoff, Paula; Ode, Andrea; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2012-01-01

    Background Bone fracture initiates a series of cellular and molecular events including the expression of hypoxia-inducible factor (HIF)-1. HIF-1 is known to facilitate recruitment and differentiation of multipotent human mesenchymal stromal cells (hMSC). Therefore, we analyzed the impact of hypoxia and HIF-1 on the competitive differentiation potential of hMSCs towards adipogenic and osteogenic lineages. Methodology/Principal Findings Bone marrow derived primary hMSCs cultured for 2 weeks either under normoxic (app. 18% O2) or hypoxic (less than 2% O2) conditions were analyzed for the expression of MSC surface markers and for expression of the genes HIF1A, VEGFA, LDHA, PGK1, and GLUT1. Using conditioned medium, adipogenic or osteogenic differentiation as verified by Oil-Red-O or von-Kossa staining was induced in hMSCs under either normoxic or hypoxic conditions. The expression of HIF1A and VEGFA was measured by qPCR. A knockdown of HIF-1α by lentiviral transduction was performed, and the ability of the transduced hMSCs to differentiate into adipogenic and osteogenic lineages was analyzed. Hypoxia induced HIF-1α and HIF-1 target gene expression, but did not alter MSC phenotype or surface marker expression. Hypoxia (i) suppressed adipogenesis and associated HIF1A and PPARG gene expression in hMSCs and (ii) enhanced osteogenesis and associated HIF1A and RUNX2 gene expression. shRNA-mediated knockdown of HIF-1α enhanced adipogenesis under both normoxia and hypoxia, and suppressed hypoxia-induced osteogenesis. Conclusions/Significance Hypoxia promotes osteogenesis but suppresses adipogenesis of human MSCs in a competitive and HIF-1-dependent manner. We therefore conclude that the effects of hypoxia are crucial for effective bone healing, which may potentially lead to the development of novel therapeutic approaches. PMID:23029528

  1. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium.

    PubMed

    Wagner, Diane R; Lindsey, Derek P; Li, Kelvin W; Tummala, Padmaja; Chandran, Sheena E; Smith, R Lane; Longaker, Michael T; Carter, Dennis R; Beaupre, Gary S

    2008-05-01

    This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-beta1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-beta1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.

  2. Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions.

    PubMed

    Liu, Wenjia; Konermann, Anna; Guo, Tao; Jäger, Andreas; Zhang, Liqiang; Jin, Yan

    2014-03-01

    Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway. PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2. PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs. Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation. These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.

    PubMed

    van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T

    2017-04-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.

  4. Functional Comparison of Neuronal Cells Differentiated from Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Different Oxygen and Medium Conditions.

    PubMed

    Yamazaki, Kazuto; Fukushima, Kazuyuki; Sugawara, Michiko; Tabata, Yoshikuni; Imaizumi, Yoichi; Ishihara, Yasuharu; Ito, Masashi; Tsukahara, Kappei; Kohyama, Jun; Okano, Hideyuki

    2016-12-01

    Because neurons are difficult to obtain from humans, generating functional neurons from human induced pluripotent stem cells (hiPSCs) is important for establishing physiological or disease-relevant screening systems for drug discovery. To examine the culture conditions leading to efficient differentiation of functional neural cells, we investigated the effects of oxygen stress (2% or 20% O 2 ) and differentiation medium (DMEM/F12:Neurobasal-based [DN] or commercial [PhoenixSongs Biologicals; PS]) on the expression of genes related to neural differentiation, glutamate receptor function, and the formation of networks of neurons differentiated from hiPSCs (201B7) via long-term self-renewing neuroepithelial-like stem (lt-NES) cells. Expression of genes related to neural differentiation occurred more quickly in PS and/or 2% O 2 than in DN and/or 20% O 2 , resulting in high responsiveness of neural cells to glutamate, N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ( S)-3,5-dihydroxyphenylglycine (an agonist for mGluR 1/5 ), as revealed by calcium imaging assays. NMDA receptors, AMPA receptors, mGluR 1 , and mGluR 5 were functionally validated by using the specific antagonists MK-801, NBQX, JNJ16259685, and 2-methyl-6-(phenylethynyl)-pyridine, respectively. Multielectrode array analysis showed that spontaneous firing occurred earlier in cells cultured in 2% O 2 than in 20% O 2 . Optimization of O 2 tension and culture medium for neural differentiation of hiPSCs can efficiently generate physiologically relevant cells for screening systems.

  5. Oxidative stress differentially impacts male and female bovine embryos depending on the culture medium and the stress condition.

    PubMed

    Dallemagne, Matthew; Ghys, Emmanuelle; De Schrevel, Catalina; Mwema, Ariane; De Troy, Delphine; Rasse, Catherine; Donnay, Isabelle

    2018-09-01

    Male and female embryos are known to differ for their metabolism and response to environmental factors very early in development. The present study aimed to evaluate the response to oxidative stress of male and female bovine embryos at the morula-blastocyst stages in terms of developmental rates, total cell number and apoptotic rates in two culture conditions. Embryos where cultured in a medium supplemented with either 5% fetal calf serum (FCS) or 4 mg/mL bovine serum albumin and a mixture of insulin, transferrin and selenium (BSA-ITS). Oxidative stress was applied at Day-5 post insemination (pi) by adding either AAPH or menadione to the culture medium, and blastocysts were analyzed at Day-7pi. The impact on development and blastocyst quality was dependent on the culture medium and the stress inducer but differed between male and female embryos. Male embryos resisted better to oxidative stress in FCS supplemented medium, no matter the stress inducer. Accordingly, the impact on blastocyst cell number tended to be higher in female blastocysts after stress induction with AAPH in FCS supplemented medium. On the other hand, in BSA-ITS supplemented medium, female embryos were more resistant to AAPH induced stress, while menadione had no impact on sex ratio. The weaker resistance of males to AAPH in this medium is in accordance with their trend to show a higher increase in apoptotic rates than females in this condition. In conclusion, this study shows that oxidative stress has differential impact on male and female bovine blastocysts depending on the culture condition and on the way oxidative stress is induced. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Function Clustering Self-Organization Maps (FCSOMs) for mining differentially expressed genes in Drosophila and its correlation with the growth medium.

    PubMed

    Liu, L L; Liu, M J; Ma, M

    2015-09-28

    The central task of this study was to mine the gene-to-medium relationship. Adequate knowledge of this relationship could potentially improve the accuracy of differentially expressed gene mining. One of the approaches to differentially expressed gene mining uses conventional clustering algorithms to identify the gene-to-medium relationship. Compared to conventional clustering algorithms, self-organization maps (SOMs) identify the nonlinear aspects of the gene-to-medium relationships by mapping the input space into another higher dimensional feature space. However, SOMs are not suitable for huge datasets consisting of millions of samples. Therefore, a new computational model, the Function Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs take advantage of the theory of granular computing as well as advanced statistical learning methodologies, and are built specifically for each information granule (a function cluster of genes), which are intelligently partitioned by the clustering algorithm provided by the DAVID_6.7 software platform. However, only the gene functions, and not their expression values, are considered in the fuzzy clustering algorithm of DAVID. Compared to the clustering algorithm of DAVID, these experimental results show a marked improvement in the accuracy of classification with the application of FCSOMs. FCSOMs can handle huge datasets and their complex classification problems, as each FCSOM (modeled for each function cluster) can be easily parallelized.

  7. In Vivo Exposure to Inorganic Arsenic Alters Differentiation-Specific Gene Expression of Adipose-Derived Mesenchymal Stem/Stromal Cells in C57BL/6J Mouse Model

    PubMed Central

    Shearer, Joseph J.; Figueiredo Neto, Manoel; Umbaugh, C. Samuel; Figueiredo, Marxa L.

    2017-01-01

    Abstract The number of mesenchymal stem cell (MSC) therapeutic modalities has grown in recent years. Adipose-derived mesenchymal stem/stromal cells (ASCs) can be isolated and expanded relatively easily as compared with their bone-marrow counterparts, making them a particularly promising source of MSCs. And although the biological mechanisms surrounding ASCs are actively being investigated, little is known about the effects that in vivo environmental exposures might have on their ability to properly differentiate. Therefore, we hypothesized that ASCs isolated from mice exposed to inorganic arsenic (iAs) would have an altered response towards adipogenic, osteogenic, and/or chondrogenic differentiation. To test this hypothesis, C57BL/6J male mice were provided drinking water containing 0, 300, or 1000 ppb iAs. ASCs were then isolated and differentiated, which was assessed by immunocytochemistry and real-time quantitative PCR (RT-qPCR). Our results showed that total urinary arsenic equilibrated within 1 week of exposure to iAs and was maintained throughout the study. ASCs isolated from each exposure group maintained differentiation capabilities for each lineage. The magnitude of differentiation-specific gene expression, however, appeared to be concentration dependent. For osteogenesis and chondrogenesis, differentiation-specific gene expression decreased, whereas adipogenesis showed a biphasic response with an initial decrease followed by an increase in adipogenic-related gene expression following iAs exposure. These results suggest that the level in which differentiation-specific genes are induced within these stromal cells might be sensitive to environmental contaminants. These findings highlight the need to take into account potential environmental exposures prior to selecting stromal cell donors, so ASCs can achieve optimal efficiency in regenerative therapy applications. PMID:28206643

  8. Concentration of adipogenic and proinflammatory cytokines in the bone marrow supernatant fluid of osteoporotic women.

    PubMed

    Pino, Ana María; Ríos, Susana; Astudillo, Pablo; Fernández, Mireya; Figueroa, Paula; Seitz, Germán; Rodríguez, J Pablo

    2010-03-01

    Osteoporosis is characterized by low bone mass, microarchitectural deterioration of bone tissue leading to increased bone fragility, and a resulting susceptibility to fractures. Distinctive environmental bone marrow conditions appear to support the development and maintenance of the unbalance between bone resorption and bone formation; these complex bone marrow circumstances would be reflected in the fluid surrounding bone marrow cells. The content of regulatory molecules in the extracellular fluid from the human bone marrow is practically unknown. Since the content of cytokines such as adiponectin, leptin, osteoprogeterin (OPG), soluble receptor activator of nuclear factor kappaB ligand (s-RANKL), tumor necrosis factor alpha, and interleukin 6 (IL-6) may elicit conditions promoting or sustaining osteoporosis, in this work we compared the concentrations of the above-mentioned cytokines and also the level of the soluble receptors for both IL-6 and leptin in the extracellular fluid from the bone marrow of nonosteoporotic and osteoporotic human donors. A supernatant fluid (bone marrow supernatant fluid [BMSF]) was obtained after spinning the aspirated bone marrow samples; donors were classified as nonosteoporotic or osteoporotic after dual-energy X-ray absorptiometry (DXA) measuring. Specific commercially available kits were used for all measurements. The cytokines' concentration in BMSF showed differently among nonosteoporotic and osteoporotic women; this last group was characterized by higher content of proinflammatory and adipogenic cytokines. Also, osteoporotic BMSF differentiated by decreased leptin bioavailability, suggesting that insufficient leptin action may distinguish the osteoporotic bone marrow. Copyright 2010 American Society for Bone and Mineral Research.

  9. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology.

    PubMed

    Bharadwaj, Shantaram; Liu, Guihua; Shi, Yingai; Wu, Rongpei; Yang, Bin; He, Tongchuan; Fan, Yuxin; Lu, Xinyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Rohozinski, Jan; Zhang, Yuanyuan

    2013-09-01

    We sought to biologically characterize and identify a subpopulation of urine-derived stem cells (USCs) with the capacity for multipotent differentiation. We demonstrated that single USCs can expand to a large population with 60-70 population doublings. Nine of 15 individual USC clones expressed detectable levels of telomerase and have long telomeres. These cells expressed pericyte and mesenchymal stem cell markers. Upon induction with appropriate media in vitro, USCs differentiated into bladder-associated cell types, including functional urothelial and smooth muscle cell lineages. When the differentiated USCs were seeded onto a scaffold and subcutaneously implanted into nude mice, multilayered tissue-like structures formed consisting of urothelium and smooth muscle. Additionally, USCs were able to differentiate into endothelial, osteogenic, chondrogenic, adipogenic, skeletal myogenic, and neurogenic lineages but did not form teratomas during the 1-month study despite telomerase activity. USCs may be useful in cell-based therapies and tissue engineering applications, including urogenital reconstruction. © AlphaMed Press.

  10. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway.

    PubMed

    Kusuyama, Joji; Bandow, Kenjiro; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-04-11

    Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway.

  11. Bone Marrow Mesenchymal Stem Cells Enhance the Differentiation of Human Switched Memory B Lymphocytes into Plasma Cells in Serum-Free Medium

    PubMed Central

    Gervais-St-Amour, Catherine

    2016-01-01

    The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC) from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50%) when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium. PMID:27872867

  12. Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor γ in MC3T3-E1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Bo; Ma, Yuan; Yan, Ming

    Osteoporosis is a skeletal disorder characterized by bone loss, resulting in architectural deterioration of the skeleton, decreased bone strength and an increased risk of fragility fractures. Strengthening osteogenesis is an effective way to relieve osteoporosis. Sirtuin1 (Sirt1) is a nicotinamide adenine dinucleotide (NAD{sup +})-dependent deacetylase, which is reported to be involved in improving osteogenesis. Sirt1 targets peroxisome proliferator-activated receptor γ (PPARγ) in the regulation of adipose tissues; however, the molecular mechanism of Sirt1 in osteogenic differentiation is still unknown. PPARγ tends to induce more adipogenic differentiation rather than osteogenic differentiation. Hence, we hypothesized that Sirt1 facilitates osteogenic differentiation through downregulationmore » of PPARγ signaling. Mouse pre-osteoblastic MC3T3-E1 cells were cultured under osteogenic medium. Sirt1 was overexpressed through plasmid transfection. The results showed that high expression of Sirt1 was associated with increased osteogenic differentiation, as indicated by quantitative PCR and Western blot analysis of osteogenic markers, and Von Kossa staining. Sirt1 overexpression also directly and negatively regulated the expression of PPARγ and its downstream molecules. Use of the PPARγ agonist Rosiglitazone, reversed the effects of Sirt1 on osteogenic differentiation. Using constructed luciferase plasmids, we demonstrated a role of Sirt1 in inhibiting PPARγ–induced activity and expression of adipocyte–specific genes, including acetyl-coenzyme A carboxylase (Acc) and fatty acid binding protein 4 (Fabp4). The interaction between Sirt1 and PPARγ was further confirmed using co-immunoprecipitation analysis. Together, these results reveal a novel mechanism for Sirt1 in osteogenic differentiation through downregulation of PPARγ activity. These findings suggest that the Sirt1–PPARγ pathway may represent a potential target for enhancement of osteogenesis and

  13. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis.

    PubMed

    Contreras, Osvaldo; Rebolledo, Daniela L; Oyarzún, Juan Esteban; Olguín, Hugo C; Brandan, Enrique

    2016-06-01

    Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition.

  14. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Peng; Chen, Yi; Ji, Ning

    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response tomore » adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.« less

  15. Tenebrio molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Seo, Minchul; Goo, Tae-Won; Chung, Mi Yeon; Baek, Minhee; Hwang, Jae-Sam; Kim, Mi-Ae; Yun, Eun-Young

    2017-01-01

    Despite the increasing interest in insect-based bioactive products, the biological activities of these products are rarely studied adequately. Larvae of Tenebrio molitor, the yellow mealworm, have been eaten as a traditional food and provide many health benefits. Therefore, we hypothesized that T. molitor larvae might influence adipogenesis and obesity-related disorders. In the present study, we investigated the anti-adipogenic and antiobesity effects of T. molitor larvae in vitro and in vivo. The lipid accumulation and triglyceride content in mature adipocytes was reduced significantly (up to 90%) upon exposure to an ethanol extract of T. molitor larvae, without a reduction in cell viability. Exposure also resulted in key adipogenic and lipogenic transcription factors. Additionally, in adipogenic differentiation medium the extract induced phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and mitogen-activated protein kinases. Daily oral administration of T. molitor larvae powder to obese mice fed high-fat diet attenuated body weight gain. We also found that the powder efficiently reduced hepatic steatosis as well as aspartate and alanine transaminase enzyme levels in mice fed a high-fat diet. Our results suggest that T. molitor larvae extract has an antiobesity effect when administered as a food supplement and has potential as a therapeutic agent for obesity. PMID:28264489

  16. Tenebrio molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-Fat Diet-Induced Obese Mice.

    PubMed

    Seo, Minchul; Goo, Tae-Won; Chung, Mi Yeon; Baek, Minhee; Hwang, Jae-Sam; Kim, Mi-Ae; Yun, Eun-Young

    2017-02-28

    Despite the increasing interest in insect-based bioactive products, the biological activities of these products are rarely studied adequately. Larvae of Tenebrio molitor , the yellow mealworm, have been eaten as a traditional food and provide many health benefits. Therefore, we hypothesized that T. molitor larvae might influence adipogenesis and obesity-related disorders. In the present study, we investigated the anti-adipogenic and antiobesity effects of T. molitor larvae in vitro and in vivo. The lipid accumulation and triglyceride content in mature adipocytes was reduced significantly (up to 90%) upon exposure to an ethanol extract of T. molitor larvae, without a reduction in cell viability. Exposure also resulted in key adipogenic and lipogenic transcription factors. Additionally, in adipogenic differentiation medium the extract induced phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and mitogen-activated protein kinases. Daily oral administration of T. molitor larvae powder to obese mice fed high-fat diet attenuated body weight gain. We also found that the powder efficiently reduced hepatic steatosis as well as aspartate and alanine transaminase enzyme levels in mice fed a high-fat diet. Our results suggest that T. molitor larvae extract has an antiobesity effect when administered as a food supplement and has potential as a therapeutic agent for obesity.

  17. Defined culture medium for stem cell differentiation: applicability of serum-free conditions in the mouse embryonic stem cell test.

    PubMed

    Riebeling, Christian; Schlechter, Katharina; Buesen, Roland; Spielmann, Horst; Luch, Andreas; Seiler, Andrea

    2011-06-01

    The embryonic stem cell test (EST) is a validated method to assess the developmental toxicity potency of chemicals. It was developed to reduce animal use and allow faster testing for hazard assessment. The cells used in this method are maintained and differentiated in media containing foetal calf serum. This animal product is of considerable variation in quality, and individual batches require extensive testing for their applicability in the EST. Moreover, its production involves a large number of foetuses and possible animal suffering. We demonstrate the serum-free medium and feeder cell-free maintenance of the mouse embryonic stem cell line D3 and investigate the use of specific growth factors for induction of cardiac differentiation. Using a combination of bone morphogenetic protein-2, bone morphogenetic protein-4, activin A and ascorbic acid, embryoid bodies efficiently differentiated into contracting myocardium. Additionally, examining levels of intracellular marker proteins by flow cytometry not only confirmed differentiation into cardiomyocytes, but demonstrated significant differentiation into neuronal cells in the same time frame. Thus, this approach might allow for simultaneous detection of developmental effects on both early mesodermal and neuroectodermal differentiation. The serum-free conditions for maintenance and differentiation of D3 cells described here enhance the transferability and standardisation and hence the performance of the EST. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Ursodeoxycholic Acid but Not Tauroursodeoxycholic Acid Inhibits Proliferation and Differentiation of Human Subcutaneous Adipocytes

    PubMed Central

    Mališová, Lucia; Kováčová, Zuzana; Koc, Michal; Kračmerová, Jana; Štich, Vladimír; Rossmeislová, Lenka

    2013-01-01

    Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells

  19. MyomiR-133 regulates brown fat differentiation through Prdm16.

    PubMed

    Trajkovski, Mirko; Ahmed, Kashan; Esau, Christine C; Stoffel, Markus

    2012-12-01

    Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.

  20. Sporothrix schenckii Sensu Lato identification in fragments of skin lesion cultured in NNN medium for differential diagnosis of cutaneous leishmaniasis.

    PubMed

    Antonio, Liliane de Fátima; Pimentel, Maria Inês Fernandes; Lyra, Marcelo Rosandiski; Madeira, Maria de Fátima; Miranda, Luciana de Freitas Campos; Paes, Rodrigo Almeida; Brito-Santos, Fábio; Carvalho, Maria Helena Galdino Figueredo; Schubach, Armando de Oliveira

    2017-02-01

    Eighty-nine patients with clinical suspicion of leishmaniasis were referred for differential diagnosis. Sporothrix schenckii sensu lato was isolated in Novy-MacNeal-Nicolle + Schneider media in 98% of 64 patients with final diagnosis of sporotrichosis. This medium may be suitable for diagnosis of sporotrichosis in areas where cutaneous leishmaniasis is also endemic. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    PubMed Central

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-01-01

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1. PMID:26083118

  2. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake.

    PubMed

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-06-15

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  3. Development of selective and differential medium for Shigella sonnei using three carbohydrates (lactose, sorbitol, and xylose) and X-Gal.

    PubMed

    Na, G N; Kim, S A; Kwon, O C; Rhee, M S

    2015-08-01

    The aim of this study was to develop a new selective and differential medium for isolating Shigella sonnei (designated 3SD medium). The new medium was based on three carbohydrates (lactose, sorbitol, and xylose) and a chromogenic substrate (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, X-Gal). S. sonnei cannot ferment lactose, sorbitol, or xylose, but can ferment X-Gal, which generates turquoise-blue colonies with rough edges. Other bacteria (54 strains of foodborne pathogens and spoilage bacteria) produced visually distinct colonies on 3SD medium (colorless or pink-violet colonies), or their growth was inhibited on 3SD medium. The optimum concentration of 50 mg/L X-Gal was selected because it yielded the highest level of morphological discrimination between S. sonnei and other bacteria, and this concentration was cost-effective. Bile salt concentration optimization was performed using healthy, heat-injured, and acid-injured S. sonnei. The recovery rate differed significantly depending on the bile salt concentration; media containing >1.0 g/L bile salt showed significantly lower recovery of stress-injured cells than medium containing 0.5 g/L bile salt (P<0.05). Growth of all Gram-positive bacteria was inhibited on medium containing 0.5 g/L bile salt; therefore, this concentration was used as the optimal concentration. Previous media used to isolate Shigella spp. (MacConkey, xylose lysine desoxycholate, and Salmonella-Shigella agar) showed poor performance when used to support the growth of injured S. sonnei cells, whereas 3SD medium supported a high growth rate of injured and healthy cells (equivalent to that obtained with nutrient-rich tryptic soy agar). To validate the performance of 3SD medium with real specimens, S. sonnei and other bacteria were spiked into samples such as untreated water, carrot, salad, and oyster. 3SD medium showed superior specificity (100%) and sensitivity (100%) for S. sonnei, and yielded no false-positive or false-negative results

  4. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Benoit, Danielle S. W.; Schwartz, Michael P.; Durney, Andrew R.; Anseth, Kristi S.

    2008-10-01

    Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.

  5. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features tomore » cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific

  6. Physiologic Levels of Endogenous Hydrogen Sulfide Maintain the Proliferation and Differentiation Capacity of Periodontal Ligament Stem Cells.

    PubMed

    Su, Yingying; Liu, Dayong; Liu, Yi; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2015-11-01

    Many invading oral bacteria are known to produce considerable amounts of hydrogen sulfide (H2S). The toxic activity of exogenous H2S in periodontal tissue has been demonstrated, but the role of endogenous H2S in the physiologic function of periodontal tissue remains poorly understood. The purpose of the present study is to investigate the biologic functions of H2S in the proliferation and differentiation of human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from periodontal ligament tissues of periodontally healthy volunteers or patients with periodontitis. Immunocytochemical staining, flow cytometry, and Western blot analysis were used to examine the expression of H2S-synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). The proliferation capacity of PDLSCs was determined by cell counting kit-8 assay, carboxyfluorescein succinimidyl ester analysis, and 5-ethynyl-2'-deoxyuridine assay. The osteogenic potential of PDLSCs was tested using alkaline phosphatase staining, Alizarin Red staining, and in vivo transplantation experiments. Oil Red O staining was used to analyze adipogenic ability. The results show that human PDLSCs express both CBS and CSE and produce H2S. Blocking the generation of endogenous H2S with CBS inhibitor hydroxylamine significantly attenuated PDLSC proliferation and reduced the osteogenic and adipogenic differentiation capacity of PDLSCs. In contrast, CSE inhibitor DL-propargylglycine had no effect on PDLSC function. Exogenous H2S could inhibit the production of endogenous H2S and impair PDLSC function in a dose-dependent manner. Physiologic levels of endogenous H2S maintain the proliferation and differentiation capacity of PDLSCs, and CBS may be the main source of endogenous H2S in PDLSCs.

  7. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    PubMed Central

    Yu, Guo-yong; Zheng, Gui-zhou; Chang, Bo; Hu, Qin-xiao; Lin, Fei-xiang; Liu, De-zhong; Wu, Chu-cheng; Du, Shi-xin

    2016-01-01

    Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling), the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1), adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL) increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway. PMID:27069482

  8. ADV36 adipogenic adenovirus in human liver disease

    PubMed Central

    Trovato, Francesca M; Catalano, Daniela; Garozzo, Adriana; Martines, G Fabio; Pirri, Clara; Trovato, Guglielmo M

    2014-01-01

    Obesity and liver steatosis are usually described as related diseases. Obesity is regarded as exclusive consequence of an imbalance between food intake and physical exercise, modulated by endocrine and genetic factors. Non-alcoholic fatty liver disease (NAFLD), is a condition whose natural history is related to, but not completely explained by over-nutrition, obesity and insulin resistance. There is evidence that environmental infections, and notably adipogenic adenoviruses (ADV) infections in humans, are associated not only with obesity, which is sufficiently established, but also with allied conditions, such as fatty liver. In order to elucidate the role, if any, of previous ADV36 infection in humans, we investigated association of ADV36-ADV37 seropositivity with obesity and fatty liver in humans. Moreover, the possibility that lifestyle-nutritional intervention in patients with NAFLD and different ADV36 seropositive status, achieves different clinical outcomes on ultrasound bright liver imaging, insulin resistance and obesity was challenged. ADV36 seropositive patients have a more consistent decrease in insulin resistance, fatty liver severity and body weight in comparison with ADV36 seronegative patients, indicating a greater responsiveness to nutritional intervention. These effects were not dependent on a greater pre-interventional body weight and older age. These results imply that no obvious disadvantage - and, seemingly, that some benefit - is linked to ADV36 seropositivity, at least in NAFLD. ADV36 previous infection can boost weight loss and recovery of insulin sensitivity under interventional treatment. PMID:25356033

  9. Canonical FGFs Prevent Osteogenic Lineage Commitment and Differentiation of Human Bone Marrow Stromal Cells Via ERK1/2 Signaling.

    PubMed

    Simann, Meike; Le Blanc, Solange; Schneider, Verena; Zehe, Viola; Lüdemann, Martin; Schütze, Norbert; Jakob, Franz; Schilling, Tatjana

    2017-02-01

    Controlling the adipo-osteogenic lineage decision of trabecular human bone marrow stromal cells (hBMSCs) in favor of osteogenesis represents a promising approach for osteoporosis therapy and prevention. Previously, Fibroblast Growth Factor 1 (FGF1) and its subfamily member FGF2 were scored as leading candidates to exercise control over skeletal precursor commitment and lineage decision albeit literature results are highly inconsistent. We show here that FGF1 and 2 strongly prevent the osteogenic commitment and differentiation of hBMSCs. Mineralization of extracellular matrix (ECM) and mRNA expression of osteogenic marker genes Alkaline Phosphatase (ALP), Collagen 1A1 (COL1A1), and Integrin-Binding Sialoprotein (IBSP) were significantly reduced. Furthermore, master regulators of osteogenic commitment like Runt-Related Transcription Factor 2 (RUNX2) and Bone Morphogenetic Protein 4 (BMP4) were downregulated. When administered under adipogenic culture conditions, canonical FGFs did not support osteogenic marker expression. Moreover despite the presence of osteogenic differentiation factors, FGFs even disabled the pro-osteogenic lineage decision of pre-differentiated adipocytic cells. In contrast to FGF Receptor 2 (FGFR2), FGFR1 was stably expressed throughout osteogenic and adipogenic differentiation and FGF addition. Moreover, FGFR1 and Extracellular Signal-Regulated Kinases 1 and 2 (ERK1/2) were found to be responsible for underlying signal transduction using respective inhibitors. Taken together, we present new findings indicating that canonical FGFR-ERK1/2 signaling entrapped hBMSCs in a pre-committed state and arrested further maturation of committed precursors. Our results might aid in unraveling and controlling check points relevant for ageing-associated aberrant adipogenesis with consequences for the treatment of degenerative diseases such as osteoporosis and for skeletal tissue engineering strategies. J. Cell. Biochem. 118: 263-275, 2017. © 2016 Wiley

  10. Low Intensity Pulsed Ultrasound (LIPUS) Influences the Multilineage Differentiation of Mesenchymal Stem and Progenitor Cell Lines through ROCK-Cot/Tpl2-MEK-ERK Signaling Pathway*

    PubMed Central

    Kusuyama, Joji; Bandow, Kenjiro; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-01-01

    Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway. PMID:24550383

  11. Protein Malnutrition Induces Bone Marrow Mesenchymal Stem Cells Commitment to Adipogenic Differentiation Leading to Hematopoietic Failure

    PubMed Central

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566

  12. New medium used in the differentiation of human pluripotent stem cells to retinal cells is comparable to fetal human eye tissue.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lin, Cong; Lv, Lei; Chen, Jing; Xu, Chongchong; Wang, Songtao; Gu, Dandan; Zheng, Hua; Yu, Hurong; Li, Yan; Xiao, Honglei; Zhou, Guomin

    2015-06-01

    Human pluripotent stem cells (hPSCs) have the potential to differentiate along the retinal lineage. However, most induction systems are dependent on multiple small molecular compounds such as Dkk-1, Lefty-A, and retinoic acid. In the present study, we efficiently differentiated hPSCs into retinal cells using a retinal differentiation medium (RDM) without the use of small molecular compounds. This novel differentiation system recapitulates retinal morphogenesis in humans, i.e. hPSCs gradually differentiate into optic vesicle-shaped spheres, followed by optic cup-shaped spheres and, lastly, retinal progenitor cells. Furthermore, at different stages, hPSC-derived retinal cells mirror the transcription factor expression profiles seen in their counterparts during human embryogenesis. Most importantly, hinge epithelium was found between the hPSC-derived neural retina (NR) and retinal pigment epithelium (RPE). These data suggest that our culture system provides a new method for generating hPSC-derived retinal cells that, for the first time, might be used in human transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Featured Article: Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells

    PubMed Central

    Ezquer, Fernando; Espinosa, Maximiliano; Arango-Rodriguez, Martha; Puebla, Carlos; Sobrevia, Luis; Conget, Paulette

    2015-01-01

    The final product of adipogenesis is a functional adipocyte. This mature cell acquires the necessary machinery for lipid metabolism, loses its proliferation potential, increases its insulin sensitivity, and secretes adipokines. Multipotent mesechymal stromal cells have been recognized as a source of adipocytes both in vivo and in vitro. The in vitro adipogenic differentiation of human MSC (hMSC) has been induced up to now by using a complex stimulus which includes dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin (a classical cocktail) and evaluated according to morphological changes. The present work was aimed at demonstrating that the simultaneous activation of dexamethasone’s canonical signaling pathways, through the glucocorticoid receptor and CCAAT-enhancer-binding proteins (C/EBPs) and rosiglitazone through peroxisome proliferator-activated receptor gamma (PPAR-gamma) is sufficient yet necessary for inducing hMSC adipogenic differentiation. It was also ascertained that hMSC exposed just to dexamethasone and rosiglitazone (D&R) differentiated into cells which accumulated neutral lipid droplets, expressed C/EBP-alpha, PPAR-gamma, aP2, lipoprotein lipase, acyl-CoA synthetase, phosphoenolpyruvate carboxykinase, adiponectin, and leptin genes but did not proliferate. Glucose uptake was dose dependent on insulin stimulus and high levels of adipokines were secreted (i.e. displaying not only the morphology but also expressing mature adipocytes’ specific genes and functional characteristics). This work has demonstrated that (i) the activating C/EBPs and PPAR-gamma signaling pathways were sufficient to induce adipogenic differentiation from hMSC, (ii) D&R producing functional adipocytes from hMSC, (iii) D&R induce adipogenic differentiation from mammalian MSC (including those which are refractory to classical adipogenic differentiation stimuli). D&R would thus seem to be a useful tool for MSC characterization, studying adipogenesis pathways and

  14. On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium

    PubMed Central

    Piao, Daqing; Barbour, Randall L.; Graber, Harry L.; Lee, Daniel C.

    2015-01-01

    Abstract. This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01  mm−1 and μs′=1.0  mm−1 are on average less than 5% different. The approximation for sphere, generally valid for a diameter ≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation. PMID:26465613

  15. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Differential Effects of Small Molecule WNT Agonists on the Multilineage Differentiation Capacity of Human Mesenchymal Stem Cells.

    PubMed

    Narcisi, Roberto; Arikan, Ozan H; Lehmann, Johannes; Ten Berge, Derk; van Osch, Gerjo J V M

    2016-11-01

    Human bone marrow-derived mesenchymal stem cells (MSCs) are promising candidates for cell-based therapies, but loss of expansion and differentiation potential in vitro limits their applicability. Recently we showed that WNT3A protein promoted MSC proliferation and enhanced their chondrogenic potential, while simultaneously suppressing the propensity of the cartilage to undergo hypertrophic maturation. Since WNT3A protein is costly and rapidly loses its activity in culture, we investigated the possibility of replacing it with cheaper commercially available WNT agonists, specifically lithium chloride (LiCl), CHIR99021 (CHIR), SKL2001, and AMBMP. Of these, we found that only CHIR and LiCl stimulated MSC proliferation. Moreover, CHIR enhanced the chondrogenic capacity of MSCs, whereas LiCl predominantly increased the osteo- and adipogenic capacity. The different WNT agonists also differentially impacted the surface marker profile of the MSCs, possibly explaining the observed differences. Moreover, CHIR suppressed the hypertrophic propensity of the MSC-derived cartilage after in vivo implantation to an extent approaching that of WNT3A protein. These results indicate that CHIR may be a promising alternative for WNT3A protein for certain applications of human bone marrow-derived MSCs.

  17. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    PubMed Central

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  18. Paired box 7 inhibits differentiation in 3T3-L1 preadipocytes.

    PubMed

    Izumi, Wakana; Takuma, Yuko; Ebihara, Ryo; Mizunoya, Wataru; Tatsumi, Ryuichi; Nakamura, Mako

    2018-06-13

    Myogenesis is precisely proceeded by myogenic regulatory factors. Myogenic stem cells are activated, proliferated and fused into a multinuclear myofiber. Pax7, paired box 7, one of the earliest markers during myogenesis. It has been reported that Pax7 regulates the muscle marker genes, Myf5 and MyoD toward differentiation. The possible roles of Pax7 in myogenic cells have been well researched. However, it has not yet been clarified if Pax7 itself is able to induce myogenic fate in nonmyogenic lineage cells. In this study, we performed experiments using stably expressed Pax7 in 3T3-L1 preadipocytes to elucidate if Pax7 inhibits adipogenesis. We found that Pax7 represses adipogenic markers and prevents differentiation. These cells showed decreased expression of PDGFRα, PPARγ and Fabp4 and inhibited forming lipid droplets. © 2018 Japanese Society of Animal Science.

  19. Chronic High Dose Alcohol Induces Osteopenia via Activation of mTOR Signaling in Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Liu, Yao; Kou, Xiaoxing; Chen, Chider; Yu, Wenjing; Su, Yingying; Kim, Yong; Shi, Songtao; Liu, Yi

    2016-08-01

    Chronic consumption of excessive alcohol results in reduced bone mass, impaired bone structure, and increased risk of bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are not fully understood. Here, we show that high dose chronic alcohol consumption reduces osteogenic differentiation and enhances adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), leading to osteopenia in a mouse model. Mechanistically, impaired osteo/adipogenic lineage differentiation of BMMSCs is due to activation of a phosphatidylinositide 3-kinase/AKT/mammalian target of rapamycin (mTOR) signaling cascade, resulting in downregulation of runt-related transcription factor 2 and upregulation of peroxisome proliferator-activated receptor gamma via activation of p70 ribosomal protein S6 kinase. Blockage of the mTOR pathway by rapamycin treatment ameliorates alcohol-induced osteopenia by rescuing impaired osteo/adipogenic lineage differentiation of BMMSCs. In this study, we identify a previously unknown mechanism by which alcohol impairs BMMSC lineage differentiation and reveal a potential rapamycin-based drug therapy for alcohol-induced osteoporosis. Stem Cells 2016;34:2157-2168. © 2016 AlphaMed Press.

  20. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yoon Jung; Lee, Jue Yeon; Research Center, Nano Intelligent Biomedical Engineering Corporation

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinicallymore » used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk

  1. Medium-Frequency Data Link for Differential NAVSTAR/GPS Broadcasts

    DOT National Transportation Integrated Search

    1986-06-01

    Differential GPS must communicate differential corrections to civilian users of the Global Positioning System. Modulation of existing marine radiobeacons can provide the needed communication link for DGPS, provided the operation of existing radiobeac...

  2. New medium for detection of esterase and gelatinase activity.

    PubMed

    Pácová, Z; Kocur, M

    1984-10-01

    A new medium was developed for detecting esterase and gelatinase activities in aerobic and facultatively anaerobic bacteria. The new medium was tested with various strains of bacteria and the results showed agreement between the reactions in the new medium and those obtained by conventional techniques. The new medium is more economical and may be used for a rapid differentiation of Serratia, Aeromonas and Vibrio species from biochemically similar bacteria.

  3. Regulation of Mesenchymal Stem Cell Differentiation by Nanopatterning of Bulk Metallic Glass.

    PubMed

    Loye, Ayomiposi M; Kinser, Emily R; Bensouda, Sabrine; Shayan, Mahdis; Davis, Rose; Wang, Rui; Chen, Zheng; Schwarz, Udo D; Schroers, Jan; Kyriakides, Themis R

    2018-06-08

    Mesenchymal stem cell (MSC) differentiation is regulated by surface modification including texturing, which is applied to materials to enhance tissue integration. Here, we used Pt 57.5 Cu 14.7 Ni 5.3 P 22.5 bulk metallic glass (Pt-BMG) with nanopatterned surfaces achieved by thermoplastic forming to influence differentiation of human MSCs. Pt-BMGs are a unique class of amorphous metals with high strength, elasticity, corrosion resistance, and an unusual plastic-like processability. It was found that flat and nanopattened Pt-BMGs induced osteogenic and adipogenic differentiation, respectively. In addition, osteogenic differentiation on flat BMG exceeded that observed on medical grade titanium and was associated with increased formation of focal adhesions and YAP nuclear localization. In contrast, cells on nanopatterned BMGs exhibited rounded morphology, formed less focal adhesions and had mostly cytoplasmic YAP. These changes were preserved on nanopatterns made of nanorods with increased stiffness due to shorter aspect ratios, suggesting that MSC differentiation was primarily influenced by topography. These observations indicate that both elemental composition and nanotopography can modulate biochemical cues and influence MSCs. Moreover, the processability and highly tunable nature of Pt-BMGs enables the creation of a wide range of surface topographies that can be reproducibly and systematically studied, leading to the development of implants capable of engineering MSC functions.

  4. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu Qisheng; Valverde, Paloma; Chen, Jake

    Osterix (Osx) is a zinc-finger-containing transcription factor that is expressed in osteoblasts of all endochondral and membranous bones. In Osx null mice osteoblast differentiation is impaired and bone formation is absent. In this study, we hypothesized that overexpression of Osx in murine bone marrow stromal cells (BMSC) would be able to enhance their osteoblastic differentiation and mineralization in vitro. Retroviral transduction of Osx in BMSC cultured in non-differentiating medium did not affect expression of Runx2/Cbfa1, another key transcription factor of osteoblast differentiation, but induced an increase in the expression of other markers associated with the osteoblastic lineage including alkaline phosphatase,more » bone sialoprotein, osteocalcin, and osteopontin. Retroviral transduction of Osx in BMSC also increased their proliferation, alkaline phosphatase activity, and ability to form bone nodules. These events occurred without significant changes in the expression of {alpha}1(II) procollagen or lipoprotein lipase, which are markers of chondrogenic and adipogenic differentiation, respectively.« less

  6. The proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°Celsius compared to euthermic conditions in pigs

    PubMed Central

    Bohan, Amy E; Purvis, Katelyn N; Bartosh, Julia L; Brandebourg, Terry D

    2014-01-01

    Given similarities in metabolic parameters and cardiovascular physiology, the pig is well positioned as a biomedical model for metabolic disease and obesity in humans. Better understanding molecular mechanisms governing porcine adipocyte hyperplasia may provide insight into the regulation of adipose tissue development that is useful both when considering the pig as a commodity and when extrapolating porcine data to human disease. Primary cultures of pig stromal-vascular cells have served as a useful tool for investigating factors that regulate preadipocyte proliferation and differentiation. However, such cultures have generally been maintained at 37°C in vitro despite euthermia being 39°C in pigs. To address potential concerns about the physiological relevance of culturing primary pig preadipocytes under what would be hypothermic conditions in vivo, the objective of this study was to investigate the effect of culture temperature on the proliferation and differentiation of pig preadipocytes in primary culture. Culturing primary preadipocytes at 37 rather than 39°C decreases their proliferation rates based upon cleavage of the tetrazolium salt, MTT (P < 0.001), reduction of resazurin (P < 0.001), and daily cell counts (P < 0.001). Likewise, culturing primary porcine preadipocytes at 37°C suppressed their adipogenic potential based upon monitoring adipogenesis morphologically, biochemically, and via the expression of mRNA encoding adipogenic marker genes. Collectively, these data indicate the proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°C compared to normal body temperature of pigs. This may confound investigation of factors that impact adipocyte hyperplasia in the pig. PMID:26317057

  7. Differentiation of Mesenchymal Stem Cells from Human Umbilical Cord Tissue into Odontoblast-Like Cells Using the Conditioned Medium of Tooth Germ Cells In Vitro

    PubMed Central

    Li, Tian Xia; Yuan, Jie; Chen, Yan; Pan, Li Jie; Song, Chun; Bi, Liang Jia; Jiao, Xiao Hui

    2013-01-01

    The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels (P < 0.001), an enhanced ability to proliferate (P < 0.05), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research. PMID:23762828

  8. ABCG2 Is a Selectable Marker for Enhanced Multilineage Differentiation Potential in Periodontal Ligament Stem Cells

    PubMed Central

    Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Várady, György; Szabó, Gyula; Uher, Ferenc; Sarkadi, Balázs

    2015-01-01

    Periodontal ligament stem cells (PDLSCs) provide an important source for tissue regeneration and may become especially useful in the formation of osteogenic seeds. PDLSCs can be cultured, expanded, and differentiated in vitro; thus, they may be applied in the long-term treatment of the defects in the dental regions. Here we studied numerous potential markers allowing the selection of human PDLSCs with a maximum differentiation potential. We followed the expression of the ATP-binding cassette subfamily G member 2 (ABCG2) membrane transporter protein and isolated ABCG2-expressing cells by using a monoclonal antibody, recognizing the transporter at the cell surface in intact cells. The expression of the ABCG2 protein, corresponding to the so-called side-population phenotype in various tissue-derived stem cells, was found to be a useful marker for the selection of PDLSCs with enhanced osteogenic, chondrogenic, and adipogenic differentiation. These findings may have important applications in achieving efficient dental tissue regeneration by using stem cells from extracted teeth. PMID:25101689

  9. Buckwheat (Fagopyrum esculentum M.) Sprout Treated with Methyl Jasmonate (MeJA) Improved Anti-Adipogenic Activity Associated with the Oxidative Stress System in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Young-Jun; Kim, Kui-Jin; Park, Kee-Jai; Yoon, Bo-Ra; Lim, Jeong-Ho; Lee, Ok-Hwan

    2013-01-01

    Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE) treated with methyl jasmonate (MeJA) significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitroblue tetrazolium assay. Our data showed that TBWE markedly inhibited adipocyte differentiation and ROS production in 3T3-L1 cells compared with control groups. Moreover, TBWE has strongly shown the inhibition of adipogenic transcription factor as well as pro-oxidant enzymes. Together, we demonstrate that the MeJA treatment significantly increased the amount of phenolic compound, resulting in the suppression of adipogenesis and ROS production in the 3T3-L1 cells. These findings indicate that TBWE has the potential for anti-adipogenesis activity with anti-oxidative properties. PMID:23344050

  10. Induction of temporally dissociated morphological and physiological differentiation of N1E-115 cells.

    PubMed

    Cosgrove, C; Cobbett, P

    1991-07-01

    Clonal cells derived from neural tumors have been widely used to study the processes of neuronal differentiation in vitro. The murine neuroblastoma clone N1E-115 has recently been shown to differentiate morphologically in response to removal of serum from the culture medium. In the present study, the nature and time course of electrophysiological differentiation of N1E-115 cells maintained in serum-free medium was examined. Differentiated cells had a higher resting potential and lower input conductance than nondifferentiated cells. Differentiated but not nondifferentiated cells generated current evoked action potentials, and differentiated cells fired spontaneous, repetitive action potentials after 13 days in serum-free medium. The rate of potential change during the depolarizing and repolarizing phases of the action potential became faster as the duration of maintenance of cells in serum-free medium increased. Remarkably, morphological differentiation appeared to be complete after exposure to serum-free medium for 5 days but electrophysiological differentiation was not complete until 13 days in this medium.

  11. [Proliferation and osteogenic differentiation of mesenchymal stem cells in hydrogels of human blood plasma].

    PubMed

    Linero, Itali M; Doncel, Adriana; Chaparro, Orlando

    2014-01-01

    The use of mesenchymal stem cells in clinical practice has increased considerably in the last decade because they play a supporting role in the processes of tissue repair and regeneration, becoming the main tool of cell therapy for the treatment of diseases functionally affecting bone and cartilage tissue . To evaluate in vitro the proliferative and osteogenic differentiation ability of mesenchymal stem cells derived from human adipose tissue in a blood plasma hydrogel. Mesenchymal stem cells were obtained from human adipose tissue explants and characterized by flow cytometry. Their multipotentiality was demonstrated by their ability to differentiate to adipogenic and osteogenic lineages. Cell proliferation and osteogenic differentiation ability of the cells cultured in blood plasma hydrogels were also evaluated. Mesenchymal stem cells derived from human adipose tissue growing in human blood plasma hydrogels showed a pattern of proliferation similar to that of the cells cultured in monolayer and also maintained their ability to differentiate to osteogenic lineage. Human blood plasma hydrogels are a suitable support for proliferation and osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue and provides a substrate that is autologous, biocompatible, reabsorbable, easy to use, potentially injectable and economic, which could be used as a successful strategy for the management and clinical application of cell therapy in regenerative medicine.

  12. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  13. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tertmore » adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not

  14. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin

    PubMed Central

    Meng, Jingru; Ma, Xue; Wang, Ning; Jia, Min; Bi, Long; Wang, Yunying; Li, Mingkai; Zhang, Huinan; Xue, Xiaoyan; Hou, Zheng; Zhou, Ying; Yu, Zhibin; He, Gonghao; Luo, Xiaoxing

    2016-01-01

    Summary Glucagon-like peptide 1 (GLP-1) plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4) promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These functions were accompanied by an increase in osteoblast number and serum bone formation markers, while the adipocyte number was decreased. Furthermore, GLP-1 receptor was detected in bone marrow stromal cells (BMSCs), but not in osteoblast. Activation of GLP-1 receptor by Ex-4 promoted the osteogenic differentiation and inhibited BMSC adipogenic differentiation through regulating PKA/β-catenin and PKA/PI3K/AKT/GSK3β signaling. These findings reveal that GLP-1 receptor regulates BMSC osteogenic differentiation and provide a molecular basis for therapeutic potential of GLP-1 against osteoporosis. PMID:26947974

  15. RAC1 regulate tumor necrosis factor-α-mediated impaired osteogenic differentiation of dental pulp stem cells.

    PubMed

    Feng, Guijuan; Shen, Qijie; Lian, Min; Gu, Zhifeng; Xing, Jing; Lu, Xiaohui; Huang, Dan; Li, Liren; Huang, Shen; Wang, Yi; Zhang, Jinlong; Shi, Jiahai; Zhang, Dongmei; Feng, Xingmei

    2015-09-01

    Human dental pulp contains a rapidly proliferative subpopulation of precursor cells termed dental pulp stem cells (DPSCs) that show self-renewal and multilineage differentiation, including neurogenic, chondrogenic, osteogenic and adipogenic. We previously reported that tomuor necrosis factor-α (TNF-α) (10 ng/mL) triggered osteogenic differentiation of human DPSCs via the nuclear factor-κB (NF-κB) signaling pathway. While previous studies showed that cells treated with TNF-α at higher concentrations showed decreased osteogenic differentiation capability. In this study we analyze the function of TNF-α (100 ng/mL) on osteogenic differentiation of human DPSCs for the first time and identify the underlying molecule mechanisms. Our data revealed that TNF-α with higher concentration significantly reduced mineralization and the expression of bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX2). Further, we revealed that TNF-α could suppress the osteogenic differentiation of DPSCs via increasing the expression of RAC1, which could activate the Wnt/β-catenin signaling pathway and liberate β-catenin to translocate into the nucleus. Genetic silencing of RAC1 expression using siRNA restored osteogenic differentiation of DPSCs. Our findings may provide a potential approach to bone regeneration in inflammatory microenvironments. © 2015 Japanese Society of Developmental Biologists.

  16. Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells.

    PubMed

    Nguyen, The Duy; Widera, Darius; Greiner, Johannes; Müller, Janine; Martin, Ina; Slotta, Carsten; Hauser, Stefan; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2013-12-01

    Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.

  17. The tyrosine kinase receptor HER2 (erbB-2): from oncogenesis to adipogenesis.

    PubMed

    Vazquez-Martin, Alejandro; Ortega-Delgado, Francisco Jose; Fernandez-Real, Jose Manuel; Menendez, Javier A

    2008-12-01

    Recent experimental evidences begin to support the notion that the proto-oncogene HER2 (erbB-2) might unexpectedly function to modulate the adipogenic conversion of preadipocytes. Two opposing scenarios have been proposed, however, to explain the influence of HER2 on adipocyte differentiation. In one hand, down-modulation of HER2 expression and pharmacological reduction of HER2 activity have been related to enhanced adipocyte differentiation. On the contrary, an increased abundance in HER2 has been described in differentiated adipocytes compared with preadipocytes. Considering that expression and activity of the lipogenic enzyme Fatty Acid Synthase (FASN) become up-regulated during adipogenic conversion, we recently hypothesized that a "HER2 --> FASN axis" -a "lipogenic benefit" that has been shown to enhance cancer cell proliferation, survival, chemoresistance and metastasis in biologically aggressive subgroups of breast carcinomas-might also naturally work during the differentiation of preadipocytes. To definitely clarify if the discrepancy between the opposing theories for a role of HER2 during adipocyte differentiation related to the experimental approach utilized to compare the abundance of HER2 in undifferentiated and differentiated adipocytes (i.e., cell lysates containing equivalent protein content versus cell lysates generated from similar cell numbers), we here took advantage of a high content microscopy approach. Using an automated confocal imaging platform, we monitored the expression status of the adipogenic marker FASN and its timing relationship with HER2 not only in individual 3T3-L1 cells but further in whole cultures of 3T3-L1 preadipocytes undergoing adipogenic conversion. Our findings not only confirm a non-oncogenic role for HER2 in the process of adipose differentiation but further suggest that HER2 might represent a previously unrecognized target to manage obesity via the lipogenic enzyme FASN.

  18. Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Goto, Tsuyoshi; Mori, Ayaka; Nagaoka, Satoshi

    2013-08-01

    The molecular mechanisms underlying the potential health benefit effects of soybean proteins on obesity-associated metabolic disorders have not been fully clarified. In this study, we investigated the effects of soluble soybean protein peptic hydrolysate (SPH) on adipocyte differentiation by using 3T3-L1 murine preadipocytes. The addition of SPH increased lipid accumulation during adipocyte differentiation. SPH increased the mRNA expression levels of an adipogenic marker gene and decreased that of a preadipocyte marker gene, suggesting that SPH promotes adipocyte differentiation. SPH induced antidiabetic and antiatherogenic adiponectin mRNA expression and secretion. Moreover, SPH increased the mRNA expression levels of insulin-responsive glucose transporter 4 and insulin-stimulated glucose uptake. The expression levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, during adipocyte differentiation were up-regulated in 3T3-L1 cells treated with SPH, and lipid accumulation during adipocyte differentiation induced by SPH was inhibited in the presence of a PPARγ antagonist. However, SPH did not exhibit PPARγ ligand activity. These findings indicate that SPH stimulates adipocyte differentiation, at least in part, via the up-regulation of PPARγ expression levels. These effects of SPH might be important for the health benefit effects of soybean proteins on obesity-associated metabolic disorders. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A combination of (+)-catechin and (-)-epicatechin underlies the in vitro adipogenic action of Labrador tea (Rhododendron groenlandicum), an antidiabetic medicinal plant of the Eastern James Bay Cree pharmacopeia.

    PubMed

    Eid, Hoda M; Ouchfoun, Meriem; Saleem, Ammar; Guerrero-Analco, Jose A; Walshe-Roussel, Brendan; Musallam, Lina; Rapinski, Michel; Cuerrier, Alain; Martineau, Louis C; Arnason, John T; Haddad, Pierre S

    2016-02-03

    Rhododendron groenlandicum (Oeder) Kron & Judd (Labrador tea) was identified as an antidiabetic plant through an ethnobotanical study carried out with the close collaboration of Cree nations of northern Quebec in Canada. In a previous study the plant showed glitazone-like activity in a 3T3-L1 adipogenesis bioassay. The current study sought to identify the active compounds responsible for this potential antidiabetic activity using bioassay guided fractionation based upon an in vitro assay that measures the increase of triglycerides content in 3T3-L1 adipocyte. Isolation and identification of the crude extract's active constituents was carried out. The 80% ethanol extract was fractionated using silica gel column chromatography. Preparative HPLC was then used to isolate the constituents. The identity of the isolated compounds was confirmed by UV and mass spectrometry. Nine chemically distinct fractions were obtained and the adipogenic activity was found in fraction 5 (RGE-5). Quercetins, (+)-catechin and (-)-epicatechin were detected and isolated from this fraction. While (+)-catechin and (-)-epicatechin stimulated adipogenesis (238±26% and 187±21% relative to vehicle control respectively) at concentrations equivalent to their concentrations in the active fraction RGE-5, none afforded biological activity similar to RGE-5 or the plant's crude extract when used alone. When cells were incubated with a mixture of the two compounds, the adipogenic activity was close to that of the crude extract (280.7±27.8 vs 311± 30%). Results demonstrate that the mixture of (+)-catechin and (-)-epicatechin is responsible for the adipogenic activity of Labrador tea. This brings further evidence for the antidiabetic potential of R. groenlandicum and provides new opportunities to profile active principles in biological fluids or in traditional preparations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells.

    PubMed

    Hassan, Meryl; El Yazidi, Claire; Landrier, Jean-François; Lairon, Denis; Margotat, Alain; Amiot, Marie-Josèphe

    2007-09-14

    Adipocyte dysfunction is strongly associated with the development of cardiovascular risk factors and diabetes. It is accepted that the regulation of adipogenesis or adipokines expression, notably adiponectin, is able to prevent these disorders. In this report, we show that phloretin, a dietary flavonoid, enhances 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation and GPDH activity. At a molecular level, mRNA expression levels of both PPARgamma and C/EBPalpha, the master adipogenic transcription factors, are markedly increased by phloretin. Moreover, mRNA levels of PPARgamma target genes such as LPL, aP2, CD36 and LXRalpha are up-regulated by phloretin. We also show that phloretin enhances the expression and secretion of adiponectin. Co-transfection studies suggest the induction of PPARgamma transcriptional activity as a possible mechanism underlying the phloretin-mediated effects. Taken together, these results suggest that phloretin may be beneficial for reducing insulin resistance through its potency to regulate adipocyte differentiation and function.

  1. siRNA Nanoparticle Functionalization of Nanostructured Scaffolds Enables Controlled Multilineage Differentiation of Stem Cells

    PubMed Central

    Andersen, Morten Ø; Nygaard, Jens V; Burns, Jorge S; Raarup, Merete K; Nyengaard, Jens R; Bünger, Cody; Besenbacher, Flemming; Howard, Kenneth A; Kassem, Moustapha; Kjems, Jørgen

    2010-01-01

    The creation of complex tissues and organs is the ultimate goal in tissue engineering. Engineered morphogenesis necessitates spatially controlled development of multiple cell types within a scaffold implant. We present a novel method to achieve this by adhering nanoparticles containing different small-interfering RNAs (siRNAs) into nanostructured scaffolds. This allows spatial retention of the RNAs within nanopores until their cellular delivery. The released siRNAs were capable of gene silencing BCL2L2 and TRIB2, in mesenchymal stem cells (MSCs), enhancing osteogenic and adipogenic differentiation, respectively. This approach for enhancing a single type of differentiation is immediately applicable to all areas of tissue engineering. Different nanoparticles localized to spatially distinct locations within a single implant allowed two different tissue types to develop in controllable areas of an implant. As a consequence of this, we predict that complex tissues and organs can be engineered by the in situ development of multiple cell types guided by spatially restricted nanoparticles. PMID:20808289

  2. Fermented blueberry juice extract and its specific fractions have an anti-adipogenic effect in 3 T3-L1 cells.

    PubMed

    Sánchez-Villavicencio, Mayra L; Vinqvist-Tymchuk, Melinda; Kalt, Wilhelmina; Matar, Chantal; Alarcón Aguilar, Francisco J; Escobar Villanueva, Maria Del Carmen; Haddad, Pierre S

    2017-01-06

    Obesity and Type 2 diabetes have reached epidemic status worldwide. Wild lowbush blueberry (Vaccinium angustifolium Aiton) is a plant of the North American Aboriginal traditional pharmacopeia with antidiabetic potential, especially when it is fermented with Serratia vaccinii. A phytochemical fractionation scheme was used to identify potential bioactive compounds as confirmed by HPLC retention times and UV-Vis spectra. 3 T3-L1 cells were differentiated for 7 days with either Normal Blueberry Extract (NBE), Fermented Blueberry Extract (FBE/F1), seven fractions and four pure compounds. Triglyceride content was measured. Examination of selected intracellular signalling components (p-Akt, p-AMPK) and transcriptional factors (SREBP-1c and PPARγ) was carried out by Western blot analysis. The inhibitory effect of FBE/F1 on adipocyte triglyceride accumulation was attributed to total phenolic (F2) and chlorogenic acid enriched (F3-2) fractions that both inhibited by 75%. Pure compounds catechol (CAT) and chlorogenic acid (CA) also inhibited adipogenesis by 70%. Treatment with NBE, F1, F3-2, CAT and CA decreased p-AKT, whereas p-AMPK tended to increase with F1. The expression of SREBP1-c was not significantly modulated. In contrast, PPARγ decreased in all experimental groups that inhibited adipogenesis. These results demonstrate that fermented blueberry extract contains compounds with anti-adipogenic activity, which can serve to standardize nutraceutical preparations from fermented blueberry juice and to develop novel compounds with anti-obesity properties.

  3. Differential biological effects of dehydroepiandrosterone (DHEA) between mouse (B16F10) and human melanoma (BLM) cell lines.

    PubMed

    Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan

    2017-01-01

    Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.

  4. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells.

    PubMed

    Ting, Sherwin; Lecina, Marti; Chan, Yau-Chi; Tse, Hung Fat; Reuveny, Shaul; Oh, Steve Kw

    2013-07-26

    To development of an improved p38 MAPK inhibitor-based serum-free medium for embryoid body cardiomyocyte differentiation of human pluripotent stem cells. Human embryonic stem cells (hESC) differentiated to cardiomyocytes (CM) using a p38 MAPK inhibitor (SB203580) based serum-free medium (SB media). Nutrient supplements known to increase cell viability were added to SB medium. The ability of these supplements to improve cardiomyogenesis was evaluated by measurements of cell viability, total cell count, and the expression of cardiac markers via flow cytometry. An improved medium containing Soy hydrolysate (HySoy) and bovine serum albumin (BSA) (SupSB media) was developed and tested on 2 additional cell lines (H1 and Siu-hiPSC). Characterization of the cardiomyocytes was done by immunohistochemistry, electrophysiology and quantitative real-time reverse transcription-polymerase chain reaction. hESC cell line, HES-3, differentiating in SB medium for 16 d resulted in a cardiomyocyte yield of 0.07 ± 0.03 CM/hESC. A new medium (SupSB media) was developed with the addition of HySoy and BSA to SB medium. This medium resulted in 2.6 fold increase in cardiomyocyte yield (0.21 ± 0.08 CM/hESC). The robustness of SupSB medium was further demonstrated using two additional pluripotent cell lines (H1, hESC and Siu1, hiPSC), showing a 15 and 9 fold increase in cardiomyocyte yield respectively. The age (passage number) of the pluripotent cells did not affect the cardiomyocyte yields. Embryoid body (EB) cardiomyocytes formed in SupSB medium expressed canonical cardiac markers (sarcomeric α-actinin, myosin heavy chain and troponin-T) and demonstrated all three major phenotypes: nodal-, atrial- and ventricular-like. Electrophysiological characteristics (maximum diastolic potentials and action potential durations) of cardiomyocytes derived from SB and SupSB media were similar. The nutrient supplementation (HySoy and BSA) leads to increase in cell viability, cell yield and cardiac

  5. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β- glycerophosphate/collagen hybrid hydrogel.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Wen; Zhang, Yu; Wang, Yiwei; Liu, Tianqing

    2017-01-01

    In this study, the interaction of human adipose tissue-derived stem cells (ADSCs) with chitosan/β-glycerophosphate/collagen (C/GP/Co) hybrid hydrogel was test, followed by investigating the capability of engineered adipose tissue formation using this ADSCs seeded hydrogel. The ADSCs were harvested and mixed with a C/GP/Co hydrogel followed by a gelation at 37°C and an in vitro culture. The results showed that the ADSCs within C/GP/Co hydrogels achieved a 30% of expansion over 7days in culture medium and encapsulated cell in C/GP/Co hydrogel demonstrated a characteristic morphology with high viability over 5days. C/GP/Co hydrogel were subcutaneous injected into SD-rats to assess the biocompatibility. The induced ADSCs-C/GP/Co hydrogel and non-induced ADSCs-C/GP/Co hydrogel were subcutaneously injected into nude mice for detecting potential of adipogenic differentiation. It has shown that C/GP/Co hydrogel were well tolerated in SD rats where they had persisted over 4weeks post implantation. Histology analysis indicated that induced ADSCs-C/GP/Co hydrogel has a greater number of adipocytes and vascularized adipose tissues compared with non-induced ADSCs-C/GP/Co hydrogel. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  6. Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes

    PubMed Central

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-01-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARγ activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARγ antagonists, suggesting that activation of PPARγ mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARγ target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time. PMID:20160124

  7. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes.

    PubMed

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-03-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARgamma). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARgamma activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARgamma antagonists, suggesting that activation of PPARgamma mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARgamma target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time.

  8. Skeletal Muscle Satellite Cells Are Committed to Myogenesis and Do Not Spontaneously Adopt Nonmyogenic Fates

    PubMed Central

    Starkey, Jessica D.; Yamamoto, Masakazu; Yamamoto, Shoko; Goldhamer, David J.

    2011-01-01

    The developmental potential of skeletal muscle stem cells (satellite cells) remains controversial. The authors investigated satellite cell developmental potential in single fiber and clonal cultures derived from MyoDiCre/+;R26REYFP/+ muscle, in which essentially all satellite cells are permanently labeled. Approximately 60% of the clones derived from cells that co-purified with muscle fibers spontaneously underwent adipogenic differentiation. These adipocytes stained with Oil-Red-O and expressed the terminal differentiation markers, adipsin and fatty acid binding protein 4, but did not express EYFP and were therefore not of satellite cell origin. Satellite cells mutant for either MyoD or Myf-5 also maintained myogenic programming in culture and did not adopt an adipogenic fate. Incorporation of additional wash steps prior to muscle fiber plating virtually eliminated the non-myogenic cells but did not reduce the number of adherent Pax7+ satellite cells. More than half of the adipocytes observed in cultures from Tie2-Cre mice were recombined, further demonstrating a non-satellite cell origin. Under adipogenesis-inducing conditions, satellite cells accumulated cytoplasmic lipid but maintained myogenic protein expression and did not fully execute the adipogenic differentiation program, distinguishing them from adipocytes observed in muscle fiber cultures. The authors conclude that skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt an adipogenic fate. PMID:21339173

  9. Paclitaxel Impairs Adipose Stem Cell Proliferation and Differentiation

    PubMed Central

    Choron, Rachel L.; Chang, Shaohua; Khan, Sophia; Villalobos, Miguel A.; Zhang, Ping; Carpenter, Jeffrey P.; Tulenko, Thomas N.; Liu, Yuan

    2015-01-01

    BACKGROUND Cancer patients with chemotherapy-induced immunosuppression have poor surgical site wound healing. Prior literature supports the use of human adipose-derived stem cell (hASC) lipoinjection to improve wound healing. It has been established multipotent hASCs facilitate neovascularization, accelerated epithelialization, and wound closure in animal models. While hASC wound therapy may benefit surgical cancer patients, the chemotherapeutic effects on hASCs are unknown. We hypothesized Paclitaxel, a chemotherapeutic agent, impairs hASC growth, multipotency, and induces apoptosis. METHODS hASCs were isolated and harvested from consented, chemotherapy and radiation naïve patients. Growth curves, MTT, and EdU assays measured cytotoxicity and proliferation. Oil-Red-O stain, Alazarin-Red stain, Matrigel tube-formation assay, and qPCR analyzed hASC differentiation. Annexin V assay measured apoptosis. Immunostaining and Western blot determined TNF-α expression. RESULTS hASCs were selectively more sensitive to Paclitaxel (0.01μM–30μM) than fibroblasts (p<0.05). After 12 days, Paclitaxel caused hASC growth arrest whereas control hASCs proliferated (p=0.006). Paclitaxel caused an 80.6% reduction in new DNA synthesis (p<0.001). Paclitaxel severely inhibited endothelial differentiation and capillary-like tube formation. Differentiation markers LPL (adipogenic), alkaline phosphatase (osteogenic), CD31 and vWF (endothelial) were significantly decreased (all: p<0.05) confirming Paclitaxel impaired differentiation. Paclitaxel was also found to induce apoptosis and TNF-α was up-regulated in Paclitaxel-treated hASCs (p<0.001). CONCLUSION Paclitaxel is more cytotoxic to hASCs than fibroblasts. Paclitaxel inhibits hASC proliferation, differentiation, and induces apoptosis, possibly through the TNF-α pathway. Paclitaxel’s severe inhibition of endothelial differentiation indicates neovascularization disruption, possibly causing poor wound healing in cancer patients

  10. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrinemore » also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.« less

  11. Comparison of Mycobacterium tuberculosis culture using liquid culture medium and Lowenstein Jensen medium in abdominal tuberculosis.

    PubMed

    Shah, Sudeep R; Shenai, Shubhada; Desai, Devendra C; Joshi, Anand; Abraham, Philip; Rodrigues, Camilla

    2010-11-01

    Traditionally, the Lowenstein Jensen (LJ) medium has been used for culturing Mycobacterium tuberculosis. In abdominal tuberculosis (TB), the reported yield from tissue culture is between 20% and 60%. Liquid cultures are reported to give a higher yield but there is little data available in abdominal TB. To compare the yield of TB culture with BACTEC 460TB liquid medium and LJ medium for patients with suspected abdominal TB and determine cost effectiveness. This prospective study was done in consecutive cases with clinical, radiological, endoscopic/surgical, and histological suspicion of abdominal TB. Tissue biopsies obtained at colonoscopy or surgery were processed and plated on LJ medium as well as the BACTEC 460TB system. NAP (ρ-nitro-α-acetylamino-β-hydroxy-propiophenone) differentiation was carried out to determine species. The cost of each method and cost per yield were calculated. Of the 29 cases, 22 cases (76%) were positive on BACTEC 460TB culture while 14 (48%) were positive on LJ medium giving a 64% increment in yield. However, the culture of one patient grew on LJ medium, where the BACTEC 460TB was negative. The additional cost of BACTEC 460TB is Rs. 460 and LJ is Rs. 40. Samples from patients with abdominal TB should be processed on both liquid and LJ medium. For high yield, the use of a liquid culture medium system is essential.

  12. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  13. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate.

    PubMed

    Laner-Plamberger, Sandra; Lener, Thomas; Schmid, Doris; Streif, Doris A; Salzer, Tina; Öller, Michaela; Hauser-Kronberger, Cornelia; Fischer, Thorsten; Jacobs, Volker R; Schallmoser, Katharina; Gimona, Mario; Rohde, Eva

    2015-11-10

    Pooled human platelet lysate (pHPL) is an efficient alternative to xenogenic supplements for ex vivo expansion of mesenchymal stem cells (MSCs) in clinical studies. Currently, porcine heparin is used in pHPL-supplemented medium to prevent clotting due to plasmatic coagulation factors. We therefore searched for an efficient and reproducible medium preparation method that avoids clot formation while omitting animal-derived heparin. We established a protocol to deplete fibrinogen by clotting of pHPL in medium, subsequent mechanical hydrogel disruption and removal of the fibrin pellet. After primary culture, bone-marrow and umbilical cord derived MSCs were tested for surface markers by flow cytometry and for trilineage differentiation capacity. Proliferation and clonogenicity were analyzed for three passages. The proposed clotting procedure reduced fibrinogen more than 1000-fold, while a volume recovery of 99.5 % was obtained. All MSC types were propagated in standard and fibrinogen-depleted medium. Flow cytometric phenotype profiles and adipogenic, osteogenic and chondrogenic differentiation potential in vitro were independent of MSC-source or medium type. Enhanced proliferation of MSCs was observed in the absence of fibrinogen but presence of heparin compared to standard medium. Interestingly, this proliferative response to heparin was not detected after an initial contact with fibrinogen during the isolation procedure. Here, we present an efficient, reproducible and economical method in compliance to good manufacturing practice for the preparation of MSC media avoiding xenogenic components and suitable for clinical studies.

  14. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells.

    PubMed

    Baskan, Oznur; Mese, Gulistan; Ozcivici, Engin

    2017-02-01

    Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.

  15. [The analysis of the low and medium molecular weight substances for differential diagnostics of deaths from acute small-focal myocardial infarction and other forms of cardiac pathology].

    PubMed

    Edelev, N S; Obuhova, L M; Edelev, I S; Katirkina, A A

    The objective of the present study was to analyze the possibilities for the use of the low and medium molecular weight substances for differential diagnostics of deaths from acute small-focal myocardial infarction and other forms of cardiac pathology. We determined the amount of the low and medium molecular weight substances in the urine obtained from the subjects who had died as a result of chronic coronary heart disease, acute myocardial infarction, and alcoholic cardiomyopathy. The levels of the low and medium molecular weight substances in the urine were measured by the method of N.Ya. Malakhov in the modification of T.V. Kopytova [5]. The study has demonstrated the appearance of the products of cardiomyocyte degradation (giving rise to a peak at a wavelength of 278 nm) in the fraction of the low and medium molecular weight substances of the urine from the patients suffering from acute small-focal myocardial infarction and some other forms of cardiac pathology.

  16. [The effect of Foxc2 overexpression on the osteogenic properties of C3H10T1/2 cells].

    PubMed

    Wang, Min-Jiao; Si, Jia-Wen; Li, Hong-Liang; Ouyang, Ning-Juan; Shen, Guo-Fang

    2016-08-01

    To investigate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation of C3H10T1/2 cells. C3H10T1/2 cells were transfected with plenti-Foxc2 and selected with puromycin for stable clones. The expression of Foxc2 was determined by real-time PCR and Western blot. Cell proliferation was detected by CCK-8 kit. Cell cycle and apoptosis were detected by flow cytometry. The level of osteogenic biomarkers Runx2, OPN, OCN and adipogenic biomarker PPARγ were quantified by real-time PCR and Western blot. Alkaline phosphatase (ALP) staining and oil red staining were conducted to evaluate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation. Statistical analysis was performed using SPSS 17.0 software package. C3H10T1/2-Foxc2 cell line was successfully constructed and verified by direct sequencing and Foxc2 overexpression in vitro. Cell proliferation was reduced and cell cycle was blocked in G1/G0 phase. Enhanced ALP staining and reduced oil red staining were observed in C3H10T1/2-Foxc2 cells as compared with the control. Foxc2 overexpression up-regulated Runx2, OPN, OCN during osteogenic differentiation and down-regulated PPARγduring adipogenic differentiation. C3H10T1/2 cell line stably expressing Foxc2 gene was successfully established, cell proliferation was reduced, osteogenesis biomarkers were up-regulated during the osteogenesis by overexpression Foxc2, PPARγwas down-regulated during adipogenesis.

  17. Effect of partial heating at mid of vertical plate adjacent to porous medium

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammed Fahimuddin; Pallan, Khalid. M.; Al-Rashed, A. A. A. A.

    2018-05-01

    Heat and mass transfer in porous medium due to heating of vertical plate at mid-section is analyzed for various physical parameters. The heat and mass transfer in porous medium is modeled with the help of momentum, energy and concentration equations in terms of non-dimensional partial differential equations. The partial differential equations are converted into simpler form of algebraic equations with the help of finite element method. A computer code is developed to assemble the matrix form of algebraic equations into global matrices and then to solve them in an iterative manner to obtain the temperature, concentration and streamline distribution inside the porous medium. It is found that the heat transfer behavior of porous medium heated at middle section is considerably different from other cases.

  18. Different osteochondral potential of clonal cell lines derived from adult human trabecular bone.

    PubMed

    Osyczka, Anna M; Nöth, Ulrich; Danielson, Keith G; Tuan, Rocky S

    2002-06-01

    Cells derived from human trabecular bones have been shown to have multipotential differentiation ability along osteogenic, chondrogenic, and adipogenic lineages. In this study, we have derived two clonal sublines of human trabecular bone cells by means of stable transduction with human papilloma virus E6/E7 genes. Our results showed that these clonal sublines differ in their osteochondral potential, but are equally adipogenic, indicative of the heterogeneous nature of the parental cell population. The availability of these cell lines should be useful for the analysis of the mechanisms regulating the differentiation of adult mesenchymal progenitor cells.

  19. Chocolate agar, a differential medium for gram-positive cocci.

    PubMed Central

    Gunn, B A

    1984-01-01

    Reactions incurred on chocolate agar by gram-positive cocci were correlated with species identity. Darkening and clearing of the medium was usually associated with the species Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus simulans, and Streptococcus faecalis. Yellowing of chocolate agar was associated with alpha-hemolytic species of Streptococcus. The study demonstrated that reactions occurring on chocolate agar are useful in identifying gram-positive cocci. PMID:6490866

  20. Effects of non-steroidal anti-inflammatory drugs on proliferation, differentiation and migration in equine mesenchymal stem cells.

    PubMed

    Müller, Maike; Raabe, Oksana; Addicks, Klaus; Wenisch, Sabine; Arnhold, Stefan

    2011-03-01

    In equine medicine, stem cell therapies for orthopaedic diseases are routinely accompanied by application of NSAIDs (non-steroidal anti-inflammatory drugs). Thus, it has to be analysed how NSAIDs actually affect the growth and differentiation potential of MSCs (mesenchymal stem cells) in vitro in order to predict the influence of NSAIDs such as phenylbutazone, meloxicam, celecoxib and flunixin on MSCs after grafting in vivo. The effects of NSAIDs were evaluated regarding cell viability and proliferation. Additionally, the multilineage differentiation capacity and cell migration was analysed. NSAIDs at lower concentrations (0.1-1 μM for celecoxib and meloxicam and 10-50 μM for flunixin) exert a positive effect on cell proliferation and migration, while at higher concentrations (10-200 μM for celecoxib and meloxicam and 100-1000 μM for flunixin and phenylbutazone), there is rather a negative influence. While there is hardly any influence on the adipogenic as well as on the chondrogenic MSC differentiation, the osteogenic differentiation potential, as demonstrated with the von Kossa staining, is significantly disturbed. Thus, it can be concluded that the effects of NSAIDs on MSCs are largely dependent on the concentrations used. Additionally, for some differentiation lineages, also the choice of NSAID is critical.

  1. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate.

    PubMed

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes.

  2. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2Bmore » inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.« less

  3. Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential.

    PubMed

    Siegel, Georg; Krause, Petra; Wöhrle, Stefanie; Nowak, Patrick; Ayturan, Miriam; Kluba, Torsten; Brehm, Bernhard R; Neumeister, Birgid; Köhler, David; Rosenberger, Peter; Just, Lothar; Northoff, Hinnak; Schäfer, Richard

    2012-09-01

    Despite their paracrine activites, cardiomyogenic differentiation of bone marrow (BM)-derived mesenchymal stem cells (MSCs) is thought to contribute to cardiac regeneration. To systematically evaluate the role of differentiation in MSC-mediated cardiac regeneration, the cardiomyogenic differentiation potential of human MSCs (hMSCs) and murine MSCs (mMSCs) was investigated in vitro and in vivo by inducing cardiomyogenic and noncardiomyogenic differentiation. Untreated hMSCs showed upregulation of cardiac tropopin I, cardiac actin, and myosin light chain mRNA and protein, and treatment of hMSCs with various cardiomyogenic differentiation media led to an enhanced expression of cardiomyogenic genes and proteins; however, no functional cardiomyogenic differentiation of hMSCs was observed. Moreover, co-culturing of hMSCs with cardiomyocytes derived from murine pluripotent cells (mcP19) or with murine fetal cardiomyocytes (mfCMCs) did not result in functional cardiomyogenic differentiation of hMSCs. Despite direct contact to beating mfCMCs, hMSCs could be effectively differentiated into cells of only the adipogenic and osteogenic lineage. After intramyocardial transplantation into a mouse model of myocardial infarction, Sca-1(+) mMSCs migrated to the infarcted area and survived at least 14 days but showed inconsistent evidence of functional cardiomyogenic differentiation. Neither in vitro treatment nor intramyocardial transplantation of MSCs reliably generated MSC-derived cardiomyocytes, indicating that functional cardiomyogenic differentiation of BM-derived MSCs is a rare event and, therefore, may not be the main contributor to cardiac regeneration.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jing; Liu, Gexiu; Yan, Guoyao

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway,more » β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.« less

  5. ATP6V1H regulates the growth and differentiation of bone marrow stromal cells.

    PubMed

    Li, Lin; Yang, Shaoqing; Zhang, Yanli; Ji, Dongrui; Jin, Zuolin; Duan, Xiaohong

    2018-05-18

    ATP6V1H encodes subunit H of vacuolar ATPase (V-ATPase) and may regulate osteoclastic function. The deficiency of ATP6V1H caused bone loss in human, mouse and zebrafish. In this report, we identified the mechanisms by which ATP6V1H regulates proliferation and differentiation of bone marrow stromal cells (BMSCs). We found that ATP6V1H was expressed in BMSCs, andAtp6v1h +/- BMSCs exhibited the lower proliferation rate, cell cycle arrest and reduced osteogenic differentiation capacity, as well as the increased adipogenic potentials. Histologic analysis confirmed less bone formation and more fatty degeneration in Atp6v1h +/- mice in the different age groups. Q-PCR analysis revealed that loss of ATP6V1H function downregulated the mRNA level of TGF-β1 receptor, and its binding molecule, subunit β of adaptor protein complex 2 (AP-2), suggesting ATP6V1H regulates the proliferation and differentiation of BMSCs by interacting with TGF-β receptor I and AP-2 complex. Copyright © 2018. Published by Elsevier Inc.

  6. Effects of organophosphates on the regulation of mesenchymal stem cell proliferation and differentiation.

    PubMed

    Prugh, Amber M; Cole, Stephanie D; Glaros, Trevor; Angelini, Daniel J

    2017-03-25

    Mesenchymal stem cells (MSCs) are multipotent cells located within various adult tissues. Recent literature has reported that human bone marrow-derived MSCs express active acetylcholinesterase (AChE) and that disruption of AChE activity by organophosphate (OP) chemicals decreases the ability of MSCs to differentiate into osteoblasts. The potential role of AChE in regulating MSC proliferation and differentiation is currently unknown. In the present study, we demonstrate that MSCs exposed to OPs have both decreased AChE activity and abundance. In addition, exposure to these OPs induced cellular death while decreasing cellular proliferation. Exposures to these compounds also reduced the adipogenic/osteogenic differentiation potentials of the MSCs. To elucidate the possible role of AChE in MSCs signaling following OP exposure, we captured potential AChE binding partners by performing polyhistidine (His 8 )-tagged AChE pulldowns, followed by protein identification using liquid chromatography mass spectrometry (LC-MS). Using this method, we determined that the focal adhesion protein, vinculin, is a potential binding partner with AChE in MSCs and these initial findings were confirmed with follow-up co-immunoprecipitation experiments. Identifying AChE binding partners helps to determine potential pathways associated with MSC proliferation and differentiation, and this understanding could lead to the development of future MSC-based tissue repair therapies. Published by Elsevier B.V.

  7. The adipogenic potential of Cr(III). A molecular approach exemplifying metal-induced enhancement of insulin mimesis in diabetes mellitus II.

    PubMed

    Tsave, O; Yavropoulou, M P; Kafantari, M; Gabriel, C; Yovos, J G; Salifoglou, A

    2016-10-01

    Insulin resistance is identified through numerous pathophysiological conditions, such as Diabetes mellitus II, obesity, hypertension and other metabolic syndromes. Enhancement of insulin action and\\or its complete replacement by insulin-enhancing or insulin-mimetic agents seems to improve treatment of metabolic diseases. Over the last decades, intensive research has targeted the investigation of such agents, with chromium emerging as an important inorganic cofactor involved in the requisite metabolic chemistry. Chromium in its trivalent state has been shown to play a central role in carbohydrate metabolism by enhancing insulin signaling, action, and thus the sensitivity of insulin-sensitive tissues. A very likely link between diabetes and obesity is the adipose tissue, which stores energy in the form of triglycerides and releases free fatty acids. To date, there is paucity of information on the exact mechanism of the chromium effect concerning insulin-activated molecular paths, such as adipogenesis. The aim of the present study is to delve into such an effect by employing a well-defined form of chromium (Cr(III)-citrate) on the a) survival of pre- and mature adipocytes (3T3-L1), b) endogenous cell motility, and c) insulin-enhancing adipogenic capacity. The emerging results suggest that Cr(III)-citrate a) is (a)toxic in a concentration- and time-dependent manner, b) has no influence on cell motility, c) can induce 3T3-L1 pre-adipocyte differentiation into mature adipocytes through elevation of tissue specific biomarker levels (PPAR-γ, GLUT 4 and GCK), and d) exemplifies structurally-based metal-induced adipogenesis as a key process contributing to the development of future antidiabetic metallodrugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Human pluripotent stem cells differentiated in fully defined medium generate hematopoietic CD34- and CD34+ progenitors with distinct characteristics.

    PubMed

    Chicha, Laurie; Feki, Anis; Boni, Alessandro; Irion, Olivier; Hovatta, Outi; Jaconi, Marisa

    2011-02-25

    Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34(+) cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34(+) cells. ESC-derived CD34(+) cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34(-) cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature

  9. CDK5 Regulatory Subunit-Associated Protein 1-like 1 Negatively Regulates Adipocyte Differentiation through Activation of Wnt Signaling Pathway.

    PubMed

    Take, Kazumi; Waki, Hironori; Sun, Wei; Wada, Takahito; Yu, Jing; Nakamura, Masahiro; Aoyama, Tomohisa; Yamauchi, Toshimasa; Kadowaki, Takashi

    2017-08-04

    CDK5 Regulatory Subunit-Associated Protein 1-like 1 (CDKAL1) was identified as a susceptibility gene for type 2 diabetes and body mass index in genome-wide association studies. Although it was reported that CDKAL1 is a methylthiotransferase essential for tRNA Lys (UUU) and faithful translation of proinsulin generated in pancreatic β cells, the role of CDKAL1 in adipocytes has not been understood well. In this study, we found that CDKAL1 is expressed in adipose tissue and its expression is increased during differentiation. Stable overexpression of CDKAL1, however, inhibited adipocyte differentiation of 3T3-L1 cells, whereas knockdown of CDKAL1 promoted differentiation. CDKAL1 increased protein levels of β-catenin and its active unphosphorylated form in the nucleus, thereby promoting Wnt target gene expression, suggesting that CDKAL1 activated the Wnt/β-catenin pathway-a well-characterized inhibitory regulator of adipocyte differentiation. Mutant experiments show that conserved cysteine residues of Fe-S clusters of CDKAL1 are essential for its anti-adipogenic action. Our results identify CDKAL1 as novel negative regulator of adipocyte differentiation and provide insights into the link between CDKAL1 and metabolic diseases such as type 2 diabetes and obesity.

  10. Effect of autologous platelet-rich plasma on the chondrogenic differentiation of rabbit adipose-derived stem cells in vitro

    PubMed Central

    TANG, XIAO-BO; DONG, PEI-LONG; WANG, JIAN; ZHOU, HAI-YANG; ZHANG, HAI-XIANG; WANG, SHAN-ZHENG

    2015-01-01

    This study aimed to isolate rabbit adipose-derived stem cells (ADSCs) and explore the potential of platelet-rich plasma (PRP) in the chondrogenic differentiation of ADSCs, thereby potentially providing a new approach for the repair and regeneration of cartilage injury. Rabbit ADSCs were isolated and characterized by induction towards adipogenic, osteogenic and chondrogenic lineages in vitro. The isolated ADSCs were also cultured with or without 10% PRP. Immunofluorescence staining, toluidine blue staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect type II collagen (Col II) and aggrecan (AGC) expression. Col II immunofluorescence staining and toluidine blue staining indicated that following induction by autologous PRP, ADSCs manifested Col II and AGC expression. The expression of Col II and AGC mRNA was significantly upregulated in the PRP-treated cells when compared with that in control cells. Autologous PRP produced by laboratory centrifugation was able to promote the chondrogenic differentiation of rabbit ADSCs in vitro. PMID:26622340

  11. Human Bone Marrow-Derived Mesenchymal Stem Cells Display Enhanced Clonogenicity but Impaired Differentiation With Hypoxic Preconditioning

    PubMed Central

    Boyette, Lisa B.; Creasey, Olivia A.; Guzik, Lynda; Lozito, Thomas

    2014-01-01

    Stem cells are promising candidate cells for regenerative applications because they possess high proliferative capacity and the potential to differentiate into other cell types. Mesenchymal stem cells (MSCs) are easily sourced but do not retain their proliferative and multilineage differentiative capabilities after prolonged ex vivo propagation. We investigated the use of hypoxia as a preconditioning agent and in differentiating cultures to enhance MSC function. Culture in 5% ambient O2 consistently enhanced clonogenic potential of primary MSCs from all donors tested. We determined that enhanced clonogenicity was attributable to increased proliferation, increased vascular endothelial growth factor secretion, and increased matrix turnover. Hypoxia did not impact the incidence of cell death. Application of hypoxia to osteogenic cultures resulted in enhanced total mineral deposition, although this effect was detected only in MSCs preconditioned in normoxic conditions. Osteogenesis-associated genes were upregulated in hypoxia, and alkaline phosphatase activity was enhanced. Adipogenic differentiation was inhibited by exposure to hypoxia during differentiation. Chondrogenesis in three-dimensional pellet cultures was inhibited by preconditioning with hypoxia. However, in cultures expanded under normoxia, hypoxia applied during subsequent pellet culture enhanced chondrogenesis. Whereas hypoxic preconditioning appears to be an excellent way to expand a highly clonogenic progenitor pool, our findings suggest that it may blunt the differentiation potential of MSCs, compromising their utility for regenerative tissue engineering. Exposure to hypoxia during differentiation (post-normoxic expansion), however, appears to result in a greater quantity of functional osteoblasts and chondrocytes and ultimately a larger quantity of high-quality differentiated tissue. PMID:24436440

  12. Fem Formulation of Heat Transfer in Cylindrical Porous Medium

    NASA Astrophysics Data System (ADS)

    Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.

    2017-08-01

    Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.

  13. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate

    PubMed Central

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. Materials and Methods: To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. Results: The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. Conclusion: The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes. PMID:27047647

  14. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential

    PubMed Central

    2014-01-01

    Introduction Studies with mesenchymal stem cells (MSCs) are increasing due to their immunomodulatory, anti-inflammatory and tissue regenerative properties. However, there is still no agreement about the best source of equine MSCs for a bank for allogeneic therapy. The aim of this study was to evaluate the cell culture and immunophenotypic characteristics and differentiation potential of equine MSCs from bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) under identical in vitro conditions, to compare these sources for research or an allogeneic therapy cell bank. Methods The BM-MSCs, AT-MSCs and UC-MSCs were cultured and evaluated in vitro for their osteogenic, adipogenic and chondrogenic differentiation potential. Additionally, MSCs were assessed for CD105, CD44, CD34, CD90 and MHC-II markers by flow cytometry, and MHC-II was also assessed by immunocytochemistry. To interpret the flow cytometry results, statistical analysis was performed using ANOVA. Results The harvesting and culturing procedures of BM-MSCs, AT-MSCs and UC-MSCs were feasible, with an average cell growth until the third passage of 25 days for BM-MSCs, 15 days for AT-MSCs and 26 days for UC-MSCs. MSCs from all sources were able to differentiate into osteogenic (after 10 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs), adipogenic (after 8 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs) and chondrogenic (after 21 days for BM-MSCs, AT-MSCs and UC-MSCs) lineages. MSCs showed high expression of CD105, CD44 and CD90 and low or negative expression of CD34 and MHC-II. The MHC-II was not detected by immunocytochemistry techniques in any of the MSCs studied. Conclusions The BM, AT and UC are feasible sources for harvesting equine MSCs, and their immunophenotypic and multipotency characteristics attained minimal criteria for defining MSCs. Due to the low expression of MHC-II by MSCs, all of the sources could be used in clinical trials involving allogeneic therapy

  15. The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation.

    PubMed

    Bermeo, Sandra; Al-Saedi, Ahmed; Kassem, Moustapha; Vidal, Christopher; Duque, Gustavo

    2017-12-01

    Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic differentiation were performed. MAN1 knockdown increased osteogenesis and mineralization. In contrast, osteogenesis remained stable upon MAN1 overexpression. Regarding a mechanism, we found that low levels of MAN1 facilitated the nuclear accumulation of regulatory smads and smads-related complexes, with a concurrently high expression of nuclear β-Catenin. In addition, we found adipogenesis to be decreased in both conditions, although predominantly affected by MAN1 overexpression. Finally, lamin A, a protein of the nuclear envelope that regulates MSC differentiation, was unaffected by changes in MAN1. In conclusion, our studies demonstrated that lower levels of MAN1 in differentiating MSC are associated with higher osteogenesis and lower adipogenesis. High levels of MAN1 only affected adipogenesis. These effects could have an important role in the understanding of the role of the proteins of the nuclear envelope in bone formation. J. Cell. Biochem. 118: 4425-4435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells.

    PubMed

    Shah, Syed M; Saini, Neha; Singh, Manoj K; Manik, Radheysham; Singla, Suresh K; Palta, Prabhat; Chauhan, Manmohan S

    2016-08-01

    Testicular cells are believed to secrete various growth factors that activate signaling pathways finally leading to gametogenesis. In vitro gametogenesis is an obscure but paramountly important task primarily because of paucity of the precursor cells and first trimester gonadal tissues. To overcome these limitations for development of in vitro gametes, the present study was designed to induce differentiation of buffalo embryonic stem (ES) cells into germ lineage cells on stimulation by testicular cell-conditioned medium (TCM), on the basis of the assumption that ES cells have the intrinsic property to differentiate into any cell type and TCM would provide the necessary growth factors for differentiation toward germ cell lineage. For this purpose, buffalo ES cells were differentiated as embryoid bodies (EB) in floating cultures and as monolayer adherent cultures in different doses (10%, 20%, and 40%) of TCM for different culture intervals (4, 8, and 14 days), to identify the optimum dose-and-time period. We observed that 40% TCM dose induces highest expression of primordial germ cell-specific (DAZL, VASA, and PLZF), meiotic (SYCP3, MLH1, TNP1/2, and PRM2), spermatocyte-specific (BOULE and TEKT1), and oocyte-specific genes (GDF9 and ZP2/3) for a culture period of 14 days under both floating and adherent differentiation. Immunocytochemical analysis of EBs and adherent cultures revealed presence of primordial germ cell markers (c-KIT, DAZL, and VASA), meiotic markers (SYCP3, MLH1 and PROTAMINE1), spermatocyte markers (ACROSIN and HAPRIN), and oocyte markers (GDF9 and ZP4), indicating progression into post-meiotic gametogenesis. The detection of germ cell-specific proteins in Day 14 EBs like VASA, GDF9, and ZP4 by Western blotting further confirmed germ lineage differentiation. The significantly lower (P < 0.05) concentration of 5-methyl-2-deoxycytidine in optimally differentiated EBs is suggestive of the process of methylation erasure. Oocyte-like structures

  17. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong

    2016-03-01

    Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration

  18. Effects of enamel matrix derivative on the proliferation and osteogenic differentiation of human gingival mesenchymal stem cells

    PubMed Central

    2014-01-01

    Introduction Gingiva-derived mesenchymal stem cells (GMSCs) have recently been harvested and applied for rebuilding lost periodontal tissue. Enamel matrix derivative (EMD) has been used for periodontal regeneration and the formation of new cementum with inserting collagen fibers; however, alveolar bone formation is minimal. Recently, EMD has been shown to enhance the proliferation and mineralization of human bone marrow mesenchymal stem cells. Because the gingival flap is the major component to cover the surgical wound, the effects of EMD on the proliferation and mineralization of GMSCs were evaluated in the present study. Methods After single cell suspension, the GMSCs were isolated from the connective tissues of human gingiva. The colony forming unit assay of the isolated GMSCs was measured. The expression of stem cell markers was examined by flow cytometry. The cellular telomerase activity was identified by polymerase chain reaction (PCR). The osteogenic, adipogenic and neural differentiations of the GMSCs were further examined. The cell proliferation was determined by MTS assay, while the expression of mRNA and protein for mineralization (including core binding factor alpha, cbfα-1; alkaline phosphatase, ALP; and osteocalcin, OC; ameloblastin, AMBN) were analyzed by real time-PCR, enzyme activity and confocal laser scanning microscopy. Results The cell colonies could be easily identified and the colony forming rates and the telomerase activities increased after passaging. The GMSCs expressed high levels of surface markers for CD73, CD90, and CD105, but showed low expression of STRO-1. Osteogenic, adipogenic and neural differentiations were successfully induced. The proliferation of GMSCs was increased after EMD treatment. ALP mRNA was significantly augmented by treating with EMD for 3 hours, whereas AMBN mRNA was significantly increased at 6 hours after EMD treatment. The gene expression of OC was enhanced at the dose of 100 μg/ml EMD at day 3. Increased

  19. Osthole Attenuates Inflammatory Responses and Regulates the Expression of Inflammatory Mediators in HepG2 Cells Grown in Differentiated Medium from 3T3-L1 Preadipocytes.

    PubMed

    Wu, Shu-Ju

    2015-09-01

    This study explored the anti-inflammatory mechanisms by which osthole acted on HepG2 cells cultured in a differentiated medium from cultured 3T3-L1 preadipocyte cells. HepG2 cells, a human liver cell line, were treated with various concentrations of osthole in differentiated media from cultured 3T3-L1 cells to evaluate proinflammatory cytokines, inflammatory mediators, and signaling pathways. We used enzyme-linked immunosorbent assay kits to determine the levels of proinflammatory cytokines, real-time polymerase chain reaction to assay the mRNA expression, and western blot to determine the expression of cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) proteins. We also investigated inflammatory mechanism pathway members, including mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa-B (NF-κB). Osthole was able to suppress the levels of proinflammatory cytokines interleukin (IL)-1β and IL-6, as well as chemokines monocyte chemoattractant protein-1 and IL-8. In addition, COX-2 was suppressed and HO-1 expression was increased in a concentration-dependent manner. Osthole was also able to decrease IκB-α phosphorylation and suppress the phosphorylation of MAPKs. These results suggest that osthole has anti-inflammatory effects as demonstrated by the decreased proinflammatory cytokine and mediator production through suppression of the NF-κB and MAPK signaling pathways in HepG2 cells when they are incubated on the differentiated medium from 3T3-L1 cells.

  20. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    PubMed

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  1. The In Vitro Differentiation of GDNF Gene-Engineered Amniotic Fluid-Derived Stem Cells into Renal Tubular Epithelial-Like Cells.

    PubMed

    Lu, Ying; Wang, Zhuojun; Chen, Lu; Wang, Jia; Li, Shulin; Liu, Caixia; Sun, Dong

    2018-05-01

    Amniotic fluid is an alternative source of stem cells, and human amniotic fluid-derived stem cells (AFSCs) obtained from a small amount of amniotic fluid collected during the second trimester represent a novel source for use in regenerative medicine. These AFSCs are characterized by lower diversity, a higher proliferation rate, and a wider differentiation capability than adult mesenchymal stem cells. AFSCs are selected based on the cell surface marker c-kit receptor (CD117) using immunomagnetic sorting. Glial cell line-derived neurotrophic factor (GDNF) is expressed during early kidney development and regulates the proliferation and differentiation of stem cells in vitro. In this study, c-kit-sorted AFSCs were induced toward osteogenic or adipogenic differentiation. AFSCs engineered via the insertion of GDNF were cocultured with mouse renal tubular epithelial cells (mRTECs), which were preconditioned by hypoxia-reoxygenation in vitro. After coculture for 8 days, AFSCs differentiation into epithelial-like cells was evaluated by performing immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction to identify cells expressing the renal epithelial markers, cytokeratin 18 (CK18), E-cadherin, aquaporin-1 (AQP1), and paired box 2 gene (Pax2). The GDNF gene enhanced AFSCs differentiation into RTECs. AFSCs possess self-renewal ability and multiple differentiation potential and thus represent a new source of stem cells.

  2. Effectiveness of autologous serum as an alternative to fetal bovine serum in adipose-derived stem cell engineering.

    PubMed

    Choi, Jaehoon; Chung, Jee-Hyeok; Kwon, Geun-Yong; Kim, Ki-Wan; Kim, Sukwha; Chang, Hak

    2013-09-01

    In cell culture, medium supplemented with fetal bovine serum is commonly used, and it is widely known that fetal bovine serum supplies an adequate environment for culture and differentiation of stem cells. Nevertheless, the use of xenogeneic serum can cause several problems. We compared the effects of four different concentrations of autologous serum (1, 2, 5, and 10%) on expansion and adipogenic differentiation of adipose-derived stem cells using 10% fetal bovine serum as a control. The stem cells were grafted on nude mice and the in vivo differentiation capacity was evaluated. The isolation of adipose-derived stem cells was successful irrespective of the culture medium. The proliferation potential was statistically significant at passage 2, as follows: 10% autologous serum > 10% fetal bovine serum = 5% autologous serum > 2% autologous serum = 1% autologous serum. The differentiation capacity appeared statistically significant at passage 4, as follows: 10% fetal bovine serum > 10% autologous serum = 5% autologous serum > 2% autologous serum = 1% autologous serum. Ten percent autologous serum and 10% fetal bovine serum had greater differentiation capacity than 1 and 2% autologous serum in vivo, and no significant difference was observed between the groups at ≥ 5% concentration at 14 weeks. In conclusion, 10% autologous serum was at least as effective as 10% fetal bovine serum with respect to the number of adipose-derived stem cells at the end of both isolation and expansion, whereas 1 and 2% autologous serum was inferior.

  3. Canine Mesenchymal Stem Cell Potential and the Importance of Dog Breed: Implication for Cell-Based Therapies.

    PubMed

    Bertolo, Alessandro; Steffen, Frank; Malonzo-Marty, Cherry; Stoyanov, Jivko

    2015-01-01

    The study of canine bone marrow-derived mesenchymal stem cells (MSCs) has a prominent position in veterinary cell-based applications. Yet the plethora of breeds, their different life spans, and interbreed variations provide unclearness on what can be achieved specifically by such therapies. In this study, we compared a set of morphological, physiological, and genetic markers of MSCs derived from large dog breeds, namely, Border collie, German shepherd, Labrador, Malinois, Golden retriever, and Hovawart. We compared colony-forming units (CFUs) assay, population doubling time (PDT), senescence-associated β-galactosidase (SA-β-gal) activity, telomere length, and gene expression of MSCs, as well as the ability of cells to differentiate to osteogenic, adipogenic, and chondrogenic phenotypes. The influence of the culture media α-MEM, low-glucose DMEM, and high-glucose DMEM, used in cell isolation and expansion, was investigated in the presence and absence of basic fibroblast growth factor (bFGF). Initial cell yield was not affected by culturing medium, but MSCs expanded best in α-MEM supplemented with bFGF. After isolation, the number of MSCs was similar among breeds--as shown by equivalent CFUs--except in the Hovawart samples, which had fivefold less CFU. Telomere lengths were similar among breeds. MSCs divided actively only for 4 weeks in culture (PDT = ∼50 h/division), except Border collie cells divided for a longer time than cells from other groups. The percentage of senescent cells increased linearly in all breeds with time, with a faster rate in German shepherd, Labrador, and Golden retriever. Border collie cells underwent efficient osteogenic differentiation, Hovawart cells performed the best in chondrogenic differentiation, and Labrador cells in both, while German shepherd cells had the lower differentiation potential. MSCs from all breeds preserved the same adipogenic differentiation potential. In conclusion, despite variations, isolated MSCs can be

  4. Investigation of mitomycin-C-treated fibroblasts in 3-D collagen gel and conditioned medium for keratinocyte proliferation.

    PubMed

    Huang, Yi-Chau; Wang, Tzu-Wei; Sun, Jui-Sheng; Lin, Feng-Huei

    2006-03-01

    Fibroblasts produce a spectrum of necessary growth factors essential for growth and proliferation of a variety of cell types. In this study, the paracrine effect of mitomycin-C-treated fibroblasts with various densities in collagen gel for keratinocyte proliferation was investigated from which an optimum cell density and optimum conditioned medium would be determined to expand keratinocyte without further differentiation for skin equivalent tissue engineering. The optimum cell density in collagen feeder gel for optimum collected medium preparation will be determined by checking the level of keratinocyte growth factor and granulocyte macrophage colony-stimulating factor in conventional medium. The results showed that the cell density of 1 x 10(5) cells/gel in the feeder gel is better to produce optimum collected medium. The conditioned medium is prepared by mixing together the optimum collected medium and molecular cellular and developmental biology (MCDB) 153 medium in different ratios for keratinocyte growth. The keratinocyte viability will be measured by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine the optimum conditioned medium. From the study, 67% conditioned medium was supposed as the better medium for keratinocyte proliferation. In this experiment, the optimum cell density in feeder gel to coculture with keratinocytes is also determined as 1 x 10(5) cells/gel. Keratin 10 (K10) and Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling stain will be used to check the cell differentiation and apoptosis, respectively. The results suggest that keratinocytes should not be cultured in postconfluent conditions due to undesired apoptosis and differentiation. The result of cell viability from passages to passages shows that the optimum feeder gel plays a more important role to the keratinocyte proliferation than that of optimum conditioned medium. Keratinocytes cultured with optimum feeder gel in 67% conditioned

  5. Combination of Garcinia cambogia Extract and Pear Pomace Extract Additively Suppresses Adipogenesis and Enhances Lipolysis in 3T3-L1 Cells.

    PubMed

    Sharma, Kushal; Kang, Siwon; Gong, Dalseong; Oh, Sung-Hwa; Park, Eun-Young; Oak, Min-Ho; Yi, Eunyoung

    2018-01-01

    Inhibition of adipogenesis has been a therapeutic target for reducing obesity and obesity-related disorders such as diabetes, hypertension, atherosclerosis, and cancer. For decades, anti-adipogenic potential of many herbal extracts has been investigated. One example is Garcinia cambogia extract (GE) containing (-)-hydroxycitric acid as an active ingredient. GE is currently marketed as a weight loss supplement, used alone or with other ingredients. Pear pomace extract (PE), another natural product, has been also shown to have anti-adipogenic activity in a recent report. It was tested if the mixture of PE and GE (MIX) would produce more effective anti-adipogenic activity than PE or GE alone. Differentiation of 3T3-L1 preadipocyte was induced by adding insulin, dexamethasone, and isobutylmethylxanthine and lipid accumulation was measured by Oil Red O staining. Cellular markers for adipogenesis and lipolysis such as CCAAT/enhancer binding protein (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) was measured using immunocytochemistry. MIX, compared to PE or GE alone, showed greater inhibition of lipid accumulation. Furthermore, MIX reduced the expression of adipogenesis-related factors C/EBP-α, PPAR-γ, and FAS more than PE or GE alone did. In contrast, the expression of HSL the enzyme required for lipolysis was further enhanced in MIX-treated adipocytes compared to the PE or GE alone treated groups. Anti-adipogenic effect of PE and GE appears synergistic, and the MIX may be a useful therapeutic combination for the treatment of obesity and obesity-related diseases. PE and GE efficiently inhibited adipocyte differentiation by suppressing the expression of adipogenic transcription factor CEBP-α and PPAR-γ.PE and GE significantly decreased the expression of adipogenic enzyme FAS.PE and GE increased the expression of lipid degrading enzyme HSL.Mixture of PE and GE exhibited additive or

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyagi, Yasuyuki; Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba; Kuroda, Masayuki, E-mail: kurodam@faculty.chiba-u.jp

    Adipose tissue is expected to provide a source of cells for protein replacement therapies via auto-transplantation. However, the conditioning of the environment surrounding the transplanted adipocytes for their long-term survival and protein secretion properties has not been established. We have recently developed a preparation procedure for preadipocytes, ceiling culture-derived proliferative adipocytes (ccdPAs), as a therapeutic gene vehicle suitable for stable gene product secretion. We herein report the results of our evaluation of using fibrin glue as a scaffold for the transplanted ccdPAs for the expression of a transduced gene in a three-dimensional culture system. The ccdPAs secreted the functional proteinmore » translated from an exogenously transduced gene, as well as physiological adipocyte proteins, and the long viability of ccdPAs (up to 84 days) was dependent on the fibrinogen concentrations. The ccdPAs spontaneously accumulated lipid droplets, and their expression levels of the transduced exogenous gene with its product were maintained for at least 56 days. The fibrinogen concentration modified the adipogenic differentiation of ccdPAs and their exogenous gene expression levels, and the levels of exogenously transduced gene expression at the different fibrinogen concentrations were dependent on the extent of adipogenic differentiation in the gel. These results indicate that fibrin glue helps to maintain the high adipogenic potential of cultured adipocytes after passaging in a 3D culture system, and suggests that once they are successfully implanted at the transplantation site, the cells exhibit increased expression of the transduced gene with adipogenic differentiation.« less

  7. Isolation and characterization of multipotent human periodontal ligament stem cells.

    PubMed

    Gay, I C; Chen, S; MacDougall, M

    2007-08-01

    Periodontal ligament (PDL) repair is thought to involve mesenchymal progenitor cells capable of forming fibroblasts, osteoblasts and cementoblasts. However, full characterization of PDL stem cell (SC) populations has not been achieved. To isolate and characterize PDLSC and assess their capability to differentiate into bone, cartilage and adipose tissue. Human PDL cells were stained for STRO-1, FACS sorted and expanded in culture. Human bone marrow SC (BMSC) served as a positive control. PDLSC and BMSC were cultured using standard conditions conducive for osteogenic, chondrogenic and adipogenic differentiation. Osteogenic induction was assayed using alizarine red S staining and expression of alkaline phosphatase (ALP) and bone sialoprotein (BSP). Adipogenic induction was assayed using Oil Red O staining and the expression of PPAR gamma 2 (early) and LPL (late) adipogenic markers. Chondrogenic induction was assayed by collagen type II expression and toluidine blue staining. Human PDL tissue contains about 27% STRO-1 positive cells with 3% strongly positive. In osteogenic cultures ALP was observed by day-7 in BMSC and day-14 in PDLSC. BSP expression was detectable by day-7; with more intense staining in PDLSC cultures. In adipogenic cultures both cell populations showed positive Oil Red O staining by day-25 with PPAR gamma 2 and LPL expression. By day-21, both BMSC and PDLSC chondrogenic induced cultures expressed collagen type II and glycosaminoglycans. The PDL contains SC that have the potential to differentiate into osteoblasts, chondrocytes and adipocytes, comparable with previously characterized BMSC. This adult PDLSC population can be utilized for potential therapeutic procedures related to PDL regeneration.

  8. Characterization of Canine Adipose-Derived Mesenchymal Stromal/Stem Cells in Serum-Free Medium.

    PubMed

    Liu, Zhuoming; Screven, Rudell; Boxer, Lynne; Myers, Michael J; Devireddy, Lax R

    2018-06-20

    In this article, we report on the development of a defined serum-free medium capable of supporting the culture expansion of mesenchymal stromal/stem cells (MSCs) from canine adipose tissue (canine Ad-MSCs). The potential benefits of serum-free media can only be utilized if cells cultured in serum-free media maintain the same functional characteristics as cells cultured in serum-containing media. Therefore, we analyze the characteristics of canine Ad-MSCs cultured in this serum-free medium or in serum-containing medium through evaluation of growth kinetics, clonogenic capacity, senescence, and differentiation capacity. Both, serum-containing medium and our serum-free medium, supported efficient growth and colony formation of canine Ad-MSCs. In addition, canine Ad-MSCs cultured in both media demonstrated similar viability after freeze/thaw, similar cell surface marker expression, and were capable of trilineage differentiation. While canine Ad-MSCs cultured in both media were generally similar, under the conditions of our study, canine Ad-MSCs cultured in serum-free medium demonstrated a shorter lag phase and higher colony-forming capacity, accelerated population doubling, maintained multipotentiality at higher passage numbers, and underwent senescence at higher passage numbers compared to canine Ad-MSCs cultured in conventional serum-containing medium. These results suggest that canine Ad-MSCs cultured in serum-free medium retain the basic characteristics associated with canine Ad-MSCs cultured in serum-containing medium, although some differences in growth kinetics were observed.

  9. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization

    PubMed Central

    Elsafadi, M; Manikandan, M; Dawud, R A; Alajez, N M; Hamam, R; Alfayez, M; Kassem, M; Aldahmash, A; Mahmood, A

    2016-01-01

    Regenerative medicine is a novel approach for treating conditions in which enhanced bone regeneration is required. We identified transgelin (TAGLN), a transforming growth factor beta (TGFβ)-inducible gene, as an upregulated gene during in vitro osteoblastic and adipocytic differentiation of human bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN-deficient hMSC showed that several genes and genetic pathways associated with cell differentiation, including regulation of actin cytoskeleton and focal adhesion pathways, were downregulated. Our data demonstrate that TAGLN has a role in generating committed progenitor cells from undifferentiated hMSC by regulating cytoskeleton organization. Targeting TAGLN is a plausible approach to enrich for committed hMSC cells needed for regenerative medicine application. PMID:27490926

  10. Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes.

    PubMed

    Barbagallo, Ignazio; Li Volti, Giovanni; Galvano, Fabio; Tettamanti, Guido; Pluchinotta, Francesca R; Bergante, Sonia; Vanella, Luca

    2017-05-01

    Adipose tissue dysfunction represents a hallmark of diabetic patients and is a consequence of the altered homeostasis of this tissue. Mesenchymal stem cells (MSCs) and their differentiation into adipocytes contribute significantly in maintaining the mass and function of adult adipose tissue. The aim of this study was to evaluate the differentiation of MSCs from patients suffering type 2 diabetes (dASC) and how such process results in hyperplasia or rather a stop of adipocyte turnover resulting in hypertrophy of mature adipocytes. Our results showed that gene profile of all adipogenic markers is not expressed in diabetic cells after differentiation indicating that diabetic cells fail to differentiate into adipocytes. Interestingly, delta like 1, peroxisome proliferator-activated receptor alpha, and interleukin 1β were upregulated whereas Sirtuin 1 and insulin receptor substrate 1 gene expression were found downregulated in dASC compared to cells obtained from healthy subjects. Taken together our data indicate that dASC lose their ability to differentiate into mature and functional adipocytes. In conclusion, our in vitro study is the first to suggest that diabetic patients might develop obesity through a hypertrophy of existing mature adipocytes due to failure turnover of adipose tissue. Impact statement In the present manuscript, we evaluated the differentiative potential of mesenchymal stem cells (MSCs) in adipocytes obtained from healthy and diabetic patients. This finding could be of great potential interest for the field of obesity in order to exploit such results to further understand the pathophysiological processes underlying metabolic syndrome. In particular, inflammation in diabetic patients causes a dysfunction in MSCs differentiation and a decrease in adipocytes turnover leading to insulin resistance.

  11. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreasedmore » expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.« less

  12. Human Pluripotent Stem Cells Differentiated in Fully Defined Medium Generate Hematopoietic CD34+ and CD34− Progenitors with Distinct Characteristics

    PubMed Central

    Chicha, Laurie; Feki, Anis; Boni, Alessandro; Irion, Olivier; Hovatta, Outi; Jaconi, Marisa

    2011-01-01

    Background Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. Methodology/Principal Findings ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34+ cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34+ cells. ESC-derived CD34+ cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34− cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. Conclusions/Significance Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive

  13. Enrichment of Adipose-Derived Stromal Cells for BMPR1A Facilitates Enhanced Adipogenesis

    PubMed Central

    Zielins, Elizabeth R.; Paik, Kevin; Ransom, Ryan C.; Brett, Elizabeth A.; Blackshear, Charles P.; Luan, Anna; Walmsley, Graham G.; Atashroo, David A.; Senarath-Yapa, Kshemendra; Momeni, Arash; Rennert, Robert; Sorkin, Michael; Seo, Eun Young; Chan, Charles K.; Gurtner, Geoffrey C.; Longaker, Michael T.

    2016-01-01

    Background: Reconstruction of soft tissue defects has traditionally relied on the use of grafts and flaps, which may be associated with variable resorption and/or significant donor site morbidity. Cell-based strategies employing adipose-derived stromal cells (ASCs), found within the stromal vascular fraction (SVF) of adipose tissue, may offer an alternative strategy for soft tissue reconstruction. In this study, we investigated the potential of a bone morphogenetic protein receptor type 1A (BMPR1A)(+) subpopulation of ASCs to enhance de novo adipogenesis. Methods: Human lipoaspirate was enzymatically digested to isolate SVF and magnetic-activated cell separation was utilized to obtain BMPR1A(+) and BMPR1A(−) cells. These cells, along with unenriched cells, were expanded in culture and evaluated for adipogenic gene expression and in vitro adipocyte formation. Cells from each group were also labeled with a green fluorescent protein (GFP) lentivirus and transplanted into the inguinal fat pads, an adipogenic niche, of immunocompromised mice to determine their potential for de novo adipogenesis. Confocal microscopy along with staining of lipid droplets and vasculature was performed to evaluate the formation of mature adipocytes by transplanted cells. Results: In comparison to BMPR1A(−) and unenriched ASCs, BMPR1A(+) cells demonstrated significantly enhanced adipogenesis when cultured in an adipogenic differentiation medium, as evidenced by increased staining with Oil Red O and increased expression of peroxisome proliferator-activating receptor gamma (PPAR-γ) and fatty acid-binding protein 4 (FABP4). BMPR1A(+) cells also formed significantly more adipocytes in vivo, as demonstrated by quantification of GFP+ adipocytes. Minimal formation of mature adipocytes was appreciated by BMPR1A(−) cells. Conclusions: BMPR1A(+) ASCs show an enhanced ability for adipogenesis in vitro, as shown by gene expression and histological staining. Furthermore, within an adipogenic niche

  14. Enrichment of Adipose-Derived Stromal Cells for BMPR1A Facilitates Enhanced Adipogenesis.

    PubMed

    Zielins, Elizabeth R; Paik, Kevin; Ransom, Ryan C; Brett, Elizabeth A; Blackshear, Charles P; Luan, Anna; Walmsley, Graham G; Atashroo, David A; Senarath-Yapa, Kshemendra; Momeni, Arash; Rennert, Robert; Sorkin, Michael; Seo, Eun Young; Chan, Charles K; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2016-02-01

    Reconstruction of soft tissue defects has traditionally relied on the use of grafts and flaps, which may be associated with variable resorption and/or significant donor site morbidity. Cell-based strategies employing adipose-derived stromal cells (ASCs), found within the stromal vascular fraction (SVF) of adipose tissue, may offer an alternative strategy for soft tissue reconstruction. In this study, we investigated the potential of a bone morphogenetic protein receptor type 1A (BMPR1A)(+) subpopulation of ASCs to enhance de novo adipogenesis. Human lipoaspirate was enzymatically digested to isolate SVF and magnetic-activated cell separation was utilized to obtain BMPR1A(+) and BMPR1A(-) cells. These cells, along with unenriched cells, were expanded in culture and evaluated for adipogenic gene expression and in vitro adipocyte formation. Cells from each group were also labeled with a green fluorescent protein (GFP) lentivirus and transplanted into the inguinal fat pads, an adipogenic niche, of immunocompromised mice to determine their potential for de novo adipogenesis. Confocal microscopy along with staining of lipid droplets and vasculature was performed to evaluate the formation of mature adipocytes by transplanted cells. In comparison to BMPR1A(-) and unenriched ASCs, BMPR1A(+) cells demonstrated significantly enhanced adipogenesis when cultured in an adipogenic differentiation medium, as evidenced by increased staining with Oil Red O and increased expression of peroxisome proliferator-activating receptor gamma (PPAR-γ) and fatty acid-binding protein 4 (FABP4). BMPR1A(+) cells also formed significantly more adipocytes in vivo, as demonstrated by quantification of GFP+ adipocytes. Minimal formation of mature adipocytes was appreciated by BMPR1A(-) cells. BMPR1A(+) ASCs show an enhanced ability for adipogenesis in vitro, as shown by gene expression and histological staining. Furthermore, within an adipogenic niche, BMPR1A(+) cells possessed an increased capacity

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yonghan; Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 daysmore » of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.« less

  16. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation.

    PubMed

    Tan, Qiu-Wen; Zhang, Yi; Luo, Jing-Cong; Zhang, Di; Xiong, Bin-Jun; Yang, Ji-Qiao; Xie, Hui-Qi; Lv, Qing

    2017-06-01

    Decellularized extracellular matrix (ECM) scaffolds from human adipose tissue, characterized by impressive adipogenic induction ability, are promising for soft tissue augmentation. However, scaffolds from autologous human adipose tissue are limited by the availability of tissue resources and the time necessary for scaffold fabrication. The objective of the current study was to investigate the adipogenic properties of hydrogels of decellularized porcine adipose tissue (HDPA). HDPA induced the adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro, with significantly increased expression of adipogenic genes. Subcutaneous injection of HDPA in immunocompetent mice induced host-derived adipogenesis without cell seeding, and adipogenesis was significantly enhanced with ADSCs seeding. The newly formed adipocytes were frequently located on the basal side in the non-seeding group, but this trend was not observed in the ADSCs seeding group. Our results indicated that, similar to human adipose tissue, the ECM scaffold derived from porcine adipose tissue could provide an adipogenic microenvironment for adipose tissue regeneration and is a promising biomaterial for soft tissue augmentation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1756-1764, 2017. © 2017 Wiley Periodicals, Inc.

  17. Vitronectin-Based, Biomimetic Encapsulating Hydrogel Scaffolds Support Adipogenesis of Adipose Stem Cells

    PubMed Central

    Clevenger, Tracy N.; Hinman, Cassidy R.; Ashley Rubin, Rebekah K.; Smither, Kate; Burke, Daniel J.; Hawker, Craig J.; Messina, Darin; Van Epps, Dennis

    2016-01-01

    Soft tissue defects are relatively common, yet currently used reconstructive treatments have varying success rates, and serious potential complications such as unpredictable volume loss and reabsorption. Human adipose-derived stem cells (ASCs), isolated from liposuction aspirate have great potential for use in soft tissue regeneration, especially when combined with a supportive scaffold. To design scaffolds that promote differentiation of these cells down an adipogenic lineage, we characterized changes in the surrounding extracellular environment during adipogenic differentiation. We found expression changes in both extracellular matrix proteins, including increases in expression of collagen-IV and vitronectin, as well as changes in the integrin expression profile, with an increase in expression of integrins such as αVβ5 and α1β1. These integrins are known to specifically interact with vitronectin and collagen-IV, respectively, through binding to an Arg-Gly-Asp (RGD) sequence. When three different short RGD-containing peptides were incorporated into three-dimensional (3D) hydrogel cultures, it was found that an RGD-containing peptide derived from vitronectin provided strong initial attachment, maintained the desired morphology, and created optimal conditions for in vitro 3D adipogenic differentiation of ASCs. These results describe a simple, nontoxic encapsulating scaffold, capable of supporting the survival and desired differentiation of ASCs for the treatment of soft tissue defects. PMID:26956095

  18. Priming integrin α5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis

    PubMed Central

    Hamidouche, Zahia; Fromigué, Olivia; Ringe, Jochen; Häupl, Thomas; Vaudin, Pascal; Pagès, Jean-Christophe; Srouji, Samer; Livne, Erella; Marie, Pierre J.

    2009-01-01

    Adult human mesenchymal stromal cells (hMSCs) have the potential to differentiate into chondrogenic, adipogenic, or osteogenic lineages, providing a potential source for tissue regeneration. An important issue for efficient bone regeneration is to identify factors that can be targeted to promote the osteogenic potential of hMSCs. Using transcriptome analysis, we found that integrin α5 (ITGA5) expression is up-regulated during dexamethasone-induced osteoblast differentiation of hMSCs. Gain-of-function studies showed that ITGA5 promotes the expression of osteoblast phenotypic markers and in vitro osteogenesis of hMSCs. Down-regulation of endogenous ITGA5 using specific shRNAs blunted osteoblast marker gene expression and osteogenic differentiation. Molecular analyses showed that the enhanced osteoblast differentiation induced by ITGA5 was mediated by activation of focal adhesion kinase/ERK1/2-MAPKs and PI3K signaling pathways. Remarkably, activation of endogenous ITGA5 using agonists such as a specific antibody that primes the integrin or a peptide that specifically activates ITGA5 was sufficient to enhance ERK1/2-MAPKs and PI3K signaling and to promote osteoblast differentiation and osteogenic capacity of hMSCs. Importantly, we demonstrated that hMSCs engineered to overexpress ITGA5 exhibited a marked increase in their osteogenic potential in vivo. Taken together, these findings not only reveal that ITGA5 is required for osteoblast differentiation of adult hMSCs but also provide a targeted strategy using ITGA5 agonists to promote the osteogenic capacity of hMSCs. This may be used for tissue regeneration in bone disorders where the recruitment or capacity of hMSCs is compromised. PMID:19843692

  19. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis.

    PubMed

    Hamidouche, Zahia; Fromigué, Olivia; Ringe, Jochen; Häupl, Thomas; Vaudin, Pascal; Pagès, Jean-Christophe; Srouji, Samer; Livne, Erella; Marie, Pierre J

    2009-11-03

    Adult human mesenchymal stromal cells (hMSCs) have the potential to differentiate into chondrogenic, adipogenic, or osteogenic lineages, providing a potential source for tissue regeneration. An important issue for efficient bone regeneration is to identify factors that can be targeted to promote the osteogenic potential of hMSCs. Using transcriptome analysis, we found that integrin alpha5 (ITGA5) expression is up-regulated during dexamethasone-induced osteoblast differentiation of hMSCs. Gain-of-function studies showed that ITGA5 promotes the expression of osteoblast phenotypic markers and in vitro osteogenesis of hMSCs. Down-regulation of endogenous ITGA5 using specific shRNAs blunted osteoblast marker gene expression and osteogenic differentiation. Molecular analyses showed that the enhanced osteoblast differentiation induced by ITGA5 was mediated by activation of focal adhesion kinase/ERK1/2-MAPKs and PI3K signaling pathways. Remarkably, activation of endogenous ITGA5 using agonists such as a specific antibody that primes the integrin or a peptide that specifically activates ITGA5 was sufficient to enhance ERK1/2-MAPKs and PI3K signaling and to promote osteoblast differentiation and osteogenic capacity of hMSCs. Importantly, we demonstrated that hMSCs engineered to overexpress ITGA5 exhibited a marked increase in their osteogenic potential in vivo. Taken together, these findings not only reveal that ITGA5 is required for osteoblast differentiation of adult hMSCs but also provide a targeted strategy using ITGA5 agonists to promote the osteogenic capacity of hMSCs. This may be used for tissue regeneration in bone disorders where the recruitment or capacity of hMSCs is compromised.

  20. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor.

    PubMed

    Bae, Sung Hae; Ryu, Hoon; Rhee, Ki-Jong; Oh, Ji-Eun; Baik, Soon Koo; Shim, Kwang Yong; Kong, Jee Hyun; Hyun, Shin Young; Pack, Hyun Sung; Im, Changjo; Shin, Ha Cheol; Kim, Yong Man; Kim, Hyun Soo; Eom, Young Woo; Lee, Jong In

    2015-04-01

    l-ascorbic acid 2-phosphate (Asc-2P) acts as an antioxidant and a stimulator of hepatocyte growth factor (HGF) production. Previously, we reported that depletion of growth factors such as fibroblast growth factor (FGF)-2, epidermal growth factor (EGF), FGF-4 and HGF during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF). In this study, we investigated the proliferation and differentiation potential of BMSCs by FGF-2 and Asc-2P. Co-treatment with FGF-2 and Asc-2P induced optimal proliferation of BMSCs and increased the accumulation rate of BMSC numbers during a 2-month culture period. Moreover, differentiation potential was maintained by co-treatment with FGF-2 and Asc-2P via HGF expression. Adipogenic differentiation potential by FGF-2 and Asc-2P was dramatically suppressed by c-Met inhibitors (SU11274). These data suggest that co-treatment with FGF-2 and Asc-2P would be beneficial in obtaining BMSCs that possess "stemness" during long-term culture.

  1. Osteopontin-deficient progenitor cells display enhanced differentiation to adipocytes.

    PubMed

    Moreno-Viedma, Veronica; Tardelli, Matteo; Zeyda, Maximilian; Sibilia, Maria; Burks, J Deborah; Stulnig, Thomas M

    2018-03-06

    Osteopontin (OPN, Spp1) is a protein upregulated in white adipose tissue (WAT) of obese subjects. Deletion of OPN protects mice from high-fat diet-induced WAT inflammation and insulin resistance. However, the alterations mediated by loss of OPN in WAT before the obesogenic challenge have not yet been investigated. Therefore, we hypothesised that the lack of OPN might enhance the pro-adipogenic micro environment before obesity driven inflammation. OPN deficiency was tested in visceral (V) and subcutaneous (SC) WAT from WT and Spp1 -/- female mice. Gene expression for hypoxia, inflammation and adipogenesis was checked in WT vs. Spp1 -/- mice (n=15). Adipocytes progenitor cells (APC) were isolated by fluorescence cell sorting and role of OPN deficiency in adipogenesis was investigated by cell images and RT-PCR. We show that Spp1 -/- maintained normal body and fat-pad weights, although hypoxia and inflammation markers were significantly reduced. In contrast, expression of genes involved in adipogenesis was increased in WAT from Spp1 -/- mice. Strikingly, APC from Spp1 -/- were diminished but differentiated more efficiently to adipocytes than those from control mice. APC from SC-WAT of lean OPN-deficient mice display an enhanced capacity for differentiating to adipocytes. These alterations may explain the healthy expansion of WAT in the OPN-deficient model which is associated with reduced inflammation and insulin resistance. Copyright © 2018. Published by Elsevier Ltd.

  2. Human umbilical cord blood serum promotes growth, proliferation, as well as differentiation of human bone marrow-derived progenitor cells.

    PubMed

    Phadnis, Smruti M; Joglekar, Mugdha V; Venkateshan, Vijayalakshmi; Ghaskadbi, Surendra M; Hardikar, Anandwardhan A; Bhonde, Ramesh R

    2006-01-01

    Fetal calf serum (FCS) is conventionally used for animal cell cultures due to its inherent growth-promoting activities. However animal welfare issues and stringent requirements for human transplantation studies demand a suitable alternative for FCS. With this view, we studied the effect of FCS, human AB serum (ABS), and human umbilical cord blood serum (UCBS) on murine islets of Langerhans and human bone marrow-derived mesenchymal-like cells (hBMCs). We found that there was no difference in morphology and functionality of mouse islets cultured in any of these three different serum supplements as indicated by insulin immunostaining. A comparative analysis of hBMCs maintained in each of these three different serum supplements demonstrated that UCBS supplemented media better supported proliferation of hBMCs. Moreover, a modification of adipogenic differentiation protocol using UCBS indicates that it can be used as a supplement to support differentiation of hBMCs into adipocytes. Our results demonstrate that UCBS not only is suitable for maintenance of murine pancreatic islets, but also supports attachment, propagation, and differentiation of hBMCs in vitro. We conclude that UCBS can serve as a better serum supplement for growth, maintenance, and differentiation of hBMCs, making it a more suitable supplement in cell systems that have therapeutic potential in human transplantation programs.

  3. FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation.

    PubMed

    Precious, S V; Kelly, C M; Reddington, A E; Vinh, N N; Stickland, R C; Pekarik, V; Scherf, C; Jeyasingham, R; Glasbey, J; Holeiter, M; Jones, L; Taylor, M V; Rosser, A E

    2016-08-01

    Identifying the steps involved in striatal development is important both for understanding the striatum in health and disease, and for generating protocols to differentiate striatal neurons for regenerative medicine. The most prominent neuronal subtype in the adult striatum is the medium spiny projection neuron (MSN), which constitutes more than 85% of all striatal neurons and classically expresses DARPP-32. Through a microarray study of genes expressed in the whole ganglionic eminence (WGE: the developing striatum) in the mouse, we identified the gene encoding the transcription factor Forkhead box protein P1 (FoxP1) as the most highly up-regulated gene, thus providing unbiased evidence for the association of FoxP1 with MSN development. We also describe the expression of FoxP1 in the human fetal brain over equivalent gestational stages. FoxP1 expression persisted through into adulthood in the mouse brain, where it co-localised with all striatal DARPP-32 positive projection neurons and a small population of DARPP-32 negative cells. There was no co-localisation of FoxP1 with any interneuron markers. FoxP1 was detectable in primary fetal striatal cells following dissection, culture, and transplantation into the adult lesioned striatum, demonstrating its utility as an MSN marker for transplantation studies. Furthermore, DARPP-32 expression was absent from FoxP1 knock-out mouse WGE differentiated in vitro, suggesting that FoxP1 is important for the development of DARPP-32-positive MSNs. In summary, we show that FoxP1 labels MSN precursors prior to the expression of DARPP-32 during normal development, and in addition suggest that FoxP1 labels a sub-population of MSNs that are not co-labelled by DARPP-32. We demonstrate the utility of FoxP1 to label MSNs in vitro and following neural transplantation, and show that FoxP1 is required for DARPP-32 positive MSN differentiation in vitro. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Wnt/β-Catenin Pathway Regulates Cementogenic Differentiation of Adipose Tissue-Deprived Stem Cells in Dental Follicle Cell-Conditioned Medium

    PubMed Central

    Nie, Xin; Zhang, Bo; Zhou, Xia; Deng, Manjing

    2014-01-01

    The formation and attachment of new cementum is crucial for periodontium regeneration. Tissue engineering is currently explored to achieve complete, reliable and reproducible regeneration of the periodontium. The capacity of multipotency and self-renewal makes adipose tissue-deprived stem cells (ADSCs) an excellent cell source for tissue regeneration and repair. After rat ADSCs were cultured in dental follicle cell-conditioned medium (DFC-CM) supplemented with DKK-1, an inhibitor of the Wnt pathway, followed by 7 days of induction, they exhibited several phenotypic characteristics of cementoblast lineages, as indicated by upregulated expression levels of CAP, ALP, BSP and OPN mRNA, and accelerated expression of BSP and CAP proteins. The Wnt/β-catenin signaling pathway controls differentiation of stem cells by regulating the expression of target genes. Cementoblasts share phenotypical features with osteoblasts. In this study, we demonstrated that culturing ADSCs in DFC-CM supplemented with DKK-1 results in inhibition of β-catenin nuclear translocation and down-regulates TCF-4 and LEF-1 mRNA expression levels. We also found that DKK-1 could promote cementogenic differentiation of ADSCs, which was evident by the up-regulation of CAP, ALP, BSP and OPN gene expressions. On the other hand, culturing ADSCs in DFC-CM supplemented with 100 ng/mL Wnt3a, which activates the Wnt/β-catenin pathway, abrogated this effect. Taken together, our study indicates that the Wnt/β-catenin signaling pathway plays an important role in regulating cementogenic differentiation of ADSCs cultured in DFC-CM. These results raise the possibility of using ADSCs for periodontal regeneration by modifying the Wnt/β-catenin pathway. PMID:24806734

  5. The brown adipocyte differentiation pathway in birds: An evolutionary road not taken

    PubMed Central

    Mezentseva, Nadejda V; Kumaratilake, Jaliya S; Newman, Stuart A

    2008-01-01

    Background Thermogenic brown adipose tissue has never been described in birds or other non-mammalian vertebrates. Brown adipocytes in mammals are distinguished from the more common white fat adipocytes by having numerous small lipid droplets rather than a single large one, elevated numbers of mitochondria, and mitochondrial expression of the nuclear gene UCP1, the uncoupler of oxidative phosphorylation responsible for non-shivering thermogenesis. Results We have identified in vitro inductive conditions in which mesenchymal cells isolated from the embryonic chicken limb bud differentiate into avian brown adipocyte-like cells (ABALCs) with the morphological and many of the biochemical properties of terminally differentiated brown adipocytes. Avian, and as we show here, lizard species lack the gene for UCP1, although it is present in amphibian and fish species. While ABALCs are therefore not functional brown adipocytes, they are generated by a developmental pathway virtually identical to brown fat differentiation in mammals: both the common adipogenic transcription factor peroxisome proliferator-activated receptor-γ (PPARγ), and a coactivator of that factor specific to brown fat differentiation in mammals, PGC1α, are elevated in expression, as are mitochondrial volume and DNA. Furthermore, ABALCs induction resulted in strong transcription from a transfected mouse UCP1 promoter. Conclusion These findings strongly suggest that the brown fat differentiation pathway evolved in a common ancestor of birds and mammals and its thermogenicity was lost in the avian lineage, with the degradation of UCP1, after it separated from the mammalian lineage. Since this event occurred no later than the saurian ancestor of birds and lizards, an implication of this is that dinosaurs had neither UCP1 nor canonically thermogenic brown fat. PMID:18426587

  6. Progeny from dedifferentiated adipocytes display protracted adipogenesis

    USDA-ARS?s Scientific Manuscript database

    Progeny of adipofibroblast cells, derived from mature bovine adipocytes, were used to determine their ability to redifferentiate into lipid-assimilating adipocytes. Traditional cell biology methods were used, including the expression of adipogenic markers such as PPAR'. When exposed to medium supple...

  7. Interruptin B induces brown adipocyte differentiation and glucose consumption in adipose-derived stem cells

    PubMed Central

    KAEWSUWAN, SIREEWAN; PLUBRUKARN, ANUCHIT; UTSINTONG, MALEERUK; KIM, SEOK-HO; JEONG, JIN-HYUN; CHO, JIN GU; PARK, SANG GYU; SUNG, JONG-HYUK

    2016-01-01

    Interruptin B has been isolated from Cyclosorus terminans, however, its pharamcological effect has not been fully identified. In the present study, the effects of interruptin B, from C. terminans, on brown adipocyte differentiation and glucose uptake in adipose-derived stem cells (ASCs) were investigated. The results revealed that interruptin B dose-dependently enhanced the adipogenic differentiation of ASCs, with an induction in the mRNA expression levels of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. In addition, interruptin B efficiently increased the number and the membrane potential of mitochondria and upregulated the mRNA expression levels of uncoupling protein (UCP)-1 and cyclooxygenase (COX)-2, which are all predominantly expressed in brown adipocytes. Interruptin B increased glucose consumption in differentiated ASCs, accompanied by the upregulation in the mRNA expression levels of glucose transporter (GLUT)-1 and GLUT-4. The computational analysis of molecular docking, a luciferase reporter assay and surface plasmon resonance confirmed the marked binding affinity of interruptin B to PPAR-α and PPAR-γ (KD values of 5.32 and 0.10 µM, respectively). To the best of our knowledge, the present study is the first report to show the stimulatory effects of interruptin B on brown adipocyte differentiation and glucose uptake in ASCs, through its role as a dual PPAR-α and PPAR-γ ligand. Therefore, interruptin B could be further developed as a therapeutic agent for the treatment of diabetes. PMID:26781331

  8. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord.

    PubMed

    Wang, Hwai-Shi; Hung, Shih-Chieh; Peng, Shu-Tine; Huang, Chun-Chieh; Wei, Hung-Mu; Guo, Yi-Jhih; Fu, Yu-Show; Lai, Mei-Chun; Chen, Chin-Chang

    2004-01-01

    The Wharton's jelly of the umbilical cord contains mucoid connective tissue and fibroblast-like cells. Using flow cytometric analysis, we found that mesenchymal cells isolated from the umbilical cord express matrix receptors (CD44, CD105) and integrin markers (CD29, CD51) but not hematopoietic lineage markers (CD34, CD45). Interestingly, these cells also express significant amounts of mesenchymal stem cell markers (SH2, SH3). We therefore investigated the potential of these cells to differentiate into cardiomyocytes by treating them with 5-azacytidine or by culturing them in cardiomyocyte-conditioned medium and found that both sets of conditions resulted in the expression of cardiomyocyte markers, namely N-cadherin and cardiac troponin I. We also showed that these cells have multilineage potential and that, under suitable culture conditions, are able to differentiate into cells of the adipogenic and osteogenic lineages. These findings may have a significant impact on studies of early human cardiac differentiation, functional genomics, pharmacological testing, cell therapy, and tissue engineering by helping to eliminate worrying ethical and technical issues.

  9. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    PubMed

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  10. The Effect of Recombinant Tyrosine Hydroxylase Expression on the Neurogenic Differentiation Potency of Mesenchymal Stem Cells

    PubMed Central

    Duruksu, Gokhan; Karaoz, Erdal

    2018-01-01

    Objective Tyrosine hydroxylase (TH) is a rate-limiting enzyme in dopamine synthesis, making the enhancement of its activity a target for ensuring sufficient dopamine levels. Rat bone marrow mesenchymal stem cells (rBM-MSCs) are known to synthesize TH after differentiating into neuronal cells through chemical induction, but the effect of its ectopic expression on these cells has not yet been determined. This study investigated the effects of ectopic recombinant TH expression on the stemness characteristics of rBM-MSCs. Methods After cloning, a cell line with stable TH expression was maintained, and the proliferation, the gene expression profile, and differentiation potential of rBM-MSCs were analyzed. Analysis of the cells showed an increment in the proliferation rate that could be reversed by the neutralization of TH. Results The constitutive expression of TH in rBM-MSCs was successfully implemented, without significantly affecting their osteogenic and adipogenic differentiation potential. TH expression improved the expression of other neuronal markers, such as glial fibrillary acidic protein, β-tubulin, nestin, and c-Fos, confirming the neurogenic differentiation capacity of the stem cells. The expression of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) significantly increased after the chemical induction of neurogenic differentiation. Conclusion In this study, the expression of recombinant TH improved the neuroprotective effect of MSCs by upregulating the expression of BDNF and CNTF. Although the neuronal markers were upregulated, the expression of recombinant TH alone in rBM-MSCs was not sufficient for MSCs to differentiate into neurogenic cell lines. PMID:29656620

  11. Differential plating medium for quantitative detection of histamine-producing bacteria.

    PubMed Central

    Niven, C F; Jeffrey, M B; Corlett, D A

    1981-01-01

    A histidine-containing agar medium has been devised for quantitative detection of histamine-producing bacteria that are alleged to be associated with scombroid fish poisoning outbreaks. The responsible bacteria produce a marked pH change in the agar, with attendant color change of pH indicator adjacent to the colonies, thus facilitating their recognition. Proteus morganii and Klebsiella pneumoniae were the two most common histidine-decarboxylating species isolated from scombroid fish and mahi mahi. PMID:7013698

  12. Determination of effective electromagnetic parameters of concentrated suspensions of ellipsoidal particles using Generalized Differential Effective Medium approximation

    NASA Astrophysics Data System (ADS)

    Markov, M.; Levin, V.; Markova, I.

    2018-02-01

    The paper presents an approach to determine the effective electromagnetic parameters of suspensions of ellipsoidal dielectric particles with surface conductivity. This approach takes into account the existence of critical porosity that corresponds to the maximum packing volume fraction of solid inclusions. The approach is based on the Generalized Differential Effective Medium (GDEM) method. We have introduced a model of suspensions containing ellipsoidal inclusions of two types. Inclusions of the first type (phase 1) represent solid grains, and inclusions of the second type (phase 2) contain material with the same physical properties as the host (phase 0). In this model, with increasing porosity the concentration of the host decreases, and it tends to zero near the critical porosity. The proposed model has been used to simulate the effective electromagnetic parameters of concentrated suspensions. We have compared the modeling results for electrical conductivity and dielectric permittivity with the empirical equations. The results obtained have shown that the GDEM model describes the effective electrical conductivity and dielectric permittivity of suspensions in a wide range of inclusion concentrations.

  13. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord.

    PubMed

    Kadam, Sachin S; Tiwari, Shubha; Bhonde, Ramesh R

    2009-01-01

    The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child's birth; however, its importance as a "store house" of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton's jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.

  14. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{submore » 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.« less

  15. Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaohong; Soda, Yasushi; Takahashi, Kenji

    2006-12-29

    We reported previously that mesenchymal progenitor cells derived from chorionic villi of the human placenta could differentiate into osteoblasts, adipocytes, and chondrocytes under proper induction conditions and that these cells should be useful for allogeneic regenerative medicine, including cartilage tissue engineering. However, similar to human mesenchymal stem cells (hMSCs), though these placental cells can be isolated easily, they are difficult to study in detail because of their limited life span in vitro. To overcome this problem, we attempted to prolong the life span of human placenta-derived mesenchymal cells (hPDMCs) by modifying hTERT and Bmi-1, and investigated whether these modified hPDMCsmore » retained their differentiation capability and multipotency. Our results indicated that the combination of hTERT and Bmi-1 was highly efficient in prolonging the life span of hPDMCs with differentiation capability to osteogenic, adipogenic, and chondrogenic cells in vitro. Clonal cell lines with directional differentiation ability were established from the immortalized parental hPDMC/hTERT + Bmi-1. Interestingly, hPDMC/Bmi-1 showed extended proliferation after long-term growth arrest and telomerase was activated in the immortal hPDMC/Bmi-1 cells. However, the differentiation potential was lost in these cells. This study reports a method to extend the life span of hPDMCs with hTERT and Bmi-1 that should become a useful tool for the study of mesenchymal stem cells.« less

  16. Adipogenesis of bovine perimuscular preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Masaaki; Le Luo Guan; Zhang Bing

    2008-02-01

    In this study, non-transformed progeny adipofibroblasts, derived from mature adipocyte dedifferentiation, was used as a novel in vitro model to study adipogenic gene expression in cattle. Adipofibroblasts from dedifferentiated mature perimuscular fat (PMF) tissue were cultured with differentiation stimulants until the cells exhibited morphological differentiation. Treated cells were harvested from day 2 to 16 for RNA extraction, whereas control cells were cultured without addition of stimulants. Results from time course gene expression assays by quantitative real-time PCR revealed that peroxisome proliferator-activated receptor gamma (PPAR-{gamma}), sterol regulatory element binding protein 1 (SREBP-1) and their six down-stream genes were co-expressed at daymore » 2 post-differentiation induction. When compared to other adipogenesis culture systems, the adipogenic gene expression of bovine PMF adipofibroblasts culture was different, especially to the rodent model. Collectively, these results demonstrated PPAR-{gamma} and SREBP-1 cooperatively play a key role to regulate the re-differentiation of bovine adipofibroblasts, during early conversion stages in vitro.« less

  17. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells.

    PubMed

    Hassan, Ghmkin; Bahjat, Mohammad; Kasem, Issam; Soukkarieh, Chadi; Aljamali, Majd

    2018-01-01

    Articular cartilage has a poor capacity for self-repair, and thus still presents a major challenge in orthopedics. Mesenchymal stem cells (MSCs) are multipotent stem cells with the potential to differentiate into chondrocytes in the presence of transforming growth factor beta (TGF-β). Platelet lysate (PL) contains a relatively large number of growth factors, including TGF-β, and has been shown to ameliorate cartilage repair. Here, we investigated the ability of PL to direct chondrogenic differentiation of MSCs along with other standard differentiation components in a pellet culture system. We isolated and expanded MSCs from human umbilical cords using a PL-supplemented medium and characterized the cells based on immunophenotype and potential for differentiation to adipocytes and osteocytes. We further cultured MSCs as pellets in a chondrogenic-differentiation medium supplemented with PL. After 21 days, the pellets were processed for histological analysis and stained with alician blue and acridine orange. The expression of SOX9 was investigated using RT-PCR. MSCs maintained their stemness characteristics in the PL-supplemented medium. However, the distribution of cells in the pellets cultured in the PL-supplemented chondrogenic differentiation medium had a greater similarity to cartilage tissue-derived chondrocytes than to the negative control. The intense alician blue staining indicated an increased production of mucopolysaccharides in the differentiated pellets, which also showed elevated expression of SOX9 . Our data suggest that MSCs could be differentiated to chondrocytes in the presence of PL and absence of exogenous TGF-β. Further research needs to be conducted to understand the exact role and potential of PL in chondrogenic differentiation and chondrocyte regeneration.

  18. Extending Human Hematopoietic Stem Cell Survival In Vitro with Adipocytes

    PubMed Central

    Glettig, Dean Liang

    2013-01-01

    Abstract Human hematopoietic stem cells (hHSCs) cannot be maintained in vitro for extended time periods because they rapidly differentiate or die. To extend in vitro culture time, researchers have made attempts to use human mesenchymal stem cells (hMSCs) to create feeder layers that mimic the stem cell niche. We have conducted an array of experiments including adipocytes in these feeder layers that inhibit hHSC differentiation and by that prolong stem cell survival in vitro. The amount of CD34+ cells was quantified using flow cytometry. In a first experiment, feeder layers of undifferentiated hMSCs were compared with feeder layers differentiated toward osteoblasts or adipocytes using minimal medium, showing the highest survival rate where adipocytes were included. The same conclusion was drawn in a second experiment in comparing hMSCs with adipogenic feeder cells, using a culture medium supplemented with a cocktail of hHSC growth factors. In a third experiment, it was shown that direct cell–cell contact is necessary for the supportive effect of the feeder layers. In a fourth and fifth experiment the amount of adipocytes in the feeder layers were varied, and in all experiments a higher amount of adipocytes in the feeder layers showed a less rapid decay of CD34+ cells at later time points. We therefore concluded that adipocytes assist in suppressing hHSC differentiation and aid in prolonging their survival in vitro. PMID:23741628

  19. High Aminopeptidase N/CD13 Levels Characterize Human Amniotic Mesenchymal Stem Cells and Drive Their Increased Adipogenic Potential in Obese Women

    PubMed Central

    Iaffaldano, Laura; Nardelli, Carmela; Raia, Maddalena; Mariotti, Elisabetta; Ferrigno, Maddalena; Quaglia, Filomena; Labruna, Giuseppe; Capobianco, Valentina; Capone, Angela; Maruotti, Giuseppe Maria; Pastore, Lucio; Di Noto, Rosa; Martinelli, Pasquale; Del Vecchio, Luigi

    2013-01-01

    Maternal obesity is associated to increased fetal risk of obesity and other metabolic diseases. Human amniotic mesenchymal stem cells (hA-MSCs) have not been characterized in obese women. The aim of this study was to isolate and compare hA-MSC immunophenotypes from obese (Ob-) and normal weight control (Co-) women, to identify alterations possibly predisposing the fetus to obesity. We enrolled 16 Ob- and 7 Co-women at delivery (mean/SEM prepregnancy body mass index: 40.3/1.8 and 22.4/1.0 kg/m2, respectively), and 32 not pregnant women. hA-MSCs were phenotyped by flow cytometry; several maternal and newborn clinical and biochemical parameters were also measured. The expression of membrane antigen CD13 was higher on Ob-hA-MSCs than on Co-hA-MSCs (P=0.005). Also, serum levels of CD13 at delivery were higher in Ob- versus Co-pregnant women and correlated with CD13 antigen expression on Ob-hA-MSCs (r2=0.84, P<0.0001). Adipogenesis induction experiments revealed that Ob-hA-MSCs had a higher adipogenic potential than Co-hA-MSCs as witnessed by higher peroxisome proliferator-activated receptor gamma and aP2 mRNA levels (P=0.05 and P=0.05, respectively), at postinduction day 14 associated with increased CD13 mRNA levels from baseline to day 4 postinduction (P<0.05). Adipogenesis was similar in the two sets of hA-MSCs after CD13 silencing, whereas it was increased in Co-hA-MSCs after CD13 overexpression. CD13 expression was high also in Ob-h-MSCs from umbilical cords or visceral adipose tissue of not pregnant women. In conclusion, antigen CD13, by influencing the adipogenic potential of hA-MSCs, could be an in utero risk factor for obesity. Our data strengthen the hypothesis that high levels of serum and MSC CD13 are obesity markers. PMID:23488598

  20. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    PubMed Central

    Boudalia, Sofiane; Belloir, Christine; Miller, Marie-Louise; Canivenc-Lavier, Marie-Chantal

    2017-01-01

    Introduction: Data from last years suggested that early exposure to endocrine disruptors (EDs) can predispose newborns to endocrine dysfunction of adipocytes, obesity, and associated disorders. The implication of EDs at low doses on adipocyte development has been poorly investigated. For instance, vinclozolin (V) is a dicarboximide fungicide widely used in agriculture since the 90's, alone or in mixture with genistein (G), an isoflavonoid from Leguminosae. This study aims to identify the effect of vinclozolin alone or with genistein, on adipose tissue properties using cell culture. Methods: In steroid-free conditions, 3T3-L1 pre-adipocytes were induced to differentiate in the presence of EDs, singularly or in mixtures, for 2 days. DNA and triglyceride (TG) levels were measured on days 0, 2 and 8 of differentiation. Leptin secretion was measured only on the eighth day. Results: We show that low doses of G (25 µM) and V (0.1 µM) inhibit pre-adipocytes differentiation. This inhibition has been represented by a decreasing in DNA content (µg/well) and decreasing in TG accumulation (mg/mL) in 3T3-L1 cells. Nevertheless, V increased the anti-adipogenic properties of G. Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity. PMID:28752072

  1. Fetal programming in meat production.

    PubMed

    Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun

    2015-11-01

    Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Isolation, expansion, and differentiation of goat adipose-derived stem cells.

    PubMed

    Ren, Yu; Wu, Haiqing; Zhou, Xueyuan; Wen, Jianxun; Jin, Muzi; Cang, Ming; Guo, Xudong; Wang, Qinglian; Liu, Dongjun; Ma, Yuzhen

    2012-08-01

    A goat adipose-derived stem cell (ADSC) line was established and compared to a rat line. Goat ADSC cells had normal diploidy after subculture. Proliferation of goat ADSCs was faster than rat cells in the same conditions. Both rat and goat ADSCs stained positively for vimentin, CD49d, CD44 and CD13, but stained negatively for CD34 and CD106. Bone nodules were apparent, and alizarin staining was positive after osteogenic induction. Cells expressing osteocalcin were positive by alkaline phosphatase (ALP) staining. After osteogenic induction, ossification nodules of goat ADSCs were larger than in rats, with dense ALP staining. Adipogenic induction resulting in lipid droplets and peroxisome proliferator-activated receptor (PPARγ2) expression were observed. Cartilage lacunae were formed and COL2A1 was expressed. More cartilage lacunae with better morphology were seen following differentiation of goat ADSC's using the hang-drop method. For goat ADSCs, results with both adherent-induced and hanging-drop induced cultures were better than for three-dimensional cultures. Copyright © 2012. Published by Elsevier India Pvt Ltd.

  3. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    PubMed

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  4. The effect of nutritional status on myogenic satellite cell proliferation and differentiation.

    PubMed

    Powell, D J; McFarland, D C; Cowieson, A J; Muir, W I; Velleman, S G

    2013-08-01

    Early posthatch satellite cell (SC) mitotic activity is a critical component of muscle development and growth. Satellite cells are stem cells that can be induced by nutrition to follow other cellular developmental pathways. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation of SC, using variable concentrations of Met and Cys to modulate protein synthesis. Broiler pectoralis major SC were cultured and treated with 1 of 6 different Met/Cys concentrations: 60/192, 30/96 (control), 7.5/24, 3/9.6, 1/3.2, or 0/0 mg/L. The effect of Met/Cys concentration on SC proliferation and differentiation was measured, and myonuclear accretion was measured by counting the number of nuclei per myotube during differentiation. The 30/96 mg/L Met/Cys treatment resulted in the highest rate of proliferation compared with all other treatments by 72 h of proliferation (P < 0.05). Differentiation was measured with Met/Cys treatments only during proliferation and the cultures receiving normal differentiation medium (R/N), normal proliferation medium and differentiation medium with variable Met/Cys (N/R), or both proliferation and differentiation receiving variable Met/Cys treatments (R/R). Differentiation responded in a dose-dependent manner to Met/Cys concentration under all 3 of these treatment regimens, with a degree of recovery in the R/N regimen cells following reinstatement of the control medium. Reductions in both proliferation and differentiation were more pronounced as Met/Cys concentrations were further reduced, whereas increased differentiation was observed under the increased Met/Cys concentration treatment when applied during differentiation in the N/R and R/R regimens. The number of nuclei per myotube was significantly decreased in the severely Met/Cys restricted treatments (P < 0.05). These data demonstrate the sensitivity of pectoralis major SC to nutritional availability and the importance of

  5. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Factors influencing bovine intramuscular adipose tissue development and cellularity.

    PubMed

    Albrecht, E; Schering, L; Liu, Y; Komolka, K; Kühn, C; Wimmers, K; Gotoh, T; Maak, S

    2017-05-01

    Appearance, distribution, and amount of intramuscular fat (IMF), often referred to as marbling, are highly variable and depend on environmental and genetic factors. On the molecular level, the concerted action of several drivers, including hormones, receptors, transcription factors, etc., determines where clusters of adipocytes arise. Therefore, the aim of future studies remains to identify such factors as biological markers of IMF to increase the ability to identify animals that deposit IMF early in age to increase efficiency of high-quality meat production. In an attempt to unravel the cellular development of marbling, we investigated the abundance of markers for adipogenic differentiation during fattening of cattle and the transcriptome of muscle and dissected IMF. Markers of different stages of adipogenic differentiation are well known from cell culture experiments. They are usually transiently expressed, such as delta-like homolog 1 (DLK1) that is abundant in preadipocytes and absent during differentiation to mature adipocytes. It is even a greater challenge to detect those markers in live animals. Within skeletal muscles, hyperplasia and hypertrophy of adipocytes can be observed throughout life. Therefore, development of marbling requires, on the cellular level, recruitment, proliferation, and differentiation of adipogenic cells to store excess energy in the form of lipids in new cells. In a recent study, we investigated the localization and abundance of early markers of adipogenic differentiation, such as DLK1, in bovine muscle tissue. An inverse relationship between IMF content and number of DLK1-positive cells in bovine muscle was demonstrated. Considering the cellular environment of differentiating adipocytes in muscle and the secretory action of adipocytes and myocytes, it becomes obvious that cross talk between cells via adipokines and myokines may be important for IMF development. Secreted proteins can act on other cells, inhibiting or stimulating

  6. Medium-sized icy satellites in the outer solar system - differentiation due to radiogenic heating in Charon or the moons of Uranus?

    NASA Astrophysics Data System (ADS)

    Multhaup, K.; Spohn, T.

    2007-08-01

    A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and five satellites of Uranus. The model assumes stagnant lid convection in homogeneously accreted bodies either confined to a spherical shell or encompassing the whole interior below the immobile surface layer. We employ a simple model for accretion assuming that infalling planetesimals deposit a fraction of their kinetic energy as heat at the instantaneous surface of the growing moon. Rheology parameters are chosen to match those of ice I, although the satellites under consideration likely contain admixtures of lighter constituents. Consequences thereof are discussed. Thermal evolution calculations considering radiogenic heating by long-lived isotopes suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. Results for Miranda - the smallest satellite of Uranus - however, indicate that it never convected or differentiated. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as early tidal heating. Except for Miranda, our results lend support to differentiated icy satellite models. We also point out parallels to previously published results obtained for several of Saturn's icy satellites (Multhaup and Spohn, 2007). The predicted early histories of Ariel, Umbriel and Charon are evocative of Dione's and Rhea's, while Miranda's resembles that of Mimas.

  7. Appearance of colonies of Prototheca on CHROMagar Candida medium.

    PubMed

    Casal, M; Linares, M J; Solís, F; Rodríguez, F C

    1997-01-01

    The microorganisms capable of producing opportunist infections include the yeast-like organisms of the genus Candida, and the unicellular algae of the genus Prototheca, which share common features and can, therefore, lead to confusion. Their colonies are almost identical and they grow in the same culture media used routinely in mycology. CHROMagar Candida is a new chromogenic differential isolation medium that facilitates the presumptive differentiation of some of the most clinically important yeast-like organisms. To our knowledge, the use of CHROMagar Candida with Prototheca spp. has not been reported in the literature. This report describes the growth of 151 strains of Prototheca on CHROMagar Candida compared to the growth of a total of 326 well-characterized yeast organisms of the genera Candida, Cryptococcus, Trichosporon, Geotrichum, and Saccharomyces. It is clinically relevant to note that algae of the genus Prototheca (P. wickerhamii, P. zopfii, and P. stagnora) and of the genus Candida parapsilosis produced similar cream-colored colonies on CHROMagar Candida medium. Based on their growth on CHROMagar, a new species of Candida is described, C. zeylanoides, which has blue-green colonies. The colonies of two species of Trichosporon are also differentiated: the blue-green colonies of T. beigelii and the pink colonies of T. capitatum.

  8. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the

  9. miR-10a restores human mesenchymal stem cell differentiation by repressing KLF4

    PubMed Central

    Li, Jiao; Dong, Jun; Zhang, Zhen-hui; Zhang, Dong-Cheng; You, Xiang-Yu; Zhong, Yun; Chen, Min-Sheng; Liu, Shi-Ming

    2013-01-01

    miRNAs have recently been shown to play a significant role in human aging. However, data demonstrating the effects of aging-related miRNAs in human mesenchymal stem cells (hMSCs) are limited. We observed that hMSC differentiation decreased with aging. We also identified that miR-10a expression was significantly decreased with age by comparing the miRNA expression of hMSCs derived from young and aged individuals. Therefore, we hypothesized that the downregulation of miR-10a may be associated with the decreased differentiation capability of hMSCs from aged individuals. Lentiviral constructs were used to up- or downregulate miR-10a in young and old hMSCs. Upregulation of miR-10a resulted in increased differentiation to adipogenic, osteogenic, and chondrogenic lineages and in reduced cell senescence. Conversely, downregulation of miR-10a resulted in decreased cell differentiation and increased cell senescence. A chimeric luciferase reporter system was generated, tagged with the full-length 3′-UTR region of KLF4 harboring the seed-matched sequence with or without four nucleotide mutations. These constructs were cotransfected with the miR-10a mimic into cells. The luciferase activity was significantly repressed by the miR-10a mimic, proving the direct binding of miR-10a to the 3′-UTR of KLF4. Direct suppression of KLF4 in aged hMSCs increased cell differentiation and decreased cell senescence. In conclusion, miR-10a restores the differentiation capability of aged hMSCs through repression of KLF4. Aging-related miRNAs may have broad applications in the restoration of cell dysfunction caused by aging. J. Cell. Physiol. 228: 2324–2336, 2013. © The Authors. Published by Wiley Periodicals, Inc. PMID:23696417

  10. CD54+ rabbit adipose-derived stem cells overexpressing HIF-1α facilitate vascularized fat flap regeneration

    PubMed Central

    Liang, Zhi-Jie; Huang, Min-Hong; Peng, Qi-Liu; Zou, Dong-Hua; Gu, Rong-He; Xu, Fang-Tian; Gao, Hui; Chen, Zhen-Dong; Chi, Guang-Yi; Wei, Zhong-Heng; Chen, Li; Li, Hong-Mian

    2017-01-01

    Fat flap transplantation is frequently performed in patients suffering from soft tissue defects resulting from disease or trauma. This study explored the feasibility of constructing vascularized fat flaps using rabbit adipose-derived stem cells (rASCs) and collagen scaffolds in a rabbit model. We evaluated rASCs proliferation, paracrine function, adipogenesis, vascularization, and CD54 expression, with or without HIF-1α transfection in vitro and in vivo. We observed that adipogenic differentiation potential was greater in rASCs with high CD54 expression (CD54+rASCs) than in those with low expression (CD54–rASCs), both in vitro and in vivo. HIF-1α overexpression not only augmented this effect, but also enhanced cell proliferation and paracrine function in vitro. We also demonstrated that HIF-1α-transfected CD54+rASCs showed enhanced paracrine function and adipogenic capacity, and that paracrine function increases expression of angiogenesis-related markers. Thus, CD54+rASCs overexpressing HIF-1α enhanced large volume vascularized fat flap regeneration in rabbits, suggesting CD54 may be an ideal candidate marker for ASCs adipogenic differentiation. PMID:28423354

  11. Comparison of clinical grade human platelet lysates for cultivation of mesenchymal stromal cells from bone marrow and adipose tissue.

    PubMed

    Juhl, Morten; Tratwal, Josefine; Follin, Bjarke; Søndergaard, Rebekka H; Kirchhoff, Maria; Ekblond, Annette; Kastrup, Jens; Haack-Sørensen, Mandana

    2016-01-01

    The utility of mesenchymal stromal cells (MSCs) in therapeutic applications for regenerative medicine has gained much attention. Clinical translation of MSC-based approaches requires in vitro culture-expansion to achieve a sufficient number of cells. The ideal cell culture medium should be devoid of any animal derived components. We have evaluated whether human Platelet Lysate (hPL) could be an attractive alternative to animal supplements. MSCs from bone marrow (BMSCs) and adipose tissue-derived stromal cells (ASCs) obtained from three donors were culture expanded in three different commercially available hPL fulfilling good manufacturing practice criteria for clinical use. BMSCs and ASCs cultured in Minimum Essential Medium Eagle-alpha supplemented with 5% PLT-Max (Mill Creek), Stemulate™ PL-S and Stemulate™ PL-SP (COOK General Biotechnology) were compared to standard culture conditions with 10% fetal bovine serum (FBS). Cell morphology, proliferation, phenotype, genomic stability, and differentiation potential were analyzed. Regardless of manufacturer, BMSCs and ASCs cultured in hPL media showed a significant increase in proliferation capacity compared to FBS medium. In general, the immunophenotype of both BMSCs and ASCs fulfilled International Society for Cellular Therapy (ISCT) criteria after hPL media expansion. Comparative genomic hybridization measurements demonstrated no unbalanced chromosomal rearrangements for BMSCs or ASCs cultured in hPL media or FBS medium. The BMSCs and ASCs could differentiate into osteogenic, adipogenic, or chondrogenic lineages in all four culture conditions. All three clinically approved commercial human platelet lysates accelerated proliferation of BMSCs and ASCs and the cells meet the ISCT mesenchymal phenotypic requirements without exhibiting chromosomal aberrations.

  12. Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells.

    PubMed

    Felthaus, Oliver; Prantl, Lukas; Skaff-Schwarze, Mona; Klein, Silvan; Anker, Alexandra; Ranieri, Marco; Kuehlmann, Britta

    2017-01-01

    Autologous fat grafts and adipose-derived stem cells (ASCs) can be used to treat soft tissue defects. However, the results are inconsistent and sometimes comprise tissue resorption and necrosis. This might be due to insufficient vascularization. Platelet-rich plasma (PRP) is a source of concentrated autologous platelets. The growth factors and cytokines released by platelets can facilitate angiogenesis. The simultaneous use of PRP might improve the regeneration potential of fat grafts. The optimal ratio has yet to be elucidated. A byproduct of PRP preparation is platelet-poor plasma (PPP). In this study we investigated the influence of different concentrations of PRP on the vitality and differentiation of ASCs. We processed whole blood with the Arthrex Angel centrifuge and isolated ASCs from the same donor. We tested the effects of different PRP and PPP concentrations on the vitality using resazurin assays and the differentiation of ASCs using oil-red staining. Both cell vitality and adipogenic differentiation increase to a concentration of 10% to 20% PRP. With a PRP concentration of 30% cell vitality and differentiation decrease. Both PRP and PPP can be used to expand ASCs without xenogeneic additives in cell culture. A PRP concentration above 20% has inhibitory effects.

  13. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyan; The First Affiliated Hospital, China Medical University, Shenyang 110001; Xue, Peng

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) andmore » peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.« less

  14. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negativemore » siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.« less

  15. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice.

    PubMed

    Maridas, David E; Rendina-Ruedy, Elizabeth; Le, Phuong T; Rosen, Clifford J

    2018-01-06

    Bone marrow stromal cells (BMSCs) constitute a cell population routinely used as a representation of mesenchymal stem cells in vitro. They reside within the bone marrow cavity alongside hematopoietic stem cells (HSCs), which can give rise to red blood cells, immune progenitors, and osteoclasts. Thus, extractions of cell populations from the bone marrow results in a very heterogeneous mix of various cell populations, which can present challenges in experimental design and confound data interpretation. Several isolation and culture techniques have been developed in laboratories in order to obtain more or less homogeneous populations of BMSCs and HSCs invitro. Here, we present two methods for isolation of BMSCs and HSCs from mouse long bones: one method that yields a mixed population of BMSCs and HSCs and one method that attempts to separate the two cell populations based on adherence. Both methods provide cells suitable for osteogenic and adipogenic differentiation experiments as well as functional assays.

  16. Allopolyploidy in bryophytes: Multiple origins of Plagiomnium medium

    PubMed Central

    Wyatt, Robert; Odrzykoski, Ireneusz J.; Stoneburner, Ann; Bass, Henry W.; Galau, Glenn A.

    1988-01-01

    Bryophytes are thought to be unique among land plants in lacking the important evolutionary process of allopolyploidy, which involves interspecific hybridization and chromosome doubling. Electrophoretic data show, however, that the polyploid moss Plagiomnium medium is an allopolyploid derivative of Plagiomnium ellipticum and Plagiomnium insigne, that P. medium has originated more than once from these progenitors, and that cross-fertilization results in interlocus genetic recombination. Evidence from restriction fragment length polymorphisms in chloroplast DNA implicates P. insigne as the female parent in interspecific hybridizations with P. ellipticum. Contrary to prevailing views, it appears that those evolutionary processes responsible for genetic differentiation and speciation in other land plants occur in the bryophytes as well. Images PMID:16593968

  17. How do culture media influence in vitro perivascular cell behavior?

    PubMed

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. © 2015 International Federation for Cell Biology.

  18. [Marrow stromal cells cultured in N2-supplemented medium: implications on the generation of neural cells].

    PubMed

    Castillo-Díaz, L; de la Cuétara-Bernal, K; García-Varona, A Y

    Most of the culture system for in vitro maintenance and neural differentiation of marrow stromal cells (MSCs) use synthetic media supplemented with 10 or 20% fetal bovine serum (FBS). Serum, however, is comprised of unknown quantities of undefined substances which could interfere the effect of exogenous substances on neural differentiation of MSCs. AIM. Here we describe survival of MSCs cultured in culture conditions where serum was reduced at 0.5 and 1% using Bottenstein and Sato's N2 formula (1979) and poly-L-lysine (PLL)-coated substrate. Stromal cells isolated from rat femurs were cultivated in Dulbecco's modified Eagle medium at 10, 1, 0.5% FBS or in serum free medium containing N2 formula. In serum free medium or at low serum concentration culture surface was coated with PLL. Cell survival was determined by MTT method or by counting viable cells. Survival of MSCs cultured in N2 supplement was reduced at about 40% of that observed in 10% FBS containing medium. Under these conditions cell morphology was also affected. When N2 containing medium was supplemented with FBS at 0.5 or 1% a significant increase of survival with respect to that observed in N2-supplemented cultures was observed. Cells seeded on PLL-coated surface increased their survival by contrast with their homologous cultures seeded on uncoated surface. The culture system which combines N2 formula with FBS 1% and PLL-coated surface is useful for the maintenance of MSCs. These conditions offer advantages for the study of differentiation of these cells because they reduce the confounding influence of serum. The possible implication of this culture system for the study of neural differentiation by these cells is discussed.

  19. Gelatin-Derived Graphene–Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yulong; Qazvini, Nader Taheri; Zane, Kylie

    Graphene-based materials are used in many fields but have found only limited applications in biomedicine, including bone tissue engineering. Here, we demonstrate that novel hybrid materials consisting of gelatin-derived graphene and silicate nanosheets of Laponite (GL) are biocompatible and promote osteogenic differentiation of mesenchymal stem cells (MSCs). Homogeneous cell attachment, long-term proliferation, and osteogenic differentiation of MSCs on a GL-scaffold were confirmed using optical microscopy and scanning electron microscopy. GL-powders made by pulverizing the GL-scaffold were shown to promote bone morphogenetic protein (BMP9)-induced osteogenic differentiation. GL-powders increased the alkaline phosphatase (ALP) activity in immortalized mouse embryonic fibroblasts but decreased themore » ALP activity in more-differentiated immortalized mouse adipose-derived cells. Note, however, that GL-powders promoted BMP9-induced calcium mineral deposits in both MSC lines, as assessed using qualitative and quantitative alizarin red assays. Furthermore, the expression of chondro-osteogenic regulator markers such as Runx2, Sox9, osteopontin, and osteocalcin was upregulated by the GL-powder, independent of BMP9 stimulation; although the powder synergistically upregulated the BMP9-induced Osterix expression, the adipogenic marker PPAR gamma was unaffected. Furthermore, in vivo stem cell implantation experiments demonstrated that GL-powder could significantly enhance the BMP9-induced ectopic bone formation from MSCs. Collectively, our results strongly suggest that the GL hybrid materials promote BMP9-induced osteogenic differentiation of MSCs and hold promise for the development of bone tissue engineering platforms.« less

  20. Conditioned medium: a new alternative for cryopreservation of equine umbilical cord mesenchymal stem cells.

    PubMed

    Maia, Leandro; Dias, Marianne Camargos; de Moraes, Carolina Nogueira; de Paula Freitas-Dell'Aqua, Camila; da Mota, Ligia S L Silveira; Santiloni, Valquíria; da Cruz Landim-Alvarenga, Fernanda

    2017-03-01

    Cryopreservation is a feasible alternative to maintaining several cell lines, particularly for immediate therapeutic use, transportation of samples, and implementation of new in vitro studies. This work parts from the hypothesis that the medium of cryopreservation composed by 90% of conditioned medium (CM) supports cryopreservation of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs), allowing the maintenance of the biological properties for the establishment of cell banks intended for therapeutic use and in vitro studies. Thus, we evaluated the viability, apoptosis/necrosis rates, immunophenotypic profile (IP), chromosomal stability, clonicity, and differentiation potential of UCIM-MSCs cryopreserved with four different mediums (with FBS: M1, M3, M4 and without FBS: M2). After 3 months of cryopreservation, samples were thawed and analyzed. The potential of differentiation in the mesodermal lineages, clonicity, and the chromosomal stability were maintained after cryopreservation of UCIM-MSCs with medium containing FBS. Changes (P < 0.05) at IP for some markers were observed at cells cryopreserved with medium M1-M3. Only the UCIM-MSCs cryopreserved with the CM (M4) had similar viability post-thaw (P = 0.23) when compared with fresh cells. We proved the hypothesis that the medium of cryopreservation containing CM supports the cryopreservation of UCIM-MSCs, at the experimental conditions, being the medium that better maintains the biological characteristics observed at fresh cells. Thus, future studies of UCIM-MSCs secretome should be conducted to better understand the beneficial and protective effects of the CM during the freezing process. © 2017 International Federation for Cell Biology.

  1. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei, E-mail: hongfeixia@yahoo.com.cn

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity.more » Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.« less

  2. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes

    PubMed Central

    Lee, Rebecca; Reese, Charles; Carmen-Lopez, Gustavo; Perry, Beth; Bonner, Michael; Zemskova, Marina; Wilson, Carole L.; Helke, Kristi L.; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena

    2017-01-01

    Monocytes from systemic sclerosis (SSc, scleroderma) patients and healthy African Americans (AA) are deficient in the regulatory protein caveolin-1 leading to enhanced migration toward chemokines and fibrogenic differentiation. While dermal fibrosis is the hallmark of SSc, loss of subcutaneous adipose tissue is a lesser-known feature. To better understand the etiology of SSc and the predisposition of AA to SSc, we studied the adipogenic potential of SSc and healthy AA monocytes. The ability of SSc and healthy AA monocytes to differentiate into adipocyte-like cells (ALC) is inhibited compared to healthy Caucasian (C) monocytes. We validated that monocyte-derived ALCs are distinct from macrophages by flow cytometry and immunocytochemistry. Like their enhanced fibrogenic differentiation, their inhibited adipogenic differentiation is reversed by the caveolin-1 scaffolding domain peptide (CSD, a surrogate for caveolin-1). The altered differentiation of SSc and healthy AA monocytes is additionally regulated by peroxisome proliferator-activated receptor γ (PPARγ) which is also present at reduced levels in these cells. In vivo studies further support the importance of caveolin-1 and PPARγ in fibrogenesis and adipogenesis. In SSc patients, healthy AA, and mice treated systemically with bleomycin, adipocytes lose caveolin-1 and PPARγ and the subcutaneous adipose layer is diminished. CSD treatment of these mice leads to a reappearance of the caveolin-1+/PPARγ+/FABP4+ subcutaneous adipose layer. Moreover, many of these adipocytes are CD45+, suggesting they are monocyte derived. Tracing experiments with injected EGFP+ monocytes confirm that monocytes contribute to the repair of the adipose layer when it is damaged by bleomycin treatment. Our observations strongly suggest that caveolin-1 and PPARγ work together to maintain a balance between the fibrogenic and adipogenic differentiation of monocytes, that this balance is altered in SSc and in healthy AA, and that monocytes

  3. Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture

    PubMed Central

    Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2017-01-01

    The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase (p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation. PMID:28783133

  4. Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture.

    PubMed

    Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2017-08-07

    The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase ( p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation.

  5. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.t; Chao, How-Ran

    To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing thatmore » {>=} 300 {mu}M arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.« less

  6. Hyperglycemia and advanced glycation end products (AGEs) suppress the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Chang, Chia-Chu; Chen, Chen-Yu; Chang, Geen-Dong; Chen, Ting-Huan; Chen, Woan-Ling; Wen, Hui-Chin; Huang, Chih-Yang; Chang, Chung-Ho

    2017-08-15

    Aging is characterized by mild hyperglycemia and accumulation of advanced glycation end products (AGEs). Effects of chronic exposure to hyperglycemia or AGEs on the adipogenic differentiation of 3T3-L1 preadipocytes remain unclear. We examined the chronic effect of AGEs and high glucose on the differentiation of 3T3-L1 cells by culturing 3T3-L1 cells in the presence of AGEs or 25 mM glucose for 1 month. Chronic incubation of 3T3-L1 cells with AGEs or high glucose blocked their differentiation into mature adipocytes as evidenced by reduced levels of adipocyte markers such as accumulated oil droplets, GPDH, aP2, adiponectin and of adipogenesis regulators PPARγ and C/EBPα. Levels or activities of Src, PDK1, Akt, and NF-κB were higher in AGEs- and high glucose-treated cells than those in 3T3-L1 cells. Levels of Bcl-2 were elevated in AGEs- and high glucose-treated cells, and were attenuated by inhibitors of PI3-kinase, Akt and NF-κB. Moreover, adipogenesis was attenuated in 3T3-L1 cells stably expressing Bcl-2 or YAP. These results suggest that chronic AGEs and high glucose treatments up-regulate Bcl-2 and YAP via the Akt-NF-κB pathway and impair adipogenesis.

  7. Hyperglycemia and advanced glycation end products (AGEs) suppress the differentiation of 3T3-L1 preadipocytes

    PubMed Central

    Chang, Geen-Dong; Chen, Ting-Huan; Chen, Woan-Ling; Wen, Hui-Chin; Huang, Chih-Yang; Chang, Chung-Ho

    2017-01-01

    Aging is characterized by mild hyperglycemia and accumulation of advanced glycation end products (AGEs). Effects of chronic exposure to hyperglycemia or AGEs on the adipogenic differentiation of 3T3-L1 preadipocytes remain unclear. We examined the chronic effect of AGEs and high glucose on the differentiation of 3T3-L1 cells by culturing 3T3-L1 cells in the presence of AGEs or 25 mM glucose for 1 month. Chronic incubation of 3T3-L1 cells with AGEs or high glucose blocked their differentiation into mature adipocytes as evidenced by reduced levels of adipocyte markers such as accumulated oil droplets, GPDH, aP2, adiponectin and of adipogenesis regulators PPARγ and C/EBPα. Levels or activities of Src, PDK1, Akt, and NF-κB were higher in AGEs- and high glucose-treated cells than those in 3T3-L1 cells. Levels of Bcl-2 were elevated in AGEs- and high glucose-treated cells, and were attenuated by inhibitors of PI3-kinase, Akt and NF-κB. Moreover, adipogenesis was attenuated in 3T3-L1 cells stably expressing Bcl-2 or YAP. These results suggest that chronic AGEs and high glucose treatments up-regulate Bcl-2 and YAP via the Akt-NF-κB pathway and impair adipogenesis. PMID:28903400

  8. An alternative bacteriological medium for the isolation of Aeromonas spp.

    USGS Publications Warehouse

    Jenkins, J.A.; Taylor, P.W.

    1995-01-01

    Two solid bacteriologic media were compared for cultivating Aeromonas spp. from piscine sources: the Rimler-Shotts (RS) medium and a starch-glutamate-ampicillin-penicillin-based medium (SGAP-10C) used for the recovery of Aeromonas spp. from water samples. The selective and differential capacities of the media were assessed March through October 1992 by recovery rate and phenotype of 99 isolates representing 15 genera of bacteria. Recovery frequency of Aeromonas spp. (n = 62) was similar at 97% on RS and 95% on SGAP-10C. The SGAP-10C medium proved to be more specific than RS toward Aeromonas species (P ≤ 0.005). Use of SGAP-10C at 24 C for 48 hr offers a better choice for the laboratory recovery of Aeromonas spp. from clinical fish specimens.

  9. Notch3 is involved in adipogenesis of human adipose-derived stromal/stem cells.

    PubMed

    Sandel, Demi A; Liu, Mengcheng; Ogbonnaya, Ngozi; Newman, Jamie J

    2018-07-01

    Human adipose-derived stromal/stem cells (hASCs) have tremendous therapeutic potential and the ability to offer insight into human development and disease. Here we subject human ASCs to siRNA-mediated knockdown of Notch3 cultured under both self-renewing and adipogenic differentiation conditions. Self-renewal was monitored by assessing viability and proliferation rates through staining and alamarBlue assays, respectively. Adipogenesis was measured through Oil-Red O staining, western blot, and quantitative real-time RT-PCR that determined expression levels of multipotency and adipogenic markers over time. Notch3 was expressed in self-renewing hASCs but knockdown, as validated by qRT-PCR and western blot, showed no impact on cell viability, as measured through live-dead staining, or cell proliferation rates, as measured through alamarBlue assays. However, although Notch3 expression was observed to increase during adipogenesis, in the absence of Notch3 there was a significant increase in hASC adipogenesis as demonstrated through an increased number of lipid vesicles, and increased expression of adipogenic markers ppar-γ, adiponectin, fabp4, and plin2. Although Notch3 is only one of four Notch receptors expressed on the surface of hASCs, this receptor appears important for proper regulation of adipogenic differentiation, possibly serving as a negative regulator to prevent inappropriate adipogenesis or promote other lineage commitments of ASCs. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Differanisole A, an inducer of the differentiation of Friend leukemic cells, induces stalk cell differentiation in Dictyostelium discoideum.

    PubMed

    Kubohara, Y; Okamoto, K; Tanaka, Y; Asahi, K; Sakurai, A; Takahashi, N

    1993-05-03

    Differanisole A isolated from the conditioned medium of a soil microorganism, Chaetomium strain RB-001, is an inducer of the differentiation of the Friend leukemic cells (mouse leukemia cells). The chemical structure of this substance is very similar to that of stalk cell differentiation-inducing factor (DIF) isolated from the cellular slime mould, Dictyostelium discoideum. We examined the effects of differanisole A on Dictyostelium HM44 cells, a mutant strain which is defective in DIF production, and found this substance to be an inducer of stalk cell differentiation in D. discoideum.

  11. Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation.

    PubMed

    Wenisch, Sabine; Trinkaus, Katja; Hild, Anne; Hose, Dirk; Heiss, Christian; Alt, Volker; Klisch, Christopher; Meissl, Hilmar; Schnettler, Reinhard

    2006-06-01

    Numerous reports have highlighted the use of mesenchymal stem cells (MSC) for tissue engineering because of the capacity of the cells to differentiate along the osteogenic, chondrogenic or adipogenic pathway. As MSC also display neuronal morphologies under appropriate culture conditions, the differentiation capacity of stem cells seems to be more complex than initially thought, but it requires careful characterization of the cells. This is especially the case because recently it has been suggested that neuronal differentiation of stem cells is only an artifact. Here, we investigate the sequence of ultrastructural changes of bone-derived stem cells during neuronal induction and compare these data with immunocytochemical and electrophysiological properties of the cells. For further comparative analyses, stem cells were incubated with non-neurologically inducing stressors. The stem cells were harvested from human osseous debris and were characterized morphologically, immunocytochemically and by using FACS. After 6 h of neuronal induction, the cells had assumed neuronal morphologies and expressed neuron-specific enolase, beta-III-tubulin, neurofilament-H and HNK-1, while only a subpopulation expressed CD15 and synaptophysin. However, electrical signaling could not be detected, neither spontaneously nor after electrical stimulation. Nevertheless, transmission electron microscopy revealed cellular features of neuritogenesis and synaptogenesis in the course of neuronal induction and suggested that the cells have features similar to those observed in immature neurons. Based upon the results, it can be concluded that neuronal induction had initiated the early steps of neuronal differentiation, while exposure of the cells to non-neurological stressors had caused necrotic alterations.

  12. Osteogenic differentiation of immature osteoblasts: Interplay of cell culture media and supplements.

    PubMed

    Brauer, A; Pohlemann, T; Metzger, W

    2016-01-01

    Differentiation of immature osteoblasts to mature osteoblasts in vitro initially was induced by supplementing the medium with β-gylcerophosphate and dexamethasone. Later, ascorbic acid, vitamin D3, vitamin K3 and TGFβ1 were used in varying concentrations as supplements to generate a mature osteoblast phenotype. We tested the effects of several combinations of cell culture media, seeding protocols and osteogenic supplements on osteogenic differentiation of human primary osteoblasts. Osteogenic differentiation was analyzed by staining alkaline phosphatase (ALP) with 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium (BCIP/NBT) and by von Kossa staining of deposited calcium phosphate. The combinations of culture media and supplements significantly influenced osteogenic differentiation, but the seeding protocol did not. Staining of ALP and calcium phosphate could be achieved only if our own mix of osteogenic supplements was used in combination with Dulbecco's modified Eagle medium or if a commercial mix of osteogenic supplements was used in combination with osteoblast growth medium. Especially for von Kossa, we observed great variations in the staining intensity. Because osteogenic differentiation is a complex process, the origin of the osteoblasts, cell culture media and osteogenic supplements should be established by preliminary experiments to achieve optimal differentiation. Staining of ALP or deposited calcium phosphate should be supplemented with qRT-PCR studies to learn more about the influence of specific supplements on osteogenic markers.

  13. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer.

    PubMed

    Hsu, Yi-Chao; Wu, Yu-Ting; Yu, Ting-Hsien; Wei, Yau-Huei

    2016-04-01

    Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms

  14. Comparison of different methods for erythroid differentiation in the K562 cell line.

    PubMed

    Shariati, Laleh; Modaress, Mehran; Khanahmad, Hossein; Hejazi, Zahra; Tabatabaiefar, Mohammad Amin; Salehi, Mansoor; Modarressi, Mohammad Hossein

    2016-08-01

    To compare methods for erythroid differentiation of K562 cells that will be promising in the treatment of beta-thalassemia by inducing γ-globin synthesis. Cells were treated separately with: RPMI 1640 medium without glutamine, RPMI 1640 medium without glutamine supplemented with 1 mM sodium butyrate, RPMI 1640 medium supplemented with 1 mM sodium butyrate, 25 µg cisplatin/ml, 0.1 µg cytosine arabinoside/ml. The highest differentiation (84 %) with minimum toxicity was obtained with cisplatin at 15 µg /ml. Real-time RT-PCR showed that expression of the γ-globin gene was significantly higher in the cells differentiated with cisplatin compared to undifferentiated cells (P < 0.001). Cisplatin is useful in the experimental therapy of ß-globin gene defects and can be considered for examining the basic mechanism of γ-reactivation.

  15. Optimization of a chondrogenic medium through the use of factorial design of experiments.

    PubMed

    Enochson, Lars; Brittberg, Mats; Lindahl, Anders

    2012-12-01

    The standard culture system for in vitro cartilage research is based on cells in a three-dimensional micromass culture and a defined medium containing the chondrogenic key growth factor, transforming growth factor (TGF)-β1. The aim of this study was to optimize the medium for chondrocyte micromass culture. Human chondrocytes were cultured in different media formulations, designed with a factorial design of experiments (DoE) approach and based on the standard medium for redifferentiation. The significant factors for the redifferentiation of the chondrocytes were determined and optimized in a two-step process through the use of response surface methodology. TGF-β1, dexamethasone, and glucose were significant factors for differentiating the chondrocytes. Compared to the standard medium, TGF-β1 was increased 30%, dexamethasone reduced 50%, and glucose increased 22%. The potency of the optimized medium was validated in a comparative study against the standard medium. The optimized medium resulted in micromass cultures with increased expression of genes important for the articular chondrocyte phenotype and in cultures with increased glycosaminoglycan/DNA content. Optimizing the standard medium with the efficient DoE method, a new medium that gave better redifferentiation for articular chondrocytes was determined.

  16. Ti nanorod arrays with a medium density significantly promote osteogenesis and osteointegration

    PubMed Central

    Ning, Chengyun; Wang, Shuangying; Zhu, Ye; Zhong, Meiling; Lin, Xi; Zhang, Yu; Tan, Guoxin; Li, Mei; Yin, Zhaoyi; Yu, Peng; Wang, Xiaolan; Li, Ying; He, Tianrui; Chen, Wei; Wang, Yingjun; Mao, Chuanbin

    2016-01-01

    Ti implants are good candidates in bone repair. However, how to promote bone formation on their surface and their consequent perfect integration with the surrounding tissue is still a challenge. To overcome such challenge, we propose to form Ti nanorods on their surface to promote the new bone formation around the implants. Here Ti nanorod arrays (TNrs) with different densities were produced on pure Ti surfaces using an anodizing method. The influence of TNr density on the protein adsorption as well as on the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 pre-osteoblastic cells were assessed. The TNrs were also implanted into the bone defects in rabbits to test their application in promoting bone formation and osteointegration at the implant-bone interface. TNrs with the medium density were found to show the best capability in promoting the protein adsorption from surrounding medium, which in turn efficiently enhanced osteogenic differentiation in vitro and osteointegration in vivo. Our work suggests that growing TNrs with a medium density on the surface of traditional Ti implants is an efficient and facile method for promoting bone formation and osteointegration in bone repair. PMID:26743328

  17. Ti nanorod arrays with a medium density significantly promote osteogenesis and osteointegration

    NASA Astrophysics Data System (ADS)

    Ning, Chengyun; Wang, Shuangying; Zhu, Ye; Zhong, Meiling; Lin, Xi; Zhang, Yu; Tan, Guoxin; Li, Mei; Yin, Zhaoyi; Yu, Peng; Wang, Xiaolan; Li, Ying; He, Tianrui; Chen, Wei; Wang, Yingjun; Mao, Chuanbin

    2016-01-01

    Ti implants are good candidates in bone repair. However, how to promote bone formation on their surface and their consequent perfect integration with the surrounding tissue is still a challenge. To overcome such challenge, we propose to form Ti nanorods on their surface to promote the new bone formation around the implants. Here Ti nanorod arrays (TNrs) with different densities were produced on pure Ti surfaces using an anodizing method. The influence of TNr density on the protein adsorption as well as on the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 pre-osteoblastic cells were assessed. The TNrs were also implanted into the bone defects in rabbits to test their application in promoting bone formation and osteointegration at the implant-bone interface. TNrs with the medium density were found to show the best capability in promoting the protein adsorption from surrounding medium, which in turn efficiently enhanced osteogenic differentiation in vitro and osteointegration in vivo. Our work suggests that growing TNrs with a medium density on the surface of traditional Ti implants is an efficient and facile method for promoting bone formation and osteointegration in bone repair.

  18. Inhibition of in vitro and in vivo brown fat differentiation program by myostatin.

    PubMed

    Braga, Melissa; Pervin, Shehla; Norris, Keith; Bhasin, Shalender; Singh, Rajan

    2013-06-01

    Obesity arises mainly due to the imbalance between energy storage and its expenditure. Metabolically active brown adipose tissue (BAT) has recently been detected in humans and has been proposed as a new target for anti-obesity therapy because of its unique capacity to regulate energy expenditure. Myostatin (Mst), a negative regulator of muscle mass, has been identified as a potential target to regulate overall body composition. Although the beneficial effects of Mst inhibition on muscle mass are well known, its role in the regulation of lipid metabolism, and energy expenditure is not very clear. We tested the effects of Mst inhibition on the gene regulatory networks that control BAT differentiation using both in vivo and in vitro model systems. PRDM16 and UCP1, two key regulators of brown fat differentiation were significantly up regulated in levator-ani (LA) and gastrocnemius (Gastroc) muscles as well as in epididymal (Epi) and subcutaneous (SC) fat pads isolated from Mst knock out (Mst KO) male mice compared with wild type (WT) mice. Using mouse embryonic fibroblast (MEFs) primary cultures obtained from Mst KO group compared to the WT group undergoing adipogenic differentiation, we also demonstrate a significant increase in select genes and proteins that improve lipid metabolism and energy expenditure. Treatment of Mst KO MEFs with recombinant Mst protein significantly inhibited the gene expression levels of UCP1, PRDM16, PGC1-α/β as well as BMP7. Future studies to extend these findings and explore the therapeutic potential of Mst inhibition on metabolic disorders are warranted. Copyright © 2012 The Obesity Society.

  19. Postmitotic Expression of SOD1G93A Gene Affects the Identity of Myogenic Cells and Inhibits Myoblasts Differentiation

    PubMed Central

    Martini, Martina; Dobrowolny, Gabriella; Aucello, Michela; Musarò, Antonio

    2015-01-01

    To determine the role of mutant SOD1 gene (SOD1G93A) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1G93A gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1G93A in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1G93A gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1G93A gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1G93A gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1G93A in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1G93A on myogenic program and disclosed potential signaling, activated by SOD1G93A, that affect the identity of the myogenic cell population. PMID:26491230

  20. Postmitotic Expression of SOD1(G93A) Gene Affects the Identity of Myogenic Cells and Inhibits Myoblasts Differentiation.

    PubMed

    Martini, Martina; Dobrowolny, Gabriella; Aucello, Michela; Musarò, Antonio

    2015-01-01

    To determine the role of mutant SOD1 gene (SOD1(G93A)) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1(G93A) gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1(G93A) in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1(G93A) gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1(G93A) gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1(G93A) gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1(G93A) in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1(G93A) on myogenic program and disclosed potential signaling, activated by SOD1(G93A), that affect the identity of the myogenic cell population.

  1. Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach

    NASA Astrophysics Data System (ADS)

    Ahmed, N. J. Salman; Ahamed, K. S. Nazim; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Athani, Abdulgaphur

    2018-05-01

    Thermal non-equilibrium in porous medium is a condition that refers to temperature discrepancy in solid matrix and fluid of porous medium. This type of flow is complex flow requiring complex set of partial differential equations that govern the flow behavior. The current work is undertaken to predict the thermal non-equilibrium behavior of porous medium adjacent to vertical plate using artificial neural network. A set of neurons in 3 layers are trained to predict the heat transfer characteristics. It is found that the thermal non-equilibrium heat transfer behavior in terms of Nusselt number of fluid as well as solid phase can be predicted accurately by using well-trained neural network.

  2. Ononitol monohydrate enhances PRDM16 & UCP-1 expression, mitochondrial biogenesis and insulin sensitivity via STAT6 and LTB4R in maturing adipocytes.

    PubMed

    Subash-Babu, P; Alshatwi, Ali A

    2018-03-01

    Ononitol monohydrate (OMH), a glycoside was originally isolated from Cassia tora (Linn.). Glycosides regulate lipid metabolism but scientific validation desired. Hence, we aimed to evaluate the effect of OMH on enhancing mitochondrial potential, mitochondrial biogenesis, upregulate the expression of brown adipogenesis specific genes in maturing adipocytes. In addition, we observed the inter-relation between adipocyte and T-lymphocyte; whether, OMH treated adipocyte-condition medium stimulate T-cell chemokine linked with insulin resistance. In a dose dependent manner OMH treated to preadipocyte significantly inhibited maturation and enhanced mitochondrial biogenesis, it was confirmed by Oil red 'O and Nile red stain without inducing cytotoxicity. The mRNA levels of adipocyte browning related genes such as, PR domain containing 16 (PRDM16), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARγC1α) and uncoupling protein-1 (UCP-1) have been significantly upregulated. In addition, adipogenic transcription factors [such as proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein (C/EBPα) and sterol regulatory element binding protein-1c (SREBP-1c)] and adipogenic genes were significantly down-regulated by treatment with OMH when compared to control cells. Protein expression levels of adiponectin have been increased; leptin, C/EBPα and leukotriene B4 receptor (LTB4R) were down regulated by OMH in mature adipocytes. In addition, adipocyte condition medium and OMH treated T-lymphocyte, significantly increased insulin signaling pathway related mRNAs, such as interlukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT 6 ) and decreased leukotriene B4 (LTB 4 ). The present findings suggest that OMH increased browning factors in differentiating and maturing preadipocyte also decreased adipose tissue inflammation as well as the enhanced insulin signaling. Copyright © 2018. Published by Elsevier Masson SAS.

  3. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  4. Hormonal induction and antihormonal inhibition of tracheary element differentiation in Zinnia cell cultures

    NASA Technical Reports Server (NTRS)

    Church, D. L.; Galston, A. W.

    1988-01-01

    Mechanically isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate to tracheary elements when cultured in inductive medium containing sufficient auxin and cytokinin. Tracheary element differentiation was induced by the three auxins (alpha-naphthaleneacetic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid) and four cytokinins (6-benzyladenine, kinetin, 2-isopentenyladenine and zeatin) tested. Tracheary element formation is inhibited or delayed if the inductive medium is supplemented with an anticytokinin, antiauxin, or inhibitor of auxin transport.

  5. Studies on the oxidation reaction of tyrosine (Tyr) with H2O2 catalyzed by horseradish peroxidase (HRP) in alcohol-water medium by spectrofluorimetry and differential spectrophotometry.

    PubMed

    Tang, Bo; Wang, Yan; Liang, Huiling; Chen, Zhenzhen; He, Xiwen; Shen, Hanxi

    2006-03-01

    An oxidation reaction of tyrosine (Tyr) with H(2)O(2) catalyzed by horseradish peroxidase (HRP) was studied by spectrofluorimetry and differential spectrophotometry in the alcohol(methanol, ethanol, 1-propanol and isopropanol)-water mutual solubility system. Compared with the enzymatic-catalyzed reaction in the water medium, the fluorescence intensities of the product weakened, even extinguished. Because the addition of alcohols made the conformation of HRP change, the catalytic reaction shifted to the side of polymerization and the polymer (A(n)H(2), n>or=3) exhibited no fluorescence. The four alcohols cannot deactivate HRP. Moreover isopropanol activated HRP remarkably.

  6. Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells.

    PubMed

    Ojansivu, Miina; Vanhatupa, Sari; Björkvik, Leena; Häkkänen, Heikki; Kellomäki, Minna; Autio, Reija; Ihalainen, Janne A; Hupa, Leena; Miettinen, Susanna

    2015-07-01

    Bioactive glasses are known for their ability to induce osteogenic differentiation of stem cells. To elucidate the mechanism of the osteoinductivity in more detail, we studied whether ionic extracts prepared from a commercial glass S53P4 and from three experimental glasses (2-06, 1-06 and 3-06) are alone sufficient to induce osteogenic differentiation of human adipose stem cells. Cells were cultured using basic medium or osteogenic medium as extract basis. Our results indicate that cells stay viable in all the glass extracts for the whole culturing period, 14 days. At 14 days the mineralization in osteogenic medium extracts was excessive compared to the control. Parallel to the increased mineralization we observed a decrease in the cell amount. Raman and Laser Induced Breakdown Spectroscopy analyses confirmed that the mineral consisted of calcium phosphates. Consistently, the osteogenic medium extracts also increased osteocalcin production and collagen Type-I accumulation in the extracellular matrix at 13 days. Of the four osteogenic medium extracts, 2-06 and 3-06 induced the best responses of osteogenesis. However, regardless of the enhanced mineral formation, alkaline phosphatase activity was not promoted by the extracts. The osteogenic medium extracts could potentially provide a fast and effective way to differentiate human adipose stem cells in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed Central

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W.; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1

  8. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1

  9. Biological characteristics of human-urine-derived stem cells: potential for cell-based therapy in neurology.

    PubMed

    Guan, Jun-Jie; Niu, Xin; Gong, Fei-Xiang; Hu, Bin; Guo, Shang-Chun; Lou, Yuan-Lei; Zhang, Chang-Qing; Deng, Zhi-Feng; Wang, Yang

    2014-07-01

    Stem cells in human urine have gained attention in recent years; however, urine-derived stem cells (USCs) are far from being well elucidated. In this study, we compared the biological characteristics of USCs with adipose-derived stem cells (ASCs) and investigated whether USCs could serve as a potential cell source for neural tissue engineering. USCs were isolated from voided urine with a modified culture medium. Through a series of experiments, we examined the growth rate, surface antigens, and differentiation potential of USCs, and compared them with ASCs. USCs showed robust proliferation ability. After serial propagation, USCs retained normal karyotypes. Cell surface antigen expression of USCs was similar to ASCs. With lineage-specific induction factors, USCs could differentiate toward the osteogenic, chondrogenic, adipogenic, and neurogenic lineages. To assess the ability of USCs to survive, differentiate, and migrate, they were seeded onto hydrogel scaffold and transplanted into rat brain. The results showed that USCs were able to survive in the lesion site, migrate to other areas, and express proteins that were associated with neural phenotypes. The results of our study demonstrate that USCs possess similar biological characteristics with ASCs and have multilineage differentiation potential. Moreover USCs can differentiate to neuron-like cells in rat brain. The present study shows that USCs are a promising cell source for tissue engineering and regenerative medicine.

  10. Effects of Growth Medium on Matrix-Assisted Laser Desorption–Ionization Time of Flight Mass Spectra: a Case Study of Acetic Acid Bacteria

    PubMed Central

    Wieme, Anneleen D.; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita

    2014-01-01

    The effect of the growth medium used on the matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains were grown on five different culture media that yielded a total of more than 600 mass spectra, including technical and biological replicates. The results demonstrate that the culture medium can have a profound effect on the mass spectra of AAB as observed in the presence and varying signal intensities of peak classes, in particular when culture media do not sustain optimal growth. The observed growth medium effects do not disturb species level differentiation but strongly affect the potential for strain level differentiation. The data prove that a well-constructed and robust MALDI-TOF mass spectrometry identification database should comprise mass spectra of multiple reference strains per species grown on different culture media to facilitate species and strain level differentiation. PMID:24362425

  11. Effects of ß-TCP scaffolds on neurogenic and osteogenic differentiation of human embryonic stem cells.

    PubMed

    Arpornmaeklong, Premjit; Pressler, Michael J

    2018-01-01

    Extracellular matrix (ECM) and adhesion molecules play crucial roles in regulating growth and differentiation of stem cells. The current study aimed to investigate the effects of beta-tricalcium phosphate (ß-TCP) scaffolds on differentiation and expression of ECM and adhesion molecules of human embryonic stem cells (hESCs). Undifferentiated hESCs were seeded on ß-TCP scaffolds and cell culture plates and cultured in growth and osteogenic medium for 21 days. Scanning electron microscopy (SEM) displayed adhesion and growth of hESCs on the porous ß-TCP scaffolds. Histological analysis, immunohistochemical staining and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) demonstrated that the scaffolds supported growth and differentiation of hESCs. Expression levels of neural crest related genes (AP2a, FoxD3, HNK1, P75, Sox1, Sox10) and osteoblast-related genes (Runx2, SPP1 and BGLA) on the scaffolds in osteogenic medium were significantly higher than on the scaffolds in growth and cell culture plates in osteogenic medium, respectively (p<0.05). Polymerase chain reaction array experiments demonstrated increased expression of ECM and adhesion molecule-related genes on the scaffolds. In conclusion, osteoconductive scaffolds such as ß-TCP scaffolds promoted differentiation of hESCs, particularly expression of genes related to neural crest stem cell and osteoblastic differentiations. Beta-TCP scaffolds could be an alternative cell culture substrate for neural crest and osteogenic differentiation of hESCs. Optimization of culture medium may be necessary to enhance lineage restriction of hESCs on the ß-TCP scaffolds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. A comparison of the original Rappaport medium (R medium) and the Rappaport-Vassiliadis medium (RV medium) in the isolation of salmonellae from meat products.

    PubMed Central

    Vassiliadis, P.; Kalapothaki, V.; Mavrommati, C.; Trichopoulos, D.

    1984-01-01

    The Rappaport-Vassiliadis enrichment medium (RV medium) in 10 ml quantities (RV/43 degrees C, 10 ml) inoculated with 0.1 ml of pre-enrichment medium (P medium) was found more efficient in the isolation of salmonellae from 409 pre-enriched samples (mainly meat products), than the original Rappaport medium incubated at 43 degrees C (R/43 degrees C) and the RV medium in 5 ml quantities (RV/43 degrees C, 5 ml) inoculated with 0.01 ml of P medium (P less than 0.001, in both instances). Therefore, the inoculum from pre-enriched foods should not be less than 0.1 ml in 10 ml of RV medium. The RV/43 degrees, 10 ml was also better (P less than 0.01) in detecting samples containing salmonellas than the original Rappaport medium incubated at 37 degrees C (R/37 degrees C, 10 ml) and the modification R25 of R medium incubated at 37 degrees C. The R25 modification was used in 10 ml quantities (R25/37 degrees C, 10 ml) inoculated with 0.1 ml of P medium and in 5 ml quantities (R25/37 degrees, 5 ml) inoculated with 0.01 ml of P medium. The last two R25 procedures were of the same efficiency in isolating salmonellas from meat products. PMID:6747286

  13. Fem Formulation for Heat and Mass Transfer in Porous Medium

    NASA Astrophysics Data System (ADS)

    Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan

    2017-08-01

    Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.

  14. Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering

    PubMed Central

    Kessler, Lukas; Gehrke, Sandra; Winnefeld, Marc; Huber, Birgit; Hoch, Eva; Walter, Torsten; Wyrwa, Ralf; Schnabelrauch, Matthias; Schmidt, Malte; Kückelhaus, Maximilian; Lehnhardt, Marcus; Hirsch, Tobias; Jacobsen, Frank

    2017-01-01

    In vitro–generated soft tissue could provide alternate therapies for soft tissue defects. The aim of this study was to evaluate methacrylated gelatin/hyaluronan as scaffolds for soft tissue engineering and their interaction with human adipose–derived stem cells (hASCs). ASCs were incorporated into methacrylated gelatin/hyaluronan hydrogels. The gels were photocrosslinked with a lithium phenyl-2,4,6-trimethylbenzoylphosphinate photoinitiator and analyzed for cell viability and adipogenic differentiation of ASCs over a period of 30 days. Additionally, an angiogenesis assay was performed to assess their angiogenic potential. After 24 h, ASCs showed increased viability on composite hydrogels. These results were consistent over 21 days of culture. By induction of adipogenic differentiation, the mature adipocytes were observed after 7 days of culture, their number significantly increased until day 28 as well as expression of fatty acid binding protein 4 and adiponectin. Our scaffolds are promising as building blocks for adipose tissue engineering and allowed long viability, proliferation, and differentiation of ASCs. PMID:29318000

  15. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de; Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103

    Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention inmore » the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The

  16. Skeletal and cardiac myogenesis accompany adipogenesis in P19 embryonal stem cells.

    PubMed

    Bouchard, Frédéric; Paquin, Joanne

    2009-09-01

    P19 embryonic carcinoma cells resemble normal embryonic stem (ES) cells. They generate cardiac and skeletal myocytes in response to retinoic acid (RA) or oxytocin (OT). RA treatment followed by exposure to triiodothyronine (T3) and insulin induces ES cells differentiation into adipocytes and skeletomyocytes. On the other hand, OT (10(-7) M) was reported to inhibit 3T3 preadipocyte maturation. The present work was undertaken to determine whether P19 cells have an adipogenic potential that could be affected by OT. Cells were treated with RA (10(-6) M)/T3+insulin (adipogenic protocol) or 10(-7) M OT (cardiomyogenic protocol), and analyzed by polymerase chain reaction, immunotechniques, and cytochemistry. Oil-Red-O staining and expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and aP2 indicated the generation of adipocytes in cultures submitted to the adipogenic protocol. Contracting cells were also generated. Cells positive for sarcomeric actinin and negative for cardiac troponin inhibitor (cTpnI) indicated generation of skeletomyocytes, and cTpnI positive cells revealed generation of cardiomyocytes. Levels of cTpnI and of the skeletal marker MyoD were almost similar in both protocols, whereas no Oil-Red-O staining was associated with the cardiomyogenic protocol. Addition of 10(-7) M OT to the adipogenic protocol did not affect Oil-Red-O staining and PPARgamma expression. Interestingly, Oct3/4 pluripotency marker disappeared in the adipogenic protocol but remained expressed in the cardiomyogenic one. P19 cells thus have an adipogenic potential non affected by 10(-7) M OT. RA/T3+insulin combination generates a larger spectrum of mesodermal cell derivatives and is a more potent morphogenic treatment than OT. P19 cells could help investigating mechanisms of cell fate decision during development.

  17. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway.

    PubMed

    Gao, Yao; Cao, Yan; Cui, Xianwei; Wang, Xingyun; Zhou, Yahui; Huang, Fangyan; Wang, Xing; Wen, Juan; Xie, Kaipeng; Xu, Pengfei; Guo, Xirong; You, Lianghui; Ji, Chenbo

    2018-05-10

    Recent discoveries of functional brown adipocytes in mammals illuminates their therapeutic potential for combating obesity and its associated diseases. However, on account of the limited amount and activity in adult humans of brown adipocyte depots, identification of miRNAs and characterization their regulatory roles in human brown adipogenesis are urgently needed. This study focused on the role of microRNA (miR)-199a-3p in human brown adipocyte differentiation and thermogenic capacity. A decreased expression pattern of miR-199a-3p was consistently observed during the differentiation course of brown adipocytes in mice and humans. Conversely, its level was induced during the differentiation course of human white pre-adipocytes derived from visceral fat. miR-199a-3p expression was relatively abundant in interscapular BAT (iBAT) and differentially regulated in the activated and aging BAT in mice. Additionally, miR-199a-3p expression level in human brown adipocytes was observed decreased upon thermogenic activation and increased by aging-related stimuli. Using primary pre-adipocytes, miR-199a-3p over-expression was capable of attenuating lipid accumulation and adipogenic gene expression as well as impairing brown adipocytes' metabolic characteristics as revealed by decreased mitochondrial DNA content and respiration. Suppression of miR-199a-3p by a locked nucleic acid (LNA) modified-anti-miR led to increased differentiation and thermogenesis in human brown adipocytes. By combining target prediction and examination, we identified mechanistic target of rapamycin kinase (mTOR) as a direct target of miR-199a-3p that affected brown adipogenesis and thermogenesis. Our results point to a novel role for miR-199a-3p and its downstream effector mTOR in human brown adipocyte differentiation and maintenance of thermogenic characteristics, which can be manipulated as therapeutic targets against obesity and its related metabolic disorders. Copyright © 2018. Published by Elsevier B.V.

  18. Sensitivity of jet substructure to jet-induced medium response

    NASA Astrophysics Data System (ADS)

    Milhano, Guilherme; Wiedemann, Urs Achim; Zapp, Korinna Christine

    2018-04-01

    Jet quenching in heavy ion collisions is expected to be accompanied by recoil effects, but unambiguous signals for the induced medium response have been difficult to identify so far. Here, we argue that modern jet substructure measurements can improve this situation qualitatively since they are sensitive to the momentum distribution inside the jet. We show that the groomed subjet shared momentum fraction zg, and the girth of leading and subleading subjets signal recoil effects with dependencies that are absent in a recoilless baseline. We find that recoil effects can explain most of the medium modifications to the zg distribution observed in data. Furthermore, for jets passing the Soft Drop Condition, recoil effects induce in the differential distribution of subjet separation ΔR12 a characteristic increase with ΔR12, and they introduce a characteristic enhancement of the girth of the subleading subjet with decreasing zg. We explain why these qualitatively novel features, that we establish in JEWEL+PYTHIA simulations, reflect generic physical properties of recoil effects that should therefore be searched for as telltale signatures of jet-induced medium response.

  19. Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates.

    PubMed

    Haugh, Matthew G; Vaughan, Ted J; Madl, Christopher M; Raftery, Rosanne M; McNamara, Laoise M; O'Brien, Fergal J; Heilshorn, Sarah C

    2018-07-01

    Dimensionality can have a profound impact on stiffness-mediated differentiation of mesenchymal stem cells (MSCs). However, while we have begun to understand cellular response when encapsulated within 3D substrates, the behavior of cells within macro-porous substrates is relatively underexplored. The goal of this study was to determine the influence of macro-porous topographies on stiffness-mediated differentiation of MSCs. We developed macro-porous recombinant elastin-like protein (ELP) substrates that allow independent control of mechanical properties and ligand chemistry. We then used computational modeling to probe the impact of pore topography on the mechanical stimulus that cells are exposed to within these substrates, and finally we investigated stiffness induced biases towards adipogenic and osteogenic differentiation of MSCs within macro-porous substrates. Computational modeling revealed that there is significant heterogeneity in the mechanical stimuli that cells are exposed to within porous substrates and that this heterogeneity is predominantly due to the wide range of possible cellular orientations within the pores. Surprisingly, MSCs grown within 3D porous substrates respond to increasing substrate stiffness by up-regulating both osteogenesis and adipogenesis. These results demonstrate that within porous substrates the behavior of MSCs diverges from previously observed responses to substrate stiffness, emphasizing the importance of topography as a determinant of cellular behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Isolating "Unknown" Bacteria in the Introductory Microbiology Laboratory: A New Selective Medium for Gram-Positives.

    ERIC Educational Resources Information Center

    McKillip, John L.; Drake, MaryAnne

    1999-01-01

    Describes the development, preparation, and use of a medium that can select against a wide variety of Gram-negative bacteria while still allowing growth and differentiation of a wide range of Gram-positives. (WRM)

  1. The enhancement of differentiating adipose derived mesenchymal stem cells toward hepatocyte like cells using gelatin cryogel scaffold.

    PubMed

    Ghaderi Gandomani, Maryam; Sahebghadam Lotfi, Abbas; Kordi Tamandani, Dormohammad; Arjmand, Sareh; Alizadeh, Shaban

    2017-09-30

    Liver tissue engineering creates a promising methodology for developing functional tissue to restore or improve the function of lost or damaged liver by using appropriate cells and biologically compatible scaffolds. The present paper aims to study the hepatogenic potential of human adipose derived mesenchymal stem cells (hADSCs) on a 3D gelatin scaffold in vitro. For this purpose, mesenchymal stem cells were isolated from human adipose tissue and characterized by flowcytometry analysis and mesodermal lineage differentiation capacity. Then, porous cryogel scaffolds were fabricated by cryogelating the gelatin using glutaraldehyde as the crosslinking agent. The structure of the scaffolds as well as the adhesion and proliferation of the cells were then determined by Scanning Electron Microscopy (SEM) analysis and MTT assay, respectively. The efficiency of hepatic differentiation of hADSCs on 2D and 3D culture systems has been assessed by means of morphological, cytological, molecular and biochemical approaches. Based on the results of flowcytometry, the isolated cells were positive for hMSC specific markers and negative for hematopoietic markers. Further, the multipotency of these cells was confirmed by adipogenic and osteogenic differentiation and the highly porous structure of scaffolds was characterized by SEM images. Biocompatibility was observed in the fabricated gelatin scaffolds and the adhesion and proliferation of hADSCs were promoted without any cytotoxicity effects. In addition, compared to 2D TCPS, the fabricated scaffolds provided more appropriate microenvironment resulting in promoting the differentiation of hADSCs toward hepatocyte-like cells with higher expression of hepatocyte-specific markers and appropriate functional characteristics such as increased levels of urea biosynthesis and glycogen storage. Finally, the created 3D gelatin scaffold could provide an appropriate matrix for hepatogenic differentiation of hADSCs, which could be considered for

  2. Cineromycin B isolated from Streptomyces cinerochromogenes inhibits adipocyte differentiation of 3T3-L1 cells via Krüppel-like factors 2 and 3.

    PubMed

    Matsuo, Hirotaka; Kondo, Yoshiyuki; Kawasaki, Takashi; Imamura, Nobutaka

    2015-08-15

    3T3-L1 cells are preadipocytes and often used as a model for cellular differentiation to adipocytes; however, the mechanism of this differentiation is not completely understood even in these model cells. In this study, we sought to identify a unique anti-adipogenesis agent from microorganisms and to examine its mechanism of action to gain knowledge and create a tool and/or seed compound for anti-obesity drug discovery research. Screening for anti-adipogenesis agents from microorganisms was performed using a 3T3-L1 cell differentiation system, and an active compound was isolated. The inhibitory mechanism of the compound was investigated by measuring the expression of key regulators using quantitative real-time PCR and Western blot analysis. The compound with anti-adipogenic activity in 3T3-L1 cells was identified as cineromycin B. Cineromycin B at 50 μg/mL suppressed intracellular lipid accumulation and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα), which are master regulators of adipocyte differentiation. Further investigations showed that cineromycin B increased significantly the mRNA expression of two negative regulators of adipocyte differentiation, Krüppel-like factor (KLF) 2 and KLF3, at an early stage of the differentiation. The results of siRNA transfection experiments indicated that cineromycin B is a unique adipocyte differentiation inhibitor, acting mainly via upregulation of KLF2 and KLF3, and these KLFs may play a role in the early stage of differentiation. Cineromycin B inhibited adipocyte differentiation in 3T3-L1 cells mainly via upregulation of KLF2 and KLF3 mRNA expression at an early stage of the differentiation. Copyright © 2015. Published by Elsevier Inc.

  3. Numerical heat transfer study in a scattering, absorbing and emitting semi-transparent porous medium in a cylindrical enclosure

    NASA Astrophysics Data System (ADS)

    Timoumi, M.; Chérif, B.; Sifaoui, M. S.

    2005-12-01

    In this paper, heat transfer problem through a semi-transparent porous medium in a cylindrical enclosure is investigated. The governing equations for this problem and the boundary conditions are non-linear differential equations depending on the dimensionless radial coordinate, Planck number N, scattering albedo ω, walls emissivity and thermal conductivity ratio kr. The set of differential equations are solved by a numerical technique taken from the IMSL MATH/LIBRARY. Various results are obtained for the dimensionless temperature profiles in the solid and fluid phases and the radiative heat flux. The effects of some radiative properties of the medium on the heat transfer rate are examined.

  4. Androgens inhibit adipogenesis during human adipose stem cell commitment to predipocyte formation

    PubMed Central

    Chazenbalk, Gregorio; Singh, Prapti; Irge, Dana; Shah, Amy; Abbott, David H; Dumesic, Daniel A

    2013-01-01

    Androgens play a pivotal role in the regulation of body fat distribution. Adipogenesis is a process whereby multipotent adipose stem cells (ASCs) initially become preadipocytes (ASC commitment to preadipocytes) before differentiating into adipocytes. Androgens inhibit human (h) subcutaneous (SC) abdominal preadipocyte differentiation in both sexes, but their effects on hASC commitment to preadipocyte formation is unknown. We therefore examined whether androgen exposure to human (h) ASCs, isolated from SC abdominal adipose of nonobese women, impairs their commitment to preadipocyte formation and/or subsequent differentiation into adipocytes. For this, isolated hASCs from SC abdominal lipoaspirate were cultured in adipogenesis-inducing medium for 0.5–14 days in the presence of testosterone (T, 0–100 nM) or dihydrotestosterone (DHT, 0–50 nM). Adipogenesis was determined by immunofluorescence microscopy and by quantification of adipogenically relevant transcriptional factors, PPARγ, C/EBPα and C/EBPβ. We found that a 3-day exposure of hASCs to T (50 nM) or DHT (5 nM) in adipogenesis-inducing medium impaired lipid acquisition and decreased PPARγ, C/EBPα and C/EBPβ gene expression. The inhibitory effects of T and DHT at this early-stage of adipocyte differentiation, were partially and completely reversed by flutamide (F, 100 nM), respectively. The effect of androgens on hASC commitment to a preadipocyte phenotype was examined via activation of BMP4 signaling. T (50 nM) and DHT (5nM) significantly inhibited the stimulatory effect of BMP4-induced ASC commitment to the preadipocyte phenotype, as regards PPARγ and C/EBPα gene expression. Our findings indicate that androgens, in part through androgen receptor action, impair BMP4-induced commitment of SC hASCs to preadipocytes and also reduce early-stage adipocyte differentiation, perhaps limiting adipocyte numbers and fat storage in SC abdominal adipose. PMID:23707571

  5. Dielectric metasurfaces solve differential and integro-differential equations.

    PubMed

    Abdollahramezani, Sajjad; Chizari, Ata; Dorche, Ali Eshaghian; Jamali, Mohammad Vahid; Salehi, Jawad A

    2017-04-01

    Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of incident light locally and almost independently. By taking advantage of the interplay between the electric/magnetic resonances and employing general concepts of spatial Fourier transformation, a highly efficient metadevice is proposed to perform mathematical operations including solution of ordinary differential and integro-differential equations with constant coefficients. Our findings further substantiate dielectric metasurfaces as promising candidates for miniaturized, two-dimensional, and planar optical analog computing systems that are much thinner than their conventional lens-based counterparts.

  6. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype.

    PubMed

    Joddar, Binata; Kumar, Shweta Anil; Kumar, Alok

    2018-06-01

    Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.

  7. [Simulated uterus microenvironment induced human placental mesenchymal stem cells differentiation to uterus smooth muscle cells in vitro].

    PubMed

    Li, Chang-dong; Zhang, Wei-yuan; Yuan, Chun-li; Han, Li-ying

    2008-12-09

    To develop a new method to promote the differentiation of mesenchymal stem cells derived from human placenta (pMSC) to uterus smooth muscle cells (uSMC) in simulated uterus microenvironment. MSCs were isolated from human placenta, cultivated, and analyzed for their phenotype by flow cytometry. The multipotential differentiation of the pMSC was examined by chondrogenic, adipogenic, and osteogenetic induction. uSMC were isolated from uteri resected during operation and co-cultivated with the pMSC in a Transwell chamber simulating Two, 4, and 8 days later RT-PCR and Western blotting were used to detect the mRNA and protein expression of alpha-actin, calmodulin, and myosin heavy chains (MHC), the markers of smooth muscle differentiation at the early, middle, and late stages. On day 8 RT-PCR was used to detect the expression of estrogen receptor in these 2 groups of cells, then estrogen was used to stimulate these cells and the protein kinase C (PKC) activity was examined. The pMSC could be induced into adipocytes, osteocytes, and chondrocytes respectively. After co-culture with uSMC, the morphology of the pMSC changed closely into that of the uSMC, and MHC was expressed in the pMSC. Estrogen receptor was positive in both groups of cells. The PKC activity increased, especially in the cell membrane, after stimulation of estrogen. The postpartum human placenta can be used as an important and novel source of multipotent stem cells for tissue engineering and genetic engineering. Placental MSC have the potential to differentiate into smooth muscle cells under the simulated uterus microenvironment in vitro.

  8. Propagation of mechanical waves through a stochastic medium with spherical symmetry

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, J. Adrián

    2018-01-01

    We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.

  9. Second-harmonic generation microscopy used to evaluate the effect of the dimethyl sulfoxide in the cryopreservation process in collagen fibers of differentiated chondrocytes

    NASA Astrophysics Data System (ADS)

    Andreoli-Risso, M. F.; Duarte, A. S. S.; Ribeiro, T. B.; Bordeaux-Rego, P.; Luzo, A.; Baratti, M. O.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Carvalho, H. F.; Cesar, C. L.; Kharmadayan, P.; Costa, F. F.; Olalla-Saad, S. T.

    2012-03-01

    Cartilaginous lesions are a significant public health problem and the use of adult stem cells represents a promising therapy for this condition. Cryopreservation confers many advantages for practitioners engaged in cell-based therapies. However, conventional slow freezing has always been associated with damage and mortality due to intracellular ice formation, cryoprotectant toxicity, and dehydration. The aim of this work is to observe the effect of the usual Dimethyl Sulfoxide (DMSO) cryopreservation process on the architecture of the collagen fiber network of chondrogenic cells from mesenchymal stem cells by Second Harmonic Generation (SHG) microscopy. To perform this study we used Mesenchymal Stem Cells (MSC) derived from adipose tissue which presents the capacity to differentiate into other lineages such as osteogenic, adipogenic and chondrogenic lineages. Mesenchymal stem cells obtained after liposuction were isolated digested by collagenase type I and characterization was carried out by differentiation of mesodermic lineages, and flow cytometry using specific markers. The isolated MSCs were cryopreserved by the DMSO technique and the chondrogenic differentiation was carried out using the micromass technique. We then compared the cryopreserved vs non-cryopreserved collagen fibers which are naturally formed during the differentiation process. We observed that noncryopreserved MSCs presented a directional trend in the collagen fibers formed which was absent in the cryopreserved MSCs. We confirmed this trend quantitatively by the aspect ratio obtained by Fast Fourier Transform which was 0.76 for cryopreserved and 0.52 for non-cryopreserved MSCs, a statistical significant difference.

  10. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair.

    PubMed

    Erwin, W Mark; Islam, Diana; Eftekarpour, Eftekhar; Inman, Robert D; Karim, Muhammad Zia; Fehlings, Michael G

    2013-02-01

    An in vitro and in vivo evaluation of intervertebral disc (IVD)-derived stem/progenitor cells. To determine the chondrogenic, adipogenic, osteogenic, and neurogenic differentiation capacity of disc-derived stem/progenitor cells in vitro and neurogenic differentiation in vivo. Tissue repair strategies require a source of appropriate cells that could be used to replace dead or damaged cells and tissues such as stem cells. Here we examined the potential use of IVD-derived stem cells in regenerative medicine approaches and neural repair. Nonchondrodystrophic canine IVD nucleus pulposus (NP) cells were used to generate stem/progenitor cells (NP progenitor cells [NPPCs]) and the NPPCs were differentiated in vitro into chondrogenic, adipogenic, and neurogenic lineages and in vivo into the neurogenic lineage. NPPCs were compared with bone marrow-derived mesenchymal (stromal) stem cells in terms of the expression of stemness genes. The expression of the neural crest marker protein 0 and the Brachyury gene were evaluated in NP cells and NPPCs. NPPCs contain stem/progenitor cells and express "stemness" genes such as Sox2, Oct3/4, Nanog, CD133, Nestin, and neural cell adhesion molecule but differ from mesenchymal (stromal) stem cells in the higher expression of the Nanog gene by NPPCs. NPPCs do not express protein 0 or the Brachyury gene both of which are expressed by the totality of IVD NP cells. The percentage of NPPCs within the IVD is 1% of the total as derived by colony-forming assay. NPPCs are capable of differentiating along chondrogenic, adipogenic, and neurogenic lineages in vitro and into oligodendrocyte, neuron, and astroglial specific precursor cells in vivo within the compact myelin-deficient shiverer mouse. We propose that the IVD NP represents a regenerative niche suggesting that the IVD could represent a readily accessible source of precursor cells for neural repair and regeneration.

  11. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix.

    PubMed

    Brown, Bryan N; Freund, John M; Han, Li; Rubin, J Peter; Reing, Janet E; Jeffries, Eric M; Wolf, Mathew T; Tottey, Stephen; Barnes, Christopher A; Ratner, Buddy D; Badylak, Stephen F

    2011-04-01

    Extracellular matrix (ECM)-based scaffold materials have been used successfully in both preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. Results of numerous studies have shown that ECM scaffolds are capable of supporting the growth and differentiation of multiple cell types in vitro and of acting as inductive templates for constructive tissue remodeling after implantation in vivo. Adipose tissue represents a potentially abundant source of ECM and may represent an ideal substrate for the growth and adipogenic differentiation of stem cells harvested from this tissue. Numerous studies have shown that the methods by which ECM scaffold materials are prepared have a dramatic effect upon both the biochemical and structural properties of the resultant ECM scaffold material as well as the ability of the material to support a positive tissue remodeling outcome after implantation. The objective of the present study was to characterize the adipose ECM material resulting from three methods of decellularization to determine the most effective method for the derivation of an adipose tissue ECM scaffold that was largely free of potentially immunogenic cellular content while retaining tissue-specific structural and functional components as well as the ability to support the growth and adipogenic differentiation of adipose-derived stem cells. The results show that each of the decellularization methods produced an adipose ECM scaffold that was distinct from both a structural and biochemical perspective, emphasizing the importance of the decellularization protocol used to produce adipose ECM scaffolds. Further, the results suggest that the adipose ECM scaffolds produced using the methods described herein are capable of supporting the maintenance and adipogenic differentiation of adipose-derived stem cells and may represent effective substrates for use in tissue engineering and regenerative medicine approaches to soft tissue

  12. Instantaneous Real-Time Kinematic Decimeter-Level Positioning with BeiDou Triple-Frequency Signals over Medium Baselines.

    PubMed

    He, Xiyang; Zhang, Xiaohong; Tang, Long; Liu, Wanke

    2015-12-22

    Many applications, such as marine navigation, land vehicles location, etc., require real time precise positioning under medium or long baseline conditions. In this contribution, we develop a model of real-time kinematic decimeter-level positioning with BeiDou Navigation Satellite System (BDS) triple-frequency signals over medium distances. The ambiguities of two extra-wide-lane (EWL) combinations are fixed first, and then a wide lane (WL) combination is reformed based on the two EWL combinations for positioning. Theoretical analysis and empirical analysis is given of the ambiguity fixing rate and the positioning accuracy of the presented method. The results indicate that the ambiguity fixing rate can be up to more than 98% when using BDS medium baseline observations, which is much higher than that of dual-frequency Hatch-Melbourne-Wübbena (HMW) method. As for positioning accuracy, decimeter level accuracy can be achieved with this method, which is comparable to that of carrier-smoothed code differential positioning method. Signal interruption simulation experiment indicates that the proposed method can realize fast high-precision positioning whereas the carrier-smoothed code differential positioning method needs several hundreds of seconds for obtaining high precision results. We can conclude that a relatively high accuracy and high fixing rate can be achieved for triple-frequency WL method with single-epoch observations, displaying significant advantage comparing to traditional carrier-smoothed code differential positioning method.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajalin, Ann-Marie; Pollock, Hanna; Aarnisalo, Piia, E-mail: piia.aarnisalo@helsinki.fi

    The orphan nuclear receptor estrogen-related receptor-{alpha} (ERR{alpha}) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERR{alpha} in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERR{alpha} deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERR{alpha} deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERR{alpha} in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoproteinmore » (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERR{alpha} deficient MSCs and enhanced upon ERR{alpha} overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERR{alpha}. Under adipogenic conditions, ERR{alpha} deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERR{alpha} in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERR{alpha} may play different roles in bone under different physiological conditions.« less

  14. Secretome of Differentiated PC12 Cells Enhances Neuronal Differentiation in Human Mesenchymal Stem Cells Via NGF-Like Mechanism.

    PubMed

    Srivastava, A; Singh, S; Pandey, A; Kumar, D; Rajpurohit, C S; Khanna, V K; Pant, A B

    2018-03-12

    The secretome-mediated responses over cellular physiology are well documented. Stem cells have been ruling the field of secretomics and its role in regenerative medicine since the past few years. However, the mechanistic aspects of secretome-mediated responses and the role of other cells in this area remain somewhat elusive. Here, we investigate the effects of secretome-enriched conditioned medium (CM) of neuronally differentiated PC12 cells on the neuronal differentiation of human mesenchymal stem cells (hMSCs). The exposure to CM at a ratio of 1:1 (CM: conditioned medium of PC12 cells) led to neuronal induction in hMSCs. This neuronal induction was compared with a parallel group of cells exposed to nerve growth factor (NGF). There was a marked increase in neurite length and expression of neuronal markers (β-III tubulin, neurofilament-M (NF-M), synaptophysin, NeuN in exposed hMSCs). Experimental group co-exposed to NGF and CM showed an additive response via MAPK signaling and directed the cells particularly towards cholinergic lineage. The ability of CM to enhance the neuronal properties of stem cells could aid in their rapid differentiation into neuronal subtypes in case of stem cell transplantation for neuronal injuries, thus broadening the scope of non-stem cell-based applications in the area of secretomics.

  15. Donor Age of Human Platelet Lysate Affects Proliferation and Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Lohmann, Michael; Walenda, Gudrun; Hemeda, Hatim; Joussen, Sylvia; Drescher, Wolf; Jockenhoevel, Stefan; Hutschenreuter, Gabriele; Zenke, Martin; Wagner, Wolfgang

    2012-01-01

    The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (<35 years) as compared to older donors (>45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation. PMID:22662236

  16. Interactions of Human Endothelial and Multipotent Mesenchymal Stem Cells in Cocultures

    PubMed Central

    Ern, Christina; Krump-Konvalinkova, Vera; Docheva, Denitsa; Schindler, Stefanie; Rossmann, Oliver; Böcker, Wolfgang; Mutschler, Wolf; Schieker, Matthias

    2010-01-01

    Current strategies for tissue engineering of bone rely on the implantation of scaffolds, colonized with human mesenchymal stem cells (hMSC), into a recipient. A major limitation is the lack of blood vessels. One approach to enhance the scaffold vascularisation is to supply the scaffolds with endothelial cells (EC). The main goal of this study was to establish a coculture system of hMSC and EC for the purposes of bone tissue engineering. Therefore, the cell behaviour, proliferation and differentiation capacity in various cell culture media as well as cell interactions in the cocultures were evaluated. The differentiation capacity of hMSC along osteogenic, chondrogenic, and adipogenic lineage was impaired in EC medium while in a mixed EC and hMSC media, hMSC maintained osteogenic differentiation. In order to identify and trace EC in the cocultures, EC were transduced with eGFP. Using time-lapse imaging, we observed that hMSC and EC actively migrated towards cells of their own type and formed separate clusters in long term cocultures. The scarcity of hMSC and EC contacts in the cocultures suggest the influence of growth factor-mediated cell interactions and points to the necessity of further optimization of the coculture conditions. PMID:21625373

  17. Formononetin, an isoflavone, activates AMP-activated protein kinase/β-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss.

    PubMed

    Gautam, Jyoti; Khedgikar, Vikram; Kushwaha, Priyanka; Choudhary, Dharmendra; Nagar, Geet Kumar; Dev, Kapil; Dixit, Preety; Singh, Divya; Maurya, Rakesh; Trivedi, Ritu

    2017-03-01

    Balance between adipocyte and osteoblast differentiation is the key link of disease progression in obesity and osteoporosis. We have previously reported that formononetin (FNT), an isoflavone extracted from Butea monosperma, stimulates osteoblast formation and protects against postmenopausal bone loss. The inverse relationship between osteoblasts and adipocytes prompted us to analyse the effect of FNT on adipogenesis and in vivo bone loss, triggered by high-fat diet (HFD)-induced obesity. The anti-obesity effect and mechanism of action of FNT was determined in 3T3-L1 cells and HFD-induced obese male mice. Our findings show that FNT suppresses the adipogenic differentiation of 3T3-L1 fibroblasts, through down-regulation of key adipogenic markers such as PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding protein (SREBP) and inhibits intracellular TAG accumulation. Increased intracellular reactive oxygen species levels and AMP-activated protein kinase (AMPK) activation accompanied by stabilisation of β-catenin were attributed to the anti-adipogenic action of FNT. In vivo, 12 weeks of FNT treatment inhibited the development of obesity in mice by attenuating HFD-induced body weight gain and visceral fat accumulation. The anti-obesity effect of FNT results from increased energy expenditure. FNT also protects against HFD-induced dyslipidaemia and rescues deterioration of trabecular bone volume by increasing bone formation and decreasing bone resorbtion caused by HFD. FNT's rescuing action against obesity-induced osteoporosis commenced at the level of progenitors, as bone marrow progenitor cells, obtained from the HFD mice group supplemented with FNT, showed increased osteogenic and decreased adipogenic potentials. Our findings suggest that FNT inhibits adipogenesis through AMPK/β-catenin signal transduction pathways and protects against HFD-induced obesity and bone loss.

  18. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells.

    PubMed

    Ahmadian Baghbaderani, Behnam; Tian, Xinghui; Scotty Cadet, Jean; Shah, Kevan; Walde, Amy; Tran, Huan; Kovarcik, Don Paul; Clarke, Diana; Fellner, Thomas

    2016-01-01

    Human pluripotent stem cells (hPSCs) present an unprecedented opportunity to advance human health by offering an alternative and renewable cell resource for cellular therapeutics and regenerative medicine. The present demand for high quality hPSCs for use in both research and clinical studies underscores the need to develop technologies that will simplify the cultivation process and control variability. Here we describe the development of a robust, defined and xeno-free hPSC medium that supports reliable propagation of hPSCs and generation of human induced pluripotent stem cells (hiPSCs) from multiple somatic cell types; long-term serial subculturing of hPSCs with every-other-day (EOD) medium replacement; and banking fully characterized hPSCs. The hPSCs cultured in this medium for over 40 passages are genetically stable, retain high expression levels of the pluripotency markers TRA-1-60, TRA-1-81, Oct-3/4 and SSEA-4, and readily differentiate into ectoderm, mesoderm and endoderm. Importantly, the medium plays an integral role in establishing a cGMP-compliant process for the manufacturing of hiPSCs that can be used for generation of clinically relevant cell types for cell replacement therapy applications.

  19. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway

    PubMed Central

    Toriuchi, Yuriko; Aki, Yuka; Mizuno, Yuto; Kawakami, Takashige; Nakaya, Tomoko; Sato, Masao; Suzuki, Shinya

    2017-01-01

    Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes. PMID:28426713

  20. Stimulation of insulin secretion by medium-chain triglycerides in patients with cirrhosis 1

    PubMed Central

    McCullough, Frank S.; Tzagournis, Manuel; Greenberger, Norton J.; Linscheer, Willem G.

    1971-01-01

    Oral medium-chain triglycerides were given to 10 normal volunteers, 12 cirrhotics (group I) without and 28 cirrhotics (group II) with abnormal portal systemic communications (ascites, splenomegaly, oesophageal varices, or surgically-created portacaval shunts). After 30 ml of medium-chain triglyceride oil there was no appreciable change in serum glucose levels in any of the three groups nor in serum insulin levels in the normals and in cirrhotics in group I. However, there was a significant increase in serum insulin levels in the cirrhotic patients in group II. It is suggested that the rise in serum insulin levels after medium-chain triglycerides noted in the cirrhotics with shunts is due to shunting of insulin-containing portal blood around the liver (anatomical shunts) and to a diminished hepatic cell mass capable of extracting insulin (functional shunt). This differential response of serum insulin levels to medium-chain triglycerides may prove to be of value in detecting the presence of abnormal portal systemic communications in cirrhotic patients. PMID:5548559

  1. Unsteady boundary layer flow over a sphere in a porous medium

    NASA Astrophysics Data System (ADS)

    Mohammad, Nurul Farahain; Waini, Iskandar; Kasim, Abdul Rahman Mohd; Majid, Nurazleen Abdul

    2017-08-01

    This study focuses on the problem of unsteady boundary layer flow over a sphere in a porous medium. The governing equations which consists of a system of dimensional partial differential equations is applied with dimensionless parameter in order to attain non-dimensional partial differential equations. Later, the similarity transformation is performed in order to attain nonsimilar governing equations. Afterwards, the nonsimilar governing equations are solved numerically by using the Keller-Box method in Octave programme. The effect of porosity parameter is examined on separation time, velocity profile and skin friction of the unsteady flow. The results attained are presented in the form of table and graph.

  2. Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells.

    PubMed

    Raabe, Oksana; Shell, Katja; Würtz, Antonia; Reich, Christine Maria; Wenisch, Sabine; Arnhold, Stefan

    2011-08-01

    Adipose tissue-derived stem cells (ADSCs) represent a promising subpopulation of adult stem cells for tissue engineering applications in veterinary medicine. In this study we focused on the morphological and molecular biological properties of the ADSCs. The expression of stem cell markers Oct4, Nanog and the surface markers CD90 and CD105 were detected using RT-PCR. ADSCs showed a proliferative potential and were capable of adipogenic and osteogenic differentiation. Expression of Alkaline phosphatase (AP), phosphoprotein (SPP1), Runx2 and osteocalcin (OC) mRNA were positive in osteogenic lineages and peroxisome proliferator activated receptor (Pparγ2) mRNA was positive in adipogenic lineages. ADSCs show stem cell and surface marker profiles and differentiation characteristics that are similar to but distinct from other adult stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs). The availability of an easily accessible and reproducible cell source may greatly facilitate the development of stem cell based tissue engineering and therapies for regenerative equine medicine.

  3. IAA8 expression during vascular cell differentiation

    Treesearch

    Andrew T. Groover; Amy Pattishall; Alan M. Jones

    2003-01-01

    We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...

  4. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  5. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  6. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.

    PubMed

    Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan

    2017-05-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  7. In vitro-microenvironment directs preconditioning of human chorion derived MSC promoting differentiation of OPC-like cells.

    PubMed

    Periasamy, Ramesh; Surbek, Daniel V; Schoeberlein, Andreina

    2018-06-01

    The loss of oligodendrocyte progenitor cells (OPC) is a hallmark of perinatal brain injury. Our aim was to develop an in vitro culture condition for human chorion-derived mesenchymal stem cells (MSC) that enhances their stem cell properties and their capability to differentiate towards OPC-like cells. MSC were grown either in serum replacement medium (SRM) or serum-containing medium (SM) and tested for their morphology, proliferation, secretome, migration, protein expression and differentiation into OPC-like cells. MSC cultured in SRM condition have distinct morphology/protein expression profile, increased cell proliferation/migration and capacity to differentiate into OPC-like cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. DS-MAC: differential service medium access control design for wireless medical information systems.

    PubMed

    Yuan, Xiaojing; Bagga, Sumegha; Shen, Jian; Balakrishnan, M; Benhaddou, D

    2008-01-01

    The integration of wireless networking technologies with medical information systems (telemedicine) have a significant impact on healthcare services provided to our society. Applications of telemedicine range from personalized medicine to affordable healthcare for underserved population. Though wireless technologies and medical informatics are individually progressing rapidly, wireless networking for healthcare systems is still at a very premature stage. In this paper we first present our open architecture for medical information systems that integrates both wired and wireless networked data acquisition systems. We then present the implementation at the physical layer and differential service MAC design that adapts channel provisioning based on the information criticality. Performance evaluation using analytical modeling and simulation shows that our DS-MAC provides differentiated services for emergency, warning, and normal traffic.

  9. Human amniotic epithelial cells cultured in substitute serum medium maintain their stem cell characteristics for up to four passages.

    PubMed

    Evron, Ayelet; Goldman, Shlomit; Shalev, Eliezer

    2011-11-01

    The common applied culture medium in which human amniotic epithelial cells (hAECs) maintain their stem cell characteristics contains fetal calf serum (FCS) and thus is not compatible with possible future clinical applications due to the danger of animal derived pathogens. To overcome this problem, we replaced FCS with serum substitute supplement, a serum substitute used in the in vitro fertilization for embryo development, in the common applied culture medium and cultured hAECs in this substitute serum medium (SSM). Purity validation and characterization of freshly isolated and cultured hAECs was assessed through the expression of stem cell specific markers by RT-PCR (gene expression), by immunofluorescence staining and FACS (protein expression). Furthermore, karyotype was performed at passage four in order to exclude possible chromosome anomalies in hAECs cultured in SSM. The differentiation potential of hAECs into the cardiomyogenic lineage was tested through cardiac Troponin T expression by immunohistochemistry. hAECs cultured in SSM maintained expression of all the major pluripotent genes Sox-2, Oct-4 and Nanog as well as the expression of the embryonic stem cell specific surface antigens SSEA-4, SSEA-3 and TRA-1-60 over four passages. Using cardiac differentiation medium containing 10% serum substitute supplement, hAECs differentiated into cardiac troponin T expressing cells. We can conclude that, hAECs maintain their stem cell characteristics when cultured in SSM for up to 4 passages. This makes possible future clinical applications of these cells more feasible.

  10. Effects of the Endocrine-Disrupting Chemical DDT on Self-Renewal and Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Strong, Amy L.; Shi, Zhenzhen; Strong, Michael J.; Miller, David F.B.; Rusch, Douglas B.; Buechlein, Aaron M.; Flemington, Erik K.; McLachlan, John A.; Nephew, Kenneth P.

    2014-01-01

    Background: Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. Objectives: Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. Methods: We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. Results: MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. Conclusion: Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs. Citation: Strong AL, Shi Z, Strong MJ, Miller DF, Rusch DB, Buechlein AM, Flemington EK

  11. Heat and Mass Transfer in an L Shaped Porous Medium

    NASA Astrophysics Data System (ADS)

    Salman Ahmed, N. J.; Azeem; Yunus Khan, T. M.

    2017-08-01

    This article is an extension to the heat transfer in L-shaped porous medium by including the mass diffusion. The heat and mass transfer in the porous domain is represented by three coupled partial differential equations representing the fluid movement, energy transport and mass transport. The equations are converted into algebraic form of equations by the application of finite element method that can be conveniently solved by matrix method. An iterative approach is adopted to solve the coupled equations by setting suitable convergence criterion. The results are discussed in terms of heat transfer characteristics influenced by physical parameters such as buoyancy ratio, Lewis number, Rayleigh number etc. It is found that these physical parameters have significant effect on heat and mass transfer behavior of L-shaped porous medium.

  12. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis.

    PubMed

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Kassner, Stefan S; Zügel, Stefanie; Hörmann, Karl; Kinscherf, Ralf; Goessler, Ulrich Reinhart

    2011-08-01

    Tissue engineering of skeletal muscle is an encouraging possibility for the treatment of muscle loss through the creation of functional muscle tissue in vitro from human stem cells. Currently, the preferred stem cells are primary, non-immunogenic satellite cells ( = myoblasts). The objective of this study was to determine the expression patterns of myogenic markers within the human satellite cell population during their differentiation into multinucleated myotubes for an accurate characterization of stem cell behaviour. Satellite cells were incubated (for 1, 4, 8, 12 or 16 days) with a culture medium containing either a low [ = differentiation medium (DM)] or high [ = growth medium (GM)] concentration of growth factors. Furthermore, we performed a quantitative gene expression analysis of well-defined differentiation makers: myogenic factor 5 (MYF5), myogenin (MYOG), skeletal muscle αactin1 (ACTA1), embryonic (MYH3), perinatal (MYH8) and adult skeletal muscle myosin heavy chain (MYH1). Additionally, the fusion indices of forming myotubes of MYH1, MYH8 and ACTA1 were calculated. We show that satellite cells incubated with DM expressed multiple characteriztic features of mature skeletal muscles, verified by time-dependent upregulation of MYOG, MYH1, MYH3, MYH8 and ACTA1. However, satellite cells incubated with GM did not reveal all morphological aspects of muscle differentiation. Immunocytochemical investigations with antibodies directed against the differentiation markers showed correlations between the gene expression and differentiation. Our data provide information about time-dependent gene expression of differentiation markers in human satellite cells, which can be used for maturation analyses in skeletal muscle tissue-engineering applications. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Differentiation of embryonic stem cells into hepatocytes that coexpress coagulation factors VIII and IX.

    PubMed

    Cao, Jun; Shang, Chang-zhen; Lü, Li-hong; Qiu, De-chuan; Ren, Meng; Chen, Ya-jin; Min, Jun

    2010-11-01

    To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.

  14. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    PubMed Central

    Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian

    2016-01-01

    AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608

  15. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guneta, Vipra; Tan, Nguan Soon; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP)more » and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.« less

  16. Differences between the Cell Populations from the Peritenon and the Tendon Core with Regard to Their Potential Implication in Tendon Repair

    PubMed Central

    Cadby, Jennifer A.; Buehler, Evelyne; Godbout, Charles; van Weeren, P. René; Snedeker, Jess G.

    2014-01-01

    The role of intrinsic and extrinsic healing in injured tendons is still debated. In this study, we characterized cell plasticity, proliferative capacity, and migration characteristics as proxy measures of healing potential in cells derived from the peritenon (extrinsic healing) and compared these to cells from the tendon core (intrinsic healing). Both cell populations were extracted from horse superficial digital flexor tendon and characterized for tenogenic and matrix remodeling markers as well as for rates of migration and replication. Furthermore, colony-forming unit assays, multipotency assays, and real-time quantitative polymerase chain reaction analyses of markers of osteogenic and adipogenic differentiation after culture in induction media were performed. Finally, cellular capacity for differentiation towards a myofibroblastic phenotype was assessed. Our results demonstrate that both tendon- and peritenon-derived cell populations are capable of adipogenic and osteogenic differentiation, with higher expression of progenitor cell markers in peritenon cells. Cells from the peritenon also migrated faster, replicate more quickly, and show higher differentiation potential toward a myofibroblastic phenotype when compared to cells from the tendon core. Based on these data, we suggest that cells from the peritenon have substantial potential to influence tendon-healing outcome, warranting further scrutiny of their role. PMID:24651449

  17. Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells.

    PubMed

    Yang, Shu; Sun, Hai-Mei; Yan, Ji-Hong; Xue, Hong; Wu, Bo; Dong, Fang; Li, Wen-Shuai; Ji, Feng-Qing; Zhou, De-Shan

    2013-07-01

    Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron-like cells from hUCB-MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB-MSCs with k252a, the Trk receptor inhibitor of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron-like cells was significantly decreased compared with ACM-treated hUCB-MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron-like cell differentiation compared with control. The transplantation of ACM-induced hUCB-MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron-like cells. In conclusion, we propose that hUCB-MSCs are a good source of DA neuron-like cells and that ACM is a potential inducer to obtain DA neuron-like cells from hUCB-MSCs in vitro for an ethical and legal cell therapy for PD. Copyright © 2013 Wiley Periodicals, Inc.

  18. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR.

    PubMed

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR.

  19. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    PubMed Central

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  20. Functional differentiation of human pluripotent stem cells on a chip.

    PubMed

    Giobbe, Giovanni G; Michielin, Federica; Luni, Camilla; Giulitti, Stefano; Martewicz, Sebastian; Dupont, Sirio; Floreani, Annarosa; Elvassore, Nicola

    2015-07-01

    Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.

  1. Sinensetin enhances adipogenesis and lipolysis by increasing cyclic adenosine monophosphate levels in 3T3-L1 adipocytes.

    PubMed

    Kang, Seong-Il; Shin, Hye-Sun; Kim, Se-Jae

    2015-01-01

    Sinensetin is a rare polymethoxylated flavone (PMF) found in certain citrus fruits. In this study, we investigated the effects of sinensetin on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine. Sinensetin up-regulated expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein 1c. It also potentiated expression of C/EBPβ and activation of cAMP-responsive element-binding protein. Sinensetin enhanced activation of protein kinase A and increased intracellular cAMP levels in 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, sinensetin stimulated lipolysis via a cAMP pathway. Taken together, these results suggest that sinensetin enhances adipogenesis and lipolysis by increasing cAMP levels in adipocytes.

  2. Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells.

    PubMed

    Choi, Seon-A; Choi, Hoon-Sung; Kim, Keun Jung; Lee, Dong-Soo; Lee, Ji Hey; Park, Jie Yeun; Kim, Eun Young; Li, Xiaoxia; Oh, Hyun-Yang; Lee, Dong-Seok; Kim, Min Kyu

    2013-01-01

    Recent findings have demonstrated that amniotic fluid cells are an interesting and potential source of mesenchymal stem cells (MSCs). In this study, we isolated MSCs from canine amniotic fluid and then characterized their multilineage differentiation ability. Canine amniotic fluid stem (cAFS) cells at passage 5 had a fibroblast-like morphology instead of forming colonies and were positive for pluripotent stem cell markers such as OCT4, NANOG, and SOX2. Flow cytometry analysis showed the expression of MSC surface markers CD44, CD29, and CD90 on the cAFS cells. In addition, these cells were cultured under conditions favorable for adipogenic, chondrogenic, and osteogenic induction. The results of this experiment confirmed the mesenchymal nature of cAFS cells and their multipotent potential. Interestingly, although the cells exhibited a fibroblast-like morphology after hepatogenic induction, reverse transcription-polymerase chain reaction revealed that the expression of several hepatic genes, such as albumin, tyrosine aminotransferase, and alpha-1 antiproteinase, increased following maturation and differentiation. These findings indicated that cAFS cells have functional properties similar to those of hepatocytes. Taken together, the results of our study demonstrated that cAFS cells with mesenchymal characteristics can be successfully isolated from canine amniotic fluid and possess functional properties characteristic of hepatocytes. The findings of our work suggest that cAFS cells have the potential to be a resource for cell-based therapies in a canine model of hepatic disease.

  3. Cigarette smoking hinders human periodontal ligament-derived stem cell proliferation, migration and differentiation potentials

    PubMed Central

    Ng, Tsz Kin; Huang, Li; Cao, Di; Yip, Yolanda Wong-Ying; Tsang, Wai Ming; Yam, Gary Hin-Fai; Pang, Chi Pui; Cheung, Herman S.

    2015-01-01

    Cigarette smoking contributes to the development of destructive periodontal diseases and delays its healing process. Our previous study demonstrated that nicotine, a major constituent in the cigarette smoke, inhibits the regenerative potentials of human periodontal ligament-derived stem cells (PDLSC) through microRNA (miRNA) regulation. In this study, we hypothesized that the delayed healing in cigarette smokers is caused by the afflicted regenerative potential of smoker PDLSC. We cultured PDLSC from teeth extracted from smokers and non-smokers. In smoker PDLSC, we found significantly reduced proliferation rate and retarded migration capabilities. Moreover, alkaline phosphatase activity, calcium deposition and acidic polysaccharide staining were reduced after BMP2-induced differentiation. In contrast, more lipid deposition was observed in adipogenic-induced smoker PDLSC. Furthermore, two nicotine-related miRNAs, hsa-miR-1305 (22.08 folds, p = 0.040) and hsa-miR-18b (15.56 folds, p = 0.018), were significantly upregulated in smoker PDLSC, suggesting these miRNAs might play an important role in the deteriorative effects on stem cells by cigarette smoke. Results of this study provide further evidences that cigarette smoking affects the regenerative potentials of human adult stem cells. PMID:25591783

  4. Cigarette smoking hinders human periodontal ligament-derived stem cell proliferation, migration and differentiation potentials.

    PubMed

    Ng, Tsz Kin; Huang, Li; Cao, Di; Yip, Yolanda Wong-Ying; Tsang, Wai Ming; Yam, Gary Hin-Fai; Pang, Chi Pui; Cheung, Herman S

    2015-01-16

    Cigarette smoking contributes to the development of destructive periodontal diseases and delays its healing process. Our previous study demonstrated that nicotine, a major constituent in the cigarette smoke, inhibits the regenerative potentials of human periodontal ligament-derived stem cells (PDLSC) through microRNA (miRNA) regulation. In this study, we hypothesized that the delayed healing in cigarette smokers is caused by the afflicted regenerative potential of smoker PDLSC. We cultured PDLSC from teeth extracted from smokers and non-smokers. In smoker PDLSC, we found significantly reduced proliferation rate and retarded migration capabilities. Moreover, alkaline phosphatase activity, calcium deposition and acidic polysaccharide staining were reduced after BMP2-induced differentiation. In contrast, more lipid deposition was observed in adipogenic-induced smoker PDLSC. Furthermore, two nicotine-related miRNAs, hsa-miR-1305 (22.08 folds, p = 0.040) and hsa-miR-18b (15.56 folds, p = 0.018), were significantly upregulated in smoker PDLSC, suggesting these miRNAs might play an important role in the deteriorative effects on stem cells by cigarette smoke. Results of this study provide further evidences that cigarette smoking affects the regenerative potentials of human adult stem cells.

  5. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics.

    PubMed

    Sun, Hongli; Wu, Chengtie; Dai, Kerong; Chang, Jiang; Tang, Tingting

    2006-11-01

    In the present study, the effects of a calcium magnesium silicate bioactive ceramic (akermanite) on proliferation and osteoblastic differentiation of human bone marrow stromal cells (hBMSC) have been investigated and compared with the classical ceramic (beta-tricalcium phosphate, beta-TCP). Akermanite and beta-TCP disks were seeded with hBMSC and kept in growth medium or osteogenic medium for 10 days. Proliferation and osteoblastic differentiation were evaluated on day 1, 4, 7 and 10. The data from the Alamar Blue assay and lactic acid production assay showed that hBMSC proliferated more significantly on akermanite than on beta-TCP. The analysis of osteoblast-related genes, including alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OC), indicated that akermanite ceramics enhanced the expression of osteoblast-related genes, but type I collagen (COL I) showed no noticeable difference among akermanite and beta-TCP ceramics. Furthermore, this stimulatory effect was observed not only in osteogenic medium, but also in normal growth medium without osteogenic reagents such as l-ascorbic acid, glycerophosphate and dexamethasone. This result suggests that akermanite can promote osteoblastic differentiation of hBMSC in vitro even without osteogenic reagents, and may be used as a bioactive material for bone regeneration and tissue engineering applications.

  6. New culture medium for the presumptive identificaion of Candida albicans and Cryptococcus neoformans.

    PubMed Central

    Fleming, W H; Hopkins, J M; Land, G A

    1977-01-01

    A new medium composed of Tween 80, oxgall, caffeic acid, and Davis agar (TOC) that provides for the rapid presumptive identification of Candida albicans and Cryptococcus neoformans is described herein. C. albicans is differentiated from other yeasts by the sequential production of germ tubes and chlamydospores. In a comparison with cormeal agar control plates, there was an increase of chlamydospore-forming strains of C. albicans (97.1% versus 87.2%) and a decrease in the time required for chlamydospore formation (24 h versus 48 h). C. neoformans produced a brown pigment of TOC, which is specific for its identification, thus differentiating it from the other yeasts. A comparison of 24-h pigment production by C. neoformans on TOC with that of birdseed agar showed a dark, coffee brown color in the former cultures and a light brown color in the latter. The change in pigmentation of C. neoformans, as well as morphological changes in C. albicans, can be induced within 3 to 12 h and in not more than 24 h on the TOC medium. Images PMID:321472

  7. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity.

    PubMed

    Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito

    2008-10-01

    To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.

  8. Autocrine stimulation of human hepatocytes triggers late DNA synthesis and stabilizes long-term differentiation in vitro.

    PubMed

    Leckel, Kerstin; Strey, Christoph; Bechstein, Wolf O; Boost, Kim A; Auth, Marcus K H; El Makhfi, Amal; Juengel, Eva; Wedel, Steffen; Jones, Jon; Jonas, Dietger; Blaheta, Roman A

    2008-05-01

    Isolated human hepatocytes are of great value in investigating cell transplantation, liver physiology, pathology, and drug metabolism. Though hepatocytes possess a tremendous proliferative capacity in vivo, their ability to grow in culture is severely limited. We postulated that repeated medium change, common to most in vitro systems, may prevent long-term maintenance of hepato-specific functions and growth capacity. To verify our hypotheses we compared the DNA synthesis and differentiation status of isolated human hepatocytes, cultured in medium which was renewed every day or was not changed for 3 weeks ('autocrine' setting). Daily medium change led to rapid hepatocellular de-differentiation without any signs of DNA replication. In contrast, the autocrine setting allowed hepatocytes to become highly differentiated, demonstrated by an elevated ASGPr expression level, and increased albumin and fibrinogen synthesis and release. Cytokeratin 18 filaments were stably expressed, whereas cytokeratin 19 remained undetectable. Hepatocytes growing in an autocrine fashion were activated in the presence of hepatocyte growth factor (HGF), evidenced by c-Met phosphorylation. However, HGF response was not achieved when the culture medium was renewed daily. Furthermore, the autocrine setting evoked a late but strong interleukin 6 release into the culture supernatant, reaching maximum values after a 10-day cultivation period, and intense BrdU incorporation after a further 5-day period. Our data suggest that preservation of the same medium creates environmental conditions which allow hepatocytes to control their differentiation status and DNA synthesis in an autocrine fashion. Further studies are necessary to identify the key mediators involved in autocrine communication and to design the optimal culture configuration for clinical application.

  9. Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part A

    PubMed Central

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-01-01

    Human induced pluripotent stem cells (hiPSCs) offer promise in regenerative medicine, however more data are required to improve understanding of key aspects of the cell differentiation process, including how specific chondrogenic processes affect the gene expression profile of chondrocyte-like cells and the relative value of cell differentiation markers. The main aims of the present study were as follows: To determine the gene expression profile of chondrogenic-like cells derived from hiPSCs cultured in mediums conditioned with HC-402-05a cells or supplemented with transforming growth factor β3 (TGF-β3), and to assess the relative utility of the most commonly used chondrogenic markers as indicators of cell differentiation. These issues are relevant with regard to the use of human fibroblasts in the reprogramming process to obtain hiPSCs. Human fibroblasts are derived from the mesoderm and thus share a wide range of properties with chondrocytes, which also originate from the mesenchyme. Thus, the exclusion of dedifferentiation instead of chondrogenic differentiation is crucial. The hiPSCs were obtained from human primary dermal fibroblasts during a reprogramming process. Two methods, both involving embryoid bodies (EB), were used to obtain chondrocytes from the hiPSCs: EBs formed in a chondrogenic medium supplemented with TGF-β3 (10 ng/ml) and EBs formed in a medium conditioned with growth factors from HC-402-05a cells. Based on immunofluorescence and reverse transcription-quantiative polymerase chain reaction analysis, the results indicated that hiPSCs have the capacity for effective chondrogenic differentiation, in particular cells differentiated in the HC-402-05a-conditioned medium, which present morphological features and markers that are characteristic of mature human chondrocytes. By contrast, cells differentiated in the presence of TGF-β3 may demonstrate hypertrophic characteristics. Several genes [paired box 9, sex determining region Y-box (SOX) 5, SOX6

  10. Endothelial cell differentiation into capillary-like structures in response to tumour cell conditioned medium: a modified chemotaxis chamber assay.

    PubMed

    Garrido, T; Riese, H H; Aracil, M; Pérez-Aranda, A

    1995-04-01

    We have developed a modified chemotaxis chamber assay in which bovine aortic endothelial (BAE) cells degrade Matrigel basement membrane and migrate and form capillary-like structures on type I collagen. This capillary formation occurs in the presence of conditioned media from highly metastatic tumour cell lines, such as B16F10 murine melanoma or MDA-MD-231 human breast adenocarcinoma, but not in the presence of conditioned medium (CM) from the less invasive B16F0 cell line. Replacement of tumour cell CM by 10 ng ml-1 basic fibroblast growth factor (bFGF) also results in capillary-like structure formation by BAE cells. An anti-bFGF antibody blocks this effect, showing that bFGF is one of the factors responsible for the angiogenic response induced by B16F10 CM in our assay. Addition of an anti-laminin antibody reduces significantly the formation of capillary-like structures, probably by blocking the attachment of BAE cells to laminin present in Matrigel. The anti-angiogenic compound suramin inhibits in a dose-dependent manner (complete inhibition with 100 microM suramin) the migration and differentiation of BAE cells on type I collagen in response to B16F10 CM. This assay represents a new model system to study tumour-induced angiogenesis in vitro.

  11. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells.

    PubMed

    De Rosa, Alfredo; Tirino, Virginia; Paino, Francesca; Tartaglione, Antonella; Mitsiadis, Thimios; Feki, Anis; d'Aquino, Riccardo; Laino, Luigi; Colacurci, Nicola; Papaccio, Gianpaolo

    2011-03-01

    Mesenchymal stem cells are present in many tissues of the human body, including amniotic fluid (AF) and dental pulp (DP). Stem cells of both AF and DP give rise to a variety of differentiated cells. In our experience, DP stem cells (DPSCs) display a high capacity to produce bone. Therefore, our aim was to investigate if AF-derived stem cells (AFSCs) were able to undergo bone differentiation in the presence of DPSCs. AFSCs were seeded under three different conditions: (i) cocultured with DPSCs previously differentiated into osteoblasts; (ii) cultured in the conditioned medium of osteoblast-differentiated DPSCs; (iii) cultured in the osteogenic medium supplemented with vascular endothelial growth factor and bone morphogenetic protein-2 (BMP-2). Results showed that AFSCs were positive for mesenchymal markers, and expressed high levels of Tra1-60, Tra1-80, BMPR1, BMPR2, and BMP-2. In contrast, AFSCs were negative for epithelial and hematopoietic/endothelial markers. When AFSCs were cocultured with DPSCs-derived osteoblasts, they differentiated into osteoblasts. A similar effect was observed when AFSCs were cultured in the presence of a conditioned medium originated from DPSCs. We found that osteoblasts derived from DPSCs released large amounts of BMP-2 and vascular endothelial growth factor into the culture medium and that those morphogens significantly upregulate RUNX-2 gene, stimulating osteogenesis. This study highlights the mechanisms of osteogenesis and strongly suggests that the combination of AFSCs with DPSCs may provide a rich source of soluble proteins useful for bone engineering purposes.

  12. RNA-Seq Analysis Reveals a Positive Role of HTR2A in Adipogenesis in Yan Yellow Cattle.

    PubMed

    Yun, Jinyan; Jin, Haiguo; Cao, Yang; Zhang, Lichun; Zhao, Yumin; Jin, Xin; Yu, Yongsheng

    2018-06-13

    In this study, we performed high throughput RNA sequencing at the primary bovine preadipocyte (Day-0), mid-differentiation (Day-4), and differentiated adipocyte (Day-9) stages in order to characterize the transcriptional events regulating differentiation and function. The preadipocytes were isolated from subcutaneous fetal bovine adipose tissues and were differentiated into mature adipocytes. The adipogenic characteristics of the adipocytes were detected during various stages of adipogenesis (Day-0, Day-4, and Day-9). We used RNA sequencing (RNA-seq) to investigate a comprehensive transcriptome information of adipocytic differentiation. Compared to the pre-differentiation stage (Day-0), 2510 genes were identified as differentially expressed genes (DEGs) at the mid-differentiation stage (Day-4). We found 2446 DEGs in the mature adipocytic stage relative to the mid-differentiation stage. Some adipogenesis-related transcription factors, CCAAT-enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) were differentially expressed at Day-0, Day-4, and Day-9. We further investigated the adipogenic function of 5-hydroxytryptamine receptor 2A (HTR2A) in adipogenesis. Overexpression of HTR2A stimulated the differentiation of preadipocytes, and knockdown of HTR2A had opposite effects. Furthermore, functional enrichment analysis of DEGs revealed that the PI3K-Akt signaling pathway was the significantly enriched pathway, and HTR2A regulated adipogenesis by activating or inhibiting phosphorylation of phospho-AKT (Ser473). In summary, the present study provides the first comparative transcription of various periods of adipocytes in cattle, which presents a solid foundation for further study into the molecular mechanism of fat deposition and the improvement of beef quality in cattle.

  13. Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida

    PubMed Central

    Hospenthal, Duane R; Beckius, Miriam L; Floyd, Karon L; Horvath, Lynn L; Murray, Clinton K

    2006-01-01

    Background CHROMagar Candida (CaC) is increasingly being reported as a medium used to differentiate Candida albicans from non-albicans Candida (NAC) species. Rapid identification of NAC can assist the clinician in selecting appropriate antifungal therapy. CaC is a differential chromogenic medium designed to identify C. albicans, C. krusei, and C. tropicalis based on colony color and morphology. Some reports have proposed that CaC can also reliably identify C. dubliniensis and C. glabrata. Methods We evaluated the usefulness of CaC in the identification of C. dubliniensis, C. famata, C. firmetaria, C. glabrata, C. guilliermondii, C. inconspicua, C. kefyr, C. lipolytica, C. lusitaniae, C. norvegensis, C. parapsilosis, and C. rugosa. Results Most NAC produced colonies that were shades of pink, lavender, or ivory. Several isolates of C. firmetaria and all C. inconspicua produced colonies difficult to differentiate from C. krusei. Most C. rugosa isolates produced unique colonies with morphology like C. krusei except in a light blue-green color. C. glabrata isolates produced small dark violet colonies that could be differentiated from the pink and lavender colors produced by other species. All seventeen isolates of C. dubliniensis produced green colonies similar to those produced by C. albicans. Conclusion C. glabrata and C. rugosa appear distinguishable from other species using CaC. Some NAC, including C. firmetaria and C. inconspicua, could be confused with C. krusei using this medium. PMID:16390552

  14. Medium Range Flood Forecasting for Agriculture Damage Reduction

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.

    2014-12-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) flood forecasting model has been developed for Bangladesh and Thailand. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range flood forecasts in a way that is not commonly practiced globally today.

  15. Effects of a meal rich in medium-chain saturated fat on postprandial lipemia in relatives of type 2 diabetics.

    PubMed

    Pietraszek, Anna; Hermansen, Kjeld; Pedersen, Steen B; Langdahl, Bente L; Holst, Jens J; Gregersen, Søren

    2013-01-01

    Patients with type 2 diabetes and their relatives (REL) have increased risk for cardiovascular disease (CVD). Postprandial triglyceridemia (PPL), which is influenced by diet, is an independent risk factor for CVD. Little is known about the effects of medium-chain saturated fatty acids (medium-chain SFA) on PPL and gene expression in REL. The objective of this study was to test the hypothesis that medium-chain SFA cause larger PPL response in REL compared with controls (CON) and have a differential effect on circulating incretins and ghrelin and gene expression in muscle and adipose tissue in REL and CON. Seventeen REL and 17 CON received a fat-rich meal (79 energy percent from fat) based on medium-chain SFA (coconut oil). Plasma concentrations of triglycerides (TG), free-fatty acids, insulin, glucose, glucagon-like peptide-1, glucose-dependent insulintropic peptide, and ghrelin were measured before and during 240 min postprandially. Muscle and adipose tissue biopsies were taken at baseline and after the test meal. After the test meal, REL had a higher plasma TG response (P = 0.002) and a tendency toward higher insulin response (P = 0.100). A number of genes were upregulated in response to the meal rich in medium-chain SFA in CON, but not in REL. A meal high in medium-chain SFA resulted in larger PPL response in REL than in CON. It remains to be clarified whether this can be reproduced by a pure medium-chain fat (MCT) load. The meal exerted a differential effect on gene expression in muscle, but not adipose tissue, of REL compared with CON. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation

    PubMed Central

    Yu, Jing; Hirose-Yotsuya, Lisa; Take, Kazumi; Sun, Wei; Iwabu, Masato; Okada-Iwabu, Miki; Fujita, Takanori; Aoyama, Tomohisa; Tsutsumi, Shuichi; Ueki, Kohjiro; Kodama, Tatsuhiko; Sakai, Juro; Aburatani, Hiroyuki; Kadowaki, Takashi

    2011-01-01

    Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type–specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation) and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq). FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI) transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA–mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our study

  17. Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

    PubMed Central

    Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  18. Estrogen and phenol red free medium for osteoblast culture: study of the mineralization ability.

    PubMed

    de Faria, A N; Zancanela, D C; Ramos, A P; Torqueti, M R; Ciancaglini, P

    2016-08-01

    To design an estrogen and phenol red free medium for cell culture and check its effectiveness and safety on osteoblast growth it is necessary to maintain the estrogen receptors free for tests. For this purpose, we tested some modifications of the traditional culture media: estrogen depleted fetal bovine serum; estrogen charcoal stripped fetal bovine serum and phenol red free α-MEM. The aim of this work is to examine the effects of its depletion in the proliferation, differentiation, and toxicity of mesenchymal stromal cells differentiated into osteoblasts to obtain an effective interference free culture medium for in vitro studies, focused on non-previously studied estrogen receptors. We performed viability tests using the following techniques: MTT, alkaline phosphatase specific activity, formation of mineralized matrix by Alizarin technique and analysis of SEM/EDX of mineralized nodules. The results showed that the culture media with estrogen free α-MEM + phenol red free α-MEM did not impact viability, alkaline phosphatase activity and mineralization of the osteoblasts culture compared to control. In addition, its nodules possess Ca/P ratio similar to hydroxyapatite nodules on the 14th and 21st day. In conclusion, the modified culture medium with phenol red free α-MEM with estrogen depleted fetal bovine serum can be safely used in experiments where the estrogen receptors need to be free.

  19. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.

    PubMed

    Hollmann, Emma K; Bailey, Amanda K; Potharazu, Archit V; Neely, M Diana; Bowman, Aaron B; Lippmann, Ethan S

    2017-04-13

    Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm 2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm 2 and fluorescein permeability below 1.95 × 10 -7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm 2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated

  20. Three-Step Method for Proliferation and Differentiation of Human Embryonic Stem Cell (hESC)-Derived Male Germ Cells

    PubMed Central

    Lim, Jung Jin; Shim, Myung Sun; Lee, Jeoung Eun; Lee, Dong Ryul

    2014-01-01

    The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells. PMID:24690677

  1. Synthetic laser medium

    DOEpatents

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  2. Synthetic laser medium

    DOEpatents

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  3. Effect of medium osmolarity and taurine on neuritic outgrowth from goldfish retinal explants.

    PubMed

    Cubillán, Lisbeth; Obregón, Francisco; Lima, Lucimey

    2009-01-01

    Taurine stimulates outgrowth of goldfish retinal explants in a concentration- and time-dependent manner, an effect related to calcium movement and protein phosphorylation. Since taurine is an osmoregulator in the central nervous system, and osmolality might influence regeneration, the purpose of this work was to evaluate the possible effect of hypo-osmolality on basal outgrowth and on the trophic action of the amino acid. Accordingly, goldfish retinal explants obtained after crushing the optic nerve were cultured in iso- and hypo-osmotic medium, the latter achieved by diluting the medium 10% 24 and 72 h after plating. The length and density of the neurites, measured after 5 days in culture, were significantly lower in the hypo- than in the iso-osmotic medium. Taurine stimulated the outgrowth under both conditions, but the percentage of increase was greater in iso-osmotic medium. Taurine concentration, determined by HPLC, did not significantly change in explants. Co-administration of beta-alanine and taurine impaired the trophic effect of taurine to a greater extent in the iso- than in hypo-osmotic medium, indicating a possible differential interaction with the taurine transporter which could be altered by osmotic stress. The exact mechanism of outgrowth regulation by hypotonicity requires further clarification, taking into considering possible modification of the taurine transporter.

  4. Isolation and in vitro culture of trypanosomes from Leptodactylus ocellatus from the Atlantic Forest in a new experimental culture medium.

    PubMed

    Lemos, M; Souza, C S F; da Costa, S C Gonçalves; Souto-Padrón, T; D'Agosto, M

    2013-02-01

    The purpose of this study was to verify the in vitro development of Trypanosoma sp. isolated from Leptodactylus ocellatus frogs under a new protocol using a biphasic medium composed of Novy, McNeal, and Nicolle (NNN) blood agar medium as a solid phase and liver infusion, brain heart infusion, and tryptose (LIBHIT) medium as a liquid phase. Blood forms, collected by cardiac puncture or after the maceration of different organs, were inoculated in culture tubes containing the biphasic medium composed by NNN and LIBHIT. Trypanosomes were observed 4 days postinoculation; most bloodstream trypomastigotes had differentiated into epimastigotes and amastigotes by this time. Trypomastigotes were again observed in older cultures (7 days). Parasites were successfully subcultured for 8 mo in this medium and successfully cryopreserved. The present study provides a new protocol medium for the isolation and culture of anuran trypanosomes.

  5. Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium.

    PubMed

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi

    2011-01-01

    Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.

  6. Potential role of herbal remedies in stem cell therapy: proliferation and differentiation of human mesenchymal stromal cells.

    PubMed

    Udalamaththa, Vindya Lankika; Jayasinghe, Chanika Dilumi; Udagama, Preethi Vidya

    2016-08-11

    Stem cell therapy has revolutionized modern clinical therapy with the potential of stem cells to differentiate into many different cell types which may help to replace different cell lines of an organism. Innumerous trials are carried out to merge new scientific knowledge and techniques with traditional herbal extracts that may result in less toxic, affordable, and highly available natural alternative therapeutics. Currently, mesenchyamal stromal cell (MSC) lines are treated with individual and mixtures of crude herbal extracts, as well as with purified compounds from herbal extracts, to investigate the mechanisms and effects of these on stem cell growth and differentiation. Human MSCs (hMSCs) possess multilineage, i.e., osteogenic, neurogenic, adipogenic, chondrogenic, and myogenic, differentiation abilities. The proliferative and differentiation properties of hMSCs treated with herbal extracts have shown promise in diseases such as osteoporosis, neurodegenerative disorders, and other tissue degenerative disorders. Well characterized herbal extracts that result in increased rates of tissue regeneration may be used in both stem cell therapy and tissue engineering for replacement therapy, where the use of scaffolds and vesicles with enhanced attaching and proliferative properties could be highly advantageous in the latter. Although the clinical application of herbal extracts is still in progress due to the variability and complexity of bioactive constituents, standardized herbal preparations will strengthen their application in the clinical context. We have critically reviewed the proliferative and differentiation effects of individual herbal extracts on hMSCs mainly derived from bone marrow and elaborated on the plausible underlying mechanisms of action. To be fruitfully used in reparative and regenerative therapy, future directions in this area of study should (i) make use of hMSCs derived from different non-traditional sources, including medical waste material

  7. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells.

    PubMed

    Taha, Masoumeh Fakhr; Hedayati, Vahideh

    2010-08-01

    Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. 'That proves my point': How mediums reconstrue disconfirmation in medium-sitter interactions.

    PubMed

    Enoksen, Anette Einan; Dickerson, Paul

    2018-04-01

    Previous research has examined how the talk of mediums attends to the epistemological status of their readings. Such work has identified that mediums frequently use question-framed propositions that are typically confirmed by the sitter, thereby conferring epistemological status on the medium. This study seeks to investigate what happens when the sitter disconfirms the propositions of the medium. The study focuses on the ways in which such disconfirmation can be responded to such that it is reconstrued as evidence of the psychic nature of the medium's reading. Televised demonstrations of psychic readings involving British and US mediums and their sitters are analysed. The results suggest that mediums rework disconfirmation as proof in several ways: first, by emphasizing the different access that sitter and medium have to knowledge (e.g., about the future); second, as evidence that the medium has access to the actual voice of the deceased (and may therefore mishear what the deceased has said to them); and third, as revealing an important truth that has hitherto been concealed from the sitter. The implications of these findings are considered for cases where speakers bring different and potentially competing, epistemological resources to an interaction. © 2018 The British Psychological Society.

  9. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed Central

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-01-01

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress. PMID:9461558

  10. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-02-15

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress.

  11. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K.

    2000-01-01

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

  12. Olive Leaf Extract from Sicilian Cultivar Reduced Lipid Accumulation by Inducing Thermogenic Pathway during Adipogenesis

    PubMed Central

    Palmeri, Rosa; Monteleone, Julieta I.; Spagna, Giovanni; Restuccia, Cristina; Raffaele, Marco; Vanella, Luca; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Olive leaves contain a wide variety of phenolic compounds belonging to phenolic acids, phenolic alcohols, flavonoids, and secoiridoids, and include also many other pharmacological active compounds. They could play an important role in human diet and health because of their ability to lower blood pressure, increase coronary arteries blood flow and decrease the risk of cardiovascular diseases. The aim of this study was to investigate the effect of olive leaf extract (OLE) from Sicilian cultivar on adipogenic differentiation of human adipose derived mesenchymal stem cells and its impact on lipid metabolism. We showed that OLE treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein uncoupling protein 1, sirtuin 1, peroxisome proliferator-activated receptor alpha, and coactivator 1 alpha. Furthermore, OLE significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Taken together, our results suggest that OLE may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis. PMID:27303302

  13. Conjugated linoleic acid prevents age-induced bone loss in mice by regulating both osteoblastogenesis and adipogenesis.

    PubMed

    Lin, Guanlin; Wang, Huan; Dai, Jun; Li, Xiao; Guan, Ming; Gao, Shutao; Ding, Qing; Wang, Huaixi; Fang, Huang

    2017-08-26

    Osteoporosis (OP) can increase the risk of bone fracture and other complications, which is a major clinical problem. Previous researches have revealed that conjugated linoleic acid (CLA) can promote the bone formation. But the mechanisms are not clear. Thus, we tested the hypothesis that CLA acts on bone formation might be via mTOR Complex1 (mTORC 1) pathway by in vitro and vivo assays. We studied the effect of CLA mix on MC3T3-E1 pre-osteoblasts differentiation into osteoblasts, and bone formation under osteoporotic conditions. At the same time, 3T3-L1 pre-adipocyte with the same CLA mix concentration gradient for 8 days with adipogenic differentiation medium. We found that Alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) expressions of pre-osteoblasts were up-regulated. Moreover in presence of CLA, peroxisome proliferators-activated receptor γ(PPARγ) and CCAAT/enhancer-binding protein (C/EBPα) were down-regulated. Osteoporosis mice bone parameters in the distal femoral meraphysis were significantly increased compared with placebo mice. Furthermore, the phosphor-S6 (P-S6) was suppressed and phosphor-AKT (P-AKT) was up-regulated. Consistently, CLA can stimulate differentiation of osteoblasts and inhibited pre-adipocytes differentiated into adipocytes via AKT/mTORC1 signal pathway. Overall CLA thus be a suitable candidate for the treatment of patients with postmenopausal osteoporosis and obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Isolation of Human Adipose-Derived Stromal Cells Using Laser-Assisted Liposuction and Their Therapeutic Potential in Regenerative Medicine

    PubMed Central

    Chung, Michael T.; Zimmermann, Andrew S.; Paik, Kevin J.; Morrison, Shane D.; Hyun, Jeong S.; Lo, David D.; McArdle, Adrian; Montoro, Daniel T.; Walmsley, Graham G.; Senarath-Yapa, Kshemendra; Sorkin, Michael; Rennert, Robert; Chen, Hsin-Han; Chung, Andrew S.; Vistnes, Dean; Gurtner, Geoffrey C.; Longaker, Michael T.

    2013-01-01

    Harvesting adipose-derived stromal cells (ASCs) for tissue engineering is frequently done through liposuction. However, several different techniques exist. Although third-generation ultrasound-assisted liposuction has been shown to not have a negative effect on ASCs, the impact of laser-assisted liposuction on the quality and differentiation potential of ASCs has not been studied. Therefore, ASCs were harvested from laser-assisted lipoaspirate and suction-assisted lipoaspirate. Next, in vitro parameters of cell yield, cell viability and proliferation, surface marker phenotype, osteogenic differentiation, and adipogenic differentiation were performed. Finally, in vivo bone formation was assessed using a critical-sized cranial defect in athymic nude mice. Although ASCs isolated from suction-assisted lipoaspirate and laser-assisted lipoaspirate both successfully underwent osteogenic and adipogenic differentiation, the cell yield, viability, proliferation, and frequency of ASCs (CD34+CD31−CD45−) in the stromal vascular fraction were all significantly less with laser-assisted liposuction in vitro (p < .05). In vivo, quantification of osseous healing by micro-computed tomography revealed significantly more healing with ASCs isolated from suction-assisted lipoaspirate relative to laser-assisted lipoaspirate at the 4-, 6-, and 8-week time points (p < .05). Therefore, as laser-assisted liposuction appears to negatively impact the biology of ASCs, cell harvest using suction-assisted liposuction is preferable for tissue-engineering purposes. PMID:24018794

  15. Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine.

    PubMed

    Chung, Michael T; Zimmermann, Andrew S; Paik, Kevin J; Morrison, Shane D; Hyun, Jeong S; Lo, David D; McArdle, Adrian; Montoro, Daniel T; Walmsley, Graham G; Senarath-Yapa, Kshemendra; Sorkin, Michael; Rennert, Robert; Chen, Hsin-Han; Chung, Andrew S; Vistnes, Dean; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2013-10-01

    Harvesting adipose-derived stromal cells (ASCs) for tissue engineering is frequently done through liposuction. However, several different techniques exist. Although third-generation ultrasound-assisted liposuction has been shown to not have a negative effect on ASCs, the impact of laser-assisted liposuction on the quality and differentiation potential of ASCs has not been studied. Therefore, ASCs were harvested from laser-assisted lipoaspirate and suction-assisted lipoaspirate. Next, in vitro parameters of cell yield, cell viability and proliferation, surface marker phenotype, osteogenic differentiation, and adipogenic differentiation were performed. Finally, in vivo bone formation was assessed using a critical-sized cranial defect in athymic nude mice. Although ASCs isolated from suction-assisted lipoaspirate and laser-assisted lipoaspirate both successfully underwent osteogenic and adipogenic differentiation, the cell yield, viability, proliferation, and frequency of ASCs (CD34(+)CD31(-)CD45(-)) in the stromal vascular fraction were all significantly less with laser-assisted liposuction in vitro (p < .05). In vivo, quantification of osseous healing by micro-computed tomography revealed significantly more healing with ASCs isolated from suction-assisted lipoaspirate relative to laser-assisted lipoaspirate at the 4-, 6-, and 8-week time points (p < .05). Therefore, as laser-assisted liposuction appears to negatively impact the biology of ASCs, cell harvest using suction-assisted liposuction is preferable for tissue-engineering purposes.

  16. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum

    PubMed Central

    2012-01-01

    Introduction Mesenchymal stem cells (MSCs) are multipotent cells able to differentiate into several mesenchymal lineages, classically derived from bone marrow (BM) but potentially from umbilical cord blood (UCB). Although they are becoming a good tool for regenerative medicine, they usually need to be expanded in fetal bovine serum (FBS)-supplemented media. Human platelet lysate (HPL) has recently been proposed as substitute for safety reasons, but it is not yet clear how this supplement influences the properties of expanded MSCs. Methods In the present study, we compared the effect of various media combining autologous HPL with or without FBS on phenotypic, proliferative and functional (differentiation, cytokine secretion profile) characteristics of human BM-derived MSCs. Results Despite less expression of adipogenic and osteogenic markers, MSCs cultured in HPL-supplemented media fully differentiated along osteoblastic, adipogenic, chondrogenic and vascular smooth muscle lineages. The analyses of particular specific proteins expressed during osteogenic differentiation (calcium-sensing receptor (CaSR) and parathormone receptor (PTHR)) showed their decrease at D0 before any induction for MSC cultured with HPL mostly at high percentage (10%HPL). The cytokine dosage showed a clear increase of proliferation capacity and interleukin (IL)-6 and IL-8 secretion. Conclusions This study shows that MSCs can be expanded in media supplemented with HPL that can totally replace FBS. HPL-supplemented media not only preserves their phenotype as well as their differentiation capacity, but also shortens culture time by increasing their growth rate. PMID:22333342

  17. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  18. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease.

    PubMed

    Agra, Rosa María; Fernández-Trasancos, Ángel; Sierra, Juan; González-Juanatey, José Ramón; Eiras, Sonia

    2014-10-01

    S100A9 (calgranulin B) has inflammatory and oxidative stress properties and was found to be associated with atherosclerosis and obesity. One of the proteins that can regulate S100A9 transcription is p53, which is involved in cell cycle, apoptosis and adipogenesis. Thus, it triggers adipocyte enlargement and finally obesity. Because epicardial adipose tissue (EAT) volume and thickness is related to coronary artery disease (CAD), we studied the gene expression of this pathway in patients with cardiovascular disease and its association with obesity. Adipocytes and stromal cells from EAT and subcutaneous adipose tissue (SAT) from 48 patients who underwent coronary artery bypass graft and/or valve replacement were obtained after collagenase digestion and differential centrifugation. The expression levels of the involved genes on adipogenesis and cell cycle like fatty acid-binding protein (FABP) 4, retinol-binding protein (RBP)4, p53 and S100A9 were determined by real-time polymerase chain reaction (PCR). Adipocyte diameter was measured by optical microscopy. We found that epicardial adipocytes expressed significantly lower levels of adipogenic genes (FABP4 and RBP4) and cell cycle-related genes (S100A9 and p53) than subcutaneous adipocytes. However, in obese patients, upregulation of adipogenic and cell cycle-related genes in subcutaneous and epicardial adipocytes, respectively, was observed. The enlargement of adipocyte size was related to FABP4, S100A9 and p53 expression levels in stromal cells. But only the p53 association was maintained in epicardial stromal cells from obese patients (p=0.003). The expression of p53, but not S100A9, in epicardial stromal cells is related to adipocyte enlargement in obese patients with cardiovascular disease. These findings suggest new mechanisms for understanding the relationship between epicardial fat thickness, obesity and cardiovascular disease.

  19. Chebyshev collocation spectral method for one-dimensional radiative heat transfer in linearly anisotropic-scattering cylindrical medium

    NASA Astrophysics Data System (ADS)

    Zhou, Rui-Rui; Li, Ben-Wen

    2017-03-01

    In this study, the Chebyshev collocation spectral method (CCSM) is developed to solve the radiative integro-differential transfer equation (RIDTE) for one-dimensional absorbing, emitting and linearly anisotropic-scattering cylindrical medium. The general form of quadrature formulas for Chebyshev collocation points is deduced. These formulas are proved to have the same accuracy as the Gauss-Legendre quadrature formula (GLQF) for the F-function (geometric function) in the RIDTE. The explicit expressions of the Lagrange basis polynomials and the differentiation matrices for Chebyshev collocation points are also given. These expressions are necessary for solving an integro-differential equation by the CCSM. Since the integrand in the RIDTE is continuous but non-smooth, it is treated by the segments integration method (SIM). The derivative terms in the RIDTE are carried out to improve the accuracy near the origin. In this way, a fourth order accuracy is achieved by the CCSM for the RIDTE, whereas it's only a second order one by the finite difference method (FDM). Several benchmark problems (BPs) with various combinations of optical thickness, medium temperature distribution, degree of anisotropy, and scattering albedo are solved. The results show that present CCSM is efficient to obtain high accurate results, especially for the optically thin medium. The solutions rounded to seven significant digits are given in tabular form, and show excellent agreement with the published data. Finally, the solutions of RIDTE are used as benchmarks for the solution of radiative integral transfer equations (RITEs) presented by Sutton and Chen (JQSRT 84 (2004) 65-103). A non-uniform grid refined near the wall is advised to improve the accuracy of RITEs solutions.

  20. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway.

    PubMed

    Lin, Fei-Xiang; Du, Shi-Xin; Liu, De-Zhong; Hu, Qin-Xiao; Yu, Guo-Yong; Wu, Chu-Cheng; Zheng, Gui-Zhou; Xie, Da; Li, Xue-Dong; Chang, Bo

    2016-01-01

    Naringin is an active compound extracted from Rhizoma Drynariae, and studies have revealed that naringin can promote proliferation and osteogenic differentiation of bone marrow stromal cells (BMSCs). In this study, we explored whether naringin could promote osteogenic differentiation of BMSCs by upregulating Foxc2 expression via the Indian hedgehog (IHH) signaling pathway. BMSCs were cultured in basal medium, basal medium with naringin, osteogenic induction medium, osteogenic induction medium with naringin and osteogenic induction medium with naringin in the presence of the IHH inhibitor cyclopamine (CPE). We examined cell proliferation by using a WST-8 assay, and differentiation by Alizarin Red S staining (for mineralization) and alkaline phosphatase (ALP) activity. In addition, we detected core-binding factor α1 (Cbfα1), osteocalcin (OCN), bone sialoprotein (BSP), peroxisome proliferation-activated receptor gamma 2 (PPARγ2) and Foxc2 expression by using RT-PCR. We also determined Foxc2 and IHH protein levels by western blotting. Naringin increased the mineralization of BMSCs, as shown by Alizarin red S assays, and induced ALP activity. In addition, naringin significantly increased the mRNA levels of Foxc2, Cbfα1, OCN, and BSP, while decreasing PPARγ2 mRNA levels. Furthermore, the IHH inhibitor CPE inhibited the osteogenesis-potentiating effects of naringin. Naringin increased Foxc2 and stimulated the activation of IHH, as evidenced by increased expression of proteins that were inhibited by CPE. Our findings indicate that naringin promotes osteogenic differentiation of BMSCs by up-regulating Foxc2 expression via the IHH signaling pathway.