Sample records for adjacent anatomical structures

  1. [Extended endoscopic endonasal posterior (transclival) approach to tumors of the clival region and ventral posterior cranial fossa. Part 1. Topographic and anatomical features of the clivus and adjacent structures].

    PubMed

    Shkarubo, A N; Koval', K V; Dobrovol'skiy, G F; Shkarubo, M A; Karnaukhov, V V; Kadashev, B A; Andreev, D N; Chernov, I V; Gadzhieva, O A; Aleshkina, O Yu; Anisimova, E A; Kalinin, P L; Kutin, M A; Fomichev, D V; Sharipov, O I; Ismailov, D B; Selivanov, E S

    to describe the main topographic and anatomical features of the clival region and its adjacent structures for improvement and optimization of the extended endoscopic endonasal posterior (transclival) approach for resection of tumors of the clival region and ventral posterior cranial fossa. We performed a craniometric study of 125 human skulls and a topographic anatomical study of heads of 25 cadavers, the arterial and venous bed of which was stained with colored silicone (the staining technique was developed by the authors) to visualize bed features and individual variability. Currently, we have clinical material from more than 120 surgical patients with various skull base tumors of the clival region and ventral posterior cranial fossa (chordomas, pituitary adenomas, meningiomas, cholesteatomas, etc.) who were operated on using the endoscopic transclival approach. We present the main anatomical landmarks and parameters of some anatomical structures that are required for performing the endoscopic endonasal posterior approach. The anatomical landmarks, such as the intradural openings of the abducens and glossopharyngeal nerves, may be used to arbitrarily divide the clival region into the superior, middle, and inferior thirds. The anatomical landmarks important for the surgeon, which are detected during a topographic anatomical study of the skull base, facilitate identification of the boundaries between the different clival portions and the C1 segments of the internal carotid arteries. The superior, middle, and inferior transclival approaches provide an access to the ventral surface of the upper, middle, and lower neurovascular complexes in the posterior cranial fossa. The endoscopic transclival approach may be used to access midline tumors of the posterior cranial fossa. The approach is an alternative to transcranial approaches in surgical treatment of clival region lesions. This approach provides results comparable (and sometimes better) to those of the transcranial

  2. Proximity of arthroscopic ankle stabilization procedures to surrounding structures: an anatomic study.

    PubMed

    Drakos, Mark; Behrens, Steve B; Mulcahey, Mary K; Paller, David; Hoffman, Eve; DiGiovanni, Christopher W

    2013-06-01

    To examine the anatomy of the lateral ankle after arthroscopic repair of the lateral ligament complex (anterior talofibular ligament [ATFL] and calcaneofibular ligament [CFL]) with regard to structures at risk. Ten lower extremity cadaveric specimens were obtained and were screened for gross anatomic defects and pre-existing ankle laxity. The ATFL and CFL were sectioned from the fibula by an open technique. Standard anterolateral and anteromedial arthroscopy portals were made. An additional portal was created 2 cm distal to the anterolateral portal. The articular surface of the fibula was identified, and the ATFL and CFL were freed from the superficial and deeper tissues. Suture anchors were placed in the fibula at the ATFL and CFL origins and were used to repair the origin of the lateral collateral structures. The distance from the suture knot to several local anatomic structures was measured. Measurements were taken by 2 separate observers, and the results were averaged. Several anatomic structures lie in close proximity to the ATFL and CFL sutures. The ATFL sutures entrapped 9 of 55 structures, and no anatomic structures were inadvertently entrapped by the CFL sutures. The proximity of the peroneus tertius and the extensor tendons to the ATFL makes them at highest risk of entrapment, but the proximity of the intermediate branch of the superficial peroneal nerve (when present) is a risk with significant morbidity. Our results indicate that the peroneus tertius and extensor tendons have the highest risk for entrapment and show the smallest mean distances from the anchor knot to the identified structure. Careful attention to these structures, as well as the superficial peroneal nerve, is mandatory to prevent entrapment of tendons and nerves when one is attempting arthroscopic lateral ankle ligament reconstruction. Defining the anatomic location and proximity of the intervening structures adjacent to the lateral ligament complex of the ankle may help clarify the

  3. A multivariate pattern analysis study of the HIV-related white matter anatomical structural connections alterations

    NASA Astrophysics Data System (ADS)

    Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie

    2017-03-01

    It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.

  4. Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part II: regional anatomy of the atria and relevance to damage of adjacent structures during AF ablation.

    PubMed

    Macedo, Paula G; Kapa, Suraj; Mears, Jennifer A; Fratianni, Amy; Asirvatham, Samuel J

    2010-07-01

    Ablation procedures for atrial fibrillation have become an established and increasingly used option for managing patients with symptomatic arrhythmia. The anatomic structures relevant to the pathogenesis of atrial fibrillation and ablation procedures are varied and include the pulmonary veins, other thoracic veins, the left atrial myocardium, and autonomic ganglia. Exact regional anatomic knowledge of these structures is essential to allow correlation with fluoroscopy and electrograms and, importantly, to avoid complications from damage of adjacent structures within the chest. We present this information as a series of 2 articles. In a prior issue, we have discussed the thoracic vein anatomy relevant to paroxysmal atrial fibrillation. In the present article, we focus on the atria themselves, the autonomic ganglia, and anatomic issues relevant for minimizing complications during atrial fibrillation ablation.

  5. Two unusual anatomic variations create a diagnostic dilemma in distal ulnar nerve compression.

    PubMed

    Kiehn, Mark W; Derrick, Allison J; Iskandar, Bermans J

    2008-09-01

    Diagnosis of peripheral neuropathies is based upon patterns of functional deficits and electrodiagnostic testing. However, anatomic variations can lead to confounding patterns of physical and electrodiagnostic findings. Authors present a case of ulnar nerve compression due to a rare combination of anatomic variations, aberrant branching pattern, and FCU insertion at the wrist, which posed a diagnostic and therapeutic dilemma. The literature related to isolated distal ulnar motor neuropathy and anatomic variations of the ulnar nerve and adjacent structures is also reviewed. This case demonstrates how anatomic variations can complicate the interpretation of clinical and electrodiagnostic findings and underscores the importance of thorough exploration of the nerve in consideration for possible variations. (c) 2008 Wiley-Liss, Inc.

  6. Anatomical popliteal artery entrapment syndrome.

    PubMed

    Kwon, Yong Jae; Kwon, Tae-Won; Gwon, Jun Gyo; Cho, Yong-Pil; Hwang, Seung-Jun; Go, Ki-Young

    2018-05-01

    The aim of this study was to analyze anatomical popliteal artery entrapment syndrome (PAES) and to individualize the treatment of this condition according to the anatomical status of the artery and the adjacent structure. A total of 35 anatomical PAES legs in 23 consecutive patients treated within the Asan Medical Center, Seoul, Korea between 1995 and 2011 were analyzed retrospectively. Anatomical PAES was diagnosed by MRI and/or CT scans of the knee joint, and CT or conventional transfemoral arteriography of the lower extremities. We noted a type II gastrocnemius medial head (GNM) anomaly, a type III GNM anomaly, or an aberrant plantaris muscle in 51.4%, 20%, and 28.6% of PAES legs, respectively. In assessments of the arterial lesions, popliteal or tibial artery occlusion was noted in 19 of 26 symptomatic PAES legs. For cases without popliteal artery lesions, myotomy of the anatomically deranged muscle was performed in 5 of 7 symptomatic and 4 of 9 asymptomatic PAES legs. For occluded popliteal arteries, we performed ten direct repairs of the pathological popliteal artery and 4 femoro-below the knee popliteal bypass surgeries. As a result of the arterial Surgery, 9 direct procedures with myotomy yielded a patent artery, while 3 graft failures were noted in the bypass group. The median follow-up period was 84 months (range, 12-206 months). We recommend that treatment of PAES should be individualized based on pathology, symptoms, and various imaging studies.

  7. ArthroBroström Lateral Ankle Stabilization Technique: An Anatomic Study.

    PubMed

    Acevedo, Jorge I; Ortiz, Cristian; Golano, Pau; Nery, Caio

    2015-10-01

    Broström technique for lateral ankle stabilization. While none of the critical anatomic structures was entrapped by the suture knots, it was evident that the IER was included in a majority of the repairs. This study further defines the proximity of adjacent anatomic structures and establishes the anatomic safe zones for the ArthroBroström lateral ankle stabilization procedure. By defining this relatively risk-free zone, surgeons who are not as experienced with arthroscopic lateral ligament repair techniques may approach arthroscopic suture passage with more confidence. © 2015 The Author(s).

  8. The anatomical basis for wrinkles.

    PubMed

    Pessa, Joel E; Nguyen, Hang; John, George B; Scherer, Philipp E

    2014-02-01

    Light and electron microscopy have not identified a distinct anatomical structure associated with either skin wrinkles or creases, and a histological difference between wrinkled and adjacent skin has not been identified. The authors investigate whether facial wrinkles are related to underlying lymphatic vessels and perilymphatic fat. Lymphatic vessels with a specialized tube of perilymphatic fat were identified beneath palmar creases. Sections of skin, adipose tissue, and muscle were harvested from each of 13 cadavers. Three sites were investigated: the transverse forehead crease, lateral orbicularis oculi wrinkle (crow's feet), and the nasojugal crease. The tissue was paraffin embedded and processed. Two-step indirect immunohistochemistry was performed, and images were examined using laser confocal microscopy. Measurements were taken with software. Every wrinkle examined was found above and within ±1 mm of a major lymphatic vessel and its surrounding tube of adipose tissue. The results satisfied our null hypothesis and were statistically significant. Lymphatic vessels were identified by positive immunofluorescence as well as histological criteria. These findings have been further validated by fluorochrome tracer studies. An anatomical basis for wrinkles was identified among the specimens studied. Lymphatic vessels, along with the surrounding distinct perilymphatic fat, traveled directly beneath wrinkles and creases. Lymphatic dysregulation leads to inflammation, scarring, and fibrosis, but inadvertent injection of these vessels can be avoided with anatomical knowledge.

  9. Anatomical variations of the carpal tunnel structures

    PubMed Central

    Mitchell, Ryan; Chesney, Amy; Seal, Shane; McKnight, Leslie; Thoma, Achilleas

    2009-01-01

    There are many anatomical variations in and around the carpal tunnel that affect the nerves, tendons and arteries in this area. Awareness of these variations is important both during the clinical examination and during carpal tunnel release. The purpose of the present review is to highlight recognized anatomical variations within the carpal tunnel including variation in nerve anatomy, tendon anatomical variants, vascular anatomical variations and muscle anatomical variations. PMID:20808747

  10. An interactive three-dimensional virtual body structures system for anatomical training over the internet.

    PubMed

    Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram

    2006-04-01

    The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.

  11. 5. VIEW OF CENTER PIER AND ADJACENT STRUCTURE, SHOWING PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CENTER PIER AND ADJACENT STRUCTURE, SHOWING PIER STONE MASONRY AND LOWER PIN CONNECTIONS, LOOKING SOUTH - Emlenton Bridge, Spanning Allegheny River, Travel Route 38 (Legislative Route 75), Emlenton, Venango County, PA

  12. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitree, R; Guzman, G; Chundury, A

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness ofmore » available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert

  13. Anatomic features involved in technical complexity of partial nephrectomy.

    PubMed

    Hou, Weibin; Yan, Weigang; Ji, Zhigang

    2015-01-01

    Nephrometry score systems, including RENAL nephrometry, preoperative aspects and dimensions used for an anatomical classification system, C-index, diameter-axial-polar nephrometry, contact surface area score, calculating resected and ischemized volume, renal tumor invasion index, surgical approach renal ranking score, zonal NePhRO score, and renal pelvic score, have been reviewed. Moreover, salient anatomic features like the perinephric fat and vascular variants also have been discussed. We then extract 7 anatomic characteristics, namely tumor size, spatial location, adjacency, exophytic/endophytic extension, vascular variants, pelvic anatomy, and perinephric fat as important features for partial nephrectomy. For novice surgeons, comprehensive and adequate anatomic consideration may help them in their early clinical practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The "G-Spot" Is Not a Structure Evident on Macroscopic Anatomic Dissection of the Vaginal Wall.

    PubMed

    Hoag, Nathan; Keast, Janet R; O'Connell, Helen E

    2017-12-01

    Controversy exists in the literature regarding the presence or absence of an anatomic "G-spot." However, few studies have examined the detailed topographic or histologic anatomy of the putative G-spot location. To determine the anatomy of the anterior vaginal wall and present detailed, systematic, accessible findings from female cadaveric dissections to provide anatomic clarity with respect to this location. Systematic anatomic dissections were performed on 13 female cadavers (32-97 years old, 8 fixed and 5 fresh) to characterize the gross anatomy of the anterior vaginal wall. Digital photography was used to document dissections. Dissection preserved the anterior vaginal wall, urethra, and clitoris. In 9 cadavers, the vaginal epithelial layer was reflected to expose the underlying urethral wall and associated tissues. In 4 cadavers, the vaginal wall was left intact before preservation. Once photographed, 8 specimens were transversely sectioned for macroscopic inspection and histologic examination. The presence or absence of a macroscopic anatomic structure at detailed cadaveric pelvis dissection that corresponds to the previously described G-spot and gross anatomic description of the anterior vaginal wall. Deep to the lining epithelium of the anterior vaginal wall is the urethra. There is no macroscopic structure other than the urethra and vaginal wall lining in the location of the putative G-spot. Specifically, there is no apparent erectile or "spongy" tissue in the anterior vaginal wall, except where the urethra abuts the clitoris distally. The absence of an anatomic structure corresponding to the putative G-spot helps clarify the controversy on this subject. Limitations to this study include limited access to specimens immediately after death and potential for observational bias. In addition, age, medical history, and cause of death are not publishable for privacy reasons. However, it is one of the most thorough and complete anatomic evaluations documenting the

  15. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.

    PubMed

    Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo

    2016-05-15

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Origin of the direct and reflected head of the rectus femoris: an anatomic study.

    PubMed

    Ryan, John M; Harris, Joshua D; Graham, William C; Virk, Sohrab S; Ellis, Thomas J

    2014-07-01

    This study aimed to define the footprint of the direct and reflected heads of the rectus femoris and the relation of the anterior inferior iliac spine (AIIS) to adjacent neurovascular (lateral circumflex femoral artery and femoral nerve), bony (anterior superior iliac spine [ASIS]), and tendinous structures (iliopsoas). Twelve fresh-frozen cadaveric hip joints from 6 cadavers, average age of 44.5 (±9.9) years, were carefully dissected of skin and fascia to expose the muscular, capsular, and bony structures of the anterior hip and pelvis. Using digital calipers, measurements were taken of the footprint of the rectus femoris on the AIIS, superior-lateral acetabulum and hip capsule, and adjacent anatomic structures. The average dimensions of the footprint of the direct head of the rectus femoris were 13.4 mm (±1.7) × 26.0 mm (±4.1), whereas the dimensions of the reflected head footprint were 47.7 mm (±4.4) × 16.8 mm (±2.2). Important anatomic structures, including the femoral nerve, psoas tendon, and lateral circumflex femoral artery, were noted in proximity to the AIIS. The neurovascular structure closest to the AIIS was the femoral nerve (20.8 ± 3.4 mm). The rectus femoris direct and reflected heads originate over a broad area of the anterolateral pelvis and are in close proximity to critical neurovascular structures, and care must be taken to avoid them during hip arthroscopy. A thorough knowledge of the anatomy of the proximal rectus femoris is valuable for any surgical exposure of the anterior hip joint, particularly arthroscopic subspine decompression and open femoroacetabular impingement (FAI) surgery. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    PubMed

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  18. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures

    PubMed Central

    Irfanoglu, M. Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B.; Sadeghi, Neda; Thomas, Cibu P.; Pierpaoli, Carlo

    2016-01-01

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817

  19. Development of a patient-specific anatomical foot model from structured light scan data.

    PubMed

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  20. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.

    PubMed

    Jiang, Chuang-Dao; Wang, Xin; Gao, Hui-Yuan; Shi, Lei; Chow, Wah Soon

    2011-03-01

    Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.

  1. Automated segmentation and recognition of the bone structure in non-contrast torso CT images using implicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.

    2009-02-01

    X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.

  2. Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks.

    PubMed

    Jimenez-Del-Toro, Oscar; Muller, Henning; Krenn, Markus; Gruenberg, Katharina; Taha, Abdel Aziz; Winterstein, Marianne; Eggel, Ivan; Foncubierta-Rodriguez, Antonio; Goksel, Orcun; Jakab, Andras; Kontokotsios, Georgios; Langs, Georg; Menze, Bjoern H; Salas Fernandez, Tomas; Schaer, Roger; Walleyo, Anna; Weber, Marc-Andre; Dicente Cid, Yashin; Gass, Tobias; Heinrich, Mattias; Jia, Fucang; Kahl, Fredrik; Kechichian, Razmig; Mai, Dominic; Spanier, Assaf B; Vincent, Graham; Wang, Chunliang; Wyeth, Daniel; Hanbury, Allan

    2016-11-01

    Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the cloud where participants can only access the training data and can be run privately by the benchmark administrators to objectively compare their performance in an unseen common test set. Overall, 120 computed tomography and magnetic resonance patient volumes were manually annotated to create a standard Gold Corpus containing a total of 1295 structures and 1760 landmarks. Ten participants contributed with automatic algorithms for the organ segmentation task, and three for the landmark localization task. Different algorithms obtained the best scores in the four available imaging modalities and for subsets of anatomical structures. The annotation framework, resulting data set, evaluation setup, results and performance analysis from the three VISCERAL Anatomy benchmarks are presented in this article. Both the VISCERAL data set and Silver Corpus generated with the fusion of the participant algorithms on a larger set of non-manually-annotated medical images are available to the research community.

  3. Anatomical variations and sinusitis.

    PubMed

    Jorissen, M; Hermans, R; Bertrand, B; Eloy, P

    1997-01-01

    Paranasal sinus anatomy and variations have gained interest with the introduction of functional endoscopic sinus surgery and the concept of the ostiomeatal complex. Anatomical variations can be divided in structural abnormalities, (increased) pneumatization and supplementary openings. Most anatomical variations are equally found in control and sinusitis patients. The anatomical variations which are most commonly associated with sinus pathology are septal deviations, true conchae bullosae and supplementary maxillary ostia but the latter one only when recycling is present. The knowledge of anatomical variations is most important in the surgical management and specifically in the prevention of complications.

  4. Role of Anatomical Landmarks in Identifying Normal and Transitional Vertebra in Lumbar Spine Magnetic Resonance Imaging

    PubMed Central

    Indiran, Venkatraman; Hithaya, Fouzal; Alamelu, M.; Padmanaban, S.

    2017-01-01

    Study Design Retrospective study. Purpose Identification of transitional vertebra is important in spine imaging, especially in presurgical planning. Pasted images of the whole spine obtained using high-field magnetic resonance imaging (MRI) are helpful in counting vertebrae and identifying transitional vertebrae. Counting vertebrae and identifying transitional vertebrae is challenging in isolated studies of lumbar spine and in studies conducted in low-field MRI. An incorrect evaluation may lead to wrong-level treatment. Here, we identify the location of different anatomical structures that can help in counting and identifying vertebrae. Overview of Literature Many studies have assessed the vertebral segments using various anatomical structures such as costal facets (CF), aortic bifurcation (AB), inferior vena cava confluence (IC), right renal artery (RRA), celiac trunk (CT), superior mesenteric artery root (SR), iliolumbar ligament (ILL) psoas muscle (PM) origin, and conus medullaris. However, none have yielded any consistent results. Methods We studied the locations of the anatomical structures CF, AB, IC, RRA, CT, SR, ILL, and PM in patients who underwent whole spine MRI at our department. Results In our study, 81.4% patients had normal spinal segmentation, 14.7% had sacralization, and 3.8% had lumbarization. Vascular landmarks had variable origin. There were caudal and cranial shifts with respect to lumbarization and sacralization. In 93.8% of cases in the normal group, ILL emerged from either L5 alone or the adjacent disc. In the sacralization group, ILL was commonly seen in L5. In the lumbarization group, ILL emerged from L5 and the adjacent disc (66.6%). CFs were identified at D12 in 96.9% and 91.7% of patients in the normal and lumbarization groups, respectively. The PM origin was observed from D12 or D12–L1 in most patients in the normal and sacralization groups. Conclusions CF, PM, and ILL were good identification markers for D12 and L5, but none were

  5. Structure-Preserving Smoothing of Biomedical Images

    NASA Astrophysics Data System (ADS)

    Gil, Debora; Hernàndez-Sabaté, Aura; Burnat, Mireia; Jansen, Steven; Martínez-Villalta, Jordi

    Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood.

  6. Shaking table experimentation on adjacent structures controlled by passive and semi-active MR dampers

    NASA Astrophysics Data System (ADS)

    Basili, M.; De Angelis, M.; Fraraccio, G.

    2013-06-01

    This paper presents the results of shaking table tests on adjacent structures controlled by passive and semi-active MR dampers. The aim was to demonstrate experimentally the effectiveness of passive and semi-active strategies in reducing structural vibrations due to seismic excitation. The physical model at issue was represented by two adjacent steel structures, respectively of 4 and 2 levels, connected at the second level by a MR damper. When the device operated in semi-active mode, an ON-OFF control algorithm, derived by the Lyapunov stability theory, was implemented and experimentally validated. Since the experimentation concerned adjacent structures, two control objectives have been reached: global and selective protection. In case of global protection, the attention was focused on protecting both structures, whereas, in case of selective protection, the attention was focused on protecting only one structure. For each objective the effectiveness of passive control has been compared with the situation of no control and then the effectiveness of semi-active control has been compared with the passive one. The quantities directly compared have been: measured displacements, accelerations and force-displacement of the MR damper, moreover some global response quantities have been estimated from experimental measures, which are the base share force and the base bending moment, the input energy and the energy dissipated by the device. In order to evaluate the effectiveness of the control action in both passive and semi-active case, an energy index EDI, previously defined and already often applied numerically, has been utilized. The aspects investigated in the experimentation have been: the implementation and validation of the control algorithm for selective and global protection, the MR damper input voltage influence, the kind of seismic input and its intensity.

  7. Effects of instructional strategies using cross sections on the recognition of anatomical structures in correlated CT and MR images.

    PubMed

    Khalil, Mohammed K; Paas, Fred; Johnson, Tristan E; Su, Yung K; Payer, Andrew F

    2008-01-01

    This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include: (1) cross-sectional images of the head that can be superimposed on radiological images, (2) transparent highlighting of anatomical structures in radiological images, and (3) cross-sectional images of the head with radiological images presented side-by-side. Data collected included: (1) time spent on instruction and on solving test questions, (2) mental effort during instruction and test, and (3) students' performance to identify anatomical structures in radiological images. Participants were 28 freshmen medical students (15 males and 13 females) and 208 biology students (190 females and 18 males). All studies used posttest-only control group design, and the collected data were analyzed by either t test or ANOVA. In self-directed computer-based environments, the strategies that used cross sections to improve students' ability to recognize anatomic structures in radiological images showed no significant positive effects. However, when increasing the complexity of the instructional materials, cross-sectional images imposed a higher cognitive load, as indicated by higher investment of mental effort. There is not enough evidence to claim that the simultaneous combination of cross sections and radiological images has no effect on the identification of anatomical structures in radiological images for novices. Further research that control for students' learning and cognitive style is needed to reach an informative conclusion.

  8. Effects of an oil spill on the leaf anatomical characteristics of a beach plant (Terminalia catappa L.).

    PubMed

    Punwong, Paramita; Juprasong, Yotin; Traiperm, Paweena

    2017-09-01

    This study investigated the short-term impacts of an oil spill on the leaf anatomical structures of Terminalia catappa L. from crude oil leakage in Rayong province, Thailand, in 2013. Approximately 3 weeks after the oil spill, leaves of T. catappa were collected along the coastline of Rayong from one affected site, five adjacent sites, and a control site. Slides of the leaf epidermis were prepared by the peeling method, while leaf and petiole transverse sections were prepared by paraffin embedding. Cell walls of adaxial epidermal cell on leaves in the affected site were straight instead of the jigsaw shape found in leaves from the adjacent and control sites. In addition, the stomatal index of the abaxial leaf surface was significantly lower in the affected site. Leaf and petiole transverse sections collected from the affected site showed increased cuticle thickness, epidermal cell diameter on both sides, and palisade mesophyll thickness; in contrast, vessel diameter and spongy mesophyll thickness were reduced. These significant changes in the leaf anatomy of T. catappa correspond with previous research and demonstrate the negative effects of oil spill pollution on plants. The anatomical changes of T. catappa in response to crude oil pollution are discussed as a possible indicator of pollution and may be used in monitoring crude oil pollution.

  9. The posterior auricular muscle: a useful anatomical landmark for otoplasty.

    PubMed

    Stephen, C; Lowrie, A G

    2017-05-01

    The correct anatomical placement of conchomastoid sutures during suture otoplasty can sometimes prove challenging. If the suture vector is inaccurate, reduction can be difficult and this may lead to malrotation of the pinna. This paper describes the adoption of the auricularis posterior muscle, which runs from the mastoid to the concha and whose function is to adduct the pinna, as a marker for conchomastoid suture placement. The muscle is easily identified and dissected, providing a landmark for the placement of sutures onto the adjacent concha and mastoid fascia. This allows for an anatomical reduction of the pinna. It is believed that this approach will prove useful to the otoplasty surgeon.

  10. The Quality of In Vivo Upconversion Fluorescence Signals Inside Different Anatomic Structures.

    PubMed

    Wang, Lijiang; Draz, Mohamed Shehata; Wang, Wei; Liao, Guodong; Xu, Yuhong

    2015-02-01

    Fluorescence imaging is a broadly interesting and rapidly growing strategy for non-invasive clinical applications. However, because of interference from light scattering, absorbance, and tissue autofluorescence, the images can exhibit low sensitivity and poor quality. Upconversion fluorescence imaging, which is based on the use of near-infrared (NIR) light for excitation, has recently been introduced as an improved approach to minimize the effects of light scattering and tissue autofluorescence. This strategy is promising for ultrasensitive and deep tissue imaging applications. However, the emitted upconversion fluorescence signals are primarily in the visible range and are likely to be absorbed and scattered by tissues. Therefore, different anatomic structures could impose various effects on the quality of the images. In this study, we used upconversion-core/silica-shell nanoprobes to evaluate the quality of upconversion fluorescence at different anatomic locations in athymic nude mice. The nanoprobe contained an upconversion core, which was green (β-NaYF4:Yb3+/Ho3+) or red (β-NaYF4:Yb3+/Er3+), and a nonporous silica shell to allow for multicolor imaging. High-quality upconversion fluorescence signals were detected with signal-to-noise ratios of up to 170 at tissue depths of up to - 1.0 cm when a 980 nm laser excitation source and a bandpass emission filter were used. The presence of dense tissue structures along the imaging path reduced the signal intensity and imaging quality, and nanoprobes with longer-wavelength emission spectra were therefore preferable. This study offers a detailed analysis of the quality of upconversion signals in vivo inside different anatomic structures. Such information could be essential for the analysis of upconversion fluorescence images in any in vivo biodiagnostic and microbial tracking applications.

  11. [Anatomical discoveries and concept of human body structure in Nan-jing (Classic of Questioning)].

    PubMed

    Yang, Shi-zhe

    2006-04-01

    What Nan-jing (Classic of Questioning) contributes to the anatomical discoveries and concepts of human body structure in TCM is that it clarifies the concept, function and anatomical essence of viscera and bowels. It is the first. book that clearly defines the triple jiao as a "qi bowel", This statement is a typical example of Chinese dualistic system of its view on the human body, consisting of physical and spiritual components. This has stirred up confusion for modern interpretation and, as a result, some thought the visceral theory in the book is not based on substantial basis of anatomy. However, the Forty-second Question in Nan-jing not only carries the contents about Wei (stomach), Xiaochang (small intestine), Huichang (large intestine) and Guangchang (anus) in the chapter of "Intestine and Stomach" in Lingshu Jing (Miraculous Pivot), but also changes these names to those we actually use today in the latter chapters; and it also records the gross anatomical shape and size of gall bladder, urinary bladder and all the five viscerae. So, Nan-jing discusses the structure of human body in ancient times, and is equivalent to an integrated science of modern physiology and anatomy, and establishes a solid basis for the fundamental theory of TCM.

  12. Historical evolution of anatomical terminology from ancient to modern.

    PubMed

    Sakai, Tatsuo

    2007-06-01

    The historical development of anatomical terminology from the ancient to the modern can be divided into five stages. The initial stage is represented by the oldest extant anatomical treatises by Galen of Pergamon in the Roman Empire. The anatomical descriptions by Galen utilized only a limited number of anatomical terms, which were essentially colloquial words in the Greek of this period. In the second stage, Vesalius in the early 16th century described the anatomical structures in his Fabrica with the help of detailed magnificent illustrations. He coined substantially no anatomical terms, but devised a system that distinguished anatomical structures with ordinal numbers. The third stage of development in the late 16th century was marked by innovation of a large number of specific anatomical terms especially for the muscles, vessels and nerves. The main figures at this stage were Sylvius in Paris and Bauhin in Basel. In the fourth stage between Bauhin and the international anatomical terminology, many anatomical textbooks were written mainly in Latin in the 17th century, and in modern languages in the 18th and 19th centuries. Anatomical terms for the same structure were differently expressed by different authors. The last stage began at the end of the 19th century, when the first international anatomical terminology in Latin was published as Nomina anatomica. The anatomical terminology was revised repeatedly until the current Terminologia anatomica both in Latin and English.

  13. Recent advances in standards for collaborative Digital Anatomic Pathology

    PubMed Central

    2011-01-01

    Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured

  14. Applied anatomy of round window and adjacent structures of tympanum related to cochlear implantation.

    PubMed

    Jain, Shraddha; Gaurkar, Sagar; Deshmukh, Prasad T; Khatri, Mohnish; Kalambe, Sanika; Lakhotia, Pooja; Chandravanshi, Deepshikha; Disawal, Ashish

    2018-04-19

    Various aspects of the round window anatomy and anatomy of posterior tympanum have relevant implications for designing cochlear implant electrodes and visualizing the round window through facial recess. Preoperative information about possible anatomical variations of the round window and its relationships to the adjacent neurovascular structures can help reduce complications in cochlear implant surgery. The present study was undertaken to assess the common variations in round window anatomy and the relationships to structures of the tympanum that may be relevant for cochlear implant surgery. Thirty-five normal wet human cadaveric temporal bones were studied by dissection for anatomy of round window and its relation to facial nerve, carotid canal, jugular fossa and other structures of posterior tympanum. The dissected bones were photographed by a digital camera of 18 megapixels, which were then imported to a computer to determine various parameters using ScopyDoc 8.0.0.22 version software, after proper calibration and at 1× magnification. When the round window niche is placed posteriorly and inferiorly, the distance between round window and vertical facial nerve decreases, whereas that with horizontal facial nerve increases. In such cases, the distance between oval window and round window also increases. Maximum height of the round window in our study ranged from 0.51-1.27mm (mean of 0.69±0.25mm). Maximum width of round window ranged from 0.51 to 2.04mm (mean of 1.16±0.47mm). Average minimum distance between round window and carotid canal was 3.71±0.88mm (range of 2.79-5.34mm) and that between round window and jugular fossa was 2.47±0.9mm (range of 1.24-4.3mm). The distances from the round window to the oval window and facial nerve are important parameters in identifying a difficult round window niche. Modification of the electrode may be a better option than drilling off the round window margins for insertion of cochlear implant electrodes. Copyright © 2018

  15. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  16. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    PubMed

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined

  17. Determination of anatomic landmarks for optimal placement in captive-bolt euthanasia of goats.

    PubMed

    Plummer, Paul J; Shearer, Jan K; Kleinhenz, Katie E; Shearer, Leslie C

    2018-03-01

    OBJECTIVE To determine the optimal anatomic site and directional aim of a penetrating captive bolt (PCB) for euthanasia of goats. SAMPLE 8 skulls from horned and polled goat cadavers and 10 anesthetized horned and polled goats scheduled to be euthanized at the end of a teaching laboratory. PROCEDURES Sagittal sections of cadaver skulls from 8 horned and polled goats were used to determine the ideal anatomic site and aiming of a PCB to maximize damage to the midbrain region of the brainstem for euthanasia. Anatomic sites for ideal placement and directional aiming were confirmed by use of 10 anesthetized horned and polled goats. RESULTS Clinical observation and postmortem examination of the sagittal sections of skulls from the 10 anesthetized goats that were euthanized confirmed that perpendicular placement and firing of a PCB at the intersection of 2 lines, each drawn from the lateral canthus of 1 eye to the middle of the base of the opposite ear, resulted in consistent disruption of the midbrain and thalamus in all goats. Immediate cessation of breathing, followed by a loss of heartbeat in all 10 of the anesthetized goats, confirmed that use of this site consistently resulted in effective euthanasia. CONCLUSIONS AND CLINICAL RELEVANCE Damage to the brainstem and key adjacent structures may be accomplished by firing a PCB perpendicular to the skull over the anatomic site identified at the intersection of 2 lines, each drawn from the lateral canthus of 1 eye to the middle of the base of the opposite ear.

  18. Use of prefabricated titanium abutments and customized anatomic lithium disilicate structures for cement-retained implant restorations in the esthetic zone.

    PubMed

    Lin, Wei-Shao; Harris, Bryan T; Zandinejad, Amirali; Martin, William C; Morton, Dean

    2014-03-01

    This report describes the fabrication of customized abutments consisting of prefabricated 2-piece titanium abutments and customized anatomic lithium disilicate structures for cement-retained implant restorations in the esthetic zone. The heat-pressed lithium disilicate provides esthetic customized anatomic structures and crowns independently of the computer-aided design and computer-aided manufacturing process. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Creation of anatomical models from CT data

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    Computed tomography is a great source of biomedical data because it allows a detailed exploration of complex anatomical structures. Some structures are not visible on CT scans, and some are hard to distinguish due to partial volume effect. CT datasets require preprocessing before using them as anatomical models in a simulation system. The work describes segmentation and data transformation methods for an anatomical model creation from the CT data. The result models may be used for visual and haptic rendering and drilling simulation in a virtual surgery system.

  20. Mathematical modelling of the growth of human fetus anatomical structures.

    PubMed

    Dudek, Krzysztof; Kędzia, Wojciech; Kędzia, Emilia; Kędzia, Alicja; Derkowski, Wojciech

    2017-09-01

    The goal of this study was to present a procedure that would enable mathematical analysis of the increase of linear sizes of human anatomical structures, estimate mathematical model parameters and evaluate their adequacy. Section material consisted of 67 foetuses-rectus abdominis muscle and 75 foetuses- biceps femoris muscle. The following methods were incorporated to the study: preparation and anthropologic methods, image digital acquisition, Image J computer system measurements and statistical analysis method. We used an anthropologic method based on age determination with the use of crown-rump length-CRL (V-TUB) by Scammon and Calkins. The choice of mathematical function should be based on a real course of the curve presenting growth of anatomical structure linear size Ύ in subsequent weeks t of pregnancy. Size changes can be described with a segmental-linear model or one-function model with accuracy adequate enough for clinical purposes. The interdependence of size-age is described with many functions. However, the following functions are most often considered: linear, polynomial, spline, logarithmic, power, exponential, power-exponential, log-logistic I and II, Gompertz's I and II and von Bertalanffy's function. With the use of the procedures described above, mathematical models parameters were assessed for V-PL (the total length of body) and CRL body length increases, rectus abdominis total length h, its segments hI, hII, hIII, hIV, as well as biceps femoris length and width of long head (LHL and LHW) and of short head (SHL and SHW). The best adjustments to measurement results were observed in the exponential and Gompertz's models.

  1. In vivo estimation of normal amygdala volume from structural MRI scans with anatomical-based segmentation.

    PubMed

    Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki

    2018-02-01

    Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.

  2. Semi-automated measurement of anatomical structures using statistical and morphological priors

    NASA Astrophysics Data System (ADS)

    Ashton, Edward A.; Du, Tong

    2004-05-01

    Rapid, accurate and reproducible delineation and measurement of arbitrary anatomical structures in medical images is a widely held goal, with important applications in both clinical diagnostics and, perhaps more significantly, pharmaceutical trial evaluation. This process requires the ability first to localize a structure within the body, and then to find a best approximation of the structure"s boundaries within a given scan. Structures that are tortuous and small in cross section, such as the hippocampus in the brain or the abdominal aorta, present a particular challenge. Their apparent shape and position can change significantly from slice to slice, and accurate prior shape models for such structures are often difficult to form. In this work, we have developed a system that makes use of both a user-defined shape model and a statistical maximum likelihood classifier to identify and measure structures of this sort in MRI and CT images. Experiments show that this system can reduce analysis time by 75% or more with respect to manual tracing with no loss of precision or accuracy.

  3. Development of an Anatomically Accurate Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies

    DTIC Science & Technology

    2017-02-01

    ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe...ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe Model... Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  4. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  5. Effect of Augmentation Material Stiffness on Adjacent Vertebrae after Osteoporotic Vertebroplasty Using Finite Element Analysis with Different Loading Methods.

    PubMed

    Cho, Ah-Reum; Cho, Sang-Bong; Lee, Jae-Ho; Kim, Kyung-Hoon

    2015-11-01

    Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacement-controlled conditions. An experimental computer study using a finite element analysis. Medical research institute, university hospital, Korean. A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacement-controlled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Excessive stiffness of augmented bone cement increases the risk of

  6. The Representation of Anatomical Structures through Computer Animation for Scientific, Educational and Artistic Applications.

    ERIC Educational Resources Information Center

    Stredney, Donald Larry

    An overview of computer animation and the techniques involved in its creation is provided in the introduction to this masters thesis, which focuses on the problems encountered by students in learning the forms and functions of complex anatomical structures and ways in which computer animation can address these problems. The objectives for,…

  7. [Relationship between leaf anatomical structure and heat resistance of 15 Rhododendron cultivars].

    PubMed

    Shen, Hui Fei; Zhao, Bing; Xu, Jing Jing

    2016-12-01

    In this study, 17 anatomical structure indexes of 15 Rhododendron cultivars were mea-sured by scanning electron microscope (SEM). Leaf anatomical structure indexes were screened via coefficient of variation, analysis of correlation and hierarchical cluster analysis, and comprehensive evaluation on heat resistance for each cultivar was conducted by the subordinate function. The results showed that the leaves of Rhododendron cultivars were typical bifacial leaf and the epidermal anticlinal walls showed slightly sinuate. The stomata only distributed in the lower epidermis and the shape was ruleless. The anatomical structure indexes all reached a significant level difference among 15 cultivars (P<0.01), except for lower epidermis thickness (P<0.05). Thickness of lamina corneum, stomatal density, stomatal width, the thickness palisade tissue and looseness of leaf spongy tissue were the main factors related to the hardness, while other indexes, such as stomatal length, stoma aperture, stomatal opening, length and thickness of upper epidermis, length and thickness of lower epidermis, thickness of spongy tissue, the ratio of the palisade tissue to spongy tissue, tightness of leaf palisade tissue, leaf thickness and media thickness didn't show much effect on heat resistance. There were some differences among 15 cultivars in heat resistance, and the order was Rhododendron 'Song Jiang Da Tao Hong' > Rhododendron 'Zhuang Yuan Hong' > Rhododendron 'Lv Se Guang Hui' > Rhododendron 'Fen Zhen Zhu' > Rhododendron 'Wai Guo Hong' > Rhododendron 'Lan Yin' > Rhododendron 'Bi Zhi' >Rhododendron 'Da He Zhi Chun' > Rhododendron 'Guo Qi Hong' > Rhododendron 'Yu Ling Long' > Rhododendron 'Hong Shan Hu' > Rhododendron 'Ning Bo Hong' > Rhododendron 'Tao Ban Zhu Sha' > Rhododendron 'Ai Ding Bao' > Rhododendron 'Liu Qiu Hong'. According to the heat hardiness, the cultivars could be divided into 4 groups: R. 'Song Jiang Da Tao Hong', R. 'Zhuang Yuan Hong' and R. 'Lv Se Guang Hui' with high heat

  8. Diffusion-Weighted MRI Assessment of Adjacent Disc Degeneration After Thoracolumbar Vertebral Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noriega, David C., E-mail: dcnoriega1970@gmail.com; Marcia, Stefano, E-mail: stemarcia@gmail.com; Ardura, Francisco, E-mail: fardura@ono.com

    ObjectiveThe purpose of this study was to assess, by the mean apparent diffusion coefficient (ADC), if a relationship exists between disc ADC and MR findings of adjacent disc degeneration after thoracolumbar fractures treated by anatomic reduction using vertebral augmentation (VAP).Materials and MethodsTwenty non-consecutive patients (mean age 50.7 years; range 45–56) treated because of vertebral fractures, were included in this study. There were 10 A3.1 and 10 A1.2 fractures (AO classification). Surgical treatment using VAP was applied in 14 cases, and conservative in 6 patients. MRI T2-weighted images and mapping of apparent diffusion coefficient (ADC) of the intervertebral disc adjacent to themore » fractured segment were performed after a mean follow-up of 32 months. A total of 60 discs, 3 per patient, were analysed: infra-adjacent, supra-adjacent and a control disc one level above the supra-adjacent.ResultsNo differences between patients surgically treated and those following a conservative protocol regarding the average ADC values obtained in the 20 control discs analysed were found. Considering all discs, average ADC in the supra-adjacent level was lower than in the infra-adjacent (1.35 ± 0.12 vs. 1.53 ± 0.06; p < 0.001). Average ADC values of the discs used as a control were similar to those of the infra-adjacent level (1.54 ± 0.06). Compared to surgically treated patients, discs at the supra-adjacent fracture level showed statistically significant lower values in cases treated conservatively (p < 0.001). The variation in the delay of surgery had no influence on the average values of ADC at any of the measured levels.ConclusionsADC measurements of the supra-adjacent discs after a mean follow-up of 32 months following thoracolumbar fractures, showed that restoration of the vertebral collapse by minimally invasive VAP prevents posttraumatic disc degeneration.« less

  9. Development of the ethmoid sinus and extramural migration: the anatomical basis of this paranasal sinus.

    PubMed

    Márquez, Samuel; Tessema, Belachew; Clement, Peter Ar; Schaefer, Steven D

    2008-11-01

    Frontal and/or maxillary sinusitis frequently originates with pathologic processes of the ethmoid sinuses. This clinical association is explained by the close anatomical relationship between the frontal and maxillary sinuses and the ethmoid sinus, since developmental trajectories place the ethmoid in a strategic central position within the nasal complex. The advent of optical endoscopes has permitted improved visualization of these spaces, leading to a renaissance in intranasal sinus surgery. Advancing patient care has consequently driven the need for the proper and accurate anatomical description of the paranasal sinuses, regrettably the continuing subject of persistent confusion and ambiguity in nomenclature and terminology. Developmental tracking of the pneumatization of the ethmoid and adjacent bones, and particularly of the extramural cells of the ethmoid, helps to explain the highly variable adult morphology of the ethmoid air sinus system. To fully understand the nature and underlying biology of this sinus system, multiple approaches were employed here. These include CT imaging of living humans (n = 100), examination of dry cranial material (n = 220), fresh tissue and cadaveric anatomical dissections (n = 168), and three-dimensional volume rendering methods that allow digitizing of the spaces of the ethmoid sinus for graphical examination. Results show the ethmoid sinus to be highly variable in form and structure as well as in the quantity of air cells. The endochondral bony origin of the ethmoid sinuses leads to remarkably thin bony contours of their irregular and morphologically unique borders, making them substantially different from the other paranasal sinuses. These investigations allow development of a detailed anatomical template of this region based on observed patterns of morphological diversity, which can initially mask the underlying anatomy. For example, the frontal recess, ethmoid infundibulum, and hiatus semilunaris are key anatomical

  10. Deep Pyriform Space: Anatomical Clarifications and Clinical Implications.

    PubMed

    Surek, Christopher K; Vargo, James; Lamb, Jerome

    2016-07-01

    The purpose of this study was to define the anatomical boundaries, transformation in the aging face, and clinical implications of the Ristow space. The authors propose a title of deep pyriform space for anatomical continuity. The deep pyriform space was dissected in 12 hemifacial fresh cadaver dissections. Specimens were divided into three separate groups. For group 1, dimensions were measured and plaster molds were fashioned to evaluate shape and contour. For group 2, the space was injected percutaneously with dyed hyaluronic acid to examine proximity relationships to adjacent structures. For group 3, the space was pneumatized to evaluate its cephalic extension. The average dimensions of the deep pyriform space are 1.1 × 0.9 cm. It is bounded medially by the depressor septi nasi and cradled laterally and superficially in a "half-moon" shape by the deep medial cheek fat and lip elevators. The angular artery courses on the roof of the space within a septum between the space and deep medial cheek fat. Pneumatization of the space traverses cephalic to the level of the tear trough ligament in a plane deep to the premaxillary space. The deep pyriform space is a midface cavity cradled by the pyriform aperture and deep medial cheek compartment. Bony recession of the maxilla with age predisposes this space for use as a potential area of deep volumization to support overlying cheek fat and draping lip elevators. The position of the angular artery in the roof of the space allows safe injection on the bone without concern for vascular injury.

  11. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.

    PubMed

    Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami

    2018-05-01

    Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.

  12. Anatomical structure of Camellia oleifera shell.

    PubMed

    Hu, Jinbo; Shi, Yang; Liu, Yuan; Chang, Shanshan

    2018-06-04

    The main product of Camellia oleifera is edible oil made from the seeds, but huge quantities of agro-waste are produced in the form of shells. The primary components of C. oleifera fruit shell are cellulose, hemicellulose, and lignin, which probably make it a good eco-friendly non-wood material. Understanding the structure of the shell is however a prerequisite to making full use of it. The anatomical structure of C. oleifera fruit shells was investigated from macroscopic to ultrastructural scale by stereoscopic, optical, and scanning electron microscopy. The main cell morphology in the different parts of the shell was observed and measured using the tissue segregation method. The density of the cross section of the shell was also obtained using an X-ray CT scanner to check the change in texture. The C. oleifera fruit pericarp was made up of exocarp, mesocarp, and endocarp. The main types of exocarp cells were stone cells, spiral vessels, and parenchyma cells. The mesocarp accounted for most of the shell and consisted of parenchyma, tracheids, and some stone cells. The endocarp was basically made up of cells with a thickened cell wall that were modified tracheid or parenchyma cells with secondary wall thickening. The most important ultrastructure in these cells was the pits in the cell wall of stone and vessel cells that give the shell a conducting, mechanical, and protective role. The density of the shell gradually decreased from exocarp to endocarp. Tracheid cells are one of the main cell types in the shell, but their low slenderness (length to width) ratio makes them unsuitable for the manufacture of paper. Further research should be conducted on composite shell-plastic panels (or other reinforced materials) to make better use of this agro-waste.

  13. Anatomical eponyms - unloved names in medical terminology.

    PubMed

    Burdan, F; Dworzański, W; Cendrowska-Pinkosz, M; Burdan, M; Dworzańska, A

    2016-01-01

    Uniform international terminology is a fundamental issue of medicine. Names of various organs or structures have developed since early human history. The first proper anatomical books were written by Hippocrates, Aristotle and Galen. For this reason the modern terms originated from Latin or Greek. In a modern time the terminology was improved in particular by Vasalius, Fabricius and Harvey. Presently each known structure has internationally approved term that is explained in anatomical or histological terminology. However, some elements received eponyms, terms that incorporate the surname of the people that usually describe them for the first time or studied them (e.g., circle of Willis, follicle of Graff, fossa of Sylvious, foramen of Monro, Adamkiewicz artery). Literature and historical hero also influenced medical vocabulary (e.g. Achilles tendon and Atlas). According to various scientists, all the eponyms bring colour to medicine, embed medical traditions and culture to our history but lack accuracy, lead of confusion, and hamper scientific discussion. The current article presents a wide list of the anatomical eponyms with their proper anatomical term or description according to international anatomical terminology. However, since different eponyms are used in various countries, the list could be expanded.

  14. Neurovascular structures of the mandibular angle and condyle: a comprehensive anatomical review.

    PubMed

    Yang, Hun-Mu; Won, Sung-Yoon; Kim, Hee-Jin; Hu, Kyung-Seok

    2015-11-01

    Various surgical interventions including esthetic surgery, salivary gland excision, and open reduction of fracture have been performed in the area around the mandibular angle and condyle. This study aimed to comprehensively review the anatomy of the neurovascular structures on the angle and condyle with recent anatomic and clinical research. We provide detailed information about the branching and distributing patterns of the neurovascular structures at the mandibular angle and condyle, with reported data of measurements and proportions from previous anatomical and clinical research. Our report should serve to help practitioners gain a better understanding of the area in order or reduce potential complications during local procedures. Reckless manipulation during mandibular angle reduction could mutilate arterial branches, not only from the facial artery, but also from the external carotid artery. The transverse facial artery and superficial temporal artery could be damaged during approach and incision in the condylar area. The marginal mandibular branch of the facial nerve can be easily damaged during submandibular gland excision or facial rejuvenation treatment. The main trunk of the facial nerve and its upper and lower distinct divisions have been damaged during parotidectomy, rhytidectomy, and open reductions of condylar fractures. By revisiting the information in the present study, surgeons will be able to more accurately prevent procedure-related complications, such as iatrogenic vascular accidents on the mandibular angle and condyle, complete and partial facial palsy, gustatory sweating (Frey syndrome), and traumatic neuroma after parotidectomy.

  15. Lumbar intervertebral disc allograft transplantation: long-term mobility and impact on the adjacent segments.

    PubMed

    Huang, Yong-Can; Xiao, Jun; Lu, William W; Leung, Victor Y L; Hu, Yong; Luk, Keith D K

    2017-03-01

    Fresh-frozen intervertebral disc (IVD) allograft transplantation has been successfully performed in the human cervical spine. Whether this non-fusion technology could truly decrease adjacent segment disease is still unknown. This study evaluated the long-term mobility of the IVD-transplanted segment and the impact on the adjacent spinal segments in a goat model. Twelve goats were used. IVD allograft transplantation was performed at lumbar L4/L5 in 5 goats; the other 7 goats were used as the untreated control (5) and for the supply of allografts (2). Post-operation lateral radiographs of the lumbar spine in the neutral, full-flexion and full-extension positions were taken at 1, 3, 6, 9 and 12 months. Disc height (DH) of the allograft and the adjacent levels was calculated and range of motion (ROM) was measured using the Cobb's method. The anatomy of the adjacent discs was observed histologically. DH of the transplanted segment was decreased significantly after 3 months but no further reduction was recorded until the final follow-up. No obvious alteration was seen in the ROM of the transplanted segment at different time points with the ROM at 12 months being comparable to that of the untreated control. The DH and ROM in the adjacent segments were well maintained during the whole observation period. At post-operative 12 months, the ROM of the adjacent levels was similar to that of the untreated control and the anatomical morphology was well preserved. Lumbar IVD allograft transplantation in goats could restore the segmental mobility and did not negatively affect the adjacent segments after 12 months.

  16. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution.

    PubMed

    Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng

    2014-08-01

    During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.

  17. VISIBILITY OF STRUCTURES OF RELEVANCE FOR PATIENTS WITH CYSTIC FIBROSIS IN CHEST TOMOSYNTHESIS: INFLUENCE OF ANATOMICAL LOCATION AND OBSERVER EXPERIENCE.

    PubMed

    Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter

    2016-06-01

    The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. © The Author 2016. Published by Oxford University Press.

  18. VISIBILITY OF STRUCTURES OF RELEVANCE FOR PATIENTS WITH CYSTIC FIBROSIS IN CHEST TOMOSYNTHESIS: INFLUENCE OF ANATOMICAL LOCATION AND OBSERVER EXPERIENCE

    PubMed Central

    Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter

    2016-01-01

    The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. PMID:26842827

  19. Psoralen interstrand cross-link repair is specifically altered by an adjacent triple-stranded structure

    PubMed Central

    Guillonneau, F.; Guieysse, A. L.; Nocentini, S.; Giovannangeli, C.; Praseuth, D.

    2004-01-01

    Targeting DNA-damaging agents to specific DNA sites by using sequence-specific DNA ligands has been successful in directing genomic modifications. The understanding of repair processing of such targeted damage and the influence of the adjacent complex is largely unknown. In this way, directed interstrand cross-links (ICLs) have already been generated by psoralen targeting. The mechanisms responsible for ICL removal are far from being understood in mammalian cells, with the proposed involvement of both mutagenic and recombinogenic pathways. Here, a unique ICL was introduced at a selected site by photoactivation of a psoralen moiety with the use of psoralen conjugates of triplex-forming oligonucleotides. The processing of psoralen ICL was evaluated in vitro and in cells for two types of cross-linked substrates, either containing a psoralen ICL alone or with an adjacent triple-stranded structure. We show that the presence of a neighbouring triplex structure interferes with different stages of psoralen ICL processing: (i) the ICL-induced DNA repair synthesis in HeLa cell extracts is inhibited by the triplex structure, as measured by the efficiency of ‘true’ and futile repair synthesis, stopping at the ICL site; (ii) in HeLa cells, the ICL removal via a nucleotide excision repair (NER) pathway is delayed in the presence of a neighbouring triplex; and (iii) the binding to ICL of recombinant xeroderma pigmentosum A protein, which is involved in pre-incision recruitment of NER factors is impaired by the presence of the third DNA strand. These data characterize triplex-induced modulation of ICL repair pathways at specific steps, which might have implications for the controlled induction of targeted genomic modifications and for the associated cellular responses. PMID:14966263

  20. An anatomical and histological study of the structures surrounding the proximal attachment of the hamstring muscles.

    PubMed

    Pérez-Bellmunt, Albert; Miguel-Pérez, Maribel; Brugué, Marc Blasi; Cabús, Juan Blasi; Casals, Martí; Martinoli, Carlo; Kuisma, Raija

    2015-06-01

    The proximal attachment of hamstring muscles has a very high incidence of injuries due to a wide number of factors and its morphology may be one of the underlying factors as scientific literature points out. The connective tissue component of the attachment of hamstring muscles is not well known. For this reason the aim of this study is to describe the anatomy and histology surrounding the proximal attachment of the hamstring muscles (PAHM) and its direct anatomic relations. Forty-eight cryopreserved lower limbs have sequentially been studied by means of dissection, anatomical sections and histology. All specimens studied presented an annular connective tissue structure that resembles a retinaculum, which covers and adapts to the attachment of hamstring muscles on the ischial tuberosity. The results show how this retinaculum is continuous with the long head of biceps femoris muscle, however there is a layer of loose connective tissue between the retinaculum and the semitendinosus muscle. Furthermore, this structure receives expansions of the anterior epimysium of the gluteus maximus muscle (GIM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Feature-Based Morphometry: Discovering Group-related Anatomical Patterns

    PubMed Central

    Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal

    2015-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047

  2. Anatomical variations of the thymus in relation to the left brachiocephalic vein, findings of necropsia.

    PubMed

    Plaza, Oscar Alonso; Moreno, Freddy

    2018-04-01

    Two cases of anatomical variations of the thymus are presented with respect to the anatomical relations with the left brachiocephalic vein and found during the necropsy process. Less than 2 days after birth with Noonan Syndrome, when the left brachiocephalic vein was scanning behind the upper thymus horns, there were other adjacent lesions consisting of three supernumerary spleens and three hepatic veins. The second case was an 8-year-old infant with child malpractice who died from urinary sepsis due to obstructive uropathy, in which case the upper lobes of the thymus were fused and formed a ring through which the left brachiocephalic vein passed. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The anatomical (angiosome) and clinical territories of cutaneous perforating arteries: development of the concept and designing safe flaps.

    PubMed

    Taylor, G Ian; Corlett, Russell J; Dhar, Shymal C; Ashton, Mark W

    2011-04-01

    Island "perforator flaps" have become state of the art for free-skin flap transfer. Recent articles by Saint-Cyr et al. and Rozen et al. have focused on the anatomical and the clinical territories of individual cutaneous perforating arteries in flap planning, and it is timely to compare this work with our angiosome concept. The angiosome concept, published in 1987, was reviewed and correlated with key experimental and clinical work by the authors, published subsequently at different times in different journals. In addition, new data are introduced to define these anatomical and clinical territories of the cutaneous perforators and to aid in the planning of safe skin flaps for local and free-flap transfer. The anatomical territory of a cutaneous perforator was defined in the pig, dog, guinea pig, and rabbit by a line drawn through its perimeter of anastomotic vessels that link it with adjacent perforators in all directions. The safe clinical territory of that perforator, seen not only in the same range of animals but also in the human using either the Doppler probe or computed tomography angiography to locate the vessels, was found reliably to extend to include the anatomical territory of the next adjacent cutaneous perforator, situated radially in any direction. The data provided by Saint-Cyr et al. and Rozen et al., coupled with the authors' own original work on the vascular territories of the body and their subsequent studies, reinforce the angiosome concept and provide the basis for the design of safe flaps for patient benefit.

  4. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    PubMed

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Motivation and Organizational Principles for Anatomical Knowledge Representation

    PubMed Central

    Rosse, Cornelius; Mejino, José L.; Modayur, Bharath R.; Jakobovits, Rex; Hinshaw, Kevin P.; Brinkley, James F.

    1998-01-01

    Abstract Objective: Conceptualization of the physical objects and spaces that constitute the human body at the macroscopic level of organization, specified as a machine-parseable ontology that, in its human-readable form, is comprehensible to both expert and novice users of anatomical information. Design: Conceived as an anatomical enhancement of the UMLS Semantic Network and Metathesaurus, the anatomical ontology was formulated by specifying defining attributes and differentia for classes and subclasses of physical anatomical entities based on their partitive and spatial relationships. The validity of the classification was assessed by instantiating the ontology for the thorax. Several transitive relationships were used for symbolically modeling aspects of the physical organization of the thorax. Results: By declaring Organ as the macroscopic organizational unit of the body, and defining the entities that constitute organs and higher level entities constituted by organs, all anatomical entities could be assigned to one of three top level classes (Anatomical structure, Anatomical spatial entity and Body substance). The ontology accommodates both the systemic and regional (topographical) views of anatomy, as well as diverse clinical naming conventions of anatomical entities. Conclusions: The ontology formulated for the thorax is extendible to microscopic and cellular levels, as well as to other body parts, in that its classes subsume essentially all anatomical entities that constitute the body. Explicit definitions of these entities and their relationships provide the first requirement for standards in anatomical concept representation. Conceived from an anatomical viewpoint, the ontology can be generalized and mapped to other biomedical domains and problem solving tasks that require anatomical knowledge. PMID:9452983

  6. Clinical comparative study with a large-area amorphous silicon flat-panel detector: image quality and visibility of anatomic structures on chest radiography.

    PubMed

    Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen

    2002-02-01

    The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.

  7. Shape regularized active contour based on dynamic programming for anatomical structure segmentation

    NASA Astrophysics Data System (ADS)

    Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra

    2005-04-01

    We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar

  8. Contribution to the anatomical nomenclature concerning upper limb anatomy.

    PubMed

    Kachlik, David; Musil, Vladimir; Baca, Vaclav

    2017-04-01

    The aim of this article is to revise and extend the existing sections of Terminologia Anatomica dealing with the upper limb structures, which nomenclature belongs to its most neglected and not developing parts, and to justify the use of the proposed anatomical terms in the clinical practice, research, and education. A sample collected from own educational and research experience was matched in the main anatomical textbooks as well as old and recent anatomical journals and compared with four versions of the official Latin anatomical nomenclatures. The authors summarize here 145 terms, completed with their definitions or explanations, concerning both constant and variable (inconstant) morphological structures (bones, joints, muscles, vessels, and nerves) of the pectoral girdle, arm, cubital region, forearm, wrist, and hand, completed with some grammar remarks and several general terms. After a broad discussion on this topic, the Terminologia Anatomica should be revised and extend with the listed terms (or their equivalents).

  9. A semi-automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Guo, Junfeng; Dougherty, Timothy M.; Iyer, Krishna S.; Hoffman, Eric A.; Saha, Punam K.

    2016-03-01

    Pulmonary vascular dysfunction has been implicated in smoking-related susceptibility to emphysema. With the growing interest in characterizing arterial morphology for early evaluation of the vascular role in pulmonary diseases, there is an increasing need for the standardization of a framework for arterial morphological assessment at airway segmental levels. In this paper, we present an effective and robust semi-automatic framework to segment pulmonary arteries at different anatomic airway branches and measure their cross-sectional area (CSA). The method starts with user-specified endpoints of a target arterial segment through a custom-built graphical user interface. It then automatically detect the centerline joining the endpoints, determines the local structure orientation and computes the CSA along the centerline after filtering out the adjacent pulmonary structures, such as veins or airway walls. Several new techniques are presented, including collision-impact based cost function for centerline detection, radial sample-line based CSA computation, and outlier analysis of radial distance to subtract adjacent neighboring structures in the CSA measurement. The method was applied to repeat-scan pulmonary multirow detector CT (MDCT) images from ten healthy subjects (age: 21-48 Yrs, mean: 28.5 Yrs; 7 female) at functional residual capacity (FRC). The reproducibility of computed arterial CSA from four airway segmental regions in middle and lower lobes was analyzed. The overall repeat-scan intra-class correlation (ICC) of the computed CSA from all four airway regions in ten subjects was 96% with maximum ICC found at LB10 and RB4 regions.

  10. Anatomic Basis for Penis Transplantation: Cadaveric Microdissection of Penile Structures.

    PubMed

    Tiftikcioglu, Yigit Ozer; Erenoglu, Cagil Meric; Lineaweaver, William C; Bilge, Okan; Celik, Servet; Ozek, Cuneyt

    2016-06-01

    We present a cadaveric dissection study to investigate the anatomic feasibility of penile transplantation. Seventeen male cadavers were dissected to reveal detailed anatomy of the dorsal neurovascular structures including dorsal arteries, superficial and deep dorsal veins, and dorsal nerves of the penis. Dorsal artery diameters showed a significant decrease from proximal to distal shaft. Dominance was observed in one side. Deep dorsal vein showed a straight course and less decrease in diameter compared to artery. Dorsal nerves showed proximal branching pattern. In a possible penile transplantation, level of harvest should be determined according to the patient and the defect, where a transgender patient will receive a total allograft and a male patient with a proximal penile defect will receive a partial shaft allograft. We designed an algorithm for different levels of penile defect and described the technique for harvest of partial and total penile transplants.

  11. Clarification of Eponymous Anatomical Terminology: Structures Named After Dr Geoffrey V. Osborne That Compress the Ulnar Nerve at the Elbow.

    PubMed

    Wali, Arvin R; Gabel, Brandon; Mitwalli, Madhawi; Tubbs, R Shane; Brown, Justin M

    2017-05-01

    In 1957, Dr Geoffrey Osborne described a structure between the medial epicondyle and the olecranon that placed excessive pressure on the ulnar nerve. Three terms associated with such structures have emerged: Osborne's band, Osborne's ligament, and Osborne's fascia. As anatomical language moves away from eponymous terminology for descriptive, consistent nomenclature, we find discrepancies in the use of anatomic terms. This review clarifies the definitions of the above 3 terms. We conducted an extensive electronic search via PubMed and Google Scholar to identify key anatomical and surgical texts that describe ulnar nerve compression at the elbow. We searched the following terms separately and in combination: "Osborne's band," "Osborne's ligament," and "Osborne's fascia." A total of 36 papers were included from 1957 to 2016. Osborne's band, Osborne's ligament, and Osborne's fascia were found to inconsistently describe the etiology of ulnar neuritis, referring either to the connective tissue between the 2 heads of the flexor carpi ulnaris muscle as described by Dr Osborne or to the anatomically distinct fibrous tissue between the olecranon process of the ulna and the medial epicondyle of the humerus. The use of eponymous terms to describe ulnar pathology of the elbow remains common, and although these terms allude to the rich history of surgical anatomy, these nonspecific descriptions lead to inconsistencies. As Osborne's band, Osborne's ligament, and Osborne's fascia are not used consistently across the literature, this research demonstrates the need for improved terminology to provide reliable interpretation of these terms among surgeons.

  12. Anatomical Basis for the Cardiac Interventional Electrophysiologist

    PubMed Central

    Sánchez-Quintana, Damián; Doblado-Calatrava, Manuel; Cabrera, José Angel; Macías, Yolanda; Saremi, Farhood

    2015-01-01

    The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch's triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists. PMID:26665006

  13. Anatomically accurate individual face modeling.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2003-01-01

    This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction.

  14. Using 3D modeling techniques to enhance teaching of difficult anatomical concepts

    PubMed Central

    Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt

    2016-01-01

    Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601

  15. An Investigation of Anatomical Competence in Junior Medical Doctors

    ERIC Educational Resources Information Center

    Vorstenbosch, Marc A. T. M.; Kooloos, Jan G. M.; Bolhuis, Sanneke M.; Laan, Roland F. J. M.

    2016-01-01

    Because of a decrease of the time available for anatomy education, decisions need to be made to reduce the relevant content of the anatomy curriculum. Several expert consensus initiatives resulted in lists of structures, lacking analysis of anatomical competence. This study aims to explore the use of anatomical knowledge by medical doctors in an…

  16. Does partial tear repair of adjacent tendons improve the outcome of supraspinatus tendonfull-thickness tear reinsertion?

    PubMed

    Nich, C; Dhiaf, N; Di Schino, M; Augereau, B

    2014-11-01

    Partial tearing of the infraspinatus and/or subscapularis tendon(s) is frequently associated with supraspinatus full-thickness tears. However, limited data regarding its influence on supraspinatus surgical repair is available. Our aim was to assess the functional and anatomical outcomes of open repair of supraspinatus full-thickness tears combined with adjacent partial tearing, comparatively to a control. We retrospectively identified 22 patients (22 shoulders) with a partial tear, most of them being a delamination tear, of the infraspinatus and/or subscapularis tendons associated with a complete detachment of the supraspinatus tendon. Twenty-seven patients (27 shoulders) treated for an isolated complete detachment of the supraspinatus tendon by open repair served as controls. The mean age was 58 years. A proximalized trans-osseous reinsertion of the supraspinatus tendon was combined with a curettage-closure of the delamination tear. Patients were evaluated with standardized MRI at last follow-up. At a mean of 75-month follow-up, the presence of a partial tear of either infraspinatus or subscapularis, or both, did not influence function and healing rates of supraspinatus tendon repair. Conversely to the control, when a retear occurred, the functional score tended to worsen. Preoperatively, fatty muscular degeneration was more pronounced when a partial tear was present. Fatty degeneration worsened regardless of repair healing. Open reinsertion of a supraspinatus full-thickness tear associated with a thorough treatment of partial tear of adjacent tendons led to optimal functional and anatomical mid term outcomes. Our results suggest the presence of a partial tear of adjacent tendons could be associated with poorer function in case of supraspinatus tendon re-rupture. Level III case-control study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Anatomical influences on internally coupled ears in reptiles.

    PubMed

    Young, Bruce A

    2016-10-01

    Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

  18. Anatomical exploration of a dicephalous goat kid using sheet plastination (E12).

    PubMed

    Elnady, Fawzy; Sora, Mircea-Constantin

    2009-06-01

    A dicephalous, 1-day-old, female goat kid was presented for anatomical study. Epoxy plastination slices (E12) were used successfully to explore this condition. They provided excellent anatomic and bone detail, demonstrating organ position, shared structures, and vascular anatomy. Sheet plastination (E12) was used as an optimal method to clarify how the two heads were united, especially the neuroanatomy. The plastinated transparent slices allowed detailed study of the anatomical structures, in a non-collapsed and non-dislocated state. Thus, we anatomically explored this rare condition without traditional dissection. The advantages of plastination extended to the preservation at room temperature of this case for further topographical investigation. To the authors' best knowledge, this is the first published report of plastination of a dicephalous goat.

  19. Laramide structure of the central Sangre de Cristo Mountains and adjacent Raton Basin, southern Colorado

    USGS Publications Warehouse

    Lindsey, D.A.

    1998-01-01

    Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and

  20. AnatomicalTerms.info: heading for an online solution to the anatomical synonym problem hurdles in data-reuse from the Terminologia Anatomica and the foundational model of anatomy and potentials for future development.

    PubMed

    Gobée, O Paul; Jansma, Daniël; DeRuiter, Marco C

    2011-10-01

    The many synonyms for anatomical structures confuse medical students and complicate medical communication. Easily accessible translations would alleviate this problem. None of the presently available resources-Terminologia Anatomica (TA), digital terminologies such as the Foundational Model of Anatomy (FMA), and websites-are fully satisfactory to this aim. Internet technologies offer new possibilities to solve the problem. Several authors have called for an online TA. An online translation resource should be easily accessible, user-friendly, comprehensive, expandable, and its quality determinable. As first step towards this goal, we built a translation website that we named www.AnatomicalTerms.info, based on the database of the FMA. It translates between English, Latin, eponyms, and to a lesser extent other languages, and presently contains over 31,000 terms for 7,250 structures, covering 95% of TA. In addition, it automatically presents searches for images, documents and anatomical variations regarding the sought structure. Several terminological and conceptual issues were encountered in transferring data from TA and FMA into AnatomicalTerms.info, resultant from these resources' different set-ups (paper versus digital) and targets (machine versus human-user). To the best of our knowledge, AnatomicalTerms.info is unique in its combination of user-friendliness and comprehensiveness. As next step, wiki-like expandability will be added to enable open contribution of clinical synonyms and terms in different languages. Specific quality measures will be taken to strike a balance between open contribution and quality assurance. AnatomicalTerms.info's mechanism that "translates" terms to structures furthermore may enhance targeted searching by linking images, descriptions, and other anatomical resources to the structures. Copyright © 2011 Wiley-Liss, Inc.

  1. Processing multiple non-adjacent dependencies: evidence from sequence learning

    PubMed Central

    de Vries, Meinou H.; Petersson, Karl Magnus; Geukes, Sebastian; Zwitserlood, Pienie; Christiansen, Morten H.

    2012-01-01

    Processing non-adjacent dependencies is considered to be one of the hallmarks of human language. Assuming that sequence-learning tasks provide a useful way to tap natural-language-processing mechanisms, we cross-modally combined serial reaction time and artificial-grammar learning paradigms to investigate the processing of multiple nested (A1A2A3B3B2B1) and crossed dependencies (A1A2A3B1B2B3), containing either three or two dependencies. Both reaction times and prediction errors highlighted problems with processing the middle dependency in nested structures (A1A2A3B3_B1), reminiscent of the ‘missing-verb effect’ observed in English and French, but not with crossed structures (A1A2A3B1_B3). Prior linguistic experience did not play a major role: native speakers of German and Dutch—which permit nested and crossed dependencies, respectively—showed a similar pattern of results for sequences with three dependencies. As for sequences with two dependencies, reaction times and prediction errors were similar for both nested and crossed dependencies. The results suggest that constraints on the processing of multiple non-adjacent dependencies are determined by the specific ordering of the non-adjacent dependencies (i.e. nested or crossed), as well as the number of non-adjacent dependencies to be resolved (i.e. two or three). Furthermore, these constraints may not be specific to language but instead derive from limitations on structured sequence learning. PMID:22688641

  2. A probabilistic framework to infer brain functional connectivity from anatomical connections.

    PubMed

    Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel

    2011-01-01

    We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.

  3. Investigation of topographical anatomy of Broca's area: an anatomic cadaveric study.

    PubMed

    Eser Ocak, Pınar; Kocaelı, Hasan

    2017-04-01

    The sulci constituting the structure of the pars triangularis and opercularis, considered as 'Broca's area', present wide anatomical and morphological variations between different hemispheres. The boundaries are described differently from one another in various studies. The aim of this study was to explore the topographical anatomy, confirm the morphological asymmetry and highlight anatomical variations in Broca's area. This study was performed with 100 hemispheres to investigate the presence, continuity, patterns and connections of the sulcal structures that constitute the morphological asymmetry of Broca's area. Considerable individual anatomical and morphological variations between the inferior frontal gyrus and related sulcal structures were detected. Rare bilateralism findings supported the morphological asymmetry. The inferior frontal sulcus was identified as a single segment in 54 % of the right and two separate segments in 52 % of the left hemispheres, which was the most common pattern. The diagonal sulcus was present in 48 % of the right and 54 % of the left hemispheres. It was most frequently connected to the ascending ramus on both sides. A 'V' shape was observed in 42.5 % of the right hemispheres and a 'Y' shape in 38.3 % of the left hemispheres, which was the most common shape of the pars triangularis. Moreover, the full results are specified in detail. Knowledge of the anatomical variations in this region is indispensable for understanding the functional structure and performing safe surgery. However, most previously published studies have aimed to determine the anatomical asymmetry of the motor speech area without illuminating the topographical anatomy encountered during surgery.

  4. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    PubMed

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  5. A Multi-Anatomical Retinal Structure Segmentation System for Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding

    PubMed Central

    Elleithy, Khaled; Elleithy, Abdelrahman

    2018-01-01

    Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue for detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc, and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This paper proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc, and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogeneous anatomical structures. PMID:29888146

  6. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging☆

    PubMed Central

    Oishi, Kenichi; Faria, Andreia V.; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2013-01-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a “growth percentile chart,” which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced

  7. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging

  8. Going virtual with quicktime VR: new methods and standardized tools for interactive dynamic visualization of anatomical structures.

    PubMed

    Trelease, R B; Nieder, G L; Dørup, J; Hansen, M S

    2000-04-15

    Continuing evolution of computer-based multimedia technologies has produced QuickTime, a multiplatform digital media standard that is supported by stand-alone commercial programs and World Wide Web browsers. While its core functions might be most commonly employed for production and delivery of conventional video programs (e.g., lecture videos), additional QuickTime VR "virtual reality" features can be used to produce photorealistic, interactive "non-linear movies" of anatomical structures ranging in size from microscopic through gross anatomic. But what is really included in QuickTime VR and how can it be easily used to produce novel and innovative visualizations for education and research? This tutorial introduces the QuickTime multimedia environment, its QuickTime VR extensions, basic linear and non-linear digital video technologies, image acquisition, and other specialized QuickTime VR production methods. Four separate practical applications are presented for light and electron microscopy, dissectable preserved specimens, and explorable functional anatomy in magnetic resonance cinegrams.

  9. Measurement of distances between anatomical structures using a translating stage with mounted endoscope

    NASA Astrophysics Data System (ADS)

    Kahrs, Lueder A.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Labadie, Robert F.

    2012-02-01

    During endoscopic procedures it is often desirable to determine the distance between anatomical features. One such clinical application is percutaneous cochlear implantation (PCI), which is a minimally invasive approach to the cochlea via a single, straight drill path and can be achieved accurately using bone-implanted markers and customized microstereotactic frame. During clinical studies to validate PCI, traditional open-field cochlear implant surgery was performed and prior to completion of the surgery, a customized microstereotactic frame designed to achieve the desired PCI trajectory was attached to the bone-implanted markers. To determine whether this trajectory would have safely achieved the target, a sham drill bit is passed through the frame to ensure that the drill bit would reach the cochlea without damaging vital structures. Because of limited access within the facial recess, the distances from the bit to anatomical features could not be measured with calipers. We hypothesized that an endoscope mounted on a sliding stage that translates only along the trajectory, would provide sufficient triangulation to accurately measure these distances. In this paper, the design, fabrication, and testing of such a system is described. The endoscope is mounted so that its optical axis is approximately aligned with the trajectory. Several images are acquired as the stage is moved, and threedimensional reconstruction of selected points allows determination of distances. This concept also has applicability in a large variety of rigid endoscopic interventions including bronchoscopy, laparoscopy, and sinus endoscopy.

  10. Standards to support information systems integration in anatomic pathology.

    PubMed

    Daniel, Christel; García Rojo, Marcial; Bourquard, Karima; Henin, Dominique; Schrader, Thomas; Della Mea, Vincenzo; Gilbertson, John; Beckwith, Bruce A

    2009-11-01

    Integrating anatomic pathology information- text and images-into electronic health care records is a key challenge for enhancing clinical information exchange between anatomic pathologists and clinicians. The aim of the Integrating the Healthcare Enterprise (IHE) international initiative is precisely to ensure interoperability of clinical information systems by using existing widespread industry standards such as Digital Imaging and Communication in Medicine (DICOM) and Health Level Seven (HL7). To define standard-based informatics transactions to integrate anatomic pathology information to the Healthcare Enterprise. We used the methodology of the IHE initiative. Working groups from IHE, HL7, and DICOM, with special interest in anatomic pathology, defined consensual technical solutions to provide end-users with improved access to consistent information across multiple information systems. The IHE anatomic pathology technical framework describes a first integration profile, "Anatomic Pathology Workflow," dedicated to the diagnostic process including basic image acquisition and reporting solutions. This integration profile relies on 10 transactions based on HL7 or DICOM standards. A common specimen model was defined to consistently identify and describe specimens in both HL7 and DICOM transactions. The IHE anatomic pathology working group has defined standard-based informatics transactions to support the basic diagnostic workflow in anatomic pathology laboratories. In further stages, the technical framework will be completed to manage whole-slide images and semantically rich structured reports in the diagnostic workflow and to integrate systems used for patient care and those used for research activities (such as tissue bank databases or tissue microarrayers).

  11. Comparison of survival outcomes after anatomical resection and non-anatomical resection in patients with hepatocellular carcinoma

    PubMed Central

    Kim, Seheon; Kim, Seokwhan; Song, Insang

    2015-01-01

    Backgrounds/Aims Liver resection is a curative procedure performed worldwide for hepatocellular carcinoma (HCC). Deciding on the appropriate resection range for postoperative hepatic function preservation is an important surgical consideration. This study compares survival outcomes of HCC patients who underwent anatomical or non-anatomical resection, to determine which offers the best clinical survival benefit. Methods One hundred and thirty-one patients underwent liver resection with HCC, between January 2007 and February 2015, and were divided into two groups: those who underwent anatomical liver resection (n=88) and those who underwent non-anatomical liver resection (n=43). Kaplan-Meier survival analysis and Cox regressions were used to compare the disease-free survival (DFS) and overall survival (OS) rates between the groups. Results The mean follow-up periods were 27 and 40 months in the anatomical and non-anatomical groups, respectively (p=0.229). The 3- and 5-year DFS rates were 70% and 60% in the anatomical group and 62% and 48% in the non-anatomical group, respectively. The 3 and 5-year OS rates were 94% and 78% in the anatomical group, and 86% and 80% in the non-anatomical group, respectively. The anatomical group tended to show better outcomes, but the findings were not significant. However, a relative risk of OS between the anatomical and non-anatomical group was 0.234 (95% CI, 0.061-0.896; p=0.034), which is statistically significant. Conclusions Although statistical significance was not detected in survival curves, anatomical resection showed better results. In this respect, anatomical resection is more likely to perform in HCC patients with preserve liver function than non-anatomical resection. PMID:26693235

  12. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms.

    PubMed

    Momota, Ryusuke; Ohtsuka, Aiji

    2018-01-01

    Anatomy is the science and art of understanding the structure of the body and its components in relation to the functions of the whole-body system. Medicine is based on a deep understanding of anatomy, but quite a few introductory-level learners are overwhelmed by the sheer amount of anatomical terminology that must be understood, so they regard anatomy as a dull and dense subject. To help them learn anatomical terms in a more contextual way, we started a new open-source project, the Network of Anatomical Texts (NAnaTex), which visualizes relationships of body components by integrating text-based anatomical information using Cytoscape, a network visualization software platform. Here, we present a network of bones and muscles produced from literature descriptions. As this network is primarily text-based and does not require any programming knowledge, it is easy to implement new functions or provide extra information by making changes to the original text files. To facilitate collaborations, we deposited the source code files for the network into the GitHub repository ( https://github.com/ryusukemomota/nanatex ) so that anybody can participate in the evolution of the network and use it for their own non-profit purposes. This project should help not only introductory-level learners but also professional medical practitioners, who could use it as a quick reference.

  13. Anterolateral ligament anatomy: a comparative anatomical study.

    PubMed

    Ingham, Sheila Jean McNeill; de Carvalho, Rogerio Teixeira; Martins, Cesar A Q; Lertwanich, Pisit; Abdalla, Rene Jorge; Smolinski, Patrick; Lovejoy, C Owen; Fu, Freddie H

    2017-04-01

    Some anatomical studies have indicated that the anterolateral ligament (ALL) of the knee is distinct ligamentous structure in humans. The purpose of this study is to compare the lateral anatomy of the knee among human and various animal specimens. Fifty-eight fresh-frozen knee specimens, from 24 different animal species, were used for this anatomical study. The same researchers dissected all the specimens in this study, and dissections were performed in a careful and standardized manner. An ALL was not found in any of the 58 knees dissected. Another interesting finding in this study is that some primate species (the prosimians: the red and black and white lemurs) have two LCLs. The clinical relevance of this study is the lack of isolation of the ALL as a unique structure in animal species. Therefore, precaution is recommended before assessing the need for surgery to reconstruct the ALL as a singular ligament.

  14. Automatic anatomical structures location based on dynamic shape measurement

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Rapp, Walter; Sitnik, Robert; Kujawinska, Malgorzata; Vander Sloten, Jos; Haex, Bart; Bogaert, Nico; Heitmann, Kjell

    2005-09-01

    New image processing methods and active photonics apparatus have made possible the development of relatively inexpensive optical systems for complex shape and object measurements. We present dynamic 360° scanning method for analysis of human lower body biomechanics, with an emphasis on the analysis of the knee joint. The anatomical structure (of high medical interest) that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. The processed data is obtained from a dynamic laser triangulation surface measurement system, able to capture slow to normal movements with a scan frequency between 15 and 30 Hz. These frequency rates are enough to capture controlled movements used e.g. for medical examination purposes. The purpose of the work presented is to develop surface analysis methods that may be used as support of diagnosis of motoric abilities of lower limbs. The paper presents algorithms used to process acquired lower limbs surface data in order to find the position and orientation of patella. The algorithms implemented include input data preparation, curvature description methods, knee region discrimination and patella assumed position/orientation calculation. Additionally, a method of 4D (3D + time) medical data visualization is proposed. Also some exemplary results are presented.

  15. Interactive anatomical teaching: Integrating radiological anatomy within topographic anatomy.

    PubMed

    Abed Rabbo, F; Garrigues, F; Lefèvre, C; Seizeur, R

    2016-03-01

    Hours attributed to teaching anatomy have been reduced in medical curricula through out the world. In consequence, changes in anatomical curriculum as well as in teaching methods are becoming necessary. New methods of teaching are being evaluated. We present in the following paper an example of interactive anatomical teaching associating topographic anatomy with ultrasonographic radiological anatomy. The aim was to explicitly show anatomical structures of the knee and the ankle through dissection and ultrasonography. One cadaver was used as an ultrasonographic model and the other was dissected. Anatomy of the knee and ankle articulations was studied through dissection and ultrasonography. The students were able to simultaneously assimilate both anatomical aspects of radiological and topographic anatomy. They found the teaching very helpful and practical. This body of work provides example of a teaching method combining two important aspects of anatomy to help the students understand both aspects simultaneously. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Anatomic changes due to interspecific grafting in cassava (Manihot esculenta).

    PubMed

    Bomfim, N; Ribeiro, D G; Nassar, N M A

    2011-05-31

    Cassava rootstocks of varieties UnB 201 and UnB 122 grafted with scions of Manihot fortalezensis were prepared for anatomic study. The roots were cut, stained with safranin and alcian blue, and examined microscopically, comparing them with sections taken from ungrafted roots. There was a significant decrease in number of pericyclic fibers, vascular vessels and tyloses in rootstocks. They exhibited significant larger vessels. These changes in anatomic structure are a consequence of genetic effects caused by transference of genetic material from scion to rootstock. The same ungrafted species was compared. This is the first report on anatomic changes due to grafting in cassava.

  17. Anatomical entity mention recognition at literature scale

    PubMed Central

    Pyysalo, Sampo; Ananiadou, Sophia

    2014-01-01

    Motivation: Anatomical entities ranging from subcellular structures to organ systems are central to biomedical science, and mentions of these entities are essential to understanding the scientific literature. Despite extensive efforts to automatically analyze various aspects of biomedical text, there have been only few studies focusing on anatomical entities, and no dedicated methods for learning to automatically recognize anatomical entity mentions in free-form text have been introduced. Results: We present AnatomyTagger, a machine learning-based system for anatomical entity mention recognition. The system incorporates a broad array of approaches proposed to benefit tagging, including the use of Unified Medical Language System (UMLS)- and Open Biomedical Ontologies (OBO)-based lexical resources, word representations induced from unlabeled text, statistical truecasing and non-local features. We train and evaluate the system on a newly introduced corpus that substantially extends on previously available resources, and apply the resulting tagger to automatically annotate the entire open access scientific domain literature. The resulting analyses have been applied to extend services provided by the Europe PubMed Central literature database. Availability and implementation: All tools and resources introduced in this work are available from http://nactem.ac.uk/anatomytagger. Contact: sophia.ananiadou@manchester.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24162468

  18. Use of laser 3D surface digitizer in data collection and 3D modeling of anatomical structures

    NASA Astrophysics Data System (ADS)

    Tse, Kelly; Van Der Wall, Hans; Vu, Dzung H.

    2006-02-01

    A laser digitizer (Konica-Minolta Vivid 910) is used to obtain 3-dimensional surface scans of anatomical structures with a maximum resolution of 0.1mm. Placing the specimen on a turntable allows multiple scans allaround because the scanner only captures data from the portion facing its lens. A computer model is generated using 3D modeling software such as Geomagic. The 3D model can be manipulated on screen for repeated analysis of anatomical features, a useful capability when the specimens are rare or inaccessible (museum collection, fossils, imprints in rock formation.). As accurate measurements can be performed on the computer model, instead of taking measurements on actual specimens only at the archeological excavation site e.g., a variety of quantitative data can be later obtained on the computer model in the laboratory as new ideas come to mind. Our group had used a mechanical contact digitizer (Microscribe) for this purpose, but with the surface digitizer, we have been obtaining data sets more accurately and more quickly.

  19. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    NASA Astrophysics Data System (ADS)

    Evans, Philip M.

    2008-06-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  20. Long-term effects of vertebroplasty: adjacent vertebral fractures.

    PubMed

    Baroud, Gamal; Vant, Christianne; Wilcox, Ruth

    2006-01-01

    In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre

  1. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    PubMed

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  2. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    PubMed Central

    Liu, Yaou; Duan, Yunyun; Li, Kuncheng

    2015-01-01

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535

  3. How structure sculpts function: Unveiling the contribution of anatomical connectivity to the brain's spontaneous correlation structure

    NASA Astrophysics Data System (ADS)

    Bettinardi, R. G.; Deco, G.; Karlaftis, V. M.; Van Hartevelt, T. J.; Fernandes, H. M.; Kourtzi, Z.; Kringelbach, M. L.; Zamora-López, G.

    2017-04-01

    Intrinsic brain activity is characterized by highly organized co-activations between different regions, forming clustered spatial patterns referred to as resting-state networks. The observed co-activation patterns are sustained by the intricate fabric of millions of interconnected neurons constituting the brain's wiring diagram. However, as for other real networks, the relationship between the connectional structure and the emergent collective dynamics still evades complete understanding. Here, we show that it is possible to estimate the expected pair-wise correlations that a network tends to generate thanks to the underlying path structure. We start from the assumption that in order for two nodes to exhibit correlated activity, they must be exposed to similar input patterns from the entire network. We then acknowledge that information rarely spreads only along a unique route but rather travels along all possible paths. In real networks, the strength of local perturbations tends to decay as they propagate away from the sources, leading to a progressive attenuation of the original information content and, thus, of their influence. Accordingly, we define a novel graph measure, topological similarity, which quantifies the propensity of two nodes to dynamically correlate as a function of the resemblance of the overall influences they are expected to receive due to the underlying structure of the network. Applied to the human brain, we find that the similarity of whole-network inputs, estimated from the topology of the anatomical connectome, plays an important role in sculpting the backbone pattern of time-average correlations observed at rest.

  4. Anatomic Peculiarities of Pig and Human Liver.

    PubMed

    Nykonenko, Andriy; Vávra, Petr; Zonča, Pavel

    2017-02-01

    Many investigations on surgical methods and medical treatment are currently done on pigs. This is possible because the pig is sufficiently close genetically to humans. In recent years, progress in liver surgery has opened new possibilities in surgical treatment of liver diseases. Because the methods are relatively novel, various improvements are still needed, and it is thus helpful to conduct experimental surgeries on pig livers. We reviewed the literature to compare the anatomic and functional features of pig and human livers, information that will be of great importance for improving surgical techniques. During the literature review, we used various sources, such as PubMed, Scopus, and veterinary journals. Our results were summarized in diagrams to facilitate understanding of the vascular structure and biliary systems. We conclude that, although the shapes of the human and pig livers are quite different, the pig liver is divided into the same number of segments as the human liver, which also shows a common structure of the vascular system. Thus, with the anatomic and structural features of the pig liver taken into account, this animal model can be used in experimental hepatic surgery.

  5. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Radiographic study of the mandibular retromolar canal: an anatomic structure with clinical importance.

    PubMed

    von Arx, Thomas; Hänni, Andrea; Sendi, Pedram; Buser, Daniel; Bornstein, Michael M

    2011-12-01

    The retromolar canal is an anatomic structure of the mandible with clinical importance. This canal branches off from the mandibular canal behind the third molar and travels to the retromolar foramen in the retromolar fossa. The retromolar canal might conduct accessory innervation to the mandibular molars or contain an aberrant buccal nerve. Patients referred for panoramic radiography were consecutively enrolled, provided a limited cone-beam computed tomography (CBCT) scan had also been taken in the area of interest. Radiographs were retrospectively screened for the presence of a retromolar canal, and linear measurements (distance to second molar, height, width) were taken. One hundred twenty-one sides in 100 patients were evaluated (100 unilateral and 21 bilateral cases). A total of 31 retromolar canals were identified with CBCT (25.6%). Only 7 of these canals were also seen on the corresponding panoramic radiographs. The existence of a retromolar canal was not statistically related to gender or side. With regard to the linear measurements, the mean distance from the retromolar canal to the second molar was 15.16 mm (±2.39 mm), the mean height of the canal was 11.34 mm (±2.36 mm), and the mean width was 0.99 mm (±0.31 mm). This radiographic study documents a frequency of 25% for the presence of a retromolar canal. The clinician is advised to preserve this anatomic variation when performing surgery in the retromolar area and to consider additional locoregional anesthesia in the case of failed mandibular block anesthesia. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Interpretation of normal anatomic structures on chest radiography: Comparison of Fuji Computed Radiography (FCR) 5501D with FCR 5000 and screen‐film system

    PubMed Central

    Nakashima, Kazuaki; Ashizawa, Kazuto; Ochi, Makoto; Hashmi, Rashid; Hayashi, Kuniaki; Gotoh, Shinichi; Honda, Sumihisa; Igarashi, Akito; Komaki, Takao

    2003-01-01

    The purpose of this study was to investigate the usefulness of Fuji Computed Radiography (FCR) 5501D by comparing it with FCR 5000 and a screen‐film system (S/F). Posteroanterior chest radiographs often patients with no abnormality on chest CT scans were obtained with FCR 5501D, FCR 5000, and S/F. Six observers (three radiologists and three radio‐technologists) evaluated the visibility of nine normal anatomic structures (including lungs, soft tissue, and bones) and overall visibility on each image. Observers scored using a five‐point scale on each structure. FCR 5000 showed a significantly higher score in soft tissue and bone structures, and overall visibility compared with S/F, but, there was no significant difference between them in the visibility of all four normal lung structures. Compared with S/F, the score for FCR 5501D was higher in eight of the nine normal structures, including three of the four lung structures (unobscured lung, retrocardiac lung, and subdiaphragmatic lung), and overall visibility. Compared with FCR 5000, the score for FCR 5501D was higher in three normal structures, including two of the four lung structures (unobscured lung and subdiaphragmatic lung), and overall visibility. FCR 5501D was the best among the three techniques to visualize normal anatomic structures, particularly the obscured and unobscured lung. © 2003 American College of Medical Physics. PACS number(s): 87.57.–s, 87.62.+n PMID:12540822

  8. A chemical application method with underwater dissection to improve anatomic identification of cadaveric foot and ankle structures in podiatric education.

    PubMed

    Dilandro, Anthony C; Chappell, Todd M; Panchani, Prakash N; Kozlowski, Piotr B; Tubbs, R Shane; Khan, Khurram H; D'Antoni, Anthony V

    2013-01-01

    Many cadaver-based anatomy courses and surgical workshops use prosections to help podiatry students and residents learn clinically relevant anatomy. The quality of these prosections is variable and dependent upon the methods used to prepare them. These methods have not been adequately described in the literature, and few studies describe the use of chemicals to prepare prosections of the cadaveric foot and ankle. Recognizing the need for better teaching prosections in podiatric education, we developed a chemical application method with underwater dissection to better preserve anatomic structures of the cadaveric foot and ankle. We used inexpensive chemicals before, during, and after each step, which ultimately resulted in high-quality prosections that improved identification of anatomic structures relevant to the practice of podiatric medicine. Careful preservation of clinically important nerves, vessels, muscles, ligaments, and joints was achieved with these prosections. Although this method required additional preparation time, the resultant prosections have been repeatedly used for several years to facilitate learning among podiatry students and residents, and they have held up well. This method can be used by educators to teach podiatry students throughout their medical training and even into residency.

  9. Size cues and the adjacency principle.

    DOT National Transportation Integrated Search

    1963-11-01

    The purpose of the present study was to apply the adjacency principle to the perception of relative depth from size cues. In agreement with the adjacency principle, it was found that the size cue between adjacent objects was more effective than the s...

  10. Automated anatomical labeling method for abdominal arteries extracted from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Hoang, Bui Huy; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2012-02-01

    This paper presents an automated anatomical labeling method of abdominal arteries. In abdominal surgery, understanding of blood vessel structure concerning with a target organ is very important. Branching pattern of blood vessels differs among individuals. It is required to develop a system that can assist understanding of a blood vessel structure and anatomical names of blood vessels of a patient. Previous anatomical labbeling methods for abdominal arteries deal with either of the upper or lower abdominal arteries. In this paper, we present an automated anatomical labeling method of both of the upper and lower abdominal arteries extracted from CT images. We obtain a tree structure of artery regions and calculate feature values for each branch. These feature values include the diameter, curvature, direction, and running vectors of a branch. Target arteries of this method are grouped based on branching conditions. The following processes are separately applied for each group. We compute candidate artery names by using classifiers that are trained to output artery names. A correction process of the candidate anatomical names based on the rule of majority is applied to determine final names. We applied the proposed method to 23 cases of 3D abdominal CT images. Experimental results showed that the proposed method is able to perform nomenclature of entire major abdominal arteries. The recall and the precision rates of labeling are 79.01% and 80.41%, respectively.

  11. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  12. The Science and Politics of Naming: Reforming Anatomical Nomenclature, ca. 1886-1955.

    PubMed

    Buklijas, Tatjana

    2017-04-01

    Anatomical nomenclature is medicine's official language. Early in their medical studies, students are expected to memorize not only the bodily geography but also the names for all the structures that, by consensus, constitute the anatomical body. The making and uses of visual maps of the body have received considerable historiographical attention, yet the history of production, communication, and reception of anatomical names-a history as long as the history of anatomy itself-has been studied far less. My essay examines the reforms of anatomical naming between the first modern nomenclature, the 1895 Basel Nomina Anatomica (BNA), and the 1955 Nomina Anatomica Parisiensia (NAP, also known as PNA), which is the basis for current anatomical terminology. I focus on the controversial and ultimately failed attempt to reform anatomical nomenclature, known as Jena Nomina Anatomica (INA), of 1935. Discussions around nomenclature reveal not only how anatomical names are made and communicated, but also the relationship of anatomy with the clinic; disciplinary controversies within anatomy; national traditions in science; and the interplay between international and scientific disciplinary politics. I show how the current anatomical nomenclature, a successor to the NAP, is an outcome of both political and disciplinary tensions that reached their peak before 1945. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae).

    PubMed

    Pita-Barbosa, Alice; Gonçalves, Elton Carvalho; Azevedo, Aristéa Alves

    2015-08-01

    Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for

  14. Brain Anatomical Network and Intelligence

    PubMed Central

    Li, Jun; Qin, Wen; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi

    2009-01-01

    Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. PMID:19492086

  15. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    PubMed

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  16. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  17. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  18. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  19. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  20. Anatomical relations of anterior and posterior ankle arthroscopy portals: a cadaveric study.

    PubMed

    Oliva, Xavier Martin; Méndez López, José Manuel; Monzo Planella, Mariano; Bravo, Alex; Rodrigues-Pinto, Ricardo

    2015-04-01

    Ankle arthroscopy is an increasingly used technique. Knowledge of the anatomical structures in relation to its portals is paramount to avoid complications. Twenty cadaveric ankles were analysed to assess the distance between relevant neurovascular structures to the anteromedial, anterolateral, posteromedial, and posterolateral arthroscopy portals. The intermediate dorsal branch of the superficial peroneal nerve was the closest structure to any of the portals (4.8 mm from the anterolateral portal), followed by the posterior tibial nerve (7.3 mm from the posteromedial portal). All structures analysed but one (posterior tibial artery) were, at least in one specimen, <5 mm distant from one of the portals. This study provides information on the anatomical relations of ankle arthroscopy portals and relevant neurovascular structures, confirming previous studies identifying the superficial peroneal nerve as the structure at highest risk of injury, but also highlighting some important variations. Techniques to minimise the injury to these structures are discussed.

  1. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-05-01

    Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach's feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method.

  2. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    PubMed Central

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-01-01

    Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120

  3. Bayesian reconstruction and use of anatomical a priori information for emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.

    1996-10-01

    A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less

  4. Computer tomographic imaging and anatomic correlation of the human brain: A comparative atlas of thin CT-scan sections and correlated neuro-anatomic preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plets, C.; Baert, A.L.; Nijs, G.L.

    1986-01-01

    It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and themore » vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.« less

  5. Standard Anatomic Terminologies: Comparison for Use in a Health Information Exchange–Based Prior Computed Tomography (CT) Alerting System

    PubMed Central

    Lowry, Tina; Vreeman, Daniel J; Loo, George T; Delman, Bradley N; Thum, Frederick L; Slovis, Benjamin H; Shapiro, Jason S

    2017-01-01

    Background A health information exchange (HIE)–based prior computed tomography (CT) alerting system may reduce avoidable CT imaging by notifying ordering clinicians of prior relevant studies when a study is ordered. For maximal effectiveness, a system would alert not only for prior same CTs (exams mapped to the same code from an exam name terminology) but also for similar CTs (exams mapped to different exam name terminology codes but in the same anatomic region) and anatomically proximate CTs (exams in adjacent anatomic regions). Notification of previous same studies across an HIE requires mapping of local site CT codes to a standard terminology for exam names (such as Logical Observation Identifiers Names and Codes [LOINC]) to show that two studies with different local codes and descriptions are equivalent. Notifying of prior similar or proximate CTs requires an additional mapping of exam codes to anatomic regions, ideally coded by an anatomic terminology. Several anatomic terminologies exist, but no prior studies have evaluated how well they would support an alerting use case. Objective The aim of this study was to evaluate the fitness of five existing standard anatomic terminologies to support similar or proximate alerts of an HIE-based prior CT alerting system. Methods We compared five standard anatomic terminologies (Foundational Model of Anatomy, Systematized Nomenclature of Medicine Clinical Terms, RadLex, LOINC, and LOINC/Radiological Society of North America [RSNA] Radiology Playbook) to an anatomic framework created specifically for our use case (Simple ANatomic Ontology for Proximity or Similarity [SANOPS]), to determine whether the existing terminologies could support our use case without modification. On the basis of an assessment of optimal terminology features for our purpose, we developed an ordinal anatomic terminology utility classification. We mapped samples of 100 random and the 100 most frequent LOINC CT codes to anatomic regions in each

  6. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.

  7. Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability.

    PubMed

    Lim, Hong-Chul; Yoon, Yong-Cheol; Wang, Joon-Ho; Bae, Ji-Hoon

    2012-12-01

    The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction. Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction. Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees. Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.

  8. Automatic anatomical segmentation of the liver by separation planes

    NASA Astrophysics Data System (ADS)

    Boltcheva, Dobrina; Passat, Nicolas; Agnus, Vincent; Jacob-Da, Marie-Andrée, , Col; Ronse, Christian; Soler, Luc

    2006-03-01

    Surgical planning in oncological liver surgery is based on the location of the 8 anatomical segments according to Couinaud's definition and tumors inside these structures. The detection of the boundaries between the segments is then the first step of the preoperative planning. The proposed method, devoted to binary images of livers segmented from CT-scans, has been designed to delineate these segments. It automatically detects a set of landmarks using a priori anatomical knowledge and differential geometry criteria. These landmarks are then used to position the Couinaud's segments. Validations performed on 7 clinical cases tend to prove that the method is reliable for most of these separation planes.

  9. Structural and Anatomic Restoration of the Anterior Cruciate Ligament Is Associated With Less Cartilage Damage 1 Year After Surgery: Healing Ligament Properties Affect Cartilage Damage

    PubMed Central

    Kiapour, Ata M.; Fleming, Braden C.; Murray, Martha M.

    2017-01-01

    Background: Abnormal joint motion has been linked to joint arthrosis after anterior cruciate ligament (ACL) reconstruction. However, the relationships between the graft properties (ie, structural and anatomic) and extent of posttraumatic osteoarthritis are not well defined. Hypotheses: (1) The structural (tensile) and anatomic (area and alignment) properties of the reconstructed graft or repaired ACL correlate with the total cartilage lesion area 1 year after ACL surgery, and (2) side-to-side differences in anterior-posterior (AP) knee laxity correlate with the total cartilage lesion area 1 year postoperatively. Study Design: Controlled laboratory study. Methods: Sixteen minipigs underwent unilateral ACL transection and were randomly treated with ACL reconstruction or bridge-enhanced ACL repair. The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACL or graft, AP knee laxity, and cartilage lesion areas were assessed 1 year after surgery. Results: In the reconstructed group, the normalized graft yield and maximum failure loads, cross-sectional area, sagittal and coronal elevation angles, and side-to-side differences in AP knee laxity at 60° of flexion were associated with the total cartilage lesion area 1 year after surgery (R 2 > 0.5, P < .04). In the repaired group, normalized ACL yield load, linear stiffness, cross-sectional area, and the sagittal and coronal elevation angles were associated with the total cartilage lesion area (R 2 > 0.5, P < .05). Smaller cartilage lesion areas were observed in the surgically treated knees when the structural and anatomic properties of the ligament or graft and AP laxity values were closer to those of the contralateral ACL-intact knee. Reconstructed grafts had a significantly larger normalized cross-sectional area and sagittal elevation angle (more vertical) when compared with repaired ACLs (P < .02). Conclusion: The tensile properties, cross-sectional area, and multiplanar alignment of the

  10. Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.

    PubMed

    Johnston, Eric; Diehn, Maximilian; Murphy, James D; Loo, Billy W; Maxim, Peter G

    2011-05-01

    Four-dimensional (4D) computed tomography (CT) has been widely used as a tool to characterize respiratory motion in radiotherapy. The two most commonly used 4D CT algorithms sort images by the associated respiratory phase or displacement into a predefined number of bins, and are prone to image artifacts at transitions between bed positions. The purpose of this work is to demonstrate a method of reducing motion artifacts in 4D CT by incorporating anatomic similarity into phase or displacement based sorting protocols. Ten patient datasets were retrospectively sorted using both the displacement and phase based sorting algorithms. Conventional sorting methods allow selection of only the nearest-neighbor image in time or displacement within each bin. In our method, for each bed position either the displacement or the phase defines the center of a bin range about which several candidate images are selected. The two dimensional correlation coefficients between slices bordering the interface between adjacent couch positions are then calculated for all candidate pairings. Two slices have a high correlation if they are anatomically similar. Candidates from each bin are then selected to maximize the slice correlation over the entire data set using the Dijkstra's shortest path algorithm. To assess the reduction of artifacts, two thoracic radiation oncologists independently compared the resorted 4D datasets pairwise with conventionally sorted datasets, blinded to the sorting method, to choose which had the least motion artifacts. Agreement between reviewers was evaluated using the weighted kappa score. Anatomically based image selection resulted in 4D CT datasets with significantly reduced motion artifacts with both displacement (P = 0.0063) and phase sorting (P = 0.00022). There was good agreement between the two reviewers, with complete agreement 34 times and complete disagreement 6 times. Optimized sorting using anatomic similarity significantly reduces 4D CT motion

  11. Anatomical Individualized ACL Reconstruction.

    PubMed

    Rahnemai-Azar, Amir Ata; Sabzevari, Soheil; Irarrázaval, Sebastián; Chao, Tom; Fu, Freddie H

    2016-10-01

    The anterior cruciate ligament (ACL) is composed of two bundles, which work together to provide both antero-posterior and rotatory stability of the knee. Understanding the anatomy and function of the ACL plays a key role in management of patients with ACL injury. Anatomic ACL reconstruction aims to restore the function of the native ACL. Femoral and tibial tunnels should be placed in their anatomical location accounting for both the native ACL insertion site and bony landmarks. One main component of anatomical individualized ACL reconstruction is customizing the treatment according to each patient's individual characteristics, considering preoperative and intraoperative evaluation of the native ACL and knee bony anatomy. Anatomical individualized reconstruction surgery should also aim to restore the size of the native ACL insertion as well. Using this concept, while single bundle ACL reconstruction can restore the function of the ACL in some patients, double bundle reconstruction is indicated in others to achieve optimal outcome.

  12. Detection of reactive oxygen metabolites in malignant and adjacent normal tissues of patients with lung cancer.

    PubMed

    Okur, Hacer Kuzu; Yuksel, Meral; Lacin, Tunc; Baysungur, Volkan; Okur, Erdal

    2013-01-17

    Different types of reactive oxygen metabolites (ROMs) are known to be involved in carcinogenesis. Several studies have emphasized the formation of ROMs in ischemic tissues and in cases of inflammation. The increased amounts of ROMs in tumor tissues can either be because of their causative effects or because they are produced by the tumor itself. Our study aimed to investigate and compare the levels of ROMs in tumor tissue and adjacent lung parenchyma obtained from patients with lung cancer. Fifteen patients (all male, mean age 63.6 ± 9 years) with non-small cell lung cancer were enrolled in the study. All patients were smokers. Of the patients with lung cancer, twelve had epidermoid carcinoma and three had adenocarcinoma. During anatomical resection of the lung, tumor tissue and macroscopically adjacent healthy lung parenchyma (control) that was 5 cm away from the tumor were obtained. The tissues were freshly frozen and stored at -20°C. The generation of ROMs was monitored using luminol- and lucigenin-enhanced chemiluminescence (CL) techniques. Both luminol (specific for (.)OH, H(2)O(2), and HOCl(-)) and lucigenin (selective for O(2)(.)(-)) CL measurements were significantly higher in tumor tissues than in control tissues (P <0.001). Luminol and lucigenin CL measurements were 1.93 ± 0.71 and 2.5 ± 0.84 times brighter, respectively, in tumor tissues than in the adjacent parenchyma (P = 0.07). In patients with lung cancer, all ROM levels were increased in tumor tissues when compared with the adjacent lung tissue. Because the increase in lucigenin concentration, which is due to tissue ischemia, is higher than the increase in luminol, which is directly related to the presence and severity of inflammation, ischemia may be more important than inflammation for tumor development in patients with lung cancer.

  13. The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data

    PubMed Central

    Hayamizu, Terry F; Mangan, Mary; Corradi, John P; Kadin, James A; Ringwald, Martin

    2005-01-01

    We have developed an ontology to provide standardized nomenclature for anatomical terms in the postnatal mouse. The Adult Mouse Anatomical Dictionary is structured as a directed acyclic graph, and is organized hierarchically both spatially and functionally. The ontology will be used to annotate and integrate different types of data pertinent to anatomy, such as gene expression patterns and phenotype information, which will contribute to an integrated description of biological phenomena in the mouse. PMID:15774030

  14. Segmentation of medical images using explicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  15. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis.

    PubMed

    Lu, Zhifeng; Lu, Jianwei; Pan, Yonghui; Lu, Piaopiao; Li, Xiaokun; Cong, Rihuan; Ren, Tao

    2016-11-01

    Leaves exposed to potassium (K) deficiency usually present decreased mesophyll conductance (g m ) and photosynthesis (A). The relative contributions of leaf anatomical traits in determining g m have been quantified; however, anatomical variabilities related to low g m under K starvation remain imperfectly known. A one-dimensional model was used to quantify anatomical controls of the entire CO 2 diffusion pathway resistance within a leaf on two Brassica napus L. cultivars in response to K deficiency. Leaf photosynthesis of both cultivars was significantly decreased under K deficiency in parallel with down-regulated g m . The mesophyll conductance limitation contributed to more than one-half of A decline. The decreased internal air space in K-starved leaves was associated with the increase of gas-phase resistance. Potassium deficiency reduced liquid-phase conductance by decreasing the exposed surface area of chloroplasts per unit leaf area (S c /S), and enlarging the resistance of the cytoplasm that can be interpreted by the increasing distance of chloroplast from cell wall, and between adjacent chloroplasts. Additionally, the discrepancies of A between two cultivars were in part because of g m variations, ascribing to an altered S c /S. These results emphasize the important role of K on the regulation of g m by enhancing S c /S and reducing cytoplasm resistance. © 2016 John Wiley & Sons Ltd.

  16. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    NASA Astrophysics Data System (ADS)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  17. Utilization management in anatomic pathology.

    PubMed

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  18. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    NASA Astrophysics Data System (ADS)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  19. CAVEman: Standardized Anatomical Context for Biomedical Data Mapping

    ERIC Educational Resources Information Center

    Turinsky, Andrei L.; Fanea, Elena; Trinh, Quang; Wat, Stephen; Hallgrimsson, Benedikt; Dong, Xiaoli; Shu, Xueling; Stromer, Julie N.; Hill, Jonathan W.; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W.

    2008-01-01

    The authors have created a software system called the CAVEman, for the visual integration and exploration of heterogeneous anatomical and biomedical data. The CAVEman can be applied for both education and research tasks. The main component of the system is a three-dimensional digital atlas of the adult male human anatomy, structured according to…

  20. The natural armors of fish: A comparison of the lamination pattern and structure of scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murcia, Sandra; Lavoie, Ellen; Linley, Tim

    Fish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed. Scales from the Arapaima gigas, the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio) were compared in terms of the stacking sequence of individual plies and their microstructure. The scales were also compared with respectmore » to anatomical position to distinguish site-specific functional differences. Results show that the lamination sequence of plies for the carp and tarpon exhibit a Bouligand structure with relative rotation of 75° between consecutive plies. The arapaima scales exhibit a cross-ply structure, with 90° rotation between adjacent plies. In addition, results indicate that the volume fraction of reinforcement, the number of plies and the variations in thickness with anatomical position are unique amongst the three fish. These characteristics should be considered in evaluations focused on the mechanical behavior.« less

  1. Anatomical curve identification

    PubMed Central

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  2. [Establishment of anatomical terminology in Japan].

    PubMed

    Shimada, Kazuyuki

    2008-12-01

    The history of anatomical terminology in Japan began with the publication of Waran Naikei Ihan-teimŏ in 1805 and Chŏtei Kaitai Shinsho in 1826. Although the establishment of Japanese anatomical terminology became necessary during the Meiji era when many western anatomy books imported into Janan were translated, such terminology was not unified during this period and varied among translators. In 1871, Tsukumo Ono's Kaibŏgaku Gosen was published by the Ministry of Education. Although this book is considered to be the first anatomical glossary terms in Japan, its contents were incomplete. Overseas, the German Anatomical Society established a unified anatomical terminology in 1895 called the Basle Nomina Anatomica (B.N.A.). Based on this development, Kaibŏgaku Meishŭ which follows the BNA, by Buntarŏ Suzuki was published in 1905. With the subsequent establishment in 1935 of Jena Nomina Anatomica (J.N.A.), the unification of anatomical terminology was also accelerated in Japan, leading to the further development of terminology.

  3. [Histo-anatomical researches of two subspecies of Lavandula angustifolia Mill].

    PubMed

    Robu, Silvia; Galeş, Ramona; Toma, C; Stănescu, Ursula

    2011-01-01

    The structure of the inflorescences of two subspecies of Lavandula angustifolia sL. angustifolia ssp. angustifolia and. L. angustifolia ssp. pyrenaica (D.C.) Guineaţ was studied to determine the range of variation in certain histo-anatomical characters. The flower and leaf structure has been analysed on cross and superficial section using the usual techniques and methods applied in plant histo-anatomical research. In cross-section, inflorescence axis has a squared-shape contour, with four proeminent ribs. On the epiderme of inflorescence axis there are present stomata, trichoms and secretory hairs. The trichoms are pluricelullar and T-branched. The secretory hairs have a short pedicel and a uni-or bicellular head. The study revealed that there are only quantitative differences, referring to the degree of sclerification and lignification of mechanical elements and the size of the vascular bundles.

  4. Comparative evaluation between anatomic and non-anatomic lateral ligament reconstruction techniques in the ankle joint: A computational study.

    PubMed

    Purevsuren, Tserenchimed; Batbaatar, Myagmarbayar; Khuyagbaatar, Batbayar; Kim, Kyungsoo; Kim, Yoon Hyuk

    2018-03-12

    Biomechanical studies have indicated that the conventional non-anatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis. Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular non-anatomic reconstruction techniques. An LAS injury, three popular non-anatomic reconstruction models (Watson-Jones, Evans, and Chrisman-Snook), and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 Nm inversion moment), internal rotational test (3 Nm internal rotation moment), and the combined loading test (9 Nm inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the non-anatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which mainly observed in Watson-Jones and Chrisman-Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.

  5. Fast detection of the main anatomical structures in digital retinal images based on intra- and inter-structure relational knowledge.

    PubMed

    Molina-Casado, José M; Carmona, Enrique J; García-Feijoó, Julián

    2017-10-01

    The anatomical structure detection in retinal images is an open problem. However, most of the works in the related literature are oriented to the detection of each structure individually or assume the previous detection of a structure which is used as a reference. The objective of this paper is to obtain simultaneous detection of the main retinal structures (optic disc, macula, network of vessels and vascular bundle) in a fast and robust way. We propose a new methodology oriented to accomplish the mentioned objective. It consists of two stages. In an initial stage, a set of operators is applied to the retinal image. Each operator uses intra-structure relational knowledge in order to produce a set of candidate blobs that belongs to the desired structure. In a second stage, a set of tuples is created, each of which contains a different combination of the candidate blobs. Next, filtering operators, using inter-structure relational knowledge, are used in order to find the winner tuple. A method using template matching and mathematical morphology is implemented following the proposed methodology. A success is achieved if the distance between the automatically detected blob center and the actual structure center is less than or equal to one optic disc radius. The success rates obtained in the different public databases analyzed were: MESSIDOR (99.33%, 98.58%, 97.92%), DIARETDB1 (96.63%, 100%, 97.75%), DRIONS (100%, n/a, 100%) and ONHSD (100%, 98.85%, 97.70%) for optic disc (OD), macula (M) and vascular bundle (VB), respectively. Finally, the overall success rate obtained in this study for each structure was: 99.26% (OD), 98.69% (M) and 98.95% (VB). The average time of processing per image was 4.16 ± 0.72 s. The main advantage of the use of inter-structure relational knowledge was the reduction of the number of false positives in the detection process. The implemented method is able to simultaneously detect four structures. It is fast, robust and its detection

  6. [Anatomical names of fossae and foveae in skeleton].

    PubMed

    Shikano, S; Yamashita, Y

    1999-09-01

    Latin anatomical names of Fossae and Foveae in the skeleton were analyzed and compared with Japanese anatomical names for better understanding of the structures of the human body and for possible revision in the future. The conclusions were as follows: 1. In general, round excavations were called Foveae (singular : Fovea), and nonround excavations were called Fossae (singular : Fossa). Some shallow excavations for articulation and some shallow excavations with the names which indicate their contents were called Foveae even though they were not round. 2. Each name of Fossae contained the word which indicates form, location or content of Fossa, the bone (or osseous structure) which articulates with Fossa, or the muscle which is attached to Fossa. 3. Each name of Foveae contained the word which indicates location, content or articulation of Fovea, the bone (or osseous structure) which articulates with Fovea, or the muscle (or muscular trochlea) which is attached to Fovea. 4. The Japanese name which corresponds to Fossa canina should be changed from Kenshi (canine tooth) = ka (fossa) to Kenshikin (canine muscle) = ka or Koukakukyokin (levator anguli oris muscle) = ka. 5. The Japanese name which corresponds to Fossa pterygopalatina should be changed from Yoku (wing) = kougai (palate) = ka (fossa) to Yokutotsu (pterygoid process) = kougaikotsu (palatine bone) = ka.

  7. My Corporis Fabrica: an ontology-based tool for reasoning and querying on complex anatomical models

    PubMed Central

    2014-01-01

    Background Multiple models of anatomy have been developed independently and for different purposes. In particular, 3D graphical models are specially useful for visualizing the different organs composing the human body, while ontologies such as FMA (Foundational Model of Anatomy) are symbolic models that provide a unified formal description of anatomy. Despite its comprehensive content concerning the anatomical structures, the lack of formal descriptions of anatomical functions in FMA limits its usage in many applications. In addition, the absence of connection between 3D models and anatomical ontologies makes it difficult and time-consuming to set up and access to the anatomical content of complex 3D objects. Results First, we provide a new ontology of anatomy called My Corporis Fabrica (MyCF), which conforms to FMA but extends it by making explicit how anatomical structures are composed, how they contribute to functions, and also how they can be related to 3D complex objects. Second, we have equipped MyCF with automatic reasoning capabilities that enable model checking and complex queries answering. We illustrate the added-value of such a declarative approach for interactive simulation and visualization as well as for teaching applications. Conclusions The novel vision of ontologies that we have developed in this paper enables a declarative assembly of different models to obtain composed models guaranteed to be anatomically valid while capturing the complexity of human anatomy. The main interest of this approach is its declarativity that makes possible for domain experts to enrich the knowledge base at any moment through simple editors without having to change the algorithmic machinery. This provides MyCF software environment a flexibility to process and add semantics on purpose for various applications that incorporate not only symbolic information but also 3D geometric models representing anatomical entities as well as other symbolic information like the

  8. Anatomic and Histological Investigation of the Anterolateral Capsular Complex in the Fetal Knee.

    PubMed

    Sabzevari, Soheil; Rahnemai-Azar, Amir Ata; Albers, Marcio; Linde, Monica; Smolinski, Patrick; Fu, Freddie H

    2017-05-01

    There is currently disagreement with regard to the presence of a distinct ligament in the anterolateral capsular complex of the knee and its role in the pivot-shift mechanism and rotatory laxity of the knee. To investigate the anatomic and histological properties of the anterolateral capsular complex of the fetal knee to determine whether there exists a distinct ligamentous structure running from the lateral femoral epicondyle inserting into the anterolateral tibia. Descriptive laboratory study. Twenty-one unpaired, fresh fetal lower limbs, gestational age 18 to 22 weeks, were used for anatomic investigation. Two experienced orthopaedic surgeons performed the anatomic dissection using loupes (magnification ×3.5). Attention was focused on the anterolateral and lateral structures of the knee. After the skin and superficial fascia were removed, the iliotibial band was carefully separated from underlying structures. The anterolateral capsule was then examined under internal and external rotation and varus-valgus manual loading and at different knee flexion angles for the presence of any ligamentous structures. Eight additional unpaired, fetal lower limbs, gestational age 11 to 23 weeks, were used for histological analysis. This study was not able to prove the presence of a distinct capsular or extracapsular ligamentous structure in the anterolateral capsular complex area. The presence of the fibular collateral ligament, a distal attachment of the biceps femoris, the entire lateral capsule, the iliotibial band, and the popliteus tendon in the anterolateral and lateral area of the knee was confirmed in all the samples. Histological analysis of the anterolateral capsule revealed a loose, hypocellular connective tissue with less organized collagen fibers compared with ligament and tendinous structures. The main finding of this study was that the presence of a distinct ligamentous structure in the anterolateral complex is not supported from a developmental point of view

  9. Anatomical variations of uncinate process observed in chronic sinusitis.

    PubMed

    Tuli, Isha Preet; Sengupta, Subhabrata; Munjal, Sudeep; Kesari, Santosh Prasad; Chakraborty, Suvamoy

    2013-04-01

    Chronic Sinusitis, an extremely persistent illness, is surgically best treated by Functional Endoscopic Sinus Surgery. The ostiomeatal complex is the main area targeted and within it uncinate process is the first anatomical structure encountered. The significance of anatomical variations concerning age and sex of uncinate process in chronic sinusitis were evaluated. A prospective study on 50 patients of chronic sinusitis (100 uncinate processes) was done. The results were tabulated and analyzed using Statistical Package for Social Science (SPSS) 16.0. Type I superior attachment of uncinate process (67 %) was the most common variety in all ages and both sexes and a statistically significant relationship between Type I superior attachment of uncinate process and sex was found (p < 0.05). The typical uncinate process was most common (70 %) followed by medial deviation of the uncinate (24 %). This difference in occurrence was significant with respect to both age and sex (p < 0.05). Anatomical variations of uncinate process are not responsible for causing chronic sinusitis. Mere presence of these variations of uncinate is not an indication for FESS.

  10. Radio-guided sentinel lymph node identification by lymphoscintigraphy fused with an anatomical vector profile: clinical applications.

    PubMed

    Niccoli Asabella, A; Antonica, F; Renna, M A; Rubini, D; Notaristefano, A; Nicoletti, A; Rubini, G

    2013-12-01

    To develop a method to fuse lymphoscintigraphic images with an adaptable anatomical vector profile and to evaluate its role in the clinical practice. We used Adobe Illustrator CS6 to create different vector profiles, we fused those profiles, using Adobe Photoshop CS6, with lymphoscintigraphic images of the patient. We processed 197 lymphoscintigraphies performed in patients with cutaneous melanomas, breast cancer or delayed lymph drainage. Our models can be adapted to every patient attitude or position and contain different levels of anatomical details ranging from external body profiles to the internal anatomical structures like bones, muscles, vessels, and lymph nodes. If needed, more new anatomical details can be added and embedded in the profile without redrawing them, saving a lot of time. Details can also be easily hidden, allowing the physician to view only relevant information and structures. Fusion times are about 85 s. The diagnostic confidence of the observers increased significantly. The validation process showed a slight shift (mean 4.9 mm). We have created a new, practical, inexpensive digital technique based on commercial software for fusing lymphoscintigraphic images with built-in anatomical reference profiles. It is easily reproducible and does not alter the original scintigraphic image. Our method allows a more meaningful interpretation of lymphoscintigraphies, an easier recognition of the anatomical site and better lymph node dissection planning.

  11. Anatomic Sites and Associated Clinical Factors for Deep Dyspareunia.

    PubMed

    Yong, Paul J; Williams, Christina; Yosef, Ali; Wong, Fontayne; Bedaiwy, Mohamed A; Lisonkova, Sarka; Allaire, Catherine

    2017-09-01

    Deep dyspareunia negatively affects women's sexual function. There is a known association between deep dyspareunia and endometriosis of the cul-de-sac or uterosacral ligaments in reproductive-age women; however, other factors are less clear in this population. To identify anatomic sites and associated clinical factors for deep dyspareunia in reproductive-age women at a referral center. This study involved the analysis of cross-sectional baseline data from a prospective database of 548 women (87% consent rate) recruited from December 2013 through April 2015 at a tertiary referral center for endometriosis and/or pelvic pain. Exclusion criteria included menopausal status, age at least 50 years, previous hysterectomy or oophorectomy, and not sexually active. We performed a standardized endovaginal ultrasound-assisted pelvic examination to palpate anatomic structures for tenderness and reproduce deep dyspareunia. Multivariable regression was used to determine which tender anatomic structures were independently associated with deep dyspareunia severity and to identify clinical factors independently associated with each tender anatomic site. Severity of deep dyspareunia on a numeric pain rating scale of 0 to 10. Severity of deep dyspareunia (scale = 0-10) was independently associated with tenderness of the bladder (b = 0.88, P = .018), pelvic floor (levator ani) (b = 0.66, P = .038), cervix and uterus (b = 0.88, P = .008), and cul-de-sac or uterosacral ligaments (b = 1.39, P < .001), but not with the adnexa (b = -0.16, P = 0.87). The number of tender anatomic sites was significantly correlated with more severe deep dyspareunia (Spearman r = 0.34, P < .001). For associated clinical factors, greater depression symptom severity was specifically associated with tenderness of the bladder (b = 1.05, P = .008) and pelvic floor (b = 1.07, P < .001). A history of miscarriage was specifically associated with tenderness of the cervix and uterus (b = 2.24, P = .001

  12. An automatic bone segmentation method based on anatomical structure for the knee joint in MDCT image.

    PubMed

    Uozumi, Y; Nagamune, K

    2013-01-01

    The purpose of this study is to propose an automatic segmentation about each bone (the femur, the tibia, the patellar, and fibular) of the knee in MDCT image. The proposed method was applied for six patients (Age 33 ± 13, four males/tew females). The proposed method segmented the knee joint into each bone by using anatomical structure for the knee joint. The experiments calculate matching rate of the manual and the proposed method for evaluating it. As a result, The matching rate of the femur, the tibia, the patellar, and fibula were 95.84 ± 0.57%, 94.12 ± 1.01%, 94.49 ± 0.83%, 86.37 ± 4.28%, respectively. This study concluded that the proposed method is enough to segment the knee bones.

  13. Dissociation of functional and anatomical brain abnormalities in unaffected siblings of schizophrenia patients.

    PubMed

    Guo, Wenbin; Song, Yan; Liu, Feng; Zhang, Zhikun; Zhang, Jian; Yu, Miaoyu; Liu, Jianrong; Xiao, Changqing; Liu, Guiying; Zhao, Jingping

    2015-05-01

    Schizophrenia patients and their unaffected siblings share similar brain functional and structural abnormalities. However, no study is engaged to investigate whether and how functional abnormalities are related to structural abnormalities in unaffected siblings. This study was undertaken to examine the association between functional and anatomical abnormalities in unaffected siblings. Forty-six unaffected siblings of schizophrenia patients and 46 age-, sex-, and education-matched healthy controls underwent structural and resting-state functional magnetic resonance imaging scanning. Voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were utilized to analyze imaging data. The VBM analysis showed gray matter volume decreases in the fronto-temporal regions (the left middle temporal gyrus and right inferior frontal gyrus, orbital part) and increases in basal ganglia system (the left putamen). Functional abnormalities measured by ALFF and fALFF mainly involved in the fronto-limbic-sensorimotor circuit (decreased ALFF in bilateral middle frontal gyrus and the right middle cingulate gyrus, and decreased fALFF in the right inferior frontal gyrus, orbital part; and increased ALFF in the left fusiform gyrus and left lingual gyrus, and increased fALFF in bilateral calcarine cortex). No significant correlation was found between functional and anatomical abnormalities in the sibling group. A dissociation pattern of brain regions with functional and anatomical abnormalities is observed in unaffected siblings. Our findings suggest that brain functional and anatomical abnormalities might be present independently in unaffected siblings of schizophrenia patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  15. Automatic recognition of surface landmarks of anatomical structures of back and posture

    NASA Astrophysics Data System (ADS)

    Michoński, Jakub; Glinkowski, Wojciech; Witkowski, Marcin; Sitnik, Robert

    2012-05-01

    Faulty postures, scoliosis and sagittal plane deformities should be detected as early as possible to apply preventive and treatment measures against major clinical consequences. To support documentation of the severity of deformity and diminish x-ray exposures, several solutions utilizing analysis of back surface topography data were introduced. A novel approach to automatic recognition and localization of anatomical landmarks of the human back is presented that may provide more repeatable results and speed up the whole procedure. The algorithm was designed as a two-step process involving a statistical model built upon expert knowledge and analysis of three-dimensional back surface shape data. Voronoi diagram is used to connect mean geometric relations, which provide a first approximation of the positions, with surface curvature distribution, which further guides the recognition process and gives final locations of landmarks. Positions obtained using the developed algorithms are validated with respect to accuracy of manual landmark indication by experts. Preliminary validation proved that the landmarks were localized correctly, with accuracy depending mostly on the characteristics of a given structure. It was concluded that recognition should mainly take into account the shape of the back surface, putting as little emphasis on the statistical approximation as possible.

  16. PACS-based interface for 3D anatomical structure visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Koehl, Christophe; Soler, Luc; Marescaux, Jacques

    2002-05-01

    The interpretation of radiological image is routine but it remains a rather difficult task for physicians. It requires complex mental processes, that permit translation from 2D slices into 3D localization and volume determination of visible diseases. An easier and more extensive visualization and exploitation of medical images can be reached through the use of computer-based systems that provide real help from patient admission to post-operative followup. In this way, we have developed a 3D visualization interface linked to a PACS database that allows manipulation and interaction on virtual organs delineated from CT-scan or MRI. This software provides the 3D real-time surface rendering of anatomical structures, an accurate evaluation of volumes and distances and the improvement of radiological image analysis and exam annotation through a negatoscope tool. It also provides a tool for surgical planning allowing the positioning of an interactive laparoscopic instrument and the organ resection. The software system could revolutionize the field of computerized imaging technology. Indeed, it provides a handy and portable tool for pre-operative and intra-operative analysis of anatomy and pathology in various medical fields. This constitutes the first step of the future development of augmented reality and surgical simulation systems.

  17. Comparison of large-scale human brain functional and anatomical networks in schizophrenia.

    PubMed

    Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin; Bullmore, Edward T; Lim, Kelvin O

    2017-01-01

    Schizophrenia is a disease with disruptions in thought, emotion, and behavior. The dysconnectivity hypothesis suggests these disruptions are due to aberrant brain connectivity. Many studies have identified connectivity differences but few have been able to unify gray and white matter findings into one model. Here we develop an extension of the Network-Based Statistic (NBS) called NBSm (Multimodal Network-based statistic) to compare functional and anatomical networks in schizophrenia. Structural, resting functional, and diffusion magnetic resonance imaging data were collected from 29 chronic patients with schizophrenia and 29 healthy controls. Images were preprocessed, and average time courses were extracted for 90 regions of interest (ROI). Functional connectivity matrices were estimated by pairwise correlations between wavelet coefficients of ROI time series. Following diffusion tractography, anatomical connectivity matrices were estimated by white matter streamline counts between each pair of ROIs. Global and regional strength were calculated for each modality. NBSm was used to find significant overlap between functional and anatomical components that distinguished health from schizophrenia. Global strength was decreased in patients in both functional and anatomical networks. Regional strength was decreased in all regions in functional networks and only one region in anatomical networks. NBSm identified a distinguishing functional component consisting of 46 nodes with 113 links (p < 0.001), a distinguishing anatomical component with 47 nodes and 50 links (p = 0.002), and a distinguishing intermodal component with 26 nodes (p < 0.001). NBSm is a powerful technique for understanding network-based group differences present in both anatomical and functional data. In light of the dysconnectivity hypothesis, these results provide compelling evidence for the presence of significant overlapping anatomical and functional disruption in people with schizophrenia.

  18. Computerized tomography-based anatomic description of the porcine liver.

    PubMed

    Bekheit, Mohamed; Bucur, Petru O; Wartenberg, Mylene; Vibert, Eric

    2017-04-01

    The knowledge of the anatomic features is imperative for successful modeling of the different surgical situations. This study aims to describe the anatomic features of the porcine using computerized tomography (CT) scan. Thirty large, white, female pigs were included in this study. The CT image acquisition was performed in four-phase contrast study. Subsequently, analysis of the images was performed using syngo.via software (Siemens) to subtract mainly the hepatic artery and its branches. Analysis of the portal and hepatic veins division pattern was performed using the Myrian XP-Liver 1.14.1 software (Intrasense). The mean total liver volume was 915 ± 159 mL. The largest sector in the liver was the right medial one representing around 28 ± 5.7% of the total liver volume. Next in order is the right lateral sector constituting around 24 ± 5%. Its volume is very close to the volume of the left medial sector, which represents around 22 ± 4.7% of the total liver volume. The caudate lobe represents around 8 ± 2% of the total liver volume.The portal vein did not show distinct right and left divisions rather than consecutive branches that come off the main trunk. The hepatic artery frequently trifurcates into left trunk that gives off the right gastric artery and the artery to the left lateral sector, the middle hepatic artery that supplies both the right and the left medial sectors and the right hepatic artery trunk that divides to give anterior branch to the right lateral lobe, branch to the right medial lobe, and at least a branch to the caudate lobe. Frequently, there is a posterior branch that crosses behind the portal vein to the right lateral lobe. The suprahepatic veins join the inferior vena cava in three distinct openings. There are communications between the suprahepatic veins that drain the adjacent sectors. The vein from the right lateral and the right medial sectors drains into a common trunk. The vein from the left lateral and from the left

  19. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.

    PubMed

    Silverberg, Jesse L; Dillavou, Sam; Bonassar, Lawrence; Cohen, Itai

    2013-05-01

    Articular cartilage has well known depth-dependent structure and has recently been shown to have similarly non-uniform depth-dependent mechanical properties. Here, we study anatomic variation of the depth-dependent shear modulus and energy dissipation rate in neonatal bovine knees. The regions we specifically focus on are the patellofemoral groove, trochlea, femoral condyle, and tibial plateau. In every sample, we find a highly compliant region within the first 500 µm of tissue measured from the articular surface, where the local shear modulus is reduced by up to two orders of magnitude. Comparing measurements taken from different anatomic sites, we find statistically significant differences localized within the first 50 µm. Histological images reveal these anatomic variations are associated with differences in collagen density and fiber organization. Copyright © 2012 Orthopaedic Research Society.

  20. [The anatomic tradition in Venice].

    PubMed

    Capitanio, G; Stracca Pansa, V

    2000-04-01

    Venice had a long tradition and great reputation in the study of anatomical science dating back to the 1300's. The "Serenissima" Republic favoured the study and practice of anatomy as part of medical professional formation. Before the construction of the anatomical theater of San Giacomo dell'Orio, which took place in 1671, anatomical dissections were performed in churches, convents, hospitals and private homes. Even though Venice was not a University seat, it boosted numerous Venetian anatomists, among whom Benedetti, Massa, Santorini, and the medical activity of illustrious professors at the nearby University of Padua such as Vesalio, Falloppio, Spigelio, Vislingio and Morgagni.

  1. Anatomical Analysis of Saccharomyces cerevisiae Stalk-Like Structures Reveals Spatial Organization and Cell Specialization

    PubMed Central

    Scherz, Ruth; Shinder, Vera; Engelberg, David

    2001-01-01

    Recently we reported an unusual multicellular organization in yeast that we termed stalk-like structures. These structures are tall (0.5 to 3 cm long) and narrow (1 to 3 mm in diameter). They are formed in response to UV radiation of cultures spread on high agar concentrations. Here we present an anatomical analysis of the stalks. Microscopic inspection of cross sections taken from stalks revealed that stalks are composed of an inner core in which cells are dense and vital and a layer of cells (four to six rows) that surrounds the core. This outer layer is physically separated from the core and contains many dead cells. The outer layer may form a protective shell for the core cells. Through electron microscopy analysis we observed three types of cells within the stalk population: (i) cells containing many unusual vesicles, which might be undergoing some kind of cell death; (ii) cells containing spores (usually one or two spores only); and (iii) familiar rounded cells. We suggest that stalk cells are not only spatially organized but may undergo processes that induce a certain degree of cell specialization. We also show that high agar concentration alone, although not sufficient to induce stalk formation, induces dramatic changes in a colony's morphology. Most striking among the agar effects is the induction of growth into the agar, forming peg-like structures. Colonies grown on 4% agar or higher are reminiscent of stalks in some aspects. The agar concentration effects are mediated in part by the Ras pathway and are related to the invasive-growth phenomenon. PMID:11514526

  2. Anatomical modeling of the bronchial tree

    NASA Astrophysics Data System (ADS)

    Hentschel, Gerrit; Klinder, Tobias; Blaffert, Thomas; Bülow, Thomas; Wiemker, Rafael; Lorenz, Cristian

    2010-02-01

    The bronchial tree is of direct clinical importance in the context of respective diseases, such as chronic obstructive pulmonary disease (COPD). It furthermore constitutes a reference structure for object localization in the lungs and it finally provides access to lung tissue in, e.g., bronchoscope based procedures for diagnosis and therapy. This paper presents a comprehensive anatomical model for the bronchial tree, including statistics of position, relative and absolute orientation, length, and radius of 34 bronchial segments, going beyond previously published results. The model has been built from 16 manually annotated CT scans, covering several branching variants. The model is represented as a centerline/tree structure but can also be converted in a surface representation. Possible model applications are either to anatomically label extracted bronchial trees or to improve the tree extraction itself by identifying missing segments or sub-trees, e.g., if located beyond a bronchial stenosis. Bronchial tree labeling is achieved using a naïve Bayesian classifier based on the segment properties contained in the model in combination with tree matching. The tree matching step makes use of branching variations covered by the model. An evaluation of the model has been performed in a leaveone- out manner. In total, 87% of the branches resulting from preceding airway tree segmentation could be correctly labeled. The individualized model enables the detection of missing branches, allowing a targeted search, e.g., a local rerun of the tree-segmentation segmentation.

  3. Alterations in Anatomical Covariance in the Prematurely Born

    PubMed Central

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R.; Schneider, Karen C.; Papademetris, Xenophon; Constable, R. Todd; Ment, Laura R.

    2017-01-01

    Abstract Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. PMID:26494796

  4. Anatomic, histologic, and two-dimensional-echocardiographic evaluation of mitral valve anatomy in dogs.

    PubMed

    Borgarelli, Michele; Tursi, Massimiliano; La Rosa, Giuseppe; Savarino, Paolo; Galloni, Marco

    2011-09-01

    To compare echocardiographic variables of dogs with postmortem anatomic measurements and histologic characteristics of the mitral valve (MV). 21 cardiologically normal dogs. The MV was measured echocardiographically by use of the right parasternal 5-chamber long-axis view. Dogs were euthanized, and anatomic measurements of the MV annulus (MVa) were performed at the level of the left circumflex coronary artery. Mitral valve leaflets (MVLs) and chordae tendineae were measured. Structure of the MVLs was histologically evaluated in 3 segments (proximal, middle, and distal). Echocardiographic measurements of MVL length did not differ significantly from anatomic measurements. A positive correlation was detected between body weight and MVa area. There was a negative correlation between MVa area and the percentage by which the MVL area exceeded the MVa area. Anterior MVLs had a significantly higher number of chordae tendineae than did posterior MVLs. Histologically, layering of MVLs was less preserved in the distal segment, whereas the muscular component and adipose tissue were significantly more diffuse in the proximal and middle segments. The MV in cardiologically normal dogs had wide anatomic variability. Anatomic measurements of MVL length were correlated with echocardiographic measurements.

  5. Variation in stem anatomical characteristics of Campanuloideae species in relation to evolutionary history and ecological preferences.

    PubMed

    Schweingruber, Fritz Hans; Ríha, Pavel; Doležal, Jiří

    2014-01-01

    The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 ("phyteumoid") clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number of early wood vessels of large diameter, thinner cell-walls and

  6. Variation in Stem Anatomical Characteristics of Campanuloideae Species in Relation to Evolutionary History and Ecological Preferences

    PubMed Central

    Schweingruber, Fritz Hans; Říha, Pavel; Doležal, Jiří

    2014-01-01

    Background The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. Methodology/Principal Findings To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 (“phyteumoid”) clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. Conclusions/Significance Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number

  7. Perihilar Glissonian Approach for Anatomical Parenchymal Sparing Liver Resections: Technical Aspects: The Taping Game.

    PubMed

    Figueroa, Rodrigo; Laurenzi, Andrea; Laurent, Alexis; Cherqui, Daniel

    2018-03-01

    To present technical details for central hepatectomy and right anterior and posterior sectionectomies using perihilar Glissonian approach for anatomical delineation and selective inflow occlusion. Central tumors and those deeply located in the right liver may require extensive resections because of their proximity to major vascular structures. In such cases, anatomical more limited resections such as central hepatectomy or sectionectomies may provide an alternative to extensive surgery by assuring both parenchymal sparing and suitable oncologic resection. We present the global concept for performing a perihilar Glissonian approach and its application to each individual anatomical procedure. This includes detailed descriptions, illustrations, and videos demonstrating the technique. This technique was applied since 1991 for anatomical parenchymal resections including central hepatectomy (resection of segments 4, 5, and 8), right anterior sectionectomy (resection of segments 5 and 8), and right posterior sectionectomy (resection of segments 6 and 7). The feasibility rate of the Glissonian approach was 88%. Perihilar Glissonian approach is a safe and reproducible technique that enables anatomical parenchymal preserving liver resections for selected central and right-sided deeply located tumors.

  8. Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors.

    PubMed

    Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan

    2015-01-01

    Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications.

  9. Visualizing the anatomical-functional correlation of the human brain

    NASA Astrophysics Data System (ADS)

    Chang, YuKuang; Rockwood, Alyn P.; Reiman, Eric M.

    1995-04-01

    Three-dimensional tomographic images obtained from different modalities or from the same modality at different times provide complementary information. For example, while PET shows brain function, images from MRI identify anatomical structures. In this paper, we investigate the problem of displaying available information about structures and function together. Several steps are described to achieve our goal. These include segmentation of the data, registration, resampling, and display. Segmentation is used to identify brain tissue from surrounding tissues, especially in the MRI data. Registration aligns the different modalities as closely as possible. Resampling arises from the registration since two data sets do not usually correspond and the rendering method is most easily achieved if the data correspond to the same grid used in display. We combine several techniques to display the data. MRI data is reconstructed from 2D slices into 3D structures from which isosurfaces are extracted and represented by approximating polygonalizations. These are then displayed using standard graphics pipelines including shaded and transparent images. PET data measures the qualitative rates of cerebral glucose utilization or oxygen consumption. PET image is best displayed as a volume of luminous particles. The combination of both display methods allows the viewer to compare the functional information contained in the PET data with the anatomically more precise MRI data.

  10. Morphological features of the maxillary incisors roots and relationship with neighbouring anatomical structures: possible implications in endodontic surgery.

    PubMed

    Taschieri, S; Weinstein, T; Rosano, G; Del Fabbro, M

    2012-05-01

    The purpose of this study was to investigate the relationship between the root apex of the upper incisors and neighbouring anatomical structures as well as the morphology of the root-end foramen after apicoectomy. Fifty-seven patients requiring endodontic surgical treatment for a maxillary anterior root were enrolled. A preoperative diagnostic computed tomography (CT) scan was analysed to determine: the distance between the anterior wall of the nasopalatine duct and the central (CI-ND) incisor root 4mm from the apex; and the distance between the floor of the nasal cavity and the tip of either the central (CI-NF) or the lateral (LI-NF) incisor root. After apicoectomy, root-end foramen endoscopic pictures were taken in order to characterize their morphology. Fifty-nine central and 26 lateral incisors were evaluated. The average CI-ND was 4.71 ± 1.26 (SD) mm. The average CI-NF was 10.62 ± 2.25 mm. The average LI-NF was 13.05 ± 2.43 mm. The foramen shape after apicoectomy was ovoid to circular in about 90% of cases in both central and lateral incisors. A sound knowledge of the anatomical relationships at the surgical site is essential for the clinician to perform a safe endodontic surgical procedure. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Gleaning Structure from Sound: The Role of Prosodic Contrast in Learning Non-Adjacent Dependencies

    ERIC Educational Resources Information Center

    Grama, Ileana C.; Kerkhoff, Annemarie; Wijnen, Frank

    2016-01-01

    The ability to detect non-adjacent dependencies (i.e. between "a" and "b" in "aXb") in spoken input may support the acquisition of morpho-syntactic dependencies (e.g. "The princess 'is' kiss'ing' the frog"). Functional morphemes in morpho-syntactic dependencies are often marked by perceptual cues that render…

  12. Anatomic Distribution of Fluorodeoxyglucose-Avid Para-aortic Lymph Nodes in Patients With Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takiar, Vinita; Fontanilla, Hiral P.; Eifel, Patricia J.

    Purpose: Conformal treatment of para-aortic lymph nodes (PAN) in cervical cancer allows dose escalation and reduces normal tissue toxicity. Currently, data documenting the precise location of involved PAN are lacking. We define the spatial distribution of this high-risk nodal volume by analyzing fluorodeoxyglucose (FDG)-avid lymph nodes (LNs) on positron emission tomography/computed tomography (PET/CT) scans in patients with cervical cancer. Methods and Materials: We identified 72 PANs on pretreatment PET/CT of 30 patients with newly diagnosed stage IB-IVA cervical cancer treated with definitive chemoradiation. LNs were classified as left-lateral para-aortic (LPA), aortocaval (AC), or right paracaval (RPC). Distances from the LNmore » center to the closest vessel and adjacent vertebral body were calculated. Using deformable image registration, nodes were mapped to a template computed tomogram to provide a visual impression of nodal frequencies and anatomic distribution. Results: We identified 72 PET-positive para-aortic lymph nodes (37 LPA, 32 AC, 3 RPC). All RPC lymph nodes were in the inferior third of the para-aortic region. The mean distance from aorta for all lymph nodes was 8.3 mm (range, 3-17 mm), and from the inferior vena cava was 5.6 mm (range, 2-10 mm). Of the 72 lymph nodes, 60% were in the inferior third, 36% were in the middle third, and 4% were in the upper third of the para-aortic region. In all, 29 of 30 patients also had FDG-avid pelvic lymph nodes. Conclusions: A total of 96% of PET positive nodes were adjacent to the aorta; PET positive nodes to the right of the IVC were rare and were all located distally, within 3 cm of the aortic bifurcation. Our findings suggest that circumferential margins around the vessels do not accurately define the nodal region at risk. Instead, the anatomical extent of the nodal basin should be contoured on each axial image to provide optimal coverage of the para-aortic nodal compartment.« less

  13. Characterization of Capsicum species using anatomical and molecular data.

    PubMed

    Dias, G B; Gomes, V M; Moraes, T M S; Zottich, U P; Rabelo, G R; Carvalho, A O; Moulin, M; Gonçalves, L S A; Rodrigues, R; Da Cunha, M

    2013-02-28

    Capsicum species are frequently described in terms of genetic divergence, considering morphological, agronomic, and molecular databases. However, descriptions of genetic differences based on anatomical characters are rare. We examined the anatomy and the micromorphology of vegetative and reproductive organs of several Capsicum species. Four Capsicum accessions representing the species C. annuum var. annuum, C. baccatum var. pendulum, C. chinense, and C. frutescens were cultivated in a greenhouse; leaves, fruits and seeds were sampled and their organ structure analyzed by light and scanning electronic microscopy. Molecular accession characterization was made using ISSR markers. Polymorphism was observed among tector trichomes and also in fruit color and shape. High variability among accessions was detected by ISSR markers. Despite the species studied present a wide morphological and molecular variability that was not reflected by anatomical features.

  14. Analyzing tree-shape anatomical structures using topological descriptors of branching and ensemble of classifiers.

    PubMed

    Skoura, Angeliki; Bakic, Predrag R; Megalooikonomou, Vasilis

    2013-01-01

    The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.

  15. Analyzing tree-shape anatomical structures using topological descriptors of branching and ensemble of classifiers

    PubMed Central

    Skoura, Angeliki; Bakic, Predrag R.; Megalooikonomou, Vasilis

    2014-01-01

    The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis. PMID:25414850

  16. An illustrated anatomical ontology of the developing mouse lower urogenital tract

    PubMed Central

    Georgas, Kylie M.; Armstrong, Jane; Keast, Janet R.; Larkins, Christine E.; McHugh, Kirk M.; Southard-Smith, E. Michelle; Cohn, Martin J.; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P.; Wiese, Carrie B.; Brennan, Jane; Davies, Jamie A.; Harding, Simon D.; Baldock, Richard A.; Little, Melissa H.; Vezina, Chad M.; Mendelsohn, Cathy

    2015-01-01

    Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. PMID:25968320

  17. Lithospheric structure of the South China Sea and adjacent regions: Results from potential field modelling

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Fang, Jian; Cui, Ronghua

    2018-02-01

    This work aims to investigate the crustal and lithospheric mantle thickness of the South China Sea (SCS) and adjacent regions. The crust-mantle interface, average crustal density, and lithospheric mantle base are calculated from free-air gravity anomaly and topographic data using an iterative inversion method. We construct a three-dimensional lithospheric model with different hierarchical layers. The satellite-derived gravity is used to invert the average crustal density and Moho (crust-mantle interface) undulations. The average crustal density and LAB (lithosphere-asthenosphere boundary) depths are further adjusted by topographic data under the assumption of local isostasy. The average difference in Moho depths between this study and the seismic measurement results is <1.5 km. The results show that in oceanic regions, the Moho depths are 7.5-30 km and the LAB depths are 65-120 km. The lithospheric thickness of the SCS basin and the adjacent regions increases from the sea basin to the continental margin with a large gradient in the ocean-continent transition zones. The Moho depths of conjugate plots during the opening of SCS, Zhongsha Islands and Reed Bank, reveal the asymmetric spreading pattern of SCS seafloor spreading. The lithospheric thinning pattern indicate two different spreading directions during seafloor spreading, which changed from N-S to NW-SE after the southward transition of the spreading axis. The lithosphere of the SCS basin and adjacent regions indicate that the SCS basin is a young basin with a stable interior lithosphere.

  18. Correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, indonesia

    NASA Astrophysics Data System (ADS)

    Sharani, Jeanny; Hidayat, Jafron W.; Putro, Sapto P.

    2018-05-01

    Macrobenthic community play important role in sedimentary habitats as a part of food chain. Their structure may be influenced by environmental characteristic spatially and temporally. The purpose of this study is to access the correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, Indonesia. Water and sediments samples were taken twice, where the first and second sampling time were taken in June and October 2016, respectively. Samples were taken in the area of fish farming at coastal area of policulture/IMTA (as Location I), site of 1 km away from fish farming area as a reference site (as Location II), and monoculture sites (as Location III), with three stations for each location. Data of abiotic parameters included the composition of sediment substrate and DO, pH, salinity, temperature, and. Sediment samples were taken using Ekman grab. The organisms were 1 mm -size sieved and fixed using 10% formalin for further analysis, i.e. sorting, preserving, enumerating, identifying, and grouping. The relationship between biotics (macrobentos) and abiotics (physical-chemical factors) was assessed using a non-parametric multivariate procedure (BIOENV). This study found 61 species consisting of 46 families and 5 classes of macrobenthos. The most common classes were member of Mollusca and Polychaeta. Total nitrogen, silt, and clay were the abiotic factors most influencing macrobenthic structure (BIO-ENV; r = 0.46; R2 = 21.16%).

  19. Effects of Instructional Strategies Using Cross Sections on the Recognition of Anatomical Structures in Correlated CT and MR Images

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Paas, Fred; Johnson, Tristan E.; Su, Yung K.; Payer, Andrew F.

    2008-01-01

    This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include:…

  20. Regional Anatomical Observation of Morphology of Greater Palatine Canal and Surrounding Structures.

    PubMed

    Suzuki, Masashi; Omine, Yuya; Shimoo, Yoshiaki; Yamamoto, Masahito; Kaketa, Akihiro; Kasahara, Masaaki; Serikawa, Masamitu; Rhee, Sunki; Matsubayashi, Tadatoshi; Matsunaga, Satoru; Abe, Shinichi

    2016-01-01

    In maxillary molar region implant therapy, support is sometimes obtained from trabecular bone comprising the maxillary tuberosity, pterygoid process of the sphenoid bone, and pyramidal process of the palatine bone. Great care is necessary in such cases due to the presence of the greater palatine canal, which forms a passageway for the greater palatine artery, vein, and nerve. However, clinical anatomical reports envisioning embedding of pterygomaxillary implants in this trabecular bone region have been limited in number. In this study, the 3-D morphology of the greater palatine canal region, including the maxillary tuberosity region and points requiring particular care in pterygomaxillary implantation, were therefore investigated. Micro-CT was used to image 20 dentulous jaws (40 sides) harvested from the dry skulls of Japanese individuals with a mean age of 28.2 years at time of death. The skulls were obtained from the Jikei University School of Medicine cadaver repository. Three-dimensional reconstruction of the trabecular bone region, including the greater palatine canal, was performed using software for 3-D measurement of trabecular bone structure. Trabecular bone region morphometry was performed with the hamular notch-incisive papilla (HIP) plane as the reference plane. The results showed a truncated-cone structure with the greater palatine foramen as the base extending to the pterygopalatine fossa. This indicates the need for care with respect to proximity of the dental implant body to the greater palatine canal and the risk of perforation if it is embedded in the maxillary tuberosity region at an inclination of 60° toward the lingual side. Moreover, caution must be exercised to avoid possible damage to the medial wall of the maxillary sinus if the inclination of the embedded dental implant body is almost perpendicular to the HIP plane.

  1. The female knee: anatomic variations.

    PubMed

    Conley, Sheryl; Rosenberg, Aaron; Crowninshield, Roy

    2007-01-01

    Traditional knee implants have been designed "down the middle,"based on the combined average size and shape of male and female knee anatomy.Sex-based research in the field of orthopaedics has led to new understanding of the anatomic differences between the sexes and the associated implications for women undergoing total knee arthroplasty. Through the use of a comprehensive bone morphology atlas that utilizes novel three-dimensional computed tomography analysis technology, significant anatomic differences have been documented in the shape and size of female knees compared with male knees. This research identifies three notable anatomic differences in the female population: a less prominent anterior condyle, an increased Q angle, and a reduced medial-lateral:anterior-posterior aspect ratio.

  2. The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex.

    PubMed

    Knösche, Thomas R; Tittgemeyer, Marc

    2011-01-01

    This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.

  3. SU-C-206-03: Metal Artifact Reduction in X-Ray Computed Tomography Based On Local Anatomical Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Yang, X; Rosenfield, J

    Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map,more » which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.« less

  4. Variability of adjacency effects in sky reflectance measurements.

    PubMed

    Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M

    2017-09-01

    Sky reflectance R sky (λ) is used to correct in situ reflectance measurements in the remote detection of water color. We analyzed the directional and spectral variability in R sky (λ) due to adjacency effects against an atmospheric radiance model. The analysis is based on one year of semi-continuous R sky (λ) observations that were recorded in two azimuth directions. Adjacency effects contributed to R sky (λ) dependence on season and viewing angle and predominantly in the near-infrared (NIR). For our test area, adjacency effects spectrally resembled a generic vegetation spectrum. The adjacency effect was weakly dependent on the magnitude of Rayleigh- and aerosol-scattered radiance. The reflectance differed between viewing directions 5.4±6.3% for adjacency effects and 21.0±19.8% for Rayleigh- and aerosol-scattered R sky (λ) in the NIR. Under which conditions in situ water reflectance observations require dedicated correction for adjacency effects is discussed. We provide an open source implementation of our method to aid identification of such conditions.

  5. The relationship of lateral anatomic structures to exiting guide pins during femoral tunnel preparation utilizing an accessory medial portal.

    PubMed

    Farrow, Lutul D; Parker, Richard D

    2010-06-01

    Anatomic reconstruction of the anterior cruciate ligament through an accessory medial portal has become increasingly popular. The purpose of this study is to describe the relationship of guide pin exit points to the lateral anatomic structures when preparing the anterior cruciate ligament femoral tunnel through an accessory medial portal. We utilized seven fresh frozen cadaveric knees. Utilizing an anteromedial approach, a guide wire was placed into the center of each bundle's footprint. Each guide wire was advanced through the lateral femoral cortex. The guide pins were passed at 90, 110, and 130 degrees of knee flexion. The distances from each guide pin to the closest relevant structures on the lateral side of the knee were measured. At 90 degrees the posterolateral bundle guide pin was closest to the lateral condyle articular cartilage (mean 5.4 +/- 2.2 mm) and gastrocnemius tendon (mean 5.7 +/- 2.1 mm). At 110 degrees the posterolateral bundle pin was closest to the gastrocnemius tendon (mean 4.5 +/- 3.4 mm). At 130 degrees the posterolateral bundle pin was closest to the gastrocnemius tendon (mean 7.2 +/- 5.5 mm) and lateral collateral ligament (mean 6.8 +/- 2.1 mm). At 90 degrees the anteromedial bundle guide pin was closest to the articular cartilage (mean 2.0 +/- 2.0 mm). At 110 degrees the anteromedial bundle pin was closest to the articular cartilage (mean 7.4 +/- 3.5 mm) and gastrocnemius tendon (mean 12.3 +/- 3.1 mm). At 130 degrees the AM bundle pin was closest to the gastrocnemius tendon (mean 8.2 +/- 3.2 mm) and LCL (mean 15.1 +/- 2.9 mm). Neither guide pin (anteromedial or posterolateral bundle) put the peroneal nerve at risk at any knee flexion angle. At low knee flexion angles the anteromedial and posterolateral bundle guide pins closely approximated multiple lateral structures when using an accessory medial arthroscopic portal. Utilizing higher flexion angles increases the margin of error when preparing both femoral tunnels. During preparation of

  6. The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs

    PubMed Central

    Bard, Jonathan B. L.

    2012-01-01

    This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/. PMID:22347883

  7. The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs.

    PubMed

    Bard, Jonathan B L

    2012-01-01

    This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/.

  8. Congenital blindness is associated with large-scale reorganization of anatomical networks.

    PubMed

    Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier

    2016-03-01

    Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Alterations in Anatomical Covariance in the Prematurely Born.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R; Schneider, Karen C; Papademetris, Xenophon; Constable, R Todd; Ment, Laura R

    2017-01-01

    Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Femoral anatomical frame: assessment of various definitions.

    PubMed

    Della Croce, U; Camomilla, V; Leardini, A; Cappozzo, A

    2003-06-01

    The reliability of the estimate of joint kinematic variables and the relevant functional interpretation are affected by the uncertainty with which bony anatomical landmarks and underlying bony segment anatomical frames are determined. When a stereo-photogrammetric system is used for in vivo studies, minimising and compensating for this uncertainty is crucial. This paper deals with the propagation of the errors associated with the location of both internal and palpable femoral anatomical landmarks to the estimation of the orientation of the femoral anatomical frame and to the knee joint angles during movement. Given eight anatomical landmarks, and the precision with which they can be identified experimentally, 12 different rules were defined for the construction of the anatomical frame and submitted to comparative assessment. Results showed that using more than three landmarks allows for more repeatable anatomical frame orientation and knee joint kinematics estimation. Novel rules are proposed that use optimization algorithms. On the average, the femoral frame orientation dispersion had a standard deviation of 2, 2.5 and 1.5 degrees for the frontal, transverse, and sagittal plane, respectively. However, a proper choice of the relevant construction rule allowed for a reduction of these inaccuracies in selected planes to 1 degrees rms. The dispersion of the knee adduction-abduction and internal-external rotation angles could also be limited to 1 degrees rms irrespective of the flexion angle value.

  11. Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions

    NASA Astrophysics Data System (ADS)

    Seredkina, Alena; Kozhevnikov, Vladimir; Melnikova, Valentina; Solovey, Oksana

    2016-12-01

    Correlations between seismicity, seismotectonic deformation (STD) field and velocity structure of the crust and the upper mantle in the Baikal rift and the adjacent areas of the Siberian platform and the Mongol-Okhotsk fold belt have been investigated. The 3D S-wave velocity structure up to the depths of 500 km has been modeled using a representative sample of Rayleigh wave group velocity dispersion curves (about 3200 paths) at periods from 10 to 250 s. The STD pattern has been reconstructed from mechanisms of large earthquakes, and is in good agreement with GPS and structural data. Analysis of the results has shown that most of large shallow earthquakes fall in regions of low S-wave velocities in the uppermost mantle (western Mongolia and areas of recent mountain building in southern Siberia) and in zones of their relatively high lateral variations (northeastern flank of the Baikal rift). In the first case the dominant STD regime is compression manifested in a mixture of thrust and strike-slip deformations. In the second case we observe a general predominance of extension.

  12. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

    PubMed

    Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo

    2014-11-18

    Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.

  13. Representation and visualization of variability in a 3D anatomical atlas using the kidney as an example

    NASA Astrophysics Data System (ADS)

    Hacker, Silke; Handels, Heinz

    2006-03-01

    Computer-based 3D atlases allow an interactive exploration of the human body. However, in most cases such 3D atlases are derived from one single individual, and therefore do not regard the variability of anatomical structures concerning their shape and size. Since the geometric variability across humans plays an important role in many medical applications, our goal is to develop a framework of an anatomical atlas for representation and visualization of the variability of selected anatomical structures. The basis of the project presented is the VOXEL-MAN atlas of inner organs that was created from the Visible Human data set. For modeling anatomical shapes and their variability we utilize "m-reps" which allow a compact representation of anatomical objects on the basis of their skeletons. As an example we used a statistical model of the kidney that is based on 48 different variants. With the integration of a shape description into the VOXEL-MAN atlas it is now possible to query and visualize different shape variations of an organ, e.g. by specifying a person's age or gender. In addition to the representation of individual shape variants, the average shape of a population can be displayed. Besides a surface representation, a volume-based representation of the kidney's shape variants is also possible. It results from the deformation of the reference kidney of the volume-based model using the m-rep shape description. In this way a realistic visualization of the shape variants becomes possible, as well as the visualization of the organ's internal structures.

  14. Esophageal cancer: anatomic particularities, staging, and imaging techniques.

    PubMed

    Encinas de la Iglesia, J; Corral de la Calle, M A; Fernández Pérez, G C; Ruano Pérez, R; Álvarez Delgado, A

    2016-01-01

    Cancer of the esophagus is a tumor with aggressive behavior that is usually diagnosed in advanced stages. The absence of serosa allows it to spread quickly to neighboring mediastinal structures, and an extensive lymphatic drainage network facilitates tumor spread even in early stages. The current TNM classification, harmonized with the classification for gastric cancer, provides new definitions for the anatomic classification, adds non-anatomic characteristics of the tumor, and includes tumors of the gastroesophageal junction. Combining endoscopic ultrasound, computed tomography, positron emission tomography, and magnetic resonance imaging provides greater accuracy in determining the initial clinical stage, and these imaging techniques play an essential role in the selection, planning, and evaluation of treatment. In this article, we review some particularities that explain the behavior of this tumor and we describe the current TNM staging system; furthermore, we discuss the different imaging tests available for its evaluation and include a diagnostic algorithm. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Dynamic article: surgical anatomical planes for complete mesocolic excision and applied vascular anatomy of the right colon.

    PubMed

    Açar, Halil İbrahim; Cömert, Ayhan; Avşar, Abdullah; Çelik, Safa; Kuzu, Mehmet Ayhan

    2014-10-01

    Lower local recurrence rates and better overall survival are associated with complete mesocolic excision with central vascular ligation for treatment of colon cancer. To accomplish this, surgeons need to pay special attention to the surgical anatomical planes and vascular anatomy of the colon. However, surgical education in this area has been neglected. The aim of this study is to define the correct surgical anatomical planes for complete mesocolic excision with central vascular ligation and to demonstrate the correct dissection technique for protecting anatomical structures. Macroscopic and microscopic surgical dissections were performed on 12 cadavers in the anatomy laboratory and on autopsy specimens. The dissections were recorded as video clips. Dissections were performed in accordance with the complete mesocolic excision technique on 10 male and 2 female cadavers. Vascular structures, autonomic nerves, and related fascias were shown. Within each step of the surgical procedure, important anatomical structures were displayed on still images captured from videos by animations. Three crucial steps for complete mesocolic excision with central vascular ligation are demonstrated on the cadavers: 1) full mobilization of the superior mesenteric root following the embryological planes between the visceral and the parietal fascias; 2) mobilization of the mesocolon from the duodenum and the pancreas and identification of vascular structures, especially the veins around the pancreas; and 3) central vascular ligation of the colonic vessels at their origin, taking into account the vascular variations within the mesocolonic vessels and the autonomic nerves around the superior mesenteric artery. The limitation of this study was the number of the cadavers used. Successful complete mesocolic excision with central vascular ligation depends on an accurate knowledge of the surgical anatomical planes and the vascular anatomy of the colon.

  16. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data

    NASA Astrophysics Data System (ADS)

    Shidahara, M.; Tsoumpas, C.; McGinnity, C. J.; Kato, T.; Tamura, H.; Hammers, A.; Watabe, H.; Turkheimer, F. E.

    2012-05-01

    The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [11C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from -30.1% and -26.2% to -17.6% and -15.1%, respectively, for the 60 min static image and from -51.4% and -38.3% to -27.6% and -20.3% for the binding potential (BPND) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [11C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided.

  17. [Graphic reconstruction of anatomic surfaces].

    PubMed

    Ciobanu, O

    2004-01-01

    The paper deals with the graphic reconstruction of anatomic surfaces in a virtual 3D setting. Scanning technologies and soft provides a greater flexibility in the digitization of surfaces and a higher resolution and accuracy. An alternative cheap method for the reconstruction of 3D anatomic surfaces is presented in connection with some studies and international projects developed by Medical Design research team.

  18. Distinctive Glycerophospholipid Profiles of Human Seminoma and Adjacent Normal Tissues by Desorption Electrospray Ionization Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham

    2011-08-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.

  19. Evaluation of influences of the Viennese Anatomical School on the work of the Croatian Anatomist Jelena Krmpotic-Nemanic.

    PubMed

    Dinjar, Kristijan; Toth, Jurica; Atalic, Bruno; Radanovic, Danijela; Maric, Svjetlana

    2012-01-01

    This paper tries to evaluate the connections between the Viennese Anatomical School and the Croatian Anatomist Jelena Krmpotic-Nemanic. 17 papers written by Professor Jelena Krmpotic-Nemanic in the last decade of her life were chosen for analyses. According to their themes they could be divided into three groups: ones which evaluate the anatomical terminology, ones which research the development of anatomical structures, and ones which describe the anatomical variations. Mentioned papers were analysed through their topics, methods of research and cited references. Analyses of the mentioned papers revealed the indirect link between the Viennese Anatomical School and the Professor Jelena Krmpotic-Nemanic, through her mentor Professor Drago Perovic, regarding the themes and the methods of her anatomical researches. It has also showed her preference for Austrian and German anatomical textbooks and atlases, primarily ones published in Vienna and Jena, rather than English and American ones. Finally, her direct connections with the Viennese Institute for the History of Medicine and the Viennese Josephinum Wax Models Museum were emphasized. Mentioned indirect and direct influences of the Viennese Anatomical School on the work of Professor Jelena Krmpotic-Nemanic were critically appraised.

  20. [3D modeling of the female pelvis by Computer-Assisted Anatomical Dissection: Applications and perspectives].

    PubMed

    Balaya, V; Uhl, J-F; Lanore, A; Salachas, C; Samoyeau, T; Ngo, C; Bensaid, C; Cornou, C; Rossi, L; Douard, R; Bats, A-S; Lecuru, F; Delmas, V

    2016-05-01

    To achieve a 3D vectorial model of a female pelvis by Computer-Assisted Anatomical Dissection and to assess educationnal and surgical applications. From the database of "visible female" of Visible Human Project(®) (VHP) of the "national library of medicine" NLM (United States), we used 739 transverse anatomical slices of 0.33mm thickness going from L4 to the trochanters. The manual segmentation of each anatomical structures was done with Winsurf(®) software version 4.3. Each anatomical element was built as a separate vectorial object. The whole colored-rendered vectorial model with realistic textures was exported in 3Dpdf format to allow a real time interactive manipulation with Acrobat(®) pro version 11 software. Each element can be handled separately at any transparency, which allows an anatomical learning by systems: skeleton, pelvic organs, urogenital system, arterial and venous vascularization. This 3D anatomical model can be used as data bank to teach of the fundamental anatomy. This 3D vectorial model, realistic and interactive constitutes an efficient educational tool for the teaching of the anatomy of the pelvis. 3D printing of the pelvis is possible with the new printers. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Surface anatomy and anatomical planes in the adult turkish population.

    PubMed

    Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S

    2016-03-01

    Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.

  2. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segars, W. P.; Bond, Jason; Frush, Jack

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantommore » were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  3. An illustrated anatomical ontology of the developing mouse lower urogenital tract.

    PubMed

    Georgas, Kylie M; Armstrong, Jane; Keast, Janet R; Larkins, Christine E; McHugh, Kirk M; Southard-Smith, E Michelle; Cohn, Martin J; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P; Wiese, Carrie B; Brennan, Jane; Davies, Jamie A; Harding, Simon D; Baldock, Richard A; Little, Melissa H; Vezina, Chad M; Mendelsohn, Cathy

    2015-05-15

    Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. © 2015. Published by The Company of Biologists Ltd.

  4. 47 CFR 101.1421 - Coordination of adjacent area MVDDS stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for... compatible with adjacent and co-channel operations in the adjacent areas on all its frequencies; and (2... adjacent and co-channel operations in adjacent areas. (b) Harmful interference to public safety stations...

  5. Anatomic mapping for surgical reconstruction of the proximal tibiofibular ligaments.

    PubMed

    See, Aaron; Bear, Russell R; Owens, Brett D

    2013-01-01

    Injury to the proximal tibiofibular joint is uncommon. Previous studies regarding the anatomy of this region have predominantly focused on joint orientation. As radiographic technology has advanced, later studies have attempted to evaluate the capsular anatomy. However, no reports specifically map the ligaments to this joint. The objectives of the current study were to define specific ligamentous structures that provide stability to the proximal tibiofibular joint, describe easily identifiable and reproducible surgical landmarks to aid in surgical reconstruction, and add to the understanding of the posterolateral structures of the knee previously described by other authors. The proximal tibiofibular joint ligaments were identified in 10 fresh-frozen cadaveric specimens. Average ligament length, width, and thickness and area of the footprints of the tibial and fibular attachments were measured. Distances from the ligament footprints to known anatomic landmarks (eg, Gerdy's tubercle, tibial articular surface, and fibular styloid) were also measured. The anterior ligament tibial attachment was a mean of 15.6 mm lateral and posterior to Gerdy's tubercle and 17.3 mm anterior and inferior from the fibular styloid. Posterior ligament tibial insertion was a mean of 15.7 mm inferior to the tibial articular surface on the tibial side and 14.2 mm medial and slightly inferior from the fibular styloid. Definable ligaments provide stability to the proximal tibiofibular joint and can be reconstructed in an anatomic fashion using the landmarks and parameters described. This information allows for an anatomic reconstruction of the proximal tibiofibular joint, which should provide patients with better outcomes and fewer postoperative sequelae. Copyright 2013, SLACK Incorporated.

  6. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  7. A study on automated anatomical labeling to arteries concerning with colon from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2011-03-01

    This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.

  8. Seismicity in Azerbaijan and Adjacent Caspian Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicatemore » that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.« less

  9. Safe Corridor to Access Clivus for Endoscopic Trans-Sphenoidal Surgery: A Radiological and Anatomical Study

    PubMed Central

    Cheng, Ye; Zhang, Siwen; Chen, Yong; Zhao, Gang

    2015-01-01

    Purpose Penetration of the clivus is required for surgical access of the brain stem. The endoscopic transclivus approach is a difficult procedure with high risk of injury to important neurovascular structures. We undertook a novel anatomical and radiological investigation to understand the structure of the clivus and neurovascular structures relevant to the extended trans-nasal trans-sphenoid procedure and determine a safe corridor for the penetration of the clivus. Method We examined the clivus region in the computed tomographic angiography (CTA) images of 220 adults, magnetic resonance (MR) images of 50 adults, and dry skull specimens of 10 adults. Multiplanar reconstruction (MPR) of the CT images was performed, and the anatomical features of the clivus were studied in the coronal, sagittal, and axial planes. The data from the images were used to determine the anatomical parameters of the clivus and neurovascular structures, such as the internal carotid artery and inferior petrosal sinus. Results The examination of the CTA and MR images of the enrolled subjects revealed that the thickness of the clivus helped determine the depth of the penetration, while the distance from the sagittal midline to the important neurovascular structures determined the width of the penetration. Further, data from the CTA and MR images were consistent with those retrieved from the examination of the cadaveric specimens. Conclusion Our findings provided certain pointers that may be useful in guiding the surgery such that inadvertent injury to vital structures is avoided and also provided supportive information for the choice of the appropriate endoscopic equipment. PMID:26368821

  10. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    NASA Astrophysics Data System (ADS)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  11. Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors

    PubMed Central

    Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan

    2015-01-01

    Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications. PMID:26550385

  12. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  13. An anatomic and morphometric study of C2 nerve root ganglion and its corresponding foramen.

    PubMed

    Bilge, Okan

    2004-03-01

    Exposing and measuring the dorsal root ganglion of the second cervical spinal nerve (C2 ganglion) and the second intervertebral space, which is present between posterior arch of atlas (APA) and lamina of axis (LA). This study aims to investigate the shape, size, and relation of the C2 ganglion with the adjacent structures that limits the corresponding intervertebral space and the alterations of relation between C2 ganglion and APA and between C2 ganglion and LA with the movements of the head bilaterally. In previous studies, the position and the heights of the C2 ganglion have been described. But the shape of the C2 ganglion and its relation to APA and LA by the movement of the head had not been considered previously. Upper cervical spines of 20 cadavers were dissected posteriorly. The muscles attaching to the atlas and axis were resected to ease the head movements. The heights of the C2 ganglion and space were measured in anatomic position and in hyperextension with opposite rotation position of the head. Originally in this study, plastic dough casts were used to obtain reliable outcomes. The shape of the ganglions was defined in three types: 70% were oval, 20% were spindle-like, and 10% were spherical. The height of the C2 ganglion was 4.97 +/- 0.92 mm on the right side and 4.6 +/- 0.84 mm on the left side. The height of the intervertebral space in anatomic position and in hyperextension with rotation to the opposite position of the head were, respectively, 9.74 +/- 1.77 mm and 7.48 +/- 1.44 mm on the right side and 9.64 +/- 1.47 mm and 7.12 +/- 0.96 mm on the left side. There was no bone contact or impact to the ganglion in each position of the head. The C2 ganglions are confident in their place between APA and LA. No bone contact to the C2 ganglion was detected in either normal limited or in forced head motions.

  14. The intertarsal joint of the ostrich (Struthio camelus): Anatomical examination and function of passive structures in locomotion

    PubMed Central

    Schaller, Nina U; Herkner, Bernd; Villa, Rikk; Aerts, Peter

    2009-01-01

    The ostrich (Struthio camelus) is the largest extant biped. Being flightless, it exhibits advanced cursorial abilities primarily evident in its characteristic speed and endurance. In addition to the active musculoskeletal complex, its powerful pelvic limbs incorporate passive structures wherein ligaments interact with joint surfaces, cartilage and other connective tissue in their course of motion. This arrangement may enable energy conservation by providing joint stabilisation, optimised limb segment orientation and automated positioning of ground contact elements independently of direct muscle control. The intertarsal joint is of particular interest considering its position near the mid-point of the extended limb and its exposure to high load during stance with significant inertial forces during swing phase. Functional-anatomical analysis of the dissected isolated joint describes the interaction of ligaments with intertarsal joint contours through the full motion cycle. Manual manipulation identified a passive engage-disengage mechanism (EDM) that establishes joint extension, provides bi-directional resistance prior to a transition point located at 115° and contributes to rapid intertarsal flexion at toe off and full extension prior to touch down. This effect was subsequently quantified by measurement of intertarsal joint moments in prepared anatomical specimens in a neutral horizontal position and axially-loaded vertical position. Correlation with kinematic analyses of walking and running ostriches confirms the contribution of the EDM in vivo. We hypothesise that the passive EDM operates in tandem with a stringently coupled multi-jointed muscle-tendon system to conserve the metabolic cost of locomotion in the ostrich, suggesting that a complete understanding of terrestrial locomotion across extinct and extant taxa must include functional consideration of the ligamentous system. PMID:19538629

  15. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  16. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  17. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  18. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  19. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  20. Cryopreserved embryo transfer: adjacent or non-adjacent to failed fresh long GnRH-agonist protocol IVF cycle.

    PubMed

    Volodarsky-Perel, Alexander; Eldar-Geva, Talia; Holzer, Hananel E G; Schonberger, Oshrat; Reichman, Orna; Gal, Michael

    2017-03-01

    The optimal time to perform cryopreserved embryo transfer (CET) after a failed oocyte retrieval-embryo transfer (OR-ET) cycle is unknown. Similar clinical pregnancy rates were recently reported in immediate and delayed CET, performed after failed fresh OR-ET, in cycles with the gonadotrophin-releasing hormone (GnRH) antagonist protocol. This study compared outcomes of CET performed adjacently (<50 days, n = 67) and non-adjacently (≥50 to 120 days, n = 62) to the last OR-day of cycles with the GnRH agonist down-regulation protocol. Additional inclusion criteria were patients' age 20-38 years, the transfer of only 1-2 cryopreserved embryos, one treatment cycle per patient and artificial preparation for CET. Significantly higher implantation, clinical pregnancy and live birth rates were found in the non-adjacent group than in the adjacent group: 30.5% versus 11.3% (P = 0.001), 41.9% versus 17.9% (P = 0.003) and 32.3% versus 13.4% (P = 0.01), respectively. These results support the postponement of CET after a failed OR-ET for at least one menstrual cycle, when a preceding long GnRH-agonist protocol is used. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Anatomical recommendations for safe botulinum toxin injection into temporalis muscle: a simplified reproducible approach.

    PubMed

    Lee, Won-Kang; Bae, Jung-Hee; Hu, Kyung-Seok; Kato, Takafumi; Kim, Seong-Taek

    2017-03-01

    The objective of this study was to simplify the anatomically safe and reproducible approach for BoNT injection and to generate a detailed topographic map of the important anatomical structures of the temporal region by dividing the temporalis into nine equally sized compartments. Nineteen sides of temporalis muscle were used. The topographies of the superficial temporal artery, middle temporal vein, temporalis tendon, and the temporalis muscle were evaluated. Also evaluated was the postural relations among the foregoing anatomical structures in the temporalis muscle, pivoted upon a total of nine compartments. The temporalis above the zygomatic arch exhibited an oblique quadrangular shape with rounded upper right and left corners. The distance between the anterior and posterior margins of the temporalis muscle was equal to the width of the temporalis rectangle, and the distance between the reference line and the superior temporalis margin was equal to its height. The mean ratio of width to height was 5:4. We recommend compartments Am, Mu, and Pm (coordinates of the rectangular outline) as areas in the temporal region for BoNT injection, because using these sites will avoid large blood vessels and tendons, thus improving the safety and reproducibility of the injection.

  2. Determining Crustal Structure beneath the New Madrid Seismic Zone and Adjacent Areas: Application of a Reverberation-removal Filter

    NASA Astrophysics Data System (ADS)

    Liu, L.; Gao, S. S.; Liu, K. H.

    2015-12-01

    The New Madrid Seismic Zone (NMSZ) and some of the adjacent areas are covered by a low-velocity sedimentary sequence, giving rise to strong reverberations in the P-to-S receiver functions (RFs) and making it difficult to reliably determine crustal thickness and Poisson's ratio using the conventional H-k stacking technique. Here we apply a newly developed technique (Yu et al., 2015; doi: 10.1002/2014JB011610) to effectively remove or reduce the reverberations from the sedimentary layer to obtain more reliable results. Stacking of a total of 38528 radial RFs recorded by 343 stations in the study area shows systematic spatial variations in crustal thickness (H), Vp/Vs ratio and amplitude (R; relative to the direction P) of the converted Moho phases. Our results indicate that the upper Mississippi Embayment (ME), a broad southwest-plunging trough with the thickest sedimentary layer in the study area, is characterized by a thin crustal thickness (~32 km), while adjacent areas have relatively thicker crust (>40 km). This area also possesses relatively large Vp/Vs (>1.85) values, suggesting possible intrusion of mantle-derived mafic rocks. Most part of the Ozark Uplift is characterized by relatively small Vp/Vs (<1.79) values which indicate an overall felsic crust. In contrast to the NMSZ which is part of the Reelfoot rift, the southern Illinois Basin, which is an intracontinental sag basin, is characterized by a crust of about 45 km which is a few km thicker than the surrounding areas, and a normal Vp/Vs, suggesting sharp differences in crustal structure between rift and sag basins.

  3. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches

    PubMed Central

    Bernard, Jessica A.; Seidler, Rachael D.; Hassevoort, Kelsey M.; Benson, Bryan L.; Welsh, Robert C.; Wiggins, Jillian Lee; Jaeggi, Susanne M.; Buschkuehl, Martin; Monk, Christopher S.; Jonides, John; Peltier, Scott J.

    2012-01-01

    The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Krienen and Buckner, 2009; O'Reilly et al., 2010; Buckner et al., 2011). However, none of this work has taken an anatomically-driven lobular approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011), it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven connectivity atlas of the cerebellar lobules. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into “motor” and “non-motor” regions. We also used a self-organizing map (SOM) algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our SOM algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not necessarily indicative of functional boundaries, though anatomical divisions can be useful. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure. PMID:22907994

  4. Sucrose-Metabolizing Enzymes in Transport Tissues and Adjacent Sink Structures in Developing Citrus Fruit 1

    PubMed Central

    Lowell, Cadance A.; Tomlinson, Patricia T.; Koch, Karen E.

    1989-01-01

    Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import

  5. Understanding the Anatomic Basis for Obstructive Sleep Apnea Syndrome in Adolescents

    PubMed Central

    Kim, Christopher; Bagchi, Sheila; Keenan, Brendan T.; Comyn, François-Louis; Wang, Stephen; Tapia, Ignacio E.; Huang, Shirley; Traylor, Joel; Torigian, Drew A.; Bradford, Ruth M.; Marcus, Carole L.

    2015-01-01

    Rationale: Structural risk factors for obstructive sleep apnea syndrome (OSAS) in adolescents have not been well characterized. Because many adolescents with OSAS are obese, we hypothesized that the anatomic OSAS risk factors would be more similar to those in adults than those in children. Objectives: To investigate the anatomic risk factors in adolescents with OSAS compared with obese and lean control subjects using magnetic resonance imaging (MRI). Methods: Three groups of adolescents (age range: 12–16 yr) underwent MRI: obese individuals with OSAS (n = 49), obese control subjects (n = 38), and lean control subjects (n = 50). Measurements and Main Results: We studied 137 subjects and found that (1) obese adolescents with OSAS had increased adenotonsillar tissue compared with obese and lean control subjects; (2) obese OSAS adolescents had a smaller nasopharyngeal airway than control subjects; (3) the size of other upper airway soft tissue structures (volume of the tongue, parapharyngeal fat pads, lateral walls, and soft palate) was similar between subjects with OSAS and obese control subjects; (4) although there were no major craniofacial abnormalities in most of the adolescents with OSAS, the ratio of soft tissue to craniofacial space surrounding the airway was increased; and (5) there were sex differences in the pattern of lymphoid proliferation. Conclusions: Increased size of the pharyngeal lymphoid tissue, rather than enlargement of the upper airway soft tissue structures, is the primary anatomic risk factor for OSAS in obese adolescents. These results are important for clinical decision making and suggest that adenotonsillectomy should be considered as the initial treatment for OSAS in obese adolescents, a group that has poor continuous positive airway pressure adherence and difficulty in achieving weight loss. PMID:25835282

  6. Analysis of the spinal nerve roots in relation to the adjacent vertebral bodies with respect to a posterolateral vertebral body replacement procedure.

    PubMed

    Awwad, Waleed; Bourget-Murray, Jonathan; Zeiadin, Nadil; Mejia, Juan P; Steffen, Thomas; Algarni, Abdulrahman D; Alsaleh, Khalid; Ouellet, Jean; Weber, Michael; Jarzem, Peter F

    2017-01-01

    This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1-L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.

  7. A topo-graph model for indistinct target boundary definition from anatomical images.

    PubMed

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael

    2018-06-01

    It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    PubMed

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S J; Frith, Chris D

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H 2 15 O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of

  9. Anatomical terminology, then and now.

    PubMed

    O'Rahilly, R

    1989-01-01

    Anatomical terminology, which had become chaotic by the nineteenth century, was codified in the BNA of 1895, when some 5,000 terms were carefully selected from among approximately 50,000 names. The BNA and its three major revisions (BR, INA, PNA) are here reviewed and placed in historical perspective. It is emphasized that many anatomical terms are very ancient and that the various nomenclatures are not 'new terminologies' but rather, for the most part, selections of already existing names. This can be seen clearly in the naming of the cranial nerves. Another example, the carpal and tarsal bones, is analysed in detail. Of the 8 carpal bones, for instance, the current names for 7 of them are those proposed by Henle in 1855. All the nomenclatures are, as they should be, in Latin, but it is understood that translations of many terms into other languages are necessary. Although views pro and con have been expressed, current usage favours the erect posture and the anatomical position as a basis, as well as the elimination of eponyms. In both teaching and research, the Nomina has been of great benefit in reducing drastically the number of unnecessary synonyms and in providing a coherent, internationally accepted system that is now the standard in anatomical textbooks. Hence, further use of the Nomina should be encouraged.

  10. Gross Anatomical Study of the Nerve Supply of Genitourinary Structures in Female Mongrel Hound Dogs

    PubMed Central

    Gomez-Amaya, S. M.; Ruggieri, M. R.; Arias Serrato, S. A.; Massicotte, V. S.; Barbe, M. F.

    2014-01-01

    Summary Anatomical variations in lumbosacral plexus or nerves to genitourinary structures in dogs are under described, despite their importance during surgery and potential contributions to neuromuscular syndromes. Gross dissection of 16 female mongrel hound dogs showed frequent variations in lumbosacral plexus classification, sympathetic ganglia, ventral rami input to nerves innervating genitourinary structures and pudendal nerve (PdN) branching. Lumbosacral plexus classification types were mixed, rather than pure, in 13 (82%) of dogs. The genitofemoral nerve (GFN) originated from ventral ramus of L4 in 67% of nerves, differing from the expected L3. Considerable variability was seen in ventral rami origins of pelvic (PN) and Pd nerves, with new findings of L7 contributions to PN, joining S1 and S2 input (23% of sides in 11 dogs) or S1–S3 input (5%), and to PdN, joining S1–S2, unilaterally, in one dog. L7 input was confirmed using retrograde dye tracing methods. The PN also received CG1 contributions, bilaterally, in one dog. The PdN branched unusually in two dogs. Lumbosacral sympathetic ganglia had variant intra-, inter- and multisegmental connectivity in 6 (38%). Thus, the anatomy of mongrel dogs had higher variability than previously described for purebred dogs. Knowledge of this variant innervation during surgery could aid in the preservation of nerves and reduce risk of urinary and sexual dysfunctions. PMID:24730986

  11. Anatomical Thin Titanium Mesh Plate Structural Optimization for Zygomatic-Maxillary Complex Fracture under Fatigue Testing.

    PubMed

    Wang, Yu-Tzu; Huang, Shao-Fu; Fang, Yu-Ting; Huang, Shou-Chieh; Cheng, Hwei-Fang; Chen, Chih-Hao; Wang, Po-Fang; Lin, Chun-Li

    2018-01-01

    This study performs a structural optimization of anatomical thin titanium mesh (ATTM) plate and optimal designed ATTM plate fabricated using additive manufacturing (AM) to verify its stabilization under fatigue testing. Finite element (FE) analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement) and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.

  12. Occipital neuralgia: anatomic considerations.

    PubMed

    Cesmebasi, Alper; Muhleman, Mitchel A; Hulsberg, Paul; Gielecki, Jerzy; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2015-01-01

    Occipital neuralgia is a debilitating disorder first described in 1821 as recurrent headaches localized in the occipital region. Other symptoms that have been associated with this condition include paroxysmal burning and aching pain in the distribution of the greater, lesser, or third occipital nerves. Several etiologies have been identified in the cause of occipital neuralgia and include, but are not limited to, trauma, fibrositis, myositis, fracture of the atlas, and compression of the C-2 nerve root, C1-2 arthrosis syndrome, atlantoaxial lateral mass osteoarthritis, hypertrophic cervical pachymeningitis, cervical cord tumor, Chiari malformation, and neurosyphilis. The management of occipital neuralgia can include conservative approaches and/or surgical interventions. Occipital neuralgia is a multifactorial problem where multiple anatomic areas/structures may be involved with this pathology. A review of these etiologies may provide guidance in better understanding occipital neuralgia. © 2014 Wiley Periodicals, Inc.

  13. Enhanced anatomical calibration in human movement analysis.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2007-07-01

    The representation of human movement requires knowledge of both movement and morphology of bony segments. The determination of subject-specific morphology data and their registration with movement data is accomplished through an anatomical calibration procedure (calibrated anatomical systems technique: CAST). This paper describes a novel approach to this calibration (UP-CAST) which, as compared with normally used techniques, achieves better repeatability, a shorter application time, and can be effectively performed by non-skilled examiners. Instead of the manual location of prominent bony anatomical landmarks, the description of which is affected by subjective interpretation, a large number of unlabelled points is acquired over prominent parts of the subject's bone, using a wand fitted with markers. A digital model of a template-bone is then submitted to isomorphic deformation and re-orientation to optimally match the above-mentioned points. The locations of anatomical landmarks are automatically made available. The UP-CAST was validated considering the femur as a paradigmatic case. Intra- and inter-examiner repeatability of the identification of anatomical landmarks was assessed both in vivo, using average weight subjects, and on bare bones. Accuracy of the identification was assessed using the anatomical landmark locations manually located on bare bones as reference. The repeatability of this method was markedly higher than that reported in the literature and obtained using the conventional palpation (ranges: 0.9-7.6 mm and 13.4-17.9, respectively). Accuracy resulted, on average, in a maximal error of 11 mm. Results suggest that the principal source of variability resides in the discrepancy between subject's and template bone morphology and not in the inter-examiner differences. The UP-CAST anatomical calibration could be considered a promising alternative to conventional calibration contributing to a more repeatable 3D human movement analysis.

  14. Anatomical connections of the functionally-defined “face patches” in the macaque monkey

    PubMed Central

    Saleem, Kadharbatcha S.

    2017-01-01

    The neural circuits underlying face recognition provide a model for understanding visual object representation, social cognition, and hierarchical information processing. A fundamental piece of information lacking to date is the detailed anatomical connections of the face patches. Here, we injected retrograde tracers into four different face patches (PL, ML, AL, AM) to characterize their anatomical connectivity. We found that the patches are strongly and specifically connected to each other, and individual patches receive inputs from extrastriate cortex, the medial temporal lobe, and three subcortical structures (the pulvinar, claustrum, and amygdala). Inputs from prefrontal cortex were surprisingly weak. Patches were densely interconnected to one another in both feedforward and feedback directions, inconsistent with a serial hierarchy. These results provide the first direct anatomical evidence that the face patches constitute a highly specialized system, and suggest that subcortical regions may play a vital role in routing face-related information to subsequent processing stages. PMID:27263973

  15. Development of improved connection details for adjacent prestressed member bridges.

    DOT National Transportation Integrated Search

    2017-06-01

    Adjacent prestressed member girder bridges are economical systems for short spans and generally come in two types: adjacent box beam bridges and adjacent voided slab bridges. Each type provides the advantages of having low clearances because of their...

  16. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention-A Neuroeducation Study.

    PubMed

    Anderson, Sarah J; Hecker, Kent G; Krigolson, Olave E; Jamniczky, Heather A

    2018-01-01

    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.

  17. Improved connection details for adjacent prestressed bridge beams.

    DOT National Transportation Integrated Search

    2015-03-01

    Bridges with adjacent box beams and voided slabs are simply and rapidly constructed, and are well suited to : short to medium spans. The traditional connection between the adjacent members is a shear key lled with a : conventional non-shrink grout...

  18. Finite-element modeling of the human neurocranium under functional anatomical aspects.

    PubMed

    Mall, G; Hubig, M; Koebke, J; Steinbuch, R

    1997-08-01

    Due to its functional significance the human skull plays an important role in biomechanical research. The present work describes a new Finite-Element model of the human neurocranium. The dry skull of a middle-aged woman served as a pattern. The model was developed using only the preprocessor (Mentat) of a commercial FE-system (Marc). Unlike that of other FE models of the human skull mentioned in the literature, the geometry in this model was designed according to functional anatomical findings. Functionally important morphological structures representing loci minoris resistentiae, especially the foramina and fissures of the skull base, were included in the model. The results of two linear static loadcase analyses in the region of the skull base underline the importance of modeling from the functional anatomical point of view.

  19. [Observation and analysis on the meridian-collateral running track-related anatomical structure in the human body].

    PubMed

    Xie, Hao-ran; Li, Fang-chun; Zhang, Wei-bo

    2009-06-01

    In the present paper the authors analyze the anatomical structure of the meridian running track by using the dialectical thought and comprehensive analysis of the integrated Chinese and western medicine. It has been observed that the "Qi-passages" of the 14 meridians of Chinese medicine are located in the connective tissue among the interspace of the muscles, etc. distributing longitudinally. The "Qi-passages" of the 15 Luomai (collaterals of the meridians) are located in the connective tissue among the interspace of the muscles, etc. distributing transversally, while those of the small branches of the meridian collaterals are located in the interspace mesenchyme of the muscle bundles distributing in the whole body. The "Qi-passages" of the tiny branches of the meridian collaterals are located in the mesenchyme of the intracellular space, such as the muscle fibers in the whole body. The authors hold that the so-called "Mai Qi" of the meridian-collaterals is the liquid-Qi flowing in the vertical and horizontal tissue interspaces. The "Qi-passage" of the meridian-collaterals of Chinese medicine is the pathway of the liquid-Qi of the tissue interspaces. The structure of the meridian-collaterals is the tissue interspace. The meridian-collateral system is a regulation-control system in the human body where the Qi-passages communicate with each other, and is, in fact, the protoplasm, the liquid-Qi circulating in the tissue interspaces.

  20. 4D Hyperspherical Harmonic (HyperSPHARM) Representation of Surface Anatomy: A Holistic Treatment of Multiple Disconnected Anatomical Structures

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Koay, Cheng Guan; Schaefer, Stacey M.; van Reekum, Carien M.; Schmitz, Lara Peschke; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.

    2015-01-01

    Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneously parameterize multiple disjoint structures. In such a situation, SPHARM has to be applied separately to each individual structure. We present a novel surface parameterization technique using 4D hyperspherical harmonics in representing multiple disjoint objects as a single analytic function, terming it HyperSPHARM. The underlying idea behind Hyper-SPHARM is to stereographically project an entire collection of disjoint 3D objects onto the 4D hypersphere and subsequently simultaneously parameterize them with the 4D hyperspherical harmonics. Hence, HyperSPHARM allows for a holistic treatment of multiple disjoint objects, unlike SPHARM. In an imaging dataset of healthy adult human brains, we apply HyperSPHARM to the hippocampi and amygdalae. The HyperSPHARM representations are employed as a data smoothing technique, while the HyperSPHARM coefficients are utilized in a support vector machine setting for object classification. HyperSPHARM yields nearly identical results as SPHARM, as will be shown in the paper. Its key advantage over SPHARM lies computationally; Hyper-SPHARM possess greater computational efficiency than SPHARM because it can parameterize multiple disjoint structures using much fewer basis functions and stereographic projection obviates SPHARM's burdensome surface flattening. In addition, HyperSPHARM can handle any type of topology, unlike SPHARM, whose analysis is confined to topologically invariant structures. PMID:25828650

  1. Prostatome: A combined anatomical and disease based MRI atlas of the prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusu, Mirabela; Madabhushi, Anant, E-mail: anant.madabhushi@case.edu; Bloch, B. Nicolas

    Purpose: In this work, the authors introduce a novel framework, the anatomically constrained registration (AnCoR) scheme and apply it to create a fused anatomic-disease atlas of the prostate which the authors refer to as the prostatome. The prostatome combines a MRI based anatomic and a histology based disease atlas. Statistical imaging atlases allow for the integration of information across multiple scales and imaging modalities into a single canonical representation, in turn enabling a fused anatomical-disease representation which may facilitate the characterization of disease appearance relative to anatomic structures. While statistical atlases have been extensively developed and studied for the brain,more » approaches that have attempted to combine pathology and imaging data for study of prostate pathology are not extant. This works seeks to address this gap. Methods: The AnCoR framework optimizes a scoring function composed of two surface (prostate and central gland) misalignment measures and one intensity-based similarity term. This ensures the correct mapping of anatomic regions into the atlas, even when regional MRI intensities are inconsistent or highly variable between subjects. The framework allows for creation of an anatomic imaging and a disease atlas, while enabling their fusion into the anatomic imaging-disease atlas. The atlas presented here was constructed using 83 subjects with biopsy confirmed cancer who had pre-operative MRI (collected at two institutions) followed by radical prostatectomy. The imaging atlas results from mapping thein vivo MRI into the canonical space, while the anatomic regions serve as domain constraints. Elastic co-registration MRI and corresponding ex vivo histology provides “ground truth” mapping of cancer extent on in vivo imaging for 23 subjects. Results: AnCoR was evaluated relative to alternative construction strategies that use either MRI intensities or the prostate surface alone for registration. The An

  2. Statistical Analyses of Femur Parameters for Designing Anatomical Plates.

    PubMed

    Wang, Lin; He, Kunjin; Chen, Zhengming

    2016-01-01

    Femur parameters are key prerequisites for scientifically designing anatomical plates. Meanwhile, individual differences in femurs present a challenge to design well-fitting anatomical plates. Therefore, to design anatomical plates more scientifically, analyses of femur parameters with statistical methods were performed in this study. The specific steps were as follows. First, taking eight anatomical femur parameters as variables, 100 femur samples were classified into three classes with factor analysis and Q-type cluster analysis. Second, based on the mean parameter values of the three classes of femurs, three sizes of average anatomical plates corresponding to the three classes of femurs were designed. Finally, based on Bayes discriminant analysis, a new femur could be assigned to the proper class. Thereafter, the average anatomical plate suitable for that new femur was selected from the three available sizes of plates. Experimental results showed that the classification of femurs was quite reasonable based on the anatomical aspects of the femurs. For instance, three sizes of condylar buttress plates were designed. Meanwhile, 20 new femurs are judged to which classes the femurs belong. Thereafter, suitable condylar buttress plates were determined and selected.

  3. Data-Driven Sequence of Changes to Anatomical Brain Connectivity in Sporadic Alzheimer's Disease.

    PubMed

    Oxtoby, Neil P; Garbarino, Sara; Firth, Nicholas C; Warren, Jason D; Schott, Jonathan M; Alexander, Daniel C

    2017-01-01

    Model-based investigations of transneuronal spreading mechanisms in neurodegenerative diseases relate the pattern of pathology severity to the brain's connectivity matrix, which reveals information about how pathology propagates through the connectivity network. Such network models typically use networks based on functional or structural connectivity in young and healthy individuals, and only end-stage patterns of pathology, thereby ignoring/excluding the effects of normal aging and disease progression. Here, we examine the sequence of changes in the elderly brain's anatomical connectivity over the course of a neurodegenerative disease. We do this in a data-driven manner that is not dependent upon clinical disease stage, by using event-based disease progression modeling. Using data from the Alzheimer's Disease Neuroimaging Initiative dataset, we sequence the progressive decline of anatomical connectivity, as quantified by graph-theory metrics, in the Alzheimer's disease brain. Ours is the first single model to contribute to understanding all three of the nature, the location, and the sequence of changes to anatomical connectivity in the human brain due to Alzheimer's disease. Our experimental results reveal new insights into Alzheimer's disease: that degeneration of anatomical connectivity in the brain may be a viable, even early, biomarker and should be considered when studying such neurodegenerative diseases.

  4. [Ten years after the latest revision International Anatomical Terminology].

    PubMed

    Kachlík, D; Bozdechová, I; Cech, P; Musil, V; Báca, V

    2008-01-01

    Ten years ago, the latest revision of the Latin anatomical nomenclature was approved and published as Terminologia Anatomica (International Anatomical Terminology), and is acknowledged by the organization uniting national anatomical societies--International Federation of Associations of Anatomists. The authors concentrate on new terms included in the nomenclature and on the linguistic changes of terminology. The most frequent errors done by medical specialists in the usage of the Latin anatomical terminology are emphasized and the situation of eponyms in contemporary anatomy is discussed in detail as well. The last version of the nomenclature makes its way very slowly in the professional community and it is necessary to refer to positive changes and advantages it has brought. The usage of this Latin anatomical nomenclature version is suggested by the International Federation to follow in theoretical and clinical fields of medicine. The authors of the article strongly recommend using the recent revision of the Latin anatomical nomenclature both in the oral and written forms, when educating and publishing.

  5. Anatomical landmarks of radical prostatecomy.

    PubMed

    Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Horn, Lars-Christian; Neuhaus, Jochen; Constantinides, Costantinos; Liatsikos, Evangelos N

    2007-03-01

    In the present study, we review current literature and based on our experience, we present the anatomical landmarks of open and laparoscopic/endoscopic radical prostatectomy. A thorough literature search was performed with the Medline database on the anatomy and the nomenclature of the structures surrounding the prostate gland. The correct handling of puboprostatic ligaments, external urethral sphincter, prostatic fascias and neurovascular bundle is necessary for avoiding malfunction of the urogenital system after radical prostatectomy. When evaluating new prostatectomy techniques, we should always take into account both clinical and final oncological outcomes. The present review adds further knowledge to the existing "postprostatectomy anatomical hazard" debate. It emphasizes upon the role of the puboprostatic ligaments and the course of the external urethral sphincter for urinary continence. When performing an intrafascial nerve sparing prostatectomy most urologists tend to approach as close to the prostatic capsula as possible, even though there is no concurrence regarding the nomenclature of the surrounding fascias and the course of the actual neurovascular bundles. After completion of an intrafascial technique the specimen does not contain any periprostatic tissue and thus the detection of pT3a disease is not feasible. This especially becomes problematic if the tumour reaches the resection margin. Nerve sparing open and laparoscopic radical prostatectomy should aim in maintaining sexual function, recuperating early continence after surgery, without hindering the final oncological outcome to the procedure. Despite the different approaches for radical prostatectomy the key for better results is the understanding of the anatomy of the bladder neck and the urethra.

  6. [Anatomical rationale for lingual nerve injury prevention during mandibular block].

    PubMed

    Semkin, V A; Dydikin, S S; Kuzin, A V; Sogacheva, V V

    2015-01-01

    The topographic and anatomical study of lingual nerve structural features was done. It was revealed that during mandibular anesthesia possible lingual nerve injury can occur if puncture needle is lower than 1 cm. of molars occlusal surface level. The position of the lingual nerve varies withmandible movements. At the maximum open mouth lingual nerve is not mobile and is pressed against the inner surface of the mandibular ramus by the medial pterygoid muscle and the temporal muscle tendon. When closing the mouth to 1.25±0.2 cmfrom the physiological maximum, lingual nerve is displaced posteriorly from the internal oblique line of the mandible and gets mobile. On the basis of topographic and anatomic features of the lingual nervestructure the authors recommend the re-do of inferior alveolar nerve block, a semi-closed mouth position or the use the "high block techniques" (Torus anesthesia, Gow-Gates, Vazirani-Akinozi).

  7. Determining customer satisfaction in anatomic pathology.

    PubMed

    Zarbo, Richard J

    2006-05-01

    Measurement of physicians' and patients' satisfaction with laboratory services has become a standard practice in the United States, prompted by national accreditation requirements. Unlike other surveys of hospital-, outpatient care-, or physician-related activities, no ongoing, comprehensive customer satisfaction survey of anatomic pathology services is available for subscription that would allow continual benchmarking against peer laboratories. Pathologists, therefore, must often design their own local assessment tools to determine physician satisfaction in anatomic pathology. To describe satisfaction survey design that would elicit specific information from physician customers about key elements of anatomic pathology services. The author shares his experience in biannually assessing customer satisfaction in anatomic pathology with survey tools designed at the Henry Ford Hospital, Detroit, Mich. Benchmarks for physician satisfaction, opportunities for improvement, and characteristics that correlated with a high level of physician satisfaction were identified nationally from a standardized survey tool used by 94 laboratories in the 2001 College of American Pathologists Q-Probes quality improvement program. In general, physicians are most satisfied with professional diagnostic services and least satisfied with pathology services related to poor communication. A well-designed and conducted customer satisfaction survey is an opportunity for pathologists to periodically educate physician customers about services offered, manage unrealistic expectations, and understand the evolving needs of the physician customer. Armed with current information from physician customers, the pathologist is better able to strategically plan for resources that facilitate performance improvements in anatomic pathology laboratory services that align with evolving clinical needs in health care delivery.

  8. Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    NASA Astrophysics Data System (ADS)

    Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel

    2015-03-01

    In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction

  9. An interactive, web-based tool for learning anatomic landmarks.

    PubMed

    Hallgren, Richard C; Parkhurst, Perrin E; Monson, Carol L; Crewe, Nancy M

    2002-03-01

    To evaluate the effectiveness of a Web-based interactive teaching tool that uses self-assessment exercises with real-time feedback to aid students' learning in a gross anatomy class. A total of 107 of 124 first-year medical students at one school were enrolled in the study. Students were divided into three groups: Group 1 (n = 63) received introductory material and activated their Web-based accounts; Group 2 (n = 44) received introductory material but did not activate their Web-based accounts; and Group 3 (n = 17) were not enrolled in the study and received no introductory material. Students in Group 1 had access to a graphic showing the locations of anatomic landmarks, a drill exercise, and a self-evaluation exercise. Students' ability to identify the anatomic landmarks on a 30-question midterm and a 30-question final exam were compared among the groups. The mean scores of students in Group 1 (midterm = 28.5, final = 28.1) were significantly higher than were the mean scores of students in Group 2 (midterm = 26.8, p <.001; final = 26.9, p <.017) and Group 3 (midterm = 24.8, p <.001; final = 26.4, p <.007). The Web-based tool was effective in improving students' scores on anatomic landmark exams. Future studies will determine whether the tool aids students in identifying structures located in three-dimensional space within regions such as the cranium and the abdominal cavity.

  10. [Topographological-anatomic changes in the structure of temporo-mandibular joint in case of fracture of the mandible condylar process at cervical level].

    PubMed

    Volkov, S I; Bazhenov, D V; Semkin, V A

    2011-01-01

    Pathological changes in soft tissues surrounding the fracture site as well as in the structural elements of temporo-mandibular joint always occured in condylar process fracture with shift at cervical mandibular jaw level. Other changes were also seen in the joint on the opposite normal side. Modelling of condylar process fracture at mandibular cervical level by means of three-dimensional computer model of temporo-mandibular joint contributed to proper understanding of this pathology emergence as well as to prediction and elimination of disorders arising in adjacent to the fracture site tissues.

  11. Segmentation of anatomical branching structures based on texture features and conditional random field

    NASA Astrophysics Data System (ADS)

    Nuzhnaya, Tatyana; Bakic, Predrag; Kontos, Despina; Megalooikonomou, Vasileios; Ling, Haibin

    2012-02-01

    This work is a part of our ongoing study aimed at understanding a relation between the topology of anatomical branching structures with the underlying image texture. Morphological variability of the breast ductal network is associated with subsequent development of abnormalities in patients with nipple discharge such as papilloma, breast cancer and atypia. In this work, we investigate complex dependence among ductal components to perform segmentation, the first step for analyzing topology of ductal lobes. Our automated framework is based on incorporating a conditional random field with texture descriptors of skewness, coarseness, contrast, energy and fractal dimension. These features are selected to capture the architectural variability of the enhanced ducts by encoding spatial variations between pixel patches in galactographic image. The segmentation algorithm was applied to a dataset of 20 x-ray galactograms obtained at the Hospital of the University of Pennsylvania. We compared the performance of the proposed approach with fully and semi automated segmentation algorithms based on neural network classification, fuzzy-connectedness, vesselness filter and graph cuts. Global consistency error and confusion matrix analysis were used as accuracy measurements. For the proposed approach, the true positive rate was higher and the false negative rate was significantly lower compared to other fully automated methods. This indicates that segmentation based on CRF incorporated with texture descriptors has potential to efficiently support the analysis of complex topology of the ducts and aid in development of realistic breast anatomy phantoms.

  12. Anatomical parameterization for volumetric meshing of the liver

    NASA Astrophysics Data System (ADS)

    Vera, Sergio; González Ballester, Miguel A.; Gil, Debora

    2014-03-01

    A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient's liver, and allows comparing livers from several patients in a common framework of reference.

  13. Interpreting and Integrating Clinical and Anatomic Pathology Results.

    PubMed

    Ramaiah, Lila; Hinrichs, Mary Jane; Skuba, Elizabeth V; Iverson, William O; Ennulat, Daniela

    2017-01-01

    The continuing education course on integrating clinical and anatomical pathology data was designed to communicate the importance of using a weight of evidence approach to interpret safety findings in toxicology studies. This approach is necessary, as neither clinical nor anatomic pathology data can be relied upon in isolation to fully understand the relationship between study findings and the test article. Basic principles for correlating anatomic pathology and clinical pathology findings and for integrating these with other study end points were reviewed. To highlight these relationships, a series of case examples, presented jointly by a clinical pathologist and an anatomic pathologist, were used to illustrate the collaborative effort required between clinical and anatomical pathologists. In addition, the diagnostic utility of traditional liver biomarkers was discussed using results from a meta-analysis of rat hepatobiliary marker and histopathology data. This discussion also included examples of traditional and novel liver and renal biomarker data implementation in nonclinical toxicology studies to illustrate the relationship between discrete changes in biochemistry and tissue morphology.

  14. Information system to manage anatomical knowledge and image data about brain

    NASA Astrophysics Data System (ADS)

    Barillot, Christian; Gibaud, Bernard; Montabord, E.; Garlatti, S.; Gauthier, N.; Kanellos, I.

    1994-09-01

    This paper reports about first results obtained in a project aiming at developing a computerized system to manage knowledge about brain anatomy. The emphasis is put on the design of a knowledge base which includes a symbolic model of cerebral anatomical structures (grey nuclei, cortical structures such as gyri and sulci, verntricles, vessels, etc.) and of hypermedia facilities allowing to retrieve and display information associated with the objects (texts, drawings, images). Atlas plates digitized from a stereotactic atlas are also used to provide natural and effective communication means between the user and the system.

  15. Anatomical analysis of the prevalence of agger nasi cell in the Turkish population.

    PubMed

    Orhan, Mustafa; Saylam, Canan Yurttaş

    2009-01-01

    The aim of this study is to give information about the anatomy of agger nasi cell for the surgery of the nasal cavity lateral wall. Twenty mid-sagittal head sections were obtained at random from formalin fixed male Turkish cadavers (12 left sides, 8 right sides). The presence and anatomical structure of agger nasi cell were investigated under operating microscope. Agger nasi cell, which lies between nasal cavity and lacrimal sac, was observed in eight of 20 specimens (40%). Whereas three of them showed a remarkable swelling along the lateral nasal wall, in five specimens of agger nasi cells there was superficially no swelling observed. This anatomic study presents microsurgical information on the convoluted anatomy of agger nasi cell.

  16. Learning Non-Adjacent Regularities at Age 0 ; 7

    ERIC Educational Resources Information Center

    Gervain, Judit; Werker, Janet F.

    2013-01-01

    One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…

  17. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention—A Neuroeducation Study

    PubMed Central

    Anderson, Sarah J.; Hecker, Kent G.; Krigolson, Olave E.; Jamniczky, Heather A.

    2018-01-01

    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise. PMID:29467638

  18. Electronic and optical properties of GaN/AlN quantum dots with adjacent threading dislocations

    NASA Astrophysics Data System (ADS)

    Ye, Han; Lu, Peng-Fei; Yu, Zhong-Yuan; Yao, Wen-Jie; Chen, Zhi-Hui; Jia, Bo-Yong; Liu, Yu-Min

    2010-04-01

    We present a theory to simulate a coherent GaN QD with an adjacent pure edge threading dislocation by using a finite element method. The piezoelectric effects and the strain modified band edges are investigated in the framework of multi-band k · p theory to calculate the electron and the heavy hole energy levels. The linear optical absorption coefficients corresponding to the interband ground state transition are obtained via the density matrix approach and perturbation expansion method. The results indicate that the strain distribution of the threading dislocation affects the electronic structure. Moreover, the ground state transition behaviour is also influenced by the position of the adjacent threading dislocation.

  19. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury.

    PubMed

    La Fountaine, Michael F

    2017-11-29

    Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework

  20. [Mediaeval anatomic iconography (Part II)].

    PubMed

    Barg, L

    1996-01-01

    In the second part of his paper the author has presented a mediaeval anatomical draft based on empirical studies. From the first drawings from XVth century showing the places of blood-letting and connected with astrological prognostics, to systematical drawings by Guido de Vigevano. He has stressed the parallel existence of two lines of teaching anatomy; one based on philosophical concepts (discussed in the first part of paper), the second one based on empirical concepts. The latter trend has formed the grounds for final transformation, which has taken place in anatomical science in age of Renaissance.

  1. The anatomical and functional specialization of the fusiform gyrus

    PubMed Central

    Weiner, Kevin S.; Zilles, Karl

    2015-01-01

    The fusiform gyrus (FG) is commonly included in anatomical atlases and is considered a key structure for functionally-specialized computations of high-level vision such as face perception, object recognition, and reading. However, it is not widely known that the FG has a contentious history. In this review, we first provide a historical analysis of the discovery of the FG and why certain features, such as the mid-fusiform sulcus, were discovered and then forgotten. We then discuss how observer-independent methods for identifying cytoarchitectonical boundaries of the cortex revolutionized our understanding of cytoarchitecture and the correspondence between those boundaries and cortical folding patterns of the FG. We further explain that the co-occurrence between cortical folding patterns and cytoarchitectonical boundaries are more common than classically thought and also, are functionally meaningful especially on the FG and probably in high-level visual cortex more generally. We conclude by proposing a series of alternatives for how the anatomical organization of the FG can accommodate seemingly different theoretical aspects of functional processing, such as domain specificity and perceptual expertise. PMID:26119921

  2. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  3. Anatomical Evaluation of the Proximity of Neurovascular Structures During Arthroscopically Assisted Acromioclavicular Joint Reconstruction: A Cadaveric Pilot Study.

    PubMed

    Banaszek, Daniel; Pickell, Michael; Wilson, Evan; Ducsharm, Melissa; Hesse, Daniel; Easteal, Ron; Bardana, Davide D

    2017-01-01

    The purpose of this study was to examine the safety of an arthroscopic technique for acromioclavicular joint (ACJ) reconstruction by investigating its proximity to important neurovascular structures. Six shoulders from 4 cadaveric specimens were used for ACJ reconstruction in this study. The procedure consists of performing an arthroscopic acromioclavicular (AC) reduction with a double button construct, followed by coracoclavicular ligament reconstruction without drilling clavicular tunnels. Shoulders were subsequently dissected in order to identify and measure distances to adjacent neurovascular structures. The suprascapular artery and nerve were the closest neurovascular structures to implanted materials. The mean distances were 8.2 (standard deviation [SD] = 3.6) mm to the suprascapular nerve and 5.6 (SD = 4.2) mm to the suprascapular artery. The mean distance of the suprascapular nerve from implants was found to be greater than 5 mm (P = .040), while the distance to the suprascapular artery was not (P > .5). Neither difference was statistically significant (P = .80 for artery; P = .08 for nerve). Mini-open, arthroscopically assisted ACJ reconstruction safely avoids the surrounding nerves, with no observed damage to any neurovascular structures including the suprascapular nerve and artery, and may be a viable alternative to open techniques. However, surgeons must remain cognizant of possible close proximity to the suprascapular artery. This study represents an evaluation of the safety and feasibility of a minimally invasive ACJ reconstruction as it relates to the proximity of neurovascular structures. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Zhou, Weimin; Matthews, Thomas P.; Appleton, Catherine M.; Anastasio, Mark A.

    2017-04-01

    Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies play a critically important role in developing and optimizing the designs of hardware and image reconstruction methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be systematically and comprehensively explored in a way that is generally not possible through experimentation. When conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms that are realistic, especially when task-based measures of image quality are to be utilized to guide system design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We develop and implement a methodology for generating anatomically realistic numerical breast phantoms from clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic parameters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT and USCT studies.

  5. Radiographic evaluation of anatomical variables in maxilla and mandible in relation to dental implant placement.

    PubMed

    Chandra, Poornima; Govindaraju, Poornima; Chowdhary, Ramesh

    2016-01-01

    Oral rehabilitation using implants is rapidly replacing tooth supported prostheses. The success of implants is largely dependent on the quality and quantity of alveolar bone. In this study, we assessed the location of limiting anatomical structures and the amount of alveolar bone available for implant placement. Six hundred digital panoramic radiographs (300 males and 300 females) of dentate patients aged between 15-60 years were selected from the archives. The radiographs were subdivided into 3 groups with age interval of 15 years. Then the location of mental foramen, anterior loop, mandibular canal and maxillary sinus was determined. The amount of bone available was measured in both maxilla and mandible in the premolar and molar regions. The mental foramen was most commonly located at the apex of the second premolar in both the genders. The anterior loop was more readily visible in the younger age group. The amount of bone available in the premolar and molar region of the mandible is nearly the same, while more bone is available in the premolar region of the maxilla. The location and morphology of anatomical structures of the jaws vary not only in different populations but also within the same population. The amount of bone available also showed variations in the same population and in the same individual on the right and left sides. The limiting anatomical structures govern the amount of bone available for possible implant placement.

  6. Lateral Patellofemoral Ligament: An Anatomic Study.

    PubMed

    Shah, Kalpit N; DeFroda, Steven F; Ware, James Kristopher; Koruprolu, Sarath C; Owens, Brett D

    2017-12-01

    Medial instability of the patellofemoral joint is a rare but known phenomenon that may result from an incompetent lateral patellofemoral ligament (LPFL). Surgical reconstruction of the LPFL has been described. However, anatomic details of the ligament have not been the subject of scrutiny. To describe the anatomic origin and insertion of the LPFL. Descriptive laboratory study. Ten fresh-frozen, unpaired human cadaveric knees (mean age, 57 years) were dissected to identify the LPFL. The dissection was carried out by elevating the iliotibial band to expose the deep capsular layer of the knee joint, followed by a medial parapatellar approach to the knee. Then the quadriceps and patellar tendons were sectioned, and the LPFL was isolated by visualization and palpation. The LPFL was dissected to reveal its origin and insertion; these were measured with respect to the lateral epicondyle and the superior-inferior axis of the lateral patella, respectively. On average, the LPFL had a variable point of origin in location as well as width about the lateral epicondyle. The LPFL originated, on average, 2.6 mm distal (range, 13.1 mm proximal to 11.4 mm distal) and 10.8 mm anterior (range, 7.3 mm posterior to 14.9 mm anterior) to the lateral epicondyle. The LPFL insertion on the patella was more reliably found to be about 45% (range, 23.7%-58.4%) of its lateral articular surface. The insertion on the patella was found to be in the middle third of the lateral patella. The LPFL has an origin that is variable but, on average, was found to be distal and anterior to the lateral epicondyle. The patella insertion was more reliably found to be in the middle third of the lateral patella. These anatomic relationships can help the surgeon reconstruct the LPFL in a more anatomic fashion. Surgeons who are tasked with reconstruction of the LPFL of a patient with idiopathic medial instability or a previous aggressive lateral release of the knee may reference this article to perform an anatomic

  7. Standardized anatomic space for abdominal fat quantification

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-03-01

    The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.

  8. Tree-space statistics and approximations for large-scale analysis of anatomical trees.

    PubMed

    Feragen, Aasa; Owen, Megan; Petersen, Jens; Wille, Mathilde M W; Thomsen, Laura H; Dirksen, Asger; de Bruijne, Marleen

    2013-01-01

    Statistical analysis of anatomical trees is hard to perform due to differences in the topological structure of the trees. In this paper we define statistical properties of leaf-labeled anatomical trees with geometric edge attributes by considering the anatomical trees as points in the geometric space of leaf-labeled trees. This tree-space is a geodesic metric space where any two trees are connected by a unique shortest path, which corresponds to a tree deformation. However, tree-space is not a manifold, and the usual strategy of performing statistical analysis in a tangent space and projecting onto tree-space is not available. Using tree-space and its shortest paths, a variety of statistical properties, such as mean, principal component, hypothesis testing and linear discriminant analysis can be defined. For some of these properties it is still an open problem how to compute them; others (like the mean) can be computed, but efficient alternatives are helpful in speeding up algorithms that use means iteratively, like hypothesis testing. In this paper, we take advantage of a very large dataset (N = 8016) to obtain computable approximations, under the assumption that the data trees parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than healthy ones. Software is available from http://image.diku.dk/aasa/software.php.

  9. Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization.

    PubMed

    Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot

    2013-01-01

    Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.

  10. [Corneal transparency: anatomical basis and evaluation methods].

    PubMed

    Avetisov, S E; Narbut, M N

    Being just a relatively small part of the fibrous tunic of the eyeball, the cornea is, nevertheless, unique in terms of the variety of its functions. Because the cornea differs significantly from other protective frames in its structure, it provides the possibility of light transmission and strong refraction that largely contributes to the total refraction of the eye. The development of ophthalmology is impossible without improving methods of adequate anatomical and functional assessment of the eye not only as a whole, but also as a collection of interacting structures.In this regard, examination methods of the cornea have undergone significant advances in recent years. So far, the level of corneal transparency has been judged by biomicroscopy findings or indirect characteristics (thickness, structure, etc.). Confocal microscopy of the cornea and wave-based examinations involving one of the available laser interferometers (OCT or HRT) are also used. However, the data obtained with these methods resembles that of layer-specific reflectometry, i.e. the magnitude of directed reflection of the light beam from corneal corpuscles, which does not completely agree with the classical idea of transparency.

  11. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  12. A systematic review of definitions and classification systems of adjacent segment pathology.

    PubMed

    Kraemer, Paul; Fehlings, Michael G; Hashimoto, Robin; Lee, Michael J; Anderson, Paul A; Chapman, Jens R; Raich, Annie; Norvell, Daniel C

    2012-10-15

    Systematic review. To undertake a systematic review to determine how "adjacent segment degeneration," "adjacent segment disease," or clinical pathological processes that serve as surrogates for adjacent segment pathology are classified and defined in the peer-reviewed literature. Adjacent segment degeneration and adjacent segment disease are terms referring to degenerative changes known to occur after reconstructive spine surgery, most commonly at an immediately adjacent functional spinal unit. These can include disc degeneration, instability, spinal stenosis, facet degeneration, and deformity. The true incidence and clinical impact of degenerative changes at the adjacent segment is unclear because there is lack of a universally accepted classification system that rigorously addresses clinical and radiological issues. A systematic review of the English language literature was undertaken and articles were classified using the Grades of Recommendation Assessment, Development, and Evaluation criteria. RESULTS.: Seven classification systems of spinal degeneration, including degeneration at the adjacent segment, were identified. None have been evaluated for reliability or validity specific to patients with degeneration at the adjacent segment. The ways in which terms related to adjacent segment "degeneration" or "disease" are defined in the peer-reviewed literature are highly variable. On the basis of the systematic review presented in this article, no formal classification system for either cervical or thoracolumbar adjacent segment disorders currently exists. No recommendations regarding the use of current classification of degeneration at any segments can be made based on the available literature. A new comprehensive definition for adjacent segment pathology (ASP, the now preferred terminology) has been proposed in this Focus Issue, which reflects the diverse pathology observed at functional spinal units adjacent to previous spinal reconstruction and balances

  13. Magnetic Resonance Imaging Assessment of Intra-Articular Structures in the Canine Stifle Joint after Implantation of a Titanium Tibial Plateau Levelling Osteotomy Plate.

    PubMed

    Feichtenschlager, Christian; Gerwing, Martin; Failing, Klaus; Peppler, Christine; Kása, Andreas; Kramer, Martin; von Pückler, Kerstin H

    2018-06-02

     To determine the effectiveness of magnetic resonance imaging (MRI) in the evaluation of anatomical stifle structures with respect to implant positioning after tibial plateau levelling osteotomy (TPLO) using a titanium plate.  Selected sagittal and dorsal sequences of pre- and postoperative MRI (1.0 T scanner) of 13 paired ( n  = 26) sound cadaveric stifle joints were evaluated. The effect of susceptibility artifact on adjacent anatomical stifle structures was graded from 0 to 5. The impact of implant positioning regarding assessment score was calculated using Spearman's rank correlation coefficient.  Sagittal turbo spin echo (TSE)-acquired images enabled interpretation of most soft tissue, osseous and cartilage structures without detrimental effect of susceptibility artifact distortions. In T2-weighted TSE images, the cranial cruciate ligament and caudal horn of the medial meniscus could be evaluated, independent of implant position, without any susceptibility artifact in all specimens. T2-weighted fast field echo, water selective, balanced fast field echo and short tau inversion recovery were most markedly affected by susceptibility artifact.  In selected TSE sequences, MRI allows evaluation of critical intra-articular structures after titanium TPLO plate implantation. Further investigations with confirmed stifle pathologies in dogs are required, to evaluate the accuracy of MRI after TPLO in clinical cases in this context. Schattauer GmbH Stuttgart.

  14. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    PubMed Central

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S. J.; Frith, Chris D.

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional

  15. The linguistic roots of Modern English anatomical terminology.

    PubMed

    Turmezei, Tom D

    2012-11-01

    Previous research focusing on Classical Latin and Greek roots has shown that understanding the etymology of English anatomical terms may be beneficial for students of human anatomy. However, not all anatomical terms are derived from Classical origins. This study aims to explore the linguistic roots of the Modern English terminology used in human gross anatomy. By reference to the Oxford English Dictionary, etymologies were determined for a lexicon of 798 Modern English gross anatomical terms from the 40(th) edition of Gray's Anatomy. Earliest traceable language of origin was determined for all 798 terms; language of acquisition was determined for 747 terms. Earliest traceable languages of origin were: Classical Latin (62%), Classical Greek (24%), Old English (7%), Post-Classical Latin (3%), and other (4%). Languages of acquisition were: Classical Latin (42%), Post-Classical Latin (29%), Old English (8%), Modern French (6%), Classical Greek (5%), Middle English (3%), and other (7%). While the roots of Modern English anatomical terminology mostly lie in Classical languages (accounting for the origin of 86% of terms), the anatomical lexicon of Modern English is actually much more diverse. Interesting and perhaps less familiar examples from these languages and the methods by which such terms have been created and absorbed are discussed. The author suggests that awareness of anatomical etymologies may enhance the enjoyment and understanding of human anatomy for students and teachers alike. Copyright © 2012 Wiley Periodicals, Inc.

  16. Delayed Acquisition of Non-Adjacent Vocalic Distributional Regularities

    ERIC Educational Resources Information Center

    Gonzalez-Gomez, Nayeli; Nazzi, Thierry

    2016-01-01

    The ability to compute non-adjacent regularities is key in the acquisition of a new language. In the domain of phonology/phonotactics, sensitivity to non-adjacent regularities between consonants has been found to appear between 7 and 10 months. The present study focuses on the emergence of a posterior-anterior (PA) bias, a regularity involving two…

  17. Functional Inference of Complex Anatomical Tendinous Networks at a Macroscopic Scale via Sparse Experimentation

    PubMed Central

    Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J.

    2012-01-01

    In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These

  18. Functional inference of complex anatomical tendinous networks at a macroscopic scale via sparse experimentation.

    PubMed

    Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J

    2012-01-01

    In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These

  19. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    DOE Data Explorer

    Richard

    2012-02-01

    Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology

  20. TH-E-17A-06: Anatomical-Adaptive Compressed Sensing (AACS) Reconstruction for Thoracic 4-Dimensional Cone-Beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, C; Kipritidis, J; OBrien, R

    2014-06-15

    Purpose: The Feldkamp-Davis-Kress (FDK) algorithm currently used for clinical thoracic 4-dimensional (4D) cone-beam CT (CBCT) reconstruction suffers from noise and streaking artifacts due to projection under-sampling. Compressed sensing theory enables reconstruction of under-sampled datasets via total-variation (TV) minimization, but TV-minimization algorithms such as adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) often converge slowly and are prone to over-smoothing anatomical details. These disadvantages can be overcome by incorporating general anatomical knowledge via anatomy segmentation. Based on this concept, we have developed an anatomical-adaptive compressed sensing (AACS) algorithm for thoracic 4D-CBCT reconstruction. Methods: AACS is based on the ASD-POCS framework, where each iteration consists of a TV-minimizationmore » step and a data fidelity constraint step. Prior to every AACS iteration, four major thoracic anatomical structures - soft tissue, lungs, bony anatomy, and pulmonary details - were segmented from the updated solution image. Based on the segmentation, an anatomical-adaptive weighting was applied to the TV-minimization step, so that TV-minimization was enhanced at noisy/streaky regions and suppressed at anatomical structures of interest. The image quality and convergence speed of AACS was compared to conventional ASD-POCS using an XCAT digital phantom and a patient scan. Results: For the XCAT phantom, the AACS image represented the ground truth better than the ASD-POCS image, giving a higher structural similarity index (0.93 vs. 0.84) and lower absolute difference (1.1*10{sup 4} vs. 1.4*10{sup 4}). For the patient case, while both algorithms resulted in much less noise and streaking than FDK, the AACS image showed considerably better contrast and sharpness of the vessels, tumor, and fiducial marker than the ASD-POCS image. In addition, AACS converged over 50% faster than ASD-POCS in both cases. Conclusions: The proposed

  1. Perceptions of science. The anatomical mission to Burma.

    PubMed

    Sappol, Michael

    2003-10-10

    Until the 1830s, most Americans were unfamiliar with the images of anatomy. Then a small vanguard of reformers and missionaries began to preach, at home and around the world, that an identification with the images and concepts of anatomy was a crucial part of the civilizing process. In his essay, Sappol charts the changes in the perception of self that resulted from this anatomical evangelism. Today, as anatomical images abound in the arts and the media, we still believe that anatomical images show us our inner reality.

  2. Uniportal anatomic combined unusual segmentectomies.

    PubMed

    González-Rivas, Diego; Lirio, Francisco; Sesma, Julio

    2017-01-01

    Nowadays, sublobar anatomic resections are gaining momentum as a valid alternative for early stage lung cancer. Despite being technically demanding, anatomic segmentectomies can be performed by uniportal video-assisted thoracic surgery (VATS) approach to combine the benefits of minimally invasiveness with the maximum lung sparing. This procedure can be even more complex if a combined resection of multiple segments from different lobes has to be done. Here we report five cases of combined and unusual segmentectomies done by the same experienced surgeon in high volume institutions to show uniportal VATS is a feasible approach for these complex resections and to share an excellent educational resource.

  3. Uniportal anatomic combined unusual segmentectomies

    PubMed Central

    Lirio, Francisco; Sesma, Julio

    2017-01-01

    Nowadays, sublobar anatomic resections are gaining momentum as a valid alternative for early stage lung cancer. Despite being technically demanding, anatomic segmentectomies can be performed by uniportal video-assisted thoracic surgery (VATS) approach to combine the benefits of minimally invasiveness with the maximum lung sparing. This procedure can be even more complex if a combined resection of multiple segments from different lobes has to be done. Here we report five cases of combined and unusual segmentectomies done by the same experienced surgeon in high volume institutions to show uniportal VATS is a feasible approach for these complex resections and to share an excellent educational resource. PMID:29078653

  4. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    NASA Astrophysics Data System (ADS)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied

  5. Mistakes in the usage of anatomical terminology in clinical practice.

    PubMed

    Kachlik, David; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir; Baca, Vaclav

    2009-06-01

    Anatomical terminology serves as a basic communication tool in all the medical fields. Therefore Latin anatomical nomenclature has been repetitively issued and revised from 1895 (Basiliensia Nomina Anatomica) until 1998, when the last version was approved and published as the Terminologia Anatomica (International Anatomical Terminology) by the Federative Committee on Anatomical Terminology. A brief history of the terminology and nomenclature development is mentioned, along with the concept and contributions of the Terminologia Anatomica including the employed abbreviations. Examples of obsolete anatomical terms and their current synonyms are listed. Clinicians entered the process of the nomenclature revision and this aspect is demonstrated with several examples of terms used in clinical fields only, some already incorporated in the Terminologia Anatomica and a few obsolete terms still alive in non-theoretical communication. Frequent mistakes in grammar and orthography are stated as well. Authors of the article strongly recommend the use of the recent revision of the Latin anatomical nomenclature both in theoretical and clinical medicine.

  6. Growth and anatomical parameters of adventitious roots formed on mung bean hypocotyls are correlated with galactoglucomannan oligosaccharides structure.

    PubMed

    Kollárová, K; Zelko, I; Henselová, M; Capek, P; Lišková, D

    2012-01-01

    The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata (L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation.

  7. Growth and Anatomical Parameters of Adventitious Roots Formed on Mung Bean Hypocotyls Are Correlated with Galactoglucomannan Oligosaccharides Structure

    PubMed Central

    Kollárová, K.; Zelko, I.; Henselová, M.; Capek, P.; Lišková, D.

    2012-01-01

    The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata (L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation. PMID:22666154

  8. Anatomically-Aided PET Reconstruction Using the Kernel Method

    PubMed Central

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-01-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest (ROI) quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization (EM) algorithm. PMID:27541810

  9. Anatomically-aided PET reconstruction using the kernel method.

    PubMed

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  10. Anatomically-aided PET reconstruction using the kernel method

    NASA Astrophysics Data System (ADS)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-09-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  11. Only-child and non-only-child exhibit differences in creativity and agreeableness: evidence from behavioral and anatomical structural studies.

    PubMed

    Yang, Junyi; Hou, Xin; Wei, Dongtao; Wang, Kangcheng; Li, Yadan; Qiu, Jiang

    2017-04-01

    Different family composition and size inevitably make only-children different from non-only-children. Previous studies have focused on the differences in behaviors, such as cognitive function and personality traits, between the only-child and the non-only-child. However, there are few studies that have focused on the topic of whether different family environments influence children's brain structural development and whether behavior differentially has its neural basis between only-child and non-only-child status. Thus, in the present study, we investigated the differences in cognition (e.g., intelligence and creativity) and personality and the anatomical structural differences of gray matter volume (GMV) using voxel-based morphometry (VBM) between only-children and non-only-children. The behavioral results revealed that only-children exhibited higher flexibility scores (a dimension of creativity) and lower agreeableness scores (a dimension of personality traits) than non-only-children. Most importantly, the GMV results revealed that there were significant differences in the GMV between only-children and non-only-children that occurred mainly in the brain regions of the supramarginal gyrus, which was positively correlated with flexibility scores; the medial prefrontal cortex (mPFC), which was positively correlated with agreeableness scores; and the parahippocampal gyrus. These findings may suggest that family environment (i.e., only-child vs. non-only-child), may play important roles in the development of the behavior and brain structure of individuals.

  12. Image analysis of anatomical traits in stalk transections of maize and other grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckwolf, Sven; Heckwolf, Marlies; Kaeppler, Shawn M.

    Grass stalks architecturally support leaves and reproductive structures, functionally support the transport of water and nutrients, and are harvested for multiple agricultural uses. Research on these basic and applied aspects of grass stalks would benefit from improved capabilities for measuring internal anatomical features. In particular, methods suitable for phenotyping populations of plants are needed.

  13. Image analysis of anatomical traits in stalk transections of maize and other grasses

    DOE PAGES

    Heckwolf, Sven; Heckwolf, Marlies; Kaeppler, Shawn M.; ...

    2015-04-09

    Grass stalks architecturally support leaves and reproductive structures, functionally support the transport of water and nutrients, and are harvested for multiple agricultural uses. Research on these basic and applied aspects of grass stalks would benefit from improved capabilities for measuring internal anatomical features. In particular, methods suitable for phenotyping populations of plants are needed.

  14. Anatomical sciences: A foundation for a solid learning experience in dental technology and dental prosthetics.

    PubMed

    Bakr, Mahmoud M; Thompson, C Mark; Massadiq, Magdalena

    2017-07-01

    Basic science courses are extremely important as a foundation for scaffolding knowledge and then applying it in future courses, clinical situations as well as in a professional career. Anatomical sciences, which include tooth morphology, oral histology, oral embryology, and head and neck anatomy form a core part of the preclinical courses in dental technology programs. In this article, the importance and relevance of anatomical sciences to dental personnel with no direct contact with patients (dental technicians) and limited discipline related contact with patients (dental prosthetists) is highlighted. Some light is shed on the role of anatomical sciences in the pedagogical framework and its significance in the educational process and interprofessional learning of dental technicians and prosthetists using oral biology as an example in the dental curriculum. To conclude, anatomical sciences allow dental technicians and prosthetists to a gain a better insight of how tissues function, leading to a better understanding of diagnosis, comprehensive treatment planning and referrals if needed. Patient communication and satisfaction also increases as a result of this deep understanding of oral tissues. Anatomical sciences bridge the gap between basic science, preclinical, and clinical courses, which leads to a holistic approach in patient management. Finally, treatment outcomes are positively affected due to the appreciation of the macro and micro structure of oral tissues. Anat Sci Educ 10: 395-404. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  15. A guide for effective anatomical vascularization studies: useful ex vivo methods for both CT and MRI imaging before dissection.

    PubMed

    Renard, Yohann; Hossu, Gabriela; Chen, Bailiang; Krebs, Marine; Labrousse, Marc; Perez, Manuela

    2018-01-01

    The objective of this study was to develop a simple and useful injection protocol for imaging cadaveric vascularization and dissection. Mixtures of contrast agent and cast product should provide adequate contrast for two types of ex vivo imaging (MRI and CT) and should harden to allow gross dissection of the injected structures. We tested the most popular contrast agents and cast products, and selected the optimal mixture composition based on their availability and ease of use. All mixtures were first tested in vitro to adjust dilution parameters of each contrast agent and to fine-tune MR imaging acquisition sequences. Mixtures were then injected in 24 pig livers and one human pancreas for MR and computed tomography (CT) imaging before anatomical dissection. Colorized latex, gadobutrol and barite mixture met the above objective. Mixtures composed of copper sulfate (CuSO 4 ) gadoxetic acid (for MRI) and iodine (for CT) gave an inhomogeneous signal or extravasation of the contrast agent. Agar did not harden sufficiently for gross dissection but appears useful for CT and magnetic resonance imaging (MRI) studies without dissection. Silicone was very hard to inject but achieved the goals of the study. Resin is particularly difficult to use but could replace latex as an alternative for corrosion instead of dissection. This injection protocol allows CT and MRI images to be obtained of cadaveric vascularization and anatomical casts in the same anatomic specimen. Post-imaging processing software allow easy 3D reconstruction of complex anatomical structures using this technique. Applications are numerous, e.g. surgical training, teaching methods, postmortem anatomic studies, pathologic studies, and forensic diagnoses. © 2017 Anatomical Society.

  16. Drivers of tall shrub proliferation adjacent to the Dempster Highway, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Cameron, Emily A.; Lantz, Trevor C.

    2016-04-01

    Arctic ecosystems are undergoing rapid changes as a result of climate warming and more frequent disturbances. Disturbances can have particularly large effects on high-latitude ecosystems when ecosystem structure and function is controlled by strong feedbacks between soil conditions, vegetation, and ground thermal regime. In this study we investigated the impact of road construction and maintenance on vegetation structure and biomass along the Dempster Highway where it crosses the Peel Plateau in the Northwest Territories. To explore drivers of tall shrub proliferation and to quantify shrub proliferation in this region of continuous permafrost, greyscale air photos (1975) and Quickbird satellite imagery (2008) were used to map landcover change within two 0.6 km2 belts next to the road and two 0.6 km2 belts 500 m away from the road. Maps showing areas where: 1) tall shrubs expanded, and 2) dwarf shrub tundra resisted invasion were then used to select field sites where a suite of biophysical variables were measured. Rapid tall shrub proliferation and greater biomass adjacent to the road indicate that disturbance can facilitate vegetation change in tundra environments. Our field data also suggests that increased shrub proliferation adjacent to the road was caused by greater soil moisture. Tall shrub proliferation adjacent to the road occurred at lower elevation sites characterized by wetter soils with thicker organic layers. Areas that resisted tall shrub encroachment were located at higher elevations and had drier soils with thin organic layers. Our observations also support previous work illustrating that tall shrub expansion next to the highway promotes strong positive feedbacks to ongoing shrub growth and proliferation.

  17. Long-term soil accumulation of chromium, copper, and arsenic adjacent to preservative-treated wood.

    Treesearch

    S. Lebow; D. Foster; J. Evans

    2004-01-01

    Chromated copper arsenate (CCA) treated wood has been used extensively in outdoor applications. The Environmental Protection Agency (EPA) and CCA producers recently reached an agreement to limit future use of CCA for some types of applications. One area of concern is the long-term accumulation of leached CCA in soil adjacent to treated wood structures. Interpreting...

  18. [Sigismund Laskowski and his anatomical preparations technique].

    PubMed

    Gryglewski, Ryszard W

    2015-01-01

    Fixation of the entire bodies or individual organs, and later as well tissues and cellular structures, was and still is often a challenge for anatomists and histologists. Technique that combines extensive knowledge of natural sciences, as well as technical skills, was by those best researchers as Frederik Ruysch, brought to perfection. Preparations, if done with care and talent, are really propelling progress in anatomical studies and determining the quality of education for medical students and young physicians. And as it is true for many of today's medical disciplines and natural sciences, the nineteenth century was in many ways a breaking point for preparatory techniques in the realm of anatomy and histology. Among those who have achieved success, earning notoriety during their lifetime and often going into the annals of European most distinguished scholars were some Polish names: Louis Maurice Hirschfeld, whose preparations of the nervous system earned him well-deserved, international fame, Louis Charles Teichmann, who was the very first so precisely describing the lymphatic system and a creator of unique injection mass, Henry Kadyi, known for his outstanding preparations, especially of vascular system. Henry Frederick Hoyer sen., who was one of the first to use formalin regularly for accurate microscopic preparations, is seen by many as the founder of the Polish histology. In this group of innovators and precursors of modern preparation techniques place should be reserved for Zygmunt (Sigismund) Laskowski, Polish patriot, fighting in January Uprising, later an immigrant, a professor at the university sequentially Paris and Geneva. Acclaimed author of anatomical tables and certainly creator of one of the groundbreaking techniques in anatomical preparations. Based after many years of research on the simple glycerine-phenol mixture achieved excellent results both in fixation of entire bodies and organs or tissues. Quality of those preparations was as high and

  19. Dlx proteins position the neural plate border and determine adjacent cell fates.

    PubMed

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  20. Dlx proteins position the neural plate border and determine adjacent cell fates

    PubMed Central

    Woda, Juliana M.; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2014-01-01

    Summary The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates. PMID:12466200

  1. Objectifying the adjacent and opposite angles: a cultural historical analysis

    NASA Astrophysics Data System (ADS)

    Daher, Wajeeh; Musallam, Nadera

    2018-02-01

    The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles' concepts. We videoed the learning of a group of three high-achieving students who used technology, specifically GeoGebra, to explore geometric relations related to the adjacent and opposite angles' concepts. To analyze students' objectification of these concepts, we used the categories of objectification of knowledge (attention and awareness) and the categories of generalization (factual, contextual and symbolic), developed by Radford. The research results indicate that teacher's and students' verbal and visual signs, together with the software dynamic tools, mediated the students' objectification of the adjacent and opposite angles' concepts. Specifically, eye and gestures perceiving were part of the semiosis cycles in which the participating students were engaged and which related to the mathematical signs that signified the adjacent and the opposite angles. Moreover, the teacher's suggestions/requests/questions included/suggested semiotic signs/tools, including verbal signs that helped the students pay attention, be aware of and objectify the adjacent and opposite angles' concepts.

  2. Sella turcica: an anatomical, endocrinological, and historical perspective.

    PubMed

    Tekiner, Halil; Acer, Niyazi; Kelestimur, Fahrettin

    2015-08-01

    The sphenoid bone has a superior depression called the sella turcica, Latin for "Turkish saddle," where the pituitary gland is found. The availability of modern radiological imaging techniques has replaced plain radiography of the sella turcica in the investigation of hypothalamo-pituitary abnormalities. However, the size of the sella turcica, and smaller sella turcica size in particular, may cause pituitary dysfunction because of the changes in the structure of pituitary gland or may be associated with some genetic or acquired endocrine disorders. The name "sella turcica" is one of the most commonly used terms in everyday endocrine practice. In this review, after a brief explanation of the anatomical and endocrinological features of the sella turcica had been given, a historical perspective of sella turcica nomenclature was presented for the first time. After Andreas Vesalius's description of it as a suitable cavity for the gland that receives the "phlegm of the brain" in De Humani Corporis Fabrica (1543), medical scholars began to use seat/saddle-related terms such as the ephippium, pars sellaris, sella equina, sella ossis, and sella sphenoidalis. The real designation of the sella turcica, however, was introduced to the anatomical nomenclature by the anatomist Adrianus Spigelius (1578-1625) in his famous work De Corpora Humanis Fabrica (1627).

  3. Anatomy of the temporomandibular joint in the cat: a study by microdissection, cryosection and vascular injection.

    PubMed

    Arredondo, Jorge; Agut, Amalia; Rodríguez, María Jesús; Sarriá, Ricardo; Latorre, Rafael

    2013-02-01

    The minute anatomy of the temporomandibular joint (TMJ) is of great clinical relevance in cats owing to a high number of lesions involving this articulation. However, the precise anatomy is poorly documented in textbooks and scientific articles. The aim of this study was to describe, in detail, the TMJ anatomy and its relationship with other adjacent anatomical structures in the cat. Different anatomical preparations, including vascular and articular injection, microdissection, cryosection and plastination, were performed in 12 cadaveric cats. All TMJ anatomical structures were identified and described in detail. A thorough understanding of the TMJ anatomy is essential to understand the clinical signs associated with TMJ disorders, to locate lesions precisely and to accurately interpret the results in all diagnostic imaging techniques.

  4. Phytoparasitic Nematodes Adjacent to Established Strawberry Plantations

    PubMed Central

    Crow, R. V.; MacDonald, D. H.

    1978-01-01

    Plant-nematode populations associated with uncultivated vegetation, adjacent strawberry plants, and alternate crop sites were studied at three locations in Minnesota. At one site (Forest Lake), Paratylenchus projectus, Meloidogyne hapla, and Pratylenchus tenuis were frequently associated with the roots of native vegetation. These nematode species were also present in adjacent strawberry beds. Among alternate crops observed, oats and muskmelon usually supported the fewest nematodes although moderate densities of Xiphinema americanum and P. tenuis were found at one location in plots planted to oats. Pratylenchus tenuis was also found on rye at one location. PMID:19305841

  5. Anatomical terminology and nomenclature: past, present and highlights.

    PubMed

    Kachlik, David; Baca, Vaclav; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir

    2008-08-01

    The anatomical terminology is a base for medical communication. It is elaborated into a nomenclature in Latin. Its history goes back to 1895, when the first Latin anatomical nomenclature was published as Basiliensia Nomina Anatomica. It was followed by seven revisions (Jenaiensia Nomina Anatomica 1935, Parisiensia Nomina Anatomica 1955, Nomina Anatomica 2nd to 6th edition 1960-1989). The last revision, Terminologia Anatomica, (TA) created by the Federative Committee on Anatomical Terminology and approved by the International Federation of Associations of Anatomists, was published in 1998. Apart from the official Latin anatomical terminology, it includes a list of recommended English equivalents. In this article, major changes and pitfalls of the nomenclature are discussed, as well as the clinical anatomy terms. The last revision (TA) is highly recommended to the attention of not only teachers, students and researchers, but also to clinicians, doctors, translators, editors and publishers to be followed in their activities.

  6. Extra-Anatomic Revascularization of Extensive Coral Reef Aorta.

    PubMed

    Gaggiano, Andrea; Kasemi, Holta; Monti, Andrea; Laurito, Antonella; Maselli, Mauro; Manzo, Paola; Quaglino, Simone; Tavolini, Valeria

    2017-10-01

    Coral reef aorta (CRA) is a rare, potential lethal disease of the visceral aorta as it can cause visceral and renal infarction. Various surgical approaches have been proposed for the CRA treatment. The purpose of this article is to report different extensive extra-anatomic CRA treatment modalities tailored on the patients' clinical and anatomic presentation. From April 2006 to October 2012, 4 symptomatic patients with extensive CRA were treated at our department. Extra-anatomic aortic revascularization with selective visceral vessels clamping was performed in all cases. Technical success was 100%. No perioperative death was registered. All patients remained asymptomatic during the follow-up period (62, 49, 25, and 94 months, respectively), with bypasses and target vessels patency. The extra-anatomic bypass with selective visceral vessels clamping reduces the aortic occlusion time and the risk of organ ischemia. All approaches available should be considered on a case-by-case basis and in high-volume centers. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Anatomical and morphological study of the subcoracoacromial canal.

    PubMed

    Le Reun, O; Lebhar, J; Mateos, F; Voisin, J L; Thomazeau, H; Ropars, M

    2016-12-01

    Many clinical anatomy studies have looked into how variations in the acromion, coracoacromial ligament (CAL) and subacromial space are associated with rotator cuff injuries. However, no study up to now had defined anatomically the fibro-osseous canal that confines the supraspinatus muscle in the subcoracoacromial space. Through an anatomical study of the scapula, we defined the bone-related parameters of this canal and its anatomical variations. This study on dry bones involved 71 scapulas. With standardised photographs in two orthogonal views (superior and lateral), the surface area of the subcoracoacromial canal and the anatomical parameters making up this canal were defined and measured using image analysis software. The primary analysis evaluated the anatomical parameters of the canal as a function of three canal surface area groups; the secondary analysis looked into how variations in the canal surface area were related to the type of acromion according to the Bigliani classification. Relative to glenoid width, the group with a large canal surface area (L) had significantly less lateral overhang of the acromion than the group with a small canal surface area (S), with ratios of 0.41±0.23 and 0.58±0.3, respectively (P=0.04). The mean length of the CAL was 46±8mm in the L group and 39±9mm in the S group (P=0.003). The coracoacromial arch angle was 38°±11° in the L group and 34°±9° in the S group; the canal surface area was smaller in specimens with a smaller coracoacromial arch angle (P=0.20). Apart from acromial morphology, there could be innate anatomical features of the scapula that predispose people to extrinsic lesions to the supraspinatus tendon (lateral overhang, coracoacromial arch angle) by reducing the subcoracoacromial canal's surface area. Anatomical descriptive study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Inexpensive anatomical trainer for bronchoscopy.

    PubMed

    Di Domenico, Stefano; Simonassi, Claudio; Chessa, Leonardo

    2007-08-01

    Flexible fiberoptic bronchoscopy is an indispensable tool for optimal management of intensive care unit patients. However, the acquisition of sufficient training in bronchoscopy is not straightforward during residency, because of technical and ethical problems. Moreover, the use of commercial simulators is limited by their high cost. In order to overcome these limitations, we realized a low-cost anatomical simulator to acquire and maintain the basic skill to perform bronchoscopy in ventilated patients. We used 1.5 mm diameter iron wire to construct the bronchial tree scaffold; glazier-putty was applied to create the anatomical model. The model was covered by several layers of newspaper strips previously immersed in water and vinilic glue. When the model completely dried up, it was detached from the scaffold by cutting it into six pieces, it was reassembled, painted and fitted with an endotracheal tube. We used very cheap material and the final cost was euro16. The trainer resulted in real-scale and anatomically accurate, with appropriate correspondence on endoscopic view between model and patients. All bronchial segments can be explored and easily identified by endoscopic and external vision. This cheap simulator is a valuable tool for practicing, particularly in a hospital with limited resources for medical training.

  9. The effect of anatomic differences on the relationship between renal artery and diaphragmatic crus.

    PubMed

    Esen, K; Tok, S; Balci, Yuksel; Apaydin, F D; Kara, E; Uzmansel, D

    2018-01-01

    The aim of this study is to investigate the effect of anatomic differences on the relationship between renal artery and diaphragmatic crus via the touch of two structures. The study included dynamic computed tomography (CT) scans of 308 patients performed mainly for characterisation of liver and renal masses. Anatomic differences including the thickness of the diaphragmatic crus, the localisation of renal artery ostium at the wall of aorta, the level of renal artery origin with respect to superior mesenteric artery were evaluated. Statistical relationships between renal artery-diaphragmatic crus contact and the anatomic differences were assessed. Thickness of the diaphragmatic crus at the level of renal artery origin exhibited a statistically significant relationship to renal artery-diaphragmatic crus contact at the left (p < 0.001) and right side (p < 0.001). There was a statistically significant relationship between high renal artery origin and renal artery- -diaphragmatic crus contact at the left (p < 0.001) and right side (p = 0.01). The localisation of renal artery ostium at the wall of aorta (right side, p = 0.436, left side, p = 0.681) did not demonstrate a relationship to renal artery-diaphragmatic crus contact. Thickness of the diaphragmatic crus and high renal artery origin with respect to superior mesenteric artery are crucial anatomic differences determining the relationship of renal artery and diaphragmatic crus. (Folia Morphol 2018; 77, 1: 22-28).

  10. Hydrocarbon provinces and productive trends in Libya and adjacent areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Missallati, A.A.

    1988-08-01

    According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural reliefmore » and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.« less

  11. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes

    PubMed Central

    Di-Poï, Nicolas; Milinkovitch, Michel C.

    2016-01-01

    Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However, the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central to this debate is the apparent lack of an “anatomical placode” (that is, a local epidermal thickening characteristic of feathers’ and hairs’ early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for the independent development of the anatomical placode in birds and mammals and parallel co-option of similar signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental series of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)–deficient scaleless mutant lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their shared reptilian ancestor’s skin appendages already characterized by an anatomical placode and associated signaling molecules. PMID:28439533

  12. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes.

    PubMed

    Di-Poï, Nicolas; Milinkovitch, Michel C

    2016-06-01

    Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However, the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central to this debate is the apparent lack of an "anatomical placode" (that is, a local epidermal thickening characteristic of feathers' and hairs' early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for the independent development of the anatomical placode in birds and mammals and parallel co-option of similar signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental series of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)-deficient scaleless mutant lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their shared reptilian ancestor's skin appendages already characterized by an anatomical placode and associated signaling molecules.

  13. Effects of mesoscale structures on the distribution of cephalopod paralarvae in the Gulf of California and adjacent Pacific

    NASA Astrophysics Data System (ADS)

    Ruvalcaba-Aroche, Erick D.; Sánchez-Velasco, Laura; Beier, Emilio; Godínez, Victor M.; Barton, Eric D.; Pacheco, Ma. Rocío

    2018-01-01

    Vertical distribution of the cephalopod paralarvae was investigated in relation to a system of two cyclonic and three anticyclonic eddies in the southern Gulf of California and a front in the adjacent Pacific Ocean. Results showed that the preferential habitat for the Sthenoteuthis oualaniensis - Dosidicus gigas "SD-complex" in both regions was the oxygenated surface mixed layer and the thermocline. The highest abundances occurred in of one of the anticyclonic eddies and a frontal zone, which are convergent structures. Enoploteuthid and Pyroteuthid paralarvae both displayed their highest abundances in the thermocline. Pyroteuthids dominated in the cyclonic eddy whereas Enoploteuthidae were less evident in the eddy system. Pyroteuthids were observed on the western (California Current) side of the frontal zone, and Enoploteuthids on its eastern (Gulf of California) side. The octopods and the complex of Ommastrephes-Eucleoteuthis-Hyaloteuthis paralarvae were present below the thermocline. Both groups had a scarce presence in the eddy system and high abundance near the frontal zone. The octopods abounded on the eastern side in association with the low dissolved oxygen concentrations (< 44 μmol kg-1) of Subtropical-Subsurface Water; the complex on the western front side was immersed in California Current Water. It may be concluded that the spawning and early stages of development of these cephalopod groups are associated with particular mesoscale structures of the water masses. For example, the "SD complex" inhabits the surface water masses, preferentially in convergence zones generated by mesoscale activity.

  14. Anatomically contoured plates for fixation of rib fractures.

    PubMed

    Bottlang, Michael; Helzel, Inga; Long, William B; Madey, Steven

    2010-03-01

    : Intraoperative contouring of long bridging plates for stabilization of flail chest injuries is difficult and time consuming. This study implemented for the first time biometric parameters to derive anatomically contoured rib plates. These plates were tested on a range of cadaveric ribs to quantify plate fit and to extract a best-fit plating configuration. : Three left and three right rib plates were designed, which accounted for anatomic parameters required when conforming a plate to the rib surface. The length lP over which each plate could trace the rib surface was evaluated on 109 cadaveric ribs. For each rib level 3-9, the plate design with the highest lP value was extracted to determine a best-fit plating configuration. Furthermore, the characteristic twist of rib surfaces was measured on 49 ribs to determine the surface congruency of anatomic plates with a constant twist. : The tracing length lP of the best-fit plating configuration ranged from 12.5 cm to 14.7 cm for ribs 3-9. The corresponding range for standard plates was 7.1-13.7 cm. The average twist of ribs over 8-cm, 12-cm, and 16-cm segments was 8.3 degrees, 20.6 degrees, and 32.7 degrees, respectively. The constant twist of anatomic rib plates was not significantly different from the average rib twist. : A small set of anatomic rib plates can minimize the need for intraoperative plate contouring for fixation of ribs 3-9. Anatomic rib plates can therefore reduce the time and complexity of flail chest stabilization and facilitate spanning of flail segments with long plates.

  15. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    PubMed

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.

  16. Robotic anatomic segmentectomy of the lung: technical aspects and initial results.

    PubMed

    Pardolesi, Alessandro; Park, Bernard; Petrella, Francesco; Borri, Alessandro; Gasparri, Roberto; Veronesi, Giulia

    2012-09-01

    Robotic lobectomy with radical lymph node dissection is a new frontier of minimally invasive thoracic surgery. Series of sublobar anatomic resection for primary initial lung cancers or for metastasis using video-assisted thoracic surgery have been reported but no cases have been so far reported using the robot-assisted approach. We present the technique and surgical outcome of our initial experience. Clinical data of patients undergoing robotic lung anatomic segmentectomy were retrospectively reviewed. All cases were done using the DaVinci System. A 3- or 4-incision strategy with a 3-cm utility incision in the anterior fourth or fifth intercostal space was performed. Individual ligation and division of the hilar structures was performed using Hem-o-Lok (Teleflex Medical, Research Triangle Park, NC) or endoscopic staplers. The parenchyma was transected with endovascular staplers introduced by the bedside assistant mainly through the utility incision. Systematic mediastinal lymph node dissection or sampling was performed. From 2008 to 2010, 17 patients underwent a robot-assisted lung anatomic segmentectomy in two centers. There were 10 women and 7 men with a mean age of 68.2 years (range, 32 to 82). Mean duration of surgery was 189 minutes. There were no major intraoperative complications. Conversion to open procedure was never required. Postoperative morbidity rate was 17.6% with pneumonia in 1 case and prolonged air leaks in 2 patients. Median postoperative stay was 5 days (range, 2 to 14), and postoperative mortality was 0%. Final pathology was non-small cell lung cancer in 8 patient, typical carcinoids in 2, and lung metastases in 7. Robotic anatomic lung segmentectomy is feasible and safe procedure. Robotic system, by improving ergonomic, surgeon view and precise movements, may make minimally invasive segmentectomy easier to adopt and perform. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Clinical and anatomical observations of a two-headed lamb.

    PubMed

    Fisher, K R; Partlow, G D; Walker, A F

    1986-04-01

    The clinical and anatomical features of a live-born diprosopic lamb are described. There are no complete anatomical analyses of two-faced lambs in the literature despite the frequency of conjoined twinning in sheep. The lamb had two heads fused in the occipital region. Each head had two eyes. The pinnae of the medial ears were fused. Caudal to the neck the lamb appeared grossly normal. The lamb was unable to raise its heads or stand. Both heads showed synchronous sucking motions and cranial reflexes were present. Nystagmus, strabismus, and limb incoordination were present. The respiratory and heart rates were elevated. There was a grade IV murmur over the left heart base and a palpable thrill on the left side. Each head possessed a normal nasopharynx, oropharynx, and tongue. There was a singular laryngopharnyx and esophagus although the hyoid apparatus was partially duplicated. The cranial and cervical musculature reflected the head duplications. The aortic trunk emerged from the right ventricle just to the right of the conus arteriosus. A ventricular septal defect, patent foramen ovale, and ductus arteriosus were present along with malformed atrioventricular valves. Brainstem fusion began at the cranial medulla oblongata between cranial nerves IX and XII. The cerebella were separate but small. The ventromedial structures from each medulla oblongata were compressed into an extraneous midline remnant of tissue which extended caudally to the level of T2. The clinical signs therefore reflected the anatomical anomalies. A possible etiology for this diprosopus might be the presence early in development of an excessively large block of chordamesoderm. This would allow for the formation of two head folds and hence two "heads."

  18. Anatomical relationship between mental foramen, mandibular teeth and risk of nerve injury with endodontic treatment.

    PubMed

    Chong, Bun San; Gohil, Kajal; Pawar, Ravikiran; Makdissi, Jimmy

    2017-01-01

    The objective of the present study was to evaluate the anatomical relationship between mental foramen (MF), including the incidence of the anterior loop of the inferior alveolar nerve (AL), and roots of mandibular teeth in relation to risk of nerve injury with endodontic treatment. Cone-beam computed tomography (CBCT) images, which included teeth either side of the MF, were randomly selected. The anonymised CBCT images were reconstructed and examined in coronal, axial and sagittal planes, using three-dimensional viewing software, to determine the relationship and distance between MF and adjacent mandibular teeth. The actual distance between the root apex and MF was calculated mathematically using Pythagoras' theorem. If present, the incidence of an AL in the axial plane was also recorded. The root apex of the mandibular second premolar (70 %), followed by the first premolar (18 %) and then the first molar (12 %), was the closest to the MF. Ninety-six percent of root apices evaluated were >3 mm from the MF. An AL was present in 88 % of the cases. With regards to endodontic treatment, the risk of nerve injury in the vicinity of the MF would appear to be low. However, the high incidence of the AL highlights the need for clinicians to be aware and careful of this important anatomical feature. The risk of injury to the MN with endodontic treatment would appear to be low, but given the high incidence, it is important to be aware and be careful of the AL.

  19. Structured Water Layers Adjacent to Biological Membranes

    PubMed Central

    Higgins, Michael J.; Polcik, Martin; Fukuma, Takeshi; Sader, John E.; Nakayama, Yoshikazu; Jarvis, Suzanne P.

    2006-01-01

    Water amid the restricted space of crowded biological macromolecules and at membrane interfaces is essential for cell function, though the structure and function of this “biological water” itself remains poorly defined. The force required to remove strongly bound water is referred to as the hydration force and due to its widespread importance, it has been studied in numerous systems. Here, by using a highly sensitive dynamic atomic force microscope technique in conjunction with a carbon nanotube probe, we reveal a hydration force with an oscillatory profile that reflects the removal of up to five structured water layers from between the probe and biological membrane surface. Further, we find that the hydration force can be modified by changing the membrane fluidity. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel (Lβ) phase bilayers, each oscillation in the force profile indicates the force required to displace a single layer of water molecules from between the probe and bilayer. In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 60°C and 1,2-dioleoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 24°C seriously disrupt the molecular ordering of the water and result predominantly in a monotonic force profile. PMID:16798815

  20. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed anmore » investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.« less

  1. [Project HRANAFINA--Croatian anatomical and physiological terminology].

    PubMed

    Vodanović, Marin

    2012-01-01

    HRANAFINA--Croatian Anatomical and Physiological Terminology is a project of the University of Zagreb School of Dental Medicine funded by the Croatian Science Foundation. It is performed in cooperation with other Croatian universities with medical schools. This project has a two-pronged aim: firstly, building of Croatian anatomical and physiological terminology and secondly, Croatian anatomical and physiological terminology usage popularization between health professionals, medical students, scientists and translators. Internationally recognized experts from Croatian universities with medical faculties and linguistics experts are involved in the project. All project activities are coordinated in agreement with the National Coordinator for Development of Croatian Professional Terminology. The project enhances Croatian professional terminology and Croatian language in general, increases competitiveness of Croatian scientists on international level and facilitates the involvement of Croatian scientists, health care providers and medical students in European projects.

  2. Cervical extraforaminal ligaments: an anatomical study.

    PubMed

    Arslan, Mehmet; Açar, Halil İbrahim; Cömert, Ayhan

    2017-12-01

    The purpose of this study was to elucidate the anatomy and clinical importance of extraforaminal ligaments in the cervical region. This study was performed on eight embalmed cadavers. The existence and types of extraforaminal ligaments were identified. The morphology, quantity, origin, insertion, and orientation of the extraforaminal ligaments in the cervical region were observed. Extraforaminal ligaments could be divided into two types: transforaminal ligaments and radiating ligaments. It was observed that during their course, transforaminal ligaments cross the intervertebral foramen ventrally. They usually originate from the anteroinferior margin of the anterior tubercle of the cranial transverse process and insert into the superior margin of the anterior tubercle of the caudal transverse process. The dorsal aspect of the transforaminal ligaments adhere loosely to the spinal nerve sheath. The length, width and thickness of these ligaments increased from the cranial to the caudal direction. A single intervertebral foramen contained at least one transforaminal ligament. A total of 98 ligaments in 96 intervertebral foramina were found. The spinal nerves were extraforaminally attached to neighboring anterior and posterior tubercle of the cervical transverse process by the radiating ligaments. The radiating ligaments consisted of the ventral superior, ventral, ventral inferior, dorsal superior and dorsal inferior radiating ligaments. Radiating ligaments originated from the adjacent transverse processes and inserted into the nerve root sheath. The spinal nerve was held like the hub of a wheel by a series of radiating ligaments. The dorsal ligaments were the thickest. From C2-3 to C6-7 at the cervical spine, radiating ligaments were observed. They developed particularly at the level of the C5-C6 intervertebral foramen. This anatomic study may provide a better understanding of the relationship of the extraforaminal ligaments to the cervical nerve root.

  3. Anatomical Entity Recognition with a Hierarchical Framework Augmented by External Resources

    PubMed Central

    Xu, Yan; Hua, Ji; Ni, Zhaoheng; Chen, Qinlang; Fan, Yubo; Ananiadou, Sophia; Chang, Eric I-Chao; Tsujii, Junichi

    2014-01-01

    References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs) work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF) model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments) with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available. PMID:25343498

  4. Round and Oval Window Anatomic Variability: Its Implication for the Vibroplasty Technique.

    PubMed

    Mancheño, Marta; Aristegui, Miguel; Sañudo, Jose Ramon

    2017-06-01

    The objective of this study is to evaluate the anatomical variability of round and oval window regions and its relationship with their closest structures, to determine its implication on the fitting and stabilization of the middle ear implant Vibrant Soundbridge. Variations of the anatomy of round and oval window regions were assessed in a total of 85 human dissected temporal bones. Afterward, we evaluated the adaptation and subsequent stabilization of the floating mass transducer (FMT) of the Vibrant Soundbridge in 67 cases in round window (RW) and in 22 cases in oval window (OW), and the influence that the variability of the different anatomical features examined had on this stabilization. We also assessed access and surgeon's view of the RW niche through the facial recess approach. Stabilization of the FMT in the RW was achieved in 53 (79%) of the 67 cases; we found that the less favorable anatomical conditions for stabilization were: membrane smaller than 1.5 mm, presence of a high jugular bulb and a narrow or very narrow RW niche. Frequently, two or more of these conditions happened simultaneously. In seven cases (22%) access to the RW through facial recess approach did not allow positioning the FMT in place. OW stabilization succeeded in 18 (82%) of the 22 cases. Round and oval window vibroplasty are difficult surgical techniques. To place the FMT directly on the OW may be easier as we do not have to drill the niche. In both regions there are some anatomical conditions that hinder fitting the FMT and even make it impossible. Once fitted, the main problem is to achieve good stabilization of the device.

  5. Robotic unclamped "minimal-margin" partial nephrectomy: ongoing refinement of the anatomic zero-ischemia concept.

    PubMed

    Satkunasivam, Raj; Tsai, Sheaumei; Syan, Sumeet; Bernhard, Jean-Christophe; de Castro Abreu, Andre Luis; Chopra, Sameer; Berger, Andre K; Lee, Dennis; Hung, Andrew J; Cai, Jie; Desai, Mihir M; Gill, Inderbir S

    2015-10-01

    Anatomic partial nephrectomy (PN) techniques aim to decrease or eliminate global renal ischemia. To report the technical feasibility of completely unclamped "minimal-margin" robotic PN. We also illustrate the stepwise evolution of anatomic PN surgery with related outcomes data. This study was a retrospective analysis of 179 contemporary patients undergoing anatomic PN at a tertiary academic institution between October 2009 and February 2013. Consecutive consented patients were grouped into three cohorts: group 1, with superselective clamping and developmental-curve experience (n = 70); group 2, with superselective clamping and mature experience (n = 60); and group 3, which had completely unclamped, minimal-margin PN (n = 49). Patients in groups 1 and 2 underwent superselective tumor-specific devascularization, whereas patients in group 3 underwent completely unclamped minimal-margin PN adjacent to the tumor edge, a technique that takes advantage of the radially oriented intrarenal architecture and anatomy. Primary outcomes assessed the technical feasibility of robotic, completely unclamped, minimal-margin PN; short-term changes in estimated glomerular filtration rate (eGFR); and development of new-onset chronic kidney disease (CKD) stage >3. Secondary outcome measures included perioperative variables, 30-d complications, and histopathologic outcomes. Demographic data were similar among groups. For similarly sized tumors (p = 0.13), percentage of kidney preserved was greater (p = 0.047) and margin width was narrower (p = 0.0004) in group 3. In addition, group 3 had less blood loss (200, 225, and 150ml; p = 0.04), lower transfusion rates (21%, 23%, and 4%; p = 0.008), and shorter hospital stay (p = 0.006), whereas operative time and 30-d complication rates were similar. At 1-mo postoperatively, median percentage reduction in eGFR was similar (7.6%, 0%, and 3.0%; p = 0.53); however, new-onset CKD stage >3 occurred less frequently in group 3 (23%, 10%, and 2%; p = 0

  6. Anatomical evidence regarding the existence of sustentaculum facies.

    PubMed

    Frâncu, L L; Hînganu, Delia; Hînganu, M V

    2013-01-01

    The face, seen as a unitary region is subject to the gravitational force. Since it is the main relational and socialization region of each individual, it presents unique ways of suspension. The elevation system of the face is complex, and it includes four different elements: the continuity with the epicranial fascia, the adhesion of superficial structures to the peri- and inter-orbital mimic muscles, ligaments adhesions and fixing ligaments of the superficial layers to the zygomatic process, and also to the facial fat pad. Each of these four elements were evaluated on 12 cephalic extremities, dissected in detail, layer by layer, and the images were captured with an informatics system connected to an operating microscope. The purchased mesoscopic images revealed the presence of a superficial musculo-aponeurotic system (SMAS) through which the anti-gravity suspension of the superficial facial structures become possible. This system acts against face aging and all four elevation structures form what the so-called sustentaculum facies. The participation of each of the four anatomic components and their approach in the facial rejuvenation surgeries are here in discussion.

  7. Contrast in usage of FCAT-approved anatomical terminology between members of two anatomy associations in North America.

    PubMed

    Martin, Bradford D; Thorpe, Donna; Merenda, Victoria; Finch, Brian; Anderson-Smith, Wendy; Consiglio-Lahti, Zane

    2010-01-01

    Almost 12 years since the publishing of Terminologia Anatomica (TA) by the Federative Committee on Anatomical Terminology (FCAT), there has yet to be a unified adoption of FCAT-recommended anatomical terms by North American anatomists. A survey was sent to members of the Human Anatomy & Physiology Society (HAPS) to compare the frequency of FCAT term usage with a previous study involving the American Association of Anatomists (AAA). The HAPS differed from AAA in being composed mostly of biologists (56.5%) who teach anatomy with only 18.3% of respondents having terminal degrees in anatomy. The survey included the same 25 sets of synonymic names for selected gross anatomical structures or related terms used for the AAA survey. Overall results indicate that the FCAT preferred term had the highest frequency of usage in only 40.0% of the survey questions, demonstrating 4% lower compliance than AAA respondents. Compliance with FCAT preferred terms ranged from 92.2% to 1.7% usage. When compared with AAA anatomists, there were reversals in predominant usage between FCAT and non-FCAT terms for six sets of anatomical structures: HAPS respondents predominantly used non-FCAT terms for adrenal gland (88.7%), antecubital fossa (57.4%), patellar tendon (65.2%), ligamentum capitis femoris (36.5%), while preferring the FCAT anterior circumflex humeral artery (45.2%) and anterior/posterior preferred over ventral/dorsal (41.7%). Almost 54% of HAPS anatomists were not familiar with the FCAT, nearly 21% higher than the AAA. Copyright 2009 American Association of Anatomists.

  8. Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in Parietal–Opercular (SII) Cortex

    PubMed Central

    Mano, Hiroaki; Kawato, Mitsuo

    2017-01-01

    The location of a sensory cortex for temperature perception remains a topic of substantial debate. Both the parietal–opercular (SII) and posterior insula have been consistently implicated in thermosensory processing, but neither region has yet been identified as the locus of fine temperature discrimination. Using a perceptual learning paradigm in male and female humans, we show improvement in discrimination accuracy for subdegree changes in both warmth and cool detection over 5 d of repetitive training. We found that increases in discriminative accuracy were specific to the temperature (cold or warm) being trained. Using structural imaging to look for plastic changes associated with perceptual learning, we identified symmetrical increases in gray matter volume in the SII cortex. Furthermore, we observed distinct, adjacent regions for cold and warm discrimination, with cold discrimination having a more anterior locus than warm. The results suggest that thermosensory discrimination is supported by functionally and anatomically distinct temperature-specific modules in the SII cortex. SIGNIFICANCE STATEMENT We provide behavioral and neuroanatomical evidence that perceptual learning is possible within the temperature system. We show that structural plasticity localizes to parietal–opercular (SII), and not posterior insula, providing the best evidence to date resolving a longstanding debate about the location of putative “temperature cortex.” Furthermore, we show that cold and warm pathways are behaviorally and anatomically dissociable, suggesting that the temperature system has distinct temperature-dependent processing modules. PMID:28847806

  9. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals.

    PubMed

    Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M

    2017-04-25

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.

  10. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals

    PubMed Central

    Dethlefs, Christopher R.; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W. M.

    2017-01-01

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings. PMID:28518066

  11. [Study of Japanese anatomical terms, such as 'sphenoid bone'].

    PubMed

    Sawai, Tadashi

    2008-12-01

    Japanese anatomical terms (butterfly-shaped bone) have an interesting history. Galen named a bone (wedge-like). This Greek term was introduced into Latin anatomical texts by transcribing into 'os sphnoides' or translating it as 'os cuneiforme'. Both terms mean equally wedge-like bone. From 16th century on, these two terms prevailed in European anatomical textbooks, but in 18th century some anatomists merged this bone with some kinds of winged creatures and named their wings "Ala major' and 'Ala minor'. In mid-19th century English-Chinese anatomical book, this bone was named (butterfly bone) by a medical missionary Benjamin Hobson. This term was introduced into Japanese textbooks. In Meiji Era both terms were used in Japanese textbooks, and (wedged-like bone). Some anatomists insisted on using because this echoed original Latin term's sense. Eventually, Japanese Associations of Anatomists adopted in 1943.

  12. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vásquez Osorio, Eliana M., E-mail: e.vasquezosorio@erasmusmc.nl; Kolkman-Deurloo, Inger-Karine K.; Schuring-Pereira, Monica

    Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of themore » bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of

  13. Preventing Proximal Adjacent Level Kyphosis With Strap Stabilization.

    PubMed

    Zaghloul, Khaled M; Matoian, Brett J; Denardin, Nicholas B; Patel, Vikas V

    2016-07-01

    A substantial proportion of patients develop proximal junctional kyphosis following spinal surgery. To combat this postoperative change, several techniques have focused on maintaining the structural integrity of adjacent spinal levels and adapting the proximal end of the fusion construct to accommodate the increased mechanical stressors produced by long spinal fusion. The use of Mersilene tape (Ethicon, Somerville, New Jersey) for spine and orthopedic surgery is well documented, although considerably less is known about its use for preventing proximal junctional kyphosis. This article describes a proposed technique using Mersilene tape to provide a check-rein strap stabilization at the proximal end of fusion constructs. Initial data suggest that use of this technique may prevent formation of proximal junctional kyphosis. [Orthopedics. 2016; 39(4):e794-e799.]. Copyright 2016, SLACK Incorporated.

  14. Organic acids on the growth, anatomical structure, biochemical parameters and heavy metal accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings.

    PubMed

    Han, Yu-Lin; Huang, Su-Zhen; Yuan, Hai-Yan; Zhao, Jiu-Zhou; Gu, Ji-Guang

    2013-08-01

    The effect of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) on the growth, anatomical structure, physiological responses and lead (Pb) accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings for 30 days were studied. Results showed that the dry weights (DW) of roots decreased significantly under both levels of CA. The DWs of leaves and roots treated with 2 mmol/kg EDTA decreased significantly and were 23 and 54 %, respectively, lower than those of the control. The tolerant indexes of I. lactea var. chinensis under all treatments of organic acids were lower than control. The root tip anatomical structure was little affected under the treatments of 2 mmol/kg CA and 2 mmol/kg EDTA compared with control. However, the formation of photosynthesizing cells was inhibited by the treatment of 2 mmol/kg EDTA. The concentrations of chlorophyll a, chlorophyll b and total carotenoids in the leaves treated with 2 mmol/kg EDTA significantly decreased. Higher CA level and lower EDTA level could trigger the synthesis of ascorbic acid and higher level of EDTA could trigger the synthesis of glutathione. CA and EDTA could promote Pb accumulation of I. lactea var. chinensis and Pb concentration in the leaves and roots at 2 mmol/kg EDTA treatment increased significantly and reached to 160.44 and 936.08 μg/g DW, respectively, and 1.8 and 1.6 times higher than those of the control. The results indicated that I. lactea var. chinensis could be used to remediate Pb tailing and the role of EDTA in promoting Pb accumulation was better than CA did.

  15. Explaining large mortality differences between adjacent counties: a cross-sectional study.

    PubMed

    Schootman, M; Chien, L; Yun, S; Pruitt, S L

    2016-08-02

    Extensive geographic variation in adverse health outcomes exists, but global measures ignore differences between adjacent geographic areas, which often have very different mortality rates. We describe a novel application of advanced spatial analysis to 1) examine the extent of differences in mortality rates between adjacent counties, 2) describe differences in risk factors between adjacent counties, and 3) determine if differences in risk factors account for the differences in mortality rates between adjacent counties. We conducted a cross-sectional study in Missouri, USA with 2005-2009 age-adjusted all-cause mortality rate as the outcome and county-level explanatory variables from a 2007 population-based survey. We used a multi-level Gaussian model and a full Bayesian approach to analyze the difference in risk factors relative to the difference in mortality rates between adjacent counties. The average mean difference in the age-adjusted mortality rate between any two adjacent counties was -3.27 (standard deviation = 95.5) per 100,000 population (maximum = 258.80). Six variables were associated with mortality differences: inability to obtain medical care because of cost (β = 2.6), hospital discharge rate (β = 1.03), prevalence of fair/poor health (β = 2.93), and hypertension (β = 4.75) and poverty prevalence (β = 6.08). Examining differences in mortality rates and associated risk factors between adjacent counties provides additional insight for future interventions to reduce geographic disparities.

  16. ON THE WIND-INDUCED EXCHANGE BETWEEN INDIAN RIVER BAY, DELAWARE AND THE ADJACENT CONTINENTAL SHELF. (R826945)

    EPA Science Inventory

    The structure of the wind-induced exchange between Indian River Bay, Delaware and the adjacent continental shelf is examined based on current measurements made at the Indian River Inlet which represents the only conduit of exchange between the bay and the coastal ocean. Local ...

  17. An Anatomically Resolved Mouse Brain Proteome Reveals Parkinson Disease-relevant Pathways *

    PubMed Central

    Choi, Jong Min; Rousseaux, Maxime W. C.; Malovannaya, Anna; Kim, Jean J.; Kutzera, Joachim; Wang, Yi; Huang, Yin; Zhu, Weimin; Maity, Suman; Zoghbi, Huda Yahya; Qin, Jun

    2017-01-01

    Here, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm3 in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease. We compared the proteome from a vulnerable region (substantia nigra pars compacta) of wild type and parkinsonian mice with that of an adjacent, less vulnerable, region (ventral tegmental area) and identified several proteins that exhibited both spatiotemporal- and genotype-restricted changes. We validated the most robustly altered proteins using an alternative profiling method and found that these modifications may highlight potential new pathways for future studies. This proteomic atlas is a valuable resource that offers a practical framework for investigating the molecular intricacies of normal brain function as well as regional vulnerability in neurological diseases. All of the mouse regional proteome profiling data are published on line at http://mbpa.bprc.ac.cn/. PMID:28153913

  18. Linking Vegetation Structure and Spider Diversity in Riparian and Adjacent Habitats in Two Rivers of Central Argentina: An Analysis at Two Conceptual Levels.

    PubMed

    Griotti, Mariana; Muñoz-Escobar, Christian; Ferretti, Nelson E

    2017-08-01

    The link between vegetation structure and spider diversity has been well explored in the literature. However, few studies have compared spider diversity and its response to vegetation at two conceptual levels: assemblage (species diversity) and ensemble (guild diversity). Because of this, we studied spider diversity in riparian and adjacent habitats of a river system from the Chacoan subregion in central Argentina and evaluated their linkage with vegetation structure at these two levels. To assess vegetation structure, we measured plant species richness and vegetation cover in the herb and shrub - tree layers. We collected spiders for over 6 months by using vacuum netting, sweep netting and pitfall traps. We collected 3,808 spiders belonging to 119 morphospecies, 24 families and 9 guilds. At spider assemblage level, SIMPROF analysis showed significant differences among studied habitats. At spider ensemble level, nevertheless, we found no significant differences among habitats. Concerning the linkage with vegetation structure, BIOENV test showed that spider diversity at either assemblage or ensemble level was not significantly correlated with the vegetation variables assessed. Our results indicated that spider diversity was not affected by vegetation structure. Hence, even though we found a pattern in spider assemblages among habitats, this could not be attributed to vegetation structure. In this study, we show that analyzing a community at two conceptual levels will be useful for recognizing different responses of spider communities to vegetation structure in diverse habitat types. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology

    PubMed Central

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2014-01-01

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has lead to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism there may also be age-specific changes in gene expression, molecular, synaptic, cellular and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. PMID:20920490

  20. Toledo School of Translators and their influence on anatomical terminology.

    PubMed

    Arráez-Aybar, Luis-Alfonso; Bueno-López, José-L; Raio, Nicolas

    2015-03-01

    Translation facilitates transmission of knowledge between cultures. The fundamental transfer of anatomic terminology from the Ancient Greek and Islamic Golden Age cultures, to medieval Latin Christendom took place in the so-called Toledo School of Translators in the 12th-13th centuries. Translations made in Toledo circulated widely across Europe. They were the foundation of scientific thinking that was born in the boards of first universities. In Toledo, Gerard of Cremona translated Avicenna's Canon of Medicine, the key work of Islamic Golden Age of medicine. Albertus Magnus, Mondino de Luzzi and Guy de Chauliac, the leading authors of anatomical Latin words in the Middle Ages, founded their books on Gerard's translations. The anatomical terms of the Canon retain auctoritas up to the Renaissance. Thus, terms coined by Gerard such as diaphragm, orbit, pupil or sagittal remain relevant in the current official anatomical terminology. The aim of the present paper is to bring new attention to the highly significant influence that the Toledo School of Translators had in anatomical terminology. For this, we shall review here the onomastic origins of a number of anatomical terms (additamentum; coracoid process; coxal; false ribs; femur; panniculus; spondylus; squamous sutures; thorax; xiphoid process, etc.) which are still used today. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Local adjacency metric dimension of sun graph and stacked book graph

    NASA Astrophysics Data System (ADS)

    Yulisda Badri, Alifiah; Darmaji

    2018-03-01

    A graph is a mathematical system consisting of a non-empty set of nodes and a set of empty sides. One of the topics to be studied in graph theory is the metric dimension. Application in the metric dimension is the navigation robot system on a path. Robot moves from one vertex to another vertex in the field by minimizing the errors that occur in translating the instructions (code) obtained from the vertices of that location. To move the robot must give different instructions (code). In order for the robot to move efficiently, the robot must be fast to translate the code of the nodes of the location it passes. so that the location vertex has a minimum distance. However, if the robot must move with the vertex location on a very large field, so the robot can not detect because the distance is too far.[6] In this case, the robot can determine its position by utilizing location vertices based on adjacency. The problem is to find the minimum cardinality of the required location vertex, and where to put, so that the robot can determine its location. The solution to this problem is the dimension of adjacency metric and adjacency metric bases. Rodrguez-Velzquez and Fernau combine the adjacency metric dimensions with local metric dimensions, thus becoming the local adjacency metric dimension. In the local adjacency metric dimension each vertex in the graph may have the same adjacency representation as the terms of the vertices. To obtain the local metric dimension of values in the graph of the Sun and the stacked book graph is used the construction method by considering the representation of each adjacent vertex of the graph.

  2. Constrained and Unconstrained Partial Adjacent Category Logit Models for Ordinal Response Variables

    ERIC Educational Resources Information Center

    Fullerton, Andrew S.; Xu, Jun

    2018-01-01

    Adjacent category logit models are ordered regression models that focus on comparisons of adjacent categories. These models are particularly useful for ordinal response variables with categories that are of substantive interest. In this article, we consider unconstrained and constrained versions of the partial adjacent category logit model, which…

  3. Simplified three-dimensional model provides anatomical insights in lizards' caudal autotomy as printed illustration.

    PubMed

    De Amorim, Joana D C G; Travnik, Isadora; De Sousa, Bernadete M

    2015-03-01

    Lizards' caudal autotomy is a complex and vastly employed antipredator mechanism, with thorough anatomic adaptations involved. Due to its diminished size and intricate structures, vertebral anatomy is hard to be clearly conveyed to students and researchers of other areas. Three-dimensional models are prodigious tools in unveiling anatomical nuances. Some of the techniques used to create them can produce irregular and complicated forms, which despite being very accurate, lack didactical uniformity and simplicity. Since both are considered fundamental characteristics for comprehension, a simplified model could be the key to improve learning. The model here presented depicts the caudal osteology of Tropidurus itambere, and was designed to be concise, in order to be easily assimilated, yet complete, not to compromise the informative aspect. The creation process requires only basic skills in manipulating polygons in 3D modeling softwares, in addition to the appropriate knowledge of the structure to be modeled. As reference for the modeling, we used microscopic observation and a photograph database of the caudal structures. This way, no advanced laboratory equipment was needed and all biological materials were preserved for future research. Therefore, we propose a wider usage of simplified 3D models both in the classroom and as illustrations for scientific publications.

  4. Different methods for anatomical targeting.

    PubMed

    Iacopino, D G; Conti, A; Angileri, F F; Tomasello, F

    2003-03-01

    Several procedures are used in the different neurosurgical centers in order to perform stereotactic surgery for movement disorders. At the moment no procedure can really be considered superior to the other. We contribute with our experience of targeting method. Ten patients were selected, in accordance to the guidelines for the treatment of Parkinson disease, and operated by several methods including pallidotomy, bilateral insertion of chronic deep brain electrodes within the internal pallidum and in the subthalamic nucleus (18 procedures). in each patient an MR scan was performed the day before surgery. Scans were performed axially parallel to the intercommissural line. The operating day a contrast CT scan was performed under stereotactic conditions. after digitalization of the MRI images, it was possible to visualize the surgical target and to relate it to parenchimal and vascular anatomic structures readable at the CT examination. The CT scan obtained was confronted with the MR previously performed, the geometrical relation between the different parenchimal and vascular structures and the selected targets were obtained. Stereotactic coordinates were obtained on the CT examination. It was possible to calculate the position of the subthalamic nucleus and of the internal pallidum on the CT scan, not only relating to the intercommissural line, but considering also the neurovascular structures displayed both on the MRI and the CT scans. The technique that our group presents consist in an integration between information derived from the CT and the MR techniques, so that we can benefit from the advantages of both methods and overcome the disadvantages.

  5. Contribution of the computed tomography of the anatomical aspects of the sphenoid sinuses to forensic identification.

    PubMed

    Auffret, Mathieu; Garetier, Marc; Diallo, Idris; Aho, Serge; Ben Salem, Douraied

    2016-12-01

    Body identification is the cornerstone of forensic investigation. It can be performed using radiographic techniques, if antemortem images are available. This study was designed to assess the value of visual comparison of the computed tomography (CT) anatomical aspects of the sphenoid sinuses, in forensic individual identification, especially if antemortem dental records, fingerprints or DNA samples are not available. This retrospective work took place in a French university hospital. The supervisor of this study randomly selected from the picture archiving and communication system (PACS), 58 patients who underwent one (16 patients) or two (42 patients) head CT in various neurological contexts. To avoid bias, those studies were prepared (anonymized, and all the head structures but the sphenoid sinuses were excluded), and used to constitute two working lists of 50 (42+8) CT studies of the sphenoid sinuses. An anatomical classification system of the sphenoid sinuses anatomical variations was created based on the anatomical and surgical literature. In these two working lists, three blinded readers had to identify, using the anatomical system and subjective visual comparison, 42 pairs of matched studies, and 16 unmatched studies. Readers were blinded from the exact numbers of matching studies. Each reader correctly identified the 42 pairs of CT with a concordance of 100% [97.5% confidence interval: 91-100%], and the 16 unmatched CT with a concordance of 100% [97.5% confidence interval: 79-100%]. Overall accuracy was 100%. Our study shows that establishing the anatomical concordance of the sphenoid sinuses by visual comparison could be used in personal identification. This easy method, based on a frequently and increasingly prescribed exam, still needs to be assessed on a postmortem cohort. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Greek language: analysis of the cardiologic anatomical etymology: past and present.

    PubMed

    Bezas, Georges; Werneck, Alexandre Lins

    2012-01-01

    The Greek language, the root of most Latin anatomical terms, is deeply present in the Anatomical Terminology. Many studies seek to analyze etymologically the terms stemming from the Greek words. In most of these studies, the terms appear defined according to the etymological understanding of the respective authors at the time of its creation. Therefore, it is possible that the terms currently used are not consistent with its origin in ancient Greek words. We selected cardiologic anatomical terms derived from Greek words, which are included in the International Anatomical Terminology. We performed an etymological analysis using the Greek roots present in the earliest terms. We compared the cardiologic anatomical terms currently used in Greece and Brazil to the Greek roots originating from the ancient Greek language. We used morphological decomposition of Greek roots, prefixes, and suffixes. We also verified their use on the same lexicons and texts from the ancient Greek language. We provided a list comprising 30 cardiologic anatomical terms that have their origins in ancient Greek as well as their component parts in the International Anatomical Terminology. We included the terms in the way they were standardized in Portuguese, English, and Modern Greek as well as the roots of the ancient Greek words that originated them. Many works deal with the true origin of words (etymology) but most of them neither returns to the earliest roots nor relate them to their use in texts of ancient Greek language. By comparing the world's greatest studies on the etymology of Greek words, this paper tries to clarify the differences between the true origin of the Greek anatomical terms as well as the origins of the cardiologic anatomical terms more accepted today in Brazil by health professionals.

  7. Presentation of Anatomical Variations Using the Aurasma Mobile App

    PubMed Central

    Bézard, Georg; Lozanoff, Beth K; Labrash, Steven; Lozanoff, Scott

    2015-01-01

    Knowledge of anatomical variations is critical to avoid clinical complications and it enables an understanding of morphogenetic mechanisms. Depictions are comprised of photographs or illustrations often limiting appreciation of three-dimensional (3D) spatial relationships. The purpose of this study is to describe an approach for presenting anatomical variations utilizing video clips emphasizing 3D anatomical relationships delivered on personal electronic devices. An aberrant right subclavian artery (ARSA) was an incidental finding in a routine dissection of an 89-year-old man cadaver during a medical student instructional laboratory. The specimen was photographed and physical measurements were recorded. Three-dimensional models were lofted and rendered with Maya software and converted as Quicktime animations. Photographs of the first frame of the animations were recorded and registered with Aurasma Mobile App software (www.aurasma.com). Resulting animations were viewed on mobile devices. The ARSA model can be manipulated on the mobile device enabling the student to view and appreciate spatial relationships. Model elements can be de-constructed to provide even greater spatial resolution of anatomical relationships. Animations provide a useful approach for visualizing anatomical variations. Future work will be directed at creating a library of variants and underlying mechanism of formation for presentation through the Aurasma application. PMID:26793410

  8. PIXE analysis of elements in gastric cancer and adjacent mucosa

    NASA Astrophysics Data System (ADS)

    Liu, Qixin; Zhong, Ming; Zhang, Xiaofeng; Yan, Lingnuo; Xu, Yongling; Ye, Simao

    1990-04-01

    The elemental regional distributions in 20 resected human stomach tissues were obtained using PIXE analysis. The samples were pathologically divided into four types: normal, adjacent mucosa A, adjacent mucosa B and cancer. The targets for PIXE analysis were prepared by wet digestion with a pressure bomb system. P, K, Fe, Cu, Zn and Se were measured and statistically analysed. We found significantly higher concentrations of P, K, Cu, Zn and a higher ratio of Cu compared to Zn in cancer tissue as compared with normal tissue, but statistically no significant difference between adjacent mucosa and cancer tissue was found.

  9. The effects of the court-type Thai traditional massage on anatomical relations, blood flow, and skin temperature of the neck, shoulder, and arm.

    PubMed

    Plakornkul, Vasana; Vannabhum, Manmas; Viravud, Yadaridee; Roongruangchai, Jantima; Mutirangura, Pramook; Akarasereenont, Pravit; Laohapand, Tawee

    2016-09-15

    Court-type Thai traditional massage (CTTM) has specific major signal points (MaSP) for treating musculoskeletal conditions. The objectives of this study are to investigate the anatomical surfaces and structures of MaSPs, and to examine blood flow (BF) and skin temperature (ST) changes after applying pressure on the MaSPs on neck, shoulder, and arm areas. In the anatomical study, 83 cadavers were dissected and the anatomical surfaces and structures of the 15 MaSPs recorded. In human volunteers, BF, peak systolic velocity (PS), diameter of artery (DA), and ST changes were measured at baseline and after pressure application at 0, 30, 60, 180, and 300 s. There was no statistical difference in anatomical surfaces and structures of MaSP between the left and right side of the body. The 3 MaSPs on the neck were shown to be anatomically separated from the location of the common carotid arteries. The BF of MaSPs of the neck significantly and immediately increased after pressure application for 30 s and for 60 s in the arm (p < 0.001). ST increased significantly and immediately after pressure application for 300 s (p < 0.001). There was no significant correlation between BF and ST at any of the MaSPs. This study showed that MaSP massages were mainly directed towards muscles. MaSPs can cause significant, but brief, increases in BF and ST. Further studies are suggested to identify changes in BF and ST for all of the MaSPs after actual massage treatment sessions as well as other physiological effects of massage.

  10. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance.

    PubMed

    Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2009-01-01

    This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.

  11. Anatomical analysis of thumb opponency movement in the capuchin monkey (Sapajus sp).

    PubMed

    Aversi-Ferreira, Roqueline A G M F; Souto Maior, Rafael; Aziz, Ashraf; Ziermann, Janine M; Nishijo, Hisao; Tomaz, Carlos; Tavares, Maria Clotilde H; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    Capuchin monkeys present a wide variety of manipulatory skills and make routine use of tools both in captivity and in the wild. Efficient handling of objects in this genus has led several investigators to assume near-human thumb movements despite the lack of anatomical studies. Here we perform an anatomical analysis of muscles and bones in the capuchin hand. Trapezo-metacarpal joint surfaces observed in capuchins indicate that medial rotation of metacarpal I is either absent or very limited. Overall, bone structural arrangement and thumb position relative to the other digits and the hand's palm suggest that capuchins are unable to perform any kind of thumb opponency, but rather a 'lateral pinch' movement. Although the capuchin hand apparatus bears other features necessary for complex tool use, the lack thumb opposition movements suggests that a developed cognitive and motor nervous system may be even more important for high manipulatory skills than traditionally held.

  12. Anatomical Analysis of Thumb Opponency Movement in the Capuchin Monkey (Sapajus sp)

    PubMed Central

    Aversi-Ferreira, Roqueline A. G. M. F.; Maior, Rafael Souto; Aziz, Ashraf; Ziermann, Janine M.; Nishijo, Hisao; Tomaz, Carlos; Tavares, Maria Clotilde H.; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    Capuchin monkeys present a wide variety of manipulatory skills and make routine use of tools both in captivity and in the wild. Efficient handling of objects in this genus has led several investigators to assume near-human thumb movements despite the lack of anatomical studies. Here we perform an anatomical analysis of muscles and bones in the capuchin hand. Trapezo-metacarpal joint surfaces observed in capuchins indicate that medial rotation of metacarpal I is either absent or very limited. Overall, bone structural arrangement and thumb position relative to the other digits and the hand’s palm suggest that capuchins are unable to perform any kind of thumb opponency, but rather a ‘lateral pinch’ movement. Although the capuchin hand apparatus bears other features necessary for complex tool use, the lack thumb opposition movements suggests that a developed cognitive and motor nervous system may be even more important for high manipulatory skills than traditionally held. PMID:24498307

  13. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T; Cooper, Benjamin J; Kuncic, Zdenka; Keall, Paul J

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan, and was compared to FDK, ASD-POCS, and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS, and

  14. [An anatomical wax of the deep structures of the pelvic limb (by Tramond, 19th century): observation of the tridimensional photographic rotation].

    PubMed

    Cazenoves, A; Le Floch-Prigent, P

    2011-06-01

    Anatomical wax modelling was widely used during the 19(th) century, especially in France and Italy. In Paris, The Tramond house was specialized in the realization of this kind of samples. The sample was placed on two large horizontal marble disks, rotating every 5°. We could then describe the sample, verify its anatomical accuracy and also perform a virtual reconstruction with Quick Time Reality QTVR(®) software. The muscular, nervous and arterial elements were represented. We divided the description in three parts: (1) lumbar, pelvic and femoral; (2) femoro-tibial; and (3) tibio-tarsian. We focused the anatomical description on the sciatic nerve; on the organization of the muscles of the gluteal region and the neurovascular organization; and on arterial segmentation. This sample was getting damaged with time, noticeably the representation of the nerves, which are very thin and so, very fragile. Nowadays, 3D representation of the dissected human body is more common, with new techniques such as plastination (Von Hagen's type), which allows one to preserve all the anatomical elements of the subject. This paper and the realization of the virtual museum also aim to participate in a work memory, which recognize the knowledge of the anatomist of wax makers, their teaching quality remained unequalled as their obvious artistical value. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Correlated gene expression and anatomical communication support synchronized brain activity in the mouse functional connectome.

    PubMed

    Mills, Brian D; Grayson, David S; Shunmugavel, Anandakumar; Miranda-Dominguez, Oscar; Feczko, Eric; Earl, Eric; Neve, Kim; Fair, Damien A

    2018-05-22

    Cognition and behavior depend on synchronized intrinsic brain activity that is organized into functional networks across the brain. Research has investigated how anatomical connectivity both shapes and is shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular properties to drive functional connectivity. Here, we present a novel linear model to explain functional connectivity by integrating systematically obtained measurements of axonal connectivity, gene expression, and resting state functional connectivity MRI in the mouse brain. The model suggests that functional connectivity arises from both anatomical links and inter-areal similarities in gene expression. By estimating these effects, we identify anatomical modules in which correlated gene expression and anatomical connectivity support functional connectivity. Along with providing evidence that not all genes equally contribute to functional connectivity, this research establishes new insights regarding the biological underpinnings of coordinated brain activity measured by BOLD fMRI. SIGNIFICANCE STATEMENT Efforts at characterizing the functional connectome with fMRI have risen exponentially over the last decade. Yet despite this rise, the biological underpinnings of these functional measurements are still largely unknown. The current report begins to fill this void by investigating the molecular underpinnings of the functional connectome through an integration of systematically obtained structural information and gene expression data throughout the rodent brain. We find that both white matter connectivity and similarity in regional gene expression relate to resting state functional connectivity. The current report furthers our understanding of the biological underpinnings of the functional connectome and provides a linear model that can be utilized to streamline preclinical animal studies of disease. Copyright © 2018 the authors.

  16. Anatomical planes: are we teaching accurate surface anatomy?

    PubMed

    Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D

    2012-10-01

    Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.

  17. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  18. Opening wedge and anatomic-specific plates in foot and ankle applications.

    PubMed

    Kluesner, Andrew J; Morris, Jason B

    2011-08-01

    As surgeons continually push to improve techniques and outcomes, anatomic-specific and procedure-specific fixation options are becoming increasingly available. The unique size, shape, and function of the foot provide an ideal framework for the use of anatomic-specific plates. These distinctive plate characteristics range from anatomic contouring and screw placements to incorporated step-offs and wedges. By optimizing support, compression, and stabilization, patients may return to weight bearing and activity sooner, improving outcomes. This article discusses anatomic-specific plates and their use in forefoot and rearfoot surgical procedures. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration.

    PubMed

    Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-10

    Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Joint detection and localization of multiple anatomical landmarks through learning

    NASA Astrophysics Data System (ADS)

    Dikmen, Mert; Zhan, Yiqiang; Zhou, Xiang Sean

    2008-03-01

    Reliable landmark detection in medical images provides the essential groundwork for successful automation of various open problems such as localization, segmentation, and registration of anatomical structures. In this paper, we present a learning-based system to jointly detect (is it there?) and localize (where?) multiple anatomical landmarks in medical images. The contributions of this work exist in two aspects. First, this method takes the advantage from the learning scenario that is able to automatically extract the most distinctive features for multi-landmark detection. Therefore, it is easily adaptable to detect arbitrary landmarks in various kinds of imaging modalities, e.g., CT, MRI and PET. Second, the use of multi-class/cascaded classifier architecture in different phases of the detection stage combined with robust features that are highly efficient in terms of computation time enables a seemingly real time performance, with very high localization accuracy. This method is validated on CT scans of different body sections, e.g., whole body scans, chest scans and abdominal scans. Aside from improved robustness (due to the exploitation of spatial correlations), it gains a run time efficiency in landmark detection. It also shows good scalability performance under increasing number of landmarks.

  1. Choroidal haemangioma and photodynamic therapy. Anatomical and functional response of patients with choroidal hemangioma treated with photodynamic therapy.

    PubMed

    Subirà, O; Brosa, H; Lorenzo-Parra, D; Arias-Barquet, L; Català-Mora, J; Cobos, E; Garcia-Bru, P; Rubio-Caso, M J; Caminal-Mitjana, J M

    2017-06-01

    To study the effectiveness and limitations of photodynamic therapy (PDT) as treatment of choice in patients with symptomatic circumscribed choroidal haemangioma. A retrospective study was conducted on 16 patients (13 men and 3 women, with mean age of 54.88 years) with circumscribed choroidal haemangioma, who attended our centre and were treated with PDT in the last 7 years. All patients had circumscribed choroidal haemangioma, which caused a decrease in visual acuity (VA) secondary to the presence of intraretinal microcystic oedema or neurosensory detachment. The mean initial VA was 0.23, and the final mean VA after performing PDT was 0.38 (all the VA were measured in decimal scale). It should be noted that patients needed a mean of 1.69 PDT sessions. Three of the patients needed rescue treatment with trans-pupillary thermotherapy, intravitreal injection of anti-vascular endothelial growth factor (ranibizumab, aflibercept) or a dexamethasone intravitreal implant (Ozurdex ® ). The indication for a change of treatment was the persistence of intraretinal microcystic oedema and/or neurosensory detachment (or incomplete resolution) after 3 PDT sessions. As overall results, 62.5% of patients evolved into anatomical and functional (increase in AV or stability) resolution. PDT is a straight forward and fast procedure, with a good anatomical and functional response, causing minimal damage to adjacent vessels. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. The Anatomical Institute at the University of Greifswald during National Socialism: The procurement of bodies and their use for anatomical purposes.

    PubMed

    Alvermann, Dirk; Mittenzwei, Jan

    2016-05-01

    This is the first comprehensive account of body procurement at the Anatomical Institute at Greifswald University during National Socialism (NS). As in all other German anatomical departments, the bodies received during this period included increasing numbers of victims of the NS regime. Prior to 1939, 90% of all bodies came from hospitals, state nursing homes and mental institutions (Heil- und Pflegeanstalten), but dropped to less than 30% after 1941. While the total catchment area for body procurement decreased, the number of suppliers increased and included prisons, POW camps, Gestapo offices and military jurisdiction authorities. Among the 432 documented bodies delivered to the institute, 132 came from state nursing homes and mental institutions, mainly from Ueckermünde. These were bodies of persons, who probably were victims of "euthanasia" crimes. The Anatomical Institute also procured 46 bodies of forced laborers, of whom at least twelve had been executed. Other groups of victims included 21 bodies of executed Wehrmacht soldiers and 16 Russian prisoners of war from the camp Stalag II C in Greifswald, who had died of starvation and exhaustion. From 1941 onwards, the number of bodies delivered from prisons and penitentiaries greatly increased. In total, 60 bodies of prisoners, mainly from the penitentiary in Gollnow, were delivered to the Anatomical Institute. Greifswald Anatomical Institute was not just a passive recipient of bodies from all of these sources, but the anatomists actively lobbied with the authorities for an increased body supply for teaching and research purposes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Adjacent-level arthroplasty following cervical fusion.

    PubMed

    Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Konar, Subhas; Sharma, Ankit

    2017-02-01

    OBJECTIVE Adjacent-level disc degeneration following cervical fusion has been well reported. This condition poses a major treatment dilemma when it becomes symptomatic. The potential application of cervical arthroplasty to preserve motion in the affected segment is not well documented, with few studies in the literature. The authors present their initial experience of analyzing clinical and radiological results in such patients who were treated with arthroplasty for new or persistent arm and/or neck symptoms related to neural compression due to adjacent-segment disease after anterior cervical discectomy and fusion (ACDF). METHODS During a 5-year period, 11 patients who had undergone ACDF anterior cervical discectomy and fusion (ACDF) and subsequently developed recurrent neck or arm pain related to adjacent-level cervical disc disease were treated with cervical arthroplasty at the authors' institution. A total of 15 devices were implanted (range of treated levels per patient: 1-3). Clinical evaluation was performed both before and after surgery, using a visual analog scale (VAS) for pain and the Neck Disability Index (NDI). Radiological outcomes were analyzed using pre- and postoperative flexion/extension lateral radiographs measuring Cobb angle (overall C2-7 sagittal alignment), functional spinal unit (FSU) angle, and range of motion (ROM). RESULTS There were no major perioperative complications or device-related failures. Statistically significant results, obtained in all cases, were reflected by an improvement in VAS scores for neck/arm pain and NDI scores for neck pain. Radiologically, statistically significant increases in the overall lordosis (as measured by Cobb angle) and ROM at the treated disc level were observed. Three patients were lost to follow-up within the first year after arthroplasty. In the remaining 8 cases, the duration of follow-up ranged from 1 to 3 years. None of these 8 patients required surgery for the same vertebral level during the follow

  4. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  5. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  6. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  7. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001 ...

  8. Historic surface faulting in continental United States and adjacent parts of Mexico

    USGS Publications Warehouse

    Bonilla, M.G.

    1967-01-01

    This report summarizes geometric aspects of approximately 35 instances of historic faulting of the ground surface in the continental United States and adjacent parts of Mexico. This information is of immediate importance in the selection and evaluation of sites for vital structures such as nuclear power plants. The data are presented in a table and graphs which show the quantitative relations between various aspects of the faulting. Certain items in the table that are uncertain, poorly known, or not in the published literature are briefly described in the text.

  9. Brain growth across the life span in autism: age-specific changes in anatomical pathology.

    PubMed

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2011-03-22

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads

    PubMed Central

    Iwaki, M.; Wickham, S. F.; Ikezaki, K.; Yanagida, T.; Shih, W. M.

    2016-01-01

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes. PMID:27941751

  11. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads.

    PubMed

    Iwaki, M; Wickham, S F; Ikezaki, K; Yanagida, T; Shih, W M

    2016-12-12

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.

  12. Near-field interaction between domain walls in adjacent permalloy nanowires

    NASA Astrophysics Data System (ADS)

    O'Brien, Liam

    2010-03-01

    A domain wall (DW) moving in a ferromagnetic nanowire may interact with the stray field from another DW travelling in an adjacent wire. This could greatly impact the operation of proposed DW based data storage schemes which rely on the controlled propagation of DWs in densely packed nanowires [1, 2]. Here we experimentally study the interaction between two DWs travelling in adjacent Permalloy nanowires [3]. We find that the interaction causes significant pinning, with measured pinning fields of up to 93 Oe (˜5 times the intrinsic pinning field of an isolated wire) for the smallest separations. We present an analysis of the observed pinning field dependence on wire separation in terms of the full magnetostatic charge distribution within a DW. By considering an isolated DW, and accounting for finite temperature, it is possible to fully reproduce the experimentally observed dependence. This suggests that the DW internal structure is not appreciably perturbed by the interaction and so remains rigid, consistent with a finite sized quasi-particle description [4]. The full charge distribution must be considered in understanding these near-field interactions as other models based on simpler descriptions of the charge distribution within the DW, including a point-like distribution, cannot reproduce the observed dependence. Finally, we develop the idea of using localized stray fields to pin a DW and show how specific potential landscapes can be created by tailoring a pinning charge distribution, with the added advantage that neither DW internal structure nor nanowire geometry is appreciably perturbed. [4pt] [1] Allwood, Cowburn et al. Science 309, 1688 (2005) [0pt] [2] S. S. Parkin, Science 320, 190 (2008) [0pt] [3] O'Brien, Cowburn et al. Phys. Rev. Lett. 103, 7, 077206 (2009) [0pt] [4] Saitoh, Miyajima et al. Nature 432, 203 (2004)

  13. Double uterus with obstructed hemivagina and ipsilateral renal agenesis: pelvic anatomic variants in 87 cases.

    PubMed

    Fedele, L; Motta, F; Frontino, G; Restelli, E; Bianchi, S

    2013-06-01

    What are the anatomic variants (and their frequencies) of double uterus, obstructed hemivagina and ipsilateral renal agenesis? Most cases examined (72.4%) were of the classic anatomic variant of the Herlyn-Werner-Wunderlich syndrome (with didelphys uterus, obstructed hemivagina and ipsilateral renal agenesis) but the 27.6% of cases are of a rare variant of the syndrome (with uterus septum or cervical agenesis), showing relevant clinical and surgical implications. The extreme variability of anatomic structures involved in this syndrome (both uterus, cervico-vaginal and renal anomalies) is well known, even if a complete and uniform analysis of all its heterogeneous presentations in a large series is lacking. This is a retrospective study with 87 patients referred to our third level referral center between 1981 and 2011. We analyzed the laparoscopic and chart records of 87 women, who referred to our institute with double uterus, unilateral cervico-vaginal obstruction and ipsilateral renal anomalies. Sixty-three of 87 patients had the more classic variant of didelphys uterus with obstructed hemivagina; 10/87 patients had septate bicollis uterus with obstructed hemivagina; 9/87 patients had bicornuate bicollis uterus with obstructed hemivagina; 4/87 patients had didelphys uterus with unilateral cervical atresia; 1/87 patients had bicornuate uterus with one septate cervix and unilateral obstructed hemivagina. This is a retrospective study with a long enrolling period (30 years). New insights in the anatomic variants of this rare syndrome with their relevant surgical implications.

  14. [Lymphoscintigrams with anatomical landmarks obtained with vector graphics].

    PubMed

    Rubini, Giuseppe; Antonica, Filippo; Renna, Maria Antonia; Ferrari, Cristina; Iuele, Francesca; Stabile Ianora, Antonio Amato; Losco, Matteo; Niccoli Asabella, Artor

    2012-11-01

    Nuclear medicine images are difficult to interpret because they do not include anatomical details. The aim of this study was to obtain lymphoscintigrams with anatomical landmarks that could be easily interpreted by General Physicians. Traditional lymphoscintigrams were processed with Adobe© Photoshop® CS6 and converted into vector images created by Illustrator®. The combination with a silhouette vector improved image interpretation, without resulting in longer radiation exposure or acquisition times.

  15. Early Verb Constructions in French: Adjacency on the Left Edge

    ERIC Educational Resources Information Center

    Veneziano, Edy; Clark, Eve V.

    2016-01-01

    Children acquiring French elaborate their early verb constructions by adding adjacent morphemes incrementally at the left edge of core verbs. This hypothesis was tested with 2657 verb uses from four children between 1;3 and 2;7. Consistent with the Adjacency Hypothesis, children added clitic subjects frst only to present tense forms (as in…

  16. Adjacent bin stability evaluating for feature description

    NASA Astrophysics Data System (ADS)

    Nie, Dongdong; Ma, Qinyong

    2018-04-01

    Recent study improves descriptor performance by accumulating stability votes for all scale pairs to compose the local descriptor. We argue that the stability of a bin depends on the differences across adjacent pairs more than the differences across all scale pairs, and a new local descriptor is composed based on the hypothesis. A series of SIFT descriptors are extracted from multiple scales firstly. Then the difference value of the bin across adjacent scales is calculated, and the stability value of a bin is calculated based on it and accumulated to compose the final descriptor. The performance of the proposed method is evaluated with two popular matching datasets, and compared with other state-of-the-art works. Experimental results show that the proposed method performs satisfactorily.

  17. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    NASA Astrophysics Data System (ADS)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng; Elmhamdi, Abouazza; Su, Jiangtao; Liu, Ying D.; Kordi, Ayman. S.

    2017-08-01

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory. The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observed at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s-1. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.

  18. The Intermingled History of Occupational Therapy and Anatomical Education: A Retrospective Exploration

    ERIC Educational Resources Information Center

    Carroll, Melissa A.; Lawson, Katherine

    2014-01-01

    Few research articles have addressed the anatomical needs of entry-level occupational therapy students. Given this paucity of empirical evidence, there is a lack of knowledge regarding anatomical education in occupational therapy. This article will primarily serve as a retrospective look at the inclusion of anatomical education in the occupational…

  19. Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study.

    PubMed

    Balius, Ramon; Susín, Antonio; Morros, Carles; Pujol, Montse; Pérez-Cuenca, Dolores; Sala-Blanch, Xavier

    2018-06-01

    To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Sonographic examination (high-resolution ultrasound machine at 5.0-14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.

  20. Lateral Intercondylar Ridge: Is it a reliable landmark for femoral ACL insertion?: An anatomical study.

    PubMed

    Bhattacharyya, Rahul; Ker, Andrew; Fogg, Quentin; Spencer, Simon J; Joseph, Jibu

    2018-02-01

    Incorrect femoral tunnel placement is the most common cause of graft failure during Anterior Cruciate Ligament (ACL) Reconstruction. A reliable landmark can minimize errors. To identify whether the Lateral Intercondylar Ridge (LIR) is a consistent anatomical structure and define its relationship with the femoral ACL insertion. Phase 1: we studied 23 femoral dry bone specimens macroscopically. Using a digital microscribe, the medial surface of the lateral femoral condyle was reconstructed (3D) to evaluate whether there was an identifiable bony ridge. Phase 2: 7 cadaveric specimens with intact soft tissues were dissected to identify the femoral ACL insertion. A 3D reconstruction of the femoral ACL insertion and the surface allowed us to define the relationship between the LIR and the ACL insertion. All specimens had a defined LIR on the medial surface of the lateral femoral condyle. The ridge was consistently located just anterior to the femoral ACL insertion. The ACL footprint was present in the depression between the ridge and the Inferior Articular Cartilage Margin (IACM). The mean distance from the midpoint of the IACM to the LIR was 10.1 mm. This is the first study to use the microscribe to digitally reconstruct the medial surface of the lateral femoral condyle. It shows that the LIR is a consistent anatomical structure that defines the anterior margin of the femoral ACL insertion, which guides femoral tunnel placement. Our findings support the ruler technique, which is a commonly used method for anatomic single bundle ACL reconstruction. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Complex vestibular macular anatomical relationships need a synthetic approach

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    2001-01-01

    Mammalian vestibular maculae are anatomically organized for complex parallel processing of linear acceleration information. Anatomical findings in rat maculae are provided in order to underscore this complexity, which is little understood functionally. This report emphasizes that a synthetic approach is critical to understanding how maculae function and the kind of information they conduct to the brain.

  2. Objectifying the Adjacent and Opposite Angles: A Cultural Historical Analysis

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Musallam, Nadera

    2018-01-01

    The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles'…

  3. Body shape transformation along a shared axis of anatomical evolution in labyrinth fishes (Anabantoidei).

    PubMed

    Collar, David C; Quintero, Michelle; Buttler, Bernardo; Ward, Andrea B; Mehta, Rita S

    2016-03-01

    Major morphological transformations, such as the evolution of elongate body shape in vertebrates, punctuate evolutionary history. A fundamental step in understanding the processes that give rise to such transformations is identification of the underlying anatomical changes. But as we demonstrate in this study, important insights can also be gained by comparing these changes to those that occur in ancestral and closely related lineages. In labyrinth fishes (Anabantoidei), rapid evolution of a highly derived torpedo-shaped body in the common ancestor of the pikehead (Luciocephalus aura and L. pulcher) occurred primarily through exceptional elongation of the head, with secondary contributions involving reduction in body depth and lengthening of the precaudal vertebral region. This combination of changes aligns closely with the primary axis of anatomical diversification in other anabantoids, revealing that pikehead evolution involved extraordinarily rapid change in structures that were ancestrally labile. Finer-scale examination of the anatomical components that determine head elongation also shows alignment between the pikehead evolutionary trajectory and the primary axis of cranial diversification in anabantoids, with much higher evolutionary rates leading to the pikehead. Altogether, our results show major morphological transformation stemming from extreme change along a shared morphological axis in labyrinth fishes. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. From chalkboard, slides, and paper to e-learning: How computing technologies have transformed anatomical sciences education.

    PubMed

    Trelease, Robert B

    2016-11-01

    Until the late-twentieth century, primary anatomical sciences education was relatively unenhanced by advanced technology and dependent on the mainstays of printed textbooks, chalkboard- and photographic projection-based classroom lectures, and cadaver dissection laboratories. But over the past three decades, diffusion of innovations in computer technology transformed the practices of anatomical education and research, along with other aspects of work and daily life. Increasing adoption of first-generation personal computers (PCs) in the 1980s paved the way for the first practical educational applications, and visionary anatomists foresaw the usefulness of computers for teaching. While early computers lacked high-resolution graphics capabilities and interactive user interfaces, applications with video discs demonstrated the practicality of programming digital multimedia linking descriptive text with anatomical imaging. Desktop publishing established that computers could be used for producing enhanced lecture notes, and commercial presentation software made it possible to give lectures using anatomical and medical imaging, as well as animations. Concurrently, computer processing supported the deployment of medical imaging modalities, including computed tomography, magnetic resonance imaging, and ultrasound, that were subsequently integrated into anatomy instruction. Following its public birth in the mid-1990s, the World Wide Web became the ubiquitous multimedia networking technology underlying the conduct of contemporary education and research. Digital video, structural simulations, and mobile devices have been more recently applied to education. Progressive implementation of computer-based learning methods interacted with waves of ongoing curricular change, and such technologies have been deemed crucial for continuing medical education reforms, providing new challenges and opportunities for anatomical sciences educators. Anat Sci Educ 9: 583-602. © 2016 American

  5. Frequency in Usage of FCAT-Approved Anatomical Terms by North American Anatomists

    ERIC Educational Resources Information Center

    Martin, Bradford D.; Thorpe, Donna; Barnes, Richard; DeLeon, Michael; Hill, Douglas

    2009-01-01

    It has been 10 years since the Federative Committee on Anatomical Terminology (FCAT) published Terminologia Anatomica (TA), the current authority on anatomical nomenclature. There exists a perceived lack of unity among anatomists to adopt many FCAT recommended anatomical terms in TA. An e-mail survey was sent to members of the American Association…

  6. The Computerized Anatomical Man (CAM) model

    NASA Technical Reports Server (NTRS)

    Billings, M. P.; Yucker, W. R.

    1973-01-01

    A computerized anatomical man (CAM) model, representing the most detailed and anatomically correct geometrical model of the human body yet prepared, has been developed for use in analyzing radiation dose distribution in man. This model of a 50-percentile standing USAF man comprises some 1100 unique geometric surfaces and some 2450 solid regions. Internal body geometry such as organs, voids, bones, and bone marrow are explicitly modeled. A computer program called CAMERA has also been developed for performing analyses with the model. Such analyses include tracing rays through the CAM geometry, placing results on magnetic tape in various forms, collapsing areal density data from ray tracing information to areal density distributions, preparing cross section views, etc. Numerous computer drawn cross sections through the CAM model are presented.

  7. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system

    PubMed Central

    van Ee, Benjamin W.; Riina, Ricarda; Berry, Paul E.; Wiedenhoeft, Alex C.

    2017-01-01

    Abstract Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Key Results Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton, and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton. Conclusions Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton. Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. PMID:28065919

  8. The Volpe Center GPS Adjacent Band Compatibility Program Plan : GPS Adjacent Band Compatibility Workshop, Volpe Center, Cambridge MA

    DOT National Transportation Integrated Search

    2014-09-18

    Approach to DOT GPS Adjacent Band Compatibility Assessment. Identify forums and provide public outreach to make sure the progress and work are as open and transparent as possible. Develop an implementation plan that incorporates aspects from the DOT ...

  9. The intermingled history of occupational therapy and anatomical education: A retrospective exploration.

    PubMed

    Carroll, Melissa A; Lawson, Katherine

    2014-01-01

    Few research articles have addressed the anatomical needs of entry-level occupational therapy students. Given this paucity of empirical evidence, there is a lack of knowledge regarding anatomical education in occupational therapy. This article will primarily serve as a retrospective look at the inclusion of anatomical education in the occupational therapy curriculum. Focusing on the historical inclusion is the first step to address the gap in existing knowledge. Examining the history of anatomy in occupational therapy provides an educational context for curricular developments and helps current anatomical educators understand the evolution of occupational therapy as a profession. Exploring the educational history also offers anatomy educators an identity, as significant contributors, in the training and preparedness of entry-level professionals while focusing on the ideals of occupational therapy. However, there is a critical need for empirical evidence of best teaching practices in occupational therapy and anatomical education. This manuscript provides a foundation and a starting point for further investigation into the anatomical competencies for entry-level occupational therapists. © 2014 American Association of Anatomists.

  10. Giovanni Battista Morgagni (1682-1771): his anatomic majesty's contributions to the neurosciences.

    PubMed

    Tubbs, R Shane; Steck, Dominik T; Mortazavi, Martin M; Shoja, Mohammadali M; Loukas, Marios; Cohen-Gadol, Aaron A

    2012-07-01

    Giovanni Battista Morgagni is considered the Father of Pathology and contributed much to our early understanding of neuropathology. For example, he introduced the concept that diagnosis, prognosis, and treatment of disease must be based on an exact understanding of the pathologic changes in anatomic structures. Additionally, he contributed to what would become the discipline of neurosurgery and, for example, performed trepanation for head trauma. It is the contributions of such early pioneers as Morgagni that our current understanding of the neurosciences is based.

  11. The Anatomical Computer (CD-ROM).

    ERIC Educational Resources Information Center

    Duhrkopf, Richard

    1996-01-01

    Describes the Anatomical Computer (CD-ROM) that was designed as a self-study aid for undergraduate and graduate students in anatomy. Provides text with illustrations, definitions along with summary charts, and more than a thousand test questions. Provides a valuable resource for human gross anatomy review. (JRH)

  12. Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee.

    PubMed

    Ramakrishnan, Tyagi; Schlafly, Millicent; Reed, Kyle B

    2017-07-01

    This case study compares a transfemoral amputee's gait while using the existing Ossur Total Knee 2000 and our novel 3D printed anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee is 3D printed out of a carbon-fiber and nylon composite that has a gear-mesh coupling with a hard-stop weight-actuated locking mechanism aided by a cross-linked four-bar spring mechanism. This design can be scaled using anatomical dimensions of a human femur and tibia to have a unique fit for each user. The transfemoral amputee who was tested is high functioning and walked on the Computer Assisted Rehabilitation Environment (CAREN) at a self-selected pace. The motion capture and force data that was collected showed that there were distinct differences in the gait dynamics. The data was used to perform the Combined Gait Asymmetry Metric (CGAM), where the scores revealed that the overall asymmetry of the gait on the Ossur Total Knee was more asymmetric than the anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee had higher peak knee flexion that caused a large step time asymmetry. This made walking on the anatomically scalable transfemoral prosthetic knee more strenuous due to the compensatory movements in adapting to the different dynamics. This can be overcome by tuning the cross-linked spring mechanism to emulate the dynamics of the subject better. The subject stated that the knee would be good for daily use and has the potential to be adapted as a running knee.

  13. Surgical anatomy and morphologic variations of umbilical structures.

    PubMed

    Fathi, Amir H; Soltanian, Hooman; Saber, Alan A

    2012-05-01

    The umbilicus is the main access route to the abdominal cavity in laparoscopic surgeries. However, its anatomical configuration is rarely studied in the surgical and anatomical literature. With introduction of laparoendoscopic single-site surgery and considering the significant number of primary and postoperative umbilical hernias, we felt the necessity to comprehensively study the umbilical structures and analyze their protective function against hernias. Twenty-four embalmed cadavers were studied in the anatomy laboratory of Case Western Reserve University. Round hepatic, median and medial ligaments, umbilical ring, umbilical and umbilicovesicular fasciae, and pattern of attachment to the ring were dissected and measured. Mean age was 82.1 years, ranging between 56 and 96 years, with a male-to-female ratio of 1.4:1. Ninety-two per cent was white and 8 per cent black adults. According to shape and attachment pattern of ligaments, umbilical ring is classified into five types. Hernia incidence was 25 per cent. All hernia cases lacked the umbilical fascia and the round hepatic ligament was not attached to the inferior border of the ring. The umbilical ring and its morphologic relation with adjacent ligaments are described and classified into five types. In contrary to sparse existing literature, we propose that umbilical fascia is continuation and condensation of umbilicovesicular rather than transversalis fascia. It was absent in cadavers forming conjoined median and medial ligaments with a single insertion site to the ring. Round ligament insertion to the inferior border of the ring provides another protective factor. These two protective measures were absent in all the observed umbilical hernias.

  14. Do Mangroves Subsidize Carbon to Adjacent Mudflat Fish Communities?

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Hartmann, J.; Staubwasser, M.; Hernandez, M. F.; West, L.; Midway, S. R.; Polito, M. J.

    2017-12-01

    Mangroves are often implicated as energetic sources for fisheries productivity. However, the validity of this connection still remains in contention. Stable isotopes may provide answers by tracking the use of specific basal carbon sources in fish and invertebrates living in mangrove-mudflat habitat mosaics. We analyzed 307 consumer samples representing n=44 fish and invertebrate species collected from mangrove forest creeks and adjacent mudflats in coastal Tanzania using bulk carbon and nitrogen stable isotope analysis. Given the proposed high productivity of mangrove habitats, we hypothesize that mudflat communities will have carbon stable isotope values similar to mangrove communities either through the flux of mangrove carbon into adjacent mudflats and/or via the movement of mudflat fish communities into and out of mangrove habitats. Alternatively, mangrove carbon is often refractory, which may result in mudflat communities with isotopic values that differ from those found in adjacent mangrove communities. This scenario would suggest limited carbon flow between mudflat and mangrove food webs and that the movement of fish into and out of mangrove habitats is related to shelter from predation more than feeding. Data analysis is ongoing to test these competing hypotheses. By understanding the contribution of mangrove carbon to adjacent habitats, managers in Tanzania can make better informed decisions regarding the protection of mangroves and the local fisheries, which are a crucial source of income and food.

  15. Adjacent-Categories Mokken Models for Rater-Mediated Assessments

    PubMed Central

    Wind, Stefanie A.

    2016-01-01

    Molenaar extended Mokken’s original probabilistic-nonparametric scaling models for use with polytomous data. These polytomous extensions of Mokken’s original scaling procedure have facilitated the use of Mokken scale analysis as an approach to exploring fundamental measurement properties across a variety of domains in which polytomous ratings are used, including rater-mediated educational assessments. Because their underlying item step response functions (i.e., category response functions) are defined using cumulative probabilities, polytomous Mokken models can be classified as cumulative models based on the classifications of polytomous item response theory models proposed by several scholars. In order to permit a closer conceptual alignment with educational performance assessments, this study presents an adjacent-categories variation on the polytomous monotone homogeneity and double monotonicity models. Data from a large-scale rater-mediated writing assessment are used to illustrate the adjacent-categories approach, and results are compared with the original formulations. Major findings suggest that the adjacent-categories models provide additional diagnostic information related to individual raters’ use of rating scale categories that is not observed under the original formulation. Implications are discussed in terms of methods for evaluating rating quality. PMID:29795916

  16. Defining the essential anatomical coverage provided by military body armour against high energy projectiles.

    PubMed

    Breeze, John; Lewis, E A; Fryer, R; Hepper, A E; Mahoney, Peter F; Clasper, Jon C

    2016-08-01

    Body armour is a type of equipment worn by military personnel that aims to prevent or reduce the damage caused by ballistic projectiles to structures within the thorax and abdomen. Such injuries remain the leading cause of potentially survivable deaths on the modern battlefield. Recent developments in computer modelling in conjunction with a programme to procure the next generation of UK military body armour has provided the impetus to re-evaluate the optimal anatomical coverage provided by military body armour against high energy projectiles. A systematic review of the literature was undertaken to identify those anatomical structures within the thorax and abdomen that if damaged were highly likely to result in death or significant long-term morbidity. These structures were superimposed upon two designs of ceramic plate used within representative body armour systems using a computerised representation of human anatomy. Those structures requiring essential medical coverage by a plate were demonstrated to be the heart, great vessels, liver and spleen. For the 50th centile male anthropometric model used in this study, the front and rear plates from the Enhanced Combat Body Armour system only provide limited coverage, but do fulfil their original requirement. The plates from the current Mark 4a OSPREY system cover all of the structures identified in this study as requiring coverage except for the abdominal sections of the aorta and inferior vena cava. Further work on sizing of plates is recommended due to its potential to optimise essential medical coverage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Computerized detection of unruptured aneurysms in MRA images: reduction of false positives using anatomical location features

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Gao, Xin; Hara, Takeshi; Fujita, Hiroshi; Ando, Hiromichi; Yamakawa, Hiroyasu; Asano, Takahiko; Kato, Hiroki; Iwama, Toru; Kanematsu, Masayuki; Hoshi, Hiroaki

    2008-03-01

    The detection of unruptured aneurysms is a major subject in magnetic resonance angiography (MRA). However, their accurate detection is often difficult because of the overlapping between the aneurysm and the adjacent vessels on maximum intensity projection images. The purpose of this study is to develop a computerized method for the detection of unruptured aneurysms in order to assist radiologists in image interpretation. The vessel regions were first segmented using gray-level thresholding and a region growing technique. The gradient concentration (GC) filter was then employed for the enhancement of the aneurysms. The initial candidates were identified in the GC image using a gray-level threshold. For the elimination of false positives (FPs), we determined shape features and an anatomical location feature. Finally, rule-based schemes and quadratic discriminant analysis were employed along with these features for distinguishing between the aneurysms and the FPs. The sensitivity for the detection of unruptured aneurysms was 90.0% with 1.52 FPs per patient. Our computerized scheme can be useful in assisting the radiologists in the detection of unruptured aneurysms in MRA images.

  18. Deep sleep divides the cortex into opposite modes of anatomical-functional coupling.

    PubMed

    Tagliazucchi, Enzo; Crossley, Nicolas; Bullmore, Edward T; Laufs, Helmut

    2016-11-01

    The coupling of anatomical and functional connectivity at rest suggests that anatomy is essential for wake-typical activity patterns. Here, we study the development of this coupling from wakefulness to deep sleep. Globally, similarity between whole-brain anatomical and functional connectivity networks increased during deep sleep. Regionally, we found differential coupling: during sleep, functional connectivity of primary cortices resembled more the underlying anatomical connectivity, while we observed the opposite in associative cortices. Increased anatomical-functional similarity in sensory areas is consistent with their stereotypical, cross-modal response to the environment during sleep. In distinction, looser coupling-relative to wakeful rest-in higher order integrative cortices suggests that sleep actively disrupts default patterns of functional connectivity in regions essential for the conscious access of information and that anatomical connectivity acts as an anchor for the restoration of their functionality upon awakening.

  19. Surgical reconstruction of pelvic floor descent: anatomic and functional aspects.

    PubMed

    Wagenlehner, F M E; Bschleipfer, T; Liedl, B; Gunnemann, A; Petros, P; Weidner, W

    2010-01-01

    The human pelvic floor is a complex structure and pelvic floor dysfunction is seen frequently in females. This review focuses on the surgical reconstruction of the pelvic floor employing recent findings on functional anatomy. A selective literature research was performed by the authors. Pelvic floor activity is regulated by 3 main muscular forces that are responsible for vaginal tension and suspension of the pelvic floor organs, bladder and rectum. A variety of symptoms can derive from pelvic floor dysfunctions, such as urinary urge and stress incontinence, abnormal bladder emptying, fecal incontinence, obstructive bowel disease syndrome and pelvic pain. These symptoms mainly derive, for different reasons, from laxity in the vagina or its supporting ligaments as a result of altered connective tissue. Pelvic floor reconstruction is nowadays driven by the concept that in case of pelvic floor symptoms, restoration of the anatomy will translate into restoration of the physiology and ultimately improve patients' symptoms. The surgical reconstruction of the anatomy is almost exclusively focused on the restoration of the lax pelvic floor ligaments. Exact preoperative identification of the anatomical lesions is necessary to allow for exact anatomical reconstruction with respect to the muscular forces of the pelvic floor. Copyright 2010 S. Karger AG, Basel.

  20. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    NASA Astrophysics Data System (ADS)

    Hackett, Matthew; Proctor, Michael

    2016-08-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.

  1. Neuroplasticity as a function of second language learning: anatomical changes in the human brain.

    PubMed

    Li, Ping; Legault, Jennifer; Litcofsky, Kaitlyn A

    2014-09-01

    The brain has an extraordinary ability to functionally and physically change or reconfigure its structure in response to environmental stimulus, cognitive demand, or behavioral experience. This property, known as neuroplasticity, has been examined extensively in many domains. But how does neuroplasticity occur in the brain as a function of an individual's experience with a second language? It is not until recently that we have gained some understanding of this question by examining the anatomical changes as well as functional neural patterns that are induced by the learning and use of multiple languages. In this article we review emerging evidence regarding how structural neuroplasticity occurs in the brain as a result of one's bilingual experience. Our review aims at identifying the processes and mechanisms that drive experience-dependent anatomical changes, and integrating structural imaging evidence with current knowledge of functional neural plasticity of language and other cognitive skills. The evidence reviewed so far portrays a picture that is highly consistent with structural neuroplasticity observed for other domains: second language experience-induced brain changes, including increased gray matter (GM) density and white matter (WM) integrity, can be found in children, young adults, and the elderly; can occur rapidly with short-term language learning or training; and are sensitive to age, age of acquisition, proficiency or performance level, language-specific characteristics, and individual differences. We conclude with a theoretical perspective on neuroplasticity in language and bilingualism, and point to future directions for research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Brain anatomical networks in world class gymnasts: a DTI tractography study.

    PubMed

    Wang, Bin; Fan, Yuanyuan; Lu, Min; Li, Shumei; Song, Zheng; Peng, Xiaoling; Zhang, Ruibin; Lin, Qixiang; He, Yong; Wang, Jun; Huang, Ruiwang

    2013-01-15

    The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely control their movements and wonder how the brain structure and function of these elite athletes differ from those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and fourteen matched controls, constructed their anatomical networks, and calculated the topological properties of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges with increased connection density in the champions were linked to brain regions that are located in the sensorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly greater global and local efficiency but shorter characteristic path length in the anatomical networks of the champions compared with the controls. Moreover, in the champions we found a significantly higher nodal degree and greater regional efficiency in several brain regions that correspond to motor and attention functions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and temporal lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatomical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to explain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms that distinguish expert gymnasts from novices. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Anatomical predisposing factors of transmural thermal injury after pulmonary vein isolation.

    PubMed

    Kaneshiro, Takashi; Matsumoto, Yoshiyuki; Nodera, Minoru; Kamioka, Masashi; Kamiyama, Yoshiyuki; Yoshihisa, Akiomi; Ohkawara, Hiroshi; Suzuki, Hitoshi; Takeishi, Yasuchika

    2017-06-12

    Transmural thermal injury (TTI), such as oesophageal erosion/ulcer and perioesophageal nerve injury leading to gastric hypomotility, is an important complication associated with pulmonary vein isolation (PVI). However, a predictor of TTI concerning anatomical structures surrounding the oesophagus has not yet been fully elucidated. Therefore, we sought to identify the predisposing factors of TTI after PVI. Consecutive 110 patients, who underwent PVI for atrial fibrillation, received oesophagogastroduodenoscopy 2 days later, were investigated. The relationships between TTI and clinical and anatomical parameters were examined. Based on the computed tomography data, we measured the angle of the left atrial (LA) posterior wall to the descending aorta (Ao) (LA-Ao angle), the branching angle of the left inferior pulmonary vein (LIPV) to the coronal plane (LIPV angle), and the minimum distance between the LA posterior wall and descending Ao enclosing the oesophagus (LA-Ao distance). Transmural thermal injuries occurred in 21 patients (oesophageal erosion in 5 and gastric hypomotility in 16). Age, gender, body mass index, LA diameter, and LA volume index in echocardiography were not associated with TTI. However, the LIPV angle was larger and the LA-Ao distance was shorter in the TTI (+) group compared to the TTI (-) group. With multivariate logistic regression analysis, the LIPV angle [odds ratio (OR): 2.144, P = 0.0031] and LA-Ao distance (OR: 0.392, P = 0.0229) were independent predictors of TTI. The anatomical proximities of the LA posterior wall, LIPV, and descending Ao surrounding the oesophagus are strongly associated with the prevalence of TTI. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  4. [The anatomical revolution and the transition of anatomical conception in late imperial china].

    PubMed

    Sihn, Kyu Hwan

    2012-04-30

    This paper aimed to examine the anatomical revolution from Yilingaicuo (Correcting the Errors of Medicine) and Quantixinlun(Outline of Anatomy and Physiology) in late imperial China. As the cephalocentrism which the brain superintend human operation of the mind was diffused in China since 16th century, the cephalocentrism and the cardiocentrism had competed for the hegemony of anatomical conception. Because of the advent of Yilingaicuo and Quantixinlun, the cephalocentrism became the main stream in the anatomical conception. The supporters of the Wang Yangming's Xinxue(the Learning of Heart and Mind) argued that the heart was the central organ of perception, sensitivity, and morality of the human body in medicine since 16th century. Even reformist and revolutionary intellectuals like Tan sitong and Mao zedong who had supported the Wang Yangming's Xinxue embraced the cephalocentrism in the late 19th century and the early 20th century. May Fourth intellectuals had not obsessed metaphysical interpretation of human body any more in the New Culture Movement in 1910s. They regarded human body as the object of research and writing. The anatomy was transformed into the instrumental knowledge for mutilation of the body. Yilingaicuo challenged the traditional conception of body, and Chinese intellectuals drew interest in the anatomy knowledge based on real mutilation. Quantixinlun based on Western medicine fueled a controversy about anatomy. Though new knowledge of anatomy was criticized by traditional Chinese medical doctors from the usefulness and morality of anatomy, nobody disavowed new knowledge of anatomy from the institutionalization of Western medicine in medical school. The internal development of cephalocentrism and positivism had influence on anatomy in China since 16th century. The advent of Yilingaicuo and Quantixinlun provided the milestone of new anatomy, though both sides represented traditional Chinese medicine and Western medicine respectively. They

  5. Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2017-02-01

    We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image segmentation on a number of 2D-slices from different image orientations, and (2) using "convolution" and "deconvolution" networks to achieve the conventional "coarse recognition" and "fine extraction" functions which were integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly (pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and usefulness of proposed improvement for CT image segmentations were confirmed.

  6. Benthic meiofaunal composition and community structure in the Sethukuda mangrove area and adjacent open sea, East coast of India

    NASA Astrophysics Data System (ADS)

    Thilagavathi, Balasubramanaian; Das, Bandana; Saravanakumar, Ayyappan; Raja, Kuzhanthaivel

    2011-06-01

    The ecological aspects of meiofaunal communities in the Muthupettai mangrove forest, East coast of India, has not been investigated in the last two decades. Surface water temperature ranged from 23.5 °C to 31.8 °C. Salinity varied from 24 to 34 ppt, while water pH fluctuated from 7.4 to 8.3. Dissolved oxygen concentration ranged from 3.86 to 5.33 mg/l. Meiofauna analysis in this study identified a total of 106 species from the mangrove and adjacent open sea area of Sethukuda. Among these, 56 species of foraminiferans, 20 species of nematodes, 7 species of harpacticoid copepods, 4 species of ostrocodes, and 2 species of rotifers were identified. Furthermore, a single species was identified from the following groups: ciliophora, cnidaria, gnathostomulida, insecta, propulida, bryozoa and polychaete larvae. Meiofaunal density varied between 12029 to 23493 individuals 10 cm/m2. The diversity index ranged from 3.515 to 3.680, species richness index varied from 6.384 to 8.497, and evenness index varied from 0.839 to 0876 in the mangrove area and adjacent open sea.

  7. Contemporary Tools and Techniques for Substrate Ablation of Ventricular Tachycardia in Structural Heart Disease.

    PubMed

    Hutchinson, Mathew D; Garza, Hyon-He K

    2018-02-24

    As we have witnessed in other arenas of catheter-based therapeutics, ventricular tachycardia (VT) ablation has become increasingly anatomical in its execution. Multi-modality imaging provides anatomical detail in substrate characterization, which is often complex in nonischemic cardiomyopathy patients. Patients with intramural, intraseptal, and epicardial substrates provide challenges in delivering effective ablation to the critical arrhythmia substrate due to the depth of origin or the presence of adjacent critical structures. Novel ablation techniques such as simultaneous unipolar or bipolar ablation can be useful to achieve greater lesion depth, though at the expense of increasing collateral damage. Disruptive technologies like stereotactic radioablation may provide a tailored approach to these complex patients while minimizing procedural risk. Substrate ablation is a cornerstone of the contemporary VT ablation procedure, and recent data suggest that it is as effective and more efficient that conventional activation guided ablation. A number of specific targets and techniques for substrate ablation have been described, and all have shown a fairly high success in achieving their acute procedural endpoint. Substrate ablation also provides a novel and reproducible procedural endpoint, which may add predictive value for VT recurrence beyond conventional programmed stimulation. Extrapolation of outcome data to nonischemic phenotypes requires caution given both the variability in substrate nonischemic distribution and the underrepresentation of these patients in previous trials.

  8. Galen and his anatomic eponym: vein of Galen.

    PubMed

    Ustun, Cagatay

    2004-09-01

    Galen or Galenus was born at Pergamum (now Bergama in Turkey) in 129 A.D., and died in the year 200 A.D. He was a 2nd century Greek philosopher-physician who switched to the medical profession after his father dreamt of this calling for his son. Galen's training and experiences brought him to Alexandria and Rome and he rose quickly to fame with public demonstrations of anatomical and surgical skills. He became physician to emperor Marcus Aurelius and the emperor's ambitious son, Commodus. He wrote prodigiously and was able to preserve his medical research in 22 volumes of printed text, representing half of all Greek medical literature that is available to us today. The structures, the great cerebral vein and the communicating branch of the internal laryngeal nerve, bear his eponym.

  9. A reusable anatomically segmented digital mannequin for public health communication.

    PubMed

    Fujieda, Kaori; Okubo, Kosaku

    2016-01-01

    The ongoing development of world wide web technologies has facilitated a change in health communication, which has now become bi-directional and encompasses people with diverse backgrounds. To enable an even greater role for medical illustrations, a data set, BodyParts3D, has been generated and its data set can be used by anyone to create and exchange customised three-dimensional (3D) anatomical images. BP3D comprises more than 3000 3D object files created by segmenting a digital mannequin in accordance with anatomical naming conventions. This paper describes the methodologies and features used to generate an anatomically correct male mannequin.

  10. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

    PubMed

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-06-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

  11. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory . The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observedmore » at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s{sup −1}. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.« less

  12. Sinonasal anatomical variations: their relationship with chronic rhinosinusitis and effect on the severity of disease-a computerized tomography assisted anatomical and clinical study.

    PubMed

    Kaygusuz, Ahmet; Haksever, Mehmet; Akduman, Davut; Aslan, Sündüs; Sayar, Zeynep

    2014-09-01

    The anatomy of the sinonasal area has a very wide rage of anatomical variations. The significance of these anatomical variations in pathogenesis of rhinosinusitis, which is the commonest disease in the region, is still unclear. The aims of the study were to compare the rate of sinonasal anatomical variations with development and severity of chronic rhinosinusitis patients. CT scan of paranasal sinuses images of 99 individuals were retrospectively reviewed. 65 cases of chronic rhinosinusitis (study group) who had undergone endoscopic sinus surgery were compared with 34 cases without chronic rhinosinusitis (control group). Also in study group Lund-Mackay score of the sinus disease were calculated and compared to the rate of related anatomical variations. There were 74 (74.7 %) males and 25 (25.2 %) females with ages ranging from 13 to 70 years (mean 32.2 years). The anatomical variations recorded were: Septal deviation 47 (72.3) in study and 25 (73.5 %) in control group, concha bullosa 27 (41.5 %) in study and 18 (52.9 %) in control group, overpneumatized ethmoid bulla 17 (26.1 %) in study and 14 (41.1 %) in control group, pneumatized uncinate 3 (4.6 %) in study and 3 (8.8 %) in control group, agger nasi 42 (64.6 %) in study and 19 (55.8 %) in control group, paradoxical middle turbinates 9 (13.8 %) in study and 4 (11.7 %) in control group, Onodi cell 6 (9.2 %) in study and 2 (5.8 %) in control group, Haller's cells (infraorbital ethmoid cell) 9 (13.8 %) in study and 7 (20.5 %) in control group. None of these results were statistically significant between study and control group (p > 0.05). Lund-Mackay score (which was assumed to show the severity of the disease) of the maxillary, ethmoid and frontal sinus were calculated and compared to rate of septal deviation, concha bullosa, agger nasi cells. No significant correlation was conducted (p > 0.05). The results of study showed no statistically significant correlation between sinonasal anatomical

  13. Anatomical and functional assemblies of brain BOLD oscillations

    PubMed Central

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  14. Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering

    PubMed Central

    Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai

    2015-01-01

    Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839

  15. Posterior inferior cerebellar artery aneurysms: Anatomical variations and surgical strategies

    PubMed Central

    Singh, Rohit K.; Behari, Sanjay; Kumar, Vijendra; Jaiswal, Awadhesh K.; Jain, Vijendra K.

    2012-01-01

    Context: Posterior inferior cerebellar artery (PICA) aneurysms are associated with multiple anatomical variations of the parent vessel. Complexities in their surgical clipping relate to narrow corridors limited by brain-stem, petrous-occipital bones, and multiple neurovascular structures occupying the cerebellomedullary and cerebellopontine cisterns. Aims: The present study focuses on surgical considerations during clipping of saccular PICA aneurysms. Setting and Design: Tertiary care, retrospective study. Materials and Methods: In 20 patients with PICA aneurysms, CT angiogram/digital substraction angiogram was used to correlate the site and anatomical variations of aneurysms located on different segments of PICA with the approach selected, the difficulties encountered and the final outcome. Statistical Analysis: Comparison of means and percentages. Results: Aneurysms were located on PICA at: vertebral artery/basilar artery (VA/BA)-PICA (n=5); anterior medullary (n=4); lateral medullary (n=3); tonsillomedullary (n=4); and, telovelotonsillar (n=4) segments. The Hunt and Hess grade distribution was I in 15; II in 2; and, III in 3 patients (mean ictus-surgery interval: 23.5 days; range: 3-150 days). Eight patients had hydrocephalus. Anatomical variations included giant, thrombosed aneurysms; 2 PICA aneurysms proximal to an arteriovenous malformation; bilobed or multiple aneurysms; low PICA situated at the foramen magnum with a hypoplastic VA; and fenestrated PICA. The approaches included a retromastoid suboccipital craniectomy (n=9); midline suboccipital craniectomy (n=6); and far-lateral approach (n=5). At a follow-up (range 6 months-2.5 years), 13 patients had no deficits (modified Rankin score (mRS) 0); 2 were symptomatic with no significant disability (mRS1); 1 had mild disability (mRS2); 1 had moderately severe disability (mRS4); and 3 died (mRS6). Three mortalities were caused by vasospasm (2) and, rupture of unclipped second VA-BA junctional aneurysm (1

  16. Pregnancy outcomes among patients with recurrent pregnancy loss and uterine anatomic abnormalities.

    PubMed

    Gabbai, Daniel; Harlev, Avi; Friger, Michael; Steiner, Naama; Sergienko, Ruslan; Kreinin, Andrey; Bashiri, Asher

    2017-07-25

    Different etiologies for recurrent pregnancy loss have been identified, among them are: anatomical, endocrine, genetic, chromosomal and thrombophilia pathologies. To assess medical and obstetric characteristics, and pregnancy outcomes, among women with uterine abnormalities and recurrent pregnancy loss (RPL). This study also aims to assess the impact of uterine anatomic surgical correction on pregnancy outcomes. A retrospective case control study of 313 patients with two or more consecutive pregnancy losses followed by a subsequent (index) pregnancy. Anatomic abnormalities were detected in 80 patients. All patients were evaluated and treated in the RPL clinic at Soroka University Medical Center. Out of 80 patients with uterine anatomic abnormalities, 19 underwent surgical correction, 32 did not and 29 had no clear record of surgical intervention, and thus were excluded from this study. Women with anatomic abnormalities had a higher rate of previous cesarean section (18.8% vs. 8.6%, P=0.022), tended to have a lower number of previous live births (1.05 vs. 1.37, P=0.07), and a higher rate of preterm delivery (22.9% vs. 10%, P=0.037). Using multivariate logistic regression analysis, anatomic abnormality was identified as an independent risk factor for RPL in patients with previous cesarean section after controlling for place of residence, positive genetic/autoimmune/endocrine workup, and fertility problems (OR 7.22; 95% CI 1.17-44.54, P=0.03). Women suffering from anatomic abnormalities tended to have a higher rate of pregnancy loss compared to those without anatomic abnormalities (40% vs. 30.9%, P=0.2). The difference in pregnancy loss rate among women who underwent surgical correction compared to those who did not was not statistically significant. In patients with previous cesarean section, uterine abnormality is an independent risk factor for pregnancy loss. Surgical correction of uterine abnormalities among RPL patients might have the potential to improve live

  17. Evolution of the anatomical theatre in Padova.

    PubMed

    Macchi, Veronica; Porzionato, Andrea; Stecco, Carla; De Caro, Raffaele

    2014-01-01

    The anatomical theatre played a pivotal role in the evolution of medical education, allowing students to directly observe and participate in the process of dissection. Due to the increase of training programs in clinical anatomy, the Institute of Human Anatomy at the University of Padova has renovated its dissecting room. The main guidelines in planning a new anatomical theatre included: (1), the placement of the teacher and students on the same level in a horizontal anatomical theatre where it is possible to see (theatre) and to perform (dissecting room); (2), in the past, dissection activities were concentrated at the center of the theatre, while in the new anatomical theatre, such activities have been moved to the periphery through projection on surrounding screens-thus, students occupy the center of the theatre between the demonstration table, where the dissection can be seen in real time, and the wall screens, where particular aspects are magnified; (3), three groups of tables are placed with one in front with two lateral flanking tables in regards to the demonstration table, in a semicircular arrangement, and not attached to the floor, which makes the room multifunctional for surgical education, medical students and physician's continued professional development courses; (4), a learning station to introduce the students to the subject of the laboratory; (5), cooperation between anatomists and architects in order to combine the practical needs of a dissection laboratory with new technologies; (6), involvement of the students, representing the clients' needs; and (7), creation of a dissecting room of wide measurements with large windows, since a well-illuminated space could reduce the potentially negative psychological impact of the dissection laboratory on student morale. © 2014 American Association of Anatomists.

  18. Detectability of radiological images: the influence of anatomical noise

    NASA Astrophysics Data System (ADS)

    Bochud, Francois O.; Verdun, Francis R.; Hessler, Christian; Valley, Jean-Francois

    1995-04-01

    Radiological image quality can be objectively quantified by the statistical decision theory. This theory is commonly applied with the noise of the imaging system alone (quantum, screen and film noises) whereas the actual noise present on the image is the 'anatomical noise' (sum of the system noise and the anatomical texture). This anatomical texture should play a role in the detection task. This paper compares these two kinds of noises by performing 2AFC experiments and computing the area under the ROC-curve. It is shown that the 'anatomical noise' cannot be considered as a noise in the sense of Wiener spectrum approach and that the detectability performance is the same as the one obtained with the system noise alone in the case of a small object to be detected. Furthermore, the statistical decision theory and the non- prewhitening observer does not match the experimental results. This is especially the case in the low contrast values for which the theory predicts an increase of the detectability as soon as the contrast is different from zero whereas the experimental result demonstrates an offset of the contrast value below which the detectability is purely random. The theory therefore needs to be improved in order to take this result into account.

  19. Anatomical Mercury: Changing Understandings of Quicksilver, Blood, and the Lymphatic System, 1650-1800.

    PubMed

    Hendriksen, Marieke M A

    2015-10-01

    The use of mercury as an injection mass in anatomical experiments and preparations was common throughout Europe in the long eighteenth century, and refined mercury-injected preparations as well as plates of anatomical mercury remain today. The use and meaning of mercury in related disciplines such as medicine and chemistry in the same period have been studied, but our knowledge of anatomical mercury is sparse and tends to focus on technicalities. This article argues that mercury had a distinct meaning in anatomy, which was initially influenced by alchemical and classical understandings of mercury. Moreover, it demonstrates that the choice of mercury as an anatomical injection mass was deliberate and informed by an intricate cultural understanding of its materiality, and that its use in anatomical preparations and its perception as an anatomical material evolved with the understanding of the circulatory and lymphatic systems. By using the material culture of anatomical mercury as a starting point, I seek to provide a new, object-driven interpretation of complex and strongly interrelated historiographical categories such as mechanism, vitalism, chemistry, anatomy, and physiology, which are difficult to understand through a historiography that focuses exclusively on ideas. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    PubMed Central

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  1. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    PubMed

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  2. Assistance to neurosurgical planning: using a fuzzy spatial graph model of the brain for locating anatomical targets in MRI

    NASA Astrophysics Data System (ADS)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2007-03-01

    Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.

  3. Mapping of lithologic and structural units using multispectral imagery. [Afar-Triangle/Ethiopia and adjacent areas (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabia)

    NASA Technical Reports Server (NTRS)

    Kronberg, P. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 MSS imagery covering the Afar-Triangle/Ethiopia and adjacent regions (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabi) was applied to the mapping of lithologic and structural units of the test area at a scale 1:1,000,000. Results of the geological evaluation of the ERTS-1 imagery of the Afar have proven the usefullness of this type of satellite data for regional geological mapping. Evaluation of the ERTS images also resulted in new aspects of the structural setting and tectonic development of the Afar-Triangle, where three large rift systems, the oceanic rifts of the Red Sea and Gulf of Aden and the continental East African rift system, seem to meet each other. Surface structures mapped by ERTS do not indicate that the oceanic rift of the Gulf of Aden (Sheba Ridge) continues into the area of continental crust west of the Gulf of Tadjura. ERTS data show that the Wonji fault belt of the African rift system does not enter or cut through the central Afar. The Aysha-Horst is not a Horst but an autochthonous spur of the Somali Plateau.

  4. Anatomic motor point localization for partial quadriceps block in spasticity.

    PubMed

    Albert, T; Yelnik, A; Colle, F; Bonan, I; Lassau, J P

    2000-03-01

    To identify the location of the vastus intermedius nerve and its motor point (point M) and to precisely identify its coordinates in relation to anatomic surface landmarks. Descriptive study. Anatomy institute of a university school of medicine. Twenty-nine adult cadaver limbs immobilized in anatomic position. Anatomic dissection to identify point M. Anatomic surface landmarks were point F, the issuing point of femoral nerve under the inguinal ligament; point R, the middle of superior edge of the patella; segment FR, which corresponds to thigh length; point M', point M orthogonal projection on segment FR. Absolute vertical coordinate, distance FM, relative vertical coordinate compared to the thigh length, FM'/FR ratio; absolute horizontal coordinate, distance MM'. The absolute vertical coordinate was 11.7+/-2 cm. The relative vertical coordinate was at .29+/-.04 of thigh length. The horizontal coordinate was at 2+/-.5 cm lateral to the FR line. Point M can be defined with relative precision by two coordinates. Application and clinical interest of nerve blocking using these coordinates in quadriceps spasticity should be studied.

  5. [Anatomical Vitamin C-Research during National Socialism and the Post-war Period: Max Clara's Human Experiments at the Munich Anatomical Institute].

    PubMed

    Schûtz, Mathias; Schochow, Maximilian; Waschke, Jens; Marckmann, Georg; Steger, Florian

    2014-01-01

    In autumn of 1942, Max Clara (1899-1966) became chairman of the anatomical institute Munich. There, he intensified his research concerning the proof of vitamin C with the bodies of executed prisoners which were delivered by the Munich-Stadelheim prison. This research on human organs was pursued by applying ascorbic acid (Cebion) to prisoners before their execution. The paper investigates this intensified and radicalized anatomical research through human experiments, which Max Clara conducted in Munich and published from Istanbul during the postwar years, as well as its scientific references from the Nazi period.

  6. Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development.

    PubMed

    Wang, Guang-Long; Xiong, Fei; Que, Feng; Xu, Zhi-Sheng; Wang, Feng; Xiong, Ai-Sheng

    2015-01-01

    Gibberellins (GAs) are considered potentially important regulators of cell elongation and expansion in plants. Carrot undergoes significant alteration in organ size during its growth and development. However, the molecular mechanisms underlying gibberellin accumulation and perception during carrot growth and development remain unclear. In this study, five stages of carrot growth and development were investigated using morphological and anatomical structural techniques. Gibberellin levels in leaf, petiole, and taproot tissues were also investigated for all five stages. Gibberellin levels in the roots initially increased and then decreased, but these levels were lower than those in the petioles and leaves. Genes involved in gibberellin biosynthesis and signaling were identified from the carrotDB, and their expression was analyzed. All of the genes were evidently responsive to carrot growth and development, and some of them showed tissue-specific expression. The results suggested that gibberellin level may play a vital role in carrot elongation and expansion. The relative transcription levels of gibberellin pathway-related genes may be the main cause of the different bioactive GAs levels, thus exerting influences on gibberellin perception and signals. Carrot growth and development may be regulated by modification of the genes involved in gibberellin biosynthesis, catabolism, and perception.

  7. Thermal structure of Sikhote Alin and adjacent areas based on spectral analysis of the anomalous magnetic field

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Nosyrev, M. Yu.; Shevchenko, B. F.; Gilmanova, G. Z.

    2017-11-01

    The depth of the base of the magnetoactive layer and the geothermal gradient in the Sikhote Alin crust are estimated based on a method determining the Curie depth point of magnetoactive masses by using spectral analysis of the anomalous magnetic field. A detailed map of the geothermal gradient is constructed for the first time for the Sikhote Alin and adjacent areas of the Central Asian belt. Analysis of this map shows that the zones with a higher geothermal gradient geographically fit the areas with a higher level of seismicity.

  8. Mid-twentieth-century anatomical transparencies and the depiction of three-dimensional form.

    PubMed

    Wall, Shelley

    2010-11-01

    Before the advent of digital visualization, the "anatomical transparency"--layered images of organ systems, printed on a transparent medium--flourished in the mid-twentieth century as an interactive means to represent complex anatomical relationships to medical professionals and lay audiences. This article introduces the transparency work of medical illustrators Gladys McHugh and Ernest W. Beck, situating it in the historical context of strategies to represent three-dimensional anatomical relationships using print media.

  9. Anatomical Correlates of Non-Verbal Perception in Dementia Patients.

    PubMed

    Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih

    2016-01-01

    Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer's dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits.

  10. Automated anatomical labeling of bronchial branches using multiple classifiers and its application to bronchoscopy guidance based on fusion of virtual and real bronchoscopy

    NASA Astrophysics Data System (ADS)

    Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Hasegawa, Yoshinori; Imaizumi, Kazuyoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2008-03-01

    This paper presents a method for automated anatomical labeling of bronchial branches (ALBB) extracted from 3D CT datasets. The proposed method constructs classifiers that output anatomical names of bronchial branches by employing the machine-learning approach. We also present its application to a bronchoscopy guidance system. Since the bronchus has a complex tree structure, bronchoscopists easily tend to get disoriented and lose the way to a target location. A bronchoscopy guidance system is strongly expected to be developed to assist bronchoscopists. In such guidance system, automated presentation of anatomical names is quite useful information for bronchoscopy. Although several methods for automated ALBB were reported, most of them constructed models taking only variations of branching patterns into account and did not consider those of running directions. Since the running directions of bronchial branches differ greatly in individuals, they could not perform ALBB accurately when running directions of bronchial branches were different from those of models. Our method tries to solve such problems by utilizing the machine-learning approach. Actual procedure consists of three steps: (a) extraction of bronchial tree structures from 3D CT datasets, (b) construction of classifiers using the multi-class AdaBoost technique, and (c) automated classification of bronchial branches by using the constructed classifiers. We applied the proposed method to 51 cases of 3D CT datasets. The constructed classifiers were evaluated by leave-one-out scheme. The experimental results showed that the proposed method could assign correct anatomical names to bronchial branches of 89.1% up to segmental lobe branches. Also, we confirmed that it was quite useful to assist the bronchoscopy by presenting anatomical names of bronchial branches on real bronchoscopic views.

  11. Tissue reaction to a titanium-nickelide mesh implant after plasty of postresection defects of anatomic structures of the chest.

    PubMed

    Topolnitskiy, E B; Dambaev, G Ts; Hodorenko, V N; Fomina, T I; Shefer, N A; Gunther, V E

    2012-07-01

    We studied morphological features of the regenerate formed after postresection defect plasty of the pericardium, diaphragm, and thorax with a mesh implant made of nanostructural titanium-nickelide threads. The newly formed tissue grew through the implant with the formation of an integrated tissue regenerate ensuring anatomic and physiological restoration of this area.

  12. Environmental characteristics of the Grand Fir Mosaic and adjacent habitat types

    Treesearch

    Dennis E. Ferguson; John C. Byrne

    2000-01-01

    Grand Fir Mosaic habitats differ from adjacent forest habitats in their slow rate of secondary succession to woody vegetation. Remote monitoring stations were used to sample the environment at a Grand Fir Mosaic site and three adjacent habitat types. The Grand Fir Mosaic site has shorter growing seasons, cooler temperatures, and more soil moisture than the other sites...

  13. Network-Level Structure-Function Relationships in Human Neocortex

    PubMed Central

    Mišić, Bratislav; Betzel, Richard F.; de Reus, Marcel A.; van den Heuvel, Martijn P.; Berman, Marc G.; McIntosh, Anthony R.; Sporns, Olaf

    2016-01-01

    The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity. While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly, these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical connections. We also find that structural connections between high-degree hubs are disproportionately represented, suggesting that these connections are particularly important in establishing coherent functional networks. Altogether, these results demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network configurations that often diverge from the underlying anatomical substrate. PMID:27102654

  14. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system.

    PubMed

    Arévalo, Rafael; van Ee, Benjamin W; Riina, Ricarda; Berry, Paul E; Wiedenhoeft, Alex C

    2017-03-01

    Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton , and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton . Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton . Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. Published by Oxford University Press on behalf of the Annals of Botany Company 2017. This work is

  15. MINARETS WILDERNESS AND ADJACENT AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Huber, N. King; Thurber, Horace K.

    1984-01-01

    A mineral survey of the Minarets Wilderness and adjacent areas in the central Sierra Nevada, California was conducted. The results of the survey indicate that the study area has a substantiated resource potential for small deposits of copper, silver, zinc, lead, and iron, and a probable mineral-resource potential for molybdenum. No energy-resource potential was identified in the study.

  16. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    PubMed Central

    Ballestriero, R

    2010-01-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable. PMID:20002228

  17. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    PubMed

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  18. Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock.

    PubMed

    Mesquita, Geisa L; Zambrosi, Fernando C B; Tanaka, Francisco A O; Boaretto, Rodrigo M; Quaggio, José A; Ribeiro, Rafael V; Mattos, Dirceu

    2016-01-01

    In Citrus, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO2 assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.

  19. Parcellation of the human substantia nigra based on anatomical connectivity to the striatum☆

    PubMed Central

    Chowdhury, Rumana; Lambert, Christian; Dolan, Raymond J.; Düzel, Emrah

    2013-01-01

    Substantia nigra/ventral tegmental area (SN/VTA) subregions, defined by dopaminergic projections to the striatum, are differentially affected by health (e.g. normal aging) and disease (e.g. Parkinson's disease). This may have an impact on reward processing which relies on dopaminergic regions and circuits. We acquired diffusion tensor imaging (DTI) with probabilistic tractography in 30 healthy older adults to determine whether subregions of the SN/VTA could be delineated based on anatomical connectivity to the striatum. We found that a dorsomedial region of the SN/VTA preferentially connected to the ventral striatum whereas a more ventrolateral region connected to the dorsal striatum. These SN/VTA subregions could be characterised by differences in quantitative structural imaging parameters, suggesting different underlying tissue properties. We also observed that these connectivity patterns differentially mapped onto reward dependence personality trait. We show that tractography can be used to parcellate the SN/VTA into anatomically plausible and behaviourally meaningful compartments, an approach that may help future studies to provide a more fine-grained synopsis of pathological changes in the dopaminergic midbrain and their functional impact. PMID:23684858

  20. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group

    NASA Astrophysics Data System (ADS)

    Kuzhelev, Andrey A.; Strizhakov, Rodion K.; Krumkacheva, Olesya A.; Polienko, Yuliya F.; Morozov, Denis A.; Shevelev, Georgiy Yu.; Pyshnyi, Dmitrii V.; Kirilyuk, Igor A.; Fedin, Matvey V.; Bagryanskaya, Elena G.

    2016-05-01

    Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34 GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700 ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T = 80-300 K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180 K) becomes negligible at 300 K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.

  1. Magnetic resonance imaging evaluation of adjacent segments after cervical disc arthroplasty: magnet strength and its effect on image quality. Clinical article.

    PubMed

    Antosh, Ivan J; DeVine, John G; Carpenter, Clyde T; Woebkenberg, Brian J; Yoest, Stephen M

    2010-12-01

    Disc arthroplasty is an alternative to fusion following anterior discectomy when treating either cervical radiculopathy or myelopathy. Its theoretical benefits include preservation of the motion segment and the potential prevention of adjacent-segment degeneration. There is a paucity of data regarding the ability to use MR imaging to evaluate the adjacent segments. The purpose of this study was for the authors to introduce open MR imaging as an alternative method in imaging adjacent segments following cervical disc arthroplasty using a Co-Cr implant and to report their preliminary results using this technique. Postoperative cervical MR images were obtained in the first 16 patients in whom the porous coated motion (PCM-V) cervical arthroplasty system was used to treat a single level between C-3 and C-7. Imaging was performed in all 16 patients with a closed 1.5-T unit, and in the final 6 patients it was also performed with an open 0.2-T unit. All images were evaluated by an independent radiologist observer for the ability to visualize the superior endplate, disc space, and inferior endplate at the superior and inferior adjacent levels. Utilizing the 1.5-T magnet to assess the superior adjacent level, the superior endplate, disc space, and inferior endplate could each be visualized less than 50% of the time on sagittal T1- and sagittal and axial T2-weighted images. Similarly, the inferior adjacent level structures were adequately visualized less than 50% of the time, with the exception of slightly improved visualization of the inferior endplate on T1-weighted images (56%). Axial images allowed worse visualization than sagittal images at both the superior and inferior adjacent levels. Utilizing the 0.2-T magnet to assess the superior and inferior adjacent levels, the superior endplate, disc space, and inferior endplate were adequately visualized in 100% of images. Based on the results of this case series, it appears that the strength of the magnet affects the artifact

  2. Intraoperative Comparison of Anatomical versus Round Implants in Breast Augmentation: A Randomized Controlled Trial.

    PubMed

    Hidalgo, David A; Weinstein, Andrew L

    2017-03-01

    The purpose of this randomized controlled trial was to determine whether anatomical implants are aesthetically superior to round implants in breast augmentation. Seventy-five patients undergoing primary breast augmentation had a round silicone implant of optimal volume, projection, and diameter placed in one breast and an anatomical silicone device of similar volume and optimal shape placed in the other. After intraoperative photographs were taken, the anatomical device was replaced by a round implant to complete the procedure. A survey designed to measure breast aesthetics was administered to 10 plastic surgeon and 10 lay reviewers for blind evaluation of the 75 cases. No observable difference in breast aesthetics between anatomical and round implants was reported by plastic surgeons in 43.6 percent or by lay individuals in 29.2 percent of cases. When a difference was perceived, neither plastic surgeons nor lay individuals preferred the anatomical side more often than the round side. Plastic surgeons judged the anatomical side superior in 51.1 percent of cases and the round side superior in 48.9 percent of cases (p = 0.496). Lay individuals judged the anatomical side superior in 46.7 percent of cases and the round side superior in 53.3 percent (p = 0.140). Plastic surgeons identified implant shape correctly in only 26.5 percent of cases. This study provides high-level evidence supporting no aesthetic superiority of anatomical over round implants. Given that anatomical implants have important and unique disadvantages, a lack of proven aesthetic superiority argues against their continued use in breast augmentation. Therapeutic, I.

  3. Developmental tumors and adjacent cortical dysplasia: single or dual pathology?

    PubMed

    Palmini, André; Paglioli, Eliseu; Silva, Vinicius Duval

    2013-12-01

    Developmental tumors often lead to refractory partial seizures and constitute a well-defined, surgically remediable epilepsy syndrome. Dysplastic features are often associated with these tumors, and their significance carries both practical and conceptual relevance. If associated focal cortical dysplasia (FCD) relates to the extent of the epileptogenic tissue, then presurgical evaluation and surgical strategies should target both the tumor and the surrounding dyslaminated cortex. Furthermore, the association has been included in the recently revised classification of FCD and the epileptogenicity of this associated dysplastic tissue is crucial to validate such revision. In addition to the possibility of representing dual pathology, the association of developmental tumors and adjacent dysplasia may instead represent a single developmental lesion with distinct parts distributed along a histopathologic continuum. Moreover, the possibility that this adjacent dyslamination is of minor epileptogenic relevance should also be entertained. Surgical data show that complete resection of the solid tumors and immediately adjacent tissue harboring satellites may disrupt epileptogenic networks and lead to high rates of seizure freedom, challenging the epileptogenic relevance of more extensive adjacent dyslaminated cortex. Whether the latter is a primary or secondary abnormality and whether dyslaminated cortex in the context of a second lesion may produce seizures after complete resection of the main lesion is still to be proven. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  4. Anatomical structure overrides temperature controls on magnesium uptake - calcification in the Arctic/subarctic coralline algae Leptophytum laeve and Kvaleya epilaeve (Rhodophyta; Corallinales)

    NASA Astrophysics Data System (ADS)

    Nash, Merinda C.; Adey, Walter

    2018-02-01

    Calcified coralline red algae are ecologically key organisms in photic benthic environments. In recent decades they have become important climate proxies, especially in the Arctic and subarctic. It has been widely accepted that magnesium content in coralline tissues is directly a function of ambient temperature, and this is a primary basis for their value as a climate archive. In this paper we show for two genera of Arctic/subarctic corallines, Leptophytum laeve and Kvaleya epilaeve, that previously unrecognised complex tissue and cell wall anatomy bears a variety of basal signatures for Mg content, with the accepted temperature relationship being secondary. The interfilament carbonate has lower Mg than adjacent cell walls and the hypothallial cell walls have the highest Mg content. The internal structure of the hypothallial cell walls can differ substantially from the perithallial radial cell wall structure. Using high-magnification scanning electron microscopy and etching we expose the nanometre-scale structures within the cell walls and interfilament. Fibrils concentrate at the internal and external edges of the cell walls. Fibrils ˜ 10 nm thick appear to thread through the radial Mg-calcite grains and form concentric bands within the cell wall. This banding may control Mg distribution within the cell. Similar fibril banding is present in the hypothallial cell walls but not the interfilament. Climate archiving with corallines can achieve greater precision with recognition of these parameters.

  5. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    PubMed

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Trophic coupling between two adjacent benthic food webs within a man-made intertidal area: A stable isotopes evidence

    NASA Astrophysics Data System (ADS)

    Schaal, Gauthier; Riera, Pascal; Leroux, Cédric

    2008-04-01

    This study aimed at establishing the effects of human-made physical modifications on the trophic structure and functioning of an intertidal benthic food web in Arcachon Bay (France). The main food sources and the most representative consumers were sampled on an artificial rocky dyke and its adjacent seagrass meadow. The food sources of consumers were inferred through the use of carbon and nitrogen stable isotopes. The contributions of the different food sources to the diets of the consumers were established using the Isosource mixing model. In order to reduce the range of feasible contributions, additional non-isotopic constraints were added when necessary to the outputs of this model. We observed a more complex food web than previously shown for artificial habitats. Moreover, it appears that several consumers inhabiting the artificial environment base most of their diet on allochtonous eelgrass-derived detritus. In turn, several consumers inhabiting the eelgrass meadow consumed significantly macroalgae-derived material originating from the adjacent artificial rocky area. These results point out that the food webs associated to adjacent habitats can influence each other through the utilisation of exported organic matter.

  7. Reanalyzing the "far medial" (transcondylar-transtubercular) approach based on three anatomical vectors: the ventral posterolateral corridor.

    PubMed

    Chakravarthi, Srikant; Monroy-Sosa, Alejandro; Gonen, Lior; Fukui, Melanie; Rovin, Richard; Kojis, Nathaniel; Lindsay, Mark; Khalili, Sammy; Celix, Juanita; Corsten, Martin; Kassam, Amin B

    2018-06-01

    Endoscopic endonasal access to the jugular foramen and occipital condyle - the transcondylar-transtubercular approach - is anatomically complex and requires detailed knowledge of the relative position of critical neurovascular structures, in order to avoid inadvertent injury and resultant complications. However, access to this region can be confusing as the orientation and relationships of osseous, vascular, and neural structures are very much different from traditional dorsal approaches. This review aims at providing an organizational construct for a more understandable framework in accessing the transcondylar-transtubercular window. The region can be conceptualized using a three-vector coordinate system: vector 1 represents a dorsal or ventral corridor, vector 2 represents the outer and inner circumferential anatomical limits; in an "onion-skin" fashion, key osseous, vascular, and neural landmarks are organized based on a 360-degree skull base model, and vector 3 represents the final core or target of the surgical corridor. The creation of an organized "global-positioning system" may better guide the surgeon in accessing the far-medial transcondylar-transtubercular region, and related pathologies, and help understand the surgical limits to the occipital condyle and jugular foramen - the ventral posterolateral corridor - via the endoscopic endonasal approach.

  8. A systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson's disease.

    PubMed

    Caire, François; Ranoux, Danièle; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel

    2013-09-01

    The dorso-lateral part of the subthalamic nucleus (STN) is considered as the usual target of deep brain stimulation for Parkinson's disease. Nevertheless, the exact anatomical location of the electrode contacts used for chronic stimulation is still a matter of debate. The aim of this study was to perform a systematic review of the existing literature on this issue. We searched for studies on the anatomical location of active contacts published until December 2012. We identified 13 studies, published between 2002 and 2010, including 260 patients and 466 electrodes. One hundred and sixty-four active contacts (35 %) were identified within the STN, 117 (25 %) at the interface between STN and the surrounding structures, 184 (40 %) above the STN and one within the substantia nigra. We observed great discrepancies between the different series. The contra-lateral improvement was between 37 and 78.5 % for contacts located within the STN, between 48.6 and 73 % outside the STN, between 65.3 and 66 % at the interface. The authors report no clear correlation between anatomical location and stimulation parameters. Post-operative analysis of the anatomical location of active contacts is difficult, and all the methods used are debatable. The relationship between the anatomical location of active contacts and the clinical effectiveness of stimulation is unclear. It would be necessary to take into account the volume of the electrode contacts and the diffusion of the stimulation. We can nevertheless assume that the interface between dorso-lateral STN, zona incerta and Forel's fields could be directly involved in the effects of stimulation.

  9. A new method to predict anatomical outcome after idiopathic macular hole surgery.

    PubMed

    Liu, Peipei; Sun, Yaoyao; Dong, Chongya; Song, Dan; Jiang, Yanrong; Liang, Jianhong; Yin, Hong; Li, Xiaoxin; Zhao, Mingwei

    2016-04-01

    To investigate whether a new macular hole closure index (MHCI) could predict anatomic outcome of macular hole surgery. A vitrectomy with internal limiting membrane peeling, air-fluid exchange, and gas tamponade were performed on all patients. The postoperative anatomic status of the macular hole was defined by spectral-domain OCT. MHCI was calculated as (M+N)/BASE based on the preoperative OCT status. M and N were the curve lengths of the detached photoreceptor arms, and BASE was the length of the retinal pigment epithelial layer (RPE layer) detaching from the photoreceptors. Postoperative anatomical outcomes were divided into three grades: A (bridge-like closure), B (good closure), and C (poor closure or no closure). Correlation analysis was performed between anatomical outcomes and MHCI. Receiver operating characteristic (ROC) curves were derived for MHCI, indicating good model discrimination. ROC curves were also assessed by the area under the curve, and cut-offs were calculated. Other predictive parameters reported previously, which included the MH minimum, the MH height, the macular hole index (MHI), the diameter hole index (DHI), and the tractional hole index (THI) had been compared as well. MHCI correlated significantly with postoperative anatomical outcomes (r = 0.543, p = 0.000), but other predictive parameters did not. The areas under the curves indicated that MHCI could be used as an effective predictor of anatomical outcome. Cut-off values of 0.7 and 1.0 were obtained for MHCI from ROC curve analysis. MHCI demonstrated a better predictive effect than other parameters, both in the correlation analysis and ROC analysis. MHCI could be an easily measured and accurate predictive index for postoperative anatomical outcomes.

  10. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2008-07-19

    The quantitative description of joint mechanics during movement requires the reconstruction of the position and orientation of selected anatomical axes with respect to a laboratory reference frame. These anatomical axes are identified through an ad hoc anatomical calibration procedure and their position and orientation are reconstructed relative to bone-embedded frames normally derived from photogrammetric marker positions and used to describe movement. The repeatability of anatomical calibration, both within and between subjects, is crucial for kinematic and kinetic end results. This paper illustrates an anatomical calibration approach, which does not require anatomical landmark manual palpation, described in the literature to be prone to great indeterminacy. This approach allows for the estimate of subject-specific bone morphology and automatic anatomical frame identification. The experimental procedure consists of digitization through photogrammetry of superficial points selected over the areas of the bone covered with a thin layer of soft tissue. Information concerning the location of internal anatomical landmarks, such as a joint center obtained using a functional approach, may also be added. The data thus acquired are matched with the digital model of a deformable template bone. Consequently, the repeatability of pelvis, knee and hip joint angles is determined. Five volunteers, each of whom performed five walking trials, and six operators, with no specific knowledge of anatomy, participated in the study. Descriptive statistics analysis was performed during upright posture, showing a limited dispersion of all angles (less than 3 deg) except for hip and knee internal-external rotation (6 deg and 9 deg, respectively). During level walking, the ratio of inter-operator and inter-trial error and an absolute subject-specific repeatability were assessed. For pelvic and hip angles, and knee flexion-extension the inter-operator error was equal to the inter-trial error

  11. Anatomical and biomechanical investigations of the iliotibial tract.

    PubMed

    Birnbaum, K; Siebert, C H; Pandorf, T; Schopphoff, E; Prescher, A; Niethard, F U

    2004-12-01

    Divergent descriptions of the anatomic location and biomechanical function of the iliotibial tract (IT) can be found in the literature. This study attempted to obtain exact data regarding the anatomic course and material characteristics including the biomechanical properties of this structure. The following were its aims: (1) anatomical investigations of the IT; (2) mechanical properties of the IT; (3) femoral head centralizing force of the IT and subligamentous forces in the height of the greater trochanter in different joint positions by using a custom-made measuring prosthesis and a subligamentous positioned sensor; (4) construction of a finite element model of the proximal femur including the IT and measuring the femoral neck angle under variation. The hip joints and IT in a total of 18 unfixed corpses were evaluated. We studied the anatomic relationship to surrounding structures, as well as the material properties with the help of tensile strength testing utilizing an uniaxial apparatus. During the test, a load-displacement curve was registered, documenting the maximum load and deformation of the IT. To measure the subligamentous pressure at the height of the greater trochanter, a custom-made sensor with a power-recording instrument was constructed. Furthermore, an altered hip prosthesis with a pressure gauge at the height of the femoral neck was used to measure the forces which are directed at the acetabulum. The investigations were done in neutral-0 position and ab/adduction of the hip joint of the unfixed corpse. In addition, we varied the femoral neck angle between 115 degrees and 155 degrees in 5 degrees steps. To confirm the subligamentous forces, we did the same measurements intraoperatively at the height of the greater trochanter before and after hip joint replacement in 12 patients. We constructed a finite element model of the proximal femur and considering the IT. The acquisition of the data was done at physiological (128 degrees), varus (115 degrees

  12. Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.

    PubMed

    Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2009-01-01

    Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.

  13. Biomechanical and anatomical assessment after knee hyperextension injury.

    PubMed

    Fornalski, Stefan; McGarry, Michelle H; Csintalan, Rick P; Fithian, Donald C; Lee, Thay Q

    2008-01-01

    Knee hyperextension can be a serious and disabling injury in both the athletic and general patient population. Understanding the pathoanatomy and pathomechanics is critical for accurate surgical soft tissue reconstructions. To quantify the effects of knee hyperextension injury on knee laxity in a human cadaveric model and to qualitatively assess the anatomical injury pattern through surgical dissection. Descriptive laboratory study. Six fresh-frozen cadaveric knees were rigidly mounted on a custom knee testing system that simulates clinical laxity tests. The knee laxity measurements consisted of anterior-posterior laxity, internal-external rotational laxity, and varus-valgus laxity using a custom testing setup and a Microscribe 3DLX system. The laxity data were collected at both 30 degrees and 90 degrees of knee flexion for the intact specimens and then after 15 degrees and 30 degrees hyperextension injury. After biomechanical assessment, a detailed dissection was performed to document the injured structures in the knee. Repeated-measures analysis of variance with a Tukey post hoc test (P < .05) was used for statistical comparison. The results from this study suggest progressive damage to translational and rotational knee soft-tissue restraints with increasing knee hyperextension. Knee hyperextension to 30 degrees caused the most significant increase in anterior-posterior and rotational laxity. Anatomical dissections showed a general injury pattern to the posterolateral corner, partial femoral anterior cruciate ligament avulsion in 4 of 6 specimens, and no gross posterior cruciate ligament injuries. Injuries to the posterolateral corner of the knee can result from isolated knee hyperextension. The clinician should be aware of the potential for posterolateral corner injuries with isolated knee hyperextension. This will allow early surgical planning and primary surgical repair.

  14. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  15. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) is being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is set to begin preparations for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1269. Also see S90-48650 for similar view with alternate KSC number KSC-90PC-1268.

  16. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) and being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is prepared for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1268. Also see S90-48904 for a similar view with alternate KSC number KSC-90PC-1269.

  17. Anatomical decomposition in dual energy chest digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  18. Anatomical study of minor alterations in neonate vocal folds.

    PubMed

    Silva, Adriano Rezende; Machado, Almiro José; Crespo, Agrício Nubiato

    2014-01-01

    Minor structural alterations of the vocal fold cover are frequent causes of voice abnormalities. They may be difficult to diagnose, and are expressed in different manners. Cases of intracordal cysts, sulcus vocalis, mucosal bridge, and laryngeal micro-diaphragm form the group of minor structural alterations of the vocal fold cover investigated in the present study. The etiopathogenesis and epidemiology of these alterations are poorly known. To evaluate the existence and anatomical characterization of minor structural alterations in the vocal folds of newborns. 56 larynxes excised from neonates of both genders were studied. They were examined fresh, or defrosted after conservation via freezing, under a microscope at magnifications of 25× and 40×. The vocal folds were inspected and palpated by two examiners, with the aim of finding minor structural alterations similar to those described classically, and other undetermined minor structural alterations. Larynges presenting abnormalities were submitted to histological examination. Six cases of abnormalities were found in different larynges: one (1.79%) compatible with a sulcus vocalis and five (8.93%) compatible with a laryngeal micro-diaphragm. No cases of cysts or mucosal bridges were found. The observed abnormalities had characteristics similar to those described in other age groups. Abnormalities similar to sulcus vocalis or micro-diaphragm may be present at birth. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. An anatomically based protocol for the description of foot segment kinematics during gait.

    PubMed

    Leardini, A; Benedetti, M G; Catani, F; Simoncini, L; Giannini, S

    1999-10-01

    To design a technique for the in vivo description of ankle and other foot joint rotations to be applied in routine functional evaluation using non-invasive stereophotogrammetry. Position and orientation of tibia/fibula, calcaneus, mid-foot, 1st metatarsal and hallux segments were tracked during the stance phase of walking in nine asymptomatic subjects. Rigid clusters of reflective markers were used for foot segment pose estimation. Anatomical landmark calibration was applied for the reconstruction of anatomical landmarks. Previous studies have analysed only a limited number of joints or have proposed invasive techniques. Anatomical landmark trajectories were reconstructed in the laboratory frame using data from the anatomical calibration procedure. Anatomical co-ordinate frames were defined using the obtained landmark trajectories. Joint co-ordinate systems were used to calculate corresponding joint rotations in all three anatomical planes. The patterns of the joint rotations were highly repeatable within subjects. Consistent patterns between subjects were also exhibited at most of the joints. The method proposed enables a detailed description of ankle and other foot joint rotations on an anatomical base. Joint rotations can therefore be expressed in the well-established terminology necessary for their clinical interpretation. Functional evaluation of patients affected by foot diseases has recently called for more detailed and non-invasive protocols for the description of foot joint rotations during gait. The proposed method can help clinicians to distinguish between normal and pathological pattern of foot joint rotations, and to quantitatively assess the restoration of normal function after treatment.

  20. The Benefits and Limitations of Using Ultrasonography to Supplement Anatomical Understanding

    ERIC Educational Resources Information Center

    Sweetman, Greg M.; Crawford, Gail; Hird, Kathryn; Fear, Mark W.

    2013-01-01

    Anatomical understanding is critical to medical education. With reduced teaching time and limited cadaver availability, it is important to investigate how best to utilize in vivo imaging to supplement anatomical understanding and better prepare medical graduates for the proliferation of point-of-care imaging in the future. To investigate whether…

  1. Community conservation adjacent to Ruaha National Park, Tanzania

    Treesearch

    Sue Stolberger

    2007-01-01

    In the areas adjacent to Ruaha National Park where rural communities exist, much more work and education is required to enable them to benefit directly and indirectly from tourism and managing their own natural resources.

  2. Anatomics: the intersection of anatomy and bioinformatics

    PubMed Central

    Bard, Jonathan BL

    2005-01-01

    Computational resources are now using the tissue names of the major model organisms so that tissue-associated data can be archived in and retrieved from databases on the basis of developing and adult anatomy. For this to be done, the set of tissues in that organism (its anatome) has to be organized in a way that is computer-comprehensible. Indeed, such formalization is a necessary part of what is becoming known as systems biology, in which explanations of high-level biological phenomena are not only sought in terms of lower-level events, but are articulated within a computational framework. Lists of tissue names alone, however, turn out to be inadequate for this formalization because tissue organization is essentially hierarchical and thus cannot easily be put into tables, the natural format of relational databases. The solution now adopted is to organize the anatomy of each organism as a hierarchy of tissue names and linking relationships (e.g. the tibia is PART OF the leg, the tibia IS-A bone) within what are known as ontologies. In these, a unique ID is assigned to each tissue and this can be used within, for example, gene-expression databases to link data to tissue organization, and also used to query other data sources (interoperability), while inferences about the anatomy can be made within the ontology on the basis of the relationships. There are now about 15 such anatomical ontologies, many of which are linked to organism databases; these ontologies are now publicly available at the Open Biological Ontologies website (http://obo.sourceforge.net) from where they can be freely downloaded and viewed using standard tools. This review considers how anatomy is formalized within ontologies, together with the problems that have had to be solved for this to be done. It is suggested that the appropriate term for the analysis, computer formulation and use of the anatome is anatomics. PMID:15679867

  3. Renal Tumor Anatomic Complexity: Clinical Implications for Urologists.

    PubMed

    Joshi, Shreyas S; Uzzo, Robert G

    2017-05-01

    Anatomic tumor complexity can be objectively measured and reported using nephrometry. Various scoring systems have been developed in an attempt to correlate tumor complexity with intraoperative and postoperative outcomes. Nephrometry may also predict tumor biology in a noninvasive, reproducible manner. Other scoring systems can help predict surgical complexity and the likelihood of complications, independent of tumor characteristics. The accumulated data in this new field provide provocative evidence that objectifying anatomic complexity can consolidate reporting mechanisms and improve metrics of comparisons. Further prospective validation is needed to understand the full descriptive and predictive ability of the various nephrometry scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Uplink scheduling and adjacent-channel coupling loss analysis for TD-LTE deployment.

    PubMed

    Yeo, Woon-Young; Moon, Sung Ho; Kim, Jae-Hoon

    2014-01-01

    TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI.

  5. [Study of the appearance difference of lower complete denture between functional and anatomic impression techniques].

    PubMed

    Zhong, Qun; Wu, Xue-yin; Shen, Qing-yi; Shen, Qing-ping

    2012-04-01

    To compare the difference in oblique external ridge, oblique internal ridge and alveolar process crest of lower complete denture base made through functional impression and anatomic impression techniques. Fifteen patients were chosen to treat with two kinds of complete dentures through functional impression and anatomic impression technique respectively. 3D laser scanner was used to scan the three-dimensional model of the denture base and the differences of the surface structural between two techniques in alveolar process crest, external and internal oblique ridges were analyzed, using paired t test with SPSS 12.0 software package. Between the two techniques, there were significant differences in the areas of internal and external oblique ridge(P<0.01); there was no significant difference in the main support areas(P>0.05). The results explain why there is less tenderness when functional impression technique is applied. The differences measured also indicate that sufficient buffering should be made in external and internal oblique ridge areas in clinic.

  6. Anatomical Data for Analyzing Human Motion.

    ERIC Educational Resources Information Center

    Plagenhoef, Stanley; And Others

    1983-01-01

    Anatomical data obtained from cadavers and from water displacement studies with living subjects were used to determine the weight, center of gravity, and radius of gyration for 16 body segments. A lead model was used to study movement patterns of the trunk section of the body. (Authors/PP)

  7. Neurovascular risks of sacral screws with bicortical purchase: an anatomical study.

    PubMed

    Ergur, Ipek; Akcali, Omer; Kiray, Amac; Kosay, Can; Tayefi, Hamid

    2007-09-01

    The aim of this cadaver study is to define the anatomic structures on anterior sacrum, which are under the risk of injury during bicortical screw application to the S1 and S2 pedicles. Thirty formaldehyde-preserved human male cadavers were studied. Posterior midline incision was performed, and soft tissues and muscles were dissected from the posterior part of the lumbosacral region. A 6 mm pedicle screw was inserted between the superior facet of S1 and the S1 foramen. The entry point of the S2 pedicle screw was located between S1 and S2 foramina. S1 and S2 screws were placed on both right and the left sides of all cadavers. Then, all cadavers were turned into supine position. All abdominal and pelvic organs were moved away and carefully observed for any injury. The tips of the sacral screws were marked and the relations with the anatomic structures were defined. The position of the sacral screws relative to the middle and lateral sacral arteries and veins, and the sacral sympathetic trunk were measured. There was no injury to the visceral organs. In four cases, S1 screw tip was in direct contact with middle sacral artery. In two cases, S1 screw tip was in direct contact with middle sacral vein. It was observed that the S1 screw tips were in close proximity to sacral sympathetic trunk on both right and the left sides. The tip of the S2 screw was in contact with middle sacral artery on the left side only in one case. It is found that the tip of the S2 screw was closely located with the middle sacral vein in two cases. The tip of the S2 pedicle screw was in contact with the sacral sympathetic trunk in eight cases on the right side and seven cases on the left side. Lateral sacral vein was also observed to be disturbed by the S1 and S2 screws. As a conclusion, anterior cortical penetration during sacral screw insertion carries a risk of neurovascular injury. The risk of sacral sympathetic trunk and minor vascular structures together with the major neurovascular

  8. Discharge dynamics of self-oriented microplasma coupling between cross adjacent cavities in micro-structure device driven by a bipolar pulse waveform

    NASA Astrophysics Data System (ADS)

    Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen

    2018-04-01

    The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.

  9. Chronic ankle instability: Arthroscopic anatomical repair.

    PubMed

    Arroyo-Hernández, M; Mellado-Romero, M; Páramo-Díaz, P; García-Lamas, L; Vilà-Rico, J

    Ankle sprains are one of the most common injuries. Despite appropriate conservative treatment, approximately 20-40% of patients continue to have chronic ankle instability and pain. In 75-80% of cases there is an isolated rupture of the anterior talofibular ligament. A retrospective observational study was conducted on 21 patients surgically treated for chronic ankle instability by means of an arthroscopic anatomical repair, between May 2012 and January 2013. There were 15 men and 6 women, with a mean age of 30.43 years (range 18-48). The mean follow-up was 29 months (range 25-33). All patients were treated by arthroscopic anatomical repair of anterior talofibular ligament. Four (19%) patients were found to have varus hindfoot deformity. Associated injuries were present in 13 (62%) patients. There were 6 cases of osteochondral lesions, 3 cases of posterior ankle impingement syndrome, and 6 cases of peroneal pathology. All these injuries were surgically treated in the same surgical time. A clinical-functional study was performed using the American Orthopaedic Foot and Ankle Society (AOFAS) score. The mean score before surgery was 66.12 (range 60-71), and after surgery it increased up to a mean of 96.95 (range 90-100). All patients were able to return to their previous sport activity within a mean of 21.5 weeks (range 17-28). Complications were found in 3 (14%) patients. Arthroscopic anatomical ligament repair technique has excellent clinical-functional results with a low percentage of complications, and enables patients to return to their previous sport activity within a short period of time. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study

    PubMed Central

    Kiapour, Ali; Yerby, Scott A.; Goel, Vijay K.

    2015-01-01

    Background Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. Methods An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. Results The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Conclusions Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated. PMID:26767156

  11. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.

    PubMed

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2015-01-01

    Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated.

  12. Post-traumatic orbital reconstruction: anatomical landmarks and the concept of the deep orbit.

    PubMed

    Evans, B T; Webb, A A C

    2007-04-01

    Dissection deep within the orbit is a cause for concern to surgeons because of the perceived risks of injuring critical structures such as the contents of the superior orbital fissure and the optic nerve. Although "safe distances" (those distances within which it is considered safe to dissect within the orbit) have been described, these are of limited value if the orbit is severely disrupted or is congenitally shallow. In addition, traumatic defects in the orbital floor, in particular, often extend beyond these distances. Reliable landmarks based on the relations between anatomical structures within the orbit, rather than absolute distances, are described that permit safe dissection within the orbit. We present the concept of the deep orbit and describe its relevance to repair of injuries.

  13. A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy.

    PubMed

    Walz, Jochen; Burnett, Arthur L; Costello, Anthony J; Eastham, James A; Graefen, Markus; Guillonneau, Bertrand; Menon, Mani; Montorsi, Francesco; Myers, Robert P; Rocco, Bernardo; Villers, Arnauld

    2010-02-01

    Detailed knowledge of the anatomy of the prostate and adjacent tissues is mandatory during radical prostatectomy to ensure reliable oncologic and functional outcomes. To review critically and to summarize the available literature on surgical anatomy of the prostate and adjacent structures involved in cancer control, erectile function, and urinary continence. A search of the PubMed database was performed using the keywords radical prostatectomy, anatomy, neurovascular bundle, fascia, pelvis, and sphincter. Relevant articles and textbook chapters were reviewed, analyzed, and summarized. Anatomy of the prostate and the adjacent tissues varies substantially. The fascia surrounding the prostate is multilayered, sometimes either fused with the prostate capsule or clearly separated from the capsule as a reflection of interindividual variations. The neurovascular bundle (NVB) is situated between the fascial layers covering the prostate. The NVB is composed of numerous nerve fibers superimposed on a scaffold of veins, arteries, and variable amounts of adipose tissue surrounding almost the entire lateral and posterior surfaces of the prostate. The NVB is also in close, cage-like contact to the seminal vesicles. The external urethral sphincter is a complex structure in close anatomic and functional relationship to the pelvic floor, and its fragile innervation is in close association to the prostate apex. Finally, the shape and size of the prostate can significantly modify the anatomy of the NVB, the urethral sphincter, the dorsal vascular complex, and the pubovesical/puboprostatic ligaments. The surgical anatomy of the prostate and adjacent tissues involved in radical prostatectomy is complex. Precise knowledge of all relevant anatomic structures facilitates surgical orientation and dissection during radical prostatectomy and ideally translates into both superior rates of cancer control and improved functional outcomes postoperatively. Copyright 2009 European Association of

  14. Anatomical Correlates of Non-Verbal Perception in Dementia Patients

    PubMed Central

    Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih

    2016-01-01

    Purpose: Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. Methods: To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer’s dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. Results: The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Conclusions: Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits. PMID:27630558

  15. UNITED STATES DEPARTMENT OF TRANSPORTATION GLOBAL POSITIONING SYSTEM (GPS) ADJACENT BAND COMPATIBILITY ASSESSMENT

    DOT National Transportation Integrated Search

    2018-04-01

    The goal of the U.S. Department of Transportation (DOT) Global Positioning System (GPS) Adjacent Band Compatibility Assessment is to evaluate the maximum transmitted power levels of adjacent band radiofrequency (RF) systems that can be tolerated by G...

  16. Immediate direct-to-implant breast reconstruction using anatomical implants.

    PubMed

    Kim, Sung-Eun; Jung, Dong-Woo; Chung, Kyu-Jin; Lee, Jun Ho; Kim, Tae Gon; Kim, Yong-Ha; Lee, Soo Jung; Kang, Su Hwan; Choi, Jung Eun

    2014-09-01

    In 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience. From November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction. The mean breast resection volume was 240 mL (range, 83-540 mL). The mean size of the breast implants was 217 mL (range, 125-395 mL). Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen. By using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  17. The effect of dose reduction on the detection of anatomical structures on panoramic radiographs.

    PubMed

    Kaeppler, G; Dietz, K; Reinert, S

    2006-07-01

    The aim was to evaluate the effect of dose reduction on diagnostic accuracy using different screen-film combinations and digital techniques for panoramic radiography. Five observers assessed 201 pairs of panoramic radiographs (a total of 402 panoramic radiographs) taken with the Orthophos Plus (Sirona, Bensheim, Germany), for visualization of 11 anatomical structures on each side, using a 3-point scale -1, 0 and 1. Two radiographs of each patient were taken at two different times (conventional setting and setting with decreased dose, done by increasing tube potential settings or halving tube current). To compare the dose at different tube potential settings dose-length product was measured at the secondary collimator. Films with medium and regular intensifying screens (high and low tube potential settings) and storage phosphor plates (low tube potential setting, tube current setting equivalent to regular intensifying screen and halved) were compared. The five observers made 27 610 assessments. Intrarater agreement was expressed by Cohen's kappa coefficient. The results demonstrated an equivalence of regular screens (low tube potential setting) and medium screens (high and low tube potential settings). A significant difference existed between medium screens (low tube potential setting, mean score 0.92) and the group of regular film-screen combinations at high tube potential settings (mean score 0.89) and between all film-screen combinations and the digital system irrespective of exposure (mean score below 0.82). There were no significant differences between medium and regular screens (mean score 0.88 to 0.92) for assessment of the periodontal ligament space, but there was a significant difference compared with the digital system (mean score below 0.76). The kappa coefficient for intrarater agreement was moderate (0.55). New regular intensifying screens can replace medium screens at low tube potential settings. Digital panoramic radiographs should be taken at low

  18. Adjacent segment disease after instrumented fusion for adult lumbar spondylolisthesis: Incidence and risk factors.

    PubMed

    Zhong, Zhao-Ming; Deviren, Vedat; Tay, Bobby; Burch, Shane; Berven, Sigurd H

    2017-05-01

    A potential long-term complication of lumbar fusion is the development of adjacent segment disease (ASD), which may necessitate second surgery and adversely affect outcomes. The objective of this is to determine the incidence of ASD following instrumented fusion in adult patients with lumbar spondylolisthesis and to identify the risk factors for this complication. We retrospectively assessed adult patients who had undergone decompression and instrumented fusion for lumbar spondylolisthesis between January 2006 and December 2012. The incidence of ASD was analyzed. Potential risk factors included the patient-related factors, surgery-related factors, and radiographic variables such as sagittal alignment, preexisting disc degeneration and spinal stenosis at the adjacent segment. A total of 154 patients (mean age, 58.4 years) were included. Mean duration of follow-up was 28.6 months. Eighteen patients (11.7%) underwent a reoperation for ASD; 15 patients had reoperation at cranial ASD and 3 at caudal ASD. The simultaneous decompression at adjacent segment (p=0.002) and preexisting spinal stenosis at cranial adjacent segment (p=0.01) were identified as risk factors for ASD. The occurrence of ASD was not affected by patient-related factors, the types, grades and levels of spondylolisthesis, surgical approach, fusion procedures, levels of fusion, number of levels fused, types of bone graft, use of bone morphogenetic proteins, sagittal alignment, preexisting adjacent disc degeneration and preexisting spinal stenosis at caudal adjacent segments. Our findings suggest the overall incidence of ASD is 11.7% in adult patients with lumbar spondylolisthesis after decompression and instrumented fusion at a mean follow-up of 28.6 months, the simultaneous decompression at the adjacent segment and preexisting spinal stenosis at cranial adjacent segment are risk factors for ASD. Copyright © 2017. Published by Elsevier B.V.

  19. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial

    PubMed Central

    Aasted, Christopher M.; Yücel, Meryem A.; Cooper, Robert J.; Dubb, Jay; Tsuzuki, Daisuke; Becerra, Lino; Petkov, Mike P.; Borsook, David; Dan, Ippeita; Boas, David A.

    2015-01-01

    Abstract. Functional near-infrared spectroscopy (fNIRS) is an optical imaging method that is used to noninvasively measure cerebral hemoglobin concentration changes induced by brain activation. Using structural guidance in fNIRS research enhances interpretation of results and facilitates making comparisons between studies. AtlasViewer is an open-source software package we have developed that incorporates multiple spatial registration tools to enable structural guidance in the interpretation of fNIRS studies. We introduce the reader to the layout of the AtlasViewer graphical user interface, the folder structure, and user files required in the creation of fNIRS probes containing sources and detectors registered to desired locations on the head, evaluating probe fabrication error and intersubject probe placement variability, and different procedures for estimating measurement sensitivity to different brain regions as well as image reconstruction performance. Further, we detail how AtlasViewer provides a generic head atlas for guiding interpretation of fNIRS results, but also permits users to provide subject-specific head anatomies to interpret their results. We anticipate that AtlasViewer will be a valuable tool in improving the anatomical interpretation of fNIRS studies. PMID:26157991

  20. Assessment of Anatomical Knowledge and Core Trauma Competency Vascular Skills.

    PubMed

    Granite, Guinevere; Pugh, Kristy; Chen, Hegang; Longinaker, Nyaradzo; Garofalo, Evan; Shackelford, Stacy; Shalin, Valerie; Puche, Adam; Pasley, Jason; Sarani, Babak; Henry, Sharon; Bowyer, Mark; Mackenzie, Colin

    2018-03-01

    Surgical residents express confidence in performing specific vascular exposures before training, but such self-reported confidence did not correlate with co-located evaluator ratings. This study reports residents' self-confidence evaluated before and after Advanced Surgical Skills for Exposure in Trauma (ASSET) cadaver-based training, and 12-18 mo later. We hypothesize that residents will better judge their own skill after ASSET than before when compared with evaluator ratings. Forty PGY2-7 surgical residents performed four procedures: axillary artery (AA), brachial artery (BA), femoral artery exposure and control (FA), and lower extremity fasciotomy (FAS) at the three evaluations. Using 5-point Likert scales, surgeons self-assessed their confidence in anatomical understanding and procedure performance after each procedure and evaluators rated each surgeon accordingly. For all the three evaluations, residents consistently rated their anatomical understanding (p < 0.04) and surgical performance (p < 0.03) higher than evaluators for both FA and FAS. Residents rated their anatomical understanding and surgical performance higher (p < 0.005) than evaluators for BA after training and up to 18 mo later. Only for third AA evaluation were there no rating differences. Residents overrate their anatomical understanding and performance abilities for BA, FA, and FAS even after performing the procedures and being debriefed three times in 18 mo.

  1. An anatomical and functional topography of human auditory cortical areas

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions. PMID:25120426

  2. [Influence of ambient light and adjacent tooth in anterior tooth color measurement].

    PubMed

    Wang, Si-qian; Sean, S Lee; Wu, Zhang; Li, Yiming; Ma, Jian-feng

    2007-10-01

    To investigate the influence of different intensity and directions of ambient light and adjacent tooth in anterior tooth color measurement by using colorimeter. Fiber lite MI-150 was used as ambient illuminant and it irradiated from three or twelve o'clock direction through 45 degrees angle above. The light magnitude 0, 50, 75, 100, 125, 150 W were applied in this experiment. The values of CIE L* a* b* were measured by Minolta Chroma meter CR-321 colorimeter on the center labial surface of ten extracted human maxillary central incisors with or without adjacent teeth, then those data were analyzed statistically by using SPSS 11.5. Neither different intensities nor different directions of ambient light could influence the results of color measurement by using Minolta Chroma meter CR-321 colorimeter, so did the adjacent teeth whether those were exist or not. There is no influence of ambient light and adjacent teeth in the color measurement of anterior teeth under this experiment condition, and Minolta Chroma meter CR-321 colorimeter can be used to measure the color directly aside the chair with light.

  3. Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development

    PubMed Central

    Wang, Guang-Long; Xiong, Fei; Que, Feng; Xu, Zhi-Sheng; Wang, Feng; Xiong, Ai-Sheng

    2015-01-01

    Gibberellins (GAs) are considered potentially important regulators of cell elongation and expansion in plants. Carrot undergoes significant alteration in organ size during its growth and development. However, the molecular mechanisms underlying gibberellin accumulation and perception during carrot growth and development remain unclear. In this study, five stages of carrot growth and development were investigated using morphological and anatomical structural techniques. Gibberellin levels in leaf, petiole, and taproot tissues were also investigated for all five stages. Gibberellin levels in the roots initially increased and then decreased, but these levels were lower than those in the petioles and leaves. Genes involved in gibberellin biosynthesis and signaling were identified from the carrotDB, and their expression was analyzed. All of the genes were evidently responsive to carrot growth and development, and some of them showed tissue-specific expression. The results suggested that gibberellin level may play a vital role in carrot elongation and expansion. The relative transcription levels of gibberellin pathway-related genes may be the main cause of the different bioactive GAs levels, thus exerting influences on gibberellin perception and signals. Carrot growth and development may be regulated by modification of the genes involved in gibberellin biosynthesis, catabolism, and perception. PMID:26504574

  4. Vesicomyinae (Bivalvia: Vesicomyidae) of the Kuril-Kamchatka Trench and adjacent abyssal regions

    NASA Astrophysics Data System (ADS)

    Krylova, Elena M.; Kamenev, Gennady M.; Vladychenskaya, Irina P.; Petrov, Nikolai B.

    2015-01-01

    Representatives of the subfamily Vesicomyinae (Bivalvia, Vesicomyidae) are tiny deep-sea molluscs distributed worldwide and reaching huge abundances of hundreds and thousands of specimens in trawl catches. During the German-Russian deep-sea expedition KuramBio (R/V Sonne, 2012) for the first time two vesicomyin species were collected from the abyssal plain adjacent to the Kuril-Kamchatka Trench from the depths of 4861-5787 m, Vesicomya pacifica (Smith, 1885) and "Vesicomya" filatovae sp.n. Two species of vesicomyins, V. sergeeviFilatova, 1971 and V. profundiFilatova, 1971, which were previously reported from the hadal of the Kuril-Kamchatka Trench, were not collected at the abyssal depth despite of the close geographical proximity of the sampling area to their distribution ranges. Altogether nine species of vesicomyins are recorded now from the West and Indo-West Pacific; data on distribution and morpho-anatomical characters of these species are provided. Taxonomic description of V. pacifica is revised including information on its soft part anatomy, new localities and COI sequences. For the first time for a vesicomyin bivalve molecular data is given for a species with an explicit morphological description and unambiguous taxonomic affiliation. Molecular analysis of 160 published COI sequences of vesicomyids and newly obtained molecular data on V. pacifica showed that V. pacifica and two undescribed vesicomyin species forming a monophyletic clade which exhibits sister relationships with the Pliocardiinae, the group of chemosymbiotic vesicomyids. "Vesicomya" filatovae sp.n. is provisionally assigned to the genus Vesicomya (s.l.) until additional morphological and molecular data are obtained. It differs from Vesicomya s.s. by a broader hinge margin with more radiating teeth and the presence of only one pair of demibranchs.

  5. What We Know About the Brain Structure-Function Relationship.

    PubMed

    Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette

    2018-04-18

    How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.

  6. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    PubMed

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  7. Confusing dinosaurs with mammals: tetrapod phylogenetics and anatomical terminology in the world of homology.

    PubMed

    Harris, Jerald D

    2004-12-01

    At present, three different systems of anatomical nomenclature are available to researchers describing new tetrapod taxa: a nonstandardized traditional system erected in part by Sir Richard Owen and subsequently elaborated by Alfred Romer; a standardized system created for avians, the Nomina Anatomica Avium (NAA); and a standardized system for extant (crown-group) mammals, the Nomina Anatomica Veterinaria (NAV). Conserved homologous structures widely distributed within the Tetrapoda are often granted different names in each system. The recent shift toward a phylogenetic system based on homology requires a concomitant shift toward a single nomenclatural system also based on both evolutionary and functional morphological homology. Standardized terms employed in the NAA and NAV should be perpetuated as far as possible basally in their respective phylogenies. Thus, NAA terms apply to nonavian archosaurs (or even all diapsids) and NAV terms apply to noncrown-group mammals and more basal synapsids. Taxa equally distant from both avians and crown-group mammals may maintain the traditional nonstandardized terminology until a universal anatomical nomenclature for all tetrapods is constructed. (c) 2004 Wiley-Liss, Inc.

  8. Magnetic Resonance Imaging and Anatomical Correlation of Human Temporal Lobe Landmarks, in 3D Euclidean Space: A Study of Control and Alzheimer's Disease Subjects.

    PubMed

    Delgado-González, José-Carlos; Florensa-Vila, José; Mansilla-Legorburo, Francisco; Insausti, Ricardo; Artacho-Pérula, Emilio

    2017-01-01

    The medial temporal lobe (MTL), and in particular the hippocampal formation, is essential in the processing and consolidation of declarative memory. The 3D environment of the anatomical structures contained in the MTL is an important issue. Our aim was to explore the spatial relationship of the anatomical structures of the MTL and changes in aging and/or Alzheimer's disease (AD). MTL anatomical landmarks are identified and registered to create a 3D network. The brain network is quantitatively described as a plane, rostrocaudally-oriented, and presenting Euclidean/real distances. Correspondence between 1.5T RM, 3T RM, and histological sections were assessed to determine the most important recognizable changes in AD, based on statistical significance. In both 1.5T and 3T RM images and histology, inter-rater reliability was high. Sex and hemisphere had no influence on network pattern. Minor changes were found in relation to aging. Distances from the temporal pole to the dentate gyrus showed the most significant differences when comparing control and AD groups. The best discriminative distance between control and AD cases was found in the temporal pole/dentate gyrus rostrocaudal length in histological sections. Moreover, more distances between landmarks were required to obtain 100% discrimination between control (divided into <65 years or >65 years) and AD cases. Changes in the distance between MTL anatomical landmarks can successfully be detected by using measurements of 3D network patterns in control and AD cases.

  9. The maxillary second molar - anatomical variations (case report).

    PubMed

    Beshkenadze, E; Chipashvili, N

    2015-01-01

    To be acquainted with dental anatomical specificity is of great importance for dental endodontic treatment algorithm. The subject of present publication is 2 clinical cases of upper second molars, detailed characterization of, which is considered very important for enrichment of anatomical knowledge about dental anatomical variations. In one case, the reason for admission to the clinic of a 38-year-old woman was complains as of esthetic character as well as functional misbalance (disturbance of chewing function due to the damage of orthopedic construction). The patient indicated to the existence of coronary defects of large size aesthetic discomforts, damage and discolouration of old orthopedic construction (denture) in maxillary right molar area. According to the data obtained after clinical and visiographical examinations, chronic periodontitis of 17 teeth was identified as a result of incomplete endodontic treatment. According to the data obtained after clinical and visiographical examinations, the diagnosis of chronic periodontitis of 17 teeth was identified, tooth 17 with 2 roots and 2 canals. In the second clinical case, the reason for admission to the clinic of a 39-year-old woman was severe pain in the upper right molar area. The patient indicated to the caries on the tooth 17. After completion of proper survey clinical and visiographical examinations, acute pulpitis (K04.00) - with three roots and 4 canals was diagnosed. In both cases after the proper examinations and agreement with the patients a treatment plan envisaging: 17 teeth endodontic treatment, filling of caries defects and their preparation on one hand for orthopedic construction (denture) and on the other hand for restoration of anatomical integrity by light-cured composite, was scheduled. The present study is designed to prevent complications of endodontic treatment of the second molar, to optimize diagnosis and treatment algorithm, once again proving reliable information indicating to the

  10. Training models of anatomic shape variability

    PubMed Central

    Merck, Derek; Tracton, Gregg; Saboo, Rohit; Levy, Joshua; Chaney, Edward; Pizer, Stephen; Joshi, Sarang

    2008-01-01

    Learning probability distributions of the shape of anatomic structures requires fitting shape representations to human expert segmentations from training sets of medical images. The quality of statistical segmentation and registration methods is directly related to the quality of this initial shape fitting, yet the subject is largely overlooked or described in an ad hoc way. This article presents a set of general principles to guide such training. Our novel method is to jointly estimate both the best geometric model for any given image and the shape distribution for the entire population of training images by iteratively relaxing purely geometric constraints in favor of the converging shape probabilities as the fitted objects converge to their target segmentations. The geometric constraints are carefully crafted both to obtain legal, nonself-interpenetrating shapes and to impose the model-to-model correspondences required for useful statistical analysis. The paper closes with example applications of the method to synthetic and real patient CT image sets, including same patient male pelvis and head and neck images, and cross patient kidney and brain images. Finally, we outline how this shape training serves as the basis for our approach to IGRT∕ART. PMID:18777919

  11. A comparison between various radiological techniques in the localization and analysis of impacted and supernumerary teeth.

    PubMed

    Ziegler, Christoph M; Klimowicz, Thomas R

    2013-01-01

    An increasing number of different types of commercial cone-beam computed tomography (CBCT) devices are available for three-dimensional (3D) imaging in the field of dental and maxillofacial radiology. When removing impacted or supernumerary teeth, surgical teams often operate adjacent significant anatomical structures such as nerves, vessels, adjacent teeth roots, and paranasal sinuses. It is therefore important to choose the appropriate surgical approach to avoid iatrogenic damage to the essential anatomical neighbouring structures. CBCT, also called digital volume tomography (DVT), can visualize impacted and supernumerary teeth in all standard planes, as well as multisectional 3D views. These devices have shown to be highly beneficial in the assessment of small bony lesions and maxillofacial injuries. However, it is still necessary to determine the effectiveness of such devices in the assessment of impacted and supernumerary teeth, in comparison to the conventional radiological methods of intraoral X-rays and panoramic X-rays. During a period of 2 years, a total of 61 patients of whom majority had impacted teeth or supernumerary elements in the frontal maxillary region were studied with CBCT and treated at the St. Olavs University Hospital. Patients were referred to our Department of Oral and Maxillofacial Surgery with both conventional and digital intraoral X-rays and/or panoramic X-rays. None had any acute infections or odontogenic abscesses, and most presented with asymptomatic impacted tooth. A comparison between the preoperative conventional and the CBCT images, the resulting diagnoses, and the intraoperative findings as "gold standard" were made and recorded in a compiled scoring sheet. The objects of interest were researched with the magnification method. Each patient was identified only with a patient number. In contrast to the conventional X-rays, the pre-surgical evaluation with the CBCT revealed detailed imaging of significant anatomical structures and

  12. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  13. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  14. COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies

    PubMed Central

    2017-01-01

    COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages “maps” and “maptools” to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data. PMID:29083911

  15. COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.

    PubMed

    Travin, Dmitrii; Popov, Iaroslav; Guler, Arzu Tugce; Medvedev, Dmitry; van der Plas-Duivesteijn, Suzanne; Varela, Monica; Kolder, Iris C R M; Meijer, Annemarie H; Spaink, Herman P; Palmblad, Magnus

    2018-01-05

    COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.

  16. Uplink Scheduling and Adjacent-Channel Coupling Loss Analysis for TD-LTE Deployment

    PubMed Central

    Yeo, Woon-Young; Moon, Sung Ho

    2014-01-01

    TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI. PMID:24707214

  17. Anatomic pathology laboratory information systems: a review.

    PubMed

    Park, Seung Lyung; Pantanowitz, Liron; Sharma, Gaurav; Parwani, Anil Vasdev

    2012-03-01

    The modern anatomic pathology laboratory depends on a reliable information infrastructure to register specimens, record gross and microscopic findings, regulate laboratory workflow, formulate and sign out report(s), disseminate them to the intended recipients across the whole health system, and support quality assurance measures. This infrastructure is provided by the Anatomical Pathology Laboratory Information Systems (APLIS), which have evolved over decades and now are beginning to support evolving technologies like asset tracking and digital imaging. As digital pathology transitions from "the way of the future" to "the way of the present," the APLIS continues to be one of the key effective enablers of the scope and practice of pathology. In this review, we discuss the evolution, necessary components, architecture and functionality of the APLIS that are crucial to today's practicing pathologist and address the demands of emerging trends on the future APLIS.

  18. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    PubMed

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  19. Quantitative angiographic anatomy of the renal arteries and adjacent aorta in the swine for preclinical studies of intravascular catheterization devices.

    PubMed

    Sakaoka, Atsushi; Koshimizu, Masafumi; Nakamura, Shintaro; Matsumura, Kiyoshi

    2018-05-10

    Swine are the most common animal model in preclinical studies of cardiovascular devices. Because of the recent trend for development of new devices for percutaneous catheterization, especially for the renal arteries (RAs), we examined the quantitative anatomical dimensions of the RAs and adjacent aorta in swine. Angiographic images were analyzed in 66 female Yorkshire/Landrace crossbred swine. The diameter of both the right and left main RA was 5.4 ± 0.6 mm. The length of the right main RA was significantly longer than that of the left (29.8 ± 7.5 mm vs. 20.6 ± 5.4 mm, respectively; P<0.001). The diameter of both the right and left branch RA with diameters ≥3 mm (the target vessel diameter of recently developed devices) was 3.8 ± 0.5 mm. The right branch RA was significantly longer than that of the left (18.9 ± 7.8 mm vs. 16.4 ± 7.4 mm, respectively; P<0.05). The branching angle of the right RA from the aorta was significantly smaller than that of the left (91 ± 12° vs. 103 ± 15°, respectively; P<0.001). The diameters of the suprarenal and infrarenal aorta were 10.6 ± 1.1 mm and 9.7 ± 0.9 mm, respectively. In conclusion, because of their similar dimensions to human, swine are an appropriate animal model for assessing the safety of, and determining optimal design of, catheter devices for RAs in simulated clinical use. However, there were species differences in the branching angle and adjacent aorta diameter, suggesting that swine models alone are inadequate to assess the delivery performance of catheter devices for RAs.

  20. Quantitative angiographic anatomy of the renal arteries and adjacent aorta in the swine for preclinical studies of intravascular catheterization devices

    PubMed Central

    Sakaoka, Atsushi; Koshimizu, Masafumi; Nakamura, Shintaro; Matsumura, Kiyoshi

    2018-01-01

    Swine are the most common animal model in preclinical studies of cardiovascular devices. Because of the recent trend for development of new devices for percutaneous catheterization, especially for the renal arteries (RAs), we examined the quantitative anatomical dimensions of the RAs and adjacent aorta in swine. Angiographic images were analyzed in 66 female Yorkshire/Landrace crossbred swine. The diameter of both the right and left main RA was 5.4 ± 0.6 mm. The length of the right main RA was significantly longer than that of the left (29.8 ± 7.5 mm vs. 20.6 ± 5.4 mm, respectively; P<0.001). The diameter of both the right and left branch RA with diameters ≥3 mm (the target vessel diameter of recently developed devices) was 3.8 ± 0.5 mm. The right branch RA was significantly longer than that of the left (18.9 ± 7.8 mm vs. 16.4 ± 7.4 mm, respectively; P<0.05). The branching angle of the right RA from the aorta was significantly smaller than that of the left (91 ± 12° vs. 103 ± 15°, respectively; P<0.001). The diameters of the suprarenal and infrarenal aorta were 10.6 ± 1.1 mm and 9.7 ± 0.9 mm, respectively. In conclusion, because of their similar dimensions to human, swine are an appropriate animal model for assessing the safety of, and determining optimal design of, catheter devices for RAs in simulated clinical use. However, there were species differences in the branching angle and adjacent aorta diameter, suggesting that swine models alone are inadequate to assess the delivery performance of catheter devices for RAs. PMID:29353822